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Levinson’s theorem and scattering phase-shift contributions to the partition function
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We consider scattering state contributions to the partition function of a two-dimengRibaplasma in
addition to the bound-state sum. A partition function continuity requirement is used to provide a statistical
mechanical heuristic proof of Levinson’s theorem in two dimensions. We show that a proper account of
scattering eliminates singularities in thermodynamic properties of the nonideal 2D gas caused by the emer-
gence of additional bound states as the strength of an attractive potential is increased. The bound-state contri-
bution to the partition function of the 2D gas, with a weak short-range attraction between its particles, is found
to vanish logarithmically as the binding energy decreases. A consistent treatment of bound and scattering states
in a screened Coulomb potential allowed us to calculate the quantum-mechanical second virial coefficient of
the dilute 2D electron-hole plasma and to establish the difference between the nearly ideal electron-hole gas in
GaAs and the strongly correlated exciton/free-carrier plasma in wide-gap semiconductors such as ZnSe or
GaN.[S0163-182808)09531-9

I. INTRODUCTION dimensions. In the present paper the connection between
scattering and the statistical mechanics of a 2D plasma is
Two-dimensional2D) systems play a central role in con- studied.
temporary condensed matter physics. Novel phenomena such In the next section we introduce the relation of the two-
as the quantum Hall effetobserved when a 2D electron gas dimensional scattering phase shift to the partition function
at low temperature is subjected to a strong magnetic field, a&"d show that a proper consideration of the scattering states
well as practical developments based on quasi-2D systemEmoves discontinuities in the partition function in an analo-
e.g., high-mobility field-effect transistérer semiconductor gous fashion to the 3D case. In Secs. Il and IV we explore
quantum-well laserd have brought significant technological this in more detail using an analytical model with an attrac-
advances. Such devices are based on the quasiequilibriufiye square well potential before turning to a more realistic
response of the internal electron or electron-hole plasmas t@odel of the statically screened electron-hole plasma, which
an external stimulation. Hence it is essential to understani$ the main focus of this paper. We also compare in both
the fundamental quantum-statistical properties of such twoCases the influence on the second virial coefficient of the
dimensional interacting plasmas at finite temperatures. exchange interaction and the screened direct interaction.
One of the well-known differences between 2D and 3DSuch considerations are crucial in understanding the nature
nonrelativistic quantum mechanics is the presence of at leaf the strongly correlated electron-hole plasma in semicon-
one bound state for any symmetric attractive potential in twguctor quantum wells.
dimensions. This bound state, with binding energy,
brings a nonvanishing contribution of eXy(ksT) to the ,
two-body part of the partition function even if the interaction Il. PARTITION FUNCTIONS AND LEVINSON'S
is weak and the state is very shallow. For a dilute gas this THEOREM
contribution introduces a deviation from the ideal gas law The two-body interaction part of the partition function of
that is larger than the correction due to the Fermi or Bos@p interacting Boltzmann particles is given by
statistics of the particles. However, it is clear that 2D gases
with a vanishing interparticle interaction strength should be
well described by free Fermi or Bose gas models. This con- _
tradiction will be resolved in the present paper. A related Z‘”‘_mE’V eXp(~Em,, /keT)
guestion is what happens to the partition function when ad-
ditional bound states appear with increasing strength of in- 1 (= < dén(q)
teraction between the particles. In the 3D case the answer to T o m= . dq
this question is based on a careful consideration of states in
the continuum, which are modified by the interaction, i.e.,
taking scattering into account in the partition function whereqz=2ukgT/%2, u is the reduced masg is the pro-
calculation*® The same approach should be applied in twojection of the angular momentum onto the axis normal to the
dimensions; however, scattering theory in two dimensions iplane of 2D motion f1=0,=1,+2,...), 6(q) is the 2D
relatively undeveloped compared to the 3D case. For exscattering phase sHiftlependent on the relative-motion mo-
ample, the relation between low-energy scattering and bounohentumg, E., , are the bound-state energi@sdex v enu-
states, which has important consequences in the statisticalerates bound states with given), and the double sum in
mechanics, has been considered only very recehity two the first term ranges only over bound states. Equatigns

exp—g?/g%)dg, (1)
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the 2D analogue of the Beth-Uhlenbeck formula and can baegligible. For a free, Bose, or Fermi gas in two dimensions,
derived in the same fashion as in the 3D case. B(T)= F\?/4 2 the plus sign applying to the Fermi case, as

Often only the first term in Eq(l) is considered when the Pauli principle introduces an effective repulsion between
calculating an internal partition function, neglecting thefermions, thereby increasing the pressure. There is extensive
phase shift term. For an attractive potentil(p), as g ongoing research in the statistical mechanics of anyons, 2D
decreases bound state energies increase towards the cqasticles obeying fractional statistit$and the second virial
tinuum. As such a state reaches zero energy, a partition funcoefficient of a free anyon gas lies in between the bosonic
tion that contains only the bound state sum will be discon-and fermionic valué® In this paper we focus on the relative
tinuous. These unphysical singularities would extend to alimportance of interaction-induced bound and scattering
the thermal properties, such as pressure and specific heatates on the second virial coefficient.

Integrating by parts we can rewrite Ed.) as The 3D analysis of the second virial coeffici¥tis easily
reformulated for a 2D interacting g&&For a system of iden-
- tical particles with spirs the second virial coefficient is
zim=[2 exXp(—Em,/keT)— 2 5m<0>/w]
mv m=-= N1 2z

B(T)=

, ®)

2 (= & - 2s+1\ 74 2s+1
+—zf0 2 n(@) |exp—a%faDada. (2

Qs where the upper sign is for bosons and the lower sign for

fermions. The exclusion principle modifies the sum orer

For nonzero temperature the integral term in the right-han(ﬂ1 Eq. (2 ; th | t it
side of Eg.(2) is a smooth function of the interaction the géftigi:r??ue:(ilig?[fsr}ngeE:rEg)Lﬁ ?; momentum parity, and

strengthg. If the phase shifts satisfy the condition

1=(—-1"

lim 8(Q) = v, 3 Z(8=(2s+ 1)m2 s+ T)

q—0 Nz
where v, is the number of bound states with given the _ _ i
zero-energy part of the phase shift integral in Elg.exactly X[exp(—Em,/kgT) — 1]+ (25+1) wq%
cancels the zero-energy part of the bound-state sum, remov- .
ing the discontinuity inZ;,; as a function of the interaction * D 1x(—-1)"
strength. This cancellation is similar to the well-known be- X fo qdq m< o s+ 2 Om(Q)
havior in three dimensions where the partition function dis-
continuities are removédwith the help of Levinson’s ><exp(—q2/q$). (6)
theoremt® Equation (3) constitutes the 2D statement of
Levinson’s theorem. The electron-hole plasma constitutes a mixture of two

As a central theorem of scattering thedtylevinson’s ~components and for a binary mixture of componedtand
theorem has been discussed for Dirac particles, multichann@ having second virial coefficienBY) andB$" and densi-
scattering, multiparticle single-channel scattering, oneties n. andnp, respectively, the second virial coefficient
dimensional scattering systems, impurities in Aharonov4s!3
Bohm rings, systems with non-uniform effective mass, and
even for time-periodic potential.However, its applicabil-
ity to the 2D scattering problem has been considered only
recently. In Ref. 6 the 2D statement of Levinson’s theorem,
Eqg. (3), was proposed and verified empirically, while in Ref. In Eg. (7) n=nc+np and
7 this theorem was more rigorously established for cutoff

2 2
nc nCnD I’]D '
B(T)=(—n B +2— o BCD+(—n) BS). (7

potentials using the Green-function method. The above argu- Beo= _)‘izint ' ®
ments, based on the partition function continuity requireqyhere

ment, provide an additional statistical mechanical justifica-

tion of Levinson’s theorem in 2D. ) 27h? McMp

The two-body interaction part of t.hle partitign function can M:m1 M= m, 9
be used to calculate the second virial coefficiBi(T) that o .
characterizes the first correction to the ideal gas law in th@nd Ziy, is given by Eq.(1) or Egs.(2) and (3) with the
low-density expansion of pressure, properly chosen reduced mags

P=nkgT(1+Bn+---). (4) Il. BOLTZMANN GAS WITH SHORT-RANGE

. . . . . . . ATTRACTION
B is positive for repulsive potentials, causing an increase in

the pressure over its ideal-gas value, and negative for attrac- Our first example, the Boltzmann gas with weak short-
tive potentials, causing a decrease in the pressure. A calcuange attraction is chosen to elucidate how the second virial
lation of the second virial coefficient is meaningful in the coefficient at given temperature vanishes when the binding
dilute gas regime, where the mean inter-particle spacingnergyE, decreases, even though the bound-state part of the
n~2 is larger than the thermal wavelength internal partition functionZ,,,,=expE,/ksT) approaches
=(27h?/MkgT)Y? and the higher-order terms in E@) are  unity rather than vanishes. To trace the precise nature of the
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cancellation ofZy,,,nqit IS convenient to use Eq1) for Z;; = exp(—E/kgT) dE
without the application of Levinson’s theorem. Zin=exp(Ep/KeT) = | —o 0 (EIE,) E (14)

Let us assume that the 2D particles interact via an attrac-
tive square-well potential of radiua and depthV,. This  The integral in Eq(14) is the Ramanujan integral,which
simple model allows analytical treatment that provides in-can be rewritten &22%
sight into the generic behavior of a gas of attracting particles.

To evaluate the partition function we need to analyze both = e Xt dt «
the bound and scattering states in this potential. The binding o m2+(Int)? T°¢° v(X), (15
energies for any value of angular momentamtan be easily
found by matching the logarithmic derivative of the radial where
wave function ap=a: .
©° X
v(x):f ——dt, (16)
VKo™ KZJ‘mHl(a\/KO—KZ) _KK‘mHl(Ka) (10) 0 F(t+1)
Jjmi(aykg— ) Kim(xa) with x=E, /kgT. Thus, the partition function acquires a very

simple form
where k3=2uVo /12, k*=2uEy/%?% JIn(x) is the Bessel
function of the first kind andK,(x) is the modified Bessel Zint=v(Ep/kgT). a7
function of the second kind. Note that farza<2.4 [i.e.,
smaller than the first root afy(x)] there is only one bound
state(havingm=0) and forxp,a<1 this state is very shal-
low, e.g., forkpa=1, E,/V=0.04, for xga=0.5, E,/V,
~2X 10‘7. For a shallowm 0 state the transcendental
equation for binding energies E(LO) reduces to

A similar result has been obtained recently for contact-
interacting particle$?

To consider the smal asymptotic of the functiom(x) it
is convenient to expand the integral E@6) in descending
powers of In(1xX):

1 4
koaJi(koa) kaKi(ka) 1 v(X)= +— +0O([In(1x)]73). (18
Jorkea)  Kora) _ in(cka)’ 11 In(1/x) ~ In“(1/x)
_ ) , From Eq.(18) one can see tha&;,; and hence the second
where c=exp(y)/2 (y~0.5772157... is Euler's con- \iia| coefficient B= —A2Z,,, both vanish when E,/kgT

stan). . " —0 , although one bound state always exists. So the lowest-
For the un2b(32und states with positive energy of the relat'V':"order density correction to the 2D ideal gas law vanishes

motion, E=#°q"/2y., scattering phase shifts can be found in oy sjowly as 1/InksT/E,) as the binding energy is reduced.

a similar fashion. For small values of the momentuia,  Note that, when the potential supports several bound states,

<1, all phase sh.|ft517form¢0 are small compared 10 q contribution of any shallow bound state with=0 is

do (s-wave scattering™’ The tangent of the-wave scatter-  cancelled by the scattering phase shift integral in the “loga-

ing phase shift fog<«, (i.e., E<V,) is given by'® rithmic” manner described above. For+ 0 the cancellation
has a power-law dependenceBg/kgT.?? This implies that
tans.= w2 (12) higher-order Levinson’s theorems responsible for continuity
0 Jo(kod) of the partition function derivativé$ are different form
In(cqa)  oadi(kod) =0 andm#0, whereas the zeroth-order Levinson’s theorem
in two dimensions has the same form, K8, for all m.
Substituting kgaJq(kga)/Jg(kea) from Eg. (11) into Eq. For extremely weak interaction potential, such that
(12 we get (koa)2< 1In(h%2ua’ksT), from Egs.(11) and (18) it fol-

lows thatZ;,~Voua?/2k2, which coincides with the pertur-
bation theory result. In the other limit for large values
(Ep/kgT>1), v(x)—€*,2* therefore the exponential depen-
dence of the partition function on the binding energy is re-
Note that this expression does not contain parameters of thepvered.
potentialVy anda explicitly, and it is valid for an arbitrary In Fig. 1 we plot the ratio of the total partition function
potential well with a shallown=0 levell® Z;,; to its bound-state pa#t,,,,— eXpEy,/ksT) as a function
Since the integrand in the partition function Ed) con-  of E,/kgT. We do this for both the full expression, Ed.6),
tains an exponential factor exp(f/q%), the wave vectors, and the first two terms in the asymptotic expansion, (E§).
which are larger than the thermal wave veatgr, give neg- One can see that the asymptotic expressiashed line in
ligible contribution to the value of the integral. Therefore for Fig. 1) is accurate only for very small values &, /kgT.
the short-range interaction or for low temperature, satisfyingOver a wide range oE,/kgT both scattering and bound-
condition kg T<%2/2ua?, the scattering phase shifts need state terms are important, e.g., wheg=kgT the scattering
only be considered fog<l/a. Then all the terms in the term produces a 20% correction Zg,;. WhenE/kgT>3
phase shift sum in Eql), except for the term wittm=0, the bound-state contribution dominates completely.
can be neglected. Finding the derivativedffrom Eq.(13) It is instructive to compare the contributions to the second
we obtain for the two-body interaction part of the partition virial coefficient of the direct and the exchange interactions.
function For example, for a gas of spinless bosons the second virial

tandy= (13

v
IN(E/Ey)
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The screened Coulomb attraction between electrons and
holes is modeled using the Fourier representation of the in-
teraction potential:

v ) 2
4 Ta+as’
whereq;s is the screening wave vector. Hereafter we employ
3D excitonic Rydberg units where length and energy are
scaled, respectively, by the effective Bohr raditisand Ry-
dberg RY . For electron-electron and hole-hole repulsion the
same potential with the opposite sign is used. Equa@n
is the well-known Thomas-Fermi expression for the Cou-
, , lomb potential statically screened by a 2D electron gas. Be-
107 107 10 10 ing the long-wavelength static limit of the random-phase ap-
E/kT proximation, Eq.(20) is a simple model for the screened
FIG. 1. Two-dimensional Boltzmann gas with a short-rangecou'().mb potential in two dimenSionSI Nevertheless, this e>§—
_ pression reflects the fact that the statically screened potential

weak attraction: the ratio of the two-body partition function to its | two di - d t dist | than i
bound-state parZin;/Zpouni=(Es/ksT)/eXpEy/ksT), is plotted In WO aimensions aecreases at large distances silower than in

vs E,/kgT. Dashed line: the function/(x) is approximated by the_ 3D casdas a power Iaw rather than_ exponentiallpe-
1/In(1K) + y/In%(1X). splt_e numerous more realistic correct!ﬁﬁ%_Eq. (20 re-
mains the most widely used approximation for the 2D
screening®! This potential has been known for more than
three decad@sut some of its unusual properties were only
discovered recently, e.g., the existence of a remarkably
simple relation betweeg, and the number of bound states.
Namely, with decreasing screening, bound states appear at
She critical integer values of the screening length given by
the simple formul&

(20

Zin/Z ‘bound

coefficient isB= —\?(1/4+2Z;,,). For Z;,, given by Eq.
(17), the direct interaction term @,,;) is smaller than the
exchange ternfl/4) for small binding energies. Thus, as re-
quired for vanishing binding energy, the second virial coef-
ficient is governed by the statistics of particles, despite th
existence of a single bound state.

IV. ELECTRON-HOLE PLASMA

( 1) :(2|m|+ v—1)(2|m|+v) 12 21

> ,
In this section we study a more realistic model of an in- s
teracting gas than the one considered in Sec. Ill. We considevherem is the angular momentum ane 1) indicates the
a mixture of the two types of Fermi particles, positively number of nonzero nodes of the radial wave function. Equa-
charged holesh) and negatively charged electrore (This  tion (21) shows that several bound states corresponding to
model is important for understanding the thermodynamic anghe given value of (fm|+v) appear simultaneously. This
optical properties of the electron-hole plasma in semiconducdegeneracy is different from the degeneracy for the bound
tor quantum wells. In the low-temperature, low-density limit states of the unscreened 2D excit@n hydrogen atomn for
most electron-hole pairs are bound into excitons. This limitwhich the states with the same value din(+v) are
has been studied extensively because of the recent proposalegeneraté®>?The hidden symmetry that underlines this de-
of exciton condensates in this systéh® The properties of generacy has not been fully understood yet, and(&1).still
the degenerate 2D electron-hole plasma are also welacks a rigorous analytical derivation.
known?’ We consider the case when the temperature is com- We also consider the low-densitpondegenerajdimit,
parable to the exciton binding energy so the occupation owhen there is no Pauli blocking and the self-energy
continuum stategand therefore screenings significant, al-  correctior® to the Beth-Uhlenbeck formula can be neglected
though the carrier density is low enough to neglect the termand Eqs(2) and(3) and Eq.(6) can be used foZ,, andZ,
higher thanBn in the virial expansion. The temperature and respectively. The shortcomings of this model for the quanti-
density conditions under investigation are close to those ifiative description of a real system of photoexcited electrons
the regime where excitonic gain in wide-gap semiconductorgind holes in semiconductor quantum wells are self-evident;

is anticipated® however, it does provide a tractable model containing all the
We assume for simplicity equal masdds=M,=M and salient features of the system.

spinss=s’'=1/2 for both species. Theh,,=Z., and the To find the second virial coefficient given by E4.9) one

second virial coefficient for the mixture E¢7) acquires the must calculate the binding energies and scattering phase

form shifts entering the partition functior&,, andZ.,. We use

for this purpose the 2D modification of the variable-phase
N2 1 method* known from scattering theory. In this method the
B= _<__22eh_ Zee)- (19)  scattering phase shift and the function defining bound-state
414 energies can be obtained as a large distance limit of the
phase function, which satisfies the first-order, nonlinear Ric-
Here 7\=)\'u=(27rﬁ2/M ksT)Y? and the charge neutrality cati equation originating from the radial Scdinger equa-
conditionng,=n,, is taken into account. tion. The variable-phase method application to scattering and
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FIG. 2. The electron-hole part of the partition functi@gy, vs - o ]
the screening length d/ for two values ofkgT/Ry. Solid lines FIG. 3. The second virial coefficient of the dilute electron-hole

show the bound-state contributior&,, 4 only. Dashed lines: plasmaB/\? as a function of the screening wave number Solid
line, kgT=1 Ry*; dashed linekgT=5 Ry*; dot-dashed line,

Z +Z .
pound? “scatt noninteracting dilute electron-hole plasnBi)2=1/16.

bound states in the screened Coulomb poterigié) is de-

scribed in detail in Ref. 6. The method is especially effectivetrons and holes, can be completely neglected. Thus, at room

for calculation of shallow-state binding energies and low-témperature the electron-hole plasma in GaAs-based quan-

energy scattering phase shifts. tum yvells can be treated as an ideal gas, wher_eas in wide-gap
Figure 2 shows the results from the calculation of theSemiconductorge.g., ZnSe or GaNdue to the high value of

electron-hole part of the partition functidy,, which con- ~ RY* the 2D electron-hole plasma is strongly correlated and

tains both the bound state sum and the scattering phase sH¢Citonic effects are important for its thermodynamic prop-

integral. In this figureZ,,, is plotted as a function of the ©rties.

inverse screening wave numbeigd/ For the electron-hole

plasmag is a function of carrier densitif,and in the purely V. CONCLUSION
2D caseg¢<(net+ ny) for low densities and is independent of
density, gs—8/a* for M,=My,,, in the degenerate limit. In this paper we show that a proper account of scattering

Here we treat|s as a parameter characterizing the strength oliminates discontinuities in thermodynamic properties of the
the screened interaction potential Eg1). To emphasize the nonideal 2D gas whenever extra bound states appear with
role of scattering we show on the same plot the bound-statemall increase of the strength of an attractive potential. This
sSum, Zyound= Sm.,XP(—Enm,/KsT), which exhibits jumps treatment provides a heuristic proof of Levinson’s theorem
whenever new bound states appgar., wheng, satisfies Eq.  in two dimensions.
(21)]. These jumps become higher with increasing screening We trace the way in which the bound-state contribution to
length 14 since several bound states appear simultaneouslyhe partition function of the 2D gas, with a weak short-range
As can be seen, the additional scattering phase shift contrttraction between its particles, vanishes when the binding
butions completely remove these jumps. The partition funcenergy decreases. A weak 1Kg(/E;,) binding energy de-
tion is plotted for two values of the ratio & T to the exci- pendence of the second virial coefficient of such a gas is
tonic Rydberg, kyT=1 Ry* and kgT=5 Ry*, which  found forE,/kgT—0.
roughly correspond to ZnSér GaN and GaAs at room A consistent treatment of bound and scattering states in a
temperature. One can see that for high temperaiurédow  screened Coulomb potential allows us to calculate the
binding energythe bound-state contributions I, are sup- quantum-mechanical second virial coefficient of the dilute
pressed by the scattering phase shift integral more strongiyD electron-hole plasma and to establish the difference be-
than in thekgT=1 Ry* case. tween the nearly ideal electron-hole gas in GaAs and the
In Fig. 3 the second virial coefficief (scaled byr?) is strongly correlated exciton/free-carrier plasma in wide-gap
plotted versus the screening wave numggfor two differ- ~ Semiconductors.
ent values okgT/Ry*. Equation(19) is used for the calcu- The 2D electron-hole plasma was considered in the low-
lation of B, and the repulsionZ,) term partially compen- density nondegenerate limit only. Transition to the strongly
sates the Z.,, term. This compensation is especially Qegenerate Fermi limit and _related guestions of Pauli block-
significant in the high-temperature cakgT=5 Ry*, in  ing and self-energy corrections to the Beth-Uhlenbeck for-
which the 2D electron-hole plasma behaves much like afula in 2D remain the subject of further research.
ideal gas over a wide range of screening wave vectors. For

ksT=1 Ry* thg electron-hole attraction term dominates ACKNOWLEDGMENTS
and the plasma is strongly correlated for all valuesg|of In
this case a small statistical repulsid®/§ %= 1/16, horizontal This work was supported by the U.K. EPSRC and the

line in Fig. 3, which is due to the fermionic nature of elec- Royal Society.
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