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Anyon exciton revisited: Exact solutions for a few-particle system
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The anyon exciton model is generalized to the case of a neutral exciton consisting of a valence hole and an
arbitrary numbeN of fractionally charged quasielectrof@nyons. A complete set of exciton basis functions
is obtained and these functions are classified using a result from the theory of partitions. Expressions are
derived for the interparticle interaction matrix elements of a six-particle syskéms(), which describes an
exciton against the background of an incompressible quantum liquid with filling fact@'5. Several exact
results are obtained in a boson approximation, including the binding energyNof4 X-particle exciton with
zero in-plane momentum and zero internal angular momentum.
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[. INTRODUCTION which should be useful for analysis of intrinsic PL experi-
ments atv=2/5. (Note that there has been some debate as to
The anyon exciton mod€¢AEM), which considers a neu- whether the ground state at=1/5 is actually an IQL; see,
tral exciton made up of a valence hole and several fractione.g., Ref. 13 and references thergin. Sec. IV, exact results
ally charged quasielectrons with fractional statisticsfor the general K+ 1)-particle case are obtained and dis-
(anyons, was proposed a decade ago by Rashba ang@ussed. It is shown that the exciton remains bound even at
Portnoi® It was later developédto model incompressible large separations between the 2DEG and the hole.
guantum liquids(IQLs) with filling factors v=1/3 and 2/3,
and is valid at large separation between the hole and the Il. EXCITON BASIS FUNCTIONS
two-dimensional electron gd2DEG), so that the Coulomb
field of the hole does not destroy the IQL. The AEM was
motivated by experiments on intrinsic photoluminescence We consider an exciton consisting of a valence hole with
(PL) in the fractional quantum Hall regim@ that showed a charge+e and N anyons with charge-e/N and statistical
pronounced double-peak structure in emission spectra, andféictor «. The hole and anyons reside in two different layers,
has provided major insights into the role of electron-holeseparated by a distance lofmagnetic lengths, and are sub-

separation in determining the optical spectra. The modgect to a magnetic fielt = Hz perpendicular to their planes
yields multiple-branch energy spectra and gives a full classipf confinement. Unless otherwise stated, we shall assume
fication of states for a four-particle system. It also predicts anpat the hole and the quasielectrons are in their correspond-
increase in ground-state angular momentum and flattening q»,ﬁg lowest Landau levels.

the cor_respondlng dispersion curve with increasing layer Tq simplify the description of the exciton, the hole and
separation. The AEM has also shown good agreement fofnyons may be considered as moving in the same plane with
intermediate electron-hole separation with numerical fln'te'coordinatesrh andr;, respectively, and the layer separation

size calculations by Apalkov and co-workérs. _h can be introduced later when considering the anyon-hole
At the time when the model was proposed, most experijnteraction.

ments on intrinsic PL were carried out at constant carrier ap exciton consisting of a hole arid anyons, all in the

density, with the filling factor changed by varying the mag-owest Landau level, will have a total M+ 1 degrees of
netic field. However, the AEM is valid for fixed fractional feedom. As the exciton is neutral. we can assign it an in-

filling factors only. More recent experimental techniques eNplane momentunk, which absorbs two of these degrees of
able the 2DEG density in the PL experiments to be changegeegom. ForN>2’the exciton will haveN— 1 internal de-

. . —11 . .
using .aE’Zp“Ed gate voltagés® or by varying the light grees of freedom, which results in internal quantum numbers
intensity:-“ Thus, it is now possible to manipulate the effec- 5,4 4 multiple-branch energy spectrum.

tive electron-hole separatiofin units of magnetic length
while keeping the filling factor constant. So far, charged ex-
citons have been observed for small electron-hole separation,
but for large separations it is predicted that neutral anyon At this stage we consider the particles as noninteracting
excitons should be observed. and introduce interactions later as necessary. We can there-
These recent developments have rekindled our interest ifore write the N+ 1)-particle Hamiltonian as
the theoretical treatment of spatially separated electron-hole
systems. In this paper we address some important math- . 1 (. QsA\? N1 0.A
ematical features of the AEM. In Sec. Il we derive a general Hozz_mh( Pn——~ > Pi—
few-particle wave function for a neutral exciton consisting of
a valence hole ani anyons. In Sec. Ill we move to consider where gq,=+e and g,=—e/N are the hole and anyon
interaction matrix elements for a six-particle anyon exciton,charges, respectively.

A. Preliminaries

B. Derivation of basis functions

2

(@

+
=12m,

0163-1829/2003/68)/0353069)/$20.00 68 035306-1 ©2003 The American Physical Society



D. G. W. PARFITT AND M. E. PORTNOI PHYSICAL REVIEW B58, 035306 (2003

Z—axis

FIG. 1. Two-dimensional coordinate system
for hole and several quasielectrof@yons. The
hole is considered as being in the same plane as
the anyons, with layer separation introduced
when considering the anyon-hole interactid@.
indicates the center of negative charge.

Choosing the symmetric gauge N
v,-f=|2l Vef(.. &, OV

A=%[H><r], (2 1 N
:vgjf(...,gj,...)—Nzlvglf(...,gl,...).

and scaling all distances with the magnetic lendth ©6)
=(cfileH)'? we obtain
The old coordinates can be expressed in terms of the new

1 > ones as follows:

Ho=2—mh(i—vh—[2>< ]

p p
) rh=:R+-§, ”::R—‘E‘Fé, (z

N
1 /1 1.
+J_Zl Z_ma(i_vi+ NEzxnl) (3 and the corresponding derivatives as

1
where, as usuak, %, ¢, and the dielectric constant are as- Vi=5VrtV,, (8
sumed equal to unity.

We now introduce the following new coordinatege Fig. N

. 1 1 1
1): vj:va—va+V§j—NI=Elv§I. 9)
1 1 N 1 N We now write the Hamiltoniat3) in terms of the new vari-
R=5|rm+g 2 i, P=Thi—g E I, ables. Using Eqs6)—(9) we obtain
2 N J:l N J:]_
Ho=HexctH,, (10
N
1 where
fj:rj_ﬁlzl . 4
- . 1 (1 1 1[. p\1)?
exfzi__ ETVR+”TVP_'§ zX F{+§
together with the complex coordinatés=¢,;+i&,;. Note My [ 21 !
also the following constraint on these coordinates: 2
+—1 1V 1V +1 x| R-P

. ) 2Nm, |21 YRT 7 Ve 2|? 2/

> =2, (0. (5) (11

=1 j=1

and
The fact that the variable& are not independent means that . 1 N (1 1 N 1 . 2
derivatives with respect to these variables are not defined. H§=2— > i—ng— NG IE V§I+m[z>< &l .
aj=1 =1

However, it is possible to introduce the derivativﬁ%_, (12)
which treat the variableg as if they were independetitpy ) ) )
working in a space of higher dimensionality and then con-Note that Eq(12) was obtained by applying constraif®).
sidering a submanifold in this space defined by constraint The first partH,.is similar to that for a standard diamag-

(5). netic exciton*>® with the electron mass replaced wih
Using the chain rule, we may now rewrite the derivativesanyon masses. The eigenfunctions of this operator can be
of a functionf with respect ta; as written straightforwardly as
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Vo dRp)=explik-R+iz-[RX pli2}®(p), (13 1 (1 1) o1

Ee=om N/
where®(p) satisfies the equation a

. 5 If we now apply constraint5), we find that the functiorb,
(L[EV — M] is also an eigenfunction cﬁlzg, with a corresponding eigen-
2my, P 2 value of zero, i.e.,

1 (1 [2x(p-d)|? S
+2Nma TV |P=E®. (19 Hzgcpgoc(gl gj) P ,=0. (22)

Here,d=kXz is the exciton dipole moment. Note that Eqg. A
(13) does not contain the mass-dependent phase factor that
appears in the wave function in Ref. 16. This is due to our 1
choice of the center of charge of the exciton for our coordi- E=Ecyct E§=2—+
nateR, rather than the center of mass chosen in Refs. 15 and My

16. Thus, the quantum numblelentering Eq(13) represents  yhich is indeed the ground-state energy of the origirdl (
the momentum of the geometrical center of the exciton. +1)-particle Hamiltonian in Eq(3).

The eigenfunctions are then The most general form for the ground-state eigenfunction
® o= lp—dMLIM (p— )22 expimg— (p- )4y, OfHols
(19

where ¢ is the azimuthal angle of the vectop{d) and
LM(z) are the associated Laguerre polynomials. The corre-

calculation of the total energy of the ground state gives

1
2_I'T]a:§(wh+Nwa)' (23

V(R,p L)) =explik-R+iz-[RX p]/2— (p—d)2/4}

ra _ 2
sponding eigenvalues are XF(C g -)l_p[ exp{ —|£p|“/4N},
1 ( |m|—m+ 1) 1 ( |m|+m+ 1) (24)
Eexce=—| n+ + n-+ . ) )
My 2 Nm, 2 whereF must only be a function of the complex conjugates

(16 Z We choosé- as follows to satisfy the interchange rules
Note that in Eqs(15) and(16) we no longer restricted our- for anyons:
selves to the lowest Landau level for the hole and anyons.
For the ground-staten(m=0), Eq.(13) reduces to

. \m=0). B Flondine =PI G20
Vo d R, p)=explik-R+iz-[RX p]/2— (p—d)?/4}, (25)
17

whereP, is a symmetric polynomial of degréein the vari-
ables?; . Note that fork=0 the problem has rotational sym-
metry about thez axis, and the degree of the symmetric
polynomial L is related to the exciton angular momentum
2 [L,=—L—N(N—1)a/2]. We are now in a position to ex-
, (18  bress the anyon exciton basis functions in the final form

which depends on the quantum numkealone.

We now move to consider the terf, in Eq. (12), which
may be divided into two parts:

=12 % 1V X
1 om, | 1N A b+ o126

and W(R,p{s})=explik-R+iz-[RX p]l2—(p—d)2/4}

N XPL(...,Z,...)
ng_lzl V§'>

1 .
m[zxﬁ']'

N
2§ 2 -
2N, XJ,EII (§j—§|)a1_p[ exp{ —| p|?/AN}.

1 N 1 N 2
+m|§j|2+2v§j- ;vgl —N(lZl vgl) : (26)
(19 C. Symmetric polynomials
The eigenfunctions of the ground state Fd)ig can then be We now consider the pref:ise structure of the {symmetric
written in terms of complex coordinates as polynomials P, that appear in Eq(26). To determine the

symmetric basis polynomials of orderwe apply thefunda-
mental theorem of symmetric polynomjiisvhich states that

@ =11 (¢)Prexp{—|¢;|%aN}, (20 any symmetric polynomial ifN variables,P(Xy, . . . Xy),
. can be uniquely expressed in terms of the elementary sym-
with the corresponding eigenvalues metric polynomials
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producto;={,{»{3 in terms of the new coordinates. For a

‘Tl:Z Xis ‘72:% XiXj s ‘73:i<12<k XiXjXic, number of anyons greater than three this disadvantage is cru-
cial, as the classification of polynomials in termszf be-
cy ON=X( X2+ XN - (27 comes too cumbersome and the number of constraints on

. . . . these coordinates is greater than one.
It is now apparent that all linearly independent symmetric

basis polynomials of a particular degree may be enumerated
by considering the possible products of the elementary sym-
metric polynomials(27), as the total degrek is the sum of

the degrees of the constituent polynomials. For example, the A. Formulation

ossible symmetric polynomials of degree four are con- . : .
P y POy 9 We introduce an anyon exciton consisting of a hole and

4 2 2
Str#ﬁ:?ef;)r(ren (trv%f;azaéra l(rrogtglgrﬁsaq'ﬂg‘:‘.irst is to determineﬁve anyons with charge-e/5. We also make a boson ap-
P ' roximation so that the statistical factar=0. Our justifica-

the number of possible products of eIementary Sym”.‘e”"ﬁon for this step is as follows. It was shown in Ref. 2 that for
polynomials for a total degrele. The second is to determine large values oh (which is required for the AEM to be valid

the structure of these products. - .
: . the statistical factorr becomes unimportant, and the results
To calculate the number of linearly independent symmet-

= = +
ric basis polynomials of degrdewhich may be constructed for a=0 were very S'm"?“ to those fap=1/3. We wqul_d
. . therefore also expect this to be true o= = 1/N, as this is
from the elementary symmetric polynomiats, . .. ,on We .
. even closer to zero. From now on we consider a boson ap-
use a result from the theory of partitiorts.

The number of ways of partitioning a numteinto parts ~ Preximation (=0) for anyon statistics. o
of size 1,2... P is given by the coefficient ok" in the The explicit form of the exciton basis functions is

expansion of

Ill. SIX-PARTICLE ANYON EXCITON: BOSON
APPROXIMATION

VL wk(Rp i) =explik-R+iz-[RX p]l2—(p—d)?/4}
P

1 oot =11 , (29) XPLm({a, - - ds)
1-x 1-x*  1-x7 k21 1-xK 5
where each term in the product is known agenerating ><Hl exp{ — [¢;|%/20}, (29
|=

function The number of ways of partitioning increases rap-

idly with L and does not follow any pattern. Furthermore, thewhereM enumerates different linearly independent symmet-
different products of elementary symmetric polynomials forric polynomials of degree.. To construct the symmetric
a particular value of. must be determined by hand. An ap- polynomialsP, ,, we need to consider only the elementary
proximate formula for calculating the number of ways of symmetric polynomialsr,, o3, o, andos. Note thato
partitioning a number does exist, the so-called Hardy-=( pecause of constraifif). From the above, we find that
Ramanujan formula? but it is not applicable to the present the number of possible ways of constructing a polynomial of

case as we have no polynomial of order one due to constrairfegreel is therefore the coefficient of- in the expansion
(5). This constraint significantly reduces the number of pos-

sible symmetric polynomials by removing the first factor in 1 1 1 1
the product28). For example, foN =3 the number of poly- 5 3 2 s -
nomials of degreé is equal to the integer part &f/6+ 1 for I=x71=x71-x"1-x> k=21-X

evenL and the integer part ofi(—3)/6+ 1 for oddL, which  The possible ways of constructing the first twelve polynomi-

(30

corresponds to the result obtained in Ref. 2. als are shown explicitly in Table I. It can be seen that the
number and complexity of the polynomials increases rapidly
D. Discussion with the degred..

The key difference between the current general formula. 't IS evident from Eq.29) that basis functions with dif-
tion and that outlined in Ref. 2 for the four-particle case €'ent values ok are orthogonal. We now expand a general

(N=3) is the replacement of anyon difference coordinate£Xxciton wave function for givek in terms of the complete

z; by the new coordinates . The principal advantage of the set of basis function&29):

difference coordinates was that they simplified the calcula-

tion of interanyon repulsion matrix elements, as well as the ®=2 xivi. (31
form of the statistical factor in the exciton wavefunction. !

However, they had the disadvantage that the classification qfje shall show in Sec. Il B that functions with differeht
symmetric polynomials was more difficult, as it was necesare orthogonal. However, basis functions with the same
sary to introduce a Vandermonde determinant for bdd- value ofL but differentM are not necessarily orthogonal, so
polynomials. For example, in the simplest cdse3, even  their scalar productd_,M|L,M ") will be nonzero. We there-
though the number of anyon coordinates is the same in botfyre write the Schrdinger equation in matrix form as
formulations, we havers=(Z1,— Z»3) (Zo3— Z31) (231~ 215) in R R

terms of difference coordinates, whereas we have a simple Hx=¢By, (32
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TABLE |. Possible ways of constructing a symmetric polyno-  5(& + £,+ &+ &,+ &)
mial P, from the elementary symmetric polynomials, o3, 04,

and os. df .
:f Sexpif-(Si+ &+ &+ &+ &)} (34)
Order,  No. of Structure (2m)

L  polynomials

B. Overlap matrix elements

0 1 1

1 0 — To calculate the overlap matriB, let us consider the

2 1 P! scalar product of two monomial functions:

3 1 o3

4 2 03 04 df

5 2 72, 0% iy = [ ar [ 4| —=

6 3 Ug, 020y, a'g (2m)

7 3 030'3, 0,05, 030, —

8 5 a'g, 050'4, 0'20':2;, 03075, 0'121 Xf d§1d§2d§3d§4d§5qf{n}|kq’{n’},k

9 5 0'303, 0%05, 0,030, o'g, 0405

10 7 a'g, 0'30'4, 0%0’%, 0,0305, 020"21, 0'%0'4, a'é xexplif-(§i+ &+ &+ &+ &)} (35

1 ! 0303, 7375, ‘250304‘ 02202’ 720475, The integration oveR andp gives a factor of ZA, and this
6 a4 g 9393034 leaves the following:

12 10 Ty, 0504, 05,05, 050305, 050, 02050,

2 4 3
0205, 03, 030405, 0y

df 2
[ M), (39

(it =cema) [ T

whereB is the block-diagonal matrix of scalar produétse  where

overlap matrix and ¢ is an energy eigenvalue. The size of

each block _inf% depends on the number of different wave M ’(f):f dEC™T™ exp(— £210+if- 8. (37)
functions with givenL. For example, in the case of a six- mm

particle exciton the block correspondinglie= 12 Yvill be of If we now make the substitutiofi— £ exp(d,), and lets be
size 10< 10 (see TabAIe)l Both the overlap matri® and the 4 angle betweehandé, i.e., &
Hamiltonian matrixH are diagonal ink. Note that fork

=0 the matrixH takes the same block-diagonal form s b= b1, (38)
(as will be shown in Secs. Ill C and lll Dand as a result the

problem becomes exactly soluble.
We shall now proceed to evaluate the matrix elements in

we obtain

~ ~ . ’ 27T * !
Eq.(32. As H andB are diagonal irk, in what follows we M m (F) =gl (m=m Wff d¢f dggtrmem
consider only the matrix elements diagonalkin Since all 0 0
terms in the polynomiaP, \, are of the form of a product of X expli(m—m’)¢+if & cosp— £2/10.

the coordinategj, we use the following functions in mono-

mials in the matrix element calculations: (39)
We can now make use of Bessel’s integffal:
Vi k(R.p{giH) =Cexplik-R+iz-[RXp]/2 fzwdd)eti(m—m’)qﬁﬂfécow:zwilm—m’lj‘m_m,‘(fg)’
—(p— d)2/4}zrl11zgzzg3_24_25 0 w0

5
% H exp[—|§j|2/20}, (39 to reduce Eq(39) to the form
j=1

Mmm,(f)zzﬂ_i\mfm'|ei(mfm')¢mem,(f), (42)

where{n} denotes the set of quantum numbessto ns, and ~ where
the constanC will be defined in Sec. Ill B. The basis func-
tions in terms of symmetric polynomials of degreean be
obtained as a linear combination of the monomial functions
(33), andn;+ny,+nz+ns+ng=L.

We also take into account constraid} via the following ~ This can also be expres$édn terms of a confluent hyper-
transformation: geometric functionb(B,v;z) as

Mo (1) = f:d&“m+m'6752/10~]\m7m'\(f§)- 42
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2(m+ m')/25(m+ m’)/2+ 11-(ma){m, m/} + 1)

M (F) = |m_m,|! <{n}|V12|{n }> 25

(2m)? 27Tq

[m—m’|/2 ’ _
Xt (madm '} x f A4 0EAEIEAE 1 Y o

xexplif- (& + &+ &+ &+ &)}

+1|m—m'[+1;-t), (43

wheret=5f2/2 and mafmm'} is the largest of the integers

m and m’. Equation(43) can be simplified further if we xexpliq-(&1- &)} (50

apply the Kummer transformation Following the procedure in Sec. Il B yields
D(B,y,—)=e"'O(y=B,71), 44 (Y {n

and note that ¢y— B) is always a nonpositive integer: 2A(277)3 >

—eIL innil [ of [ daexption (ni=ni)
y—B=|m—m’|—maxm,m’}. (45
+ig_(ny—ny)texpli ¢ (n3—ng) +(ny—ny)
This means tha® (y— B, vy;t) reduces to a polynomial, and
®(B,y;—t) is then just a polynomial ih multiplied bye™". T (Ne—n" J(f (fF ),
If we now perform the integration ovep; we obtain the (N5~ 15) I} Miyn () Mign H mjnj (D)
final form of the overlap matrix elements

(6]

(51)

® 5 ) where M,y are as defined in Eq42), f.=f*q, and¢.
<{n}|{n'}>=C2A(27T)55LL’f dfF[] ilm=miMm, o (F), are the phases df. .
o =t M We now seek to eliminate; by the change of variables
(46) b= di— ¢q and . = ¢ — ¢;. After substitution and inte-

whereL=n;+n,+nz+n,+ns. Note that nothing depends gration overg, we obtain

onk in this expression. It is convenient to define the constant C2A (277)4
C so that forL=L'=0 the matrix element{n}|{n’}) U}V {n’ }>_

LL!
=(0]0)=1. This yields

5
, o o0 27
1 x]‘[i\”r";lf dfff dqf de¢
j=1 0 0 0

2_
¢ 12521)°A° 4 _ ,
xexplip(L—L")bexpligr. (n;—np)
In the above formulation we have only considered matrix +igr(np=np) My (1)
elements in terms of monomial functions. As mentioned ear- !
lier, matrix elements in terms of symmetric polynomials can 5
be easily constructed as a linear combination of the mono- Xanné(f—)sz Mnjnj’i (52

mial matrix element$46).

whereL=n;+n,+n3+n,+ns, andy. andf. can be ex-
C. Anyon-anyon interaction pressed in terms of the variables of integration as
The anyon-anyon interaction has the form ev==(fxqe '?)/f, f2i =f2+g?+2fq cose.
(53
R 1 1

Vaa=5¢ . E_&l (48 It is evident from Eq(52) that the anyon-anyon interaction
J<tisi— sl matrix has the same block-diagonal structure as the overlap

. . matrix. The integrand in Eq52) can be further reduced to a
We shall only calculate the matrix elements for the first termproduct of a polynomial irg, f, ande™ ¢, and an exponential

V1, as the others follow by analogy. We begin by taking thefactor exp-25f2/2—5g?). This mtegral can therefore be
Fourier transform of Eq(48): evaluated analytically for anfn} and{n’}. For the case of
L=L'=0, using Eq.47) for C?, the anyon-anyon interac-
tion matrix element reduces to

V&80 =55 | rerplic-(6- &)} (49

~ a
This gives a matrix element in terms of monomials (0[Vaal0)= 5\[5' (549
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D. Anyon-hole interaction

fzwd¢q expli pq(L—L")—idq cosgy}
0

The anyon-hole interaction takes the form

5 5 =27(—i)*"13 L (da), (61)
A 1 A 1 1 [L-L7]
Vah__gz th:_gz my (55) i . .
=1 i=11%jh which gives for the matrix elements
where c?
S C%(2m)*A .
. ({nHVanl{nh) = - —=—(- NLLqIH““‘
rjh=§j—p+ hz. (56)
Considering onlyV,,,, we take the Fourier transform: X fo dqe_qzlz_thlLfL'\(dCI)
1 dg
Uin(p. )= _[Q)Z (explia- (&-p)}, (57 Cart | Tdg explig LY
h 5
where Hgn =)} Mo (F) LT Mo (),
2
Var(@) = gre " (59 (62
wherey andf . can be expressed in terms of the variables of
The matrix elements are then integration as

eV=(f+qe ')/f,, f2=f2+g%+2fqcose. (63

(9l =5 [ or [ o[ —Z
(2m) Ford=0, the Bessel functiod|_ //(dq) entering the inte-
dq grand of Eq.(62) is nonzero only ifL=L". This indicates
xf —— Van(Q) that for the case of zero in-plane momentuks=@d=0), the
(2m)? anyon-hole interaction matrix has the same block-diagonal

structure as the anyon-anyon and overlap matrices. There-

xf d§1d§zd§3d§4d§5‘1_’{n},k‘1’{n'},k fore, states with different angular momentiupndecouple.
Equation(62) may be simplified further, and this yields
xexplif- (& + &+ &+ E+ &) the following expression for the anyon-hole interaction ma-
trix elements for basis functions in terms of symmetric poly-
xexpgliq-(&—p)}. (590 nomials:

Integration overR and p gives 2wAexp(—g%/2—id-q). R o
Then, following the procedure in Section Il B once again, (L,M|Vah|L’,M’>=—f dgexp —5g%/2—qgh)
we obtain 0

XL (da)Qrm,Lrm (@), (64)

whereQ_y +w/(Q) is a polynomial inq (the lowest order
polynomial isQqp 0= 1). A similar expression to Eq64) is

. C2A(2m)2,
(¥l =— ST 1o [ o

i=

i, obtained for a four-particle exciton in Ref. 2. Ho=0, Eq.
XJ dqVan(q)e a (64) further reduces to an expression in terms of elementary

functions. For the case ok=d=0 and L=L’'=0, the

xXexp{ig, (ng—ny)+ige [(L—L") anyon-hole interaction matrix element is then
5
— ! ’ ’ % ™
Ny nl)]}Mnlnl(f+)j1:[2 Mnjnj(f)a <0|Vah|0>: _ \/1:0 (65)
(60)

where M,y are as defined in Eq42), f, =f+q, andé, is E. Exact results for k=0, L =0

the phase of, . As beforeL=n;+n,+nz+n,+ns. All the above results are simplified significantly for the

We now eliminate¢; by substitutingg=¢i— ¢4 and ¢y state with k=0 and L=0. For such a state, the
= ¢, — ¢¢. Choosing thex axis alongd, the integration over (N+ 1)-particle wave functioi26) with =0 reduces to the
¢q is then form
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W(R,p,{4})=Cyexpliz-[RX p]/l2— p?/4} [7 2 _(N—l)ﬁ\/;
. >NE cerfa(x.) = N N’ (70)
X exp, — 2/4N ¢, (66)
p{ pgl 14l ] wherex.=h./\2N. So, forN=3 the critical separatioh,

~5.39,, for N=5 we find thath,~5.59,, and for
the integral N>1we haveh,~1.32\/2Nl,. Notably, these critical sepa-
rations are well inside the region for which the AEM is ap-
plicable. It should be emphasized that the state WithO is
sz dR f dg,- not the ground state for the anyon exciton at large separation
h. For example, for a four-particle excitérihe ground states
for large separation satisfy a superselection rute3m,
><exp[ N J C2A where m is an integer, and wheh—o the ground state

El (i&- f—&£/2N)

where the normalization consta@f, can be determined from

N N
_V(ZWN) =1 energy tends to its classical values — (2/3)¥%h.
Despite the nonapplicability of our model to a real physi-
(67)  cal situation at small layer separations<(l,), the model
remains soluble for all values df, includingh=0. More-
For the case ok=0 and L=0, the interaction matrix over, it has been shown in Ref. 2 that the ground state of the
elements of all+ 1)-particle exciton are straightforward to four-particle problem ll=3) at h=0 is the state withk

evaluate. The anyon-anyon matrix element is =0andL =0. We expect the same to be true fox5, since
the anyon-hole attraction will always overcome the anyon-
-1) anyon repulsion at small interparticle separations. It can be
(0] aa| )= WJ shown (in a similar way to that in Ref. 2that the smallest
) . X )
average interparticle separation corresponds to Ltke0
case. Therefore, the caselof0, L=0 is of special interest
f f f dpe™? ’ZJ 1 -déy since it predicts the anyon exciton binding energies in the
(2m)?) 2mq limit h—0.

We are now in a position to write down a general expres-

X ex (£ F— E212N)+iqg- (& — sion for the binding energy of a\(+ 1)-particle exciton at
p[pzl( & 1= /AN +ia- (& §2)J zero 2DEG-hole separatiom€0):

B il (68) (N=1)| |
= _ . . _ p
4N N Eb:_(<0|Vah|o>+<0|vaa|0>): 1- 2\/§N m
For nonzero interplane separatibnthe anyon-hole matrix (72)

element can be reduced to

Equation (71) has been written in this particular form to

<0|\7 0) N2 J’ emphasize the key result that for any valudNahere always
ahlV)= —

w exists at least one bound state of a neutht-()-particle
anyon exciton ah=0. ForN=1, Eq.(71) yields the value

. J7l2, which corresponds to that obtained in Ref. 16 for a

f (ZW)J quf pe’ f 1+ -déy standard diamagnetic exciton. For a four-particle exciton

(N=3), E,=(1—/2/6)\/7r/6, which agrees with the result
of Ref. 2. Finally, forN=5 we have a binding energy of

><exr4 > (&, f—£2N)+ig- (§1—p)—qh] (1—/2/5)\/x/10, which can also be obtained from E¢fs4)
p=1 and (65).

— | —Ng?2—qgh
fo daexa a2=qh) IV. CONCLUSIONS

The anyon exciton model has been generalized to the case
N Y of an arbitrary number of anyons and several important
B 2Ne erfo(h/ V2N), (69 mathematical results have been obtained. Starting from the
Hamiltonian for a noninteracting system Nfanyons and a
where erfck) is the complementary error function. Using the yalence hole in a quantizing magnetic field, we have ob-
asymptotic expansion of erfe] it can be easily seen from tained a complete set of exciton basis functions. These func-
Eq. (69 that(OlVah|0>—> 1/h ash—oo, as expected. tions have been fully classified using a result from the theory
Equations(68) and (69 also allow us to calculate the of partitions. We have derived expressions for the overlap
critical interplane separatioh, at which thek=0, L=0 and interaction matrix elements for a six-particle system,
state becomes unbound, i.e., when which describes an exciton against the background of an IQL
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with filling factor »=2/5. In the particular case &f=0and  exciton. We have also shown that thid < 1)-particle exci-
L=0, we have found an expression for the binding energy ofon remains bound for 2DEG-hole separations exceeding
a (N+1)-particle exciton, which agrees with known results Several magnetic lengths, when the anyon exciton model be-
for a standard diamagnetic exciton and a four-particle anyogomes applicable to real physical systems.
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