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Abstract. In this paper, we introduce an ASEP-like transport model for bidirectional

motion of particles on a multi-lane lattice. The model is motivated by in vivo

experiments on organelle motility along a microtubule (MT), consisting of thirteen

protofilaments, where particles are propelled by molecular motors (dynein and kinesin).

In the model, organelles (particles) can switch directions of motion due to “tug-of-war”

events between counteracting motors. Collisions of particles on the same lane can be

cleared by switching to adjacent protofilaments (lane changes).

We analyze transport properties of the model with no-flux boundary conditions

at one end of a MT (“plus-end” or tip). We show that the ability of lane changes

can affect the transport efficiency and the particle-direction change rate obtained

from experiments is close to optimal in order to achieve efficient motor and organelle

transport in a living cell. In particular, we find a nonlinear scaling of the mean tip size

(the number of particles accumulated at the tip) with injection rate and an associated

phase transition leading to pulsing states characterized by periodic filling and emptying

of the system.

Keywords: traffic and crowd dynamics, molecular motors (theory), stochastic particle

dynamics (theory), phase transition

1. Introduction

The cytoplasm of living cells contains a complex network of fibres (the cytoskeleton)

that helps to maintain cell shape by providing structural support, and that facilitates

intracellular transport. This transport is mediated by specialized mechano-proteins,

the so-called molecular motors, that utilize ATP to move vesicles, organelles (or other

cargo) in a particular direction along the cytoskeleton [1]. Microtubules (MTs) are one

type of cytoskeletal element that consist of thirteen oriented protofilaments [2] (that

we refer as lanes), each of which can support bidirectional transport. Long-distance

transport along MTs is powered by kinesin and dynein, where kinesin takes its cargo to

the polymerization-active plus-end of a MT while dynein walks towards the minus-end

[1].

http://arxiv.org/abs/1104.5090v2
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Various lattice models have been proposed to understand the role of cooperation

and competition between motors involved in such bi-directional transport. These

are typically generalizations of asymmetric simple exclusion processes (ASEP) in one

dimension [3, 4] where motors are represented by particles that move on a lattice.

Already for unidirectional motor transport models [5, 6, 7] there are nontrivial effects

such as traffic jams due to the mutual exclusion of particles on sites of the MT [5, 8].

Bidirectional transport has previously been modelled by an exclusion process with

binding and unbinding events [9, 10, 11, 12] or a lattice model with site sharing

[13]. Change in direction of individual cargos may be due to “tug-of-war” ‡ events

[14, 15, 16, 17] and this can be incorporated into ASEP models by assuming that motion

of a single type of particle in different directions takes place on different lanes (and

change of direction is modelled simply by change of lane) [18, 19, 20] or that particles

may change type [21]. In the latter case, counter-moving particles approaching on the

same lane can only pass if at least one of them can change lane. The lane-change

rules in the latter model are based on experimental observations that (a) dynein can

switch between lanes on the MT at a certain rate [22], whereas (b) kinesin remains on

a single lane [23], and (c) no long-lasting traffic jam is observed between particles away

from the tip. However, recent reports show that kinesin can change lanes to overcome

obstacles on the MT [24]. Thus the situation in the living cell is less clear and one aim

of this paper is to investigate the impact of different lane-change rules on bidirectional

transport.

We study a generalization of the models from [20, 21] for bidirectional motion

motivated by in vivo experimental observations of bidirectional motion of dynein

particles near the hyphal tip of Ustilago maydis. The particles represent dynein that

is transported towards the plus-end of a MT by kinesin-1 and towards the minus-end

under its own power. As the dynamics of the MT in this system are comparatively stable

[25] and binding/unbinding events are rare in this system [26], we focus on modelling

bidirectional transport of particles that remain bound at all times to a fixed section of

MT where one end is a plus-end (with no-flux boundary conditions are applied) while

at the other end we inject particles at a given injection rate. In particular we explore

the behaviour of the tip accumulation (or tip size) as a function of this injection rate.

The paper is organized as follows: In Section 2 we introduce a general multi-lane

model for bidirectional motion and demonstrate that it includes, as special cases, the

models of [20, 21]. Section 3 examines the influence of collisions and lane changes on

bidirectional transport in this model. In particular we find cross-lane diffusion due to

lane changes, and for low injection rates we find an approximately linear scaling of the tip

size with injection rate as discussed in [20]. However, for higher injection rates we find

there is a nonlinear growth in the tip size (depending on the lane-change rules) due to

trapping of particles near the plus-end, and a singularity at a finite critical injection rate.

We suggest that is associated with a phase transition of the system. We also study how

‡ “tug-of-war” events refer to simultaneous and competitive activity of counteracting motors on the

same organelle.
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the lane change rules influence the tip structure and discuss measures of efficiency for

the bidirectional transport. Interestingly, we find that the in vivo parameters obtained

from living cell images [21] are close to optimal for effective bidirectional transport, in

that they balance efficient transport to the tip against the average delay at the tip. In

Section 4 we describe novel pulsing states (with whole-system approximately periodic

filling and emptying) and filled states that can both appear at injection rates beyond

the critical value. We finish with a discussion of biological relevance, implications and

generalizations of these results in Section 5.

2. A multi-lane model for bidirectional transport

Consider a bidirectional transport model where particles move on a lattice of spatial

locations consisting of M adjacent lanes around the circumference of a cylinder.§ Each

oriented lane is discretized into N sites between a plus-end and minus-end, as illustrated

in Figure 1. Particles are of two types; plus-type particles move towards the plus-end,

while minus-type particles move towards the minus-end; a single particle represents a

bound pair of opposite-directed motor proteins that is pulled along the lane by one of

the motors being bound to the MT and the type of the particle corresponds to which

of the motors is currently bound to the MT.

We identify each location along the cylinder by a pair (l, i) where l ∈ {1, · · · ,M}

denotes the lane and i ∈ {1, · · · , N} the site along the lane and let τ l±,i = 1 or 0

represent the presence or absence of a plus-type (minus-type) particle at location (l, i).

Each location is occupied by at most one particle (i.e. τ 1+,i+ τ l−,i can only be 0 or 1) and

particles move from one location to another at given rates. We also allow the possibility

that each particle can change from one type to the other at rates representing the

resolution of brief “tug-of-war” events [14, 15, 16, 17] between opposite oriented motor

proteins bound to the particle. This change of type may or may not be associated with

a change of lane.

The plus- and minus- type particles may have transition rates that describe motion

and particle-type change and both of these may depend on site; however, here we will

assume that they are independent of site, though they may depend on lane. We say a

model is lane-inhomogeneous (or simply inhomogeneous) if the transition rates and/or

boundary conditions are not uniform between lanes; otherwise we say the model is

(lane) homogeneous. A particle is blocked if there is another particle that prevents it

from undergoing the forward motion below, otherwise it is unblocked. Transition rates

may depend on whether a particle is blocked or not as illustrated in Figure 1 and the

possible transitions we consider are defined below:

• Motion: Plus-type particles move from (l, i) to (k, i + 1) with a change of lane l

to k when unblocked (resp. blocked) at rate pl→k
+,u (resp. pl→k

+,b ). Similarly, minus-

type particles move from (l, i) to (k, i− 1) at rate pl→k
−,u(b). Motion is subject to an

§ We identify lane M + 1 with lane 1 to represent this cylinder.
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exclusion principle - a change can only occur if the target location to move into

is vacant. Forward motion is used to mean the motion on a single lane (i.e.,

k = l) in either direction; this can occur only to a particle that is unblocked. If this

forward motion is lane-homogeneous then we write

p+ := pl→l
+,u, p− := pl→l

−,u.

• Particle type/direction change: Plus-type particles can change to minus-type

particles with a change of lane l to lane k at rate pl→k
+− . Minus-type particles can

change to plus-type particles with a similar change in lane at rate pl→k
−+ (we assume

that the site i is preserved for a change in type). For lane-homogeneous direction

changes on the same lane, we write

p+− := pl→l
+− , p−+ := pl→l

−+ .

Boundary conditions for the model are assumed as follows:

• Inflow: Plus-type (resp. minus-type) particles are injected at rate αl
+ (resp. αl

−)

into the minus end (reps. plus end) of the l−th lane. Both cases are subject to an

exclusion principle.

• Outflow: Plus-type (resp. minus-type) particles exit from the plus end (resp.

minus end) of the l−th lane at rate βl
+ (resp. βl

−).

Vacancy

α2
+

β3
−

p+

p−

p1→2
−,u

p2→3
+,b p2→3

−,b

α3
−

β1
+ Lane 1

Lane 2

Lane 3

Plus end

.

.

.

.

.

.

α1
+

p2→2
+−

p2→1
+,u

p2→3
+,u

Plus−type particle Minus−type particle

p2→2
−+

p2→3
+−

p2→3
−+

Figure 1. Schematic diagram showing transition rates for the multi-lane bidirectional

ASEP model; we consider M lanes on the surface of a cylinder. The plus end (resp.

minus end) of the MT is at the right (resp. left). Plus-type (resp. minus-type) particles

move step forward with rate p+ (resp. p−) while they move forward associated with

a change of lane with rates pl→l±1
+,b(u) (resp. pl→l±1

±,b(u)) when blocked (resp. unblocked).

Plus-type (resp. minus-type) particles are injected into the left (resp. right) boundary

of the system at rate αl
+ (resp. αl

−) and exit at rate βl
+ (resp. βl

−) in the l−th lane.

Particles can also change from plus-type to minus-type (resp. from minus-type to plus-

type) with rate pl→k
+− (resp. pl→k

−+ ) associated with a possible change of lane l to k (if

l 6= k); we assume the site is preserved during a change of type.
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The state of the model {τ l±,i(t)} at time t changes according to the above

events (assumed to take place independently and instantaneously) from an initial state

{τ l±,i(0)}. In summary, the model for a given lattice (fixed M and N) has a number of

parameters

pl→k
±,b , pl→k

±,u , pl→k
+− , pl→k

−+ , αl
± and βl

±

for k, l = 1, · · ·M that collectively determine the bidirectional transport behaviour. We

write α+ =
∑l=M

l=1 αl
+ to denote the total inflow of plus-type particles. In practice,

many of these rates will be zero - for example, here we only permit a type change of

a particle that remains on the same lane or moves to an adjacent lane. As in other

ASEP models, we assume that the dynamics for typical choices of parameters converges

to a unique statistical equilibrium independent of initial conditions, though possibly

after a long transient. Exceptions occur if there is a degeneracy of the parameters,

for example if no lane-changes are permitted, i.e., pl→k
±,b(u) = 0 for k, l = 1, · · ·M , then

accumulations can be created at arbitrary locations that are never cleared. The system

exhibits various different dynamical regimes depending on parameters. We have not

attempted to characterize the phase diagram of these states in full, but do discuss this

further in Section 4.1.

The equilibrium densities of plus- and minus-type particles are defined to be the

mean occupancy of the particles:

ρli := 〈τ l+,i(t)〉, σl
i := 〈τ l−,i(t)〉 (1)

where 〈·〉 denotes the ensemble average; assuming ergodicity this can be evaluated using

a time average. In particular, if there is an accumulation at the tip then we denote the

lane tip length λl
tip(t) as the number of particles in the accumulation within lane l at

time t, and the tip size ntip(t) is

ntip(t) =
M
∑

l=1

λl
tip(t).

with mean tip size as 〈ntip〉 at a steady state.

There are few methods giving exact analytical solutions of the equilibrium state

for ASEP models (we refer to [27] for a review of ASEP models and their analytical

solutions). Therefore, we numerically simulate this discrete event, continuous time

model using both Gillespie [28] and fixed time-step (ht) Monte Carlo methods. The latter

method converges to the Gillespie method and gives outcomes that are independent of

update methods in the limit ht → 0. This general multi-lane model can reduce to

previously studied ASEP models in special cases. For instance, restricting to M = 1

and one particle-type gives the simplest unidirectional ASEP model. In particular of

bidirectional transport, this multi-lane model limits the two models recalled in the

following sections.
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Table 1. The transition rates (a) with boundary conditions I in (b) for a two-lane

model (M = 2) that gives bidirectional transport where each lane supports transport

in one direction only and allows lane changes only together with a type change; if also

associated with boundary Conditions II, the model corresponds to no-flux boundary

at the plus end.

(a) Transport rates

pl→l
−+ = pl→l

+− = 0, pl→l±1
±,u(b) = 0 (l = 1, 2), pd := p1→2

+− , pu := p2→1
−+ , p± := pl→l

±,u

(b) Boundary conditions I Boundary conditions II

α2
+ = α1

− = 0 β1
+ = α2

− = 0

2.1. A simple two-lane model

A lattice model for bidirectional transport needs to either segregate, or deal with

collisions between, opposite-directed particles. Works such as [9, 12] include the

possibility of binding/unbinding from/to a reservoir in their model. In our multi-lane

model, for M = 2 one can segregate the particles into two lanes of unidirectional motion

by setting the parameters in Table 1 (a) with boundary conditions I as in Table 1 (b).

This particular choice of parameters corresponds to the two-lane model of [18, 19] and

segregates the particles into two lanes- one lane will have no particles of minus-type,

while the other lane will have no particles of plus-type, i.e., the equilibrium densities

ρ2 = σ1 = 0. If, in addition, boundary conditions II in Table 1 (b) are satisfied then there

is no flux at the right boundary and the model corresponds to the special case studied

in [20]. We recall from [20] that in these circumstances, if the minus-end boundary

condition α1
+ = α+ small enough on the first lane and β2

− = p− on the second lane then

a shock forms near the tip that traps a number of particles there. Using a mean-field

approximation and denoting x = iδ where δ = 1/N , one can find an asymptotic profile

for the equilibrium densities of ρ and σ for plus- and minus-type particles along the

domain as follows (assuming σ2 and min{ρ1, (1− ρ1)} are of order δ):

ρ1(x) ≈







α+

p+
exp

[

x
(

Npu
p
−

− Npd
p+

)]

, x ∈ [0, xs]

1 + pdN
p+

(x− 1), x ∈ [xs, 1]
, (2)

σ2(x) =

{

ρ1(x), x ∈ [0, xs]

1− ρ1(x), x ∈ [xs, 1]
, (3)

where xs represents the shock position. Continuity of the flux [20] then implies that the

mean tip size can be approximated as

〈ntip〉 ≈ (1− xs)N ≈
α+

pd
exp

(

Npu
p−

−
Npd
p+

)

. (4)

2.2. A homogeneous thirteen-lane model

Taking M = 13 and considering lane-homogeneous transition rates as in Table 2 (a,b),

the multi-lane model reduces to the thirteen-lane model of [21]. If we consider boundary
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conditions

αl
+ = α+/M, αl

− = 0, βl
+ = 0 and βl

− = p+ (5)

for all l ∈ {1, · · · ,M}, this corresponds to homogeneous injection of plus-type particles

into the minus-end and no flux at the plus-end of the domain, while minus-type particles

exit without impediment. Experiments and other information reported in [21] suggest

the rates listed in Table 2 (a) are appropriate for this system. Rates in Table 2 and

boundary conditions in (5) are considered as default parameters for simulations unless

otherwise specified.

Table 2. Transition rates for the thirteen-lane model based on in vivo experiment

measurements or estimations of velocities, mean run length and fluxes on a MT for

the Ustilago maydis hyphal tip as detailed in [21]. Note that α+ represents the total

injection rate, i.e., α+ =
∑M

l=1 α
l
+. Simulations use N = 1250 sites (i.e., L = 10 µm in

length discretised with spatial step hs = 8 nm) and a sequential Monte-Carlo update

with time step ht = 0.0042 s unless otherwise specified.

(a) Possible transition rates s−1

p+ p− p+− p−+ pl→l±1
+,u pl→l±1

+,b pl→l±1
−,u pl→l±1

−,b α+ βl
−

212.5 203.83 0.0406 0.0273 0 0 4.335 106.25 1.06 212.5

(b) Only adjacent lane changes permitted Type changes occur on a same lane

pl→k
±,b(u) = 0 (k 6= l, l± 1) pl→k

−+ = pl→k
+− = 0 (k 6= l)

3. Influence of collisions and lane-changes on transport properties

In this section, we consider the multi-lane model with lane-homogeneous transition

rates satisfying Table 2 (b) and boundary conditions as in (5) except for possibly

inhomogeneous injection rates. For lane-homogeneous and symmetric lane-change rates,

we remove the superscript and write

p+,u(b) := pl→l±1
+,u(b); p−,u(b) := pl→l±1

−,u(b)

independent of lane l.

3.1. Mean field approximation and cross-lane diffusion

In cases of inhomogeneous boundary conditions, the densities of plus- or minus-type

particles can be homogenised by lane changes of particles, and lane changes are necessary

for this to happen. Depending on which particles change lane under which circumstances

(blocked or unblocked), this homogenization can occur to one or both types of particle.

For example, if only minus-type particles can change lanes when unblocked in a

dilute situation, then the density of minus-type becomes lane-homogeneous by cross-lane

diffusion (see Figure 2 (c)), while the density of plus-type particles (not shown) may

still be inhomogeneous due to the inhomogeneous injection rates and no lane changes of
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Figure 2. Densities of plus- or minus-type particles corresponding to default

parameters in Table 2 and boundary conditions in (5) except that the lane-change

rates when unblocked are varied and there is injection only in one lane (namely

α7
+ = 1 s−1 and αl

+ = 0 for l 6= 7). (a1) and (a2) show the inhomogeneous densities

of plus- and minus-type particles respectively, when p±,u = 0, i.e., particles only

change lanes after collisions; (b) (resp. (c)) shows cross-lane diffusion leading to a

more homogeneous density of plus-type (resp. minus-type) particles away from the

boundaries with lane-change rates when unblocked as p−,u = 0, p+,u = 4.335 s−1

(resp. p−,u = 0.4335 s−1, p+,u = 0). In all cases the densities near the tip (not shown)

are high.

this type. Even if only one type of particles changes lanes when unblocked, the density

of both types of particles will be smoothed as shown in Figure 2 (b) for the density

of particle-type particles. Exceptions to this are shown in Figure 2 (a1,a2) when lane

change only occurs after collision - in this case the plus-type particles injected into the

middle lane “sweep” that lane clear of minus-type particles.

These effects can be understood in terms of cross-lane diffusion of particles induced

by lane changes in a dilute region. If we apply the mean field description of Appendix A

to a dilute region and assume small variation of density with site x = iδ (x ∈ [0, 1] and

δ = 1/N), in the case of p−,u = p+,u = 0, the solutions (A.1) and (A.2) in Appendix A.1

indicate the non-homogeneity of densities in both types of particles if given non-

homogeneous injection rates αl
+. If we allow lane changes when unblocked and assume

that a change of type occurs more slowly than a change of lane, i.e., p−+, p+− ≪ p±,u,
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then the stationary state distribution ρl(x) satisfies (see Appendix A.1 for details):

0 = −δp+
dρl

dx
+ p+,u

[

ρl−1 + ρl+1 − 2ρl − δ
dρl−1

dx
− δ

dρl+1

dx

]

, l = 1, 2, · · · ,M

to leading order in δ. Solving this differential-difference equation for M lanes gives

ρl(x) =
⌊M/2⌋
∑

k=0

[

Ak cos
2πkl

M
+Bk sin

2πkl

M

]

exp [−κ+(k)x]

where

κ+(k) =
2p+,u

[

1− cos 2πk
M

]

δp+ + 2p+,uδ cos
2πk
M

,

and Ak, Bk are constants determined by the density at ρl(x0). Similarly, the density for

the minus-type particles can be approximated as

σl(x) =
⌊M/2⌋
∑

k=0

[

A′
k cos

2πkl

M
+B′

k sin
2πkl

M

]

exp [κ−(k)x]

where

κ−(k) =
2p−,u

[

1− cos 2πk
M

]

δp− + 2p−,uδ cos
2πk
M

,

and A′
k, B

′
k are constants determined by σl(x0). This suggests, not surprisingly, that the

main effect of the lane-change in dilute cases is simply a diffusion of the density across

the lanes in the direction of travel.

Assuming there is a unique equilibrium state, the density for plus- and minus-type

particles in the multi-lane model with homogeneous rates will have lane homogeneity

though it will depend on site. For small injection rate α+, the system tends to a

stationary state that is dilute near the minus end and in a high density near the plus

end. Using a similar method as detailed in Appendix A to the lane-homogeneous case

[20], for small injection rate, under the conditions that ρ, σ = O(δ) far away from the

tip and ignoring O(δ2), we find similar approximate expressions as (2) for the stationary

state in dilute regions; see (A.3). For large enough α+, dynamically pulsing states or

filled states as discussed in Section 4.1 will appear.

3.2. A phase transition in the tip accumulation

For the half-closed system (i.e. closed at the plus end) in both the two-lane [20] and

thirteen-lane models [21], it is clear that for typical particle-type change rates (e.g.,

p+− ≪ p+), particles accumulate at the tip. On the other hand, from the mean tip

size approximation (4) for the two-lane model, we see that 〈ntip〉 increase linearly with

injection rate α+. However, this is not necessarily the case for the multi-lane (say,

M = 13) model. In the following, we investigate the size of the tip accumulation and

its dependence on the total injection rate α+ for the thirteen-lane model with otherwise

default parameters as in Table 2 and boundary conditions as in (5).



Bidirectional transport and pulsing states in a multi-lane ASEP model 10

0 1 2 3
0

40

80

120

160

200

α+(s−1)

〈n
ti

p
〉

 

 

Simulations PI
Fitting PI
Simulations PII
Fitting PII
Approximation from (4)

αc,II αc,I

(a)

2 4 6

x 10
4

10
0

10
2

10
4

∑
i,

l
τ

l ±
,i

PI

0.5 1 1.5 2

x 10
5

10
0

10
2

10
4

Time (s)

∑
i,

l
τ

l ±
,i

PII

α+ = 2s−1

α+ = 1.5s−1

α+ = 2s−1

α+ = 3.5s−1

(b)

Figure 3. (a) shows mean tip size as a function of total injection rate α+ for the

multi-lane (M=13) model. Simulations PI refers to lane-change protocol PI where

p−,b = p+/2 and p+,b = 0 while simulations PII is for protocol PII where p±,b = p+/2.

In both protocols we find a good fit to a rational function of α+ with a singularity

at a critical value αc,I ≈ 3.406 s−1 (fitting PI) or αc,II ≈ 1.947 s−1 (fitting PII). For

comparison, the straight dash line shows the linear dependence (4) of α+ in the two-

lane model recalled in Section 2.1; other parameters use the values of corresponding

rates in Table 2; see [20] for details. (b) shows the total occupancy
∑

l,i τ
l
±,i as a

function of time for two typical injection rates as indicated, beyond and below the

critical value for each of the lane-change protocols PI and PII. Other parameters used

in the multi-lane model are default as in Table 2 and boundary conditions as in (5).

We compare two lane-change protocols PI and PII (further protocols are considered

in the next section). The protocol PI only allows minus-type particles to change lanes

when blocked while protocol PII allows both type to change lanes when blocked; lane-

change rates are assumed homogeneous and symmetric (see details in Section 3.3).

Simulations gave a mean tip size that depends on α+, fitting to a rational function

with three fitting parameters A,B and C

〈ntip(α+)〉 =
α+A(1 + α+C)

1− α+B
;

see Figure 3 (a) and Table 3. Note that there is a singularity in this rational

fitting function at α+ = 1/B. For the simulated system, these critical values are

αc,I = 3.406 s−1 and αc,II = 1.947 s−1 respectively for lane-change protocol PI and

protocol PII. Moreover, by comparing the change of the total occupancy of particles

in the system in time between injection rates below and beyond the critical value,

Figure 3 (b) indicates the existence of a transition between a shock state (where there

is an approximately steady accumulation at the tip) and a new phase of motion, an

unsteady pulsing state which is further examined in Section 4.1.

Additionally, by comparison with approximation (4) of the mean tip size from the

two-lane model, we note that the mean tip size in the multi-lane model increases initially

linearly but then nonlinearly for both lane-change protocols. This nonlinear increase
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Table 3. Best fit of the data from simulations in Figure 3 (a) to a rational function

〈ntip(α+)〉 =
α+A(1+α+C)

1−α+B
with parameters A,B,C. The values indicate best fit values

and standard errors.

A B C

PI 24.45± 0.329 0.2936± 0.00139 -0.2525± 0.00388

PII 22.18± 0.509 0.5136 ± 0.00908 -0.3978± 0.002219

is due to trapped minus-type particles at the tip and is investigated in the following

section.

3.3. Influence of lane-changes on the tip accumulation

The size of accumulation at the tip clearly depends on the lane-change rules; see

Figure 3 (a). Recall from Section 3.1 that lane changes can homogenize the densities so

we expect the homogeneity of λl
tip(t) among the lanes will depend on the lane-change

rules when blocked. To confirm this, we examine the maximum difference among the

λl
tip(t) defined as

∆λtip(t) = max{λl
tip(t)− λk

tip(t) : k, l = 1, · · · ,M}.

The distribution of this quantity gives a measure that characterizes how “smooth” (∆λtip

small) or “ragged” (∆λtip large) the tip is. In particular, the larger the mean value

〈∆λtip〉, the easier it is for minus-type particles to be released from the tip.

We consider four different lane-change (when blocked) protocols with homogeneous

lane-change rates in an attempt to better understand their influence on the structure of

tip accumulation via the distribution of ∆λ(t) at stationary state. These are:

(PI) p−,b = p+/2, p+,b = 0 – only minus-type particles are allowed to change lanes with

a rate (homogeneous and symmetric) that preserves the velocity; this corresponds

to the assumption used in [21];

(PII) p±,b = p+/2 – both minus- and plus-type particles are allowed to change lanes;

(PIII) p−,b = 0, p+,b = p+/2 – only plus-type particles are allowed to change lanes;

(PIV) pl→l−1
−,b = p+/2, p

l→l+1
−,b = 0 = p+,b – only minus-type particles are allowed to change

and to only one of the adjacent lanes with lane-homogeneous rate.

We ignore lane changes in the unblocked case as these are clearly not significant for

escape from the tip. The distributions of the length differences ∆λtip at a fixed stationary

time are shown in Figure 4 for above four different lane-change protocols; other rates

are as default ones. Note that allowing plus-type particles to undertake lane changes

“smooths” the structure of the tip. The results for lane-change protocols PI and PII

agree with the homogenized density of both type of particles on the effect of lane changes

(see Figure 2). Note the similar distribution of ∆tip between PI and PIV (PII and PIII)

from Figure 4, it is then reasonable to consider protocols PI and PII as typical lane-

change protocols.
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For both lane-change protocols PI and PII, particles can be trapped under several

layers in the tip accumulation. Shown in Figure 3 (a) that the mean tip size increases

more rapidly with injection rates for protocol PII, we suggest this is due to there being

more minus-type particles “trapped” in the tip which in turn lead to larger increase

on the tip size. We say a particle is “trapped” if its motion (including forward motion

and lane changes) is obstructed by occupation of other particles and loss the ability to

take the motion due to the exclusion principle. We define two fractions: the trapped

minus-type fraction F−,trap and the minus-type fraction F− within the tip in the steady

state as

F−,trap =
mean number of “trapped” minus-type particles at the tip

mean number of total minus-type particles at the tip
,

F− =
mean number of total minus-type particles at the tip

〈ntip〉
.

In the two-lane model discussed in Section 2.1 where two types of particles move on

different lanes, the density profile of minus-type particles is dilute, which indicates

F−,trap ≈ 0. Additionally, from expressions (2) and (3),

F− ≈
∫ 1

xs

σ(x)dx/
∫ 1

xs

(ρ(x) + σ(x))dx ≈
pd
2p+

〈ntip〉

For the particular parameters in Table 2 with pd = p+−, the minus-type fraction

F− ≈ 0.2% associated with a mean tip size 〈ntip〉 ≈ 20. However, in the thirteen

lane model, from Table 4, for low α+ = 0.8 s−1 in lane-change protocol PI, F− ≈ 4%

associated with 〈ntip〉 ≈ 20 and F−,trap ≈ 40%. This shows a difference between the

two-lane model and the thirteen-lane model even for low injection rates, though with a

similar mean tip size. Moreover, in the two-lane model, viewed as a queueing process,

the expected delay for particles at the tip is 1/p+−, while in the multi-lane model, the

positive fraction of trapped minus-type indicates that the average time spent at the tip

is larger then 1/p+−. This average tip delay will be discussed later on in Section 3.4.

Comparing between the two lane-change protocols from Table 4, protocol PI gives

lower F−,trap and F− than those in protocol PII, with the same α+ or the same mean tip

size. This agrees with that a smoother structure of the tip accumulation is more likely

to trap minus-type particles at the tip and indicates that the tip size and the (trapped)

minus-type fraction are affected by each other.

3.4. Measures of bidirectional transport efficiency

The previous subsections indicate that allowing only minus-type particles to change

lanes as a result of collisions is more effective (with less trapped minus-type particles)

than allowing both types of particles to change lanes. To understand more on the

bidirectional transport observed in living cells, it is interesting to speculate on the

implications of the in vivo experiment data, particularly in Table 2, in terms of some

non-trivial quantifiable efficiency.
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Figure 4. Distribution of maximum length difference ∆λtip for lane-change protocols

PI-IV; other parameters are default as in Table 2 and boundary conditions as in (5).

Note that the structure of the tip accumulation in PI or PII is clearly smoother than

that in PI and PIV.

Table 4. Comparison of trapped minus-type fraction F−,trap and minus-type fraction

F− at the tip between lane-change protocols PI and PII. This shows for protocol PI

that there are lower F− and F−,trap even for a similar mean tip size. When α+ > αc

in both protocols, F−,trap ≈ 100% and mean tip size does not convergent with time;

marked as “−”. Other parameters are default as in Table 2 and boundary conditions

as in (5).

α+(s
−1) 0.8 1 1.2 1.4 1.6 1.8 2.0 4

F−,trap 37.8% 49.0% 66.7% 72.5% 79.6% 85.7% 88.2% 99.7%

PI F− 3.7% 4.5% 5.7% 7.6% 9.4% 12.1% 14.3% 51.3%

〈ntip〉 19.7 24.9 31.0 36.8 43.7 52.1 59.9 –

F−,trap 59.7% 83.3% 89.8% 92.6% 95.8% 98.5% 99.6% 100%

PII F− 5.4% 9.9% 14.3% 20.2% 28.6% 42.7% 50.4% 57.6%

〈ntip〉 20.3 28.1 36.5 48.3 70.1 – – –

There are many possible ways to quantify efficiency of bidirectional transport,

depending on what sort of behaviour is important. For example, in some circumstances

it could be that maximum speed is required while in other circumstances it could be

that the maximum flux is required - for a practical system of bidirectional transport

on a MT, different notions may be needed for different purposes. In a fungal model
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system, the particles accumulate at the MT plus end are thought to prevent endosome

falling off the MT and to support their backward transport [21]. Therefore, efficiency

transport of dynein requires a certain proportion of dynein reaching the tip to form an

accumulation and a short duration at the tip. Therefore, we consider particle arrival

efficiency and average tip delay defined as following.

Suppose that the n-th particle injected at the minus end is at location (l, i) =

(Ln(t), In(t)) at time t, and suppose that:

• it enters the system at time tn,1 and leaves the system at time tn,4;

• the farthest point it reaches in the system is dn, i.e. dn = maxt In(t);

• it enters the “tip” at time tn,2, i.e. this is the smallest t such that In(t) > Ltip;

• it leaves the “tip” at time tn,3, i.e. this is the largest t such that In(t) > Ltip;

where Ltip refers to the farthest site away from the plus end at the tip, typically we set

Ltip ≈ 90%N for simulations. These times are illustrated in Figure 5 (left panel) with a

comparison of endosome motility in vivo in Figure 5 (right panel). If the particle does

not reach the tip then we have only tn,1 < tn,4 defined, while if dn ≥ Ltip then we have

tn,1 < tn,2 < tn,3 < tn,4 defined. Based on these notations, we define the particle arrival

efficiency to be ‖

E1 = lim
T→∞

E1(T ) = lim
T→∞

#{n : dn ≥ Ltip, tn,4 < T}

#{n : T0 < tn,1 < tn,4 < T}
.

Note that 0 ≤ E1 ≤ 1 is a dimensionless measurement of efficiency that is close to zero if

few of particles arrive at the tip before leaving the system while it is close to one if most

of particles arrive at the tip before leaving the system. The quantity E1 is independent

of how long it takes to arrive at the tip or leave the system. Meanwhile, we define the

average tip delay to be

E2 = lim
T→∞

E2(T ) = lim
T→∞

∑

{n : ||dn||≥Ltip,tn,4<T}(tn,3 − tn,2)

#{n : dn ≥ Ltip, tn,4 < T}
.

The average tip delay E2 has unit of time, and measures the average time spent at the

tip for all particles that get there: larger values indicate that particles are trapped at the

tip for a long time while small values indicate that the particles wait only a short time

before leaving the tip. Note that the quantity E2 is independent of E1, the proportion of

particles that arrive at the tip. Note also that if we assume homogeneous particle-type

change rates then E2 ≥ 1/p+−.

One can derive approximate upper and lower bounds of E1 for the lane homogeneous

multi-lane model. Considering the density of plus-type particles in dilute situation; see

density approximation (A.3) in Appendix A.2, we have

E1 ≤ min{ρ(1)/ρ(0), 1} (6)

= min

{

exp

[

Np−+

p− + pl→l+1
−,u + pl→l−1

+,u

−
Np+−

p+ + pl→l+1
+,u + pl→l−1

+,u

]

, 1

}

‖ T0 is assumed to be large enough that any transients have decayed, i.e., t1,1 ≥ T0.



Bidirectional transport and pulsing states in a multi-lane ASEP model 15

Figure 5. Typical motion of three particles injected into the system (left panel).

We show the times tj,m m = 1, . . . , 4 for the j−th particle. Particles that exceed

Ltip are said to have entered the tip region. Kymograph (right panel) shows motility

of early endosomes that were visualized by photo-activation of the endosome marker

paGFP-Rab5a [21] in subapical regions of a cell of the fungus Ustilago maydis. Note

the similarities in the two panels on the trajectories of motions.

while considering the probability of first particle-type change occurring at the tip, we

have

E1 ≥

[

1−
p+−

p+ + pl→l+1
+,u + pl→l−1

+,u

]Ltip

≈ 1−
Np+−

p+ + pl→l+1
+,u + pl→l−1

+,u

(7)

as particles may change directions (type changes) several times before reaching the tip.

Figure 6 (a) shows the upper and lower bounds for E1 compared to the simulations.

Moreover, from Figure 6 (a) and Table 5, this arrival efficiency is independent on the

particle-type change rate.

The average tip delay E2 is clearly dependent on p+− for a homogeneous model as

1/p+− is the expected delay of minus-type particles without obstruction such as in the

two-lane model recalled in Section 2.1 (see [20] for details). We therefore consider the

delay ratio E2×p+−, i.e., the ratio of the average tip delay to the expected delay if there

are no trapped minus-type particles. This ratio is usually no less than 1, and when it

is close to 1 this is the most efficient situation in terms of the delay being minimal.

Simulation results in Table 5 and the inset to Figure 6 show that for both lane-change

protocols in the multi-lane model, this delay ratio is larger than 1 or E2 > 1/p+−. This

agrees with results in Table 4 showing the existence of certain proportion of minus-

type particles being “trapped” at the tip. Comparing Figure 6 (a) and the inset in

Figure 6 (b), we consider the dimensionless quantity E2 × p+−/E1 to be a balance

between arrival efficiency and delay ratio. As varying p+− we find a minimum value

where p+− is closed to the experiment data of p+− = 0.0406 s−1; see Figure 6 (b). This

offers an implication of in vivo transport rates.

Comparing the two lane-change protocols PI and PII, protocol PI is more effective

in the sense that it has a relatively lower delay ratio E2 × p+− when varying α+ (see

Table 5) or for small p+− (see the inset in Figure 6 (b)). Similar to the case for trapped

minus-type fraction and mean tip size, the average tip delay time increases more rapidly

with injection rate in protocol PII than the increase in protocol PI.
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Figure 6. Illustration of E1 and E2 when varying p+−. (a) shows that the arrival

efficiency E1 in both lane-change protocols PI and PII behaves similarly as varying

p+− with approximate upper bound from (6) and lower bound from (7). (b) shows

the balance between delay ratio and arrival efficiency quantified as E2 × p+−/E1 for

protocol PI; the inset shows the comparison between two protocols PI and PII of the

delay ratio E2 × p+−; errorbars are indicated. Simulations are done by averaging over

10 runs using the Gillespie algorithm in a time interval [T0, T ] = [500s, 3000s]; other

rates are default as in Table 2 and boundary conditions (5).

Table 5. Comparison of E1, E2 between lane-change protocols PI and PII. The arrival

efficiency E1 in both protocols is relatively independent of α+ and drops to almost zero

when α+ > αc,I for protocols PI (α+ > αc,II for protocol PII). The average tip delay

E2 in both protocols are larger than the expected delay 1/p+− ≈ 24.6 s−1 when no

minus-type particles are trapped, and the delay time increases more rapidly for protocol

PII than for PI when increasing α+. Note that the particle-type change rate p+− is

fixed here, meaning that the delay ratio E2 × p+− is a multiple of E2. Simulations are

done as in Figure 6 with otherwise default parameters.

α+(s
−1) 0.8 0.9 1 1.1 1.2 1.3 1.4 2

PI E1 81.9% 81.9% 81.5% 81.9% 81.6% 81.6% 81.9% 81.7%

E2 (s) 30.71 30.87 31.1 31.1 31.8 32.6 33.5 48.8

PII E1 81.4% 81.8% 81.7% 81.7% 81.9% 81.8% 81.5% ≈ 0

E2 (s) 31.9 33.2 34.2 37.9 44.9 48.7 61.4 –

4. Critical behaviour and pulsing states

Results from Section 3.2 suggest that the mean tip size does not converge when an

injection rate α+ approaches a critical injection rate αc,I for lane-change protocol PI

(αc,II for protocol PII) in a finite system; additionally, by simulating the efficiency

defined in terms of delay ratio E2 × p+−, the system will be less efficient with either a

large total injection rate α+ (see Table 5) or a small particle-type change rate p+− (see

Figure 6 (b)). Large mean tip size or inefficiency on E2 × p+− are expected due to high
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densities of plus- and minus-type particles, and in the following we discuss the dynamics

of pulsing states that exist in this model.

4.1. Pulsing states in the system

For injection rate α+ smaller than the critical value αc discussed in Section 3.2, the

system converges to a stationary state (shock state) with an accumulation of certain size

at the tip, and this tip size increases as α+ approaching αc. For α+ > αc and otherwise

default parameters, a new type of behaviour that we call a pulsing state can appear.

These are characterized by the behaviour in Figure 7. For finite systems, near αc the

accumulation at the tip may show large irregular oscillations including a propagating

region or pulse of high density that moves away from the tip before dispersing.

In a pulsing state, the whole system density undertakes large approximately periodic

oscillations. These can be split into two parts:

• A filling phase during which the density at the minus end is low, and a growing

high density pulse of mixed particles moves steadily towards the minus end. During

this phase there is a net flux into the system.

• An emptying phase during which the density at the minus-end is high, and the

pulse propagates out of the system. During this phase there is a net flux out of the

system.

For most of the cycle there is a low density region between the tip and the pulse.

The pulsing occurs through an alternation between these phases as fronts (evident in

Figure 7) separating low and high density regions move through the domain. At other

parameters we find the system converges to a filled state for α+ larger than αc. Figure 8

shows examples of the pulsing and filled state. In the filled state, once the filling phase

is complete the system remains approximately full.

To better understand the behaviour of system in a pulsing state, Figure 9 shows

successive horizontal lines as the evolution of the medium time average of the density
∑M

i=1(τ−,i + τ+,i)/M (over successive blocks of 1260 s) from a time-series and gradual

changes of the local density. Figure 9 (a,b) shows rapid convergence to a stable

accumulation at the tip, though (b) displays more fluctuations. Examples of pulsing

states are illustrated in Figure 9 (d,e,f) for increasing values of α+; these exhibit long

approximately periodic oscillations. Figure 9 (c) shows an intermediate situation where

the tip accumulation shows irregular large amplitude oscillations. The main behaviour

in a high-density mixed region will be changes of particle types and therefore we expect

the ratio of densities between minus- and plus-type particles to reach the equilibrium

ratio given by the type-change rates, i.e.

ρ̃ =
p−+

p−+ + p+−
κ, σ̃ =

p+−

p−+ + p+−
κ

where κ = ρ̃+ σ̃ ≈ 1 represents the total local density.
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t = 50000× ht

t = 70000× ht

t = 140000× ht

t = 160000× ht

t = 300000× ht

t = 340000× ht

Figure 7. Time progress of a pulsing state for the thirteen lane model of size N = 100,

α+ = 4.0 s−1 and no flux on the plus-end; otherwise parameters as in Table 2 and

boundary conditions as in (5). The sequence of filling (top three frames) and emptying

(bottom three frames) repeats approximately periodically. Observe that the pulse of

high-density mixed particles propagates slowly to the left via diffusion of vacancies

through the pulse. Grey indicates plus-type particles (that move to the right) while

black indicates minus-type particles (that move to the left). The white regions indicate

vacancies.

For both lane-change protocols PI and PII we find pulsing states for α+ > αc and

otherwise default parameters - we interpret this as an existence of a negative net flux

for the high-density mixed phase. Note that densities ρ̃ and σ̃ are primarily governed

by the particle-type change rates p+− and p−+, if we increase p−+, then the net flux

may change to be positive and the pulsing state will be replaced by approach to a

high-density uniform filled state. For example, Figure 8 (a) shows the pulsing state for

p−+ = 0.05 s−1 with α+ = 3 s−1 while Figure 8 (b) shows a filled state for p−+ = 0.14 s−1

and α+ = 4 s−1 (other parameters are the default values). For the latter case, we infer

that an initial pulse with j > 0 will saturate to ρ̃+ σ̃ = 1 and then j → 0 as the number
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Figure 8. (a) shows a pulsing state for p−+ = 0.05 s−1 and α+ = 3 s−1; (b) shows

a filled state for p−+ = 0.14 s−1 and α+ = 4 s−1 and this approaches a homogeneous

high-density mixed equilibrium state. The other rates are default as in Table 2 and

boundary conditions in (5).

of vacancies in the high density state goes to zero. It will be an interesting challenge to

understand the statistical properties of these high-density mixed states and, for example,

to predict j from the parameters of the system, as there might be more than one particle

compete for a common empty site.

Numerical simulations show that this pulsing state is robust to changes in

parameters – Figure 10 shows phase diagrams for lane-change protocols PI and PII

on varying α+ and p+− with other default parameters. The particle-type change rates

we usually use obeys p+−

p+
, p

−+

p
−

< 1
N

which means that a typical switching of plus-type

particle occurs at the tip (see E1 in Table 5), this novel pulsing state also appears when
p+−

p+
, p

−+

p
−

> 1
N
; see Figure 11. A necessary condition for a pulsing state we suggest is

that α+ is beyond a critical value (i.e., not in a shock state) and there is a net negative

flux in the high-density mixed region.

4.2. System size effects

Although the previous section focuses on a fixed system size N , the critical transition to

pulsing states is invariant of N as N → ∞ under certain scalings of parameters for the

multi-lane model with boundary conditions (5). For example, if we scale the forward

motion rates, keeping p±/N constant and use the lane change rates when blocked p+/2

as default whilst keeping the particle-type change rates constant, we find no significant

variation of mean tip size with N as illustrated in Table 6. This agrees with the

approximation (4) from the two-lane model. For injection rates beyond a critical value

and the same scaling we find pulsing states for arbitrarily large N .



Bidirectional transport and pulsing states in a multi-lane ASEP model 20

Figure 9. Each horizontal line represent a time-average of the occupancy
∑M

l=1(τ
l
−,i+

τ l+,i)/M over blocks of length 1260 s in the homogeneous thirteen-lane model (M = 13)

with injection rate α+ indicated (other rates as default). In (a), the model with a

small total injection rate reaches its stationary state with a small number of particles

accumulated in the tip. (b)-(d) show the density-time courses for injection rates near

the critical value. In (d)-(f), pulsing states appear where the accumulation moves away

from the plus end and simultaneously grows.

Table 6. The tip size when varying the system size N for parameters in Table 2

and boundary conditions (5) except keeping p+/N = 0.17, p−/N = 0.1631 and

p−,b = p+/2. There values are chosen to be consistent with rates in Table 2 when

N = 1250. Mean and standard error of mean are shown.

N 400 800 1200 1600 2000

< ntip > ± sem 26.7±0.278 26.9± 2.7 26.8± 2.97 26.9±2.9 26.7±2.9
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Figure 10. Numerically obtained phase diagrams for lane change protocol PI (left

panel) and lane change protocol PII (right panel). Other default parameters are as in

Table 2 and boundary conditions as in (5). Bars indicate uncertainty of the borders

between different states.
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Figure 11. A pulsing state for p−+ = 0.2 s−1, p+− = 0.4 s−1 and α+ = 80 s−1;

other parameters are default as in Table 2 and boundary conditions in (5).

4.3. A simple model with a critical injection rate

To better understand the appearance of a critical injection rate αc that leads to a

transition in the behaviour of the tip, we introduce a simpler model that computably

predicts nonlinear behaviour of the mean tip size with injection rate α+, and a singularity

of the mean tip size at finite injection rate.

Consider a single lane first-in, last-out queue of plus-type and minus-type particles.

Plus-type particles are assumed to arrive at the left end of the queue at a rate α per

time-step. Every time-step, we assume that all particles independently to be minus-

type with probability p and plus-type with probability 1 − p. A number of particles is

assumed to leave the queue whenever the left-most particle is of minus-type, in which

case all of the adjacent minus-type particles are assumed (instantaneously) to leave the

queue. This results in a steady growth and intermittent loss of particles. At a given
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time-step t, if we assume the queue has size n(t) then after random changes in type, the

number of particles that leave the queue can be expressed as

λ(n) =
n
∑

m=1

mpm(1− p) + npn = p
1− pn

1− p
.

Hence the mean rate of net growth of the queue will be given by α+ − λ(n). This will

give zero net growth when α+ − λ(n) = 0. Therefore, with injection rate α+, the mean

size of the queue is

〈n(α+)〉 =
ln
(

1− α 1−p
p

)

ln p
,

which predicts a critical injection rate αc = p
1−p

. For α+ < αc, 〈n(α+)〉 grows

monotonically and nonlinearly with limα+→αc− 〈n〉 (α) = ∞. These are clear analogies

with the observations of mean tip size in the thirteen-lane model in Figure 3 (a). Indeed,

one can fit the data in Figure 3 (a) to a logarithmic function but the fit is inferior to the

rational function discussed there, suggesting that the model above is too simple for an

accurate quantitative explanation. This simple model reproduces the nonlinear increase

for α+ < αc in Figure 3 (a) and the singular behaviour at the critical value αc. For

α+ > αc it predicts unbounded growth of the queue, analogous to convergence of the

system to a “filled state”.

5. Discussion

Motor-driven bidirectional transport of vesicles and organelles is vital for the

organization and function of eukaryotic cells and intracellular motility serves various

cellular processes [29]. The basic function of bidirectional vesicle transport is to deliver

cargo over distances, thereby modifying gradients and ensuring communication between

different regions of the cell.

By considering the process in a number of stages, starting with cargo uptake,

followed by transport along the fibres of the cytoskeleton, and finally ending with cargo

off-loading, the site of unloading is often also a region of cargo uptake. Transport back

on the cytoskeletal track therefore not only recycles the transport vesicles, but also

serves for long-distance delivery to other regions of the cell. In a fungal model system,

it has recently been shown that dynein are concentrated at MT plus-ends to prevent

organelles falling off the track and this concentration of dynein is done by an active

retention mechanism (based on controlled protein-protein interaction) and stochastic

motility of motors [21, 26].

An accumulation of motors at MT plus-ends can be seen as an inefficiency, as

dynein motors are supposed to transport particles rather than wait at the MT end.

Thus, the cell needs to find a compromise between (a) ensuring that organelles are

captured at MT ends, which requires dynein accumulation at the plus-ends [21] and

(b) keeping dynein moving along MTs to deliver the cargo to minus-ends. As discussed

in Section 3.4, an interesting result of this study is that the parameters from [21] in a
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Ustilago maydis system (and p+− in particular) do address this compromise between (a)

and (b). Moreover on comparing different lane-change protocols (that is, either dynein

changes lanes or both kinesin-1 and dynein change lanes), we find that it is necessary

for only dynein to change lanes in order to give biologically realistic system states over

a larger range of possible fluxes; see Figure 3 (a).

The maximum unidirectional flux in the thirteen-lane model can occur, by

analogy with the so-called maximal current state in the ASEP model [3, 27], when

α+ ≈ 13 × p+/2 ≈ 1300 s−1, assuming appropriate boundary conditions and only

one particle type. Note that the maximal flux with bidirectional transport in the

thirteen-lane model is about the half of that in unidirectional transport. However,

the existence of a critical injection rate αc ≪ 1300/2 s−1 (see Figure 3) in the half-

closed homogeneous thirteen-lane model places a much lower bound on the maximum

flux. The experimentally measured α+ ≈ 1.06 s−1 in Table 2 is of the same order as

αc. To achieve bidirectional flux that is half of the maximum unidirectional flux (about

600 s−1) on a MT, much more organized transport with specific control of lane-change

to segregate different particles into different lanes (as in Table 1) is therefore necessary.

For the half-closed system, we have found for α+ > αc some novel “pulsing states”

of the system. It will be very interesting to further explore the region of existence of

these states. There may exist other new phases for other boundary conditions and/or

transition rates in the multi-lane model. An open question includes whether one can

find a better understanding of the dynamics of pulsing states and/or whether there are

analytic approximations that confirm the phase diagram approximated numerically in

Figure 10.

The model can be generalized to incorporate a number of features that may be

important for MT transport. This includes (a) additional species of motor with different

transport properties, such as the several types of kinesin known to exist in vivo [1, 30];

additional motors can be expected to increase collisions along the MT length and cause

high density of motors that might affect the transport efficiencies described in Secton 3.4.

(b) The detachment and reattachment of motors from the MT [11] may be important

in other systems; the size of any accumulation will clearly be affected by this. (c)

Non-trivial geometry of MT bundles needs consideration as motors may jump between

different MTs; this might be another possibility to avoid collision between counter-

moving organelle. (d) A more realistic motor and cargo size will influence the ability

of lane changes to overcome blockages. Finally (e) static obstructions such as MAPs

(microtubule associated proteins) will influence the behaviour of motors on the MT by

increasing more potential blockages [24, 31, 32, 33]; a high concentration of these will

clearly influence the transport efficiency. At present, quantitative data for most of these

processes are not available for any living cell. With each additional process one can

gain quantitatively more precise mathematical representation of the full MT-mediated

transport within a cell. It remains to be seen whether new qualitative effects and better

understanding will result from more accurate models.
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Appendix A. Mean field approximation for the multi-lane model

We use a mean field approximation to give an equation for evolution of the densities

ρli and σl
i for the multi-lane model with lane-homogeneous rates (but not necessarily

boundary conditions). Examining the balance of incoming and outgoing particles to a

given site, the mean field approximation gives the following, where on the right hand

side we write ρi to mean ρli, etc.

dρli
dt

= p+ρi−1(1− ρi − σi) + p−+σi − p+ρi(1− ρi+1 − σi+1)− p+−ρi

+ p↑+,uρ
l−1
i−1(1− ρl−1

i − σl−1
i )(1− ρi − σi)

+ p↓+,uρ
l+1
i−1(1− ρl+1

i − σl+1
i )(1− ρi − σi)

+
(

p↑+,bρ
l−1
i−1(ρ

l−1
i + σl−1

i ) + p↓+,bρ
l+1
i−1(ρ

l+1
i + σl+1

i )
)

(1− ρi − σi)

−
(

p↑+,u(1− ρl−1
i+1 − σl−1

i+1) + p↓+,u(1− ρl+1
i+1 − σl+1

i+1)
)

ρi(1− ρi+1 − σi+1)

−
(

p↑+,b(1− ρl−1
i+1 − σl−1

i+1) + p↓+,b(1− ρl−1
i+1 − σl−1

i−1)
)

ρi(ρi+1 + σi+1)

There is a similar expression for dσl

dt
, but for reasons of space we do not give this here.

As the general mean field equations are not easy to solve, we consider below two special

cases of these mean field equations.

Appendix A.1. Dilute lane-inhomogeneous densities

Let us assume that

• ρli(t) = ρl(x, t) with x = iδ (where δ = 1/N = hs/L is small) and the spatial

dimension is parametrized by x ∈ [0, 1],

• ρ and σ are small (i.e. dilute limit);

• the lane changes rates are lane homogeneous and symmetric (i.e., p±,u = p
↓(↑)
±,u );

On expanding ρli+1 = ρl(x) + δ ∂ρl

∂x
+O(δ2) and discarding any terms that are quadratic

in δ, the mean field equations above simplify to

∂ρl

∂t
= − δp+

∂ρl

∂x
+ p+,u

(

ρl+1 + ρl−1 − 2ρl − δ
∂ρl−1

∂x
− δ

∂ρl+1

∂x

)

+ p−+σ
l − p+−ρ

l

∂σl

∂t
= δp−

∂σl

∂x
+ p−,u

(

σl+1 + σl−1 − 2σl + δ
∂σl−1

∂x
+ δ

∂σl+1

∂x

)

+ p+−ρ
l − p−+σ

l

which can be used to characterize the combination of bidirectional transport (p±),

change in direction (p+− and p−+) and cross-lane diffusion (p±,u) on the density.

Considering a region of the domain where the dilute approximation holds, the stationary



Bidirectional transport and pulsing states in a multi-lane ASEP model 26

state distribution will therefore satisfy

δp+
dρl

dx
= p+,u

(

ρl+1 + ρl−1 − 2ρl − δ
dρl−1

dx
− δ

dρl+1

dx

)

+ p−+σ
l − p+−ρ

l

−δp−
dσl

dx
= p−,u

(

σl+1 + σl−1 − 2σl + δ
dσl−1

dx
+ δ

dσl+1

dx

)

+ p+−ρ
l − p−+σ

l.

If p±,u = 0, adding the above two equations gives p+
dρl

dx
= p−

dσl

dx
, meaning that in

dilute situation, ρ and σ have a linear relationship. This gives a solution to the above

ODEs:

ρ(x) = C exp

[(

p−+N

p−
−

p+−N

p+

)

x

]

+D (A.1)

σ(x) =
p+C

p−
exp

[(

p−+N

p−
−

p+−N

p+

)

x

]

+
p+−D

p−+
(A.2)

where C,D can be determined by the densities at ρ(x0) and σ(x0).

If p±,u are large (p+−, p−+ ≪ p±,u), ignoring the turning rates, the above ODEs

lead to

δp+
dρl

dx
= p+,u

(

ρl+1 + ρl−1 − 2ρl − δ
dρl−1

dx
− δ

dρl+1

dx

)

−δp−
dσl

dx
= p−,u

(

σl+1 + σl−1 − 2σl + δ
dσl−1

dx
+ δ

dσl+1

dx

)

.

Appendix A.2. Lane-homogeneous densities

Now consider homogeneous model which gives lane-homogeneous densities ρ(x) = ρli
due to the symmetric structure of the cylinder and as before x = iδ. In this case we

have, ignoring second and higher order terms in δ = 1/N , that the stationary state in

the dilute case satisfies

0 = p−+σ − p+−ρ+ δ
[

−p+ − pl→l+1
+,u − pl→l−1

+,u

] dρ

dx

0 = − p−+σ + p+−ρ+ δ
[

p− + pl→l+1
−,u + pl→l−1

−,u

] dρ

dx

Assuming zero net flux, this implies that v+ρ − v−σ = 0 where v±/hs = p± + pl→l+1
±,u +

pl→l−1
±,u . Applying the boundary conditions ρ(0) = α+

p+M
gives

ρ(x) =
α+

p+M
exp

[(

Np−+

p− + pl→l−1
−,u + pl→l+1

−,u

−
Np+−

p+ + pl→l−1
+,u + pl→l+1

+,u

)

x

]

(A.3)

analogous to the expression found for the two lane model in [20] but spread over all M

lanes. This mean field approximation of density works well for low densities but near

the tip, plus-type and minus-type particles do not have complementary density as in

[20]; in fact they can be at the same order near the tip for typical turning rates; for

this reason it does not appear to be easy to obtain the mean tip size from a mean field

approximation.
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