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We identify a type of pattern formation in spatially distributed active systems. We simulate one-dimensional
two-component systems with predator-prey local interaction and pursuit-evasion taxis between the compo-
nents. In a sufficiently large domain, spatially uniform oscillations in such systems are unstable with respect to
small perturbations. This instability, through a transient regime appearing as spontaneous focal sources, leads
to establishment of periodic traveling waves. The traveling wave regime is established even if boundary
conditions do not favor such solutions. The stable wavelength is within a range bounded both from above and
from below, and this range does not coincide with instability bands of the spatially uniform oscillations.
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I. INTRODUCTION

Dissipative structures, i.e., patterns in spatially extended
systems away from equilibrium, have been intensively stud-
ied for many decades. A very comprehensive review can be
found in �1�; results obtained since then would probably re-
quire an even more extensive review. A very popular class of
mathematical models is the reaction-diffusion systems with
diagonal diffusion matrices. There have been numerous indi-
cations that nondiagonal elements in diffusion matrices, i.e.,
cross diffusion, can lead to new nontrivial effects not ob-
served in classical reaction-diffusion systems, e.g., quasisoli-
tons in systems with excitable reaction part �2–6�. However
oscillatory systems are more prevalent than excitable, and
nontrivial effects of cross diffusion in oscillatory systems
have not been studied yet. Here we consider an example
where the reaction part of the system is dissipative while the
diffusion part is not. We describe spontaneously generated
periodic waves and identify the features of these waves that
indicate that we are dealing here with a phenomenon not
seen before.

A general formulation of a reaction-diffusion system with
nonlinear diffusion is

�u

�t
= f�u� + ��D�u� � u�, u,f � RN, D � RN�N. �1�

Both the reaction term f�u� and the diffusion term
�(D�u��u) in the right-hand side represent dissipative pro-
cesses. For the diffusion, this implies that matrix D�RN�N

is positive �semi�definite, typically diagonal with non-
negative elements. A huge amount of results have been ob-
tained about pattern formation described by such models.
However, many physical situations lead to nondiagonal ele-
ments in D, i.e., cross diffusion �see, e.g., discussions in
�7,8��. Some such situations may be adequately described by
D whose eigenvalues have zero real part, e.g., when the self-
diffusion of components is negligible. In such cases reaction
part is dissipative and the “diffusion” part is not. Physical
consequences of such ambivalence are little understood yet.

Cross diffusion has been seen to produce interesting phe-
nomena, such as fronts, pulses, and stationary periodic struc-
tures �see, e.g., �9,10� among many other works�, however
phenomenologically similar regimes are known in reaction-
diffusion systems too.

In a recent series of works we have described unusual
phenomena, such as quasisolitons and their variations, in ex-
citable systems in which linear or nonlinear cross diffusion
was added to or replaced self-diffusion �see, e.g., �2–6��. The
ability of a medium to conduct solitary waves is stipulated
by its excitable kinetics described by the reaction term f�u�,
whereas specifics of their interaction are also due to the
cross-diffusion terms. However, excitability is a relatively
exotic, albeit very important, type of behavior compared to
oscillations. For instance, in population dynamics, plausible
excitable predator-prey models have been proposed �11� but
we are not aware of reliable observations of natural systems
described by such models. On the other hand, oscillatory
behavior in predator-prey systems is textbook material
�12,13� and there are plentiful observational data on traveling
waves in cyclic populations �14�.

Solitary waves in oscillatory systems are not feasible, and
it is not clear what new features cross diffusion may impose.

The purpose of this paper is to describe phenomena we
have observed in oscillatory systems with “pursuit-evasion”
nonlinear cross-diffusion interaction between the
components.

II. MODELS

We consider two predator-prey models with cross-
diffusion terms of pursuit-evasion mutual taxis,

�u

�t
= f�u,v� + Du

�2u

�x2 + h−
�

�x
�u

�v
�x
� ,

�v
�t

= g�u,v� + Dv
�2v
�x2 − h+

�

�x
�v

�u

�x
� �2�

for �x , t�� �0,L�� �0, tmax� for two reaction kinetics, the
Truscott-Brindley �TB� model �11�,
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f�u,v� = �u�1 − u� − vu2/�u2 + �2� ,

g�u,v� = �vu2/�u2 + �2� − wv , �3�

where �=0.43, �=0.053, �=0.1, and w=0.055 unless stated
otherwise, and the Rosenzweig-MacArthur �RM� model
�13–15�,

f�u,v� = �u�1 − u� − vu/�u + �� ,

g�u,v� = �vu/�u + �� − wv , �4�

where �=1, �=0.3, �=0.15, and w=0.03 unless stated oth-
erwise. Here u represents prey, v predators, the term with h+
describes pursuit of prey by predators, and the term with h−
describes evasion of predators by prey. The simulations were
done on an interval x� �0,L� with periodic or Neumann
boundary conditions for both components using forward Eu-
ler stepping in time, center differences for the diffusion
terms, and upwind difference for the taxis terms �see �3� for
details and justification�. Except where stated otherwise, we
used discretization steps �x=0.1 and �t=4�10−4.

III. NUMERICAL OBSERVATIONS

Figures 1 and 2 illustrate the phenomenon of the sponta-
neous onset of periodic waves. Starting from arbitrary spa-
tially uniform initial conditions at t=0, after a transient al-
lowed to establish uniform oscillations, perturbations were
introduced and subsequent evolution observed. The perturba-
tion was introduced at half of the grid points chosen ran-
domly, where at t=300 the values of u were replaced by
randomly chosen numbers in the interval between 0.15 and

0.45. Figure 1 shows space-time density plots and Fig. 2
illustrate selected profiles of the emerging wave trains.

In the TB model with periodic boundary conditions �Fig.
1�a��, after a “random” transient lasting two or three bulk
oscillation periods, patterns start to emerge: waves start
“from nowhere” and annihilate upon collision with other
such waves. After a few periods of such collisions, the waves
propagating leftward win over and a periodic wave train es-
tablishes which then persists. Different seeds in the random
number generator produce solutions differing in detail but
always leading to periodic trains, leftward and rightward
propagating with equal probability �compare density plots
and wave profiles in Figs. 1 and 2, which corresponded to
different simulations with the same parameter sets�.

Impenetrable boundaries do not allow periodic wave train
solutions; however the tendency to establish periodic wave
trains is observed even then. In Fig. 1�b� rightward propagat-
ing waves win over. Their impact with the right boundary
x=L is with partial reflection when the reflected wave is
weak and soon decays; note that this behavior is typical for
collision of solitary excitation waves in such systems �3�.
The left boundary has a quenching effect, but at a distance

�

� x

t

(a) (b) (c) (d) (e) (f) (g)

FIG. 1. Different regimes resulting from random perturbation of
uniform oscillations. Shown are density plots: space x is horizontal,
time t is vertical increasing upward; u=1 corresponds to black and
u=0 corresponds to white. �a� TB model, L=15, taxis �h−=1, h+

=0, Du=Dv=0�, and periodic boundary conditions, t� �0,2500�.
�b� Same as �a�, except boundary conditions are no-flux,
t� �0,1200�� �43 800,45 000�. �c� Same as �a� except Du=Dv
=0.05, h+=h−=0. �d� Same as �a� except w=0.07, L=10, t
� �0,1200�� �36 300,37 500�. �e� Same as �a� except h+=0.1, L
=50, t� �0,1200�� �5000,6200�. �f� Same as �a� except h+=0.1,
Du=Dv=0.02, L=50, t� �0,400�� �1900,3900�. �g� RM model,
h−=1, h+=Du=Dv=0, L=25, t� �0,2500�.
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FIG. 2. �Color online� Examples of profiles of spontaneously
established periodic waves. Shown are dependencies of u and v on
x at fixed t and direction of propagation by arrows. Parameters are
the same as in Fig. 1 except interval length L, specifically, �a� as in
Figs. 1�a� and 1�b�, as in Figs. 1�d� and 1�c�, as in Figs. 1�e� and
1�d�, as in Figs. 1�f� and 1�e�, and as in Fig. 1�g�.
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from it waves emerge spontaneously. This distance varies
irregularly, indicating that spontaneous generation of waves
is associated with an instability, thus sensitive dependence on
initial conditions and probably chaotic dynamics. This ir-
regular pattern persists for a long time.

This behavior is in a contrast with a system with the same
kinetics but pure diffusional spatial terms: in Fig. 1�c�, simi-
lar initial random perturbations lead very quickly to re-
establishment of spatially uniform oscillations.

The parameters used in Fig. 1�a� are close to the boundary
of the oscillatory regime in the TB model �achieved, e.g., at
w�0.053 with other parameters fixed�. When parameters are
further into the oscillatory region, spontaneous generation of
periodic wave trains is still observed, although the transient
period of spontaneous wavelet generations and collisions
lasts longer �see Fig. 1�d��.

We have also found that prevalence of the “evasion” taxis
�h− coefficient� helps generation of periodic trains, but h+
=0 is not necessary, and such generation can be observed
with the “pursuit” taxis present as well �see Fig. 1�e��.

Spontaneous generation of periodic trains is observed in
the RM model as well �see Fig. 1�f��.

The spontaneously emerging periodic wave trains typi-
cally had wavelengths in a limited range. To check whether
this is dictated by initial conditions or is due to limitations of
the system, we performed simulations in a circle, i.e., an
interval with periodic boundary conditions, of a slowly
changing length L. We started from an established propagat-
ing wave in a circle. Then we changed the length L of the
circle in small steps, allowing sufficient time between the
steps for the waves to adjust. During the simulation we
monitored the number of waves n, determined via the num-
ber of points where u crossed the level u=u�=0.2 and the
periods T defined as intervals between u crossing the level
u=u� in the positive direction. Results of one such simula-
tion are shown in Fig. 3.

The number of waves n in the interval did not remain
constant �Fig. 3�a�� but spontaneously adjusted so as to keep
the average wavelength within certain limits: between ap-
proximately 2.5 and 8 in the simulation shown. This number
was not a unique function of the interval length: changing L
upward and downward produced different dependencies
n�L�, i.e., we have hysteresis. Simulations at slower rate of
change of L slightly changed the n�L� dependencies but the
hysteresis stayed. Near the transition points where n changed
the value, the propagation of the waves was nonstationary
and was always for L just below the transitional value
whether it was decreasing �Fig. 3�b�� or increasing �Fig.
3�c��. Increasing L had a noticeably more destabilizing effect
than decreasing.

The nature of the nonstationary solutions is illustrated by
the density plots shown in Fig. 3�d�. Starting from an n=1
solution, an increase of L above the value of L�5 leads to
an instability of the steady propagating wave solution. This is
a soft Eckhaus-type instability and leads to a mild modula-
tion of the wave, producing a seemingly two-periodic mo-
tion. The amplitude of the modulations grows as L increases
until at L=7.6 a qualitative transformation occurs. A gap
between the wave and its own copy around the circle grows
so big that at a certain moment it is sufficient to allow spon-

taneous generation of another wave, leading to an n=2 solu-
tion. This solution is steady, i.e., propagates without modu-
lations, until L grows so big it in turn becomes unstable, etc.

IV. PRELIMINARY THEORETICAL CONSIDERATIONS

Substantial theoretical analysis of the phenomenon of the
spontaneous traveling periodic waves is beyond the scope of
this paper. Here we consider one naive approach and then
some known pattern formation mechanisms, which a priori
might look relevant to this phenomenon, only to eliminate
them, as not providing a satisfactory explanation. We will
refer to the historical review by Cross and Hohenberg �1� �p.
870� �CH for brevity� and to a recent symmetry based clas-
sification of instabilities and bifurcations of periodic dissipa-
tive waves and structures given by Rademacher and Scheel
�RS for brevity� �16� �p. 2680�.

a. It is not captured by lambda-omega approach. The
simple class of two-component reaction-diffusion systems
introduced by Kopell and Howard �17� and called “lambda-
omega systems” and closely related to the complex
Ginzburg-Landau equation allows exact solutions in the form
of periodic waves. It has offered qualitative insight in many
nonlinear wave phenomena, including periodic waves in cy-
clic populations �14�. However, it does not seem to be help-
ful in our present case. The modification of the lambda-
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FIG. 3. �Color online� Variability of the wave trains at changing
L. �a� Number of waves in the interval �0,L� as L gradually in-
creases �by 0.2 every 2000 time units, solid red line� and decreases
�by 0.2 every 1000 time units, dashed blue line�. Oblique dashed
lines: n=L /2.5 and n=L /8 to guide the eyes. �b� Wave periods
measured at a point as a function of L as it decreases. �c� Same as
L increases. �d� Density plots of two episodes of simulation of 1200
time unit duration each, with L increasing by 0.2 every 1000 time
units. Lower episode: soft transition from steady one-wave solution
to modulated one-wave solution �L :4.8→5.6�. Upper episode: sub-
sequent sudden transition from modulated one-wave solution to a
steady two-wave solution �L :7.2→7.6�.
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omega system, corresponding to the choice of signs of taxis
terms in Eq. �2�, is

�z

�t
= ����z�� + i���z���z − i�2z , �5�

where z is a complex dynamic variable representing u+ iv,
and the purely imaginary diffusivity here corresponds to the
absence of self-diffusion, Du=Dv=0. Then the periodic trav-
eling wave ansatz z=a exp�i�	t−kx��, a, 	, k�R, gives the
finite system

��a� = 0, 	 = ��a� − k2,

i.e., all waves have the same amplitude which is a root of
�� � and exist for all wavelengths k rather than in a finite
interval. Stability analysis and consideration of nonzero self-
diffusion do not help either.

b. It does not emerge via Turing mechanism. The instabil-
ity of spatially uniform solutions in favor of nonoscillatory
spatially periodic solutions with periods in a finite range is,
of course, a defining feature of the Turing patterns, called
just so by RS and classified as type Is in CH nomenclature.
Cross diffusion can provide an alternative to the original Tur-
ing’s short range inhibition–long range activation condition.
Indeed Turing-type instabilities and spontaneously occurring
self-supporting time-stationary spatially periodic patterns
have been observed in locally multistable systems with cross
diffusion �9�. Our present observations are different in that
here we are dealing with time-oscillating phenomena not just
space oscillating.

c. It does not emerge via Turing-Hopf mechanism. Hopf
bifurcations of the spatially uniform equilibrium at a nonzero
wavelength are called “Hopf,” “oscillatory Turing,” and
“Turing Hopf” instability by RS, classified as type Io in CH
nomenclature and also known as short-wave instability or
finite-wavelength instability. It can lead to stable periodic
propagating waves, in lasers, fluid convection, and reaction-
diffusion models �18–21�. In reaction-diffusion context, such
waves have been observed experimentally and in simulations
in populations and BZ reaction �22,23�. However, the stan-
dard way such instability occurs in systems �Eq. �1�� implies
existence of an equilibrium that is stable with respect to spa-
tially uniform perturbations, which we do not have here, and
it only can occur if N
3 whereas we have only two com-
ponents, u and v.

Specifically, for u�x , t�=ur+ve�t+ikx, where ur= �ur ,vr� is
the spatially uniform equilibrium and �v��1, we have the
characteristic equation

det�Fr − Drk
2 − �I� = 0,

where Fr=F�ur�= ��f /�u�u=ur
= �

f11 f12

f21 f22
� is the Jacobian matrix

of the reaction terms and Dr=D�ur� is the diffusion matrix,
both evaluated at the equilibrium. Considering for simplicity
the cases of Figs. 1�a�, 1�b�, 1�d�, and 1�f� where Dr

= �
0 h−ur

0 0 �, we have

� = 1
2 �f11 + f22 
 	�f11 − f22�2 + 4f12f21 − f21h−urk

2� ,

which for k2�max
��f11− f22�2+4f12f21� / �h−ur� ,0� gives
oscillatory behavior of perturbations, but then

Re���= �f11+ f22� /2=const whereas it has to have a maxi-
mum at a positive k2 for this mechanism to be relevant.

d. It does not emerge via Turing-Hopf instability of spa-
tially uniform oscillations. The next possible candidate is the
instability of spatially uniform oscillations with respect to
perturbations which nonzero frequency and nonzero wave
number. This case is not considered in the CH nomenclature
and is called Hopf instability of spatially homogeneous os-
cillations, with the same variants as in the previous case, by
RS. This instability looks plausible as spatially homogeneous
�spatially uniform� oscillations in our systems are indeed
possible and even stable in small spatial domains, so we have
investigated this possibility with particular care. As limit
cycles in the point systems of Eqs. �3� and �4� cannot be
described analytically, the investigation of stability has to be
done numerically. We have considered solutions of the form
u�x , t�=uo�t�+Re�v�t�eikx� with �v��1, which gives a
coupled system of ordinary differential equations,

duo

dt
= f�uo� , �6a�

dv

dt
= �F�uo� − D�uo�k2�v , �6b�

with parameter k. We solved system �6c� forward in
time with initial conditions for bulk oscillations uo in
the basin of attraction of the limit cycle and arbitrary non-
zero initial conditions for the perturbation v. Then we esti-
mated the Lyapunov exponent for the v subsystem, ��k�
=limt→� t−1 ln��v�t���. The estimation was done by finding
maxima of the first component of v�t� and linearly fitting
their logarithms against t for an interval of large enough
values of t. For selected values of k we used two linear
independent sets of initial conditions for v to eliminate the
theoretical possibility of accidentally choosing initial condi-
tions that did not lead to the maximal exponent.

The resulting graph ��k� for the TB model at the same
parameters as in Figs. 1�a� and 3 is shown on Fig. 4�a�. For
comparison, we also show histograms of the empirical wave
numbers observed in simulations shown in Fig. 3, calculated
as k=2�n /L, separately for the growing and decreasing L.
Figure 4�b� shows similar graphs made for the RM model at
the same parameters as in Fig. 1�f�. It is clear that, although
there are finite bands of wave numbers producing growing
perturbations, the actually selected wave numbers are not the
same as those of the fastest growing perturbations and for the
TB model they even partly fall in the interval of decaying
perturbations.

Moreover, the growing perturbations of the spatially uni-
form oscillations in fact do not represent propagating peri-
odic waves but standing waves. This is illustrated in Fig. 4�c�
where we show a density plot of a simulation of the full
model, similar to Fig. 1�a� but with different initial condi-
tions. Here we chose initial conditions as spatially uniform
oscillations plus a very small perturbation sinusoidal in
space. Note that for the limit of infinitely small perturbation
amplitudes this exactly corresponds to system �6c�.
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We conclude that although the cross-diffusion driven in-
stability does indeed take place in the considered examples,
the waves that emerge are in fact quite different from the
spontaneous periodic traveling waves.

e. Spontaneous sources as a precursor of spontaneous
periodic waves. The periodic standing waves emerging via
the cross-diffusion driven instability described above are
in turn unstable themselves. Figure 4�d� shows a continua-
tion of simulation of Fig. 4�c�. The standing waves are ob-
served for a long time, as they are stable within the space
of functions with spatial period 2� /k=L /6, and the numeri-
cal initial conditions are almost exactly periodic with that
period up to small errors resulting from finite precision arith-
metics. The small symmetry-breaking numerical errors allow
for an instability of the periodic standing waves to develop,
during which some of the standing waves occur later than
others. When this instability sufficiently develops, there is
a sudden “hard” transition to propagating waves. The spatial
period of the propagating waves is twice longer than the
spatial period of preceding standing waves. We stress that
the traveling waves do not appear via anything like “bifur-
cation” from standing waves at least in the examples we
considered.

Notice that the long transient solution shown in Figs. 4�c�
and 4�d� is a periodic standing wave by its symmetry, but it
also looks like a periodic set of focal sources, synchronously
sending out solitary waves which then annihilate each other.
As can be seen in Fig. 1, apart from the symmetry, this sort
of transient before the onset of periodic waves is typical, and
only its duration varies in different simulations. That is, the
special initial conditions in Figs. 4�c� and 4�d� only affect the
symmetry and the duration of the transient, but not its quali-
tative character. A similar route to traveling waves via un-
stable periodic set of “focal source” standing waves is ob-
served in the RM model.

V. CONCLUSION

The considered examples demonstrate an unusual type of
behavior. The systems are oscillatory, but the spatially uni-
form oscillations are unstable. The systems can also demon-
strate standing periodic waves, which are also unstable.
These instabilities lead to periodic propagating waves, which
seem to be the only stable regime. This regime emerges
spontaneously even when boundary conditions disallow
propagating waves. The periods of the waves can be in a
certain interval with strict boundaries, both upper and lower.
Nearer the upper end of the interval, i.e., at longer wave-
lengths, the periodic waves do not propagate steadily but are
modulated. Transition from steady to modulated propagation
is soft and has empirical features of a supercritical Hopf
bifurcation �of a relative equilibrium�, i.e., possibly an Eck-
haus mechanism.

The defining features described above are sufficiently
generic, and the phenomenon of spontaneous periodic trav-
eling waves does not disappear as the parameters are varied
nor it is restricted just to one model. This behavior does
not fall into existing classification of pattern formation sce-
narios. The detailed mechanisms of spontaneous generation
and maintenance of periodic traveling waves require further
investigation. However, it is clear that cross diffusion is
an essential factor since its replacement with or adding of
significant amount of self-diffusion eliminates the effect.
Cross-diffusion phenomena are known in a variety of physi-
cal situations. For example, spontaneous periodic waves
have been observed in a Burridge-Knopoff mathematical
model of earthquakes �24,25�. That model belongs to class
�1�, with only one nonzero element of matrix D, as in our
simulations shown in Figs. 1�a� and 1�g� but constant, and
excitable FitzHugh-Nagumo local kinetics. It is not known
whether the spontaneous waves in the Burridge-Knopoff
model have a finite interval of allowed wave numbers, as
illustrated by Fig. 3 for our case; however other described
features of those waves are similar to those described here
and are likely to have a similar nature. Further investigation
of the mechanism of generation of such waves is a subject
for further study which is of broad physical interest as a new
pattern forming mechanism in dissipative spatially distrib-
uted systems.

Returning to the application that originally motivated this
study, attempts to explain waves observed in cyclic biologi-
cal populations, using reaction-diffusion models, had to in-
volve spatially nonuniform external factors, e.g., sites of in-
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FIG. 4. �Color online� Emergence of spontaneous periodic
waves through instabilities. �a� Spectrum ��k� of harmonic pertur-
bations of the spatially uniform oscillations �black lines with points�
and the histograms of the wave numbers of spontaneous wave trains
in the simulations shown in Fig. 3 for increasing L �red solid line�
and decreasing L �blue dashed line�. �b� Same, for the RM model,
parameters as in Fig. 1�f�, histograms obtained by increasing L by
0.2 every 2000 time units from 5 to 50 and decreasing it back to 2
by 0.2 every 1000 time units. �c� Emergence of standing periodic
waves via an instability of the spatially uniform oscillations. Param-
eters as in Figs. 1�a� and 3, L=12.26, �x=L /63, �t=5�10−5, and
t� �0,1000�. �d� Emergence of spontaneous periodic wave trains
via an instability of periodic standing waves. Continuation of �c�,
t� �44 460,45 460�.
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creased mortality due to environmental conditions �14,26�.
Such factors are needed to disallow uniform oscillations. Our
present results imply that such factors may not be necessary
if cross-diffusion interaction is taken into account as the uni-
form oscillations may be unstable and waves form spontane-
ously.
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