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Abstract

Phase change devices in both optical and electrical formats have been subject of intense

research since their discovery by Ovshinsky in the early 1960’s. They have revolution-

ized the technology of optical data storage and have very recently been adopted for

non-volatile semiconductor memories. Their great success relies on their remarkable

properties enabling high-speed, low power consumption and stable retention. Neverthe-

less, their full potential is still yet to be realized.

Operations in electrical phase change devices rely on the large resistivity contrast be-

tween the crystalline (low resistance) and amorphous (high resistance) structures. The

underlying mechanisms of phase transformations and the relation between structural

and electrical properties in phase change materials are quite complex and need to be

understood more deeply. For this purpose, we compare different approaches to mathe-

matical modelling that have been suggested to realistically simulate the crystallization

and amorphization of phase change materials. In this thesis the recently introduced

Gillespie Cellular Automata (GCA) approach is used to obtain direct simulation of the

structural phases and the electrical states of phase change materials and devices. The

GCA approach is a powerful technique to understand the nanostructure evolution during

the crystallization (SET) and amorphization (RESET) processes in phase change devices

over very wide length scales. Using this approach, a detailed study of the electrical prop-

erties and nanostructure dynamics during SET and RESET processes in a PCRAM cell

is presented.

Besides the possibility of binary storage in phase change memory devices, there is a

wider and far-reaching potential for using them as the basis for new forms of arithmetic

and cognitive computing. The origin of such potential lies in a previously under-explored
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property, namely accumulation which has the potential to implement basic arithmetic

computations. We exploit and explore this accumulative property in films and devices.

Furthermore, we also show that the same accumulation property can be used to mimic a

simple integrate and fire neuron. Thus by combining both a phase change cell operating

in the accumulative regime for the neural body and a phase change cell in the multilevel

regime for the synaptic weighting an artificial neuromorphic system can be obtained.

This may open a new route for the realization of phase change based cognitive computers.

This thesis also examines the relaxation oscillations observed under suitable bias

conditions in phase change devices. The results presented are performed through a

circuit analysis in addition with a generation and recombination mechanism driven by

the electric field and carrier densities. To correctly model the oscillations we show that

it is necessary to include a parasitic inductance.

Related to the electrical states of phase change materials and devices is the threshold

switching of the amorphous phase at high electric fields and recent work has suggested

that such threshold switching is the result of field-induced nucleation. An electric field

induced nucleation mechanism is incorporated into the GCA approach by adding electric

field dependence to the free energy of the system. Using results for a continuous phase

change thin films and PCRAM devices we show that a purely electronic explanation of

threshold switching, rather than field-induced nucleation, provides threshold fields closer

to experimentally measured values.
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