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Abstract 

 

In this paper, we provide further evidence on the use of multivariate conditional 

volatility models in hedge fund risk measurement and portfolio allocation, using 

monthly hedge fund index return data for the period 1990 to 2009. Building on 

Giamouridis and Vrontos (2007), we consider a broad set of multivariate GARCH 

models as well as the simpler exponentially weighted moving average (EWMA) 

estimator of RiskMetrics (1996). We find that while multivariate GARCH models 

provide some improvement in portfolio performance over static models, they are 

generally dominated by the EWMA model. In particular, in addition to providing 

better risk-adjusted performance, the EWMA model leads to dynamic allocation 

strategies that have substantially lower turnover and could therefore be expected to 

involve lower transaction costs. Moreover, we show that these results are robust 

across low-volatility and high-volatility sub-periods.  

 

Keywords: Hedge fund returns; Funds of funds; Multivariate conditional volatility; 

Portfolio optimisation. 

 



1. Introduction  

 

The hedge fund industry has grown rapidly over the last two decades, from as few as 

300 funds in 1990 to more than 9,000 today. These funds currently manage assets of 

more than 2.5 trillion USD (Ineichen and Silberstein, 2008). Hedge fund managers 

typically employ dynamic trading strategies with frequent re-balancing, and often 

make extensive use of derivatives, short positions and leverage. Primarily aimed at 

institutional investors and high net worth individuals, hedge funds have recently 

become more widely accessible through the emergence of ‘funds of funds’, which 

hold portfolios of hedge fund investments that are sold to a wider investor base. These 

funds provide a broad exposure to the hedge fund sector and diversify the risks 

associated with an investment in individual funds. Since their inception, these funds 

have become extremely popular. Indeed, by 2006, there were over two thousand funds 

of hedge funds listed in the Hedge Fund Research (HFR) database.  

 

A number of studies have examined portfolio optimisation in a hedge fund context. 

However, the optimal portfolio allocation across individual hedge funds is 

complicated by the fact that owing to the strategies that hedge fund managers 

typically adopt, hedge fund returns are far from normally distributed, usually 

exhibiting very significant negative skewness and excess kurtosis (see, for example, 

Amin and Kat, 2001; Lo, 2001; Brooks and Kat, 2002; Fung and Hsieh, 1997a, 2001; 

Agarwal and Naik, 2001). Portfolio optimisation in the presence of such non-

normality in hedge fund returns generally leads to very different portfolio allocations 

than those implied by mean-variance analysis (see, for example, McFall and Lamm, 

2003; Fung and Hsieh, 1997b; Cvitanic et al., 2003; Terhaar et al., 2003; Popova et 

al,. 2003).  

 

While the non-normality of hedge fund returns is by now well-established, much less 

attention has been paid to the dynamic properties of hedge fund risk. In particular, the 

literature on hedge fund portfolio optimisation has typically assumed a constant 

covariance structure of hedge fund returns. The assumption of a time-invariant 

variance-covariance matrix of hedge fund returns potentially leads to inaccuracies in 

the measurement of hedge fund risk and the optimisation of hedge fund portfolios, 

particularly over shorter horizons where time-variation in the covariance matrix of 



returns is most pronounced. Indeed, Giamouridis and Vrontos (2007) show that the 

use of multivariate conditional volatility models improves the optimisation of hedge 

fund portfolios, and provides a more accurate tool for tail-risk measurement. They 

employ two static models (the sample covariance matrix and an implicit factor model) 

and three dynamic models (two implicit factor GARCH models and a regime 

switching dynamic correlations model), and compare the out-of-sample performance 

of optimised monthly and quarterly rebalanced portfolios of the HFR indices for the 

period January 2002 to August 2005. In the mean-variance framework, the use of 

dynamic models generates portfolios of hedge fund indices with lower out-of-sample 

risk and higher realized returns. Using a mean-CVaR framework, which implicitly 

accommodates the non-normality of hedge fund returns, they show that dynamic 

optimisation models are also more successful in reducing left tail risk. 

 

In this paper, we extend the results of Giamouridis and Vrontos (2007) to provide 

further evidence on the usefulness of multivariate conditional volatility models in 

hedge fund portfolio optimisation using monthly index return data from the Hedge 

Fund Research (HFR) database for the period 1990 to 2009. In particular, we consider 

a broader set of volatility models, including a number of additional multivariate 

GARCH models and the much simpler exponentially weighted moving average 

(EWMA) estimator of RiskMetrics (1996). We find that while multivariate GARCH 

models provide some improvement in portfolio performance over static models, they 

are generally dominated by the EWMA model. In particular, in addition to providing 

better risk-adjusted performance, the EWMA model leads to dynamic allocation 

strategies that have substantially lower turnover and could therefore be expected to 

involve lower transaction costs. To test the robustness of our results, we apply the 

models to two sub-periods, one representing a bull market (2002 to 2005) and one 

representing a bear market (2006 to 2009). The EWMA model appears to work well 

in both favourable and unfavourable market conditions.  

 

The outline of the paper is as follows. In the following section, we describe the data 

used in the empirical analysis, the multivariate volatility models and the evaluation 

methodology. Section 3 reports the empirical results. Section 4 provides a summary 

and some concluding remarks. 



2. Data and Methodology 

 

2.1 Data 

 

We use monthly data on hedge fund index returns obtained from Hedge Fund 

Research (HFR). In line with Amenc and Martellini (2002), McFall and Lamm 

(2003), Agarwal and Naik (2004), Morton et al. (2006) and  Giamouridis and Vrontos 

(2007), the indices are classified into the following investment strategies: equity 

hedge, macro, relative value arbitrage, event driven, convertible arbitrage, distressed 

securities, equity market neutral and mergers arbitrage. We use data for the period 

January 1990 to September 2009 (237 observations). This period covers a number of 

crises (e.g. the Mexican crisis, the Asian financial crisis, the default of the Russian 

government on its debt, the collapse of Long Term Capital Management, the collapse 

of the dotcom bubble and the most recent credit crisis). The initial estimation period 

covers the period January 1990 to December 2001 (144 observations). The out-of-

sample forecast period is divided into two sub-periods: January 2002 to August 2005, 

representing relatively favourable market conditions (44 observations) and September 

2005 to September 2009, representing more extreme market conditions (49 

observations). Summary statistics for the hedge fund return series are reported in 

Table 1. 

 

[Table 1] 

 

Panel A reports various statistics for the different hedge fund investment strategies for 

the full sample of 237 observations. The characteristics of hedge fund returns are very 

heterogeneous. Some strategies (such as equity hedge and event driven) have 

relatively higher average returns and volatility. These are often thought of as return 

enhancers, used to substitute some fraction of the equity holdings in an investor’s 

portfolio (see Amenc and Martellini, 2002). Other strategies (such as relative value 

arbitrage and equity market neutral) have lower average return and volatility, and can 

be regarded as a substitute for some fraction of the fixed income or cash holdings in 

an investor’s portfolio. All strategies except macro display negative skewness, and all 

are leptokurtic, particularly relative value arbitrage, convertible arbitrage and mergers 

arbitrage. The null hypothesis of normality is strongly rejected in all cases. Panel B 



reports the basic time series properties of hedge fund returns. In particular, it reports 

the first five autocorrelation coefficients, the Ljung-Box portmanteau test for serial 

correlation up to 10 lags, the ARCH test of Engle (1982) and the DCC test of Engle 

and Sheppard (2001). All the hedge fund indices display highly significant positive 

autocorrelations and the ARCH test suggests that there is evidence of significant 

volatility clustering for all strategies except macro and mergers arbitrage. The DCC 

test, which tests the null hypothesis of constant correlation is tested against the 

alternative of dynamic conditional correlation, suggests that the data exhibit time-

varying conditional correlations and hence motivates the use of dynamic conditional 

covariance models. Panel C reports the pair-wise correlations computed for the single 

strategies. Hedge fund returns exhibit correlations from 0.23 (between macro and 

convertible arbitrage) to 0.84 (between event driven and distressed securities). 

Generally, correlations between the different strategies is relatively moderate, which 

is a desirable property in the construction of funds of hedge funds.   

 

2.2. Methodology 

 

We define the first and second moments of N hedge fund returns, conditional on the 

information set Ω, as follows 

 

Rt = µ + εt         (1a) 

 

εt |Ωt−1 ~ D(0,H t )       (1b) 

 

where Rt  is the Nx1 vector of hedge fund returns in period t with elements Ri,t , 

i =1,...,N , µ  is the Nx1 vector of mean returns with elements µi, i =1,...,N  and H t  is 

the NxN covariance matrix with diagonal elements σ i,t
2  and off-diagonal elements σ ij,t , 

i, j =1,...,N . D(.) is any location-scale family distribution. We consider an investor in 

the N hedge funds who wishes to minimise the variance of portfolio returns in each 

period t subject to a minimum return constraint and short selling constraints. The 

portfolio optimisation problem can therefore be written as 

 

min
w t

var Rp ,t (w t )( )       (2) 



 

subject to wt ≥ 0, w t '1=1, µp,t ≥ R0      (3) 

 

where Rp,t  is the return of the hedge fund portfolio on day t, var Rp ,t( )= w t
′H tw t  is the 

conditional portfolio variance, wt  is the Nx1 vector of portfolio weights, µp,t  is the 

portfolio expected return and R0  is the target portfolio return. In modelling the 

covariance matrix of hedge fund returns,H t , we employ two static models and six 

dynamic models. Each of these models is described below.     

 

Sample Covariance Model 

 

The simplest static model of the variance-covariance matrix of hedge fund returns is 

the sample covariance matrix of historical returns, given by 

 

H
SC =

1

T −1
(Rt - R )(Rt - R )'  

t=1

T

∑       (4) 

 

where R = (1/T) Rt
t=1

T

∑  is the Nx1 vector of sample mean returns. The sample 

covariance model is perhaps the most commonly used estimator of the return 

covariance matrix (Amenc & Martellini, 2002). 

 

Implicit Factor Model 

 

The implicit factor model utilised by Fung and Hsieh (1997a), Amenc and Martellini 

(2002), Alexander and Dimitriu (2004) and Giamouridis and Vrontos (2007), assumes 

that returns are generated by a multifactor model. Under the implicit factor model, the 

covariance matrix of hedge fund returns is given by 

  

H
IF
= ΛΣIF ′ Λ +V        (5) 

 



where Λ  is the NxK matrix of factor loadings, ΣIF is the KxK diagonal factor 

covariance matrix, V is a diagonal matrix with elements in the main diagonal 

σε i
2 = var ui,t( ) and ui,t  is the idiosyncratic return with respect to the K factors. 

 

Regime Switching Dynamic Correlation (RSDC) Model 

 

Following Giamouridis and Vrontos (2007), we employ the RSDC model of Pelletier 

(2006). We estimate the model using the two-step procedure described by Engle 

(2002). In the first step, we estimate a univariate volatility model for each hedge fund 

index, and in the second step, we estimate the parameters of the correlation matrix, 

conditional on the volatility estimates. We assume that there are two regimes and 

employ the GARCH(1,1) specification in modelling the conditional variances. Under 

the RSDC model, the variance-covariance matrix of hedge fund returns is given as 

 

Ht
RSDC = DtPtDt        (6) 

 

where Dt = diag h11,t
−1 2

...hNN ,t
−1 2( ) is the NxN diagonal matrix of the inverse standard 

deviations of hedge fund returns and Pt  is the NxN regime switching correlation 

matrix. The RSDC model stands somewhere between the Constant Conditional 

Correlation (CCC) model of Bollerslev (1990), in which conditional correlations are 

time-invariant, and the Dynamic Conditional Correlation (DCC) model of Engle 

(2002), in which conditional correlations are time-varying. Further details of the 

RSDC model can be found in Pelletier (2006). 

 

Orthogonal GARCH Model 

 

The Orthogonal GARCH model of Alexander (2001) is a generalization of the factor 

GARCH model introduced by Engle et al. (1990). For m factors the Orthogonal 

GARCH model is defined as 

 

tmtt fuV Λ== 2/1ε        (7) 

 



where ),...,( 22

1 NssdiagV = is a diagonal matrix comprising the variance of 
itε , 

( )2/12/1

1 ... mmm lldiagP=Λ   is the (Nxm) matrix of factor loadings, 
mP  is the matrix of 

mutually orthogonal eigenvectors and 0...1 >≥≥ mll  are the m largest eigenvalues of 

the empirical correlation matrix of 
tu . As

tf  is defined as the random process with 

( ) 01 =− tt fE and ( ) ( )22

1 ,...,var
1 mtt ffttt diagf σσ=Σ=− , the conditional variance-

covariance matrix can be defined as 

 

Ht

ORTH =V1 2VtV
1 2
        (8) 

 

where Vt = ΛmΣt ′ Λ m . Further details of Orthogonal GARCH model can be found in 

Alexander (2001) and Bauwens et al (2006).  

 

Dynamic Conditional Correlation (DCC) Model 

  

The DCC model of Engle and Sheppard (2001) and Engle (2002) is defined as 

 

ttt

DCC

t DPDH =        (9) 

 

where Dt = diag h11,t
−1 2

...hNN ,t
−1 2( ) is the NxN diagonal matrix of the inverse standard 

deviations of returns and Pt  is the NxN dynamic correlation matrix. There are also 

other versions of the DCC model proposed by Tse and Tsui (2002) and 

Christodoulakis and Satchell (2002).  

 

Flexible Multivariate GARCH Model 

 

The Flexible Multivariate GARCH model proposed by Ledoit et al. (2003) estimates 

the conditional covariance matrices within the framework of the diagonal vech 

GARCH model. The diagonal vech model is given by 

 

Ht
VEC =C + Avech Ht−1

VEC( )+Bvech εt ′ ε t( )     (10)  

 



where C is an N(N+1)/2 x 1 vector and A and B are N(N+1)/2 x N(N+1)/2 matrices. 

The diagonal vech model has a number of well-documented shortcomings. Firstly, the 

number of parameters grows at the rate N 2, so for anything more than just a few 

assets, parameter estimation is infeasible. Secondly, the conditional covariance matrix 

is not guaranteed to be positive semi-definite. However, Ledoit et al. (2003) propose a 

two-step estimation method that ensures positive semi-definiteness. In the first step, a 

bivariate diagonal vech model is estimated for each pair of assets and the estimated 

parameters are stacked into matrices ˆ C , ˆ A  and ˆ B . In the second step, ˆ C , ˆ A  and ˆ B  are 

transformed in such a way that ensures that the resulting covariance matrix, Ht
FLEX , is 

positive semi-definite.  

 

BEKK Model 

 

The BEKK model of Engle and Kroner (1995) generalises the univariate GARCH 

model to the multivariate case. The BEKK (1, 1, N) specification is given by 

  

 ∑∑
=

−−
=

− ′′+′+′=
N

n

tt

N

n

t

BEKK

t BBAHACCH
1

11

1

1 εε     (10) 

 

where A, B and C are NxN parameter matrices and C is lower triangular. This model is 

also equivalent to a Factor GARCH(1, 1, N) model under certain conditions (see 

Bauwens et al., 2006). 

 

Exponentially Weighted Moving Average (EWMA) Model 

 

The EWMA model, popularised by its use in the estimation of Value at Risk by JP 

Morgan in their RiskMetrics software, is a special case of the diagonal vech GARCH 

(1,1) model. Under the EWMA model, the variance-covariance matrix of returns is 

given by 

  

Ht

EWMA = λRt−1 ′ R t−1 + 1− λ( )Ht−1     (11) 

 



where λ  is a decay factor, commonly set to a value of 0.94 for daily data. The mean 

return is assumed to be zero, as is common in practice. 

 

We initially estimate each of the six conditional volatility models using the first 144 

observations to generate a one-month ahead out-of-sample forecast of the conditional 

covariance matrix for month 145. Where appropriate, starting parameter values for 

this initial estimation were chosen on the basis of a grid-search procedure to maximize 

the likelihood function. The estimation sample was then rolled forward by one month, 

the models re-estimated and used to generate out-of-sample forecasts for month 146, 

and so on until the end of the sample. At each iteration, the starting parameter values 

for each model were set to the values estimated in the previous iteration. The models 

were estimated by Quasi Maximum Likelihood function with a Gaussian conditional 

distribution, using the BHHH algorithm. 

 

2.3 Evaluation 

 

Each month, we use the forecast conditional covariance matrix to estimate the weights 

of two optimal portfolios. The first is a ‘conservative’ portfolio, which does not have 

a target expected return, i.e. the minimum-variance portfolio. The second is an 

‘aggressive’ portfolio with an annualised target expected return of either 15.5 percent 

or 13.5 percent, depending on the period analysed. In all cases, in order to force 

diversification, we constrain the maximum weight in any one index to be 70 percent. 

We report results for a holding period of one month. The results are qualitatively 

similar using longer holding periods of three and six months. Following Agarwal and 

Naik (2004) and Giamouridis and Vrontos (2007), for each portfolio and each holding 

period, we estimate a number of evaluation criteria, which are defined below. 

 

Return  

 

Rp,t+1 = wtRt+1        (12) 

 



Standard deviation 

 

σ p,t+1 = ′ w tHt+1wt        (13) 

 

Conditional Sharpe ratio 

 

CSRP ,t+1 =
RP ,t+1

σP ,t+1

       (14) 

 

Turnover 

 

Tt +1 = wi,t +1 −w i,t

i=1

N

∑        (15) 

 

This measures the fraction of the portfolio that must be liquidated and reinvested each 

month. 

 

Conditional value at risk 

 

( )α
α

α

1

1

1

)(

+

−

∞−
+ −

= ∫
+

tR

VaR

R

t
VaRF

dzzzf
CVaR

t

t

t

       (16) 

 

where α  is the CVaR confidence level, 
tR

f is the probability density function, 
tR

F is 

the cumulative distribution function and ( )αα −−= −
+ 11

1 tRt FVaR . We estimate CVaR at 

the 90 percent, 95 percent and 99 percent confidence levels.  

 

3. Empirical Results 

 

We test the out-of-sample forecast performance of constant and dynamic conditional 

covariance models in an investment exercise for the out-of-sample period January 

2002 to September 2009. We divide the out-of-sample test period into two sub-

periods. The first, which is from January 2002 to August 2005, is the same out-of-



sample period analyzed in Giamouridis and Vrontos (2007), and is a relatively 

favourable period for hedge funds. The second, from September 2005 to September 

2009, includes the recent financial crisis, and is hence a relatively volatile period for 

hedge funds. We provide empirical evidence for a conservative (i.e. minimum 

variance) portfolio and an aggressive (i.e. target return) portfolio. In the first period, to 

be comparable to Giamouridis and Vrontos (2007), we assume a target return for the 

aggressive portfolio of 15.5 percent. For the second period, when hedge fund returns 

were generally lower, we assume a target return of 13.5 percent. By considering these 

two periods, we are able to assess the out-of-sample performance of the various 

conditional covariance models under both normal and extreme market conditions. For 

each of the eight models, we report both the mean and median values of the realized 

return, portfolio standard deviation, conditional Sharpe ratio, portfolio turnover and 

CVaR tail-risk measure. The statistical significance of pair-wise differences in these 

measures between the eight models were tested using a t-test (for differences in mean 

values) and the Wilcoxon test (for differences in median values).  

 

Period 1: Normal Market Conditions 

 

Table 2 reports the mean and median values of the risk-return metrics for the 

estimated portfolios for Period 1. Realized returns are uniformly higher for the 

aggressive portfolio than for the conservative portfolio, but portfolio standard 

deviation is also uniformly higher. The Sharpe ratios are similar for the two portfolios. 

The static models (SC and IF) perform poorly in terms of risk-adjusted return for both 

portfolios, characterised by notably lower returns for the conservative portfolio and 

notably higher risk for the aggressive portfolio. As expected, however, they have the 

lowest turnover of almost all of the models, reflecting their static nature. The RSDC 

model offers a substantial improvement over the static models for both portfolios, 

offering higher returns for the conservative portfolio and lower risk for the aggressive 

portfolio, but has much higher turnover. In terms of risk-adjusted performance, the 

RSDC model generates a Sharpe ratio of 0.74 for the conservative portfolio and 0.75 

for the aggressive portfolio, compared with 0.49 and 0.51, respectively for the SC 

model and 0.49 and 0.50, respectively, for the IF model. The superior performance of 

the RSDC model relative to the static model is statistically significant. These findings 



are consistent with Giamouridis and Vrontos (2007) who report results for the same 

portfolios optimised with the SC, IF and RSDC models over the same period. 

 

Of the remaining GARCH models, the DCC and FLEX models provide performance 

that is very similar to that of the RSDC model. In contrast, however, the ORTH and 

BEKK models perform notably worse, both generating significantly lower returns for 

the conservative portfolio and significantly higher risk for the aggressive portfolio. 

The best performing GARCH model in risk-adjusted return terms is the FLEX model 

for the conservative portfolio (with a Sharpe ratio of 0.78) and the RSDC model for 

the aggressive portfolio (with a Sharpe ratio of 0.75). However, for the conservative 

portfolio, the much simpler EWMA model generates the highest Sharpe ratio of 0.87. 

This improvement in risk-adjusted performance comes primarily from a reduction in 

risk. For the aggressive portfolio, the EWMA model offers risk-adjusted performance 

that is very similar to that of the RSDC, DCC and FLEX models. A notable feature of 

the EWMA model, however, is that it generates very low turnover for both the 

conservative and aggressive portfolios, and indeed, has similar turnover to that of the 

static models. The EWMA model could be expected, therefore, to generate lower 

transaction costs relative to the GARCH models that we consider. The CVaR 

estimates re-enforce the conclusions about risk reached above. In particular, the 

EWMA model generates a conservative portfolio that is substantially less riskier than 

any of the GARCH models, or indeed the two static models. For the aggressive 

portfolio, there is little difference in the CVaR among the best performing GARCH 

models. 

 

Period 2: Extreme Market Conditions 

 

Table 3 reports the mean and median values of the risk-return metrics for the 

estimated portfolios for Period 2. Realized returns are generally higher for the 

aggressive portfolio than for the conservative portfolio, although there are some 

exceptions (most notably the RSDC model), and portfolio standard deviation is 

significantly higher. Owing to the higher volatility of this period, risk-adjusted 

returns, as measured by the Sharpe ratio, are uniformly higher for the conservative 

portfolio than for the aggressive portfolio. In contrast with Period 1, the performance 

of the static models (SC and IF) in Period 2 is similar to that of the dynamic models in 



terms of realised return and standard deviation. In terms of risk-adjusted returns, the 

static models have lower mean Sharpe ratios, but the median values are similar to 

those of the other models, suggesting perhaps that the mean values in this case are 

driven by outliers. Similar to Period 1, the static models have much lower turnover 

owing to their relatively unresponsive nature. Among the dynamic models, the RSDC 

and EWMA models provide the best risk-adjusted return performance for the 

conservative portfolio and the RSDC, EWMA and DCC models provide the best 

performance for the aggressive portfolio.  

 

Comparing the results for Period 1 and Period 2, we see that the deterioration in 

performance is greater for the aggressive portfolio than for the static portfolio, which 

is to be expected given the unfavourable conditions prevailing in Period 2. In 

particular, the standard deviation of returns is generally higher in Period 2 for the 

aggressive portfolio, while the level of returns is substantially lower. For the 

conservative portfolio, the standard deviation of returns is also generally higher in 

Period 2 than in Period 1, but the median level of returns is in many cases higher. The 

EWMA model is again notable for having the lowest turnover of the dynamic models, 

and for the aggressive portfolio, it is similar to that of the two static models. In terms 

of tail risk, the aggressive portfolios have significantly higher CVaR than the 

conservative portfolios, but there is not a systematic difference between the dynamic 

models and the static models. Of the dynamic models, the EWMA model and the 

FLEX model offer the lowest tail risk at all three CVaR levels for both the 

conservative and aggressive portfolios. A number of the dynamic models have 

substantially higher tail risk than the static models. This is especially true of the 

RSDC and ORTH and DCC models. 

 

4. Conclusion 

 

In this paper, we build on the analysis of Giamouridis and Vrontos (2007) and provide 

further evidence on the performance of dynamic conditional covariance models for 

the optimisation of funds of hedge funds. We do so by considering a much broader set 

of conditional covariance models, and a longer out-of-sample evaluation period. In 

particular, we consider not only additional GARCH models, but also the much 

simpler RiskMetrics EWMA model. Moreover, we separately consider evaluation 



periods of favourable and unfavourable conditions for the hedge fund industry. In the 

first out-of-sample period, which is a relatively favourable period, we confirm the 

findings of Giamouridis and Vrontos (2007) and show that GARCH models are able 

to provide a substantial improvement in terms of risk-return trade-off over the static 

models, for the optimisation of both conservative and aggressive portfolios. However, 

in most cases these improvements come at the expense of higher portfolio turnover 

and rebalancing expenses. In contrast, the EWMA model, which is the most 

parsimonious of the dynamic models, offers a superior risk-return trade-off and, 

moreover, does so with rebalancing costs that are no higher than those of the static 

models. In the second out-of-sample period, which is characterised by much greater 

volatility and generally unfavourable conditions for the hedge fund industry, dynamic 

models again tend to outperform static models, providing a superior risk-return trade-

off, although the differences are less marked than during the favourable conditions of 

the first out-of-sample period. The best performing models in terms of risk-adjusted 

returns are the RSDC, EWMA and DCC models, but of these, the EWMA model is 

again notable for generating portfolios that have substantially lower turnover and less 

tail risk. Our findings therefore confirm the advantages of dynamic models over static 

models, but favour the use of simple models over more sophisticated models. 
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Table 1: Summary Statistics and Time Series Properties of Hedge Fund Return Series 

Panel A: Summary Statistics 
 Mean Median SD Skew Kurt. Min. Max. Jarque-Bera 

Equity hedge 1.15 1.31 2.68 -0.24 4.91 -9.46 10.88 38.23 [0.00]

Macro 1.13 0.83 2.25 0.44 3.81 -6.40 7.88 14.03 [0.00]

Relative value arbitrage 0.85 0.91 1.31 -2.23 16.97 -8.03 5.72 2122.21 [0.00]

Event driven 1.00 1.29 2.02 -1.36 7.20 -8.90 5.13 246.92 [0.00]

Convertible arbitrage 0.74 1.00 1.97 -3.24 32.50 -16.01 9.74 9006.08 [0.00]

Distressed securities 1.02 1.12 1.94 -1.01 7.89 -8.50 7.06 276.58 [0.00]

Equity market neutral 0.63 0.58 0.94 -0.17 4.19 -2.87 3.59 15.16 [0.00]

Mergers arbitrage 0.76 0.96 1.23 -2.21 11.68 -6.46 3.12 936.70 [0.00]

 

Panel B: Basic Time Series Properties 
 ACF(1) ACF(2) ACF(3) ACF(4) ACF(5) LB-Q(10) ARCH(4) DCC test 
        59.48 [0.00] 

Equity hedge 0.26*** 0.16*** 0.09*** 0.05*** -0.05***   29.53*** 22.90***  

Macro 0.16**  -0.00** 0.01 0.11* 0.17***   22.03**   6.78  

Relative value arbitrage 0.46*** 0.27*** 0.12*** 0.11*** 0.03***   74.43*** 44.74***  

Event driven 0.39*** 0.17*** 0.10*** 0.06*** 0.03***   48.13*** 15.07***  

Convertible arbitrage 0.61*** 0.32*** 0.16*** 0.12*** -0.03*** 134.58*** 55.29***  

Distressed securities 0.57*** 0.28*** 0.15*** 0.14*** 0.02*** 108.66*** 46.28***  

Equity market neutral 0.16*** 0.18*** 0.20*** 0.19*** 0.08***   72.98*** 16.81***  

Mergers arbitrage 0.23*** 0.08*** 0.11*** 0.00*** 0.07***   26.92***   0.57  

 

Panel C: Correlation Structure of Individual Hedge Fund Strategies 
 [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6] [ 7] [ 8 ] 

Equity hedge 1.00        

Macro 0.56 1.00       

Relative value arbitrage 0.66 0.33 1.00      

Event driven 0.82 0.51 0.74 1.00     

Convertible arbitrage 0.56 0.23 0.78 0.63 1.00    

Distressed securities 0.68 0.42 0.77 0.84 0.63 1.00   

Equity market neutral 0.44 0.31 0.36 0.34 0.25 0.33 1.00  

Mergers arbitrage 0.58 0.32 0.54 0.75 0.46 0.56 0.30 1.00 

Notes: Panel A reports summary statistics for the monthly hedge fund return series for the period January 1990 to September 2009. Panel 

B reports the test statistics for autocorrelation, autoregressive conditional heteroskedasticity (ARCH) and dynamic conditional correlation 

for the full sample. The Ljung-Box-Q test statistic for autocorrelation of up to order 10 is asymptotically distributed as a central Chi-

square with 10 d.o.f. The ARCH(4) statistic is asymptotically distributed as a central Chi-square with four d.o.f. The DCC statistic is 

distributed as a central Chi-square with 13 d.o.f. *,** and *** denote significance at 10%, 5% and 1% levels respectively. Panel C reports 
correlations between hedge fund strategies.  



 

Table 2: Out-of-Sample Evaluation Criteria of Monthly Rebalanced Portfolios (Period 1) 

 Return Risk  CSR Turnover CVaR90 CVaR95 CVaR99 

Panel A: Conservative Portfolio 

SC 0.35 [0.40] 0.71 [0.71] 0.49 [0.56] 0.99 [  0.63] 0.37 [0.36] 0.59 [0.58] 1.02 [1.00] 

IF 0.33 [0.37] 0.67 [0.66] 0.49 [0.56] 0.62 [  0.20] 0.32 [0.30] 0.52 [0.50] 0.92 [0.90] 

RSDC 0.52 [0.59] 0.85 [0.75] 0.74 [0.84] 43.75 [36.86] 0.40 [0.21] 0.66 [0.44] 1.17 [0.90] 

ORTH 0.35 [0.37] 0.76 [0.71] 0.49 [0.52] 7.85 [  5.95] 0.46 [0.38] 0.69 [0.59] 1.15 [1.02] 

DCC 0.53 [0.60] 0.88 [0.79] 0.73 [0.82] 43.37 [42.39] 0.45 [0.27] 0.72 [0.51] 1.25 [0.99] 

FLEX 0.46 [0.53] 0.61 [0.59] 0.78 [0.82] 50.69 [46.54] 0.14 [0.10] 0.33 [0.28] 0.69 [0.64] 

BEKK 0.39 [0.37] 0.70 [0.69] 0.57 [0.57] 20.56 [18.41] 0.35 [0.31] 0.57 [0.52] 0.99 [0.93] 

EWMA 0.45 [0.44] 0.53 [0.51] 0.87 [0.87] 6.24 [  3.41] 0.03 [0.02] 0.17 [0.17] 0.49 [0.48] 

Panel B: Aggressive Portfolio with Target Return 15.5% p.a. 

SC 0.76 [0.87] 1.49 [1.50] 0.51 [0.58] 4.86 [  4.35] 1.40 [1.42] 1.86 [1.89] 2.75 [2.75] 

IF 0.73 [0.83] 1.44 [1.46] 0.50 [0.60] 7.06 [  4.91] 1.32 [1.35] 1.77 [1.79] 2.63 [2.63] 

RSDC 0.61 [0.67] 1.01 [0.90] 0.75 [0.87] 34.80 [22.53] 0.57 [0.38] 0.88 [0.65] 1.49 [1.49] 

ORTH 0.74 [0.79] 1.47 [1.38] 0.55 [0.62] 22.27 [18.40] 1.37 [1.21] 1.82 [1.63] 2.70 [2.70] 

DCC 0.61 [0.67] 1.04 [0.93] 0.73 [0.84] 36.77 [22.68] 0.62 [0.43] 0.95 [0.72] 1.57 [1.57] 

FLEX 0.70 [0.80] 1.01 [0.98] 0.73 [0.78] 31.73 [23.97] 0.57 [0.50] 0.89 [0.81] 1.50 [1.50] 

BEKK 0.76 [0.89] 1.35 [1.35] 0.57 [0.69] 17.21 [13.85] 1.15 [1.15] 1.57 [1.57] 2.38 [2.38] 

EWMA 0.76 [0.87] 1.04 [1.03] 0.74 [0.81] 6.43 [  4.11] 0.62 [0.61] 0.94 [0.92] 1.57 [1.57] 

Notes: The Table reports evaluation criteria for the out-of-sample monthly rebalanced conservative and aggressive 

portfolios for the period January 2002 to August 2005. The evaluation criteria are the mean and median values of 

realized return (Return), portfolio standard deviation (Risk), Conditional Sharpe ratio (CSR), portfolio turnover 

(Turnover) and Conditional value at risk at the 90% (CVaR90), 95% (CVaR95) and 99% (CVaR99) confidence 

levels. Medians are reported in parentheses. 

 



 
Table 3: Out-of-Sample Evaluation Criteria of Monthly Rebalanced Portfolios (Period 2) 

 Return Risk  CSR Turnover CVaR90 CVaR95 CVaR99 

Panel A: Conservative Portfolio 

SC 0.20 [0.54] 0.74 [0.71] 0.32 [0.74] 0.99 [  0.63] 0.54 [0.46] 0.77 [0.68] 1.22 [1.10] 

IF 0.16 [0.55] 0.72 [0.69] 0.28 [0.74] 0.62 [  0.20] 0.53 [0.45] 0.77 [0.68] 1.20 [1.08] 

RSDC 0.21 [0.49] 1.10 [0.97] 0.69 [0.81] 43.75 [36.86] 0.97 [0.75] 1.32 [1.05] 1.99 [1.64] 

ORTH 0.34 [0.62] 0.97 [0.75] 0.58 [0.70] 7.85 [  5.95] 0.95 [0.59] 1.25 [0.83] 1.84 [1.29] 

DCC 0.18 [0.51] 1.22 [1.04] 0.64 [0.62] 43.37 [42.39] 1.12 [0.84] 1.50 [1.20] 2.24 [1.83] 

FLEX 0.29 [0.44] 0.73 [0.69] 0.46 [0.69] 50.69 [46.54] 0.48 [0.43] 0.71 [0.66] 1.16 [1.09] 

BEKK 0.33 [0.52] 0.78 [0.74] 0.53 [0.70] 20.56 [18.41] 0.58 [0.56] 0.82 [0.80] 1.29 [1.26] 

EWMA 0.31 [0.53] 0.68 [0.59] 0.69 [0.80] 6.24 [  3.41] 0.43 [0.31] 0.65 [0.51] 1.08 [0.89] 

Panel B: Aggressive Portfolio with Target Return 13.5% p.a. 

SC 0.23 [0.53] 1.30 [1.18] 0.26 [0.45] 5.29 [  4.59] 1.30 [1.03] 1.72 [1.40] 2.53 [2.53] 

IF 0.20 [0.50] 1.26 [1.13] 0.25 [0.43] 6.40 [  4.65] 1.22 [0.95] 1.62 [1.31] 2.41 [2.41] 

RSDC 0.11 [0.51] 1.32 [1.03] 0.64 [0.65] 30.94 [18.64] 1.33 [0.77] 1.76 [1.09] 2.58 [2.58] 

ORTH 0.31 [0.50] 1.82 [1.31] 0.38 [0.25] 18.81 [14.47] 2.23 [1.48] 2.80 [1.92] 3.93 [3.93] 

DCC 0.14 [0.54] 1.42 [1.10] 0.63 [0.59] 33.33 [19.09] 1.46 [0.85] 1.91 [1.22] 2.79 [2.79] 

FLEX 0.27 [0.43] 0.96 [0.87] 0.45 [0.47] 31.44 [25.32] 0.72 [0.54] 1.04 [0.82] 1.65 [1.65] 

BEKK 0.36 [0.55] 1.31 [1.14] 0.42 [0.41] 17.75 [14.49] 1.30 [1.04] 1.71 [1.40] 2.53 [2.53] 

EWMA 0.35 [0.45] 0.98 [0.80] 0.61 [0.57] 6.85 [  4.00] 0.80 [0.43] 1.12 [0.70] 1.76 [1.76] 

Notes: The Table reports evaluation criteria for the out-of-sample monthly rebalanced conservative and aggressive 

portfolios for the period September 2005 to September 2009. The evaluation criteria are the mean and median values 

of realized return (Return), portfolio standard deviation (Risk), Conditional Sharpe ratio (CSR), portfolio turnover 

(Turnover) and Conditional value at risk at the 90% (CVaR90), 95% (CVaR95) and 99% (CVaR99) confidence 

levels. Medians are reported in parentheses. 

 


