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Abstract

This thesis details a 1-d model of a lymphatic vessel, developed from a model by

Reddy. Some additions to the modelling techniques were found to be necessary to

prevent numerical phenomena not found in experiment. Furthermore the details of

the wall and valve were important to the mechanics of the system. This developed

model presents flow characteristics which are not represented in the existing lumped

parameter or 1-d models of the lymphatic system. Additional terms allow more

realistic representation of some modes of flow such as those occurring during collapse.

The model was validated using Poiseuille flow calculations and experimental work.

Features found in experiment were reproduced in the model. Such as the shark

tooth shape of the radius time graph.

A study of the sensitivity of the model to experimental parameters was performed.

Features that increased flow included: increased compliance of the vessel, a larger

diameter, amplitude of contraction or frequency, or a faster contraction wave.

A lumped parameter model, relating the radius directly to the pressure, was

investigated but this did not reproduce flow features such as the shark tooth shaped

radius with time relationship or the radius peak at the beginning of a contraction

or passive relaxation of the vessel. In the 1-d model the time constant of this

passive relaxation increased with the magnitude of contraction. This value may

have physiological relevance.
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Chapter 1

Introduction

This chapter begins with an introduction to the lymphatic system and the problems

and medical conditions which modeling may be able to help. Followed by relevant

fluid dynamics and the historical development of theory and current understanding

and finally an overview of this Thesis.

The lymphatic system is a converging drainage network of tubes, with intermit-

tent nodes which act as filters and introduce elements of the immune system into

the circulation. The larger vessels are able to contract as a pumping mechanism and

will even continue to do so once excised from the body, given the correct conditions.

The principal role of the lymphatic system is to maintain the environment of

the interstitium; the spaces between the structures of the body. Fluid continually

leaks out of the arteries and veins into the interstitium, providing hydration and

nutrition. This fluid must then be returned to the circulation at the thoracic duct

by the lymphatic system. The lymphatic system allows 2-3 litres of interstitial fluid

to return to the circulation from the interstitial spaces daily. The fluid contains

long-chain fatty acids, vitamin K and immune cells [5].

The importance of the lymphatic system can be shown by the effects of its failure.

This might be due to cancer surgery or conditions such as lymphatic filariasis where

parasites block the vessels. Lymphatic filariasis is the major cause of the most ex-

treme lymphatic malfunction - elephantiasis - and is common in the underdeveloped
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world. In the developed world however surgery, such as cancer surgery, is more

likely to be the cause of lymphatic disorders. Cancer cells often migrate to nearby

lymphatic vessels and nodes and these must be removed during cancer surgery. For

example breast cancer surgery routinely involves removing the lymphatic vessels and

nodes from the region of the armpit. This has a detrimental effect on the drainage

of interstitial fluid in the nearby arm and can lead to the disorder of lymphedema.

Edema (of which lymphedema is one type) involves compromised immunity and tis-

sue repair, pain, swelling and disfigurement. Half a million women in the UK will

develop lymphedema from breast cancer surgery. Currently the only treatment is

applying external pressure, through bandaging or specialist massage techniques.

Figure 1.1: Arm Edema

Compared to the state of knowledge in other areas of biofluids, relatively little is

known about the lymphatic system, and there has been little theoretical analysis.

The most detailed theoretical analysis was completed by Reddy in 1975 [4, 6, 7]

(see sections 3.3.1 and 5.2). Accurate and well validated models could help deter-

mine more effective treatment to increase flow during edema, at the least improving

manipulation techniques. It would therefore be of great relevance to determine me-

chanical reasons for the difficulties in recovering from lymphoedema. Quick and
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Stewart [8, 9] claim that the best course of action is to induce relaxation in the

smooth muscle, allowing passive flow of lymph to dominate and increasing the av-

erage radius. However Olszewski [10] reports the necessity of the contractions in

edema isolated in the leg. These contractions may be necessary due to the increased

gravitational effects in these lower limbs. There are many unexamined phenomena

within the field of lymphoedema, only a proportion of breast cancer patients with

seemingly identical procedures go on to suffer from lymphoedema. In addition, the

condition can remain dormant for years, except for an initial brief bout immediately

after surgery, only to resurface years later.

1.1 Current Knowledge

For more than a century it has been known that the lymphatic system is involved

with immunological control and tissue drainage [11]. There have been many ultra-

structural studies of the system in the last few decades and intravital microscopy

has allowed the collection of dynamic data throughout the lymphatic network. Ac-

cording to Gnepp, in situ, there are general similarities among the lymphatics of the

different organs, but also some regional differences [12].

A widely accepted overall picture of the mechanisms for lymph transport is still

to be established. In many ways, studies of the lymphatic circulation are behind

that of the major (or blood) circulatory system. However, an understanding of the

mechanics of the major circulation (often called Haemodynamics) is relevant to the

functions of the lymphatics and the type of problems that arise are discussed in

the next section. A computer model using these techniques would allow greater

understanding of lymphedema including prediction of patients at increased risk and

to establish what type of medication may help the disorder.
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1.1.1 The Complexities of Biofluid Mechanics

Biofluid problems are very different to those found in other areas of engineering

and are often far more complicated. James Lighthill [13] details the major points

that set internal biofluids apart: the range of Reynolds numbers; the complexity

of the branching systems; the nonlinear distensibility of the tubes involved; the

complicated fluid properties; and the pulsatility.

The Range of Reynolds Numbers

The Reynolds number (Re) represents the ratio of inertial to viscous forces and is a

useful measure for the type of flow involved in all fluid dynamics problems. Within

the lymphatic and blood circulation, the small vessels generate slow, laminar flow

represented by low Reynolds numbers. The Reynolds numbers for large airways and

arteries can range from hundreds to thousands, indicating turbulent or transitional

flow. Representing a unified model with such a variety of Reynolds numbers requires

a very complex computer program with high processing time [14]. Further modelling

complexity is caused by the tendency for turbulence in these vessels to manifest in

short ‘bursts’, in contrast to the fully developed turbulence traditionally analysed

by engineers. Even modelling the areas of laminar flow is more involved as fully

developed poiseulle flow cannot necessarily be assumed (this is an assumption made

for most engineering problems). However, the entry regions, ie the length before the

next bifurcation (ie branch), are too short for poiseulle flow to develop fully. Lastly

the tubes are sometimes curved, generating the extra factor of centrifugal motion.

The Complexity of the Branching Systems

The branching systems of the circulation and lungs are far from symmetrical and

diverge from one to hundreds of millions of tubes. Approximations are often used

due to the computational cost involved in representing the spatial positioning and

dimensions of the vessels due to the vast numbers of vessels involved and the minute

scale of the smaller vessels. The bifurcations of the large tubes cause a significant

4



distortion to the flow pattern, unlike the smaller tubes (due to their low Reynolds

numbers). The branches themselves are rarely symmetrical and flow depends on

the area of the daughter and parent tubes, the angle of the branch, the radius of

curvature and the Reynolds number and velocity profile in the parent tube. One

of the most investigated types of asymmetrical branch is a right-angled branch as

shown in figure 1.2. Strong secondary motions are setup as the flow splits. This

leads to areas of low and high shear and has undergone much investigation due to

the significance with aneurysms etc [14].

Figure 1.2: Flow in a right-angled branch [1] .

Nonlinear Distensibility of Tubes

Blood vessel walls contain two materials with different elastic properties; collagen

and elastin. These influence the combined properties of the material to different

degrees at different distensions. This gives a nonlinear relationship during elastic

behaviour (rather than the linear relationship usually seen in engineering material).

As different material components become dominant, the gradient of the stress strain

relationship changes while the material is still able to return to its original shape.

There is a viscous time-dependent element which acts as a flow and an elastic compo-
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nent which is non- time dependent. . To further complicate matters, the properties

of the vessel walls change to suit internal conditions. This includes the vessels’

ability to dilate in response to shear stress [15].

Non- Newtonian Fluid Properties

Air (eg in respiration models) and blood both contain particles and these can have

a significant effect on fluid properties and flow. Blood is the most complicated fluid

found in the body, comprising of 40 to 50% volume deformable bodies and has a

viscosity 4 times that of water (0.0008904 Kg/m2) [16]. The red blood cells have a

great contribution to the fluid behaviour in comparison to the other blood particles

by effecting the overall viscosity due to the large numbers involved.

Lymph is similar to plasma (blood with the blood cells removed) but contains

less protein [12]. Plasma can be viewed as a newtonian fluid, with aslightly higher

viscosity than water, around 12 mNm−2 at 12 C [1]. There may be some changes

in properties as the composition changes e.g. in disease with the addition of more

immune cells and during digestion, in the mesenteric lymphatics some nutrients are

transported as lipoproteins. During this project the fluid is represented computa-

tionally as a newtonian fluid with the properties of water and this is matched in the

experimental work of chapter 4.

Newton’s Law describes the ‘internal friction’ of a liquid and can be used to

approximate the plasma alone. At a high flow rate this will also be effective if blood

cells are included. As the flow slows down however the blood viscosity begins to

increase with decreasing strain. Newtons law only holds for laminar flows where the

viscosity does not vary with the rate of shear [17]. This ‘non- Newtonian’ behaviour

is due to the propensity of the blood cells to collect together in ‘aggregations’ at low

strains, increasing the resistance to flow.

In smaller tubes the cells tend to move away from the sides of the vessel due to an

unequal distribution of forces around any cell at the side of the vessel. This leads to

a lubricative layer of fluid at the edge of the vessels, reducing the effective viscosity
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[16] of the volume of fluid as shown in figure 1.3.

Figure 1.3: The Fahraeus- Lindquist effect means that the effective viscosity of blood

is smaller than expected in very small tubes [18]

Pulsatility

The beating of the heart generates a pressure wave, which propagates throughout

the arterial network. This soon becomes a very complicated waveform due to the

bifurcations and non-linear elasticity. These waves largely die out before they reach

the veins and the flow becomes steadier [17, 1].

The following section goes on to discuss the history of understanding of the major

circulation, many of the principles that were discovered in the last few centuries for

the blood vessels, are now relevant to the lymphatic system today. This is then

followed by a section on the history of understanding of the lymphatic system.
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1.2 Haemodynamics History

Haemodynamics has been a major area of focus for some time due to its connection

to the heart and obviously critical importance to the body. McDonald’s book [17]

contains an indepth description of the history of haemodynamics.

William Harvey (1578-1657) initiated science in this area after a lengthy stalemate

caused by the erroneous Galenical teachings (129-199). Harvey was part of Galileo

Gallelei’s movement to back up arguments with experiments, but his work into

cardiac output was not widely accepted initially. In 1669 Richard Lower continued

this work and in 1689 Newton defined the concept of viscosity, which Stephen Hales

was able to use in 1733 to show there was pulsatile flow in arteries and smooth flow in

veins. Hales found that the minute vessels in the wall of the gut were the main cause

of resistance to flow, recording a change in flow rate with different temperatures and

brandy! (This can be explained by the later discovery of vasoconstriction attributed

to Claude Bernard.)

Many important principles were defined in the 18th and 19th centuries, including

Euler’s equations (Leonhard Euler 1707-1783) and Bernoulli’s law (Daniel Bernoulli

1700-82). The Navier-Stokes equations were composed by Stokes in 1845 as an ex-

tension of Euler’s equations to allow for viscosity. The doctor Jean Louis Poiseulle

(1797-1869) developed a law describing flow in a circular tube including viscous flow

and the pressure profiles across tubes with different elasticities. He developed this

major law of fluid dynamics in spite of his background orientated in medicine because

he needed one to progress his studies into the flow of blood! Young (1773-1829) in-

stigated the Elastic modulus named after him and made important discoveries about

the elastic properties of arteries and the velocity of propagation of the arterial pulse

in 1808 and 1809. Weber (1825) performed further work involving wave reflections

and propagation. In 1878 Moens started work (later continued by Korteweg and

Rosal) to give the thin elastic wall equation (for a non-viscous liquid). This method

for modelling the wall was later usurped by the thick elastic wall equation [19] as

detailled in section 5.
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1.3 Lymphatic History

As described by Gnepp, Nishimaru and Swartz [12, 20, 21], the physiology of the

lymphatic system really began to make progress in the 17th and 18th century but

there is evidence of lymphodema and elephantisis as far back as Ancient Greek

and Hebrew literature. Aristotle mentions vessels containing colourless liquid and

Hippocrates, white blood. In 300BC arteries containing ‘milk’ were discovered at

the Alexandrian medical school (home of Erasistraties and Herophilus). Then for

18 centuries the Galenical teachings prevented any progress within the lymphatic

circulation, in addition to preventing exploration of the major circulation. This was

due to the belief that lymphatic vessels were no different to arteries and veins.

Finally in 1622 Asellius (Professor of Anatomy and surgery in Milan and Paris)

described finding ‘white lacteals scattered thoughout the entire mesentery of a well-

fed dog’. This white colour is now known to be due to the absorption of fats into

the mesenteric lymphatics during digestion (lymph, the fluid inside the lymphatic

vessels is normally clear). This work was corroborated by findings from Pecquet

(1651), Van Horne (1652) and Rudbeck soon after.

The lymphatic valves were revealed by Swammerdam’s wax injections in the

middle of the 17thcentury. The spread of cancer to the surrounding nodes was

discovered by Louis Petit at the beginning of the 18th century.

Rudbeck began to have some understanding of the importance of the lymphatic

circulation to the major circulatory cycle believing in the nutrition of the tissues by

irrigation. This hypothesis involved the lymph and solid substances passing from

the blood vessels, for use in the tissues, while fluid flowed into the blood through the

lymphatics. The lymphatics were named in 1653 by Bartholin (Professor of anatomy

in Copenhagen). He was one of the first scientists to show that the lymph fluid flows

from the thoracic duct to the veins through the lymphatics (also corroborated by

Pequet, Rudbeck and Jolive). At the end of the 17th century the basic anatomy

became known and improvements in experimental techniques allowed the study of

lymph vessels in situ. This experimental method was perfected by Masagni in 1787
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and Cruickshank in 1789.

In the 19th century various anatomists studied the distribution of lymphatic ves-

sels by injection techniques. At this time there was much controversy over the

origin of the lymphatic vessels and their relationship to blood and tissues and so

lymph-capillary exchange became a major topic during the 19th century.

Ludwig and Starling developed techniques for the collection of lymph, from the

lymphatic vessels of different parts of the body. Ludwig initiated the idea that

lymph was a filtrate derived from blood, which permeated or diffused across the

blood vessel walls. This was however opposed by Heidenham, who believed it to be

a secretion from the endothelium of the blood vessels.

The filtration hypothesis of Ludwig was later firmly established by Starling. This

began in 1898 when Bayliss and Starling pursued Heidenham’s experiments and dis-

proved his hypothesis, indicating Ludwig’s to be correct. They found the ligature of

arteries and veins increased the internal pressure of blood capillaries, also showing

that the collapse of blood capillaries increased lymph production. Starling related

the hydrostatic pressure of blood in capillaries to the osmotic pressure of plasma

proteins and realised that the proteins leak out of capillaries, as quantified by Star-

ling’s law of microvascular exchange. Drinker and colleagues from Harvard [22]

then showed that a major function of the lymphatic vessels was to return the pro-

tein molecules that escape from the circulation. More support for this understanding

of the balance of liquid between the two circulations, including the importance of

osmotic pressure and the permeability of the vessels has been provided by Krugh

(1930) and Landis (1934).

1.4 Lymphatic and Heart Valve History

The function of the valves of the lymphatic system is also very important to this

project. There has been little research into the mechanics of lymphatic valves and

this is covered in depth in chapter 2. They are often referred to as underdoing similar

mechanics to heart valves which have been well explored . This section describes
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how progress was made on the physiology of the heart valves as the best example

of our understanding of the valves of the body.

Leonardo da Vinci made the first record of a mechanism for the closure of heart

valves in 1513. He attributes the closure of the mitral and aortic valves to a hy-

drodynamical mechanism involving a vortical flow field inside the ventricle chamber

and the aortic sinuses. Two hundred years later Valslava in 1740 wrongly stated

that the sinuses were present to dissipate the violence of systolic contraction [23].

The early closing of the mitral valve was originally attributed to contractions of the

papillary muscles pulling on the chordae tendinae, however these tendons are now

believed to simply prevent reversal of the cusps.

Bellhouse and Talbot [24, 25] reexamined the heart valve mechanics mathemat-

ically and experimentally. They began to develop the current understanding of the

system - that vortices in the sinuses (or surrounding structure) aid efficient closure

of the valves. A similar shape behind the valve leaflets is present in the valves of

the lymphatic and venous systems. In the venous system it has been indicated by

Buxton and Clarke [26] that a similar mechanism occurs so it seems likely this is

also true of the lymphatic system

1.5 Thesis Overview

The aim of this thesis is to develop and validate a modern model for the lymphatic

vessels, taking into account the fluid flow (using the Navier Stokes equations in

1-d), the wall mechanics and the fluid/structure interaction. Chapter 2 details a

description of the mechanics of the lymphatic system and a background in relevant

computational modeling is described in chapter 3. Secondly the method and results

from an experimental study performed in partnership on this project are included

in section 4. Chapter 5 describes a 1 dimensional implementation of Reddy’s work

(using Matlab) closing with the changes made to the model and the reasoning behind

them. In chapters 6 and 7 a study and further modelling of the wall mechanics was

undertaken. Chapter 9.2 details the physiological implications of some of the findings
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along with future work and conclusions.

This model enables a more accurate, non-invasive exploration of the lymphatic

vessels, indicating parametric changes which may be desirable and could be used to

improve treatment of the lymphatic disorder.

12



Chapter 2

Lymphatic Mechanics Background

Figure 2.1: A schematic diagram showing the cycle of lymph fluid around the body.

The lymphatic system has two important roles, firstly it is a drainage network and

secondly part of the immune system. The drainage is of excess fluid and protein from

the interstitium, which has leaked out of the blood circulation is can then returned

to the blood system via the thoracic duct as shown in figure 2.1. The capillaries at

the origin of the system, which absorb the plasma filtrate, are known as the terminal

lymphatics. One way valves prevent fluid from returning to the interstitium and the

capillaries converge into larger vessels. These collecting lymphatics act like mini-

hearts pumping the liquid in sequence as a propagating wave, with the aid of the

further one way valves at intervals along the vessels. The distribution of these larger

vessels is show in figure 2.2 and typical parameters are shown in tables 2.1, 2.2 and
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2.3.

Figure 2.2: The distribution of the major lymphatic vessels around the body [2]

Fluid transport in the lymphatic system is also aided by the surrounding ex-

ternal muscles, eg moving a limb can help generate flow. This external pumping

is the only well substantiated method of transport within the terminal lymphatics

although there is some investigation of the possibility of osmosis acting across the

boundary between the interstitium and the terminal lymphatics [11, 12]. This could

potentially create a high pressure at this end of the network which is the only way

flow could be generated without the use of any muscles. On route to the thoracic

duct the fluid passes through nodes, which act as part of the body’s immune system.

These can filter out bacteria and abnormal cells, but the ability to then contain the
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Parameter Value

Radius (mm) 1 - 2

Pressure (Pa) 100 - 1200

Peak Flow (ml/min) 6

Velocity (mm/s) 0.2

Table 2.1: Typical parameters within the bovine mesenteric lymphatics

Rel Rel Con Con Contraction ∆ ∆

D P D P freq. P D

µm Pa µm Pa no./min % %

55 300 35 550 8 83 -36

55 600 27 900 30 50 -51

60 250 20 200 6 180 -67

90 650 60 1400 15 123 -33

90 800 50 1600 12 100 -44

100 950 62 1150 10 21 -38

143 400 100 700 30 75 -30

200 900 160 1200 30 26 -32

260 500 200 700 15 40 -23

Table 2.2: The Pressures during spontaneous contractions of the mesenteric lym-

phatic vessels of the rat, taken from [27], where P = Pressure , D = diameter, Con

= contracted and Rel = relaxed
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Proximal Distal ∆

Location Pressure Pressure Pressure

Range (Pa) Mean Range Mean (Pa)

Terminal Lymphatic 0-250 130

1st Valve 100-400 230 300-500 360 130

2nd Valve 300-700 360 400-800 550 180

3rd Valve 400-800 480 500-900 680 200

4th Valve 600-900 600 700-900 12 100

5th Valve 500-1000 810 800-1100 1050 250

6th Valve 800-1600 1030 900-1800 1270 270

Table 2.3: The Pressures across valves in the mesenteric lymphatic vessels of the

rat, taken from [27], where the valves are numbered distally from the terminal

lymphatics.

disease depends on the person [12]. Some lymph nodes may contain disease in this

way indefinitely while others transfer and even accelerate the spread of disease.

An effective flow profile in the lymphatic system maintains healthy tissue and

allows the most efficient transport of immune cells. Currently there is little that

can be done to improve flow; with modern treatments consisting mainly of specialist

massage and bandaging techniques [28].

This section has covered the basic mechanics of the collecting vessels to show they

can be modelled as a contraction wave moving the fluid along an elastic tube, broken

periodically by valves. Any external pumping can be modelled by varying external

pressures. The mechanics of the terminal lymphatics involves flow in smaller tubes

with no intrinsic contractions. When more than one tube is modelled, the fluid

mechanics surrounding bifurcations also become important as discussed in chapter

1. These have been shown to be areas of high wall stress in the cardiovascular

system, although the high Reynolds numbers that make this important are unlikely

to be reached in the lymphatic system. For the cardiovascular system, the effects at
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these divisions of the non-newtonian fluid and asymmetry has also been examined

in work by Chen, Wang et al 2004 [29] and Lu, Wang et al 2002 [30].

2.1 The Anatomy and Physiology of Lymphatic

Vessel Walls

There are three major factors which should be considered relating to the effects of the

walls. The mechanical properties of the walls, the effects of the surrounding structure

and the tethering effects of the anchoring filaments. This study concentrates on the

mechanical properties of the wall. It is logical to start with the simplest factor

to study first, however there is not much known about any of them. This section

starts with the anatomy of lymphatic vessels, containing a brief description of the

anchoring filaments but concentrates on the properties of the walls themselves, the

focus of this part of the project. This is followed by a description of the physics of

the lymphatic vessel walls in section 2.1.2.

2.1.1 Anatomy of Lymphatic Vessels

The walls of lymphatic vessels exhibit elastic properties and contain smooth muscle

as shown in figure 2.3. Smooth muscle is also found in the arteries and the gut and

is able to keep contracting without tiring. Lymphatic vessels are more similar to

veins than arteries (arteries are thicker in order to withstand higher pressures).

According to [31] the combination of materials in the lymphatic vessel walls

is an unusual one, containing not only cardiac smooth but also skeletal muscle and

protein isoforms (these are slightly different versions of the same protein). In man the

smooth muscle is positioned in parallel bundles, with a circumferential orientation.

However this alignment does vary in other animals [12].

In lymphatic vessels larger than 0.2 mm diameter, 3 different layers of the wall

become apparent; the intima, media and adventitia. The inside of the vessel consists

of raised endothelial cells on top of an elastic lamina (which becomes a basement
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Figure 2.3: Microphotograph of a cross section of a collecting lymphatic from a

sheep’s lung from Schmid-Schonbein’s review [11]. SMC shows the layer of smooth

muscle cells, the arrow shows the discontinuous basal lamina and E shows the layer

of long thin endothelial cells at the inner edge of the wall. Lym shows the lymph

fluid contained in the vessel and L a lymphocyte.
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membrane in smaller vessels). In between this and the media is a layer of randomly

orientated collagen and elastin fibers. The media contains layers of smooth muscle

cells. In larger vessels there is a clearer distinction between a longitudinal outer

layer and a circumferential inner layer; except for the valve area which has less or

no smooth muscle. The external layer of advential contains collagen, elastic fibers,

blood vessels and nerves. The inner layer contains dense collaginous fibers and

elastic tissue and the outer contains loose fibroadipose tissue.

Anchoring Filaments

Figure 2.4: The anchoring filaments of lymphatic vessels [3]
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There are reports by Casely Smith [32] that the anchoring filaments (shown in

figure 2.4) hold the vessels open even during Edema. Leak and Burke [3] submitted

that perhaps the vessel is capable of opening itself and according to [33] the filaments

act like springs. It is known that they are a binding mechanism for firm attachment

of the lymphatic capillary wall to adjoining collagen fibres and cells of the connective

tissue. They are similar to microfibrils of extracellular space and seem to originate

from endothelial cells [3] and are constructed from the same material the eye is

suspended by. As discussed above this project concentrates on the properties of the

walls themselves and leaves representation of the anchoring filaments and the rest

of the surrounding structure to future work.

2.1.2 Physiology of Lymphatic Vessels

There is a similar mixture of materials in blood vessel walls. Collagen, elastin and

smooth muscle determine the stiffness of the walls via different ratios under different

conditions [34]. This leads to an alinear stress strain relationship during elastic

deformation (i.e. during the period of reversible deformation) see figure 2.5. When

the vessel is relaxed the wall stresses are predominantly taken up by the elastin and

parallel collagen fibres. When the muscles are contracted it is predominantly the

smooth muscle and series collagen which dominate the material properties.

Intrinsic Pump

The larger collecting lymphatic vessels exhibit an intrinsic pumping mechanism even

when removed from the body [35]. If we return to the image of a contraction wave

passing along an elastic tube broken by valves, as described at the beginning this

chapter. Each chamber or area between two valves can be seen as a mini-heart, with

the chain pumping in sequence. A single such chamber was termed a lymphangion by

Mislin and Schipp [36]. A contraction follows a twisting peristaltic wave travelling

along the vessel, within and between these chambers, travelling at about 4-5 mm/s

[37]. This sequential pumping can be reproduced in isolated perfused lymphatic
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Figure 2.5: The alinear elastic stress strain relationship of relaxed blood vessels

caused by the mixture of collagen, elastin and smooth muscle dominating at different

stresses taken from [17]. KCN- muscle tone is abolished using potassium cyanide ,

NEPi- During strong contraction due to norepinephrine

vessels [35]. Bovine mesenteric lymphatic vessels are the largest lymphatic vessels

which are easily obtainable. This basic contraction wave, found during experiment

can be altered in magnitude and frequency by changing various parameters (e.g.

the inlet and outlet pressures). Zweifach and Prather speculate that the contraction

cycle naturally waxing and waning [27] in frequency.

The pumping sequence has been found to travel both in the direction of flow

and against it, in fact McHale (private correspondence) has found it is most likely

to travel against the direction of flow. The mean flow was found to be the same

whether the wave propagates backwards or forwards, in vivo and in vitro, suggesting

this is a normal form of propagation [38, 39]. This is also examined using our

model in section 7. If the contraction wave follows the direction of flow, some waves

would have to stop at a branch and wait for the other converging waves in order to
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maintain co-ordination, losing efficiency due to the loss in propulsive momentum.

We submit a new hypothesis that a contraction wave against flow, propagated from

the larger vessels to the smaller, would allow for greater synchronicity when passing

bifurcations. With correct timings and the presence of one way valves, it seems

likely that this type of propagation would not be detrimental to flow and may aid

it when the entire network is considered. Furthermore there are areas where breaks

in the normally good synchrony of the wave occur, due to isolated areas of poor

connectivity of nerves and muscles [40]. An interesting study might investigate

whether the position of these breaks in synchrony have any relationship with the

position of branches and the mechanical issues of propagating a wave though a

network.

Although contractions were initially thought to be pressure or stretch driven,

recent evidence suggests that the contractions are predominantly initiated by an

electrical signal while radial stretch only modulates the amplitude and frequency of

contractions [41].

The original theory of contraction initiation assumed the endothelial response to

a certain triggering pressure to be graduated between cells to facilitate coordination

[42, 37]. Each cell was considered to be triggered by a pacemaking response to

high pressure and stretch. This is related to the excitability rate of pacemaker

firing in lymphatic smooth muscle as it is in the sino-atrial node in the heart and

in other types of smooth muscle [38]. The possible placement of pacemaker cells

in the immediate vicinity of the inlet valve has been submitted by Zhang [43].

Endothelial cells throughout the chamber are also part of the pacemaking process.

They are known to respond to shear stress in the walls of blood vessels by emitting

nitric oxide, which effects the dilation of the vessel and there are similar control

mechanisms in lymphatic vessels. Gashev et al [39] also found that imposed flow

(therefore shear stress) inhibits the muscular pumping action and exposure to nitric

oxide partly mimics the effects of flow.

Pacemaking is still credited with initiating a small portion (and the magnitude) of

the contractions but a lymphatic vessel can pump without any need for a transmural
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pressure difference. McHale [40] found a good correlation between electrical and

mechanical activity and during retrograde wave propagation the triggering cannot

be related to the local transmural pressure and so must be due to electrical activity

[39, 38]. McHale and Meharg [38] found that in 80% of cases there was little

or no correlation of lymphangion contraction and pressure maxima, using different

temperature water baths to effect the behaviour of different areas of the vessel. A

cold bath was found to slow the frequency of that area while increasing the frequency

in an adjoining unaltered segment. This showed that the electrical stimulation of

contractions was dominant. The segments remained synchronised, except there

were two contractions in the normal segment for every one in the cold segment. The

muscles do not appear to relax completely even during the relaxed stage of the cycle

as described in section 3.1.

The Branching Network

The branching of the vessels cause further complications to the propagation of the

contraction waves, as discussed above in section 2.1.2 and also can lead to areas of

high shear stresses.

There is some discussion as to whether there are inherent differences in the me-

chanics of the vessels at different points in the network. According to McHale and

Meharg [38] the inherent contraction frequency does not appear to be different

depending on the position in the body the vessel comes from. Conversely, Gashev

et al [44] conclude that there are different strengths and sensitivities of pump to

pressure and flow, relating to the resistance at that point in the body.

Gashev [45] found differences in pumping capabilities of the larger vessels of

the mesentery and thoracic duct in studies on 4 legged animals. The mesenteric

lymphatics were found to be strongly pumping, able to withstand high output resis-

tances, with increased contraction frequency and work to high pressures of 500 Pa (5

cm H2O). The thoracic duct was found to be more sensitive to flow and principally

a conductive vessel which has a maximum pressure of 200-300Pa (2-3 cm H2O). The
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thoracic duct returns lymph fluid to the blood stream and a simple conductive vessel

is all that is required. It follows that this area should have different properties but

this does not necessarily indicate that other areas of the lymphatic system differ to

this extent. It is possible that the lymphatic vessels can adjust to the conditions

they are submitted to (McHale, private correspondence), becoming more sensitive

at lower flows.

Causes of Resistance Within The Lymphatic System

Resistance of the lymphatic system has been shown to drop with flow [46, 47]. This

is due to the ability of the vessels to dilate with shear stress. The coordination of

the contraction and therefore variation in diameter with time will also be important.

Areas with more complicated flow profiles e.g. branches and bends will be likely to

cause greater resistance.

Auckland and Reed [47] discuss whether the pressure drops after passing through

a node [48] or continues to steadily increase as the flow progresses further down

stream (ie up the network) [27]. The resistance of nodes was found to be 50-200

times greater than the resistance of the main vessels by Papp et al [49] and this is

supported by other reports [47]. It is however possible that in these experiments the

nodes were not fully perfused due to cannulation of only one of the afferent vessels,

which could lead to a falsely high resistance.

The valves should also be considered as a factor causing resistance even when

open. To understand the valves contribution to resistance at different pressures and

flows it is important to know how the valves work as discussed in the next section.

2.2 The Lymphatic Valves

The lymphatic valves can be considered to be similar to those of the heart, in terms

of mechanics, efficiency and the importance of flow behind the valve leaflets. The

main differences are the dimensional scales, the range of speed of the liquid through
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the valves and the details of the structure of the valves themselves. The bulbous

areas that can be found behind the lymphatic valve leaflets have been suggested to be

sinuses by Leak and Jamuar [50]. We speculate that these act in a similar manner to

the sinuses in the heart valves, encouraging recirculation and aiding efficient closure

(see chapter 8). Further efficacy may be gained by endothelial extensions on opposite

leaflets [51], which form a tight seal in the closed position allowing the valves to

withstand high retrograde pressures.

The lymphatic valves can also be compared to those in the venous system. How-

ever the differences in the networks cause different distributions of damage in the

two networks [52]. the lymphatic valve damage appears to be more widespread

where it occurs. The lymphatic valves do however have a remarkable ability to

withstand retrograde pressure [51]. The maximum flow and pressures that can be

borne before damage to the valves occurs is highly relevant to cases of edema.

The type of flow makes a difference to the stresses that may be expected within

a valve. Steady laminar flow has been indicated in studies by Gnepp and Green

[53] from observations of the endothelial lining of the lymphatic vessel walls. They

found that the endothelial cells are long and thin, lining up with flow; indicators of

laminar flow (in turbulent flow the cells are likely to be shorter and less aligned).

Laminar flow is likely to cause far less damage to the materials involved.

It is agreed that the valves are all one way valves and are opened or closed

passively, requiring a positive pressure gradient downstream in order to open. There

appears to be little or no muscle in the wall near the valve [53] or in the cusps

or elastic fibres [54] indicating that this is a passive mechanical component. The

anatomy of lymphatic valves is discussed further below but the physiology is detailed

in chapter 8 as it informs the valve modelling detailed there.

2.2.1 The Anatomy of Lymphatic Valves

There is some disagreement within the literature as to the structure of lymphatic

valves. The postulated alternatives are a simple bicuspid description ( [55] Gnepp

25



Figure 2.6: Cat mesenteric lymphatic valve taken from [27] relaxed (A), pumping

(B); scale × 183
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[12], [53]) and a funnel-like structure. The funnel-like structure was reported by

Lauweryns [56, 57] in the lung lymphatics (a similar aperture structure was also

found by Gruntzig et al [58] in the conjunctiva of bovine eyes). Lauweryns found 25

out of 26 valves were funnel shaped and extrapolated this basic structural pattern

throughout the body.

The biscuspid structure is however much more widely reported. Mazzonni [55],

reports the presence of bicuspid valves in the skeletal muscle, McHale (private cor-

respondence) in the mesentery and Gnepp performs further such analysis [12], [53].

Gnepp considers Lauweryn’s [56] extrapolation unwarranted and concludes that the

conical or truncated structure is not part of the large collecting lymphatic channels

and thoracic ducts. He does however conjecture on the possibility of two different

structural patterns for valves.

Figure 2.7: Lymphatic valve schematic by Schmid-Schonbein [11]. This is likely to

be referring to the microlymphatic valves
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The shape described by Schmid-Schonbein’s review of the lymphatic system [11]

shown in figure 2.7 is similar to the funnel shape but has the addition of buttresses

attaching this funnel to the surrounding tube. Schmid-Schonbein’s review centres

around the microlymphatics so it seems most likely that he was representing mi-

crolymphatic valves by this schematic, which would explain its difference to those

most often described in larger vessels. It is unclear whether this shape has been

observed from experiment or is intended as a general shape from a literature sur-

vey. Schmid-Schonbein particularly mentions that the funnel-like shape works well

in soft tissues and viscous flow even with irregular channel shapes and low flow

rates. This would lead to particularly efficient closing on small back flows and the

funnel-like valves can operate under extraordinarily low flow rates without regard

to the shape of the channel in which they are embedded. The efficiency can be

increased by increasing the funnel length or decreasing the diameter as found in the

initial lymphatics. To follow this conjecture on, one could assume that the aperture

section of the valve is only required in the smallest vessels, and becomes smaller as

the vessels increase in size, eventually disappearing altogether.

We speculate that a basic valve structure could look like any of the shapes re-

ported if the dimensions of the funnel, leaflets and buttresses are altered depending

on the required sensitivity and ability to withstand back pressure. It would make

sense if the dimensions were altered in different positions within the body to cope

with different surrounding tissues conditions, size vessels and in order to be more

sensitive in the areas of low pressure gradients. An examination of the valves’ effi-

ciency, sensitivity and retrograde pressure stamina in different positions of the body

would enable improvements of models of the entire network.

In the current study (based on the bovine messentery) the valve structure is

assumed to be the bicuspid shape. The valves in the bovine mesentery have been

extensively investigated by McHale (private correspondence) and can be described

as 2 pouches on opposite sides of the vessel. See figure 2.8 of a schematic of such a

valve developed in collaboration with McHale.

Indeed there has been no contradictory evidence from experiments based on the
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Figure 2.8: Schematic (developed with McHale) of valves constructed from pouches

found in the bovine mesentery
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collecting lymphatics of the mesentery. Measurement of dimensions of lymphatic

valves can be performed from published micrographs eg [59, 53, 50].

2.3 Terminal Lymphatics

The microcirculation of the lymphatic system has many unanswered questions but is

not the focus of this project so only a brief overview is included. The main difference

between the terminal and collecting lymphatics is that the vessels do not contract,

apart from that the mechanics can mainly be considered to be a scaled down version

of those in the collecting lymphatics.

On passing from the interstitium to the lymphatic system tiny valves have been

found and described as flaps of endothelial cell, overlapping the neighbouring cell

[37]. Trzewik [60] fixed sections with the valves open and closed and observed

fluorescent microspheres passing through the endothelium into the lymph vessels.

These microspheres could not be forced out again by increasing the internal pressure.

(Also see section 2.2.1 which speculates on the variation of valve shape to suit the

conditions in a particular vessel.)

There is much speculation about how the liquid is moved into and along the

microlymphatics, where the walls are not able to contract. There are 3 main theories

regarding the transport mechanisms involved:

1) Uptake by osmosis

If a solution of protein (volume 1) is seperated from a volume of water (volume 2) by

a perfect semi-permeable membrane, the smaller water molecules will be ‘drawn’ into

the protein solution to level out the concentration of the two solutions, increasing

the volume of 1. This osmotic pressure is an important method of transport in

the body. However the lymphatics need to also drain the larger proteins. If the

semi-permeable membrane is not perfect it will also let through some of the larger

molecules, however the osmotic pressure will be lower. Curry et al [61] are currently
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investigating the endothelial glycocalyx in the blood circulation for its possible effect

in creating an osmotic pressure for absorption. Perhaps there is a similar mechanism

in the lymphatic vessels.

2) Squeezing of exterior muscles

Moving an arm or leg compresses the lymphatic vessels in that region thereby acting

as a pump. This would not however contribute to fluid propulsion during night rest

and the system does not stop entirely at this time.

3) Pressure drop further up network

As described in [11] the contraction cycle further up the system could cause a large

enough pressure difference to generate flow. This would require a negative pressure

in order to create the necessary back pressure. There is little evidence to support

the vessels’ ability to keep open against an external pressure although the filaments

may help with this (see section 2.4).

The only method of propulsion in the terminal lymphatics that has been uni-

versely agreed upon is the contraction of the external muscles. It does however

seem incredible to this Author that at these low pressures; firstly the fluid gets into

the microlymphatics and secondly, goes anywhere within them.

2.4 Edema

During edema the lymphatic system is unable to drain enough interstitial fluid to

keep the quantity of fluid in the intersitium within the normal limits. This may

be due to a compromised lymphatic system (due to surgery or disease), a larger

amount of fluid in the interstitium (due to excessive leakage from blood vessels)

or both. Certainly each can cause the other. Edema can be very hard to recover

from; it is unclear how much of this is due to damage to the system from the

disorder, or from mechanical effects inherent to the system. The lymphatic vessels
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are abnormally full but the contractions are irregular and of low amplitude [10]. An

already failing lymphatic system is further disabled by the resulting disorder due to

the effects of the high pressures. The lymph capillary pressure goes from around 8

mm Hg (1066 Pa) to 15 mmHg (2000 Pa) in edema [62]

Overstretching (due to high pressure) of the blood vessel walls is well know to

cause damage to the elastic properties of the walls, the muscles in the walls and the

valves (causing such disorders as varicose veins). Therefore in the lymphatic system

one would expect it to have similar detrimental effects on the elasticity of the walls,

integrity of the valves and the ability of the muscles to pump.

According to Picard [52] when lymphatic valve damage occurs it is usually

widespread throughout the system rather than just in the peripheral circulation

as found in veins. During studies into the development of edema Olszewski [63,

10] noted that overloading of the lymphatic vessels lead to dilation of the vessels

throughout the effected limb and therefore damage to the vessels and the valves,

leading to valve incompetency .

In healthy collecting lymphatics the pumping of the vessels themselves - the in-

trinsic pump - is the primary method of transport. This is very important during

night rest, anesthesia and immobilization as well as for those with damaged periph-

eral motor neurons. This mechanism becomes less effective in lymphedema because

it is not able to produce a high pressure difference and the valves are either damaged

or are not efficient at these low gradients [10].

Lymphoedma can remain dormant for years with a brief bout immediately after

surgery only to resurface indefinitely years later. Perhaps this is due to a tendency

for incomplete re-growth of lymphatic vessels over damaged areas [64] which are

inadequate for the volume of drainage needed. A smaller regrown vessel would be

under strain more of the time as it would be overloaded. This could lead to a gradual

build up of damage to the elasticity and the vessel’s ability to pump, even effecting

the competency of the valves. Alternatively, such a vessel is more at risk from a

build up of pressure, causing the disorder itself and possibly damage which would

further exacerbate the disorder.
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The delayed onset of Edema was observed in experiments on dogs by Olszewski

[63]. After an initial onset of edema some regrowth of vessels occurred and the

edema went away. Scars began to form and lymph stasis began to occur 8 months

to years after the original edema. There were two different routes associated with

this. For the first fibrosis of the lymphatics occurred causing loss of permeability of

the terminal lymphatics. In the second route the lymph vessels were dilated causing

valve incompetency, overly compliant vessels and ineffective muscular pumps.

There is some speculation as to whether contractions are detrimental to flow

during lymphoedema, simply adding resistance to an already high flow (this may

depend on the gravitational contribution to flow). Returning to the principle that

during a contraction cycle the vessel never fully relaxes; artificially causing complete

relaxation of the vessel could decrease resistance, conserve energy and increase flow

if the pressure gradient is in the right direction. It may also reduce damage to the

muscles and valves which would otherwise be submitted to a higher strain. The

system would act as a conduit with a larger radius according to [8, 9] (see chapter

9.2). This is supported by the experimental findings of Pippard and Roddie, that

the addition of isoprenaline to a perfusate of saline causes reduction of resistance,

indicating that the muscle tone and/or spontaneous active contractions impede flow

[46, 47]. Olszewski however [10], showed that flow only occurred in leg lymphedema

when there were contractions.

Various effects should be more thoroughly investigated before advising relaxation

of the vessels during lymphoedema. These include gravitational effects, the effects

of a chain of lymphangions, a more realistic network and the possibility of transient

waves when the vessel is completely relaxed. Also see sections 2.1 about the me-

chanics of elastic tubes and section 9.2 which discusses the major current model by

Quick, Stewart and colleagues which suggests the use of relaxation of the vessels

during edema.
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Chapter 3

Computational Modeling

Background

This project centers around a 1-d model of a section of collecting lymphatic vessel.

This uses the 1-d Navier Stokes equations coupled with valve and wall models. This

modelling technique was chosen as a balance between CPU time and the detail of

the flow. This unit could later be taken to form larger areas of lymphatic network

but even at this level begins to show the variation within different parameters which

can be used to inform treatment of the disorder.

Computational Modelling techniques within fluid dynamics have made many no-

table advances in recent years. This has been possible as a result of the increase in

computational power available. These techniques have been applied extensively to

the cardiovascular system and other areas of the body and can be modified to suit

the lymphatic system (where there has been little or no such application). In mod-

elling aspects of the lymphatic system; useful parallels can be found representing the

elastic walled tubes, valves, contraction waves and branching networks. There has

been work worth comparison within the heart and venous valves, blood vessel walls,

bifurcating tubes and their networks (eg in the lungs or blood circulation) and the

peristaltic-like contractions for the transport of urine [65, 14] (this also involves an

intrinsic contraction travelling along an elastic tube).
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Representing the fluid ‘lymph’ is more simple than modelling blood due to the

absence of red blood cells, which have a major effect on the properties of the fluid.

Lymph is a mixture of plasma and proteins [12, 17] and can be assumed to have

properties very similar to water at the current level of modelling detail as described

in section 1.1.1 .

This chapter goes on to discuss the modelling of flow phenomena in collapsible

tubes, the setup of various computational techniques and the previous applications

within this type of problem. In this project the properties of the walls are examined

in 1 dimension (1-d) representing a circular tube (see chapters 5 and 6) and the

valves are examined in 2-d (see chapter 8) giving greater accuracy for this more

complicated shape. This could then be used to inform the 1-d model.

3.1 Modelling Flow Phenomena in Collapsible Tubes

Various phenomena have been found to present at different levels of inflation of a

partially collapsed tube [66, 67, 14, 68] and have proved challenging to model com-

putationally. These include flow seperation and flow induced oscillations. The full

3-d solution (using the Navier Stokes equations coupled to the equations of large dis-

placement shell theory) is just not practical for most biological tube problems [67].

This led to the development of 1-d methods including various adhoc assumptions.

One of these is the tension term, first described in the land mark paper by Cancelli

and Pedley [68]. This allows the representation of self-excited oscillations but cannot

show some other types of oscillation or energy losses due to departure from stream

line flow.

When investigating the major circulation, the compressive force from external

pressure PEXT can cause the tube to buckle, going from a circular to elliptic cross

section. In blood vessels the possibility of transient waves and the characteristic

shapes at different pressures have been extensively explored. In this model of the

Lymphatic system however, it is assumed that no transient waves or buckling oc-

curs (see sections 2.1 and 2.4). The radius simply decreases during a contraction,
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maintaining the circular shape of the vessel. In reality transient waves are likely to

be negated by the contractions although verification of this is left to future work.

In the lymphatic system it appears that the collecting lymphatic tubes are always

partially contracted, generating an internal pressure which makes it less likely that

collapse will occur. The vessels remain partially contracted even at the relaxed phase

of the cycle. Muthuchamy [69] found the diameter in relation to the passive diameter

going from 60 % during systole to 90 % during diastole. This was also confirmed

by the experimental work accompanying this project see section 4. A very small

pressure is required to inflate these vessels, in fact they will inflate simply floating

in a glass of water. Collapse - and therefore these phenomena - are more likely to

occur in completely relaxed vessels; so for the lymphatic system possibly in cases

of edema. Olszewski [10] mentions the presence of superimposed waves in cases of

lymphedema. This phenomena should be thoroughly investigated before artificially

inducing complete relaxation of the smooth muscle during edema and their effects

included in any models which recommend this course of action (eg the model of

Quick, Stewart and Collaborators discussed in section 3.2, also see the section on

edema 2.4).

In the experiments by Arkill in chapter 4 and all of the computational work

during this project, the external pressure is lower than the internal pressure. We

can therefore state that we were not representing any conditions that collapse would

occur in, but the inclusion of the damping (γ) and tension (T) coefficients in the

model should allow for representation of some of the phenomena involved, should

such investigations prove relevant in the future. A 1-d model using these two terms

is now generally considered the limit to how far a 1-d model of an elastic tube can

usefully be modified [14].

Much of the modelling work in this area has been done representing a setup

similar to the Starling Resistor.

A collapsible tube is mounted between two rigid tubes, while the pressure drop P

1 - P2 causes flow Q and radius’ a1 and a2. PEXT can also be used to vary the radii

and flow. This arrangement has been used extensively to investigate oscillations in
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Figure 3.1: The Starling Resistor type setup is often used to model elastic tube

behaviour

collapsible tubes (as the Starling Resistor) but the same setup is useful for examining

elastic tubes in general. This method is still used for in vitro experimentation (see

chapter 4), so it is useful to try to replicate the conditions in a model to match the

parametric configuration. In this experimental set up, contractions can be induced

or prevented and various parameters investigated (including the dynamics of the

walls). Flow can be manipulated using the upstream and downstream pressures,

in order to examine the passive wall properties. For example, as the downstream

pressure increases, just the radius increases as the vessel stretches, without initiating

flow as the valve holds.

In choosing the level of detail for the model , various different modelling methods

were explored from lumped parameter, 1-d, 2-d and 3-d representations. Most

existing models of the lymphatic system are lumped parameter models [70, 71],

except for the model by Reddy from 1975 [4]

3.2 Lumped Parameter Models

0-d or lumped parameter models use electric circuit analogies to represent a system,

these are often based on a setup like the Starling resistor. They are beneficial in
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modelling large complicated systems in combination with other techniques in order

to save on processing time and power. However some lumped parameter models

of the lymphatic system are of small sections of vessel. Work in cardiovascular

mechanics [14] has shown this type of modelling is limited for looking at the detail

of biological systems but has advantages in representing large networks where speed

is required and the parametric detail has already been found from more precise

techniques. Current lumped parameter models of the lymphatic system include work

by Lambert and Benoit [71] and Quick, Stewart and colleagues [8, 9, 70, 15, 72].

The model by Lambert and Benoit is a simple model describing a series of con-

tracting pumps seperated by valves. The rate of lymph flow is decided by the

Starling relationship and the pressure gradient allows filling of the first segment,

while pressure or volume can be set to trigger ejection. Valve competence is ad-

justable and interstitial volume provides the driving force for lymph filling. There is

a choice of a passive or active network (ie just external contractions or the addition

of intrinsic contractions).

The most up to date and extensive lumped parameter model of the lymphatic

system comes from Quick, Stewart and colleagues [70]. This uses blocks of an

electrical analog model and was published from 2003 onwards. These blocks are

connected in series to form a ‘crude transmission model’ using a technique developed

in [73] for modeling vascular haemodynamics and introducing the ‘time-varying

elastance’ in the wall. This time varying elastance concept was originally used to

model the behaviour of the heart by Suga and colleagues in 1972 to 1974 (see [70])

but has also been used to model sections of the arterial tree [74, 73]. This model has

provided significant physiological insights but as a lumped parameter model has its

advantage in larger areas of network and analyse the interaction between the fluid

and elastic walls. It would benefit from a greater understanding of the lymphatic

vessel mechanics from experiment and 1 (or higher ) dimensional models such as the

work presented in this thesis. Currently some details of the wall behaviour such as

the passive relaxation of the wall and the radius peak at the start of contraction are

not presented by this or other lumped parameter models. The variability with time
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in contraction period and magnitude are not included.

The model was first used to describe a single lymphangion [70], but was developed

to represent several lymphangions and has now been used to investigate various

properties including incomplete relaxation in [15], the benefits of the vessels acting

as a conduit rather than a pump in edema in [70] and the necessity of coordinating

contractions in [72]. Their work is discussed further in comparison to our work and

the literature in section 9.2.

3.3 1-d Models

1d models introduce 1 spatial dimension in addition to the time dependence already

considered above. They can provide significant insights that are missed by 0-d

models by including spatial resolution and therefore the interaction between the fluid

mechanical and elastic forces. There are many examples of 1-d models in flexible

tubes [14], some introduce terms to represent additional factors such as the tension

and damping in the walls as shown in equation 3.9. For the detail of modelling

useful in this project a 1 dimensional analysis should be adequate to examine the

behaviour of the walls due to the simple flow involved at this stage (e.g. so we do

not need to model flow separation or turbulence). However 1-d models can fail to

represent some conditions in more complicated flows. If an elastic tube begins to

collapse the shape of the vessel becomes more complicated, with a ‘dip’ at the centre.

This causes the flow to separate and the resistance will not be accurately represented

using only 1 spatial dimension. Secondly different types of oscillations can develop

in elastic walls; some unstable modes of such oscillations cannot be represented in

1-d models. Lastly 1-d models cannot show viscous dissipation at high Reynold’s

number (Re) flows, however the Re numbers for the lymphatic vessels are relatively

low.
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3.3.1 Reddy

Surprisingly, the most detailed 1-d analyses of the lymphatic system was completed

by Reddy as long ago as 1975 [4]. This was based on the Navier Stokes equations,

coupled with a wall model in which it was assumed to be a thin walled tube.

The laws of mass and momentum for the axisymmetrial flow of an incompressible

Newtonian fluid in a cylindrical tube.
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Figure 3.2: The coordinate system used by Reddy [4]

Symbol Parameter

h velocity in the axial direction

x axial coordinate

Tr radial coordinate

τ shear stress

ρ density

g gravity

p pressure

t time

Q flow

Table 3.1: Symbols used by Reddy [4]
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where τ is the shear stress, Q the flow, a the radius, P the pressure and x the

longitudinal position)

Reddy went on to represent the whole system by extending this model [6]. He

used 1 computational cell to represent each lymphangion.

Stembera, Marsik and colleagues [75, 76] actually produced a model of blood

vessels; but it is a good example of the progress in one dimensional models and the

techniques are easily transferable. Since Reddy’s work it has become accepted prac-

tice in Biofluids to use ‘the tube law’, which assumes a thick walled tube. Stembera

and Marsik’s model also has the addition of a damping term and one to represent

longitudinal tension as explained in section 3.3.2.

Using these extra terms Stembera and Marsik describe the thick walled tube

equation as below.

p− pe = φ

(
A

A0

)
− T

D0

δ2A

δx2
+ γ

δA

δt
(3.8)

3.3.2 General 1d Method

This section outlines a general method for modelling elastic tubes based on the

work of Reddy and using additional terms from Stembera and Marsik (which are

also mentioned in Grotberg and Jensen’s review [14]) .

In the most recent one dimensional wall models of flexible tubes, partial differ-

ential equations - the Navier Stokes equations - are used representing mass and

momentum conservation as described in section 3.3.1 (also see section 5 for more on

their application) .

These Navier Stokes equations are coupled with a pressure/area relation. Reddy’s

work [4] uses a simplification of the standard ‘Thick Walled Tube’ equation and

assumes a thin walled vessel which does not change in thickness and is a uniform

elasticity. A more detailed version of Reddy’s work could use this standard thick

walled tube model [14, 19].
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∆P = E∆a2
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(a2
out − a2

in)

2(1− σ2)a2
inaout

(3.9)

where E is the Young’s modulus, σ is the Poisson’s ratio, aout the exterior radius

and aint = interior radius.

Flexible tubes can give rise to various interesting phenomena, including elastic

jumps, choking and separated flow which can all lead to instability in a 1d computer

model. Additional terms have been developed in various 1d models to approximate

the consequence of these effects, which are not automatically represented by a 1d

model [14]. These aid the stability of the system and prevent singular behaviour.

The most important of the additional terms is the tension term T αxx, which approx-

imates the effects of longitudinal tension T, where αxx is the longitudinal curvature of

the wall [14]. Further representative terms include bending stiffness, wall damping

and wall inertia. Stembera and Marsik [75] use a simple yet effective combination

of this tension term and a damping coefficient as shown in equation 3.9.

3.4 2d/3d Modelling

The following section discusses relevant techniques and applications with 2-d and

3-d modelling. These techniques may be required in areas of biofluid research involv-

ing more intricate mechanics such as occur during flow seperation and turbulence.

Greater resolution may be required in order to represent such phenomena in a sta-

ble and accurate manner. There has not been any previous attempts to study the

lymphatic system to this detail but these techniques have been used to model valves

(including heart valves [77]), buckling, seperated flow and aneurysms [78].

3.4.1 Method

There are various packages available which can be used to model 2 or 3 dimensional

flow for example, Fluent (the commercial code chosen for this project). The external

structure is first generated using software such as Gambit (commercial code). A
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mesh can also be generated using MRI or micro CT scans of the actual vessel material

which can be translated to Fluent using software such as Simpleware (commercial

code). Most CFD modelling programs use the Navier-Stokes equations in 2 or 3

dimensions.

Firstly this type of model can be static, a freeze frame of conditions taken to

convergence. Secondly it can be dynamic, a step by step sequence in time which

must be converged at each time step (and is therefore much more time consuming).

The static models save on processing time and are therefore ideal for modelling

conditions that do not change with time while a dynamic model is necessary for

modelling varying conditions.

Fluid Structure Interaction (FSI) can be used to model both the fluid and the

surrounding structure (ie the vessel walls) in detail, although there are other ways

of approximating these effects. Usually solving FSI problems involves linking two

seperate computer codes (although there are programs such as OpenFOAM which

are able to perform complete FSI). Usually one program (e.g. Fluent the commercial

CFD code) calculates the motion of the fluid to convergence and passes the solu-

tion to the other program (e.g. Abacus, the commercial stress analysis program).

This second program can then calculate the resulting structural motion of the solid

element. The fluid mesh must then be updated to account for this motion. The

solutions are thus passed back and forth until there is no further change in either. A

third program is usually required in order to control the passing of the information

between the first two (eg MPCCI commercial code). Unfortunately full FSI in 2

or 3-d is a very time consuming technique (for example a PhD has recently been

awarded for the modelling of a single heart valve leaflet in this manner).

Fluent does however also contain capabilities for approximating the motion of

solid materials (without solving the full stress problem) as well as the full solution

for the fluid. Either the motion must be prescribed or the fluid can effect the motion

of simple shapes based on their moments of inertia. This is termed 6 DOF modelling

within Fluent.

For the valve modelling during this project the 2-d approximations allowed within
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Fluent are considered to give an accurate enough solution, for the more detailled

study of the valve in chapter 8 given the wide scope of this project.

3.5 Multidimensional Modeling of Other Systems

This thesis begins to work towards another focus of modern research within Biofluids;

using a combination of the available techniques to patch together information over a

larger area (in this case the lymphatic system. Existing examples include larger areas

of circulatory networks modelled using 1-d/0-d techniques and informed by more

detailed 2-d/3-d models. A research group at Sheffield University have used multi-

scaled modelling to represent the left ventricle and the behaviour of a prosthetic

heart valve [79]. A particularly extreme example is the ‘Physiome Project’, an

international consortium working towards a whole body system, led by Hunter from

Auckland University in New Zealand and described during the Plenary lecture at

the 5th World Congress of Biomechanics .

For the lymphatic system it is logical to look at the valves and the walls in detail

(2-d or -3d ) and then model the overall system using those results in a 1-d or/and

a 0-d model.

3.5.1 Heart Valve Models

Modelling of heart valves started with the work by Hung and Schuessler, and Au and

Greenfield [80, 81] in the 1970s. Some of these numerical experiments have focused

more on evaluating heart prosthetics and designing new ones such as the work by

Hose, Narracott et al [82], who developed a model of a single leaflet mechanical valve

to evaluate a simple analytical method to aid design of prothetic valves. However

this section aims to focus mainly on the work involving modelling the native valves

which are likely to perform similar mechanics to the lymphatic valves. In the 1970s,

2-d models were formed using a vorticity-stream function formulation of the Navier-

Stokes equations. This proved to be convenient for 2-d but not 3-d analysis. Hung
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and Schuessler [80] used this work as an aid to the design of heart valve prosthesis.

They were able to include leaflet motion by manipulating the boundary conditions

on the leaflet surface.

In order to predict 2-d fluid structure interactions, Peskin [83] developed an

immersed boundary method to couple blood flow to the structure of the heart and

its valves. They then used it to predict flow through the mitral valve mounted in a

straight tube and in the left heart chamber in [84]. They then went on to use it for

prosthetic valve modelling. The early model was only valid for a low Re [85] but

this was later extended to account for a larger Re, showing no qualitative differences

between flow at Re = 20 or Re=200. (Our calculations for Reynolds number from

the experimental work in chapter 8 give a value of 56, falling inside this region.) A

further 2-d solution was provided by De Hart et al [86] who developed a 2-d fictitious

domain finite element code to predict the unsteady flow in the aortic valve.

3-d models began to be developed in the mid to late 1990s. Computer resources

allowed research into 3-d simulations of mechanical heart valves. Often this had to

be done on only a fraction of the valve due to the computing time involved.

Peskin and McQueen [87, 88] extended their 2-d immersed boundary method to

3-d and computed the flow in the whole heart (although the Re was much lower

than in the physiological range. Their method was also applied to heart valves [89].

There are however problems extending this method to predict the turbulent flow

that often occurs in diseased or mechanical heart valves.

De Hart et al [90, 91] extended their fictitious domain fluid structure interaction

code into 3-d. They used this to predict the flow and motion of a type of prosthetic

valve and the native heart valve.
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Chapter 4

Experimental Methods

4.1 Introduction

In partnership to this computational project, Kenton Arkill undertook experimental

work (see sections 4.2.1 and 4.2.2) to provide input reference data and in vitro data

to compare the computational model against. The discussion and conclusions in

sections 4.2.3 and 4.2.4 are informed by the group’s research and section 4.3 contains

a table of relevant experimental parameters from literature and Arkill’s experiments.

4.2 Experimental Work

4.2.1 General Method

Collecting lymphatics were excised from bovine mesentery at an abattoir (AIBP,

Clones, Co. Monaghan, Ireland or Stillmans, Taunton UK) immediately after death,

before the fatty tissue could solidify. The vessels were placed in normal Krebs

solution (with 95% O2, 5% CO2 gas mix, BOC) and kept at 4 C until warmed for

use at 37 C. The vessels were cannulated at both ends and immersed in a purpose-

built, Krebs-filled bath at 37 C and connected to pressure reservoirs at both ends.

Pressure transducers (RS components) were placed in the inflow and outflow lines.

49



Typically the vessel segment contained 2-4 lymphangions. A typical vessel is shown

in figure 4.1.

Figure 4.1: An isolated perfused lymphatic vessel scale × 0.71

Static Compliance

L For static compliance measurements the vessels were imaged with a long focal

length microscope (adapted Wild 10) with a Nikon Coolpix 4500 camera attached.

The external diameter was measured as lumenal pressure was varied between 0 Pa

and 1500 Pa, with particular attention to the 0 - 500 Pa range where little previous

data is available [92, 5]. The preparation was stabilized before measurement by

performing a number of cycles over the full pressure range and images were acquired

immediately after each pressure step.

Young’s Modulus

The Young’s modulus was calculated using the ‘thick walled tube’ model (see sec-

tion 3.3.2). The major uncertainty in the calculation was the evaluation of the

wall thickness. Several methods of obtaining the wall thickness were investigated

(including density measurements, histological sectioning and traveling microscopy).

The most consistent method was to add Evans Blue to the lumen after the pressure-
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radius measurements had been taken which rendered the inner wall clearly visible

and measurements could then be obtained from the digital images.

Dynamic - Radius time Relationships

Pumping vessels were observed using a video camera (Canon XL2 Mini DV) in the

same experimental apparatus. Stills were taken from the output video to deter-

mine radius-time relationships. Pressure-diameter measurements were taken in the

maximum and minimum contractile state.

Damping Coefficient

γ
∂A

∂t
(4.1)

The damping coefficient, γ described in section 5.3.1, was obtained by use of a

purpose-made mechanical testing rig. Loops of vessel approximately 1.5 mm long

were placed over 2 steel rods (0.8 mm diameter), one fixed and attached to a force

transducer and the other to a computer-controlled stepper motor. The vessels were

stretched and relaxed 6 times at 0.09 mm/s before force-extension data was taken at

extension rates between 0.09 and 0.50 mm/s. γ was calculated, determined as the

gradient of the force against strain rate (at constant strain) curve. The area of the

sample was defined as the width of the loop. The thickness was determined from

photographs being clearly visible around the support wire. The extension was taken

within the toe region of the force-extension curve, which covers the physiologically

relevant range.

4.2.2 Results/Discussion

Static Compliance

The images were analyzed in Image J (NIH, USA) to derive the diameter at several

locations along the vessel. The resolution was 7.5µm per pixel.
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Static compliance measurements all showed the same characteristic shape, illus-

trated in figure 4.2 Initially there is a linear slope followed by a sharp transition to

a region where the vessel no longer expands with increased pressure.

Figure 4.2: Experimental results for static compliance

Young’s Modulus

The calculated Young’s modulus is (1200± 700) N/m2 (n = 10 samples measured),

which agrees with the results of Deng et al [5], though it is lower than other reports

e.g. [92]. The variance in the measurements was largely due to uncertainties in

the wall thickness and the initial diameter measurements. The marked increase in

Young’s modulus occurred at a strain of 1.1 ± 0.4. No consistent pattern of variation

in elastic properties along a lymphangion could be established.

Dynamic Characteristics

The effects of mean luminal pressure (with no net pressure gradient along the ves-

sel) on contractability are shown in figure 4.3, which agrees with previous work by

Gashev et al [44] and Muthuchamy et al [69]. In relaxed vessels there is an initial
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Figure 4.3: Compliance of a pumping vessel from experiment

linear section followed by a pressure-independent region of lower compliance. So the

relaxed dynamic results show a similar shape to the static compliance curve. In the

contracted vessel an almost converse pattern is observed with an initial pressure in-

dependent region giving way to a linear portion. The slopes of the two linear regions

are almost identical. The largest contractile radius change occurs at approximately

the radius and pressure at which the change in Young’s modulus occurs.

The radius-time measurements during pumping as shown in figure 4.4 showed

a distinctive ‘shark fin’ shape over the cycle with a short contractive phase and a

longer relaxation phase. The radius variation is slightly greater in amplitude at the

mid-point of the lymphangion than at the valve. There is also a sharp increase in

diameter immediately before the onset of the contractile phase in the vicinity of the

valve, which is not evident elsewhere. In the trace shown in figure 4.4 the contractile

wave is in the opposite direction to the flow direction. The pressure therefore peaks

at the valve as the fluid is trapped between the contractile wave and the closed valve.
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Figure 4.4: Dynamic radius - time from experiment

Damping Coefficient γ

The damping coefficient, γ, has a value of (7.0 ± 3.0)107 Ns/m4 (10 measurements

from 5 different vessels). Much of the error arises from the difficulty in determining

the point of zero extension as well as the error in wall thickness.

Period

The period was found from the radius time results and varied between 20 and 40

seconds in different vessels.

Speed of Contraction of Wave

A speed of a contraction wave along a 4 cm length of contracting isolated lymphatic

vessel was observed using time stills, recording the time for the start of contraction

to reach 4 cm along the vessel, was recorded for several repeats. The result of 20

mm/s was intended as a ball park figure for use in the parametric study in chapter

6. From this the phase difference could be calculated, which was used as an input

for the 1d model as described in chapter 6. The maximum speed of the fluid was
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found to be approximately 20 mm/s. This was also intended as a rough estimate

for further exploration in chapter 6. This was found using the video of the pumping

vessel and by timing the progress of a bubble inside the vessel, which allowed us to

see the rate of flow inside.

Tension

An estimation for the longitudinal tension T in the lymphatic vessel walls was found

by using the following equation:-

T = kP (4.2)

where k=5. This comes from the equation from work by Patel and Vaishnav in

[18] :-

Sz =
P

2

(a
h
− 1
)

+
F

2πah
(4.3)

Where Sz is the longitudinal stress. The effects of longitudinal tethering can be

ignored, so the second term F
2πRh

can be removed.

SZ =
P

2

(
R

h
− 1

)
(4.4)

Arkill found that the thickness of the wall was approximately 10% of the radius,

since R
h
� 1, this can be further simplified to

SZ =
PR

2h
(4.5)

where R
2h

is constant therefore Sz = kp where k=5.

These assumptions give a maximum error of 50h
R

% [18]. So for a wall thickness

of 10% R a maximum of 5% error
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4.2.3 Discussion

The physiological measurements showed considerable variations between vessels. We

measured the Young’s modulus E for static (non-pumping) lymphangions, and also

for individual lymphangions during pumping. The average value of E from the

static lymphangions agrees with published values; however the values covered a

large range. Much of this variation is likely to be due to factors such as vessel

size, position within the system, and animal age, which have not been controlled

for (age was partially controlled as all samples here were taken from bovines aged

18 - 36 months). In individual vessels the E values measured for the pumping

lymphangions were significantly larger. Perhaps coincidentally, the lymphangions

that we successfully set to pump tended to be larger in size as well. Further work

to quantify this variability would be valuable, but our immediate concern was the

difficulties it created in the choice of parameters for modeling, necessitating an

investigation of parameter sensitivity. For our standard 1-d model, as described in

the following chapters, we adopted the value of Erelaxed = 2500 N/m2, being in the

middle of the range of our measurements and the experimental values.

Two mechanical parameters that have not been considered previously in the lit-

erature for the lymphatic system are the damping coefficient γ and the tension

T. These are investigated further in chapter 5 in order to aid stability of the 1-d

computational model.

4.2.4 Conclusions

This Experimental Study provides a useful basis and validation for the modelling of

a lymphatic vessel in the following chapters.

We found that the pumping of the lymphangion depends on both the passive

and active behavior of the wall. Both the passive and contracted elastic modulus E

exhibit two clearly distinct phases, with a low E state initially switching to a high-E

state at larger strains see figures 4.2 and 4.3. The effect of muscle contraction is to

move these states to higher stresses, leading to the curves shown in figure 4.3.These
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two different regions of the stress strain relationships are due to a different material

(and therefore its characteristics) in the vessel walls being dominant under different

loads.

4.3 Parameters

This section contains a survey of the literature to determine previously measured

values for the parameters of interest. Table 4.1 contains a summary of this infor-

mation. When using the literature results for flow, the method used to obtain the

lymph flow should be considered. As Quick et al 2007 [70] note, the standard

method of calculating lymph flow using the ejection fraction and contraction fre-

quency to calculate lymph flow is a very unreliable method as it does not account

for any passive flow.
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Symbol Description

O Ovine (Sheep)

H Human

B Bovine (cow)

GP Guinea Pig)

R Rat

C Canine

M Mesentery

T thoracic Duct

L Leg

A All parts of the body

EC Circumferential Young’s modulus

a Radius

δa Change in radius over cycle

L Length of Lymphangion

h Wall Thickness

V Volume

FE Ejection Fraction

U Velocity

W Wave

Q Flow

TP Period

TC Contraction time

P Pressure

POV Pressure to open valve

PSV Stamina of valve

∆ PW Change in pressure due to contraction wave

Table 4.2: The abbreviations used in table 4.1
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Chapter 5

1-d Modelling

5.1 Introduction

Reddy’s 1-d model [4] could be brought up to date using some of the modern

standard practices; for example the ‘Tube Law’ and additional terms can be added.

The model by Stembera and Marsik [75] is a simple but effective combination of the

techniques that can be useful to work from which includes extra terms to represent

factors otherwise missing from 1d models. Beyond this, further complication of the

computational techniques to model the elastic tube behaviour within a 1-d upwind

differencing model would lead to little benefit, due to the limitations of 1-d analysis.

The first step in developing a 1-d model of the lymphatic system was to implement

and update the most detailed existing model of the lymphatic system introduced

by Reddy [4]. This chapter describes this implementation using the finite volume

technique and upwind differencing scheme. Further adaptations to increase stability

were found to be necessary.

5.2 The Reddy Model

A length of lymphatic vessel was represented in Matlab as a series of computational

nodes, one lymphangion (ie area separated by valves) per node. Each cell was
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arranged so only positive flow was possible by setting the flow to zero if it became

negative, thus representing the opening and closing of the valves. The Navier Stokes

equations were used to describe this flow and were simplified to a 1-d version as in

Reddy’s method, as shown below (see chapter 3 for derivation).

Figure 5.1: Section of a collecting lymphatic vessel and computer model schematic

of the same vessel

The mass conservation or the continuity equation was used as shown below.

∂Q

∂x
=
−2Q

a
|r=a

The momentum conservation equation completes the use of the Navier Stokes

equations in 1-d.

∂Q

∂t
= −πa

2

ρ

∂

∂x
[p+ ρgz] +

2πa

ρ
τ |r=a

These Navier Stokes equations were then coupled with a pressure radius relation-

ship. To bring the Reddy method in line with standard Haemodynamics modelling

techniques the thin walled tube model was replaced with the modern standard; the

thick walled tube model (also see chapter 3). The thin walled tube model is derived

from the thick walled tube model, assuming the stress is uniform, the thickness is
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small compared with the diameter and the internal and external diameters are ap-

proximately equal [1]. Therefore the thick walled tube model contains less errors,

the thin walled tube model has a maximum error of 50h
R

% for circumferential stress

as discussed in the previous chapter.

The pressure radius relationship for a thick walled tube was shown by Bergel in

[19]

∆P = E∆a2
out

(a2
out − a2

in)

2 (1− σ2) a2
inaout

where aout refers to the outer radius of the vessel, and ain - the inner. So if h is

the wall thickness:-

aout = ain + h

The use of this equation includes the assumption that the length of the vessel

does not vary with pressure. Observations of the in vitro pumping vessels indicate

that any longitudinal variation is secondary to the circumferential variation and this

may be reduced further in situ by the anchoring filaments. Further exploration of

longitudinal variation is left to future work.

5.2.1 Discretisation

Reddy’s use of the explicit upwind differencing scheme was followed for the finite

volume technique. This will help to stabilise the numerical scheme. The mass

conservation equation is discretised to the form:

dai
dt

=
1

2πaili
[Qi−1 −Qi] (5.1)

aji = dt
1

2πaj−1
i lj−1

i

[
Qj−1
i−1 −Q

j−1
i

]
+ aj−1

i (5.2)
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where i-1 refers to the data for the computational cell to the left of the focus cell

and j is the current timestep.

The moment conservation equation becomes;

ρ
dQi

dt
=
π
(
a2
i + a2

i+1

)
(li + li+1)

[pi + pi+1]− 4µ

(
1

a2
i

+
1

a2
i+1

)
Qi −Rvi (5.3)

or:-

Qj
i =

dt

ρ

π
((
aj−1
i

)2
+
(
aj−1
i+1

)2
)

(
lj−1
i + lj−1

i+1

) [
pj−1
i + pj−1

i+1

] (5.4)

−dt
ρ

[
4µ

(
1(

aj−1
i

)2 +
1(

aj−1
i+1

)2

)
Qj−1
i −Rvj−1

i +Qj−1
i

]
(5.5)

Reddy [4] uses the equation below to describe resistance. He explains this is

based on experimental results giving the pressure to trigger opening of the valve as

120 dyn/cm2 (12 N/m). However we have not been able to understand how this

equation was derived and the units are inconsistent.

Rvi = 120
(
πr2

0i

)
(5.6)

where r0i is the resting radius of lymphangion i

He states dimensions of dyn/cm (which are required in order to use this term in

the momentum conservation equation). The equation includes a pressure times an

area, which would need a further length term to give the attributed units. It is not

clear whether this was a mistake in the units or the equation.

In order to try and retain the spirit of this way of modelling the valve we used

Reddy’ s equation with a constant kr representing the opening threshold as below:-

Rvi = kr
(
πr2

0i

)
(5.7)
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The constant kr was varied between 12 and 1200 and this did not have an effect

on the results as the resistance was very low using this range of values. A possible

improvement for modelling the valve resistance is discussed in chapter 8, where

decreasing gap, increases the resistance, unlike this original equation.

Thick Walled Tube Equation:

P j
i =

((
aji
)2 −

(
a0
i

)2
)
E

[(
(a0
i )

2
+ h
)
−
(

(a0
i )

2
)]

2 (1− σ2) (a0
i )

2
(a0
i + h)

− P0 (5.8)

where a0
i is the radius at pressure P0

i and P0
i is 0 Pa.

The contraction is added by attributing a sine wave to each node. The phase

difference φ determines the wave speed by effecting the relative position in the cycle

of each computational cell at any one time. Aamp is amplitude of the wave, t is time,

f frequency and x can be E or A0 depending on the method of the driving function

as described in section 7.3.

x (t) = Aampsin (2πft+ φ) (5.9)

Reddy included a second sine wave to represent breathing, which dominates his

results. We wished to compare the model to in vitro results and so omitted breathing

from the model.

5.2.2 Results/Discussion

The low frequency elements in Reddy’s results shown in figure 5.2 can be ignored

as they are the representation of breathing, which we have omitted as explained

above. The high frequency elements of Reddy’s work, which are not going to be

effected by the low frequency breathing, demonstrated a very similar magnitude to

the oscillations in our results. (see figure 5.3 graphs a to c). They are however
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Figure 5.2: Results for flow in the 39th lymphangion taken from Reddy’s model

[4], where the low frequency elements represent breathing (which has been omitted

from the current study) and the high frequency elements resemble the computational

instability in our results. To compare with graphs of our results in figures 5.3 and

5.4 the units must be converted from ml/s to mm3/s by a factor of times 1000)

reminiscent of computational instabilities. Therefore these investigations lead on to

an examination of the stability of the model.

5.3 Adaptions to the Reddy model

5.3.1 Stability

Our implementation reproduced Reddy’s results see figures 5.2 and 5.3 a-c. Please

note that the units on Reddy’s graph are in ml/s rather than mm3/s (which are the

units on our results). The timestep was then varied in order to find the highest value

which did not effect results. Unfortunately at the time step Reddy has used the size

and magnitude of the oscillations was found to be effected by varying the timestep.

Such instability at this magnitude of timestep has been found to be one of the

drawbacks of the use of a 1-d explicit scheme in modelling elastic tubes. This type

of instability depends on the Deborah number (De), which measures the fluidity of a
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material. This is a ratio of the relaxation time scale (tc, characterizing the intrinsic

fluidity of the material) and the time scale of observation (tp e.g. the time scale of

an experiment or a computer simulation). For a smaller Deborah number the wall

material appears more fluid [102].

De =
tc
tp

(5.10)

As discussed in chapter 3 techniques have been developed to improve stability of

such schemes with a combination of additional terms, appropriate timesteps and by

graduating any changes within the program.

Larger timesteps were shown to give more frequent and larger oscillations, some-

times causing a divergence to infinity. Therefore the timesteps were reduced until the

size no longer affected the results. However this significantly affected the processing

time. Various other measures to improve stability were investigated. After imple-

menting these measures the timestep could be increased, improving the processing

time.

The initial transience presented by the computational model (i.e. the larger

oscillations found at the start of some runs during settling) and the rate at which

changes were imposed, transpired to have a large importance in terms of the eventual

stability of the case. The model was therefore altered so there were no sudden, sharp

changes imposed on the system. Gradual changes reflect the physiological situation

much more accurately than the sudden sharp changes of the original setup. The

starting pressures along the vessel were set to values from a standard, settled run to

minimise any initial transience. Any changes imposed on the vessel during a run were

ensured to happen smoothly, so the contractions were modelled using a sine wave.

The valves were set up to gradually open or close (rather than instantaneously)

using a slope calculated from the expected maximum and minimum. There is no

data available on the opening/closing times of the lymphatic valves and the only
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Figure 5.3: Implementation of Reddy’s model at various positions along the segment

(lymphangions 1-4). With (d radius time, e pressure time and f flow time) and

without (a radius time, b pressure time, and c flow time) stability measures (these

include a smaller timestep, imposing only gradual changes within the program and

the addition of the damping (γ) and tension (T) terms). The magnitude of the

spikes are similar to those found by Reddy in figure 5.2 once the change in units is

performed ( for mm3/s to ml/s divide by 1000)
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Parameter Symbol Standard Range

Time Step(s) dt 0.000002 0.01-0.0000001

Number of nodes per lymphangion 1

Number of Lymphangions 4

Young’s Modulus (N/m2) E 5000 -

Radius (unstretched) (mm) A0 1.25 -

Damping Coefficient (Pa s m) γ 7 x 107 7 x 105 - 2 x108

Tension (Pa/m) T kP see k

Tension factor k 5 0.2 - 5

Phase (radians) φ π/40 -

Amplitude (%) aamp 0.838 -

Valve opening/closing time (ms) Tv 20 0-20

Valve Triggering Pressure (Pa) Pv 10 2 - 100

Period (s) Tp 2 -

Contraction Time (s) Tc 1 -

Length of lymphangion (mm) L 2 -

Pressure in (Pa) Pin 500 -

Pressure out (Pa) Pout 800 -

Pressure difference (Pa) dP 300 -

Viscosity (Kg/m3) µ 0.0008904 N/A

Density (Kg/m3) ρ 998 N/A

Poisson’s Ratio σ 0.5

Table 5.1: The variables used for the Reddy implementation, where the number of

lymphangions excludes the two boundary nodes
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reference point we have is the heart valves. The literature reports the heart valves

taking between 20 and 160 ms to open or close [103, 23]

The model uses 10000 timesteps which translates as 20 ms for a standard run,

the lowest of these values. This value was also large enough to prevent instabilities

caused by the valve opening or closing too fast and seems to be physiologically

possible when compared to the heart valves.

These measures were found to reduce the initial transience of the system, increase

the likelihood of a successfully convergent solution and cut out large numbers of

oscillations leaving the radius profiles looking much more like those found in practice.

It was also possible to increase the size of the time step a little and retain the same

stable solution.

The Valve Setup

In addition to graduation of the opening and closing of the valve (as described above)

it was also found to be necessary to set the opening pressure for the valve higher than

the closing pressure. Without this the valve tended to flutter, opening and closing

in short succession. This also fits with the mechanics of the heart valves, which

have a higher pressure to open than close. The pressure during closing of the heart

valve rises above zero but remains lower than the pressure required to open the valve

‘the opening threshold’ . If the opening threshold was too low this increase during

closing would trigger another opening, before it was fully closed. It seems likely that

a too low opening threshold was causing fluttering in the lymphatic model. Also see

chapter 8 which examines the behaviour of the valve in further detail.

On testing a very high triggering pressure, this prevented flow as the pressure

produced by the contraction was not high enough to over come this.

A pressure of 10 Pa was set as the opening threshold and the closing pressure was

set to zero for the standard set up. This differential of 10Pa between the opening

and closing pressure was large enough to avoid fluttering. Any larger values simply

made the pressure peak at the beginning of the cycle larger and had little effect on
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the rest of the cycle as long as the contraction produced enough pressure to over

come it.

Damping Constant

A damping term was added as used in the work by Stembera and Marsik [75], using

the damping constant γ found in chapter 4.

γ
∂A

∂t
(5.11)

This is added to the Thick Walled Tube equation, which becomes:-

∆P = E∆a2
out

(a2
out − a2

in)

2(1− σ2)a2
inaout

+ γ
∂A

∂t
(5.12)

which is discretised to become

(
γπ2aji

) (aj+1
i − aji

)
dt

(5.13)

This damping term can be thought of as the inertia of the wall and begins to

account for the viscoelasticity of the material. Our experimental work found a value

for this term (see chapter 4) to be 7 x 107 Pa s m−2. This was higher than the

value found for blood vessels by Stembera and Marsik [75](1 x 106 Pa s m−2 ), this

difference can be accounted for by the difference in material properties of the two

types of vessel [31], also see chapter 2 . Initially a value of 1 x 109 Pa s m−2 was

required as the damping constant in order to damp out all the oscillations but as

other measures were included this became less important and could even be taken

below the value found for experiment without causing instabilities. The effect of

varying γ is investigated further in section 6.2. γ is not the only cause of instability

but can be artificially increased to improve stability.
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Tension Term

A tension term Tαxx was also added using the tension T calculated in chapter 4.

This term can be thought of as contribution of the longitudinal tension in the vessel

wall and may be especially important when a wave front distend a vessel wall.

− T

D0

δ2A

δx2
(5.14)

The term T can be found as the longitudinal stresses due to the intraluminal

pressure are essentially only dependent on the ratio of the radius to the thickness of

the walls [18]. As found in chapter 4

SZ = kP (5.15)

where Sz = T and k=5.

This is also added to the Thick Walled Tube equation, which becomes:

∆P = E∆a2
out

(a2
out − a2

in)

2 (1− σ2) a2
inaout

+ γ
∂A

∂t
−
[
T

D0

∂2A

∂x2

]
(5.16)

This is discretised to become:

2Tπaji

[(
aji+1

)2 − 2
(
aji
)2

+
(
aji−1

)2
]

l2
(5.17)

Grotberg and Jensen [14] suggest this is the most important of all the additional

terms for models of the cardiovascular system.

An experimental value for Tension T was found to be approximately kP, where

k is 5 and P the pressure, also see the experimental work in chapter 4. A larger k

was required for stability, if this was the only stabilizing measure included. As for

γ an artificial increase improved stability.

The constant k was varied between 0.2 and 5 in the parametric study in section

6.2 .
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Optimum Set Up

The optimum modelling set up was considered to be the set up which allowed sta-

bility with the largest time step without effecting the results. Each of the measures

was incorporated on its own one at a time, using the experimental values for γ and

the tension constant k. These measures were then varied until stability was reached

using that measure alone; at this point both the value for the damping constant γ

and tension constant T were higher than the experimental value. Secondly all of

the measures were added at once.

The optimum set up was found to be when all of the stabilizing measures were

included. The tension T and damping γ terms became more flexible once the

other measures were included and could be lowered to match those found during

experiment without detrimental effects to the stability.

This optimum set up is compared to that of the initial Reddy implementation in

figures 5.4 and 5.3 windows d-f. This shows the removal of all the high frequency

components found in a-c and the results look much more like the results found during

experiment in chapter 4.

5.4 Model Validation

Poiseuille’s law describes flow in a stiff tube with uniform radius [1]

Q =
π

8µ
R4 δP

L
(5.18)

Where Q is flow, µ is viscosity, P is pressure, L is length and R is radius. We

wanted to use this relationship to check our code was behaving as expected. In order

to do this the elasticity of the vessel was increased dramatically to approximate a

stiff tube, without any drastic changes to the code and to minimise the variation

in radius along the tube. The same number of computational cells were used but
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the valves were removed and passive flow was set up with a pressure drop of 300 Pa

along the vessel.

As can been seen in table 5.3, the flow output from the model was the same as the

flow calculated by the Poiseuille equation demonstrating that the code is working

as expected. At this high Young’s modulus the radius in the model remained the

same to within 3 significant figures.

The Poiseuille equation can be extended to account for elasticity in the walls of

the vessel as described in the following equation [104]

Q =
π

20µαL

[
(a1)5 − (aL)5] (5.19)

where, α describes the pressure radius relationship,

α =
2 (a− a0)

dP
(5.20)

where a1 is the radius at the inlet of the vessel if it starts off at pressure P1 and

the pressure at the downstream end is then reduced to PL if PL < P1 causing flow,

where L is the length of the vessel. The results are shown in table 5.5. The results

from the model are taken when the system has settled.

5.5 Model Refinement

In order to provide better resolution of the behaviour, the model was split into

several computational cells per lymphangion as shown in figure 5.5. Firstly we used

4 cells per lymphangion, giving a cell length of a similar magnitude to the radius.

This set up was then used for the following 1d modelling unless otherwise stated.

The Courant number or Courant-Friedrichs-Levy (CFL) Condition requires that

for an accurate solution in an explicit time-marching computer simulation the time

step has to be smaller than the time for a certain event. In compressible fluids this

is the time for a sound wave to cross one of the boxes of the discretisation. The

Courant number C (shown in equation 5.21) and needs to be below the CFL (which
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Parameter Symbol Value

Young’s modulus (N/m2) E 500000

Dynamic viscosity (Pa.s) µ 0.0008904

Length (m)) L 0.025

Radius (m) R 0.001252

Pressure variation along length L (Pa) δP 300

Time Step(s) dt 1× 10−6

Number of Nodes n 4

Radius (unstretched) (mm) A0 1.25

Gamma (Pa s m) γ 7 × 107

Tension (Pa/m) T k × P (also see k)

Tension factor k 5

Phase (radians) φ N/A

Amplitude (%) aamp 0

Valve opening/closing time (ms) Tv no valves

Valve Triggering Pressure (Pa) Pv no valves

Period (s) Tp no contractions

Contraction Time (s) Tc no contractions

Length of cell (m) L 0.005

Pressure in (Pa) Pin 800

Pressure out (Pa) Pout 500

Density (Kg/m3) ρ 998

Poisson’s Ratio σ 0.5

Table 5.2: Table of values used for a comparison of flows between the model repre-

senting a stiff tube and the poiseuille equation
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Results

Flow output from model (m3/s) Qm 1.3 × 10−5

Flow from equation (m3/s) Qa 1.3 × 10−5

Table 5.3: Table of flow results for the model representing a stiff tube and the

poiseuille equation

Parameter Symbol Value

Dynamic viscosity (Pa.s) µ 0.0008904

Length (mm) L 24

Radius at 0 pressure (mm) a0 1.05

Pressure in (Pa) Pin 800

Pressure out (Pa) Pout 500

Number of Nodes n 6

Gamma (Pa s m) γ 7 x 107

Tension (Pa/m) T kP (also see k)

Tension constant k 5

Time Step(s) dt 1× 10−6

Table 5.4: Parameters for use with the Poiseuille equation when modified to account

for the elasticity of the vessel wall

77



Conditions Parameter Symbol Value

if E=E1 Young’s modulus (N/m2) E 7000

Radius at point 1(mm) a1 2.42

Flow output from model QME1 1.21 × 10−4

Flow from calculation (m3/s) QCE1 1.2 × 10−4

if E=E2 Young’s modulus (N/m2) E 4000

Radius at point 1(mm) a1 2.79

Flow output from model QME2 2.15 × 10−4

Flow from calculation (m3/s) QCE2 2.06 × 10−4

Table 5.5: Results with the Poiseuille equation when modified to account for the

elasticity of the vessel wall

Figure 5.5: More Detailed Model of the Lymphatic System.

varies for different types of problem) for convergency to occur. For models of blood

flow, the CFL is usually taken as 1, as in [105].

C =
U
∂x
∂t

(5.21)

The Courant number was calculated; firstly using the fluid velocity U, based

on the flow Q and radius a, to give the Courant number Cf (shown in table 5.6).

Secondly the wave speed of 0.02m/s (approximated by Arkill in chapter 4) was used

to give a Courant number as shown in table 5.7.

In the experimental studies by Arkill in chapter 4, the wave speed was found to

be roughly 0.02m/s. This would give the following Courant number with 4 cells per
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Symbol Parameter Value

Qmax (m3/s) Maximum Flow 2.25 x10−7

a (m) Radius at Max Flow 3.93 x10−3

U (m/s) Velocity at Max flow (Q/a) 5.73 x10−3

∂ x (m) Cell Length 0.005

∂ t (s) Time Step 2 x 10−6

∂x
∂t

2500

Cf Courant number 2.3 x 10−6

Table 5.6: Table to calculate the Courant number Cf for the 4 cell per lymphangion

model based on the fluid velocity

Symbol Parameter Value

∂ x (m) Cell Length 0.005

∂ t (s) Time Step 2 x 10−6

U m/s Velocity 0.02

∂x
∂t

2500

C Courant number 8 x 10−6

Table 5.7: Table to calculate the Courant number Cw for the 4 cell per lymphangion

model based on the wave speed

lymphangion:-

The value of 8 ×10−6 for the Courant number for the wave velocity Cw, and

the values for the Courant number for the fluid velocity Cf (2.3 x 10−6), are all

well below 1 so the convergency due to the discretisation cell size should not be a

problem.
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5.6 Modelling the Intrinsic Pump

Reddy used a simple sine wave to represent the contractions in his model by varying

the wall stress. We initially replicated this method using a sine wave to vary the

Young’s modulus. The method for driving the contraction wave is examined further

in chapter 7 to investigate the differences between methods for representing the

contraction using a sine wave variation either in the radius or Young’s modulus.

This represents the difference between a contraction driven by a change in elasticity

or muscle fibers moving towards each other. Throughout this thesis the Young’s

modulus is used to drive the contraction unless otherwise stated.

This basic type of input gives a similar basic sine wave output for the radius

with time graph radius output as shown in figure 5.6. Our experimental results (see

graph 4.4) give a roughly ‘shark fin’ shape radius with time profile as confirmed by

Zweifach and Prather [27]. In vitro observations of a contracting vessel appear to

show a passive relaxation phase where the muscle has stopped contracting and it

simply behaves as an inflating balloon. Armenio and colleagues [93, 94] also noted

that diastole (filling) is always significantly longer than systole (emptying). If it is

assumed that in terms of the muscular activity the active contraction takes as long

as the active relaxation, this would lead to the conclusion that there must also be

a passive relaxation phase. This also appeared to be the case when observing the

contracting vessel.

Passive relaxation was added to the model by inserting a pause between each

peak of the sine wave. The length of this delay in comparison to the period of the

whole cycle was approximated to be half the total cycle time after observing the

pumping vessels and examining the behaviour of the model using different values.

As shown in figure 5.6 the sine-pause model allows the shark fin type shape found

by experiment in chapter 4 figure 4.4 to emerge.
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Figure 5.6: Comparison of model with (f-j) and without (a-e) the delay in the sine

wave driving the contraction function. With the delay the radius-time graph shows

the shark tooth shape found in experiment. Boxes a and f show the Young’s modulus

variation which drives the contraction , b and g show the radius time output of the

model, c and h show the pressure time , d and i show the flow time and e and j show

the timings of both valves in the two different runs
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Symbol Parameter Value

Qmax (m3/s) Maximum Flow 2.25 x10−7

a (m) Radius at Max Flow 3.93 x10−3

Uf (m/s) Q/a Velocity of Fluid at Max Flow 5.73 x10−3

Uw (m/s) Velocity of Wave 0.02

∂ x (m) Cell Length 0.00333

∂ t (s) Time Step 2 x 10−6

∂x
∂t

1667

Cf Courant Number for the Fluid 3.44 x 10−6

Cw Courant Number for the Wave 1.2 x 10−5

Table 5.8: Table to calculate the Courant number for the 6 cell per lymphangion

model based on the wave speed and fluid speed

5.7 Further Refinement of Model

The model was then set up with 6 cells per lymphangion, in order to verify the

accuracy obtained with the 4 cell model or show if greater resolution was required.

The Courant numbers, 3.44 x 10−6 for the fluid and 1.2 x 10−5 for the wave, were

also well below 1 so the discretisation cell size should be appropriate.

Graph 5.7 shows the difference in results between the 4 cell per lymphangion

model and the 6 cell per lymphangion model. The average flow for both set ups

was 6.8 mm3/s. Showing that the effect of either model set up is the same. There

is one apparent difference in the flow profile but this is due to the number of cells

presented on the graph. The maximum appears much lower for the 6 cells model

but this graph only shows the results for the 1st 4 computational cells and not the

last two. The peak flow from the 4 cells model is in the cell just in front of the next

valve. The results from this position have not been printed for the 6 cell model.

82



Figure 5.7: There is a negligible effect from varying the number of cells per lym-

phangion. Windows a-e: the model using 4 cells per lymphangion, f-j: the model

using 6 cells per lymphangion. Boxes a and f show the Young’s modulus variation

which drives the contraction, b and g show the radius time output, c and h show the

pressure time output and i show the flow time output and e and j show the opening

and closing of the two valves in both models
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5.8 General Characteristics of The Stabilised 1-

d Model

Graph 5.8 shows a typical run inorder to observe the general characteristics of the

model developed involving 4 computational cells per lymphangion and the sine with

delay for the contraction cycle. The following section will discuss the variation with

time of different parameters and what this means in relation to the mechanics of the

vessel.

5.8.1 Radius

As shown in figure 5.8 the radius decreases as a contraction starts, (the values for

each node are staggered, as the contraction wave moves along the vessel) (point

(i) graph 5.8). A minimum radius is reached once the smallest relaxed radius A0

value is passed (strongest point of the contraction). The radius then stays at that

level even though the Young’s modulus continues to decrease. The ejected fluid

accounts for all the increased forces on the vessel. The contraction begins to ease off

in an active relaxation stage (ii) to (iv) but the radius remains the same until the

pressure drops low enough to open valve one. The vessel begins to fill (iii) to (v) and

continues to do so even when the contraction has finished in a passive relaxation

(or inflation) phase. The vessel has not quite returned to its original radius and the

vessel continues to refill from the previous lymphangion, evening out the pressure

difference. The length of time taken to passively relax depends on factors like the

elasticity, with a larger elasticity the shape takes longer to return to normal.

The radius time graphs typically show a peak just as the contraction starts.

This is due to the nodes contracting in sequence. As the first node contracts and

pushes the fluid out, the volume of fluid in subsequent nodes is increased, inflating

the vessel. As the second node contracts this further increases the inflation of the

remaining relaxed nodes. The last node to contract thus ends up with the largest

radius before it too contracts in turn. This effect was also seen in the experimental
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Figure 5.8: General characteristics of the stabilized run, the roman numerials indi-

cate significant stages in the cycle discussed in the text. Box a shows the Young’s

modulus variation which drives the contraction, b shows the radius time output,

c shows the pressure time output d shows the flow time output and e shows the

opening and closing of the two valves in both models
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work in chapter 4.

There can also be a negative peak towards the centre of the contraction, as the

first node to contract begins to actively relax, the other nodes can contract further

by pushing more of the fluid into that area. The last node to relax can therefore

achieve the lowest radius.

Both of these peaks become larger as elasticity increases as it becomes easier to

move the walls and work the pump.

5.8.2 Pressure

The pressure increases as the contraction starts until enough pressure is achieved

to open the outlet valve (point ( i), graph 5.8). Then the pressure drops to just

above the outlet pressure until the contraction reaches its peak. As the pressure

begins to drop, the outlet valve closes (at point (ii)). The pressure continues to

drop until it is below the inlet pressure and this positive pressure gradient opens the

inlet valve (at point (iii)). The pressure then increases at a very slow rate until the

next contraction, remaining below the inlet pressure until all flow ceases.

There is a small pressure peak as the outlet valve first opens (i) due to the opening

time of the valve and the positive pressure gradient needed to open the valve (the

triggering pressure). The pressure must reach this higher value to open the valve,

once open the pressures level out along the vessel, but the valve remains open.

The pressure inlet and outlet are set in the model, so the pressure profile does

not vary much unless a parameter concerning the pressure is changed (for example

changing the triggering pressure).

5.8.3 Flow

There are typically two flow peaks with a period in the middle with no flow:-
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Ejection

The first peak is the ejection stage (i-ii graph 5.8) and typically reaches a higher value

but for a shorter length of time compared to the second peak (this can be explained

by the inclusion of passive relaxation in the second peak). The width is dependent

on the length of time for an active contraction, which is kept constant through all

the experiments unless the period is being changed. With some properties (eg lower

elasticity) the peak is effectively thinner, with the majority of the ejection happening

more quickly except for a longer ‘tail’ stage at the end with a slower flow.

As the vessel ejects, the inlet valve is closed, the second opens with enough

pressure and the node nearest to the second valve has the largest flow as the fluid

from all the other nodes must pass through there too. Flow stops when the inlet

valve closes due to insufficient pressure (ii).

Central Stage

The pressure drops as the active relaxation phase begins (ii-iii). Both valves close,

causing a cessation in flow until the pressure is high enough to open the inlet valve.

Filling

The second peak (iii-v) is the filling stage and takes longer but reaches a lower

maximum flow. At the beginning of this peak (iii) the outlet valve remains closed

but the inlet valve opens and the flow is slower than during the ejection phase, due

to a smaller pressure difference. The vessel’s contraction cycle is over at point (iv)

and the vessel begins to passively relax, causing flow until the pressure is insufficient

to keep the inlet valve open. The width of this peak is dependent on the passive

relaxation time as well as active relaxation, so with increased elasticity the peak is

wider and the vessel takes longer to return to normal size.
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5.9 Conclusions

On implementation of Reddy’s model of a lymphatic vessel, we discovered that com-

putational instabilities were present in our results. The same instabilities appeared

to be present in Reddy’s results. The computational instabilities were confirmed by

the fact that reducing the timestep changed the results.

Various stabilizing methods were introduced; the inclusion of all of these methods

produced an improved model allowing a larger timestep. These measures involved

using a damping and tension term, smaller timesteps, graduating any changes within

the system and the timings and pressures involved in valve function. The damping

term can be thought of as the inclusion of viscoelasticity, moving away from the

purely elastic model. Alone, each of these stabilizing precautions required a smaller

timestep or artificially high value to produce stability than the combination of all

the methods leading to the supposition that the optimum model should include all

of them.

The model was set up so changes were imposed gradually (avoiding instantaneous

changes). This included an intial setup of a settled run and the gradual opening

and closing of the valve. Physiological changes are very unlikely to happen instanta-

neously, so these measures made the model more realistic aswell as aiding stability.

Changing the opening pressure of the valve to be greater than the closing pressure is

also justified as this is a characteristic found in the similar valves of the heart. The

damping and tension terms have not been used in previous models of the lymphatic

system although they have in cardiovascular models. Their stabilizing contribution

in these results and the experimental validation indicates that these mechanical

parameters are transferable to the lymphatic system.

In modeling the contractile behaviour we find that the best match to the exper-

imental data is given by short contractile pulses interspersed with longer relaxed

intermissions, rather than a continuous variation of the contraction function. Dur-

ing these relaxed periods the behavior of the system is governed by the passive

behavior of the wall, i.e. its elasticity and inertia. Thus, the complex time-series
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behavior of the system is actually generated by a contractile pulse of very simple

form. Note that although the myogenic response of smooth muscle (smooth muscle

cells contracting in response to stretch) generally occurs over a relatively long time,

an electrically stimulated contraction can occur much more quickly [1].

A variation in computational cells size was begun in order to find how small the

cells need to be for an accurate solution. The 6 and 4 cell models gave the same

results, showing 4 cells is sufficient. The Courant number was calculated and all

of the models explored have a suitable ratio between the cell length and time step

to allow convergence. A Poiseulle flow study was undertaken using a relaxed but

very stiff vessel, with a pressure gradient in the direction of flow. Secondly vessels

with two different elasticities were modelled and compared to a modified Poiseuille

equation to allow for the elasticity of the vessels. These calculations matched the

model results indicating that the computer program was representing Poiseulle flow

as expected.

The valve mechanics such as timings and threshold pressures were found to be

very important and further investigation of these are discussed in chapter 8.
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Chapter 6

Parametric Study

6.1 Introduction

As physiological values undergo large fluctuations between patients, the next two

chapters examine the effects of variation of the wall parameters. At this stage it

is more useful to find the sensitivity and effects of various parameters across the

board than try to represent an individual case. There are reports that the direction

of the wave (with or against flow) does not make a a difference to flow and this

is investigated in section 7.2. The pressure radius graphs show that the material

properties change after a certain threshold, giving two different gradients. Although

the physiological range is mainly below the threshold, a model to reflect this gradient

change is explored in chapter 7. Further examination of the contraction mechanism

is also undertaken in section 7.3 to determine if driving the wave using the Young’s

modulus E, or the unstretched radius A0 effects the results.

This chapter concentrates on a parametric study and describes an analysis of the

wall model and modelling strategies investigated to produce an improved model of

the lymphatic vessel walls. Various factors are considered; including the Young’s

modulus E, wall thickness h, wall inertia, longitudinal tension, amplitude, contrac-

tion wave speed and period.
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6.2 Parametric Study Methodology

6.2.1 Method

The effects of various parameters were investigated, based on the model developed

as described in the previous chapter, using a varying Young’s modulus to drive the

contraction wave. The standard values used and range are shown in the table below.

The damping coefficient γ and the wall tension T were also varied. These are also

discussed in section 5.3.1.

Parameter Symbol Standard Range

Young’s Modulus (N/m2) E 5000 2750-7500

Radius (unstretched) (mm) A0 1.25 0.75 - 1.8

Gamma (Pa s m) γ 7 x 107 7 x 105 - 2 x108

Tension T P
5

0.01-0.4

Phase (radians) φ π/40 0.04-3.14

Amplitude aamp 0.838 0.375 - 0.838

Valve opening/closing time (s) Tv 20 0-20

Valve Triggering Pressure (Pa) Pv 10 2 - 100

Period (s) Tp 40 10-40

Contraction Time (s) Tc 20 50-100%

Length of lymphangion (mm) L 2 3 - 9

Pressure in (Pa) Pin 500 -

Pressure out (Pa) Pout 800 -

Pressure Gradient dP 300 - 50 - 300

Amplitude (E wave) Eamp 5.5 E0

Viscosity (Kg/m3) µ 0.0008904 N/A

Density (Kg/m3) ρ 998 N/A

Amplitude (E wave) Eamp 5.5 E0

Poisson’s Ratio σ 0.5
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In this section, the standard length of an actual contraction Tc is chosen to be

twenty seconds long, half of the entire contraction cycle Tp. The remaining time

(as the vessel continues to return to its original shape passively) is termed in this

thesis - the passive relaxation phase. This passive relaxation time can indicate the

shape for the radius time profile as it depends on how long the vessel takes to relax

after the contraction is finished. With a longer passive relaxation time the shark fin

shape Arkill found in the experiments in chapter 4 is able to emerge.

6.3 Results/Discussion

This section examines the effects of varying the stiffness ( E or h), relaxed radius

(A0), damping coefficient (γ), tension (T ), the wave amplitude Aamp and period

(Tp). The contraction wave speed was also varied by changing the phase difference

between the contraction waves associated with each different nodes. In particular

the effects on the passive relaxation phase and characteristic radii and flows were

examined and the sensitivity of the model to variation of these parameters observed.

6.3.1 Elasticity

The stiffness of the vessel walls can be increased, by increasing the Young’s modulus

E or increasing the wall thickness h. In this model the wall thickness of the lymphatic

vessels is calculated as a percentage of the unstretched radius. Our experimental

findings give a thickness of roughly 10 percent of the unstretched radius see chapter

4, although Deng et al, [5] found the thickness to be 3.5 percent of the unstretched

radius. For the model we used 7.5 percent as a compromise between the two.

The passive relaxation stage is shorter with a stiffer material (i.e. higher Young’s

modulus) so the forces pulling the vessel back to its original shape are stronger. See

graph 6.1 (e) which shows how a vessel returns to within 1% of its relaxed radius

faster if it is stiffer. Also see graph 6.2 (b) and (g) which shows the radius for a

low value of Young’s modulus (E ) and a high value of E. In graph 6.2 (b) with low
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Figure 6.1: Increasing Young’s modulus reduces flow. The effect of varying Young’s

modulus is shown on (a)Average Flow, (b) Radius, (c) Pressure, (d) Maximum and

minimum flows, (e)The passive relaxation time
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Figure 6.2: Results for a low Young’s modulus (E = 1250 N/m2 panels (a)-(e))

compared with a high Young’s modulus (E = 7500 N/m2 panels (f) - (j). Panels

(a) and (f) show the low and high Young’s modulus with the driving function, (b)

and (g) the radius output, (c) and (h)pressure, (d) and (i) flow and (e) and (j) the

valve timings
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elasticity the slower passive return of the vessel generates a shark fin radius time

profile.

The maximum, minimum and end of cycle radii decrease in size with a stiffer

material. Furthermore the total change in radius (due to a contraction) decreases

as more force is required to produce the same amount of movement. See graph 6.1

b which shows how the maximum and minimum radius are closer together for stiffer

cases ie with a high value of E. The minimum radius is at a certain positive pressure

and is undergoing some stretching. There is a limit to how low the minimum radius

can reach (at around 1.5 mm) as this approaches the passive relaxed radius A0. For

a more elastic vessel the radius time profile is more like the shark fin shape from

experiment as found in chapter 4, see graph 6.2 b and g.

The average flow decreases with a stiffer vessel due to the smaller aperture it

must flow through, and the pumping force becomes smaller as the work to move the

walls is increased (see graph 6.1 a). The flow peaks become shorter and thinner as

it becomes harder to induce flow as shown in graph 6.2 d and i for flow in a case

with low E and high E.

Increasing the wall thickness has the same effect as increasing the Young’s mod-

ulus as they both represent different ways of increasing the stiffness of the material,

as shown in graph 6.3 in comparison to graph 6.1.

6.3.2 Increasing Unstretched Radius

The unstretched radius A0 was also varied. This can also be thought of as the radius

at zero pressure. The standard was chosen as 1.25 mm, the radius recorded by Arkill

in section 4. Increasing A0 has the effect of increasing the time to passively relax

because there is a greater distance for the walls to travel, see graph 6.4 e.

If the unstretched radius increases, so does the radius at any other point in the

cycle as they are all referenced to this point, see graph 6.4 b. The change in radius

increases as shown by the increasing difference in the maximum and minimum radii

in graph 6.4 (b). The radius peak is not affected by a change in A0 as shown by the

96



Figure 6.3: Varying the wall thickness is a different way of changing the stiffness

of the vessel. Panels show the effect of varying wall thickness on Q, R, P and the

passive relaxation time
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Figure 6.4: Increasing the unstretched radius increases flow. Panels show the effect

of varying the unstretched radius on Q, R, P and the passive relaxation time
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Figure 6.5: Results for a low unstretched radius (A0), panels (a) to (e) A0 = 0.75

mm and high A0 panels (f) - (j) A0 = 1.8 mm. Panels (a) and (f) show the driving

function, (b) and (g) the radius outputs, (c) and (h) the pressure, (d) and (i) the

flow and (e) and (j) he valve timings
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constant difference between the maximum and end of cycle radii in graph 6.4 (b).

The material properties have not changed so the same force is required in order to

stretch the vessel by the same percentage of the original unstretched radius.

The average and maximum flows increase (see graph 6.4 (a) and (d)) because of

the increase in change in radius it acts as a larger pump. Both the ejection and

refilling flow peaks increase in width and height (see graphs 6.5 (d) and (i)). This

is due to a greater volume change and therefore greater possible flow at every point

in the cycle, with a greater cross sectional area and smaller relative contribution of

resistance from the walls.

This variation in the relaxed radius shows the effect of the scale of the vessel on

flow i.e. the position in the network. A lower flow is present in the smaller vessels

and they also have a shorter passive relaxation stage, which may have physiological

implications.

The flow appears to be directly proportional to the relaxed, unstretched radius.

In a conduit we expect a the relationship flow ∝ A2
passive. So for a system presenting

flow ∝ Apassive, the pumping must be more efficient in smaller vessels negating some

of the detrimental effect of the increased resistance. In smaller vessel the pressure

is great enough to cause flow with only a small change in volume, so flow can start

earlier in the cycle and continue for longer.

6.3.3 Gamma

The magnitude of the damping constant γ ( also discussed in section 5.3.1 ) was

also varied, effectively changing the damping effects of the wall.

Increasing gamma (γ), means the passive relaxation phase is longer, ie it takes

longer for the walls to react passively, see graph 6.6 e and graph 6.7 (b) and (h)

which shows the shark fin shape emerges with a high gamma.

The maximum radius is slightly higher for a low γ, giving a larger initial radius

peak as shown by figure 6.7 (b) compared to (h). This is due to a faster response

of the walls to the pressure of the fluid. As the contraction begins the pressure is
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Figure 6.6: The effect of varying γ on Q, R, P and the passive relaxation time. γ

has a minimal effect on flow.
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Figure 6.7: The damping constant γ effects the stability of the results. Panels show

results for a low and high γ, low (a - e) γ = 7 x 105 (Ns/m4) and high (f - j), γ = 2

x 108 (Ns/m4). Note the different scales on the flow graphs and the flow reaches a

value 3 × higher with a low γ.
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transferred from the nodes which have already started contracting to those which are

still relaxed, causing inflation. With a larger γ, the walls do not have long enough

to react as strongly. There is little comparative change in average flow (see graph

6.6) even though the maximum flow is very high for a low gamma. This is due to

instability at low gamma values, the fluctuations even out to the same average flow.

A lower gamma does however give a much larger peak flow and some instability,

see graph 6.6 (d) and graph 6.7 (d) and (i). With a low Gamma the flow peaks are

high, thin and sharp, with a sudden jump at the start of emptying and the end of

filling, as there is nothing to stop the walls from snapping into their new positions.

6.3.4 Tension

The Tension T was also varied using the relationship T = kP where P is pressure and

k is varied. T is included in the Tension term and this accounts for the longitudinal

tension of the vessel. Within the values examined, the Tension T has a minimal

effect on the magnitude of these results as shown in graphs 6.8 and 6.9.

6.3.5 Speed of Contraction/ Phase Difference

The speed of contraction can be analysed by looking at the phase difference φ

between the nodes. The contraction wave speed of 0.02 m/s was found in chapter

4. With a lymphangion length of 0.02 m, period of 20 s, 4 nodes and time to travel

across the lymphangion of 1s; this gives a phase difference φ of π/40.

x (t) = Eampsin (2πft+ φ) (6.1)

where Eamp is the amplitude of the contraction driving function, which works by

varying the Young’s modulus.

As the phase difference increases, the contraction wave becomes slower. With a

slower wave, the pressure increase caused by the squeezing of one cell inflates the
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Figure 6.8: The effect of varying tension factor k on Q, R, P and the passive

relaxation time. Tension has a minimum effect on flow for the setups investigated.
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Figure 6.9: Comparing the outputs for a low and high tension factor k. Low (a - e)

k = 0.01 and high (f - j) k = 5
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Figure 6.10: Increasing the phase difference generates a slower contraction wave

velocity and therefore reduces flow.
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Figure 6.11: Results for a low phase difference φ (i.e. contraction wave velocity),

panels (a) to (e) φ =0.0393 radians and high, panels (f) - (j) φ = π radians.
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neighbouring cells (which are relaxed) for longer and to a greater magnitude. There

is more time before the next cell contracts, and the 1st cell gets further in its cycle,

generating a larger force before the next cell contracts. This leads to a larger radius

peak at the start of each contraction see graph 6.10 and 6.11 (b) and (g) (and larger

difference between the maximum and end of cycle radii). More of the effort of the

contraction goes into inflating neighbouring cells rather than propelling the fluid out

of the tube.

With a slower wave, the maximum flow is smaller (see graph 6.10 d) due to the

work of the contraction being used to increase the radius of the rest of the tube

rather than generating a propulsive force for the initial fast ejection of the fluid out

of the tube. For a phase difference above π the wave effectively reverses direction,

so π is the largest possible difference between nodal contractions and the slowest

speed of propagation possible for the wave.

It is interesting to look at the speed of contraction as a factor for optimising the

pump; too fast and damage may occur. Too slow and the previous segment will

have relaxed again simply causing the fluid to slosh back and forth. If the segments

all contracted simultaneously there would be the same pressure on both sides of the

valve at any one time so no pumping activity would be generated. An optimised

solution would mean that the segment ‘catches’ the wave just at the right point. In

some ways it would make sense that this would be of a similar order of magnitude

to the speed the fluid travels at. This would support Arkill’s findings in chapter 4

that the wave speed is similar to that of the fluid during a contraction, behaving a

little like squeezing toothpaste out of a tube. Pedley and Luo [106] however, note

that there is a difference between the speed of the contraction wave and the average

fluid velocity in the blood vessels and the magnitude of this difference is important

to the mechanics. The rate of change of cross-sectional area is given by

dA

dx
= − RuA

c2 − u2
(6.2)

where c is the speed of the wave and u is the speed of the fluid. As the difference

between c and u decreases dA
dx

becomes more negative. If they are equal dA
dx

= −∞.
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This point is referred to as choking and steady flow will have broken down. It

has been suggested this is the prime mechanism for unsteady behaviour such as

self-excited oscillations.

6.3.6 Contraction Amplitude

Next we will discuss the effect of varying the strength of contraction on the results.

The amplitude of contractions can be altered by changing the amplitude of the input

function. This study was performed using the changing relaxed radius as the driving

force for the contraction wave (also see section 7.3). The magnitude of the change in

radius was varied around a standard value of 67% of the unstretched radius, which

gives a similar change in radius to the results of Arkill (see chapter 4). This means

that the maximum A0 (the relaxed unstretched radius) remains the same but the

fully contracted value for A0 becomes smaller.

As the radius change is larger with an increased contraction amplitude, there is a

small increase in relaxation time as it has further to travel as shown in figure 6.3.6.

This does not however increase relaxation time enough to generate the curve during

return and the shark fin shape found in experiment (6.3.6).

As the amplitude of contraction increases, the minimum radius decreases, while

the maximum and settling radius values remain the same. This represents a stronger

contraction with a larger pumping effect.

The larger amplitude of contraction leads to a higher maximum flow (as well

as minimum and average flows). The increase in maximum and average flows are

due to the larger propulsive force of the contraction because of the larger change in

volume between relaxed and contracted states.

6.3.7 Period

The length of time a segment contracts for was varied by altering the period. The

pause in between contractions was kept as 50% of the total cycle time.
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Figure 6.12: Increasing the contraction amplitude increases flow. Panels show the

effect of varying the contraction amplitude on Q, R, P and the relaxation time
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Figure 6.13: Comparison of model outputs using a low (a - e) and high (f - j)

contraction amplitude
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Figure 6.14: The effect of varying the period (Tp 5s to 40s) on Q, a, P and passive

relaxation time. Where E = 2500 N/m2 and contraction time Tc = Tp

2
. Increasing

the period reduces the flow as the contraction frequency is lower.
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Figure 6.15: Results for a low period (Tp), low (a) to (e) Tp = 5s and high (f - j)

Tp = 40s. For both E = 2500 N/m2 and Contraction time Tc = Tp

2
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The time to within 1% of the radius just before a new contraction is not a perfect

method for quantifying the shape for these results. At a shorter period the radius

does not have time to return to its original shape, as the passive relaxation is not

fast enough.

The radius range is smaller (see figure 6.15) for a shorter period, as the vessel

cannot relax completely. The maximum radius is larger for a larger period as in

figure 6.14.

The average flow decreases with a longer period (see graph 6.14 a). The flow

peaks are higher and thinner for a small period see figure 6.15. When the period

is too short however the flow will decrease again as the vessel will not have time to

completely relax before the next contraction occurs.

6.3.8 Pressure

Variation of the outlet pressure was examined to see the effect of pumping with or

against a pressure gradient. The inlet pressure was kept at 500 Pa and the outlet

was varied from 300 Pa to 600 Pa.

As shown in figure 6.16, using this larger pressure gradient in the direction of flow

(i.e. 300 Pa output) completely changed the shape of the flow time relationship. The

valve was open all the time and the flow went up to a maximum of nearly 2000 times

the flow compared to pumping against a gradient (i.e. 600 Pa output). The flow

output from the lymphangion was very similar for the 600 Pa outlet and 500 Pa

outlet (so with a negative or zero pressure gradient).

The effect of adding or removing the contractions to a vessel undergoing a pressure

gradient in the direction of flow was also investigated as shown in figure 6.17. The

inlet pressure used was 500 Pa and outlet 300 Pa.

The flow output was greater for the case without pumping. At these high pres-

sures the reduction in amplitude of the vessel due to pumping restricts flow to a

larger extent than the pumping contributes to flow. However, how high does the

pressure between two lymphangions in series really get in edema? An important
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Figure 6.16: Introducing a positive pressure gradient along the vessel, in the direc-

tion of flow significantly increases flow. Windows a- e show an outlet pressure of

300 Pa (positive gradient) and f to j show an outlet pressure of 600Pa (negative

gradient). For both the inlet pressure is 500Pa, please note the difference in scales

for the flow.
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Figure 6.17: Removing contractions when there is a positive pressure gradient of

200 Pa, increases flow. Panels show effect of contractions (a-e) and passive flow (f-

j) with a positive pressure gradient. Inlet pressure is 500 Pa and outlet is 300 Pa
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consideration in edema may be the pressure gradient at which pumping becomes

detrimental to flow. Future studies should discover how much of a positive gradi-

ent there is between lymphangions in edema, and the pressure gradient at which

contractions become beneficial.

6.4 Conclusions

The present study explored the relationships between the various parameters and

the contraction details generated by the wall. The degrees of freedom were reduced

as far as possible by using figures from Arkill’s results or from the literature and

then varying a particular parameter. The lymphangions pump best if all sections of

the wall contract in a quickly propagated wave. Almost simultaneous contraction

of all sections increases the pressure throughout the lymphangion until the pressure

difference is sufficient to open the valve and drain the segment. This is supported by

Gnepp [12] who observes that as a general rule increase in frequency of contraction

is accompanied by increase in flow speed , except in cases of vessel occlusion. If the

modelled wave propagates very slowly, i.e. the contractions in different segments

are not simultaneous, the effect is merely to pump the lymph fluid from one part of

the vessel to another, without ever building enough pressure difference to open the

valve.

Since our initial model used variations in E to generate the contraction behavior,

the actual value of E varied; figures 4.4 and 6.2 shows that these variations compared

well with the elastic properties of the pumping vessel. Varying all the parameters

(except when the boundary conditions caused a pressure gradient in the direction of

flow) we were still able to generate qualitatively similar pumping behavior. However

some features of the radius-time graph varied such as the radius peak at the start

of the contraction and the passive relaxation stage. The affect of such features on

the pump and valve mechanics may have important physiological implications.

The table below summarises the effect on average flow of the various parameters.
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Parameter Increasing Effect on Average Flow

E Decreased

h Decreased

A0 Increased

γ Minimal Effect

T Minimal Effect

φ Decreased

aamp Increased

Tp Decreased

POut Decreased
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Chapter 7

Contraction Dynamics

7.1 Introduction

This chapter describes an analysis of the wall model and modelling strategies inves-

tigated to produce an improved model of the activity of the lymphatic vessel walls

and further understanding of the mechanisms involved. This chapter concentrates

on the details of the function of the contraction and the way to model it rather

then the variation of parameters as investigated in the previous chapter. The de-

tails of the contraction were examined; including the direction of propagation of the

wave, how the muscle contraction works and how to model it, the strength of the

contraction itself and the speed of travel of the wave.

7.2 Wave Direction

There is some discussion in the literature as to whether the contraction wave travels

with the direction of flow or against it and it is pertinent to find whether this in

fact makes a difference to the resulting flow. McHale and Meharg [38] observed

contraction waves propagating against the direction of drainage allowed by the valve,

this will be referred to as a reverse contraction wave. Indeed McHale and Meharg

[38] found it was possible to set up in vitro experiments so that contractions move
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in the opposite direction to flow (also see section 2.1.2).

The model was set so the phase difference is counted from the down stream end

of the vessel rather than the upstream.

7.2.1 Results/Discussion

Figure 7.1 compares a wave propagating forwards and backwards. The major differ-

ence caused by a reversed contraction wave is the negative peak in flow at the start

of every contraction, before valve two opens see graph 7.1 d and i. This is due to

propulsion against the direction of flow, by the wave. For the forwards wave (7.1 i),

this simply adds to the existing peak.

Other differences between the forward and reverse propagating contractile wave

are minimal; for the reverse wave, the maximum flow is slightly increased, which

is probably due to the later opening of the valve, but the average flow is slightly

reduced for the same reason.

We would suggest, though, that the pumping through a branching network is

likely be easier with a reverse contraction wave, which would be able to propagate

up both branches at a bifurcation. A forward propagating wave arriving at a bifur-

cation would need to co-ordinate with any wave propagating down the other branch,

otherwise lack of coherence between the waves would be likely to lead to reduced

efficiency. Reverse contraction waves have been observed in experiment [38].

At first glance a contraction wave propagating against the direction of flow seems

counter intuitive but there is a possibility that a reverse wave actually aids the

draining process. We submit that the pumping throughout the network would be

able to co-ordinate much more effectively with reversed propagation, as the wave

can thus pass to the branches off a larger trunk. If the wave is propagated forwards,

the impulse to contract would be passed to different points in the trunk, from the

smaller branches at different times without co-ordination. With that in mind it now

seems intuitive that a co-ordinated system would produce a greater output, therefore

a reverse wave would be more effective if an entire network was being considered.
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Figure 7.1: Direction of propagation of the contractile wave has minimal effects on

flow. Panels a to e show a forwards propagated wave and f to j show a reverse wave

in comparison to the direction of flow.
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7.3 Representing the muscular activity using a

variation of Young’s modulus (E) or relaxed

radius (A0)

When muscle contractions occur the interlocking fibres move together and the ma-

terial becomes stiffer and thicker. It is not immediately clear whether it would be

appropriate to drive such a contraction by varying the relaxed radius (i.e. represent-

ing the interlocking fibres moving together) or by changing the Youngs’ modulus (so

the material simply becomes stiffer). Alternatively it may even be most accurate to

use both methods, however it was found that both have a similar effect so it does

not seem necessary to couple the two methods.

7.3.1 E driven Wave

This is the method for driving the contraction developed in chapter 5 and used

throughout sections 5, 6 and 7.2 unless otherwise stated. The input sine pause

function changes the Young’s modulus so each contraction is modelled by varying

the stiffness of the material. In this setup, the relaxed radius A0 remains the same

throughout. Only the stiffness of the material changes as shown in figure 7.2. So

the radius A1 at pressure P1 is different depending on how contracted the vessel is,

varying between A1C (contracted radius) and A1R (relaxed radius).

7.3.2 A Driven Wave

When A is driving the contraction wave, the value for Young’s modulus is constant

and the unstretched radius varies with the sine pause configuration developed in

section 5 to drive the E varying function. This time before introducing an inter-

nal pressure, the unstretched radius A0 varies between A0C (contracted) and A0R

(relaxed). The thick walled tube equation [19] determines the pressure radius rela-

tionship.
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Figure 7.2: The contracted and relaxed vessel using the Young’s modulus (E) driven

contraction model

Thick Walled Tube Equation:

∆P = E∆a2
out

(a2
out − a2

in)

2(1− σ2)a2
inaout

(7.1)

Equation 7.1 assumes that the elastic tube does not change in length on inflation.

The radius at a certain pressure P will change depending on the point in the contrac-

tion cycle, if we assume the radius is driving the contraction. If we use the internal

pressure P0 as 0 when the radius is A0 , then we are always comparing the radius

to that at an unstretched state (A0). If the muscle is relaxed we can then term the

radius A0R (so it is unstretched and uncontracted). If it is contracted, it would then

become A0C . During the actual cycle the vessel is always slightly stretched so it will

be A0 plus a certain width caused by the increase in pressure. So the radius (A1) at

pressure P1 will depend on how contracted the vessel is and the difference between

P0 and P1, varying between A1R and A1C as shown in figure 7.3.
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Figure 7.3: The contracted and relaxed vessel using the unstretched radius (A0)

driven contraction model

Kp

Bergel describes the thick walled tube equation in [19], see equation (7.1). For

calculation purposes it is useful to rearrange this equation to give the value Kp as

below as in equation (7.2).

Kp =
(a2
out − a2

in)

2(1− σ2)a2
inaout

(7.2)

The table below shows the variables used, otherwise all the variables for a stan-

dard run were used as in section 6.2.

Contraction Model Amplitude A0 Passive (mm) E0 (Pa)

E 5.5 E0 1.25 5000

A0 Corrected 0.425 Ap0 1.25 5000

Looking at Arkill’s results in chapter 4 we would like the total change in E during

a contraction to be approximately 11E0 , which gives an amplitude of 5.5 E0. The

calculations were a bit more complicated for the radius driven model, as they need

to be based on A0 Passive. We would like the radius to vary between approximately
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Contraction Model Average Flow (mm3/s)

E 3.7613

A 7.4 × 10−10

Corrected A 3.631

Table 7.1: The average flow using 3 different models, E, A and corrected A

2.55 and 1.5 mm. This gives a total change of 1.05 mm. If the maximum unstretched

radius A0 is 1.25mm then 1.05mm gives a change of 84%. This was rounded to 85%,

giving an amplitude of 0.425 A0.

7.3.3 Results/ Discussion

As shown in figure 7.4 the initial results for an A0 driven contraction wave came

out negligible in comparison to the E driven wave results, without enough pres-

sure to open the valve. It was found that the assumption that the parameter Kp

(shown in equation 7.2) was the same throughout the cycle, did not hold true if the

unstretched radius changed during the cycle. This Kp was calculated to combine

various terms that appeared not to vary with time (in order to save on processing

time in calculating the thick walled tube equation 7.1). This value does however

require the radius at a pressure of zero (the unstretched radius) which in this A0

driven model changes throughout the cycle. This value of Kp does not change for

the E driven model as the value for A0 does not change.

With the correct amplitude of variation, the A0 driven wave model now gave

results very similar to the E driven model for a similar change in radius as shown in

figure 7.3.3. The average flow is very similar, see table 7.1 and either model could

be used. As the model using E gave an opportunity to save processing time, (by

calculating Kp just once at the beginning of the simulation) this was used in most

cases.
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Figure 7.4: A comparison of the input function A, P, Q and valve timings for the

E driven model ( a - e) against the initial A driven model (f-j). Using the A driven

model gives a very low contraction when kp is calculated at the start of the run.
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Figure 7.5: A comparison of the Input function A , P, Q and valve timings for the

E driven model ( a - e) against the corrected A driven model (f-j), which include a

time varying Kp giving results very similar to the E driven model.

127



7.4 Matching Model to Experimental Results

This section explores characteristics of the radius time and pressure radius rela-

tionships and their variation with various parameters. This enabled the matching

of characteristics on both graphs to experiment while keeping within experimental

error margins.

7.4.1 Introduction

Within physiology, parameters have a much wider distribution about the mean than

traditional engineering. This variation occurs even within one species, depending on

the part of the body and the age and size of the animal. This can cause complications

in accurately modelling a sensitive system, where 5 % is not considered a large

error. There are some values which are extremely difficult to measure accurately in

experiment (e.g. the value for the radius at a pressure of 0 Pascals). Unfortunately

this particular value is one of several that are critical to the model and are prone to

error. Data trends can be a far more useful basis for representing a system rather

than individual points, as trends are more robust to causes of inaccuracies.

Rather than trying to match all the characteristics of a particular vessel, we

investigated the more useful data trends, which should give a much more accurate

model. This was undertaken by matching the gradients on the pressure radius graph

(e.g. graph 7.7) while maintaining the radius time profile. Ideally for our model we

would like both the behaviour relating the pressure to the radius and the radius to

the time (including the shark fin shape due to passive relaxation) to match. Until

now if the radius time model output matched experiment well, the pressure radius

did not and vice versa.

7.4.2 Method

We compared the pressure versus radius and radius versus time graphs from exper-

iment to those on the model, using the same parameters. Lines were set up on the
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pressure versus radius graph to represent the model’s input for minimum, maximum

and midway points in the contraction cycle.

Ideally the maximum and minimum lines from the model would lie along the edges

of the rhombus from experimental results, following the maximum and minimum

behaviour we had identified in vitro. As can be seen from graph 7.7 the radius

pressure relationship does not match experimental results in terms of gradient and

origin on the graph.

In order to match the initial gradient and postioning on the radius pressure graph

with the model, the parameters could be changed within the bounds of error (if the

parameters are sensitive enough).

Initially we used the radius time and pressure-radius data from different experi-

ments. These did not match and had very different maximum and minimum radii.

This made it difficult to set the origin of the input lines. It was found however, that

by changing the results to the percentage contraction, the graphs matched very well.

7.4.3 Results/Discussion

Various parameters were varied within the experimental error limits and the effect

on the pressure-radius and radius-time graphs observed. It was often found that

when one parameter was varied another would also need to be changed in order to

match the experimental results as shown in figure 7.8. The parameters that had the

greatest effect on the pressure- radius relationship were found to be the boundary

pressures PB1 and PB2, the relaxed unstretched radius A0, the wall thickness h and

Young’s modulus of the wall E and the change in E (Eamp).

The boundary pressures allowed the results to be shifted vertically. Both pressures

could be lowered in order to lower the position of the results on the graph, while

keeping the pressure difference the same. This measure affected the output but not

the input lines of the model, with the results coming out lower down on the graph

with a lower pressure. This was useful as the relationship between the lines was

more similar to the in vitro results in the lower portion of the graph, keeping well
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Figure 7.6: The model output before matching the radius vs time and pressure vs

radius profiles to those found in experiment, showing the variation with time of

radius, pressure and flow, where E0 = 2750
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Figure 7.7: The radius pressure relationship before matching the radius vs time and

pressure vs radius profiles to those found in experiment, where E0 = 2750
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below the point at which the gradients change on the pressure radius graph.

Increasing the relaxed unstretched radius A0 shifted the model input lines to the

right, but this often meant that the Young’s modulus or wall thickness would need

to be increased in order to adjust the fit of the gradient now the line had moved.

This type of change is shown in figure 7.8. Increasing the Young’s modulus or wall

thickness increased the gradients of the lines on the pressure-radius graph, making

the vessels stiffer.

Increasing the contraction amplitude Eamp (change in the Young’s modulus )

generated a larger contraction and a larger angle between the lines. This made

the maximum gradient steeper but kept the minimum input the same (i.e. the

maximum contraction was stronger but the minimum stayed the same). Increasing

this E driven contraction amplitude helped to encourage the shark fin shape with a

longer passive relaxation stage. As discovered in section 7.3.2 with the radius driven

contraction wave, this is due to the increased change in volume the vessel undergoes

during a contraction.

As can be seen in figure 7.9 and 7.10 the relationship was fitted satisfactorily

using the inputs shown in the table above. Any measure which increased the change

in radius or the change in contraction strength also encouraged the saw tooth shape

to emerge, by giving a longer passive relaxation stage. The graph 7.9 fits well for

the values of pressure used 500 - 800 Pa.

It is also possible that the original discrepancy in the direct implementation of the

experimental parameters to the pressure radius graph is because some other factor

has not been represented properly by the model so far. The resistance seems a likely

candidate. It would seem likely that the resistance increases in a curve as the valve

closes and the volume that can pass decreases non-linearly (also see chapter 8).

A further consideration is that the in vitro experimental radius-pressure relation-

ship changed gradient after a certain point. This is due to the material’s ability to

change properties with strain mentioned in chapter 1. This is not represented by the

current modelling method, but the first gradient covers results within the physiolog-
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Figure 7.8: The effect of varying A0 and decreasing E. For panels a+ b A0=0.001

m, E= 5000 N/m2. For c + d E=5000 N/m2, A0 = 0.00125 m. For e + f E=2750,

A0 = 0.00125.
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Figure 7.9: The radius pressure relationship after matching the model to the exper-

imental profiles for radius vs time and pressure vs radius.

Parameter Before After

E0 (N/m2) 2750 2500

Eamp 5.5E0 8E0

h 7%A0 7%A0

A0(mm) 1.25 0.9

Tp 40 18

Tc Tp/2 Tp/2

PB1 500 500

PB2 800 800

Table 7.2: Table to show the inputs used before and after matching
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Figure 7.10: The model outputs for radius, pressure and flow with time after match-

ing to the experimental profiles for radius vs time and pressure vs radius
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ical range. One method for modelling the two different gradients is examined further

in section 7.5 using a direct relationship between pressure and radius. This allows

the gradient to change, as occurs in the experimental results. Another variation in

modelling set up was also explored in section 7.3.2 where the unstretched radius is

used to drive a contraction wave. This also changes the shape of the pressure versus

radius graph but does not give 2 gradients.

7.5 Modelling the dynamic behaviour using a di-

rect relationship between pressure and radius

Figure 7.11: Static compliance of a lymphatic vessel from experiments performed

by Arkill and described in chapter 4

Experimental results derived by Arkill in chapter 4 produced the graphs 7.11 and

7.12, showing the relationship between pressure and radius for a relaxed or pumping

vessel. These experimental results agreed with the findings by [5]; in that the mate-

rial appeared to become less extensible and compliant above a certain strain. This
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Figure 7.12: Compliance of a pumping lymphatic vessel from experiments performed

by Arkill and described in chapter 4

is not accounted for in the models used up to this point, with the contraction driven

by radius or elasticity. A second model was designed, using a direct relationship

between the experimental results for radius and pressure. This negated the require-

ment for values for the Young’s modulus and the radius at zero pressure, which are

extremely difficult to measure accurately due to difficulties finding the wall thick-

ness and point at which zero pressure is reached. These values were only needed to

relate the pressure and radius and we now have a direct relationship between the

two values.

7.5.1 Passive wall model

The direct relationship setup for a relaxed vessel is shown in figure 7.13. The lines

were adjusted to fit Arkill’s results shown in 7.11. The two gradients show that

the material becomes stiffer after a threshold strain of a2. The general equation

could be used as below, where the gradient m and the intercept c changed above
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Figure 7.13: The direct relationship model setup for a relaxed vessel

the threshold strain.

P = m.a+ c

7.5.2 Contracting - 1 Gradient

For the first representation of the contracting vessel with the direct relationship

method it was assumed the material only had one phase and the gradient of the

pressure radius graph remained the same throughout. The contraction was included

in the form of a sine wave with a pause, this time using a contraction index Ic rather

than a varying Young’s modulus E or relaxed radius A0. This index causes the line

to move between PR (the line describing a relaxed vessel) and Pc (the line describing

a fully contracted vessel) depending on the degree of contraction as shown in figure

7.14.

The general equation became:-

138



Figure 7.14: Direct Relationship setup for contracting vessel using 1 gradient
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P =
a− c
m

+ (PD × Ic) (7.3)

7.5.3 Contracting- 2 Gradients

A second region was added in the same way, to include the variation in material

properties with strain, this described a stiffer tube above the threshold a2 as shown

in figure 7.15 . The pressure range PD at this new position was kept the same,

inorder to ensure a smooth transition between the two phases. The contraction

index Ic was used in the same way.

Figure 7.15: Direct Relationship setup using 2 gradients to show the change in the

stiffness after a threshold strain is reached. The dashed lines show the midway

points for the semi-contracted vessel at different contractile indices.
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Parameter Value

PR1 (Pa) 0

PC1 (Pa) 1325

PR2 (Pa) 1156

PC2 (Pa) 2479

PD (Pa) 1325

a1 (mm) 1.05

a2 (mm) 1.65

m1 5.84 x 10−7

m2 5.84 x 10−8

Table 7.3: The values used for the direct relationship model set up

The equation remains as :-

P =
a− c
m

+ (PD × Ic) (7.4)

The gradient m and the intercept c depend on whether the point is before or

after the threshold radius a2. The contraction index Ic depends on the amount

of contraction the vessel is undergoing. The table 7.3 gives the values relating to

diagram 7.15, where a is radius, P, pressure and m gradient. The table 7.4 denotes

(where possible) the parameters used in comparison to the parameters from the

model developed in the previous chapters.

7.5.4 Results

Graph 7.17 shows the pressure radius relationship for the input for this Direct Re-

lationship model. This is able to follow Kenton’s results much more closely.

As shown in 7.16 f-j the passive relaxation did not occur in this direct relationship

model as found in the other model 7.16 a-e. This seems likely to be due to the way the

model was set up. Once the contraction has finished the pressure radius relationship

is set to a particular line on the graph (the bottom line on figure 7.15) which does not
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Figure 7.16: The Direct Relationship model (f-j) in comparison to the stabilised

Reddy Implementation (a-e), E=2750. The shark tooth shape is not present and

the radius and flows are much smaller.
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Parameter Previous Model Direct Relationship

E0 (N/m2) 2750 N/A

Eamp 5.5E0 N/A

h 7%A0 N/A

A0(mm) 1.25 1.05

Tp 40 18

Tc Tp/2 Tp/2

PB1 500 500

PB2 800 800

Table 7.4: The values used for the direct relationship model set up in comparison

to the previous model

account for the passive relaxation of the vessel. Furthermore the magnitude of the

contraction was much smaller. To try to improve this by increasing the amplitude of

contraction alone takes the relationship away from the experimental pressure radius

relationship and the radius time shape becomes even more unrealistic. Matching

both graphs in a similar way to section 7.4 may be possible but would be very time

consuming. As the passive relaxation behaviour may be important this does not

seem worth pursuing at this point.

7.6 Conclusions

The contraction pulse was found to be as effective backwards or forwards in one

lymphangion in the 1-d computational model and we submit that a reversed wave

would be able to propagate throughout the network allowing more efficient transport.

The model was developed to use a varying Young’s modulus E and relaxed radius

A0 to drive the contraction wave inorder to differentiate between two features of a

contraction; the muscles stiffening and shortening. It was found that this did not

significantly effect results and the E model was chosen as the standard as this had
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Figure 7.17: The pressure radius relationship for the Direct Relationship model

inputs in comparison to Arkill’s results described in chapter 4

fewer calculations per time step and therefore a shorter processing time. This A0

driven wave also begins to explore the effect of the twisting (during contraction) on

the vessel. It shows that the decrease in cross sectional area due to twisting has a

similar effect to if the material was just stiffening.

The data trend of the relationship between pressure and radius was seen to be

more important than the exact value for the radius at zero pressure. Therefore these

pressure-radius properties and the relationship to the radius time characteristics

were investigated by varying parameters within experimental limits and the effect of

those parameters noted. It was found that the experimental pressure-radius and the

radius-time characteristics could be reproduced within experimental error limits.

A direct relationship model was also explored, this did not produce a contrac-

tion of sufficient amplitude. Furthermore, the radius peak at the beginning of the

144



contraction and the slow passive relaxation phase were missing and so it did not

give the shark fin radius time profile as found in experiment and previous models.

This type of profile may be an important indicator of the pump efficacy such as the

efficiency of the valve as discussed in the next chapter.
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Chapter 8

Valve Investigation

8.1 Introduction

A preliminary investigation of the valve was undertaken using the computational

modelling package Fluent (commercial code). Both a static and dynamic model

(using prescribed motion) were constructed in order to improve the 1-d resistance

model. This study illuminated several areas for future investigation but no qualita-

tive understanding was possible. Small changes in the motion or parameters made

a large difference to the results. Improved knowledge of the parameters and motion

is required for progress in this direction although ideally an fully Fluid Structure

Interaction model of the valve is required.

In the previous chapters it was found that the valve modelling details are very

important to the 1-d model, although there is very little experimental information

available on the mechanics of these valves. Computer modelling of the valve motion

has a distinct advantage, as the in vitro parameters are very hard to measure without

causing damage or affecting the results. Instrumentation needs to measure values

inside the vessel itself without affecting the flow in order to quantify parameters:

such as the opening and closing pressures of the valve, and the valve timings and

opening configurations. These values can then lead to calculation of the resistance

of the valve and stresses on the valve leaflets.
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8.2 Valve Characteristics

This section reviews what is known of the parameters and mechanics involved in

lymphatic valve function and compares them to those of the heart and venous valves

due to the more thorough knowledge in these regions and the likelihood of similar

function.

8.2.1 Heart Valves

The two major heart valves are the aortic (tricuspid) and mitral (bicuspid) valves,

the valves exposed to the highest flow velocities. As heart valve complications

are often due to the flow characteristics involved, these valves (which undergo the

greatest stress) have been examined in the most detail. The position of these two

valves within the heart is shown in figure 8.1.

Figure 8.1: Schematic of the Heart from [104]. Ao = aortic valve (tricuspid), M =

Mitrial valve (bicuspid) , LV= Left Ventricle

Although there are major structural differences (such as number of cusps) be-

tween the mitral and aortic valves, the mechanical function and parameters (such

as the pressures, radii and velocity) are of similar order. Furthermore, the venous
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valves seem to posses the same basic mechanics. The efficiency of all these valves

appears to depend on the development of recirculation in the area behind the leaflet

shown in figures 8.2 and 8.3. This recirculation is encouraged by the sinuses or

the ventricular chamber itself. The heart valve leaflets are non-muscular flaps [24]

made of connective tissue 0.1 mm thick [1]. Collagen fibers distributed along these

flaps have been found to both reduce stresses during flow through the heart and

reduce fluttering [91]. Due to the similar parameters such as the Reynold’s number

Re, magnitude of flow and the nature of the mechanics involved in the function of

the mitral and aortic valves the two are not always differentiated in the following

section. It is more concerned with discovering if these same fluid mechanics are

involved with the lymphatic valve function, and which parameters are of a similar

order of magnitude.

Figure 8.2: Streamlines around the fully open aortic valve [1]

Figure 8.3: Streamlines around the partially open aortic valve [1]

Buxton and Clarke [26] found similar recirculation in a 3-d Fluid Structure
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Interaction model of the venous valve, in the area behind the valve leaflets. Bellhouse

[107], developed a model of the mitral valve and showed that the size and shape of

the area behind the valve leaflets was critical to the development of this recirculation:

regurgitation occurred when it was not present.

In a heart model by Timm (1942) it was found that the flow still presented the

same circular motion behind the valve leaflets in laminar flow [17] and Dinnar states

that steady flow can be assumed [23] in the aortic valve. The Reynolds number

(for flow) was varied in a model of the heart between 20 and 200, and there was

still no qualitative difference in the nature of the flow [103]. Therefore it seems

the recirculation is due to the shape and does not require turbulence: the same

mechanism should work in the lymphatic system at lower flow rates. Such a shape

means that the pressure drops between the valve leaflets, mid flow; while the pressure

behind the valve leaflets remains the same (due to the recirculation). This gives a

relatively stable half-closed position during most of ejection. In fact the mitral valve

has been found to be so efficient that it begins to close while there is still forwards

flow [1]; thereby minimising regurgitation.

In the aortic valve, 5% of the fluid is regurgitated at each valve closure [103].

Not all of the regurgitation is necessarily leakage: some may be part of the volume

contained within the valve itself [17].

There is a difference between the pressure that will trigger opening or closing in

the heart valves. This is important because, during closing, the pressure rises from

its initial zero pressure gradient across the valve up to 0.55 mmHg (73 Pa) (as can be

seen in figure 8.5). This is still lower than the few mm (400Pa) required to trigger

opening. Without this difference, the very mechanism of closing would open the

valve again. The 1-d model of the lymphatic system described in chapter 5 suffered

from fluttering if the opening and closing pressures were both zero (see section 5).

For the aortic valve, literature documents the opening stage as taking from around

20-30ms [103] to 160 ms [23] or even longer. This discrepancy may firstly be due to

a lack of differentiation between the opening or closing time. Secondly it may be due

to whether the stage before the actual opening is included (where the valve gives,
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Figure 8.4: Cat mesenteric lymphatic valve taken from [27] relaxed (A), pumping

(B); scale × 183
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Figure 8.5: The pressure across the cusps during mitral valve closure taken from

[24]
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but does not open). When the opening and closing stages are measured seperately,

results indicate that the opening phase is faster than the closing phase. The results

of Bellhouse and Talbot [24] show a ratio of approximately 3:5 opening to closing.

8.2.2 Lymphatic Valves

Chapter 2 includes a detailled description of what is known of the valves, and this

section is intended as a summary to indicate information that is helpful in producing

a 2-d model. There have been very few morphological studies of the lymphatic valves,

but these include [27, 59, 53, 50]. In the lymphatic system Zweifach and Prather in

[108] and [27] found that a pressure from between 1.0 and 2.7 cm H20 was enough

to open a valve (between 100 and 270 Pascals). The lymphatic valves seem likely

to have timings of a similar order to heart valves, which take longer to close than

open. It must take a number of time steps to open or close the valve if the model

is to remain stable. Sinuses have been described by Leak and Jamuar [50] giving

the vessels the well known beaded appearance. These could allow recirculation as

in the heart valves. If the lymphatic valves have similar mechanics to heart valves,

there may be a similar partial closing stage (see section 2.2) and faster opening than

closing times. A partial closing time such as this would increase resistance to flow

in the second portion of the contraction cycle and may be connected to the shape

of the radius with time relationship. In the 1-d valve model the closing and opening

sequences were set to take 20 ms. A shorter time than this produced instabilities

and from 20 - 200 ms had little effect on the results. This range is also comparable

to the heart valve timings [23, 103].

Re =
ρUd

µ
(8.1)

The Reynold’s number (Re) can be used to determine the nature of flow e.g. laminar

or turbulent, and is related to the velocity of the flow and radius of the valve. The

heart valves can have a Reynold’s number as high as 8000, which is transitional flow

153



and means that the flow could be turbulent or laminar. The Re for the lymphatic

system will depend on the diameter of the vessel and flow velocity and therefore on

the position in the network and species of animal.

Figure 8.6: Sequence of pictures of lymphatic valve opening and closing taken using

boroscope by Arkill

8.3 Computational Modelling

The 1-d model uses a linearly varying resistance with time, during the closing or

opening phase. When the valve is fully open the resistance is related to the radius

of the tube by the relationship in the equation shown below.

Rvi = kp
(
πa2
)

(8.2)

As introduced in chapter 5, there appear to be inconsistencies with the units of

this equation from Reddy’s work. However it seems likely that this relationship is

aiming to describe the valve mechanics arising from the change in momentum of

a fluid stream when it impinges on a solid object. It is as if a hose is squirting

on a door to keep it open. For the lymphatic valve model used by Reddy, this

was constant except for when it was closed, for which the flow was then set to

zero. However it would seem more intuitive if the resistance increases as the gap

between the valve leaflets decreases. In the 1-d model developed in section 5 a
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linearly decreasing resistance (during valve opening) was used. This was however

only an approximation mainly used to improve stability of the model by replacing

the sudden sharp change involved when the valve was completely opened in one

timestep. The resistance time behaviour of the lymphatic valve during opening and

closing is not available in the literature; but study of this would allow improvements

to the 1-d representation of the valve.

8.3.1 Method

Gambit (commercial code) was used to construct a mesh of a lymphatic valve from a

micrograph by Zweifach and Prather [27] of a valve from a rat’s mesentery. Gambit

(the preprocessor available from Fluent) is a geometry and mesh generator and

points were used from measurements taken at intervals of 1 mm from the micrograph

(corresponding to 6.25 µm) along the outline of the vessel. The dimensions were

scaled up, to bring the radius to 0.96cm, equivalent to the largest of the valves found

in a cow’s mesentery.

The tip of the leaflet was constructed as a rounded shape as this is more realistic

physiologically than a sharp shape which would intrude on flow and increase flow

disruption. To generate a symmetrical structure, only half the vessel was drawn,

with a line of symmetry set at the centre of the tube. The flow within this mesh

could then be studied using Fluent (commercial code; ANSYS INC), at different

valve openings. Fluent is a Finite Volume, Computational Fluid Dynamics program,

solving the Navier Stokes in 2 or 3 dimensions. The differencing scheme used was the

1st order upwind differencing scheme with the SIMPLE algorithm and steady solver.

The mesh contained approximately 2886 cells with a slight variation depending on

the valve position. The output pressure was set to 800 Pa and the input to 810 Pa;

representing the pressure drop of 10 Pa observed in the 1-d model when the valve

was first fully open. Two dimensions were considered accurate enough in these

preliminary investigations, approximating the valve as having a uniformly round

opening and generating symmetrical flow.
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Type of Mesh Tool Parameter Value

Smoothing Spring Constant Factor 0.8

Boundary Node Relaxation 1

Convergence Tolerance 0.001

Remeshing Min Length Scale (m) 0.0001

Max Length Scale (m) 0.0005

Max Cell Skewness 0.75

Size Remesh Interval 1

Size Function Resolution 3

Size Function Variation 0.75

Size Function Rate 0.99

Table 8.1: The smoothing and remeshing parameters used in the dynamic model

A representation of the valve with no sinus region was also constructed for com-

parison to the flow within a valve containing the sinus region. The original 2-d

model was then scaled to different sizes to see the effect on flow of the position of

the valve within the network.

A dynamic model was also constructed in Fluent (commercial code) by assigning

motion to the valve leaflets from the original static model using the parameters in

table 8.1. This showed that motion effected the results significantly. However the

results changed too much when parameters were varied, within the known bounds,

for any conclusions to be reached. A better experimental quantification of the time

varying pressure, velocity and position of leaflets would be required for useful results

by this method.

8.4 Results

Recirculation behind the valve leaflet was reduced by removing the sinus.

With a smaller scale vessel the recirculation behind the valve leaflets is reduced
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Figure 8.7: The velocity streamlines (m/s) (a) with and (b) without a sinus region,

for a 9.6mm radius vessel. Recirculation is much more pronounced when a sinus is

present.
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Figure 8.8: Velocity streamlines (m/s) for smaller scales of valves (a) 0.96 mm radius

(b) 0.48 mm radius (c) 0.096 mm radius, for which creeping flow occurs through the

valve and recirculation is prevented
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as shown in figure 8.8. The recirculation in front of the valve is seeded by an angular

edge, which should be removed in future investigations.
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8.5 Conclusion

Recirculation was seen throughout the modelling study, indicating it is likely to be

an important part of the valve closing mechanism. A future study of the endothelial

pattern in the sinus area of valves from different positions would confirm whether

recirculation is occurring as the cells tend to line up with flow. The static 2-d

valve model showed similar behaviour to the backwards facing step. With flow

seperation at the tip of the valve lading to recirculation behind the valve leaflet. On

examining a very small scale of the model, creeping flow was seen, which prevented

recirculation behind the valve leaflet. When the sinus was removed, no recirculation

was seen, showing the shape behind the valve leaflet to be an important factor in the

dynamics. The addition of motion had a large effect on the resistance. Furthermore

the dynamic model showed very different results if the prescribed motion was varied

a small amount. In order to use this method to investigate the resistance; a much

better quantification of the valve timings, pressures, flow velocities and leaflet shapes

is required throughout the cycle. Ideally a full Fluid Structure Interaction model

should be used, this would require a good representation of the dimensions and

moments, but less dynamic detail from experiment as the motion is decided from

first principles.

Some aspects of the experimental studies of the mitral valve by Bellhouse [107]

appear to be relevant to the dynamics of the lymphatic valve. Bellhouse compared

results for a large and small ventricle and the recirculation did not occur in the large

ventricle as the shape behind the leaflet was too large. The valve opening area with

time shows a square shape when there is no recirculation. With recirculation, a

radius peak was present at the start of flow with an earlier onset of a more gradual

curved closure. These two features are similar to features found using the lymphatic

1-d model and experiments; the radius peak and shark tooth shaped radius-time

graph involving a curved relaxation period. This type of wall behaviour could be an

indicator of conditions for recirculation and therefore more efficient valve function

due to the reduced backflow.
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(a) Type A developed with McHale for the mesenteric lymphatics, also presented by and Alber-

tine et al [59] and Leak and Jamuar [50] in the pulmonary lymphatics.

(b) Type B was described in the skeletal muscle by Mazzonni [55].

(c) Type C was described by Lauweryns [56, 57] in the lung lymphatics and by Gruntzig et al

[58] in the conjunctiva of bovine eyes).

(d) Type D is described by Schmid-Schonbein in his review of the microlymphatics [11].

Figure 8.9: Comparison of different valve descriptions from the literature and the

structure found in the mesentery as discussed in section 2
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As shown in figure 8.9 various different valve structures have been described

in the literature. There are reports of both bicuspid and funnel shaped valves,

some with buttresses and different length to width ratios. As discussed in section

2 it seems likely that the different valve characteristics will be required in different

parts of the network. This would generate different resistances, and opening and

closing thresholds to suit the surrounding conditions such as the flow speed, pressure

difference across the lymphangions, softness of the tissues, shape of the vessel and

the external forces.

After describing the funnel shape in the microcirculation shown in figure 8.9

(type D) Schmid Schonbein describes the valves as undergoing an Re from 10−2 -

10−4, therefore creeping flow. During creeping flow, viscous forces dominate and the

inertia of the fluid is negligible, which would prevent recirculation (in fact no sinus

region is mentioned at this level). Creeping flow is also present in the flow through

the valve aperture of the 2-d static results for the smallest valve (in figure 8.8 c

)and recirculation does not occur. The same phenomena is found in experiments

such as flow around a sphere when Re is less than or equal to 0.5. Without the

recirculation a possibly crucial part of efficient valve closure would be missing if the

structure found in larger vessels was still used in the smaller scaled vessels. This

seems to indicate that in these smaller vessels, with lower flow, a different valve

design is required as the leaflets depend on reversal of flow for closure rather than

the reversal of the pressure gradient. A funnel shape would mean that the valve

is never more than slightly open, so only the end of the normal closing cycle is

required (the final snapping shut as flow reverses) and the valve can still close with

a minimum of regurgitation.

The pressure drop (and therefore resistance) caused by the 2-d valve model (type

A) varied alinearly with the scale of the valve in figures 8.8. Shorter leaflets caused

a lower resistance but a smaller aperture increased the resistance, with the two

mechanisms becoming more dominant at different scales. Therefore valve leaflets

may need to be longer in a smaller vessel to apply the same resistance. The standard

valve found in the mesenteric collecting lymphatics is much longer than the heart
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valves, otherwise the resistance would be too low in these smaller vessels. The flow

and pressures are much lower in smaller vessels, requiring a sensitive valve, according

to Schmid- Schonbein [11] this funnel shape is extremely sensitive, able to operate

under extraordinarily low flow rates. So, as long as the material is soft and in a

funnel shape (irrelevant to the shape of the vessel) rapid closure occurs on reversed

flow. The valve becomes more effective if longer or decreased diameter as there is a

larger viscous pressure drop.

Some vessels undergo larger compressive forces such as in skeletal muscle, (figure

8.9 type B) the valves appear to be short but tough, they do not need to be very

sensitive with larger changes in pressure. In such a position one of the longer, funnel-

shaped valves would be likely to suffer damage. In the conjunctiva of the eye there

will be small vessels undergoing minimal compressive forces so the funnel shape is

better suited. In such a position the valve may not need to be held in place by

buttresses as described by figure 8.9 type C. Schmid-Schonbein [11] attributes the

buttresses to prevention of reversal of the leaflets. These may also aid closure as

tension would begin to flatten the shape of the aperture. Buttresses could also hold

the leaflets steady in areas undergoing larger changes in compressive forces. The

valve resistance and structure may also be related to the valve opening threshold

but this is left to future work.
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Chapter 9

Conclusions and Future Work

This chapter details the conclusions and physiological implications for this project.

It concludes with a section suggesting future work with an emphasis on modelling.

9.1 Conclusions

In chapters 5 to 7 a computational model was developed which described the be-

haviour of a single lymphangion improving on an existing model by Reddy [4]. The

parameters used were based on, and validated against, literature and experimental

measurements of the elastic properties of lymph vessels measured in the laboratory.

This computational model is able to reproduce the pumping behaviour of the real

vessel using a simple contraction function. It suggests that lymphatic pumping is

governed by simple and fast contraction pulses travelling in the retrograde direction

to the flow.

The above model was initially based on Reddy’s work [4] but after reducing the

time step, various stabilizing methods were found to be necessary to obtain accu-

rate results from this model. These additions represented a more physiologicalically

accurate condition. Any short sharp changes imposed on the system were replaced

with gradual changes. For example, the abrupt opening and closing of the valve

and on/off of the contraction were replaced with modified sine waves. To further
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improve the stability and physiological accuracy terms to represent the inertia and

longitudinal tension of the lymphatic vessel wall were also added to the conserva-

tion of momentum equation and compared to values obtained experimentally. The

tension term is not necessary in the setups looked at, but would be necessary if the

tube collapsed or the cross sectional area underwent a large change for some other

reason.

The Courant number was calculated for the model and compared with a CFL

(Courant-Freidrichs-Levy) condition of 1. This criteria is necessary to confirm con-

vergency of results due to the size of the cells and timestep and 1 is the standard

value used for modelling blood vessels. In order to further check the model’s accu-

racy, it was configured to be compared with Poiseuille’s flow equation. First, a very

stiff vessel (with no contractions and a pressure gradient to allow flow) was used in

order to try to replicate the behaviour of an inelastic tube to allow Poiseuille flow.

The flow was the same for both the direct calculations and the model results, indi-

cating that the model was behaving as expected. This procedure was repeated for

two vessels of greater compliance and but this time they were compared to a modi-

fied Poiseuille relationship; to account for the elasticity of the tube. This calculated

solution compared well to the model results.

The sensitivity of the model to a variation of parameters was investigated in

chapter 6. The stiffness of the vessel walls was increased by increasing the Young’s

modulus E and wall thickness h resulting in decreased flow. Flow was increased by in-

creasing the volume change during contraction, either by increasing the unstretched

radius A0 or the amplitude of contraction Aamp. When the contractile wave speed

was increased (by decreasing the phase difference) the flow was increasd. Similarly,

increasing the frequency of contraction by decreasing the period also increased flow.

Once the phase difference and period are decreased to a certain level they will start

to decrease flow. In respect of the phase difference; if all the segments contracted

simultaneously, the pressure gradient across the valve would not change, therefore

negating any pumping effect. The lymphangions pump most effectively if all sections

of the wall contract almost simultaneously, irrespective of the direction of propa-
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gation of the contraction wave. A quickly propagated contraction wave increases

the pressure throughout the lymphangion until the pressure difference is sufficient

to open the valve and drain the segment. If the wave propagates more slowly, the

effect is merely to pump the lymph fluid from one part of the vessel to another,

without ever building enough pressure difference to open the valve.

In respect of the period; if the contractions happened too quickly there would

not be enough time for complete relaxation, reducing the total change in volume

possible due to a contraction. Decreasing the output pressure so that passive flow

was generated, with a gradient of 200 Pa, increased the maximum flow to around

2000 times the value when pumping against a pressure gradient. When the con-

tractions were omitted for this case, a larger flow was possible due to the lack of

restriction caused by the reduction in radius. Qualitatively similar behaviour was

produced when these parameters were varied (except if the pressure gradient was

set to be positive). However, there were changes to features in the radius-time pro-

file such as the radius peak and the passive relaxation time. These features may

be physiologically important, possibly indicating efficient valve function or effecting

the pumping efficiency due to the walls. It was found in section 7.4 that increasing

the total change in volume during contraction increased the passive relaxation time.

Chapter 7 explored the relationships between the contraction pattern of the wall

and flow generation. The differences between the forward and reverse propagating

contractile wave are minimal. We would suggest, however, that pumping through

a branching network would probably be more effective with a reverse wave, which

would be able to propagate up both branches at a bifurcation. A forward prop-

agating wave arriving at a bifurcation would need to co-ordinate with any wave

propagating down the other branch, otherwise lack of coherence between the waves

would most likely lead to reduced efficiency. Reverse contraction waves have been

observed in experiment [38].

In chapter 7 it was found there was very little difference in the model if the

contraction was driven using a variation in the relaxed radius or the Young’s modu-

lus. A further modelling method was additionally explored which related the radius
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directly to the pressure but this did not allow the passive relaxation stage of the

vessel’s contraction cycle to occur. The relationships between pressure and radius,

and radius and time were investigated. Matching the model to gradients on the

pressure-radius graph obtained from experiments is likely to be more accurate than

using individual experimental measurements for critical points; for example the un-

stretched radius, which was difficult to obtain accurately from experiment but has

a large effect on the pressure-radius relationship. We examined the radius-pressure

and radius-time graphs and the parameters involved in changing characteristics of

the results. This led to a closer match to the experimental results while keeping the

parameters within the error limits.

A preliminary investigation into computational modelling of the lymphatic valve

was undertaken in chapter 8. Further experimental parameters for the current model

or a full Fluid Structure Interaction model would be required in order to produce

results which would allow development to the 1-d valve model. The valve was

modelled in 2-d using Fluent, firstly using a static model and then a dynamic model.

Recirculation behind the valve leaflets was a feature throughout, indicating this may

aid valve closure as occurs in heart valves. The initial dynamic model presented

assymetry in the opening to closing stages. This is because the pressure gradient

was at the largest magnitude at the end of the contraction cycle, with the pressure

gradient against the direction of flow. For the 2-d dynamic model this was also

partly because the speed was higher on closing. Removal of the sinus, in the static

2-d model, reduced the amount of recirculation and pressure behind the leaflet

apparently reducing the closing efficiency. Reducing the scale of the static model

produced less recirculation in the sinus region until there was none during creeping

flows. This appears to indicate that another closing mechanism is required for very

low Re number flows. A second, dynamic 2-d model introduced a negative pressure

gradient during closing and showed positive flow could continue against the pressure

gradient until the valve was nearly closed.
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9.2 Physiological Implications

9.2.1 Wall configuration

An increase in stiffness of the vessel walls (as investigated in chapter 6) leads to

a smaller radius throughout the cycle, therefore a smaller change in volume, lower

flow and faster return to the vessels original relaxed shape. In situ, the Young’s

modulus of the walls is likely to increase (therefore increasing stiffness) with age

and disease as has been found in blood vessels. In blood vessels the material has

been found to act as if it is stiffening with age. This has been attributed to; the

vessels getting larger [104], the signal processing breaking down [109] glycation

of the elastin (bonding with sugar) [110] and the change in amounts of collagen

and elastin [111]. These changes in composition of collagen and elastin show an

increase in volume fraction but reduction in dry weight, so other components are

also reducing. An increase in wall thickness also increases stiffness. This may also

occur due to damage or inflammation. Dresden and Evert [112] and Wilson et

al [113] found increased amounts of collagen in areas effected by lymphoedema,

causing a thickening of the vessel. In situ increased stiffness may be accompanied

by a larger relaxed radius caused by permanent damage due to over-stretching with

further detrimental effect to the pumping efficacy.

The investigation of the relaxed radius described in chapter 6 has implications

for lymphatic network re-growth [64] after an operation. These re-grown vessels are

usually smaller than the original vessels and will give a lower flow. This makes the

vessels more susceptable to over-stretching. Permanent damage from over-stretching

during lymphedema would effectively cut out the beginning of the stress strain curve.

This means a large stress would be required for a small deformation.

Increased damping of the vessel walls causes a lower maximum flow as shown in

chapter 6 and this flow reduction potentially causes less damage. The addition of

damping begins to account for the viscoelasticity of the walls. The tension of the

walls did not have any effect in the cases which were investigated. It is likely to
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be more relevant if a mechanism occurs which causes a large change in area with

longitudinal position, such during collapse of the vessel.

Increasing the amplitude and therefore the magnitude of contraction increased

the average flow as described in chapter 6. As the minimum radius decreases (cre-

ating a greater magnitude of contraction) any further decrease in minimum radius

contributes less and less to the total change in volume due to contraction. Contrac-

tion magnitude and average flow do not have a linear relationship. Therefore there

is likely to be an optimum magnitude of contraction and after this it is more effec-

tive to increase the frequency of contraction (providing the vessel still has enough

time to fully relax before the next contraction starts). It is generally more effective

to increase the radius at the start of the contraction to give a larger volume for

the same change in radius. This might be done by increasing the relaxed radius or

allowing the vessel to relax for longer at the end of the cycle (if it would not have

otherwise relaxed completely). In terms of representing the effect of the muscle

contractions, varying the contraction by the Young’s modulus E or the unstretched

radius A0 gave very similar results and both may occur in reality. The decreasing of

A0 represents the muscular fibers knitting together, making the tube narrower and

increasing E represents a stiffening of the vessel walls. The model using a varying

A0 may also begin to represent the twisting of the vessel that has been observed in

vitro by McHale (private correspondence).

A faster contraction wave speed (i.e. smaller phase difference) generates a higher

flow and makes the most efficient use of the contraction coordination as investigated

in chapter 6. The speed of reaction of the following segment is therefore important

whether triggered by nerves or the internal pacemaking of each lymphangion. This

reaction time is likely to increase with age and damage. As discussed in chapter 3

one of the causes of a type of hereditary lymphoedema is the unusual distribution

of smooth muscle which would give a less coordinated contraction.

Increasing the frequency does not always improve the pumping, for example,

where the vessel has not had time to relax to a sufficiently large radius before the

next contraction. The pause between each contraction appears to be important as
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the passive relaxation is a major feature of the radius time cycle. This returns the

vessel to the starting radius, allowing the next contraction to cause a greater change

in volume, than if it had started immediately after the previous contraction, with the

same amount of effort. If the period is too small (i.e. the frequency of contraction is

too high) the vessel will not be able to relax completely before the next contraction.

A positive pressure gradient in the direction of flow, allowing passive flow is more

likely in cases of edema. In section 6.3.8 a gradient of 200 Pa was introduced in

the direction of flow causing a greater flow if contractions were stopped due to the

increased resistance caused by the narrowing of the tubes. Medication could induce

relaxation of the lymphatic vessels to improve passive flow if the pressure gradient is

appropriate. Before advising relaxation of the vessels in edema, the pressure gradient

at which the contractions cease to be effective should be found and compared to a

typical gradient between lymphangions in cases of edema (information which is not

currently available to the author’s knowledge).

The direction of the contraction wave did not effect the muscular effort for the

same flow on a small segment of lymphatic vessel. On a larger branching network, a

backwards wave could give greater coordination, travelling from one to many rather

than many to one, and our results indicated that a fast coordination was beneficial.

In [114], the Quick-Stewart team conclude that during edemous flow, contractions

restrict flow due to the increased resistance caused by the narrowing of the tube (see

section 2.4 for the background on Edema). Our findings in chapter 5 confirmed that

with a sufficiently large pressure gradient in the direction of flow, the addition of

contractions reduced flow. Further investigation is necessary to find the pressure

gradient at which pumping limits flow. This should be compared with the variation

of pressure gradients across individual lymphangions in edema to determine the

likelihood of these pressures occurring. Our findings in chapter 6 also confirmed

their observation that a contraction wave propagating in either direction is just as

effective.

Further important observations from the Quick-Stewart team include the con-

clusion that the co-ordination of the contraction wave minimally effects lymph flow
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[72] and the supposition that different areas of the same vessel or branches could act

as a conduit while others pump [114]. Such a lack of coordination cannot always

be advantageous and seems unlikely to be the physiological norm; our findings in

chapter 6 indicated that a fast propagation of the contraction wave was beneficial.

Contractions in an in vitro pumping lymphatic vessel can be observed to pass along

the vessel as a ‘mexican wave’. The lack of continuity of smooth muscle and there-

fore contraction is regarded as one of the causes of primary edema. In the ground

breaking work by Petrova et al [115] it was found that a major cause of a type of

hereditary lymphoedema (FOXC2 gene mutation) involved an unusual distribution

of smooth muscle. The smooth muscle lacked coordination and the areas with no

smooth muscle would be forced to become conduits. This indicates that, at least

in some cases, it is detrimental to have a lack of co-ordination along the lymphatic

vessels and for lengths of vessels to act as conduits. McHale and Hollywood [35] de-

scribe a large amount of electrical and muscular continuity along normal lymphatic

vessels, broken only at particular sites. It could be inferred that at the positions

of these breaks in connectivity the vessel could change from a pump to a conduit,

but seems unlikely in areas of good conductivity. Note that the smooth muscle con-

tractions are caused by both the slow myogenic response and the faster electrical

triggering.

If a contracting segment leads to a section of conduit, the pressure gradient

between the two sections (and therefore flow) would be restricted by the outlet

pressure of the conduit section. The pressure gradient (and therefore flow) between

two pumping sections can however be much larger, for example, when the contraction

has just finished in one section and is just starting in the upstream section

It is also important to consider the electrical pulses travelling in the nerves of the

lymphatic system which trigger the sequential contractions along the vessels. This

allows a faster propagation of the contraction wave than if each lymphangion was

triggered by the stretch sensors alone. If an area of vessel is then to act as a conduit

the electrical signal for contractions at one end would be isolated from the vessels

at the other end, leading to a lack of coordination in pumping.
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There are further modes of mal-coordination/coordination that the Quick/Stewart

team could investigate, some of which might even cause damage to the vessel walls,

for example where two joined areas of network contained a wave travelling in oppo-

site directions. Furthermore, their contractions cannot propagate within the space

of a lymphangion as an entire lymphangion contracts at once. This may affect the

pumping efficacy, our results (which include this greater detail) indicate a fast co-

ordinated wave is desirable to generate a large pressure to overcome the resistance

of the valve (see chapter 6).

Future work in this area should include mapping out the sites of breaks in conti-

nuity and their effect on the pump/conduit behaviour of a model if there are indeed

areas that act as a conduit. The details of the contraction waves should also be

investigated and any connection with the conduit behaviour or breaks in continuity.

9.2.2 Valves

The efficiency of the valve mechanisms is also very important. The lack of valves in

hereditary edema is critical to the development of the disorder as discussed in section

2.4 . Valve incompetency and damage due to over-stretching are also major factors in

the build up of edema [63, 10]. Having a good valvular seal on closure with an ability

to withstand a high retrograde flow is very important and is likely to be compromised

by over-stretching of the valve materials. The material of the lymphatic valves is

important, varying with age, and disease. Furthermore the dynamic shape and flow

patterns are likely to be very significant to the efficiency. Lymphatic valves are

often compared with heart valves (which have been more thoroughly investigated

and seem to undergo similar mechanisms). Often heart valve problems are caused

by damage to the material or the nature of the flow in that region. Copying these

specialist mechanics for heart valve prosthetics has proved very difficult, but once the

material has been damaged, there is little that can be done except to replace it with a

prosthetic. Bellhouse [107] found that the size and shape of the structure around the

mitrial valve outlet affected the recirculation and the valve closure efficiency. This

173



also affected the opening time relationship so that, when recirculation occurred, an

earlier start to closing was seen with a gradual curved return to shape and a radius

peak at the start of contraction. These are possibly indicators of a good flow profile

for recirculation and seem similar to features found in the radius-time relationship

of the lymphatic 1-d model and experiments. It may therefore be beneficial to

encourage this type of profile.

The exploration of the valves in chapters 2 and 8 appears to indicate that different

valve structures are beneficial in different areas of the body.

9.2.3 The Treatment of Edema

Probably the most realistic treatments for edema could involve preventing the dam-

age to valves and walls in the buildup to lymphoedema by advising certain proce-

dures or drugs to those at risk e.g. after surgery. A balance could be found between

removing enough lymphatic vessels to ensure the cancer is removed and leaving in

enough vessels to cope with the volume of lymph.

Certain drugs could be used to reduce or strengthen contractions depending on

the case or even encourage a certain wave form, which might for instance improve

valve efficiency. As previously discussed, the passive relaxation and radius peak may

be features to investigate further for this type of effect.

Further into the future it may be possible to consider transplanting a healthy

lymphatic vessel from a different limb to the affected area. The fitting of prosthetic

lymphatic valves may even be considered, once more is known about their properties.

9.3 Future Work

The models of the lymphatic system could be improved in two ways. Firstly a

multi-scale model could be made, for example of the entire network, or a particular

limb in a patient specific model. Secondly further investigation could be undertaken

of the details of the system such as the valve and wall dynamics. For example
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an idealized 2 or 3-d Fluid Structure Interaction of the walls and valves, which in

turn could be used to further inform the larger scale model. The existing model

could however be used to examine the larger flow and pressure gradients in edema

further and the implications for damage through the stresses on the materials and

strategies for avoiding damage. It is generally agreed that an increase in flow in the

lymphatic system would aid the body’s natural healing processes and is of paramount

importance to the recovery from lymphoedema. However the factors involved in

increasing flow need to be balanced with the other effects which may cause damage.

To improve on existing models of the lymphatic network (e.g. the model by

Reddy [6] and others discussed in chapter 3) the single unit of a lymphangion

designed here could be developed into a chain to represent a longer lymphatic vessel.

The vessels could be scaled to represent different vessels thoughout the network

including the effect of bifurcations. Each lymphangion should be represented as

simply as possible without losing accuracy (retaining features such as the passive

relaxation and the radius peak). It is likely to prove beneficial (due to computational

cost) to represent the lymphatic capillaries using lumped parameter modelling. It

may also prove possible to reduce the number of cells in our 1-d model of the

lymphangion, while retaining an accurate solution (taking the number of cells below

4). Furthermore it may be possible to represent the contracting walls accurately

enough using a lumped parameter model (a more simple model using an electrical

analogue or other direct relationship between pressure and radius. To date such

models have not shown certain features which may have physiological implications

such as the passive relaxation stage. The properties of the lymphatic nodes (e.g.

their resistance) could also be represented. The position of the vessel in the network

will have implications on the resistance and flow velocities involved partly due to

the lymphatic valves.

It appears that the dimensions of the valves are altered in different positions

within the body to cope with different surrounding tissue conditions, vessel size and

differing pressure gradients. In the smallest vessels creeping flow is likely to occur,

where the fluid inertia is negligible and viscous forces dominate. This will remove
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any re-circulation and therefore the valve will need to function differently. A funnel

shaped valve has been described by Schmid-Schonbein [11] and Lauweryns [56, 57]

in lymphatic microvessels, which could enable efficient closure without re-circualtion

in the sinus region as the valve tip is closer to the closed position throughout the

cycle. An examination of the flow velocity, and dimensions, efficiency and retrograde

pressure stamina of the valves from different positions of the body would develop

this area further.

According to Picard [52] when lymphatic valve damage occurs it is usually

widespread throughout the system rather that just in the peripheral circulation

(where damage to the venous valves tends to occur). A further relevant study in the

lymphatic system would be to discover if this tendency to widespread valve damage

can be isolated to an oedematous limb and if valve damage is a major factor in dif-

ferent stages of lymphoedema. It would be extremely interesting to follow up on the

initial findings for the experimental studies regarding the valve gap with pressure,

which could inform any further valve modelling.

Using the 1-d model in chapter 7 it was found that with a large enough pressure

gradient in the direction of flow (as can occur during edema) there was greater flow

if the pumping activity of the vessel was prevented. This confirmed work by Quick

et al which suggests that the induction of relaxation in edema could be beneficial.

The gradient at which this becomes true would be a critical point to discover and

compare with the gradients across lymphangions in edema. Various other effects

should also be more thoroughly investigated before the prevention of contractions

in the vessels during and edema. These include the effects of gravity and the wider

network and the possibility of transient waves in the vessel walls when they are

relaxed.

In order to improve representation of the wall and valve dynamics in the 1-d

model further, it would be beneficial to undertake additional in vivo and in vitro

experiments and probe the dimensions and valve activities further experimentally.

Image based meshing could be used to generate a more accurate 2-d or 3-d model.

This could be derived from MRI, CT or Micro CT scans. There is then image-based
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meshing software available such as Simpleware (commercial code) which can be

used to construct a mesh from the MRI e.t.c. data. Techniques such as these would

also allow in vivo data to be taken in order to study the effects of the surrounding

structure including the effects of the anchoring filaments and if these prevent change

in the vessels cross-sectional shape. Furthermore the vessels have been seen to twist

during in vitro contractions and it is not known if this occurs in situ. Image based

meshing would give an extremely accurate representation of the dimensions of the

vessel and position of the valve at different pressures. Dynamic data would need

extremely high resolution which is not possible through typical MRI machines. It

would also be possible to explore whether collapse does occur in vivo in the larger

vessels and the effect of the nodes and branches on flow. If collapse is found to

be a significant occurrence in vivo in the collecting lymphatics it may be useful to

perform a 3-d Fluid Structure Interaction model of the walls as well as the valves.

MRI could be used as a non-intrusive technique to examine patient suffering from

different types of lymphoedema to investigate the mechanics involved insitu. For

pre-op cancer patients MRI could inform a patient specific model which could then

be used to determine the areas of the network most at risk from the cancer (eg

sentinel nodes), helping the surgeon develop a strategy to remove these areas and

leave a functioning network. Alternatively MRI could inform a basic generic model

to suggest general treatments to post-op patients or operative strategies.

Although an ideal valve model would be informed by further experimental data

valve modelling could also be improved simply by using the information currently

available and improving the modelling techniques in 1-d and 2-d as discussed in the

sections below.

9.3.1 1-d Modelling Improvements

Inorder to improve the 1-d computational modelling of the valve dynamics, the valve

timings found in the heart (or even the lymphatics valves if known) could be used.

The valve could be treated as the closing or opening as a closing or opening of an
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area of tube. This should be a more accurate representation of the valve than the

initial setup which used a linearly increasing resistance as the valve closed. This new

model would use a linearly varying radius with time, during the closing or opening

phase, while the resistance is related to the radius of the tube throughout the cycle

by adding an extra viscous term which would only relate to the valves as shown in

the equation below.

Rvi = −4µ

(
1

a2
i

+
1

a2
i+1

)
Qi (9.1)

This should enable an alinear relationship between opening and resistance, as

indicated by the initial findings of the 2-d model.

In addition to the basic setup (varying the radius linearly or using part of a sine

wave) some stability factors will need to be considered. First, if the radius is allowed

to go to zero this would introduce a divide by zero into the radius calculation for the

adjacent cell. It would be better to jump from a very small radius, to an imposed

flow of zero or to a big enough resistance to limit flow and retain a non-zero radius.

Secondly, the 1-d representation of the valve may need finer resolution, using a

greater number of cells in order to produce a stable and accurate solution. This

would prevent a sharp change from a small to a large radius between the narrowest

point of the valve during closure and the neighbouring cells representing the vessel

walls.

The effect of such changes to the representation of the resistance in the 1-d model

on the shape of the radius time profile would be extremely interesting. The slow

curve on relaxation and radius peak may be connected with the valve mechanism

as well as the passive relaxation time.

The experimental work used 2-4 lymphangions so that the mechanical details such

as the propagation of the contractile wave were not affected. In the 1-d model this

contractile behaviour would not be effected by using a single lymphangion so it was

possible to examine this smaller region in the interests of computational costs. This
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did however involve static boundary conditions, which would be varying in vivo as

neighbouring lymphangions also pump. Therefore a future model would use several

lymphangions in a row, pumping in sequence in order to examine the interplay of

the wall and valvular activity and its effect on the dynamic pressures, radii and flow.

The vessels have also been shown to taper (McHale private correspondence) going

from a narrower vessel upstream to a wider vessel as adjoining vessels contribute

more fluid. This effect could be included by varying the unstretched, relaxed radius

( A0 Passive) of the vessel with distance and may be important in a model of the

network.

9.3.2 2-d/3-d valve representation

The representation of the valves in 2 or 3 dimensions could also be improved. The

main drawbacks of the current dynamic modelling of the valve is the dominance of

the valve movement on the fluid, without the fluid effecting the motion of the leaflets.

Furthermore the leaflets are stiff for the model but extremely floppy in reality. The

stiffness could be partially rectified by adding hinges to the leaflets to allow some

flexibility in the movement. This may not be worthwhile if the movement of the

leaflets continued to dominate the resulting fluid in this way. The optimum solution

would be a fully coupled Fluid Structure Interaction (FSI) model as detailled below

but if this is not possible the time varying boundary pressures and valve movements

would improve the accuracy of the prescribed motion. The variation in pressure at

the inlet and outlet could be derived from the 1-d model, see figure 5.8. The speed

of the valve leaflets is likely to vary during the opening or closing sequence as in the

heart valves although these details have not been examined for the lymphatic valves

and it is difficult to obtain this type of information

The 6 degrees of freedom (6 DOF) capabilities within fluent could prove a useful

tool if the mechanics involved can be represented satisfactorily. This 6 DOF, al-

lows the representation of simple solid mechanics in order to produce simple Fluid

Structure Interaction (FSI) models. The current drawback is that the representa-
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tion of certain movements are not possible. It is not recommended in the manual

to try to represent hinges as shown in figure 9.1, although we have been informed

by Fluent staff that it should be possible and may become easier in future editions.

Alternatively a method using a sliding deformed right-angle shape as in figure 9.2

could be used. It may be possible to use this type of mechanism to represent the

valve movement just as accurately without the need for hinges. Once an in vitro or

in vivo visualisation of the valve motion has been undertaken it will be clearer as to

how accurate either of these strategies are.

Figure 9.1: A simplified schematic of the lymphatic valve using a hinge to allow the

valve motion.

A fully coupled FSI solution would allow the most accurate representation of

the valve mechanics including the floppy material of the leaflets. For FSI analysis,

a combination of programs such as Abacus, Fluent and MPCCI can be used or

simply one program such as OpenFOAM (open source code). OpenFOAM is an

open field operation and manipulation CFD tool box produced by OpenCFD Ltd

under GNU public licence. The use of FSI is described in section 3.4. Examples of

valve representation with FSI include a simulation of a venous valve [26] and an

aortic valve model [86, 90, 91], also see section 3.5.1.
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Figure 9.2: A possible schematic for the representation of a valve in Fluent’s 6

degrees of freedom fluid structure interaction capabilities without the need for prob-

lematic hinges.

Further 2/3-d modeling of the valves could examine the forces on the valves in

different conditions in order to determine conditions likely to cause damage.

Nether the less, the simple approach taken in this thesis has allowed various

physiological insights regarding the function of the lymphatic vessel wall and valvular

function.
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Glossary of Terms

Adventitia The outermost connective tissue covering of any organ, vessel, or other

structure not covered by a serosa; instead, the covering is properly derived from with-

out (i.e., from the surrounding connective tissue) and does not form an integral part

of such organ or structure.

Bicuspid Having two points or cusps.

Cusp As leaflet.

Diastole The normal rhythmical dilatation of the heart during which the chambers

are filling with blood.

Fibroadipose Relating to or containing both fibrous and fatty structures.

In vitro Within a glass, observable in a test tube, in an artificial environment.

In vivo Within the living body.

Intima Inner layer of blood vessel, comprising an endothelial monolayer on the lu-

minal face with a subcellular elastic extracellular matrix containing a few smooth

muscle cells.

Lamina Flat sheet, as in basal lamina.

Laminar In or consisting of thin plates or layers; having the form of a thin plate or

lamina.

Leaflet A leaf like organ or part especially any of the flaps of the bicuspid or the

tricuspid valve.

Lymphangion Length of lymphatic vessel between two valves

Media Avascular middle layer of the artery wall, composed of alternating layers of

elastic fibres and smooth muscle cells.

Micrograph A photograph taken through a microscope.

Reynold’s number A measure of the ratio of inertial forces to viscous forces quanti-

fying the relative importance of these two types of forces for given flow conditions.

Sinus Cavity such as found behind a valve leaflet.

Systole The normal rhythmical contraction of the heart, during which the blood in

the chambers is forced onward.

Tricuspid Having three points or cusps.
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