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Abstract

Background: Robustness is a central property of living systems, enabling function to be maintained against
environmental perturbations. A key challenge is to identify the structures in biological circuits that confer system-
level properties such as robustness. Circadian clocks allow organisms to adapt to the predictable changes of the
24-hour day/night cycle by generating endogenous rhythms that can be entrained to the external cycle. In all
organisms, the clock circuits typically comprise multiple interlocked feedback loops controlling the rhythmic
expression of key genes. Previously, we showed that such architectures increase the flexibility of the clock’s
rhythmic behaviour. We now test the relationship between flexibility and robustness, using a mathematical model
of the circuit controlling conidiation in the fungus Neurospora crassa.

Results: The circuit modelled in this work consists of a central negative feedback loop, in which the frequency (frq)
gene inhibits its transcriptional activator white collar-1 (wc-1), interlocked with a positive feedback loop in which
FRQ protein upregulates WC-1 production. Importantly, our model reproduces the observed entrainment of this
circuit under light/dark cycles with varying photoperiod and cycle duration. Our simulations show that whilst the
level of frq mRNA is driven directly by the light input, the falling phase of FRQ protein, a molecular correlate of
conidiation, maintains a constant phase that is uncoupled from the times of dawn and dusk. The model predicts
the behaviour of mutants that uncouple WC-1 production from FRQ’s positive feedback, and shows that the
positive loop enhances the buffering of conidiation phase against seasonal photoperiod changes. This property is
quantified using Kitano’s measure for the overall robustness of a regulated system output. Further analysis
demonstrates that this functional robustness is a consequence of the greater evolutionary flexibility conferred on
the circuit by the interlocking loop structure.

Conclusions: Our model shows that the behaviour of the fungal clock in light-dark cycles can be accounted for by
a transcription-translation feedback model of the central FRQ-WC oscillator. More generally, we provide an example
of a biological circuit in which greater flexibility yields improved robustness, while also introducing novel sensitivity
analysis techniques applicable to a broader range of cellular oscillators.

Background
A circadian network (or biological clock) confers a com-
petitive advantage to an organism, probably by enabling
it to anticipate cyclic changes in the environment. Circa-
dian rhythms with very similar properties are found in
almost all organisms, controlling processes from cyano-
bacterial cell division to human sleep-wake cycles [1].
There is now evidence that these rhythms can be gener-
ated by loops of genes and gene products that commu-
nicate by positive and negative feedback. Such loops

have been experimentally elucidated for a variety of
organisms, including the fungus Neurospora crassa, the
fly Drosophila melanogaster and the plant Arabidopsis
thaliana [2]. Input signals from light and/or tempera-
ture alter the level of one or more components of the
loops in order to reset the phase of the rhythm [2].
For the circadian clock to provide an adaptive advan-

tage, it is important for it to maintain the appropriate
phase relationship relative to dawn and dusk such that
rhythmic biological processes occur at the optimal time
of the day. The responses of the clock must ensure that
this phase relationship changes appropriately when the
clock is subject to regular perturbations - such as
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seasonal changes in photoperiod and temperature -
while being resilient to the more or less random pertur-
bations resulting from evolutionary processes, external
environmental fluctuations or due to the stochastic
environment of the cell. The existence of these experi-
mentally tractable system outputs and related perfor-
mance measures, together with increasingly detailed
genetic information, complex dynamics and easy manip-
ulation by light and temperature signals means that cir-
cadian clocks are good systems for investigating how the
structures of signalling networks affect their system-level
properties.
In this vein, recent theoretical and experimental work

has focused on elucidating the relationships between the
multi-loop architectures characteristic of circadian sys-
tems, the flexibility of the clock’s dynamic behaviour
and the robustness of its function in biological timing
[3-9]. Flexibility measures how readily the rhythmic pro-
files of all the molecular clock components can be
altered by modifying the biochemical parameters or
environmental inputs of the clock circuit [3]. Robustness
focuses on how a biological function, such as the phase
of a particular clock component, is maintained under
varying conditions. The relationship between these two
high-level properties is a complex one, depending on
the particular properties of the system of interest.
Although flexibility may decrease robustness by increas-
ing sensitivity to perturbations, it can also yield greater
robustness by enhancing the ability of the network to
tune key environmental responses [10]. Studies within
specific circadian systems have had success in identify-
ing the components and structures contributing to their
robustness [4,6]. In a more general context, Kitano
recently proposed a simple, scalar measure of robustness
that aimed to facilitate comparisons across widely differ-
ing biological systems [11]. Here, we combine these
complementary approaches to analyse the fungal circa-
dian clock.

The Neurospora circadian clock
The fungus Neurospora crassa has one of the most com-
prehensively studied and best understood circadian sys-
tems [12,13]. Neurospora exhibits a 22 hour rhythm
in asexual spore formation (conidiation) when grown in
constant darkness (DD) as well as circadian rhythms in
metabolism, stress response and other physiological pro-
cesses [14]. The conidiation rhythm can be entrained by
both light and temperature cycles, exhibiting either sys-
tematic or driven entrainment depending on the forcing
protocol used [15]. In 24 hr light-dark (LD) cycles, the
phase of entrainment (judged by the time of conidiation
onset) coincides with the middle of the night in both
long and short days [16]. The phase of the clock thus
varies systematically with photoperiod: both dusk and

dawn signals are integrated to set phase rather than
phase being determined solely by either signal alone
[15]. By contrast, the clock exhibits driven entrainment
in symmetric photic T-cycles (LD cycles of different
lengths T with 50% of the cycle in light and 50% in
dark). Under these conditions, conidiation onset occurs
a fixed time (≈ 7 hrs) after dusk irrespective of cycle
length [17].
The core multi-loop genetic oscillator believed to

underlie many of the observed circadian rhythms in
Neurospora - including the conidiation rhythm - is
formed by the rhythmic gene frequency (frq), and the
constitutively expressed genes white collar-1 (wc-1) and
white collar-2 (wc-2) [13]. The protein products of the
white collar genes, WC-1 and WC-2, comprise the posi-
tive elements of a central negative feedback loop. WC-1
and WC-2 form a heterodimeric WHITE COLLAR
complex (WCC) which binds to two light-response ele-
ments (LREs) in the frq promoter, activating transcrip-
tion of frq [18,19]. The protein product of the frq gene
is the negative element of the loop. Following transcrip-
tion of frq, two isoforms of FRQ protein are expressed
and form homodimeric complexes [20,21]. The relative
levels of these isoforms changes with temperature as a
result of thermosensitive splicing, yielding a bifurcated,
temperature-dependent protein pathway [22,23]. When
the expression of the FRQ isoforms reaches a certain
level, they interact with the WCC to inhibit its activa-
tion of frq transcription, closing the negative feedback
loop [18,24-28]. The inhibition of frq transcription
appears to be the consequence of FRQ binding to the
WCC and clearing it from the nucleus [28]. The FRQ-
WCC interaction is mediated by the protein product of
an RNA helicase (frh) [29].
As well as forming the negative element of the loop,

FRQ positively regulates expression of WC-1, giving a
positive feedback loop that interlocks with the primary
loop [18,30]. In addition to its essential role in the Neu-
rospora feedback loops, WC-1 is a blue-light photore-
ceptor necessary for photoentrainment. Blue light is
perceived by a flavin chromophore (FAD) that binds to
the LOV domain of WC-1. The corresponding WCC
bound to the LREs at the frq promoter is a slower
migrating complex than that present in the dark. Light
appears to reset the clock by causing an increase in the
relative concentration of the slower complex [19],
resulting in enhanced transcription of frq [31].
In constant darkness, frq mRNA is at a minimum level

early in the subjective night, peaking early in the subjec-
tive day. FRQ peaks 4-6 hrs after its transcript, reaching
minimum levels approximately 12 hrs later. wc-1 mRNA
is expressed constitutively, with its protein product
oscillating roughly in antiphase with FRQ [19,24-26,30].
In constant light, levels of both frq mRNA and FRQ are
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elevated and arrhythmic, indicating that the central FRE-
QUENCY-WHITE COLLAR (FRQ-WC) clock is not
functioning [31,32]. In 24 hr LD cycles, acute light
responses give rise to frq mRNA profiles that directly
reflect the light environment in different photoperiods;
by contrast, the FRQ protein profile appears to deter-
mine the onset of conidiation [16].

Modelling the clock
The discovery of the molecular machinery underlying
the Neurospora circadian network has led to the devel-
opment of a number of mathematical models of the
clock [8,33-39]. These have enabled a range of issues to
be addressed regarding the functional relationship
between the architecture of the clock and the mainte-
nance of circadian function, including the mechanisms
underlying the buffering of free-running period and
amplitude against seasonal temperature variations and
molecular noise. Thus far, the models developed have
primarily concentrated on the expression of the core
clock genes in free-running conditions (constant dark-
ness), with the effect of light modelled through direct
changes to transcription and degradation rates. Such
models therefore have limited use in analysing the
photoperiodic responses of the clock.
In this work, we present a model based on the core

FRQ-WC oscillator that incorporates both the negative
frq and positive wc-1 loops, as well as part of the light-
signalling pathway. In addition to simulating the beha-
viour of the clock in constant conditions (DD), we show
that this increased level of biological detail enables our
model to reproduce the experimentally observed disas-
sociation between light-driven frq mRNA and photoper-
iodic FRQ protein in 24 hr LD cycles, as well as the
driven behaviour seen in symmetric LD T-cycles. This
suggests that at least some of the entrainment properties
of the Neurospora clock can be accounted for by a
transcription-translation feedback model of the FRQ-
WC oscillator. By using our model to simulate the effect
of decoupling the positive wc-1 loop from the negative
frq loop, we predict that one of the possible benefits
conferred by the presence of the positive loop is robust-
ness of entrained phase against seasonal variations in
photoperiod. This yields the experimentally testable pre-
diction that decoupling the loops will result in a dusk-
driven clock in long days. The decoupling simulations
also provide an additional testable prediction regarding
the specific dynamical mechanism underlying the loss of
free-running rhythmicity observed in experimental Neu-
rospora strains lacking the wc-1 loop.
We also introduce a simple measure of the flexibility

of the network based on quantifying how outputs of the
entrained clock vary under parameter perturbations
achievable by evolutionary processes [3,40]. Using this

measure, we demonstrate that the positive loop yields a
more flexible clock. This increased flexibility is shown
to be primarily characterised by a greater flexibility in
entrained phase, leading to the enhanced robustness
against photoperiod fluctuations suggested by the phase
simulations. Our results thus provide an example of a
cellular circuit where improved robustness is linked
directly to increased flexibility.

Results
Description of the model
A network representation of our model of the Neurospora
clock is shown in Figure 1. The model comprises a set of
five coupled ordinary integrodifferential equations describ-
ing the dynamics of the two core circadian genes frq and
wc-1. It does not include the genes wc-2 and frh as their
protein products form complexes with WC-1 and FRQ
respectively and can therefore be combined with these
proteins without fundamentally modifying the resulting
model. For simplicity, the model in its current form also
does not include the light-responsive clock gene vivid
(vvd), a key repressor of light-induced expression con-
trolled by the WCC [41-43], which is believed to sustain a
clock that runs during the day [44]. Finally, since we do
not consider temperature responses here, we do not differ-
entiate between the two different FRQ isoforms.

Simulations of mRNA and protein profiles
Figures 2 and 3 show simulations of the model in DD
and LD conditions respectively. The parameter values
used to generate these solutions were obtained by

Figure 1 Network diagram for the mathematical model of the
Neurospora clock. The model incorporates the core genes
frequency (frq) and white collar-1 (wc-1 ). The protein product of the
wc-1 gene (WC-1) is the positive element of a central negative
feedback loop, while the frq protein product (FRQ) is the negative
element. FRQ also upregulates the level of WC-1 yielding a positive
feedback loop interlocked with the primary one. WC1* represents
light-activated WC-1. Thicker lines denote the delay between the
translation of a protein and conversion into its active form,
modelled using a distributed delay.
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minimising a cost function quantifying the goodness-of-
fit of the model to experimental time courses [45-48].
This measured how well simulated solutions matched
certain key features of the data, such as the free-running
period of the clock and the peak and trough phases of
the clock components in both free-running and

entrained conditions [46]. The DD simulation has a per-
iod close to the observed value of 22 hrs, with relative
phase relationships also consistent with experimental
data: the delay between the peaks of frq transcript and
FRQ protein is approximately 5 hrs, while FRQ and
WC-1 protein oscillate roughly in antiphase.
Furthermore, despite the fact the cost function only

assesses goodness-of-fit in simulated 12:12 LD cycles,
the optimal solution is a good match to data in long
and short days also. As reported experimentally, in all
photoperiods for which the clock is stably entrained, frq
and wc-1 transcripts exhibit rapid induction at dawn
while frq expression falls rapidly at dusk, with both tran-
scripts converging to an equilibrium level during the
light phase in long days [16]. By contrast, FRQ protein
displays markedly smoother changes in expression level,
increasing slowly from a minimum level around dawn to
a peak level around dusk before degrading back down to
its minimum at a roughly constant rate.

Simulations of conidiation onset
Experimental work has suggested a correlation between
the FRQ protein profile and the phase of the visible

Figure 2 Simulated mRNA and protein profiles in DD. The time
series qualitatively match experimental data, yielding: i) an
oscillation period close to 22 hrs; ii) constant wc-1 levels; and iii) a
FRQ profile which oscillates in antiphase with WC-1, reaching peak
levels shortly after its transcript [19,24-26,30].

Figure 3 Simulations of the model in different photoperiods. Both frq and wc-1 mRNA exhibit rapid increases in expression at lights-on,
while frq mRNA also exhibits a rapid decrease in expression at lights-off, consistent with experimental data [16]. The model also reproduces the
convergence of frq and wc-1 to equilibrium levels following dawn in longer photoperiods.
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rhythm of conidiation onset [15,16]. Specifically, it has
been proposed that conidiation phase coincides with a
fall in FRQ expression to a point roughly halfway
between its maximum and minimum values, possibly
as a result of the derepression of a clock output path-
way controlling conidia formation. This is based on
the observation that in 24 hr LD cycles the decrease in
FRQ to the peak-trough midpoint is attained approxi-
mately at midnight across photoperiods, coincident
with the time at which conidial spores begin to be
formed [16].
Figure 4A shows how the simulated phase !FRQ of this

molecular conidiation correlate varies with photoperiod.
It can be seen that the peak of frq mRNA expression is
locked to dawn, while the trough is locked to dawn in
short days and dusk in all other photoperiods. Conidia-
tion phase !FRQ, however, roughly tracks midnight in
agreement with experimental results, even though the
cost function used to fit our model to data had no
terms involving conidiation time. In our simulations the
FRQ-dependent phase of conidiation is thus dissociated
from the frq mRNA profile which instead directly
reflects the light environment, tracking dawn and dusk
through its peak and trough phases.
Interestingly, our model also reproduces the driven

entrainment observed experimentally in symmetric

T-cycles. Figure 5A shows that for T in the range 18 ≤
T ≤ 24, FRQ-dependent conidiation onset occurs
roughly the same number of hours following dusk irre-
spective of cycle length; that is, !FRQ tracks dusk. Again,
like the variation of !FRQ with photoperiod in 24 hr LD
cycles, this is a correctly simulated system-level property
that was not a direct target of the cost function. The
good fits to phase data can thus be viewed as a valida-
tion of our model. For both the T-cycle and photoper-
iod simulations, we numerically quantified these phase
variations by considering the sensitivities of frq mRNA
and conidiation onset with respect to dawn and dusk, as
described below.
Measuring dawn/dusk tracking using dusk sensitivity
The degree to which a circadian phase measure ! is
sensitive to variations in dawn and dusk is determined
by the rate of change ∂!/∂tDUSK of ! with respect to the
time tDUSK of dusk (here, ! can be conidiation onset
!FRQ or the times at which frq mRNA and FRQ protein
are expressed at their minimum and maximum levels).
As detailed in section 3 of Additional file 1, this sensi-
tivity measure is bounded between 0 and 1, with a value
of 1 indicating a phase that is perfectly locked to dusk
and a value of 0 indicating a phase that is perfectly
locked to dawn. In light-response plots such as those
shown in Figures 4A and 5A, these values correspond to

Figure 4 The model reproduces the systematic entrainment observed in LD cycles. A. Simulated variation of conidiation onset with
photoperiod length. As in [16], conidiation onset was identified with the time !FRQ at which FRQ has decreased to the approximate midpoint of
its peak and trough values. Peak and trough times of frq mRNA and FRQ protein are also shown. White and grey regions denote light and dark
respectively while the dotted line indicates the middle of the night. B. Dusk sensitivities ∂!/ ∂tDUSK of the phase measures plotted in A for short
and long days (see Additional file 1, Figure S2A for the sensitivities at intermediate photoperiods). The peak and trough times of frq mRNA are
locked to either dusk (∂!/ ∂tDUSK = 1) or dawn (∂!/ ∂tDUSK = 0). By contrast, conidiation onset !FRQ varies systematically with photoperiod (∂!FRQ /
∂tDUSK ≈ 0.5).
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! lying parallel to the lines indicating the times of dusk
and dawn respectively. Intermediate values of ∂!/∂tDUSK
correspond to a systematic change in ! with photoper-
iod (! non-parallel to both dusk and dawn). A sensitiv-
ity of 0.5 denotes exactly equal responses to dusk and
dawn, corresponding to a clock that tracks the middle
of the night.
Dusk sensitivities for the model
For 24 hr LD cycles, the disassociation of FRQ-depen-
dent conidiation phase !FRQ from frq mRNA expression
is shown in terms of the corresponding dusk sensitivity
measures in Figure 4B. In short and long days, the
phases of peak and trough frq expression have dusk sen-
sitivities close to either 0 or 1, indicating locking to
dawn and dusk respectively.
Conidiation phase !FRQ, however, has a sensitivity

close to 0.5 in both environments, reflecting a near-zero
phase change with varying photoperiod. By contrast to
the systematic entrainment seen in 24 hr LD cycles, the
driven behaviour of !FRQ in symmetric T-cycles is quan-
tified by a ∂!FRQ/∂tDUSK value close to 1 at the inter-
mediate value T = 21, indicating a dusk-driven system
(see Figure 5B).

Quantifying the effects of positive feedback
A recent computational study compared a model of the
Neurospora clock incorporating only the central negative
frq loop with models that also incorporated the positive

wc-1 loop [37]. Simulations of these models - which did
not explicitly consider light-signalling - suggested that
the wc-1 loop contributes to the robustness of the sys-
tem by reducing the sensitivity of the free-running per-
iod to parameter fluctuations, while allowing significant
variations in oscillation amplitude [37]. Experimental
work, however, suggests that decoupling the wc-1 loop
from the frq loop leads to the loss of the free-running
rhythm altogether [49]. Figure S1A of Additional file 1
shows that reducing positive feedback strength in our
model leads to the loss of self-sustained oscillations,
consistent with the experimental data.
The good fits of our model to entrainment data (Fig-

ures 4A and 5A) did, however, suggest investigating
how decoupling the wc-1 loop affects photoperiodicity.
Figure 6A shows the variation of !FRQ with photoperiod
when the level of positive feedback is reduced to 50%
and 1% of its wild-type value. It can be seen that
decreasing the coupling strength advances phase across
all photoperiods. However, the simulated decoupling
mutants show qualitatively different behaviour in short
days versus long days. In short days - despite a phase
advance - the mutants still exhibit systematic entrain-
ment with dusk sensitivities ∂!FRQ/∂tDUSK close to the
wild-type value of 0.5. In long days, by contrast, redu-
cing the feedback strength causes a transition from sys-
tematic to dusk-driven entrainment, quantified by an
increase in ∂!FRQ/∂tDUSK from 0.5 to 1.

Figure 5 The model reproduces the driven entrainment observed in photic T-cycles. A. Simulated variation of conidiation onset with
photic T-cycle length. As in Figure 4, conidiation onset was identified with the FRQ falling phase !FRQ. Also plotted are the peak and trough
times of frq mRNA and FRQ protein. White and grey regions denote light and dark respectively. The dotted line indicates a fixed period of time
following dusk. B. Dusk sensitivities ∂!/ ∂tDUSK of the phase measures shown in A for T = 21 (see Additional file 1, Figure S3 for the sensitivities
over the full range of T-cycle lengths). ∂!FRQ/ ∂tDUSK is close to 1: conidiation onset therefore tracks dusk.
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The wc-1 loop yields phase robustness
The phase and dusk sensitivity plots shown in Figure 6
indicate that the wc-1 loop may contribute to the
robustness of entrained phase against photoperiod varia-
tions by enabling systematic entrainment to persist as
photoperiod increases. Indeed, systematic entrainment
comprises an example of robustness where a property of
the whole system can be summarised using a single
measure, in line with the general scheme proposed by
Kitano [11]. For Neurospora, dawn- or dusk-locking
(dusk sensitivity equal to 0 or 1) represents the least
robust entrainment, which is directly driven by light,
while systematic entrainment with a dusk sensitivity of
0.5 is the most robust. Following [11], if we consider
variations in photoperiod P over a range P1 ≤ P ≤ P2,
then an appropriate quantitative measure of phase
robustness R

FRQ� is

R
P P

D P dP
FRQ FRQP

P

� �=
− ∫1

2 1 1

2

( ) (1)

where D
FRQ� (P) is an evaluation function bounded

between 0 and 1 measuring how the performance of the
system varies with P. We chose an evaluation function
for which D

FRQ� (P0) = 0 denotes a clock that is locally

driven (i.e. that remains dusk-or dawn-driven for small
variations of P around P0) and D

FRQ� (P0) = 1 denotes a
clock that is locally systematically entrained (i.e. that
continues to track the middle of the night under small
changes to P). This results in a minimum phase robust-
ness score R

FRQ� = 0 corresponding to a clock that
remains locked to either dawn or dusk as P varies over
the entire range P1 ≤ P ≤ P2 (global driven entrainment)
and a maximum robustness score R

FRQ� = 1 correspond-
ing to a clock that exhibits a systematic variation of
phase across the range (global systematic entrainment).
The definition of robustness used here is therefore in
the sense of maintaining circadian function as para-
meters are varied, rather than preserving the molecular
dynamics of the unperturbed system [11]. The form of
the evaluation function used is given in section 4 of
Additional file 1.
The robustness index defined in (1) can be used to

quantify the effect of decoupling the positive wc-1 loop
from the negative frq loop. The ratio of the R

FRQ� value
for a system with modified coupling to that of the WT
yields a measure of relative robustness: a score greater
than 1 implies a clock that is more robust than the WT;
a score less than 1 a less robust network (see Additional
file 1, section 4 for details). Figure 7A shows that

Figure 6 The model predicts that the positive loop promotes systematic entrainment in long days. A. The effect of varying the coupling
strength of the positive feedback loop on conidiation phase !FRQ. B. Conidiation phase dusk sensitivities ∂!FRQ/ ∂tDUSK computed for short and
long days (upper and lower plots respectively). In short days, ∂!FRQ/ ∂tDUSK remains close to 0.5 as coupling strength is decreased, indicating
systematic entrainment. In long days, however, ∂!FRQ/ ∂tDUSK increases from 0.5 to 1 as positive feedback is abolished, quantifying the transition
from an entrained to a (dusk-) driven rhythm that can be seen in A. This transition can be see in greater detail in Additional file 1, Figure S2B
which shows the dependence of the sensitivity-photoperiod profile on positive feedback strength.
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decoupling the wc-1 loop reduces the relative robustness
of the modified system, as quantified by a significant
decrease in the measure from 1. The corresponding
changes to the evaluation function are plotted in Figure
7C. It can be seen that while the function remains close
to 1 in short days, its value in long days decreases to 0
as positive feedback is removed, reflecting the transition
from systematic to dusk-driven entrainment plotted in
Figure 6. In this case, therefore, the overall reduction in
robustness is largely attributable to the small values of
the evaluation function observed for longer
photoperiods.
Clock flexibility is increased by the wc-1 loop
The analysis above suggests that the decrease in the
robustness of FRQ-dependent entrained phase !FRQ
observed on decoupling the wc-1 loop is related to a

loss of flexibility, since for the decoupled system, !FRQ

no longer responds to dawn changes in long days. Here
we confirm this hypothesis. We demonstrate that redu-
cing the coupling strength causes a reduction in the
flexibility of the outputs of the clock, where by output is
taken to mean any measure of circadian behaviour that
can be computed from the limit cycle attractor of the
entrained system (i.e. from the periodic mRNA and pro-
tein time series).
In the following, clock flexibility is quantified using a

measure based on the formalism established by Rand et
al [3,40]. This considers the linearisation of the map
between variations in the parameters k of the model and
the resulting changes to the entrained limit cycle g.
Parameter variations δk in this scheme are vector
changes, in which several parameters can be varied

Figure 7 Robustness from flexibility in the Neurospora clock. A. Variations in the relative flexibility and robustness of FRQ-dependent
conidiation phase with wc-1 loop coupling strength a7. Both measures decreases monotonically as the wc-1 loop is progressively decoupled
from the negative frq loop. B. Relative flexibility and phase robustness are positively correlated, suggesting that one of the benefits of the
increased flexibility conferred by the wc-1 loop is greater phase robustness against photoperiod changes. C. Dependence on a7 of the evaluation
function D a P

FRQ� ( , )7 used to compute the relative robustness measure R a a
FRQ

WT
� ( | )7 7 plotted in A. D

FRQ� measures the extent to which
entrained phase varies locally with photoperiod P : driven and systematic entrainment are quantified by D

FRQ� values of 0 and 1 respectively. In
long days, D

FRQ� decreases to 0 as a7 is reduced, causing the observed decrease in R
FRQ� .
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simultaneously, not just one-at-a time. The correspond-
ing limit cycle changes δg are variations in the infinite-
dimensional vector obtained by concatenating the
periodic time series of each clock component. δg thus
represents changes to the full state-space representation
of the limit cycle [3,40]. As described further in section
5 of Additional file 1, it follows that the singular values
of the linearised map between δk and δg yield a quanti-
tative measure of the extent to which combinations of
random parameter perturbations - which can be consid-
ered as representing evolutionary processes - are capable
of tuning the outputs of the clock. Geometrically, this
map transforms the ball of all possible bounded para-
meter perturbations into an ellipsoid of output varia-
tions. The left singular vectors of the map are the
principal axes ui of this ellipse while the corresponding
singular values si (ordered so that si ≥ si+1) determine
the extent of the ellipse along these axes. The right sin-
gular vectors vi are the directions in parameter space
that map directly onto these axes.
Within this framework, the clock is flexible if signifi-

cant changes to its outputs can be obtained with rela-
tively modest parameter changes, as measured by the
singular values si. In particular, the sum of the singular
values provides a simple flexibility measure, with large
values indicating a greater relative change in the outputs
for parameter perturbations of a fixed size. It should be
noted that this sum is in effect a measure of global sen-
sitivity, in the sense that it considers combined para-
meter changes, rather than changes to single parameters
alone, and the effect of these on the whole periodic
solution, not just a single output variable [50]. It follows
that the change in flexibility resulting from a change in
wc-1 loop coupling strength can be measured using the
ratio of this sum in the modified network to that in the
WT (see section 5 of Additional file 1 for details).
Values of this relative flexibility index greater than 1
indicate a system that is more flexible than the WT;
values less than 1 a less flexible clock. The variation of
relative flexibility with coupling strength is plotted in
Figure 7A. The corresponding normalised singular value
spectra are plotted in Additional file 1, Figure S4.
Clearly, flexibility decreases significantly as positive feed-
back strength is reduced, suggesting that the wc-1 loop
does indeed confer greater flexibility on the network.
It can also be seen in Additional file 1, Figure S4 that

for each coupling strength simulated, the dominant sin-
gular value s1 is larger than the remaining singular
values by at least an order of magnitude. This implies
that the flexibility of the limit cycle is mainly in the
direction of the first principal component vector u1; that
is, the width of the ellipsoid of output perturbations in
the direction of the longest principal axis is significantly
greater than its width along the remaining axes. The

loss of flexibility observed on reducing positive feedback
is therefore mainly a consequence of the output ellipsoid
contracting along this axis (accompanied by a roughly
proportional contraction along the others). We next
determined what particular dynamical behaviour this
overall lower flexibility reflected, in order to test
whether the observed inflexibility of !FRQ was the major
change, or one of many effects.
The wc-1 loop primarily affects the flexibility of
FRQ protein phase
For a number of weakly forced circadian models, the
first principal component has been found to be approxi-
mately proportional to the time derivative of the limit
cycle [3,40]. This finding implies that perturbations in
the direction of the first principal component result in a
uniform phase change: that is, all components of the
limit cycle are shifted along the time axis by the same
amount with no change in amplitude. As described in
section 6 of Additional file 1, this can be seen by
approximating the perturbed limit cycle as a combina-
tion of phase and relative amplitude changes. In the
case where the first principal component is approxi-
mately proportional to the derivative of the cycle, this
yields a zero change in relative amplitude together with
a uniform change in phase.
Figure 8A plots the changes in phase and relative

amplitude resulting from a perturbation of the WT solu-
tion along its first principal component u1, obtained
through a parameter variation in the direction of the
corresponding right singular vector v1. Clearly, FRQ
protein undergoes a significantly greater change in
phase than frq and wc-1 mRNA. Also, as can be seen in
Figure 8B, the large variation in FRQ phase results in a
correspondingly large shift of conidiation phase !FRQ.
The analysis also implies a non-uniform shift in ampli-
tude, with wc-1 mRNA exhibiting a greater change com-
pared to frq mRNA and FRQ protein (see Figure 8A).
These phase/amplitude sensitivity calculations are con-
firmed by Additional file 1, Figure S5 which plots the
corresponding changes to the mRNA and protein time
series.
In summary, the results presented here suggest that

the increased global flexibility conferred by the wc-1
loop is primarily an increased flexibility in conidiation
phase !FRQ, a particular circadian output which is a
direct function of the FRQ protein dynamics. Decou-
pling the positive wc-1 loop from the central negative
frq loop hence yields a circuit for which shifts in coni-
diation phase of a given size will require relatively larger
perturbations to the model parameters. This implication
is supported by the significant decrease in phase sensi-
tivity observed on reducing the coupling strength
plotted in Figure 8B. The phase-amplitude analysis
quantifies the reduction in phase flexibility with positive
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feedback strength that was suggested initially by the
simulations of Figure 6. Our simulations and analysis
thus predict that one possible phenotypic advantage of
the increased global flexibility provided by the wc-1 loop
could be greater robustness of conidiation phase against
fluctuations in photoperiod, as summarised in Figure 7B.
Probing the molecular mechanisms underlying
phase robustness
The greater robustness conferred by the wc-1 loop can
be understood at the level of molecular dynamics by
considering the differential equation describing the
dynamics of net FRQ protein, FT . As demonstrated in
section 1 of Additional file 1, the rate of FRQ synthesis
is given to a good approximation by the expression
below:

�F a d
PF

PF b
MT F= −

+3 2
6

(2)

Here, MF (t) and PF(t) are the concentrations of frq
mRNA and active FRQ, a3 is FRQ translation rate, d2 is
the maximum rate of FRQ degradation and b6 is the PF
concentration for which degradation occurs at 50% of
its maximum rate. Under LD cycles, frq mRNA MF (t) is
maintained at low levels during the night, with the
exception of the rapid variations that occur around dusk
and dawn (see Figure 3). It follows from the form of (2)
that if the FRQ degradation rate is strongly saturated
(PF is large compared to b6), the overall rate of loss of

FRQ will be roughly constant during the night. FRQ
protein level will hence decrease linearly with time over
this period. Furthermore, a constant rate of FRQ loss
means that the LD cycle can only affect FRQ levels
through the acute light responses of MF (t). Conse-
quently, the rapid induction of frq transcription just
after dawn will cause the FRQ synthesis rate ḞT to
increase through 0, resulting in a FT minimum near
dawn. Conversely, the rapid decrease in MF (t) just after
dusk will cause ḞT to decrease through 0, producing
a FT maximum near dusk. The combined effects yield a
FRQ profile that decays approximately linearly from a
peak near dusk to a trough near dawn.
A simple measure of the extent to which FRQ degra-

dation is saturated is provided by the corresponding
saturation index

PF
PF b+ 6

, with values close to 1 indicat-
ing strong saturation [51]. The average value DSI of this
index during the night then provides a measure of how
close the FRQ loss rate is to a constant, with the maxi-
mum value of 1 denoting complete saturation between
dusk and dawn. It can be seen in Additional file 1, Fig-
ure S6 that for all photoperiods, the WT has relatively
high DSI values indicating strong saturation of FRQ
degradation in the dark. This result is consistent with
the FRQ profiles plotted previously in Figure 3 for
which FRQ decreases roughly linearly from a dusk-
tracking peak to a dawn-tracking trough, resulting in
FRQ-dependent conidiation phase !FRQ coinciding with
the middle of the night (cf. Figure 4). Figure S6 also

Figure 8 Phase and amplitude sensitivities of the entrained system. A. Phase and relative amplitude changes resulting from perturbations
of the entrained clock in its maximally flexible direction. Solid and open symbols denote WT and 1% wc-1 loop coupling respectively. Perturbed
solutions were computed for proportional parameter increases of 2%. Note that the reduction in wc-1 loop coupling strength causes the
variation in FRQ protein phase to decrease significantly. B. Comparisons of the FRQ phase changes sFRQ for WT and 1% loop coupling with the
corresponding changes ∆!FRQ in FRQ-dependent conidiation phase. sFRQ and ∆!FRQ are similar, indicating that the reduced FRQ phase sensitivity
also results in reduced conidiation phase sensitivity.
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shows that reducing the coupling of FRQ to the wc-1
loop causes significant decreases in DSI across all photo-
periods. The resulting nonlinear dark FRQ profiles
move the position of conidiation phase nonuniformly
across photoperiods in comparison to the WT, with an
enhanced sensitivity to dusk as photoperiod is increased
resulting in the lower phase robustness of the decou-
pling mutants.
The wc-1 loop thus provides a mechanism for tuning

the saturation level of FRQ degradation so as to obtain
near-linear dark FRQ profiles for which the peaks and
troughs move together with dusk and dawn. This in
turn yields a flexible FRQ-dependent conidiation phase
!FRQ that responds to both dusk and dawn signals and
can therefore track the middle of the night across
photoperiods.

Discussion
A model of the Neurospora clock simulating
photoentrainment of the FRQ-WC oscillator
Together with Drosophila melanogaster and Arabidopsis
thaliana, Neurospora crassa has become a key organism
in the computational modelling and analysis of circadian
networks. For example, models based on the central
negative frq loop have been used to investigate the bio-
chemical mechanisms underlying the temperature com-
pensation of the clock [38], together with the effects of
molecular noise on the robustness of free-running and
entrained rhythms [35]. More complex models incorpor-
ating the positive wc-1 loop have enabled hypotheses to
be made regarding the means by which FRQ upregulates
WC-1 [37] and inhibits frq transcription [39], as well as
the possible functional advantages conferred by the posi-
tive loop [37] and the parallel pathways comprising the
negative loop [8]. These models have proved useful
tools in uncovering the design principles of the clock,
while also generating a number of important experimen-
tal predictions.
Within this framework, we have presented here a

mathematical model for the circadian clock of Neuro-
spora crassa based on the central FRQ-WC oscillator,
incorporating both the frq and wc-1 loops. While pre-
vious models of the Neurospora clock have modelled the
effect of light through direct changes to transcription or
degradation rates, we incorporated elements of the
light-signalling pathway explicitly in order to be able to
quantitatively examine the relationship between network
structure and entrained phase. This greater level of bio-
chemical detail enabled us to obtain good fits to experi-
mental data in both free-running and entrained
conditions. In particular, we were able to simulate the
disassociation between light-driven frq mRNA and
photoperiodic FRQ protein reported experimentally [16].
While frq trough and peak phases are both light-driven

in our simulations, FRQ-dependent conidiation phase
tracks the middle of the night. The model also repro-
duces the dusk-driven behaviour observed in symmetric
photic T-cycles [15]. In addition, we introduced a novel
measure assessing the relative sensitivity of phase to
changes in the times of dawn and dusk which provided
a quantitative means for distinguishing between the sys-
tematic and driven conidiation observed in the photo-
period and T-cycle simulations respectively.

An example of robustness from flexibility
Theoretical and experimental studies have suggested
that one of the benefits conferred by multiple feedback
loops is increased evolutionary flexibility, with the num-
ber of key functionalities of the system that can be
tuned independently of one another increasing with the
number of loops [3,7,8,40,52]. This greater flexibility can
in turn lead to greater robustness of the system against
environmental and genetic perturbations [4,6,8,10]. In a
previous paper, we gave an example of robustness fol-
lowing from flexibility for the Neurospora system using
a temperature-dependent variant of the model presented
here. In that study, we proposed that the presence of
two parallel negative feedback loops with opposing tem-
perature dependence controlling the production of the
FRQ isoforms enables low dimensional tuning of the
entrainment phase-temperature relationship, facilitating
buffering of the clock against seasonal temperature fluc-
tuations [8].
Here, we were interested in investigating how the

positive wc-1 loop affects the clock. Previous computa-
tional studies have examined the role of positive feed-
back on the control of free-running period and
amplitude [36,37]. In our model, however, decoupling
the wc-1 loop results in arrhythmicity, in line with
experimental observations [49]. More generally,
entrained phase rather than free-running period per se
is expected to have selective value in the natural envir-
onment [53,54], thereby identifying phase as a key
systems-level output for computational studies [8,55,56].
This led us to examine the effect of decoupling the loop
on the robustness of conidiation phase to photoperiod
variations. We introduced a robustness index based on
the framework proposed by Kitano [11], with maximum
robustness being attributed to a system that exhibits sys-
tematic entrainment over the full range of photoperiods
considered, and minimum robustness to a system that is
dusk- or dawn-driven over the same range. Using this
measure, we found that removing positive feedback
leads to a decrease in phase robustness and that this is a
consequence of a transition from systematic to dusk-
driven entrainment in long days.
For the next part of the analysis, we introduced a sim-

ple scalar measure quantifying the variations in the

Akman et al. BMC Systems Biology 2010, 4:88
http://www.biomedcentral.com/1752-0509/4/88

Page 11 of 16



outputs of the clock resulting from parameter perturba-
tions mimicking evolutionary processes. This enabled us
to demonstrate that the wc-1 loop enhances the evolu-
tionary flexibility of the clock, consistent with the pre-
dictions of previous theoretical studies [3,40]. Using a
novel method that is applicable to any entrained biologi-
cal oscillator, we then computed phase and amplitude
sensitivities for perturbations of the clock in its most
flexible direction. These sensitivities can be viewed as
entrained versions of the period-amplitude sensitivities
commonly used to assess the robustness of free-running
clocks [36,37,46]. However while the latter are usually
computed from scalar perturbations (variations of indi-
vidual parameters) simulating single mutations, the
phase-amplitude sensitivities were obtained by consider-
ing vector perturbations that simulate the parameter
changes most likely to affect system behaviour under
evolutionary changes [3,4,40]. The calculated sensitivities
showed that the greater flexibility provided by the wc-1
loop is predominately manifested as greater flexibility of
conidiation phase, a key FRQ-dependent circadian out-
put. Finally, we quantified the molecular basis of the
enhanced flexibility - and the resulting robustness of the
clock’s photoentrainment - demonstrating that the wc-1
loop provides a low-dimensional mechanism for opti-
mally tuning the extent to which FRQ protein degrada-
tion is saturated.
To summarise, our results imply that one of the possi-

ble benefits of the increased flexibility conferred by the
wc-1 loop is the persistence of systematic entrainment
in long days, contributing to the robustness of the clock
with respect to long-term changes in photoperiod.
Taken together with previous work, this result could be
interpreted as an additional specific example of how
increased loop complexity can confer greater flexibility
on a cellular circuit, in turn promoting robustness
against environmental fluctuations [10].

Predictions and further model development
The work presented here, and previously in [8], predict
important roles for the wc-1 and parallel frq loops in
maintaining circadian function. This does not necessa-
rily imply that all observed feedback loops in the Neuro-
spora circuit need be critical for adaptive clock
behaviour. It does, however, demonstrate that detailed
models can provide testable predictions regarding the
relationship between the constituent loops of the clock
and core circadian outputs. The suggestion that decou-
pling the positive wc-1 loop from the central feedback
loop will abolish systematic entrainment in long days
comprises such a prediction and would provide a good
test of our model. This prediction could be tested
directly by assessing conidiation rhythms in the mutant
frq strain frq-S885/7N, for which WC-1 expression is

significantly reduced as a consequence of reduced FRQ
phosphorylation [49].
In addition, our model also predicts that the loss of

free-running rhythmicity observed in the frq-S885/7N
strain arises as a consequence of a supercritical Hopf
bifurcation (Additional file 1, Figure S1A). The supercri-
tical Hopf bifurcation is one of three typical mechanisms
by which periodic oscillations can be destroyed as a sys-
tem parameter - in this case coupling strength - is
altered. For the supercritical Hopf bifurcation of Figure
S1A, decreasing the parameter past a certain critical
value collapses the DD limit cycle onto an equilibrium
point, with the amplitude of oscillations decreasing con-
tinuously to zero as this happens. The alternative
mechanisms are: i) the destruction of the limit cycle
through its collision with an unstable limit cycle gener-
ated by a subcritical Hopf bifurcation; and ii) the SNIC
(saddle node on invariant circle) bifurcation in which
stable and unstable equilibrium points are created
simultaneously on the limit cycle [57]. In contrast to the
supercritical Hopf, both the subcritical Hopf and SNIC
are characterised by a sudden loss of rhythmicity with-
out significant amplitude changes at the bifurcation
point [57]. In addition, the SNIC has a distinct experi-
mental signature in which the rhythm freezes at a well-
defined phase as the bifurcation is approached.
The particular mechanism that causes arrhythmicity in

frq-S885/7N could therefore - in principle be ascertained
using the strain frq-S885/7N;qa-wc-1 which exhibits
QA-induced rhythmic oscillations as a consequence of
increased WC-1 expression [49]. Such an experiment
would involve observing how the oscillation varied over
a range of lower QA concentrations. A progressive fall
in rhythmic amplitude as QA concentration is reduced -
accompanied by modest changes to both period and
phase (cf. Additional file 1, Figure S1B) - would suggest
the supercritical Hopf bifurcation predicted by our
model. By contrast, a sudden loss of rhythmicity over a
narrow range of QA concentrations without a significant
amplitude change would be incompatible with our
model in its current form. This would instead indicate
that either the subcritical Hopf or SNIC bifurcation was
responsible for the destruction of the DD limit cycle,
with a freezing of phase near the bifurcation point dis-
tinguishing the SNIC. In this case, the particular
mechanism identified could be used as a target for
further model development.
Finally, although our results show that much of the

behaviour of the clock in periodic photic cycles can be
accurately modelled with the core FRQ-WC oscillator,
we note that our model is unable to reproduce some of
the responses to shorter light intervals. Specifically, it
cannot stably entrain to LD cycles with photoperiods
less than 6 hrs, and is also unable to reproduce the
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particular form of the type 0 phase response curve
(PRC) that has been observed for strong resetting cues
in some experiments [41,58]. The expected effect of the
VVD protein in modulating the circadian gating of light
responses may in part account for these discrepancies.
This suggests the inclusion of vvd as a suitable next
iteration of the model, with PRCs and entrainment to
very short days corresponding targets for model
validation.

Conclusions
The multi-loop structure of the Neurospora clock pro-
vides a paradigm example of the extent to which circa-
dian clocks can diverge from the simple delayed negative
feedback loop that will reliably oscillate. As experiments
lead to the discovery of further clock components and
the connections between them in Neurospora and other
key organisms, mathematical modelling and analysis
techniques will become increasingly useful tools in the
quantitative analysis of circadian networks. Part of this
program will involve the development of ever more
detailed models of the complex topologies characteristic
of these systems, together with the development of
robust algorithms to fit the models to experimental data.
Furthermore, the continuing use of clocks to elucidate

the design principles of cellular circuits will require the
development of biologically realistic indices of core sys-
tem-level properties - such as the flexibility and robustness
measures presented here -together with analytical tools for
their implementation. As an example of this, we anticipate
that the global phase-amplitude sensitivity analysis method
introduced in this work could prove a useful tool for iden-
tifying the particular components of a complex clock net-
work most likely to exhibit functional changes.

Methods
Modelling and parameter fitting
The model equations are given in section 1 of Addi-
tional file 1 together with descriptions of their deriva-
tion. As in previous clock models, Michaelis-Menten
kinetics were used to describe enzyme-mediated degra-
dation of mRNA and active protein while Hill functions
were used to model transcriptional activation and inhi-
bition. These equations are taken to abstract sets of
more elementary reactions whose biochemical details
are unknown [5,7,28,33-36,38,39,46,59-62].
A relative novelty of the model is the way in which

the protein pathways have been represented. Many com-
putational models of circadian networks employ
sequences of protein modifications (e.g. phosphorylation
or nuclear transport) to generate the delays necessary
for autonomous oscillations to be produced [61]. We
used an alternative, generalised method of representing
these delays. This considers the rate at which a protein

is converted into its active form to be a weighted sum
of the corresponding mRNA levels over the preceding
time interval [34,63]. The weights in this sum are the
distribution of times for the protein to be modified into
its active form; a discrete distribution - concentrated at
just one value - corresponds to a single, fixed delay
between the translation of a protein and its effect on a
downstream gene [64]. Here, we used a continuous dis-
tribution (the gamma function) capable of mimicking a
variety of biologically plausible delays [65]. A significant
advantage of this approach is a marked reduction in
complexity as each of the individual parameters repre-
senting conversion and degradation of intermediate pro-
tein species are replaced by two global parameters
governing the form of the gamma function [8,63,65].
For the model considered here, the total number of
kinetic parameters was reduced to 33 from a potential
maximum value of 45. In addition, the use of a gamma-
distributed delay has the advantage of greatly simplifying
the analysis of the corresponding set of equations com-
pared to a discrete delay [63,65].
In all, the model comprises five coupled deterministic

integrodifferential equations with a total of 36 para-
meters (the 33 unknown kinetic parameters together
with 3 fixed parameters specifying the light input). The
large number of unknown model parameters repre-
sented a significant challenge in terms of data-fitting,
particularly as the free-running and entrained clock
have qualitatively different dynamics (while quasi-sinu-
soidal oscillations are observed in DD, frq and wc-1
mRNA exhibit slow-fast dynamics closer to that of a
relaxation oscillator in LD due to acute light responses
in these genes). As a consequence of this dual dynamic
behaviour - coupled with the significant variability of
experimental time courses - we employed a bipartite
optimisation method based on minimising a qualitative
cost function, rather than attempting to fit directly to
data [46].
The cost function we used assessed the goodness-of-fit

of the model to both DD and LD experimental time ser-
ies, based on reproducible circadian measures such as
free-running period and the times at which mRNA and
protein levels reach their minimum and maximum
values [7,8,46,47]. Low cost scores correspond to para-
meter sets that give a good qualitative match to these
target features. The parameter set yielding the smallest
cost score was used to generate the simulations of the
wild-type clock used in this study. A detailed account of
the optimisation technique employed - including a full
description of the cost function - is given in section 2 of
Additional file 1. The values of the optimal parameter
set are listed in Table 1. Simulations of wc-1 loop
uncoupling were obtained by reducing the parameter a7
controlling the upregulation of WC-1 production by
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FRQ from its wild-type value a7
WT (see Additional file 1,

equation (S.4)).

Simulations and software
Solutions of the model were obtained by converting
integrodifferential equations into equivalent sets of
ordinary differential equations, allowing them to be inte-
grated using standard solvers (see Additional file 1, sec-
tion 1 for details). Conidiation phase !FRQ was
computed as the unique solution of:
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Here, FT (t) is the FRQ protein profile, FT
PV and FT

TV

represent the peak and trough values of FRQ protein

and a is a tuning parameter such that !FRQ coincides
with midnight in 12:12 LD cycles. For all simulations
presented in this work, a was fixed at the value 0.15.
Model simulations and sensitivity analyses were car-

ried out with custom software developed in MATLAB
(Mathworks, Cambridge, UK). Parameter optimisation
was implemented by converting numerical routines initi-
ally written in MATLAB into C++ and running the code
on a task farm computer consisting of 17 × 2.0 GHz
2-way IBM Opteron nodes. All routines used are avail-
able by request.
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-1) Max. rate: WC-1* upregulated frq transcription 8.3450

a2 (h
-1) Max. rate: WC-1 upregulated frq transcription 3.7925

a3 (h
-1) FRQ translation rate 0.3154

a4 (h
-1) Basal wc-1 transcription rate 0.6787

a5 (h
-1) Max. rate: WC-1* upregulated wc-1 transcription 10.0718

a6 (h
-1) Basal WC-1 translation rate 6.6644

a7 (nM
-1h-1) FRQ upregulated WC-1 translation rate 2.4695

b1 (nM
-1) Michaelis constant: repression of WC-1* upregulated frq transcription 4.1472

b2 (nM) Michaelis constant: WC-1* upregulated frq transcription 0.1560

b3 (nM
-1) Michaelis constant: repression of WC-1 upregulated frq transcription 0.7149

b4 (nM
) Michaelis constant: WC-1 upregulated frq transcription 2.9415

b5 (nM) Michaelis constant: frq mRNA degradation 4.1075

b6 (nM) Michaelis constant: degradation of active FRQ 0.4715

b7 (nM) Michaelis constant: WC-1* upregulated wc-1 transcription 3.5676

b8 (nM) Michaelis constant: wc-1 mRNA degradation 0.5805

b9 (nM) Michaelis constant: degradation of active WC-1 7.0233

b10 (nM) Michaelis constant: degradation of WC-1* 0.8218

d1 (h
-1) Max. rate: frq mRNA degradation 7.4608

d2 (h
-1) Max. rate: degradation of active FRQ 0.4405

d3 (h
-1) Max. rate: wc-1 mRNA degradation 2.1710

d4 (h
-1) Max. rate: degradation of active WC-1 3.0883

d5 (h
-1) Max. rate: degradation of WC-1* 23.3120

f1 (h
-1) Delay parameter: FRQ ® active FRQ conversion 0.1962

f2 (h
-1) Delay parameter: WC-1 ® active WC-1 conversion 0.1317

g1 (h-1) Loss rate: FRQ ® active FRQ conversion (deg. rate of intermediates) 0.0422

g2 (h-1) Loss rate: WC-1 ® active WC-1 conversion (deg. rate of intermediates) 0.0244

r1 (h
-1) Rate of active WC-1 ® WC-1* conversion 5.1759

r2 (h
-1) Rate of WC-1* ® active WC-1 conversion 5.0326

n Hill coefficient: WC-1* upregulated frq transcription 1.0168

m Hill coefficient: WC-1 upregulated frq transcription 2.8134

k Hill coefficient: WC-1* upregulated wc-1 mRNA transcription 1.4135

g Hill coefficient: repression of WC-1* upregulated frq transcription 1.2730

h Hill coefficient: repression of WC-1 upregulated frq transcription 3.6978

Parameter values yielding the optimal value of the cost function used to fit the model to experimental data. WC-1* denotes light-induced active WC-1.
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1 Mathematical modelling

1.1 Model equations

The differential equations used to generate the simulations presented in this study are the following:

ṀF = a1

(
PL
W

)n
(
1 +

(
PF
b1

)g) ((
PL
W

)n
+ bn2

) + a2
(PW )m(

1 +
(

PF
b3

)h)
((PW )m + bm4 )

− d1
MF

MF + b5
(S.1)

ṖF = a3

∫ t
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MF (s) gf1 (t− s) e−γ1(t−s)ds− d2

PF

PF + b6
(S.2)

ṀW = a4 + a5

(
PL
W

)k
(
PL
W

)k
+ bk7

− d3
MW

MW + b8
(S.3)

ṖW =

∫ t

−∞
MW (s) (a6 + a7PF (s)) gf2 (t− s) e−γ2(t−s)ds− d4

PW

PW + b9

− r1θ (t)PW + r2P
L
W (S.4)

ṖL
W = r1θ (t)PW − r2P

L
W − d5

PL
W

PL
W + b10

. (S.5)

Here, the variables MF and MW denote the concentrations of frq and wc-1 mRNA respectively.

PW is the concentration of active WC-1 and PL
W represents the concentration of light-induced active

WC-1, termed WC-1∗. The variable PF denotes the level of active FRQ. These concentrations are

taken to reflect the number of moles per cell and are reported in arbitrary units (a.u.), due to the

fact they are not fitted directly to experimental expression levels [1–4].

The repressive action of FRQ on frq transcription occurs through the formation of FRQ:WCC

complexes followed by FRQ-mediated clearance of the WCC from the nucleus [4]. This process

is therefore modelled using terms based on noncompetitive inhibition (equation (S.1)) [2]. The

model also includes the positive feedback loop in which FRQ enhances the accumulation of WC-1

(equation (S.4)). Light acts on the system through a smooth function θ(t) modelling a T -periodic

light-dark cycle which switches rapidly between 0 and a maximum value θamp equal to 1 at dawn

(t = tDAWN ), and from θamp back to 0 at dusk (t = tDUSK):

θ (t) =
θamp

4
(1 + tanh (T (mod (t, T )− tDAWN ))) (1− tanh (T (mod (t, T )− tDUSK))) .

This term acts in two ways. Firstly, it raises the forward rate of the reaction PW !PL
W in equations

(S.4) and (S.5): this models the rise in the relative concentration of FAD-bound WC-1 in complex

with the LREs at the frq promoter observed with increasing light levels [5], and the resulting

enhanced transcription of frq [6, 7]. Through this mechanism, it also increases the transcription

rate of wc-1 through the second term of (S.3), reflecting the loss of wc-1 light-responses in wc-1

mutant backgrounds [8].

In equations (S.2) and (S.4), the distribution of times required for FRQ and WC-1 protein to be

translated and converted into their active forms (through, for example, phosphorylation or nuclear

transport) is assumed to be a gamma function with integer scale parameter fi:

gfi (t) = f2
i te

−fit.

2



This distribution, commonly referred to as the Erlang distribution, has mean delay 2/fi - repre-

senting the average conversion time - and variance 2/f2
i - representing the mean deviation from the

average. The term e−γit that post-multiplies the Erlang term in (S.2) and (S.4) corresponds to the

loss of protein during this process, with γi quantifying the rate of loss [9].

1.2 Model simulations

The integrodifferential equations (S.1)-(S.5) can be converted into a set of ordinary differential

equations (ODEs) using the linear chain trick [9]. Introducing the auxiliary variables
{
EF

1 , EF
2

}

and
{
EW

1 , EW
2

}
defined by

EF
j (t) =

a3
f1

∫ t

−∞
Gj−1

f1
(t− s) e−γ1(t−s)MF (s) ds

EW
j (t) =

1

f2

∫ t

−∞
Gj−1

f2
(t− s) e−γ2(t−s) (a6 + a7PF (s))MW (s) ds

where

Gm
fi (t) =

tm

m!
fm+1
i e−fit

enables the equations to be expressed in the form below:
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ĖW
1 = (a6 + a7PF )MW − (f2 + γ2)E

W
1 (S.11)

ĖW
2 = f2E

W
1 − (f2 + γ2)E

W
2 (S.12)

ṖW = f2E
W
2 − d4

PW

PW + b9
− r1θ (t)PW + r2P

L
W (S.13)

ṖL
W = r1θ (t)PW − r2P

L
W − d5

PL
W

PL
W + b10

. (S.14)

In this formulation, the delays between the translation of FRQ and WC-1 protein and their conver-

sion into active forms - as described by the integrodifferential equations (S.2) and (S.4) - are gener-

ated by chains of linear ODEs involving the auxiliary variables. The latter can therefore be thought

of as intermediate protein species (e.g. phosphorylated or nuclear/cytoplasmic forms), with the total

amounts of FRQ and WC-1 protein given by FT =
∑2

i=1 E
F
i +PF and WT =

∑2
i=1 E

W
i +PW +PL

W

respectively [2]. In particular, summing equations (S.7)-(S.9) yields the following equation for total

FRQ synthesis:

ḞT = a3M
F − γ1

(
EF

1 + EF
2

)
− d2

PF

PF + b6
. (S.15)
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Table 1 of the main paper shows that γ1 ! 1 . Consequently, (S.15) is well approximated by

equation (2) of the main paper.

2 Parameter optimisation

Parameter values k = (k1, . . . , ks) of the model giving a qualitative match to experimental data were

obtained by minimising a cost function C (k) comprising a sum of terms measuring the agreement

between the model and certain key reproducible features of the data. Following [10], the weighting

of each term in the cost function was chosen to yield an O(1) contribution for an experimentally

acceptable error. The terms in the cost function were evaluated by numerically solving equations

(S.6)-(S.14) over 300 hrs in a simulated 12:12 light dark (LD) cycle, followed by 300 hrs in simulated

constant darkness (DD). In each 300 hr interval, the first 204 hrs were discarded as transients.

2.1 Specification of the cost function

The cost function comprises a sum of nine individual terms, each of which corresponds to a set of

target qualitative features:

C = CτLD + COSCLD + CφLD + CALRLD + CPFLD + CτDD

+ COSCDD + CφDD + CPFDD . (S.16)

Here, we provide a description of each of these terms. Throughout this section, simulated time

series of frq mRNA, wc-1 mRNA, FRQ protein and WC-1 protein will be denoted by the variables

yf (t), yw (t), yF (t) and yW (t) respectively. The phases at which these variables reach their peak

and trough values will be written as θPi and θTi , with Ai = yi
(
θPi
)
− yi

(
θTi
)
the corresponding

oscillation amplitudes and ∆P
i the times between successive peaks. The operators 〈.〉LD and 〈.〉DD

calculate the average of their arguments over the last 96 hrs of simulation in LD and DD, while

σ (.)LD and σ (.)DD compute the corresponding standard deviations. [.]BDD and [.]EDD return the

first and last instances of their arguments over the last 96 hours of simulated DD (so, for example,
[
θTF
]B
DD

calculates the phase of the first FRQ trough encountered over this interval). Finally, L0

and L1 denote the times of dusk and dawn.

The first term CτLD in (S.16) measures the difference between the period of the solution gener-

ated in LD and the target entrained period of 24 hrs:

CτLD =
∑

i=f,w,F

〈((
24−∆P

i

)
/0.25

)2〉

LD
.

The second term COSCLD penalises large variations in successive peaks, corresponding to solu-

tions that are not properly entrained. It also penalises solutions with very small (O(10−1)) oscil-

lation magnitudes, as these are unable to generate the large changes in expression level resulting

from the system’s acute light-responses:

COSCLD =
∑

i=f,w,F

[(
σ
(
yi
(
θPi
))

LD
/0.025〈yi

(
θPi
)
〉LD

)2
+ (1.5/ 〈Ai〉LD)2

]
.

The third term CφLD calculates the difference between simulated and target phases in LD. It

measures the errors for the peak phases of frq and wc-1 mRNA (target phases: 0.5 hrs after dawn)
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together with the trough phase of frq mRNA (target phase: 3 hrs after dusk) and the peak and

trough phases of FRQ protein (target phases: 2 hrs after dusk and dawn respectively). CφLD has

the form

CφLD = FφLD

(
θPf , L1 + 0.5, 0.5

)
+ FφLD

(
θTf , L0 + 3, 1

)
+ FφLD

(
θTF , L1 + 2, 0.5

)

+FφLD

(
θPF , L0 + 2, 0.5

)
+ FφLD

(
θPw , L1 + 0.5, 0.5

)
,

where:

FφLD (θ1, θ2, Eθ) =
〈
((θ1 − θ2) /Eθ)

2
〉

LD
+ σLD (2 (θ1 − θ2) /Eθ)

2 .

The fourth term CALRLD checks that frq mRNA exhibits both acute dawn and dusk responses

and that wc-1 mRNA exhibits an acute dawn response, as reported in [7]:

CALRLD =

〈


2
3Af

yf
(
θPf

)
− yf

(
θPf − 2

)




2〉

LD

+

〈


1
2Af

yf
(
θPf

)
− yf

(
θPf + 2

)




2〉

LD

+

〈(
exp

(
5
3

)

exp (5 (yf (L0 − 1)− yf (L1 + 1)) /AF )

)2〉

LD

+

〈( 9
10Aw

yw (θPw)− yw (θPw − 2)

)2
〉

LD

+

〈( 3
4Aw

yw (θPw)− yw (θPw + 2)

)2
〉

LD

.

The fifth term CPFLD ensures that: 1) frq and wc-1 mRNA profiles stay close to an equilibrium

during the light phase of LD cycles; 2) wc-1 mRNA returns to a near-baseline level following its

acute dawn response; and 3) frq mRNA does not converge to an equilibrium during the dark phase.

It is given by the expression:

CPFLD =

〈


10
(
yf
(
θPf + 2

)
− yf (L0 − 1)

)

Af





2〉

LD

+

〈(
10
(
yw
(
θPw + 2

)
− yw (L0 − 1)

)

Aw

)2〉

LD

+

〈(
10
(
yw
(
θTw
)
− yw (L0)

)

Aw

)2〉

LD

+

〈


1
10Af

yf (L1 − 1)− yf
(
θTf

)




2〉

LD

.

The sixth term CτDD measures the deviation of the simulated free-running period from the

target period of 22 hours:

CτDD =
∑

i=f,W

〈(
22−∆P

i

)2〉

DD
.

The seventh term COSCDD penalises solutions with small (O(10−1)) free-running amplitudes,

bounding the parameter set away from regions where self-sustained rhythmicity can be lost through

a supercritical Hopf bifurcation. It also penalises solutions for which: 1) the level of WC-1 protein is

very large compared to the level of FRQ protein (some studies, e.g. [11], suggest a low WC-1:FRQ

ratio); and 2) the level of FRQ protein is very large compared to that of frq mRNA. The term also

checks that the peak values and amplitudes of frq mRNA and FRQ protein are larger in LD than
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in DD. COSCDD has the form:

COSCDD =
∑

i=f,F,W

(1.5/ 〈Ai〉DD)2 +

〈(
yW
(
θPW
)
− yF

(
θPF
)

3yF
(
θPF
)

)2〉

DD

+

〈


yF
(
θPF
)
− yf

(
θPf

)

3yf
(
θPf

)





2〉

DD

+
∑

i=f,F

[
(〈Ai〉DD / 〈Ai〉LD)4 +

(〈
yi
(
θPi
)〉

DD
/
〈
yi
(
θPi
)〉

LD

)4]
.

The eighth term CφDD measures phase errors in DD, contributing errors of O(1) to C for

solutions where FRQ peaks 5 hours after its transcript and oscillates in antiphase to WC-1:

CφDD =

〈


24
(
θPF − θPf

)

∆P
f

− 5





2〉

DD

+

〈(
24
(
θTF − θPW

)

∆P
f

)2〉

DD

+

〈(
24
(
θPF − θTW

)

∆P
f

)2〉

DD

.

The ninth and final term CPFDD penalises DD solutions for which: 1) the amplitude and

peak value of WC-1 oscillations increases exponentially (indicating blow-up of the solution in this

variable); and 2) the amplitude of frq oscillations decreases exponentially (corresponding to the

convergence of frq to an equilibrium). CPFDD is given by the expression

CPFDD = FPFDD

(
[AW ]BDD , [AW ]EDD , 0, 0.25

)
+ FPFDD

(
[Af ]

E
DD , [Af ]

B
DD , 0, 0.25

)

+FPFDD

([
yW
(
θPW
)]B

DD
,
[
yW
(
θPW
)]E

DD
,
[
yW
(
θTW
)]B

DD
, 0.25

)
,

where:

FPFDD (V1, V2, V3, EV ) =

{
0 ; if V1 ≥ V2

(log (EV ) / log ((V2 − V1) / (V2 − V3)))
2 ; if V1 < V2

.

Low values of CPFDD favour solutions for which the system exhibits autonomous, bounded oscilla-

tions in free-running conditions.

2.2 Description of the optimisation algorithm

To find parameter sets consistent with the target experimental features encoded in the cost function

C, we first computed the cost at 50 million quasi-randomly distributed points in the 33-dimensional

parameter space of the model. These were generated using a variant of the Sobol algorithm [12] in

order to obtain uniform coverage of the space [13]. The points were chosen so that all parameters

were bounded between 0 and 10, excluding g, n, h,m, k, f1, f2, γ1, γ2 and a4. The Hill coefficients

g, n, h,m and k were bounded between 1 and 4 [10]. The upper bound ensured that the search

for oscillatory solutions of the free-running system did not arbitrarily increase these parameters

and hence bias the resulting solutions towards very high levels of transcription factor/promoter

cooperativity. f1 and f2 were bounded between 0.1 and 1 so as to keep the mean delays in FRQ

and WC-1 production between 2 and 20 hrs. γ1 and γ2 were bounded above by 0.05f1 and 0.05f2

respectively in order to exclude solutions with low protein survival rates. Finally, a4 was bounded

below d3 to ensure that wc-1 mRNA stabilised at a constant level in DD (cf. equation (S.3)).

The 50 solutions with the lowest cost function scores were then passed to a variant of the simu-

lated annealing algorithm described in [14]. The annealing schedule employed comprised a million

random steps with a linear temperature decrease. The starting temperature for each parameter set

6



was taken to be the mean cost function score of the 50 best solutions [10]. During the annealing

process, the parameter bounds on g, n, h,m, k, f1, f2, γ1, γ2 and a4 detailed above were preserved.

In addition, transcription and translation rates (a1 → a7) were allowed to vary between 0 and 100,

all Michaelis-Menten constants (b1 → b10) were allowed to vary between 0 and 25 , and all transport

and degradation transport rates (r1, r2 and d1 → d5) were allowed to vary between 1 and 200. The

45 annealed solutions with the lowest values of C were then selected for further analysis. The mean

and standard deviation of the cost for these parameter sets was 110.72 and 90.67 respectively, while

the optimal parameter set used to generate the simulations shown in the Results section had a

cost value C = 95.27. Throughout the random search and annealing procedures the cost function

was capped at a maximum value CMAX = 104. A total of 5 optimisation runs were carried out,

of which the first 4 were test-runs used to fine-tune the cost function and optimisation protocols.

Final parameter sets were taken from the outputs of the 5th run.

2.3 Comparison of experimental and in silico protein degradation rates

Although the parameters in our model of the Neurospora clock are unknown, necessitating the

use of numerical optimisation methods, the rates at which the proteins comprising the core clock

are degraded in DD have been estimated experimentally [1, 4]. Below, we derive approximations

to these key rates for the model, allowing us to compare the experimental values against those

obtained from the optimisation procedure.

In [1] and [4], net FRQ and WC-1 protein degradation rates dFRQ and dWC−1 were computed

from experimental time courses, assuming first order decay with negligible synthesis following an

LL to DD transfer. Following [1, 4], the dynamics of total FRQ protein over the time interval of

interest is approximated by:

FT (t) = FT (0) e−dFRQt. (S.17)

Differentiating (S.17), substituting into (S.15) and setting t = 0 yields:

dFRQ =
1

FT (0)

(
γ1
(
EF

1 (0) + EF
2 (0)

)
+ d2

PF (0)

PF (0) + b6

)
. (S.18)

At t = 0, ĖF
2 , ṖF ≈ 0 . Equations (S.7)-(S.9) can therefore be used to express both PF (0) and

EF
2 (0) in terms of EF

1 (0). Using the fact that γ1 # f1 and f1EF
1 (0) # d2 then leads to the

approximation below:

dFRQ =
γ1
(
2 +

γ1
f1

)
+ f1

2 +
γ1
f1

+ b6f1
d2

. (S.19)

A similar argument yields the following approximation to the net WC-1 degradation rate:

dWC−1 =
γ2
(
2 +

γ2
f2

)
+ f2

2 + γ2

f2
+ b9f2

d4

. (S.20)

For both FRQ and WC-1, the net degradation rate thus depends on both the delay parameter

and the loss rate for intermediate protein species, together with the maximum rate of active protein

degradation and the corresponding Michaelis constant. This complex dependence of the rates on

a combination of kinetic parameters was observed previously in a temperature-dependent version

of the model considered here [2]. Substituting the optimised values of these parameters into (S.19)

7



and (S.20) gives dFRQ = 0.12 and dWC−1 = 0.07. These compare favourably with the experimental

values dFRQ = 0.27 ([1]) and dWC−1 = 0.02 ([3]), being well within an order of magnitude with

FRQ degraded faster than WC-1. The subset of model parameters controlling the degradation

rates thus lie within biologically reasonable bounds, indicating that they have been appropriately

constrained by the optimisation protocol.

3 Quantifying the sensitivity of phase to changes in dawn

and dusk

For 24 hr LD cycles, the sensitivities of a circadian phase measure φ with respect to changes in

the times of dawn tDAWN and dusk tDUSK are determined by the corresponding partial deriva-

tives ∂φ/∂tDAWN and ∂φ/∂tDUSK . If tDAWN and tDUSK are changed by amounts ∆tDAWN and

∆tDUSK , then to lowest order the resulting change ∆φ in φ is given by the expression below:

∆φ =
∂φ

∂tDAWN
∆tDAWN +

∂φ

∂tDUSK
∆tDUSK . (S.21)

Assuming the clock is stably entrained, perturbing tDAWN and tDUSK simultaneously by the same

amount ∆t will result in φ changing by ∆t also. It therefore follows from (S.21) that ∂φ/∂tDAWN

and ∂φ/∂tDUSK always sum to 1. The comparative size of the derivatives thus indicates the relative

response of φ to changes in dawn and dusk. In particular, a dawn sensitivity ∂φ/∂tDAWN equal to

1 means that the phase is locked to dawn since the resulting change in φ will be equal to ∆tDAWN

(and independent of∆tDUSK). In light response plots such as Figures 4A and 6A of the main paper,

this corresponds to the line showing the change in φ with photoperiod lying exactly parallel to the

line indicating the corresponding change in the time of dawn. A dusk sensitivity ∂φ/∂tDUSK of 1

implies that the phase is perfectly locked to dusk; in this case φ lies parallel to the line indicating

the time of dusk.

Since the value of ∂φ/∂tDAWN determines that of ∂φ/∂tDUSK and vice versa, only one of

these is necessary as a measure of the degree of dawn/dusk dominance. Here, we use the dusk

sensitivity ∂φ/∂tDUSK . Values of ∂φ/∂tDUSK close to 0 and 1 represent dawn- and dusk-locking

respectively, while intermediate values indicate a systematic change in φ with photoperiod (φ non-

parallel to both dawn and dusk). A value of 0.5 denotes exactly equal dawn and dusk sensitivities.

For Figures 4A and 6A where photoperiod is varied through equal and opposite changes to dawn

and dusk, this corresponds to a net phase change ∆φ of zero. This can be seen by substituting

∂φ/∂tDAWN = ∂φ/∂tDUSK = 0.5 and ∆tDAWN = −∆tDUSK into equation (S.21). A zero phase

change for such light-forcing protocols denotes a clock that tracks the middle of the night, modulo

a fixed phase shift.

Driven and systematic entrainment can also be quantified using the sensitivity of phase with re-

spect to photoperiod, ∂φ/∂P . Applying the chain rule and using the relations tDAWN = −tDUSK =

P/2 and ∂φ/∂tDAWN + ∂φ/∂tDUSK = 1 yields:

∂φ

∂P
=

1

2

(
2

∂φ

∂tDUSK
− 1

)
. (S.22)

(S.22) shows that ∂φ/∂P is bounded between −0.5 and 0.5, with these values indicating dawn- and

dusk-locking respectively. Midnight-tracking corresponds to a ∂φ/∂P value of 0, as can be seen by

setting ∂φ/∂tDUSK = 0.5.
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For the symmetric T-cycles considered in Figure 5 of the main paper, tDAWN and tDUSK are

functions of T , with tDAWN = −tDUSK = T/4. Consequently, dawn- and dusk-locking correspond

to phase derivatives dφ/dT equal to 1/4 and -1/4 respectively; a derivative of 0 indicates a system

that responds equally to both transitions. In this case, the following linear function of the phase

derivative provides a suitable dusk sensitivity index:

∂φ

∂tDUSK

def
=

1

2

(
1− 4

dφ

dT

)
.

By construction, ∂φ/∂tDUSK is bounded between 0 (dawn-locking) and 1 (dusk-locking), with a

value of 0.5 characterising a clock that tracks midnight.

It should be noted that the sensitivity measures introduced in this section are unaffected by

any parameter transformations that preserve the corresponding phase measures. In particular, they

are invariant under parameter changes k = (k1, . . . , ks) "→ Rk = (R1k1, . . . , Rsks) that result in

the components γi (t, k) of the periodic solution γ (t, k) of the entrained model being rescaled (i.e.

for which γi (t, Rk) = Siγi (t, k) with Si > 0)). Thus, although our emphasis in this work was

to reproduce key qualitative circadian properties preserved across data sets, the sensitivity results

presented here would not be altered by any rescaling of the model time series to match a particular

set of experimental expression levels.

4 Measuring the robustness of phase to changes in photope-

riod

Given a fixed parameter set k = (k1, . . . , ks), the robustness of phase with respect to changes in

photoperiod P over a range P1 ≤ P ≤ P2 was measured using the quantity

RφFRQ (k) =
1

P2 − P1

∫ P2

P1

DφFRQ (k, P ) dP, (S.23)

where the evaluation function DφFRQ (k, P ) is defined by:

DφFRQ (k, P ) = 4

(
0.52 − ∂φFRQ

∂P
(k, P )2

)
. (S.24)

Recall from section 3 that the sensitivity of entrained phase to photoperiod ∂φFRQ (k, P ) /∂P is

bounded between −0.5 and 0.5. A sensitivity of 0.5 indicates a clock that is locally dusk-driven

(i.e. is locked to dusk in in an interval around P ); −0.5 a clock that is locally dawn-driven; and

0 a system that is locally systematically entrained (tracks midnight in an interval around P ). It

therefore follows from the form of (S.24) that 0 ≤ DφFRQ (k, P ) ≤ 1, with DφFRQ (k, P ) = 0

and DφFRQ (k, P ) = 1 denoting local driven and systematic entrainment respectively. It follows

in turn that 0 ≤ RφFRQ (k) ≤ 1, with minimum robustness indicating global driven entrainment

(dawn- or dusk tracking over the entire interval (P1, P2)) and maximum robustness indicating global

systematic entrainment (midnight-tracking over (P1, P2)).

The measure RφFRQ (k) can thus be used to quantify the effect of structural changes to the

clock circuitry on the robustness of entrained phase with respect to photoperiod. Let kWT and

k represent the parameters of the WT and modified systems respectively. Then the ratio below

provides a suitable measure of the change in robustness:

RφFRQ (k|kWT ) =
RφFRQ (k)

RφFRQ (kWT )
.
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A RφFRQ (k|kWT ) value greater than 1 implies a clock that is more robust than the WT; a value

less than 1 implies a system less robust than the WT.

Here, we were interested in the effect of uncoupling the positive wc-1 loop from the central frq

loop. Since the coupling strength is determined by the parameter a7, the measure

RφFRQ

(
a7|aWT

7

)
=

RφFRQ (a7)

RφFRQ

(
aWT
7

) ,

quantifies how the robustness of entrained phase against photoperiod fluctuations varies with the

strength of positive feedback. (In the above, RφFRQ (a7) denotes phase robustness calculated using

(S.23) and (S.24) for a feedback strength a7, with all other kinetic parameters fixed at their WT

values). For all computations reported in this work, we chose minimum and maximum photoperiods

of P1 = 6 hrs and P2 = 18 hrs respectively

To conclude this section, we recall from the discussion at the end of section 3 that the sensitivity

measure ∂φFRQ (k, P ) /∂P is invariant under parameter changes k !→ Rk which rescale the limit

cycle; that is ∂φFRQ (Rk, P ) /∂P = ∂φFRQ (k, P ) /∂P . It therefore follows that DφFRQ (Rk, P ) =

DφFRQ (k, P ) and hence RφFRQ (Rk) = RφFRQ (k) (cf. equations (S.23) and (S.24)). Phase robust-

ness is thus also invariant to amplitude rescaling. In particular, any such rescaling will preserve the

observed variation in robustness with positive feedback strength.

5 Quantifying network flexibility

5.1 Measuring the flexibility of circadian outputs

The flexibility measure used in this study is based on analysing the map relating parameter vari-

ations to changes in key circadian outputs. Following [15, 16], we consider the effect of varying

the parameters k = (k1, . . . , ks) of the model on clock outputs Qj computable from the periodic

solution γ (t, k) of the model corresponding to the entrained clock (i.e. the limit cycle attractor

of the system). Reasonable outputs Qj within a circadian context here include quantities such as

entrained phase, the phases of the minima and maxima of mRNA and protein profiles, the am-

plitude of these minima and maxima, and - when considering the global flexibility of the system

- the entrained limit cycle γ itself [15, 16]. When the parameters are changed (usually by small

amounts) then the variation is denoted by δk = (δk1, . . . , δks). Each variation of the parameters

from k to k + δk will cause the limit cycle to vary, and this in turn changes the vector of outputs

Q = (Q1, . . . , Qm) by an amount δQ = (δQj). The variation δk is an absolute one in that the

size of each change δki is independent of the size of ki. However, since the kis can vary over more

than one order of magnitude (see Table 1 of the main paper), it is more appropriate to consider the

proportional variation in ki given by the quantity δηi = δki/ki (the δηis also have the advantage

of being dimensionless). If the scaled variations δηi are small, then the map δk !→ δQ relating

parameter and output changes can be approximated by its linearisation M , the m×s matrix whose

components are the partial derivatives of the individual outputs with respect to the parameters

Mij = ∂Qi

∂kj
(k). In terms of the scaled parameter changes δη = (δηi), the change δQ in Q is given

by

δQ = M∗δη, (S.25)
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where M∗ = M∆k is the product of M with the s × s diagonal matrix ∆k = diag(k1, . . . , ks)

(the elements of M∗ are thus the scaled partial derivatives, M∗
ij = kj

∂Qi

∂kj
(k)). The changes to

the outputs of the system resulting from small random parameter perturbations can therefore be

understood by analysing the form of M∗. An important tool in this analysis is the singular value

decomposition (SVD) of M∗ [15, 16]. The SVD of M∗ is its factorisation into the form

M∗ = UΣV T , (S.26)

where U is an m × s column-orthonormal matrix (UTU = Is), V is an s × s orthonormal matrix

(V TV = V V T = Is) and Σ = diag(σ1, . . . ,σs) is an s × s diagonal matrix. The elements σ1 ≥
· · · ≥ σs ≥ 0 are the singular values of M

∗
while the columns ui of U and vj of V are the left and

right singular vectors of M∗ respectively [13].

Following [15,16], we consider the changes to the output vector δQ(") arising from variations δη(")i

($ = 1, 2, . . . , N) in the scaled parameters, where the δη(")i s are taken to be zero-mean independent

identically distributed random variables with variance

〈(
δη(")i

)2〉
= r2η (angular brackets here

denote the expectation of a random variable). As N −→ ∞, this ensemble can be thought of as

the set of all possible parameter fluctuations that can result from stochastic evolutionary processes

of a bounded size. Provided that rη is not too large, (S.25) implies that δQ(") is approximated

by M∗δη("). It can then be shown that in the limit N −→ ∞, the principal components of

the ensemble
{
δQ(")

}
are the pairs

{
ui, r2ησ

2
i

}
of M∗ [16]. The left singular vectors {u1, . . . , us}

of M∗ thus provide an orthogonal coordinate system within which the δQ(")
i s are uncorrelated,

with variances equal to r2ησ
2
i . Geometrically, the ensemble

{
δη(")

}
can be thought of as a ball of

parameter perturbations that are mapped to an ellipsoid of output perturbations
{
δQ(")

}
by M∗;

ui and rησi are then the ith principal axis of the ellipse and the extent of the ellipse along this axis

respectively. The singular values σi thus quantify the effect of random parameter perturbations on

the output Q. Furthermore, a scalar measure of the size of the output variations is provided by

the net variance r2η
∑s

i=1 σ
2
i (it is straightforward to show that this is equal to the average of the

squared output perturbation size,
〈∥∥δQ(")

∥∥2
〉
). The sum of the singular values

∑s
i=1 σ

2
i therefore

provides a simple measure of the flexibility of Q: the larger this sum, the greater the relative change

in Q under random parameter perturbations. In addition, the left singular vectors ui associated

with the largest singular values indicate the most flexible (or evolutionarily accessible) directions

in the output space. These are the directions along which relatively large changes in Q can be

obtained with comparatively small changes δη in the parameters. Geometrically, these correspond

to the principal axes of the ellipsoid of output perturbations along which it has greatest extent

[15, 16]. The corresponding right singular vectors vi represent the parameter changes that lead to

variations along the principal axes of the ellipsoid: i.e. those parameter variations most likely to

be achieved by evolutionary processes.

5.2 Calculating the relative flexibility of the clock network

In order to quantify the effect on circadian flexibility of perturbations to the wild-type parameter

set kWT , we consider a relative flexibility measure given by the expression below:

FQ (k|kWT ) =

∑s
i=1 σi (k)

2

∑s
i=1 σi (kWT )

2 .
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Here, σi (kWT ) and σi (k) are the singular values for the WT and modified system respectively. If

FQ (k|kWT ) is greater than 1, Q is more flexible in the modified system than in the WT, while if it

is less than 1 it is less flexible.

For the Neurospora model, we were interested in the effect of reducing the strength of FRQ’s

positive feedback on WC-1 production. As all circadian outputs of interest can be computed from

the limit cycle attractor γ of the entrained system, a suitable global flexibility index for this analysis

is provided by:

Fγ

(
a7|aWT

7

)
=

∑s
i=1 σi (a7)

2

∑s
i=1 σi

(
aWT
7

)2 . (S.27)

For a given positive feedback strength a7, Fγ

(
a7|aWT

7

)
compares the variance of the corresponding

limit cycle under random parameter perturbations to the variance for WT coupling; values less

than 1 indicate a system that is less flexible than the WT.

In (S.27), σi (a7) is the ith singular value of the matrix M∗ relating parameter perturbations

δη to the corresponding change δQ to the vector of system outputs Q in the case where Q is the

entrained limit cycle γ (cf. equation (S.25)). Writing the ith component of γ (t, k) as γi (t, k), Q is

therefore the infinite-dimensional vector

Q = (γ1 (0, k) , . . . , γ1 (T, k) , γ2 (0, k) , . . . , γ2 (T, k) . . . , γ4 (0, k) , . . . , γ4 (T, k))
T , (S.28)

where T is the period of the forcing light-dark cycle and γ1 −→ γ4 are frq mRNA, wc-1 mRNA, total

FRQ protein and total WC-1 protein concentrations respectively. The matrix M∗ =
(
kj

∂γi

∂kj
(t, k)

)

is thus the linearisation of a map from scaled parameter variations δη ∈ Rs to the space of T -

periodic, 4-dimensional, smoothly differentiable real-valued functions [15, 16]. Following [15, 16],

singular values and vectors were calculated from a finite approximation to M∗ obtained by restrict-

ing time t to a discrete set of N $ 1 evenly spaced values in the interval [0, T ].

Finally, it is straightforward to show that normalising the derivative ∂γi

∂kj
(t, k) in M∗ by the

magnitude of the limit cycle ‖γi (t, k)‖ preserves the SVD under the amplitude rescaling parameter

transformations discussed in sections 3 and 4.1 It follows that the corresponding flexibility measure

F̂γ is also invariant under any rescaling of this type. We found that the variation of F̂γ with positive

feedback strength a7 is very similar to that observed for the non-normalised measure Fγ . Thus -

despite the greater generality of the normalised measure - non-normalised flexibility is plotted in

Figure 7 of the main paper for simplicity.

6 Phase and amplitude variations for the entrained limit

cycle

The limit cycle γi (t, k) resulting from a general parameter perturbation k0 &→ k can be approxi-

mated by the combination of a phase change si (k) and a relative amplitude change Ai (k):

γi (t, k) = (1 +Ai (k))γi (t+ si (k) , k0) . (S.29)

1Here, ‖.‖ is the norm induced by the inner product 〈p (t) , q (t)〉 = 1
T

∫ T
0 p (s) q (s) ds, so that ‖p (t)‖ =

√
〈p (t) , p (t)〉 =

√
1
T

∫ T
0 p (s)2 ds.

12



A perturbation of magnitude α in a particular direction w results, to lowest order, in the phase and

amplitude variations

si (k) = α
∂si
∂w

(k0) , (S.30)

Ai (k) = α
∂Ai

∂w
(k0) , (S.31)

where ∂si (k0) /∂w and ∂Ai (k0) /∂w denote the directional derivatives of Ai(k) and Si(k) along w

evaluated at k0. Here, we derive analytical expressions for these derivatives in terms of the principal

components of γ. We also show that in the case when the first principal component u1 is proportional

to the derivative of the limit cycle, that is u1 = βγ̇, the derivatives along the principal parameter

direction v1 take the values ∂si (k0) /∂v1 = βσ1 and ∂Ai (k0) /∂v1 = 0. This implies that si (k) ≈
αβσ1 and Ai (k) ≈ 0, corresponding to a uniform phase change (cf. equations (S.29)-(S.31)).

Write k0 = (k01, . . . , k0s). Since we consider proportional parameter changes here, ∂si (k0) /∂w and

∂Ai (k0) /∂w are given by the expressions below:

∂si
∂w

(k0) =

(
k01

∂si
∂k1

(k0) , . . . , k0s
∂si
∂ks

(k0)

)
· w, (S.32)

∂Ai

∂w
(k0) =

(
k01

∂Ai

∂k1
(k0) , . . . , k0s

∂Ai

∂ks
(k0)

)
· w. (S.33)

Differentiating both sides of (S.29) with respect to kj implies the following equation for ∂γi (t, k0) /∂kj :

∂γi
∂kj

(t, k0) =
∂si
∂kj

(k0) γ̇i (t, k0) +
∂Ai

∂kj
(k0) γi (t, k0) .

Using the identity
∫ T
0 γi (s, k) γ̇i (s, k) ds = 0 then yields

k0j
∂si
∂kj

(k0) =

〈
k0j

∂γi

∂kj
(t, k0) , γ̇i (t, k0)

〉

‖γ̇i (t, k0)‖2
(S.34)

and

k0j
∂Ai

∂kj
(k0) =

〈
k0j

∂γi

∂kj
(t, k0) , γi (t, k0)

〉

‖γi (t, k0)‖2
. (S.35)

The terms k0j∂γi (t, k0) /∂kj in (S.34) and (S.35) are the elements of the matrix M∗. It therefore

follows from the SVD expansion (S.26) of M∗ that

k0j
∂si
∂kj

(t, k0) =

∑s
l=1 σlvjl

〈
ui
l (t, k0) , γ̇i (t, k0)

〉

‖γ̇i (t, k0)‖2
(S.36)

and

k0j
∂Ai

∂kj
(t, k0) =

∑s
l=1 σlvjl

〈
ui
l (t, k0) , γi (t, k0)

〉

‖γi (t, k0)‖2
, (S.37)

where vjl is the (j, l)th element of the matrix V and ui
l (t, k0) represents the element of the vector

ul occupying the same position as γi (t, k0) in the representation of the limit cycle as an infinite-

dimensional vector (cf. equation (S.28)). Substituting (S.36) and (S.37) into (S.32) and (S.33)

13



respectively and using the relation V TV = Is leads to the final expressions for ∂si (k0) /∂w and

∂Ai (k0) /∂w below:

∂si
∂w

(k0) =

∑s
l=1 (vl · w)σl

〈
ui
l (t, k0) , γ̇i (t, k0)

〉

‖γ̇i (t, k0)‖2
, (S.38)

∂Ai

∂w
(k0) =

∑s
l=1 (vl · w)σl

〈
ui
l (t, k0) , γi (t, k0)

〉

‖γi (t, k0)‖2
. (S.39)

The phase derivative is thus obtained by projecting the principal components of the limit cycle

onto the derivative of the cycle while the amplitude derivative is obtained by projection onto the

cycle itself.

In the case when the first principal component is proportional to the derivative, so that ui
1 (t, k0) =

βγ̇i (t, k0), setting w = v1 in (S.38) and (S.39) implies

∂si
∂v1

(k0) =
βσ1 〈γ̇i (t, k0) , γ̇i (t, k0)〉

‖γ̇i (t, k0)‖2
= βσ1

since 〈γ̇i (t, k0) , γ̇i (t, k0)〉 = ‖γ̇i (t, k0)‖2, and

∂Ai

∂v1
(k0) =

βσ1 〈γ̇i (t, k0) , γi (t, k0)〉
‖γi (t, k0)‖2

= 0

since 〈γ̇i (t, k0) , γi (t, k0)〉 = 0. The perturbation along v1 thus results in a uniform phase change,

as claimed.

We conclude by remarking that in common with the phase sensitivity and robustness measures

discussed in sections 3 and 4, ∂si (k0) /∂w and ∂Ai (k0) /∂w are also invariant under parameter

transformations that rescale amplitude, γi (t, k0) $→ Siγi (t, k0). This is a consequence of the fact

that in addition to scaling γi(t, k0) (and hence γ̇i(t, k0)) by Si, such a transformation will scale

the elements ui
l (t, k0) of U in the factorisation M∗ = UΣV T by Si also. The invariance of the

derivatives then follows directly from the forms of (S.38) and (S.39).
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Figure S1: A. Bifurcation diagram showing the loss of rhythmicity in the simulated free-running

(DD) system as the relative coupling strength a7/aWT
7 of the wc-1 loop is reduced (the parameter

a7 determines the rate at which FRQ protein upregulates WC-1 production, with aWT
7 indicating

the WT value). For each coupling strength value on the x-axis, the corresponding values on the

y-axis denote minimum and maximum FRQ levels. Solid lines denote stable attractors and broken

lines unstable attractors. The solid circle indicates a supercritical Hopf bifurcation at which the

attractor changes from a limit cycle (corresponding to rhythmicity) to a fixed point (corresponding

to arrhythmicity). B. Corresponding variations in free-running period τ and the falling phase φFRQ

of FRQ protein. φFRQ is calculated relative to the FRQ minimum, taken as CT 0.
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Figure S2: A. Variations in dusk sensitivity with photoperiod P for the phase measures plotted

in Figure 4 of the main paper. Conidiation phase φFRQ has an intermediate sensitivity across the

photoperiod range, indicating systematic entrainment (the higher sensitivities observed close to

P = 14 correspond to the inflexion of the phase-photoperiod profile in Figure 4A). B. The effect of

removing the wc-1 loop on the dusk sensitivity-photoperiod profile of φFRQ. Note the pronounced

increase in sensitivity for larger P values as the relative coupling strength a7/aWT
7 is decreased.
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Figure S3: Dependence of the dusk sensitivities plotted in Figure 5 on T-cycle length. Conidiation

phase φFRQ has a high sensitivity across the range shown, indicating a dusk-driven response.
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Figure S4: Normalised singular value spectra {σk/σ1} corresponding to each of the relative flex-

ibility computations Fγ

(
a7|aWT

7

)
plotted in Figure 7A. For all wc-1 loop coupling strengths, the

leading singular value σ1 is larger than the others by an order of magnitude, showing that the

decrease in flexibility with coupling occurs primarily along the first principal component of the

entrained limit cycle.
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Figure S5: The effect of perturbing the WT solution of the model (thick solid lines) in the direction

of the first principle component vector u1 of the entrained limit cycle γ. Perturbed solutions (thin

solid lines) were computed for proportional parameter variations of ±2% (that is for parameters

ki = kWT
i (1± 0.02vi1), where kWT

i are the WT parameters and v1 = (vi1) is the right singular

vector associated with u1). Solid circles represent FRQ-dependent conidiation phase φFRQ. Note

the greater flexibility in the phase of FRQ protein compared to that of frq and wc-1 mRNA,

consistent with the phase-amplitude sensitivity analysis shown in Figure 8A.
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Figure S6: The effect of decreasing positive feedback strength a7 on the FRQ degradation saturation

index DSI for different photoperiods P . DSI is defined by DSI = 1
24−P

∫ tDUSK+24−P
tDUSK

PF (t)
PF (t)+b6

dt.

Values of the measure closer to 1 denote a near-constant rate of FRQ loss during the night, result-

ing in FRQ profiles that decrease linearly with time. Note that reducing a7 uniformly decreases

DSI across photoperiods, providing the system with a simple mechanism for tuning the level of

saturation.
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