University of Exeter
Browse

Artificially Intelligent Foraging

thesis
posted on 2025-07-30, 20:33 authored by Daniel Chalk
Bumble bees (bombus spp.) are significant pollinators of many plants, and are particularly attracted to mass-flowering crops such as Oilseed Rape (Brassica Napus), which they cross-pollinate. B. napus is both wind and insect-pollinated, and whilst it has been found that wind is its most significant pollen vector, the influence of bumble bee pollination could be non-trivial when bee densities are large. Therefore, the assessment of pollinator-mediated cross-pollination events could be important when considering containment strategies of genetically modified (GM) crops, such as GM varieties of B. napus, but requires a landscape-scale understanding of pollinator movements, which is currently unknown for bumble bees. I developed an in silico model, entitled HARVEST, which simulates the foraging and consequential inter-patch movements of bumble bees. The model is based on principles from Reinforcement Learning and Individual Based Modelling, and uses a Linear Operator Learning Rule to guide agent learning. The model incoproates one or more agents, or bees, that learn by ‘trial-and-error’, with a gradual preference shown for patch choice actions that provide increased rewards. To validate the model, I verified its ability to replicate certain iconic patterns of bee-mediated gene flow, and assessed its accuracy in predicting the flower visits and inter-patch movement frequencies of real bees in a small-scale system. The model successfully replicated the iconic patterns, but failed to accurately predict outputs from the real system. It did, however, qualitatively replicate the high levels of inter-patch traffic found in the real small-scale system, and its quantitative discrepancies could likely be explained by inaccurate parameterisations. I also found that HARVEST bees are extremely efficient foragers, which agrees with evidence of powerful learning capabilities and risk-aversion in real bumble bees. When applying the model to the landscape-scale, HARVEST predicts that overall levels of bee-mediated gene flow are extremely low. Nonetheless, I identified an effective containment strategy in which a ‘shield’ comprised of sacrificed crops is placed between GM and conventional crop populations. This strategy could be useful for scenarios in which the tolerance for GM seed set is exceptionally low.

Funding

BBS/Q/Q/2004/05894

BBSRC

History

Thesis type

  • PhD Thesis

Supervisors

Cresswell, James

Academic Department

Biosciences

Degree Title

PhD in Biological Sciences

Qualification Level

  • Doctoral

Publisher

University of Exeter

Language

en

Department

  • Doctoral Theses

Usage metrics

    University of Exeter

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC