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Abstract 

 

In this paper, we evaluate the economic benefits that arise from allowing for long memory 

in forecasting the covariance matrix of returns over both short and long horizons, using the 

asset allocation framework of Engle and Colacito (2006). In particular, we compare the 

statistical and economic performance of four multivariate long memory volatility models 

(the long memory EWMA, long memory EWMA-DCC, FIGARCH-DCC and component 

GARCH-DCC models) with that of two short memory models (the short memory EWMA 

and GARCH-DCC models). We report two main findings. First, for longer horizon 

forecasts, long memory models produce forecasts of the covariance matrix that are 

statistically more accurate and informative, and economically more useful than those 

produced by short memory models. Second, the two parsimonious long memory EWMA 

models outperform the other models – both short memory and long memory – at all 

forecast horizons. These results apply to both low and high dimensional covariance 

matrices and both low and high correlation assets, and are robust to the choice of 

estimation window. 
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1. Introduction 

It is well established that the covariance matrix of short horizon financial asset returns is both 

time varying and highly persistent. A number of multivariate conditional volatility models, 

including the multivariate RiskMetrics EWMA model, multivariate GARCH models and 

multivariate Stochastic Volatility models, have been developed to capture these features. 

These models are now routinely used in many areas of applied finance, including asset 

allocation, risk management and option pricing. Recent evidence suggests that there are 

significant economic benefits to exploiting the forecasts of multivariate conditional volatility 

models relative to using the unconditional covariance matrix (see, for example, Engle and 

Colacito, 2006). In the vast majority of conditional volatility models used in practice, the 

elements of the conditional covariance matrix are specified as weighted averages of the 

squares and cross-products of past return innovations with weights that decline geometrically, 

so that shocks to individual variances and covariances dissipate rapidly. However, there is a 

mounting body of empirical evidence that suggests that although volatility is almost certainly 

stationary, the autocorrelation functions of the squares and cross-products of returns decline 

more slowly than the geometric decay rate of the EWMA, GARCH and Stochastic Volatility 

models, and hence volatility shocks are more persistent than these models imply (see, for 

example, Taylor, 1986; Ding et al., 1993; Andersen et al., 2001). This ‘long memory’ feature 

is important not only for the measurement of current volatility, but also for forecasts of future 

volatility, especially over longer horizons. In particular, in the GARCH and Stochastic 

Volatility frameworks, forecasts of future volatility converge to the unconditional volatility at 

an exponential rate as the forecast horizon increases. In the EWMA framework, in contrast, a 

volatility shock has a permanent effect on forecast volatility at all horizons, and so forecasts 

of future volatility do not converge at all despite the fact that it is a short memory model. If 

volatility is indeed a long memory process, as the empirical evidence suggests, the short 

memory EWMA, GARCH and Stochastic Volatility models are misspecified. Moreover, the 

errors in forecasting the elements of the covariance matrix that arise from this 

misspecification are compounded as the forecast horizon increases.  

The empirical evidence on volatility dynamics has prompted the development of long 

memory models of conditional volatility, and in the univariate context a number of 

approaches have been proposed. The FIGARCH model of Baillie et al. (1996) introduces 

long memory through a fractional difference operator, which gives rise to a slow hyperbolic 

decay for the weights on lagged squared return innovations while still yielding a strictly 
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stationary process. The Hyperbolic GARCH (HYGARCH) model of Davidson (2004) is a 

generalisation that nests the GARCH, FIGARCH and IGARCH (or EWMA) models, 

allowing for a more flexible dynamic structure than the FIGARCH model and facilitating 

tests of short versus long memory in volatility dynamics. The Stochastic Volatility 

framework has been extended to allow for long memory by Breidt et al. (1998), who 

incorporate an ARFIMA process in the standard discrete time Stochastic Volatility model. 

Long memory can also be induced using a component structure for volatility dynamics. For 

example, the Component GARCH (CGARCH) model of Engle and Lee (1999) assumes that 

volatility is the sum of a highly persistent long run component and a mean-reverting short run 

component, each of which follows a short memory GARCH process. Zumbach (2006) 

introduces a long memory model in which the dynamic process for volatility is defined as the 

logarithmically weighted sum of standard EWMA processes at different geometric time 

horizons. Like the short memory EWMA model of JP Morgan (1994) on which it is based, 

the long memory EWMA model has a highly parsimonious specification, which facilitates its 

implementation in practice.  

In the multivariate context, long memory volatility modelling poses significant computational 

challenges, especially so for the high dimensional covariance matrices that are typically 

encountered in asset allocation and risk management. Indeed, so far the literature on long 

memory multivariate volatility modelling has generally restricted itself to the analysis of low 

dimensional covariance matrices, and has provided only limited evidence on the relative 

benefits from allowing for long memory in the multivariate setting. For example, Teyssiere 

(1998) estimates the covariance matrix for three foreign exchange return series using both an 

unrestricted multivariate FIGARCH model and a FIGARCH model implemented with the 

Constant Conditional Correlation (CCC) structure of Bollerslev (1990). Similarly, Niguez 

and Rubin (2006) model the covariance matrix of five foreign exchange series using an 

Orthogonal HYGARCH model, which combines the univariate HYGARCH long memory 

volatility model of Davidson (2004) with the multivariate Orthogonal GARCH framework of 

Alexander (2001). They show that the Orthogonal HYGARCH model outperforms the 

standard Orthogonal GARCH model in terms of 1-day forecasts of the covariance matrix. 

Zumbach (2009b) develops a multivariate version of the univariate long memory EWMA 

model, in which elements of the covariance matrix are estimated as the averages of the 

squares and cross products of past returns with predetermined logarithmically decaying 

weights.  
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In this paper, we evaluate the economic benefits that arise from allowing for long memory in 

forecasting the covariance matrix of returns over both short and long horizons, using the asset 

allocation framework of Engle and Colacito (2006). In so doing, we compare the 

performance of a number of long memory and short memory multivariate volatility models. 

While many alternative volatility models have been developed in the literature, our choice 

reflects the need for parsimonious models that can be used to forecast high dimensional 

covariance matrices. We employ four long memory volatility models: the multivariate long 

memory EWMA model of Zumbach (2009b), and three multivariate long memory 

implemented using the Dynamic Conditional Correlation (DCC) framework of Engle (2002). 

These are the univariate long memory univariate EWMA model of Zumbach (2006), the 

component GARCH model of Engle and Lee (1999) and the FIGARCH model of Baillie et 

al. (1996). We compare the four multivariate long memory models with two multivariate 

short memory models. These are the very widely used RiskMetrics EWMA model of JP 

Morgan (1994), and the DCC model implemented with the univariate GARCH model. 

We use the six multivariate conditional volatility models to forecast the covariance matrices 

for the same three sets of assets employed by Engle and Colacito (2006). These comprise a 

high correlation bivariate system (the S&P500 and DJIA indices), a low correlation bivariate 

system (the S&P500 and 10-year Treasury bond futures), and a moderate correlation high 

dimensional system (21 international stock indices and 13 international bond indices). We 

additionally consider another high dimensional system, namely the components of the DJIA 

index. The analysis is conducted using data over the period 1 January 1988 to 31 December 

2009, and considers forecast horizons up to three months. For the two bivariate systems, we 

first evaluate the forecasts of the models using a range of statistical criteria that measure the 

accuracy, bias and informational content of the models’ forecasts over varying time horizons. 

For all four systems, we then employ Engle and Colacito’s (2006) approach to assess the 

economic value of the forecast covariance matrices in an asset allocation setting. We report 

two main findings. The first is that for longer horizon forecasts, multivariate long memory 

models generally produce forecasts of the covariance matrix that are both statistically more 

accurate and informative, and economically more useful than those produced by short 

memory volatility models. The second is that the two long memory models that are based on 

the Zumbach (2006) univariate model outperform the other models – both short memory and 
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long memory – at all forecast horizons. These results apply to all four datasets and are robust 

to the choice of estimation window. 

The remainder of this paper is organised as follows. Section 2 provides details of the six 

multivariate conditional volatility models used in the empirical analysis. Section 3 describes 

the methods applied to evaluate forecast performance for the six models. The data are 

summarised in Section 4. In Section 5, we report the empirical results of our analysis, while 

Section 6 offers some concluding comments and some suggestions for future research.  

2. Multivariate Long Memory Conditional Volatility Models 

Motivated by the need for parsimonious models that can be used to forecast high dimensional 

covariance matrices, we first consider two simple multivariate long memory conditional 

volatility models based on the univariate long memory volatility model of Zumbach (2006). 

The first is the multivariate long memory EWMA (LM-EWMA) model of Zumbach (2009b), 

which is a simple multivariate extension of the univariate long memory EWMA model in 

which both the variances and covariances are governed by the same long memory process, 

and is thus the long memory analogue of the short memory multivariate RiskMetrics EWMA 

model of JP Morgan (1994). In the second, we employ the Dynamic Conditional Correlation 

framework of Engle (2002) to model the dynamic processes of the correlations directly, using 

the univariate long memory EWMA model for the individual variances. This is the long 

memory EWMA-DCC (LM-EWMA-DCC) model. We compare the two long memory 

EWMA models with the multivariate FIGARCH(1,d,1) and component GARCH(1,1) 

(CGARCH) long memory models, both implemented using the DCC framework. To evaluate 

the relative benefits of allowing for long memory in forecasting the covariance matrix, we 

compare the four long memory multivariate models with two short memory multivariate 

volatility models. These are the multivariate RiskMetrics EWMA model of JP Morgan (1994) 

and the GARCH(1,1) model implemented using the DCC framework. In this section, we give 

details of each of these six models. 

2.1 The Multivariate LM-EWMA Model 

Consider an n-dimensional vector of returns 1 2, , , , 't t t ntr r rr  with conditional mean zero 

and conditional covariance matrix 
tH : 
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1
2

tt tH εr , (1) 

where tε  is i.i.d with 0tE ε  and var t nε I . Zumbach (2009b) considers the class of 

conditional covariance matrices that are the weighted sum of the cross products of past 

returns:  

 '

1

0

( )t t i t i

i

iH r r , (2) 

with ( ) 1i . In the RiskMetrics EWMA model of JP Morgan (1994), the weights ( )i  

decay geometrically, yielding a short memory process for the elements of the variance-

covariance matrix. The long memory conditional covariance matrix is defined as the 

weighted average of K standard (short memory) multivariate EWMA processes: 

 
1 ,

1

K

t k k t

k

wH H  (3) 

where 

 , , 1 1 'k t k k t k t tH H r r . (4) 

The decay factor 
k
 of the k

th
 EWMA process is defined by a characteristic time 

k
 such 

that 1exp ,
kk  with geometric time structure 1

1

k

k
 for  (1,..., ).k K  Zumbach 

(2006) sets  to the value of 2 . The memory of the volatility process is determined by the 

weights 
kw , which are assumed to decay logarithmically: 

 
0

1
1

k

k

ln
w

lnC
 (5) 

with the normalization constant 
0

kln

lnk
C K  such that 1kk

w . The conditional 

covariance matrix is therefore parsimoniously defined as a process with just three parameters: 

1
 (the shortest time scale at which volatility is measured, i.e. the lower cut-off), 

K
 (the 

upper cut-off, which increases exponentially with the number of components K), and 
0
 (the 

logarithmic decay factor). For the univariate case, Zumbach (2006) sets the optimal 
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parameter values at 
0

 1560 days = 6 years, 
1

 4 days and 
K

 512 days, which is 

equivalent to 15K .   

The EWMA process in (4) can also be expressed as 

 '

,

0

1 i

k t k k t i t i

i

H r r . (6) 

Hence the LM-EWMA model can be written in the form of (2):  

 ' '

1

0 1 0

1 ( )
K

i

t k k k t i t i t i t i

i k i

w iH r r r r  (7) 

with ( ) 1 i

k k kk
i w  and 1

i
i . When 1K , the LM-EWMA process 

reduces to the short memory RiskMetrics EWMA process. Note that since 
,k tH  is a positive 

definite matrix (see Riskmetrics, 1994), 
1tH , which is a linear combination of 

,t kH  with 

positive weights, will also be positive definite. Since the LM-EWMA covariance matrix is 

the sum of EWMA processes over increasing time horizons, forecasts of the covariance 

matrix are straightforward to obtain using a recursive procedure (see Zumbach (2006) for 

details of the univariate case). The 1-step-ahead forecast of the covariance matrix is already 

given by (7). Under the assumption of serially uncorrelated returns, the h-step cumulative 

forecast of the covariance matrix given the information set 
tF  at time t is equal to: 

 
'

1:

0

( , )
T

t t h t i t i

i

h h iH r r  (8) 

with the weights ,h i  given by 

 
1

,

1 1

11
,

1

K h
k i

j k kT
k j k

h i w
h

 (9) 

where T is the cut-off time, 
,j kw  is the k

th
 element of vector ''

j

jw = w M ι μ w , μ  
is 

the vector of 
k
, M is the diagonal matrix consisting of 

k
, and ι  is the unit vector. Since 

1kk
w , we obtain ( , ) 1h i . Also note that when 1K , then 1w , and so the LM-

EWMA forecast function reduces to a standard short memory EWMA forecast function with 
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forecast weights , 1 1i T

k k kh i , independent of the forecast horizon. Since the 

weights ,h i  are estimated a priori, without reference to the data, the forecast in (8) is 

straightforward to compute. As with the standard EWMA model, the LM-EWMA model 

circumvents the computational burden of other multivariate long memory models, and indeed 

can easily be implemented in a spreadsheet. 

2.2 The Multivariate LM-EWMA-DCC Model 

In the Dynamic Conditional Correlation (DCC) model of Engle (2002), the conditional 

covariance matrix is decomposed as follows: 

 
t t t tH D R D  (10) 

 
1 1

2 2
t t t tdiag diagR Q Q Q  (11) 

 
1 1 1t t t tQ ε ε Q

'  (12) 

where 
tR  is the conditional correlation matrix, 

tD  is a diagonal matrix with the time varying 

standard deviations ,i th  on the i
th

 diagonal, i.e., ,t i tdiag hD , and 
tQ  is the 

approximation of the conditional correlation matrix 
tR . In the DCC model, 

tQ  converges to 

the unconditional average correlation '1
1 1t tT

R ε ε  and (1 )R . The positive 

semi-definiteness of 
tQ  is guaranteed if  and  are positive with 1  and the initial 

matrix 
1Q  is positive definite. 

Here, we estimate the conditional volatility 
tD  employing the univariate long memory 

volatility model of Zumbach (2006). We divide returns by their conditional volatility and use 

the standardized, zero-mean residuals 1

t t tε D r  to compute the quasi-conditional correlation 

matrix 
tQ . As the diagonal elements of 

tQ  are equal to unity only on average, 
tQ  is rescaled 

to obtain the conditional correlation matrix 
1 1

2 2

t t t tdiag diagR Q Q Q . The conditional 

volatility 
tD  and conditional correlations  tR are then combined to estimate the conditional 

covariance matrix 
tH . 
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The h-step-ahead conditional covariance matrix is given by 

 
t h t h t h t hH D R D . (13) 

The forecast of each volatility in 
t hD  is estimated using the recursive procedure as in (8) for 

the univariate case. Since 
tR  is a non-linear process, the h-step forecast of 

tR  cannot be 

computed using a recursive procedure. However, assuming for simplicity that 

1 1 1t t t tE Q
'

ε ε , Engle and Shephard (2001) show that the forecasts of 
t hQ  and 

t hR  are 

given by 

 
2

1

1

0

1
h

j h

t h t

j

Q Q Q , (14) 

and 

 
1 1

2 2
t h t h t h t hdiag diagR Q Q Q . (15) 

2.3 The FIGARCH(1,d,1)-DCC Model 

Baillie et al. (1996) propose the Fractionally Integrated GARCH (FIGARCH) model, in 

which long memory is introduced through a fractional difference operator, d. This model 

incorporates a slow hyperbolic decay for lagged squared innovations in the conditional 

variance while still letting the cumulative impulse response weights tend to zero, thus 

yielding a strictly stationary process. In the FIGARCH(1,d,1) model, the conditional 

volatility is modelled as: 

 
2

1[1 1 1 ]
d

t t th L L L h . (16) 

Baillie et al. (1996) show that for 0 1d , the FIGARCH process does not have finite 

unconditional variance, and is not weakly stationary, a feature shared with the IGARCH 

model. However, they show that the FIGARCH model is strictly stationary and ergodic by a 

direct extension of the corresponding proof for the IGARCH model.  

The 1-step ahead forecast of the FIGARCH(1,d,1) model is given by 

 
1 1 2

1 t1 [1 1 1 1 ]
d

th L L L , (17) 
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and the h-step ahead forecast by 

 
1 1 2

11 [1 1 1 1 ]
d

t h t hh L L L . (18) 

To implement the FIGARCH(1,d,1) model in the multivariate context, we use the DCC 

approach described above, with the same forecast functions for 
t hQ  and 

t hR .  

2.4 The CGARCH(1,1)-DCC Model 

An alternative way to capture the long memory feature is through a component structure for 

volatility. Engle and Lee (1999) propose the component GARCH (CGARCH) model, in 

which the long memory volatility process 
th  is modelled as the sum of a long term trend 

component, 
tq , and a short term transitory component, 

ts . The CGARCH(1,1) model has the 

following specification: 

 
2

1 1 1 1( )t t t t t th q q h q  (19) 

 2

1 1 1( )t t t tq q h  (20) 

where 
t t ts h q  is the transitory volatility component. The volatility innovation 2

1 1t th  

drives both the trend and the transitory components. The long run component evolves over 

time following an AR process with  close to 1, while the short run component mean reverts 

to zero at a geometric rate . It is assumed that 0 1  so that the long run 

component is more persistent than the short run component. 

The 1-step ahead forecast of the CGARCH(1,1) model is given by   

 
2

1 1 ( )t t t t t th q q h q  (21) 

 
2

1 ( )t t t tq q h , (22) 

and the h-step ahead forecast by 

 
1
( )

h

t h t h t th q h q  (23) 
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 1

1 1

h

t h tq q . (24) 

As with the FIGARCH(1,d,1) model, in order to implement the CGARCH(1,1) model in the 

multivariate context, we use the DCC approach described above, with the same forecast 

functions for 
t hQ  and 

t hR .  

2.5 The RiskMetrics EWMA Model 

The short memory RiskMetrics EWMA covariance matrix is defined by 

 1 1 11 ' t t t tH H r r  (25) 

where  is the decay factor 0 1. The larger the value of , the higher the persistence 

of the covariance matrix process and the lower the response of volatility to return shocks. It is 

straightforward to show that the h-step cumulative forecast of the EWMA model is given by 

 
1: 1t t h thH H  (26) 

(See, for example, JP Morgan, 1994). In the empirical analysis, we set  to the values 

suggested by JP Morgan (1994) of 0.94 and 0.97 for daily and weekly forecasts, respectively.  

2.6 The GARCH(1,1)-DCC Model 

The short memory GARCH(1,1) model of Bollerslev (1990) is given by 

 2

1 1t t th h . (27) 

The parameter  determines the speed at which the conditional variance responds to new 

information, while the parameter  determines how fast the conditional variance reverts 

to its long run average. In the GARCH(1,1) model, the weights on past squared errors decline 

at an exponential rate. The 1-step ahead forecast of the GARCH(1,1) model is given by 

 2

1 ,t t th h  (28) 

and the h-step ahead forecast by 

 
12 2

1

h

t h th h  (29) 
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where 2  is the unconditional variance. In order to implement the GARCH(1,1) model in the 

multivariate context, we again use the DCC approach described above, with the same forecast 

functions for 
t hQ  and 

t hR .  

3. Forecast Performance Measurement 

We evaluate the forecast performance of the six conditional volatility models using a range of 

statistical and economic measures. We first measure the accuracy, bias and information 

content of the models’ forecasts for each element of the covariance matrix using the squares 

and cross-products of daily returns as proxies for the actual variances and covariances. 

Forecast accuracy is evaluated using the Root Mean Squared Error (RMSE), the Mean 

Absolute Error (MAE) and the Heteroscedasticity-adjusted MSE (HMSE) of Bollerslev and 

Ghysels (1996). These are given by 

 
2

, , ,

1

1
ˆ

T

i t j t ij t

t

RMSE r r
T

 (30) 

 
, , ,

1

1
ˆ

T

i t j t ij t

t

MAE r r
T

 (31) 

 

2

, ,

1 ,

1
1

ˆ

T
i t j t

t ij t

r r
HMSE

T
. (32) 

The Heteroscedasticity-adjusted MSE (HMSE) of Bollerslev and Ghysels (1996) penalises 

underpredictions more heavily than overpredictions, and hence may better match the user’s 

actual loss function. Forecast bias and information content are measured using the Mincer-

Zarnowitz regression, given by  

 , , ,
ˆ

i t j t ij ij ij t ijr r . (33) 

A forecast is conditionally unbiased (i.e. weak-form efficient) if and only if 0ij
 and 

1ij
.  

As noted by Engle and Colacito (2006), the statistical evaluation of covariance matrix 

forecasts on an element-by-element basis has a number of drawbacks, particularly for high 

dimensional systems. In particular, direct comparisons between two covariance matrices are 
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difficult because the distance between them is not well specified. Indeed, the statistical 

approaches described above implicitly assume that all elements of the covariance matrix are 

equally important (in the sense that the same error in each element is equally costly in 

economic terms), but there is no a priori reason why this should necessarily be the case. 

Moreover, the use of low frequency realized volatility as a proxy for true volatility introduces 

considerable noise that inflates the forecast errors of the conditional volatility forecasts, 

substantially reducing their explanatory power. This has prompted tests of covariance matrix 

forecast performance based instead on economic loss criteria. Such tests have shown that 

conditional volatility models perform better when performance is measured using an 

economic loss function than when based on traditional statistical measures (see, for example, 

West et al., 1993, Engle et al., 1996). 

In this paper, we employ the economic loss function developed by Engle and Colacito (2006), 

who study the usefulness of forecasts of the conditional covariance matrix in an asset 

allocation framework. Assume that an investor allocates a fraction 
tw  of his wealth to n risky 

assets and the remainder '1 tw ι  to the risk-free asset, where ι  is the 1n  unit vector. In 

the mean-variance optimization framework, the investor solves the following optimization 

problem at time t: 

 '

1min
t

t t t
w

w H w  (34) 

 subject to 
' ' *1 f

t t t prw μ w ι  (35) 

where
 1tH  is the covariance matrix at time t+1, μ  is the vector of expected returns, f

tr  is 

the risk-free rate and 
*

p  is the target return. As μ  is assumed to be constant, the optimal 

weight of each asset changes over time as a result of changes in the covariance matrix. Since 

the true covariance matrix 
1tH  is unobserved, the optimisation problem is solved using a 

forecast of 
1tH  obtained from a multivariate conditional volatility model, to yield an 

approximation to the true optimal portfolio. The investor chooses among competing forecasts 

of the conditional covariance matrix on the basis of the volatility of the resulting portfolio. 

Engle and Colacito (2006) show that the lowest volatility of the investor’s portfolio is 

obtained when the forecast covariance matrix is equal to the true covariance matrix, 

irrespective of both the expected excess return vector μ  and the target return 
*

p . This then 
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yields a straightforward economic test of the relative performance of competing covariance 

matrix forecasts based on the volatility of the optimal portfolio. 

Engle and Colacito (2006) also note that in the bivariate context, the relative volatilities of 

portfolios depend on the relative returns of the n risky assets, and not on their absolute 

returns. Using polar coordinates, all possible pairs of relative expected returns can be 

expressed in the form 
20 20

sin ,cos ,
j j

 for 0, ,10j . When 5,j  for example, the 

expected returns are identical, which yields the global minimum variance portfolio. To obtain 

a single summary vector of expected returns, we construct prior probabilities for different 

vectors of expected returns using the sample data and the quasi-Bayesian approach 

introduced by Engle and Colacito (2006). We use these probabilities as weights to estimate a 

single weighted average vector of expected returns. In the empirical study, we assume a 

target excess return equal to 1.
1
  

For each vector of expected returns, and for each pair of covariance matrix forecasts, we test 

whether the portfolio variances are equal using the Diebold and Mariano (1995) test. In 

particular, we consider the loss differential 
2 2

1, 2, ,k k k

t t tu  where 
2

1,k

t
 and 

2
2,k

t
 

are the variances of portfolios 1 and 2, respectively, for the expected return vector k . By 

regressing k

tu  on a constant, and using the Newey and West (1987) adjusted covariance 

matrix, the null hypothesis of equal variances is simply a test that the mean of u  is equal to 

zero. Engle and Colacito note that because k

tu is itself heteroscedastic, a more efficient 

estimator can be obtained by dividing u  by the true variance. Since the true covariance 

matrix is unknown and there are two estimators being compared, they suggest using the 

geometric mean of the two variance estimators as the denominator. The improved loss 

differential is given by 

 

1
1 1

' 1 ' 22k k k k k k

t t t tv u H H . (36) 

We apply the Diebold and Mariano tests to both the u and v series. We also conduct joint 

tests for all vectors of expected returns. 

                                                      
1
 The choice of the target return is immaterial in the sense that it does not affect the relative volatilities 

of portfolios. 
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4. Data Description 

The empirical analysis employs the same datasets as those in Engle and Colacito (2006). We 

first study the forecast performance of the six conditional volatility models in two bivariate 

systems. The low correlation system uses daily data for the S&P500 and 10-year Treasury 

bond futures, while the high correlation system uses daily data for the S&P500 and Dow 

Jones Industrial Average (DJIA) indices. All data are from Datastream and cover the period 

01 January 1988 to 31 December 2009. Returns are calculated as the log price difference over 

consecutive days. We exclude from the sample all days on which any of the markets was 

closed, yielding 5548 observations for each dataset. As the futures contracts require no initial 

investment, the futures returns can be interpreted as excess spot returns. The returns of the 

S&P500 and DJIA indices are converted to excess returns by subtracting the daily 1-month 

T-Bill rate.
2
 Table I reports descriptive statistics of the four return series. The sample 

correlation of the stock and bond futures is very close to zero, while for the S&P500 and 

DJIA indices, it is close to one. For all four series, returns are negatively skewed and 

leptokurtic.  

[Insert Table I here] 

Figure 1 plots the sample autocorrelations for returns, absolute returns and squared returns for 

the four series. While the autocorrelations of returns are not significantly different from zero 

at any lag, the autocorrelations of absolute returns and squared returns are highly persistent 

and still significant at up to 100 lags. The autocorrelations of absolute returns are also 

consistently higher than those of squared returns, a feature first identified by Taylor (1986). 

The slowly decaying autocorrelation functions of absolute returns and squared returns 

suggest the presence of long memory in volatility. 

[Insert Figure 1 here] 

Formal tests are conducted to confirm the visual evidence on long memory, the results of 

which are also reported in Table I. The parametric FIGARCH model is estimated for the 

whole sample, and the estimated fractional difference operators range from 0.35 to 0.49. We 

also apply two semi-parametric tests of long memory. These are the narrow band log 

periodogram (GPH) estimator of Geweke and Porter-Hudak (1983) and the broad band log 

                                                      
2
 This is the simple daily rate that, over the number of trading days in the month, compounds to the 1-

month T-Bill rate from Ibbotson and Associates, Inc. 
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periodogram (MS) estimator of Moulines and Soulier (1999). To estimate the GPH and MS 

operators, we use the recommended bandwidth m equal to the square root of the sample size 

( 77)m  and the Fourier term p equal to the log of the sample size ( 4)p , respectively. 

Following Hurvich and Soulier (2002), we report results for both squared returns and log 

squared returns. The tests suggest long memory in volatility for all four series, and that stock 

return volatility has longer memory than bond return volatility. We conduct a one-sided test 

for the hypothesis 0.5d , against the alternative 0.5d . Rejecting this hypothesis, we 

confirm that the volatility processes of all four series are characterised by long memory, but 

are nevertheless stationary. 

Following Engle and Colacito (2006), we also consider a moderate correlation high 

dimensional system. An international stock and bond portfolio is constructed from 34 assets, 

comprising 21 stock indices from the FTSE All-World indices and 13 5-year average 

maturity bond indices. The 21 stock indices and 13 bond indices include all of the major 

world stock and government bond markets. All data are taken from Datastream and converted 

to US dollar denominated prices. Following Engle and Colacito (2006), we use weekly 

returns to avoid the problem of non-synchronous trading. Weekly returns are calculated as the 

log price difference using Friday to Friday closing prices. The dataset comprises 22 years of 

weekly returns, yielding a total of 1147 observations from 01 January 1988 to 31 December 

2009. Descriptive statistics for the international dataset are given in Table II. Returns are, 

again, leptokurtic and, in most cases, negatively skewed. The international stock markets are 

relatively highly correlated, as are the international bond markets. The average correlation 

coefficient among the 21 stock market return series is 0.54, while among the bond market 

return series it is 0.61. However, the stock and bond markets as a whole have an average 

correlation coefficient of only 0.20. All 34 return series show evidence of long memory in 

volatility. For all countries in which both stock and bond indices are present, stock index 

volatility is, again, more persistent than bond index volatility. The average fractional 

difference operator for the stock indices is 0.44 with the parametric FIGARCH test, and 0.32 

with the semiparametric GPH tests. The corresponding values for the international bond 

indices are 0.30 and 0.25. 

[Insert Table II here] 

We additionally consider a higher frequency high dimensional system, comprising the 

components of the Dow Jones Industrial Average (DJIA) index as of 31 December 2009. 
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Daily data are collected from the Center for Research in Security Prices from 01 March 1990 

to 31 December 2009. We exclude Kraft, which was listed only in June 2001. Returns are 

calculated as the log price difference over consecutive days. All days on which the market 

was closed are excluded from the sample, yielding 5001 observations. Table III provides 

summary statistics for the 29 DJIA stocks. The return series are again highly non-normal, 

with very high leptokurtosis. The average correlation coefficient of the DJIA components is 

0.34. The system also exhibits long memory in volatility. The average estimated fractional 

difference orders are 0.37 with the FIGARCH test and 0.42 with the GPH test. Some return 

volatilities are even non-stationary with 0.5d . 

[Insert Table III here] 

For each series, the whole sample is divided into an initial estimation period of 252 

observations (one year for the daily return series and five years for the weekly return series), 

and a forecast period of 5296, 895 and 4749 observations for the two bivariate portfolios, the 

international stock and bond portfolio and the DJIA component portfolio, respectively. The 

initial estimation period is used to estimate each model to generate out-of-sample forecasts of 

the covariance matrix for observation 253. The estimation window is then rolled forward one 

observation, the models re-estimated, and forecasts made for observation 254, and so on until 

the end of the sample is reached. We initially estimate the conditional covariance matrix 

using all of the multivariate models described in Section 2, except the FIGARCH(1,d,1)-DCC 

model. This model is excluded owing to the prohibitively short estimation period. In Section 

5.4, we employ longer estimation periods and consider all six models. 

5. Empirical Results 

5.1 Low Dimensional Systems: The Stock-Bond and S&P500-DJIA Portfolios 

Statistical Evaluation 

Table IV reports the statistical evaluation of the accuracy of the five conditional volatility 

models using the RMSE, MAE, and HMSE measures for the two bivariate systems, namely 

the Stock-Bond and S&P500-DJIA portfolios. The LM-EWMA and LM-EWMA-DCC 

models yield identical RMSE, MAE and HMSE measures for the variances since in both 

models, the variance forecasts are based on the univariate long memory EWMA model. 

However, the LM-EWMA model performs better with respect to the covariance forecasts. 
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The LM-EWMA model also yields the lowest RMSE and MAE for all elements in the Stock-

Bond covariance matrix, while the short memory EWMA model performs best in the 

S&P500-DJIA case, although the difference between the EWMA and LM-EWMA models is 

small. Among the DCC models, the LM-EWMA-DCC model dominates, suggesting that 

there are potential benefits from allowing for long memory in volatility. The short memory 

GARCH-DCC model is the worst model in terms of forecast accuracy under the symmetric 

RMSE and MAE measures. The HMSE measure, which accounts for asymmetry in the 

treatment of under- and over-predictions, however, chooses the models least favoured by the 

RMSE and MAE measures, with the GARCH-DCC and CGARCH-DCC models producing 

the lowest forecast errors. We do not report the results of HMSE for the low correlation 

Stock-Bond covariance because the conditional correlation for some individual observations 

is very close to zero, leading to very high values of 
, , ,

ˆ
i t j t ij tr r  , which severely distorts the 

reported statistics. 

[Insert Table IV here] 

The results of the Mincer-Zarnowitz regressions for the two bivariate systems are 

summarised in Table V. The table reports the estimated coefficients of the regression, the R-

squared statistic and the p-value for each element of the covariance matrix for the null 

hypothesis of conditional unbiasedness. The unbiasedness hypothesis cannot be rejected at 

conventional significance levels for any of the stock variance forecasts, nor for the covariance 

forecasts in the S&P500-DJIA system for the LM-EWMA and LM-EWMA-DCC models, but 

it is rejected in all other cases. In the cases that the unbiasedness hypothesis cannot be 

rejected, the LM-EWMA and LM-EWMA-DCC models have slope coefficients that are very 

close to unity. The EWMA model, though evidently not as efficient, performs slightly better 

in terms of explanatory power, as measured by the R-squared statistic. The CGARCH-DCC 

model performs rather badly, indeed only marginally better than the GARCH-DCC model. 

[Insert Table V here] 

Economic Evaluation 

We use the forecasts of the covariance matrix to construct the minimum variance portfolios 

subject to a target excess return of 1. The relative conditional volatilities of portfolios 

constructed using the different conditional covariance matrix estimators and all possible 
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vectors of expected returns are compared in Table VI. The pairs of Bayesian prior weighted 

returns are obtained from non-overlapping consecutive subsamples of 63 days (3 months) 

from the full datasets. Engle and Colacito (2006) show that by considering unconditional 

mean-adjusted returns, one can obtain a consistent estimator of the true conditional portfolio 

variance. The lowest conditional volatility, corresponding to the best covariance matrix 

estimate, is normalised to 100. The ‘Const’ portfolio is the fixed weight portfolio constructed 

with the ex-post constant unconditional covariance matrix. It is clear that the conditional 

covariance matrices generally outperform the unconditional covariance matrix, highlighting 

the economic value of volatility timing strategies. The results are favourable for the two LM-

EWMA models. For both the low correlation Stock-Bond portfolio and the high correlation 

S&P500-DJIA portfolio, the LM-EWMA model consistently yields the lowest portfolio 

volatility. Incorporating long memory into the EWMA structure therefore appears to improve 

the forecasts of the conditional covariance matrix in a way that is economically valuable. 

Among the DCC models, the LM-EWMA-DCC model again dominates. Although the 

CGARCH model is designed to capture long memory volatility, its high degree of 

parameterization evidently hinders its performance. It is also interesting to note that the 

simple EWMA model outperforms more sophisticated models such as the GARCH-DCC and 

CGARCH-DCC models, and is even superior to the LM-EWMA-DCC models in most cases. 

[Insert Table VI here] 

In practice, investors may be more concerned with out-of-sample realized volatility than 

conditional volatility. This is reported in Table VII for each model for the two bivariate 

portfolios. Here, the results are similar, with the LM-EWMA model consistently yielding the 

lowest out-of-sample portfolio volatility. 

[Insert Table VII here] 

Next, Diebold-Mariano tests are applied to test for the equality of different models with each 

vector of expected returns. Joint tests are also carried out for all vectors of expected returns 

applying the GMM method with a robust HAC covariance matrix. Instead of reporting all of 

the results, we focus on those with expected returns close to the sample mean. Table VIII 

shows the results of both the standard and the improved tests for the Stock-Bond portfolio 

with , [0.95,0.31]Stock Bond  and [0.99,0.16] , and for the joint tests. Each cell in the table 

corresponds to the test of the hypothesis that the two models in the row and column are equal 
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in terms of volatility forecasting against the alternative that the model in the row is better or 

worse than the model in the column. A positive sign indicates that the model in the row is 

better than the model in the column, and vice-versa. The Diebold-Mariano tests confirm our 

earlier results. The standard Diebold-Mariano test shows that the LM-EWMA model 

significantly dominates all other conditional volatility models, both short memory and long 

memory. With the improved version of the Diebold-Mariano test, the difference between 

each pair of models is less clearly marked and the outperformance of the LM-EWMA model 

is not significant in some cases. However, the Diebold-Mariano statistics are still uniformly 

positive. The S&P500-DJIA portfolio yields similar results. To save space, only the results of 

the joint tests are reported in Table IX. 

[Insert Tables VIII and IX here] 

5.2 High Dimensional Systems: The International Stock and Bond and the DJIA 

Portfolios 

Economic Evaluation 

In practice, a portfolio may comprise hundreds of assets and consequently an investor may 

want to examine the forecast performance of different conditional volatility models in a 

higher dimensional framework. In an asset allocation problem, the investor needs to estimate 

both the expected returns and the covariance matrix. However, since there are a prohibitively 

large number of possible expected return vectors for the high dimensional portfolios, we 

study the value of covariance matrix forecasts in two restricted cases. First, we form global 

minimum variance portfolios, where all expected returns are assumed to be equal. Note that 

the correctly specified covariance matrix will produce portfolios with the lowest volatility for 

any particular vector of expected returns, including the case that they are all equal. The 

results are reported in Table X. For the multivariate portfolios, we assume a risk free rate of 

4%. Consistent with previous findings, in the international stock and bond portfolio, the LM-

EWMA model yields the lowest conditional and out of sample volatilities. Owing to its 

simplicity, the simple EWMA model also performs very well, indeed better than the long 

memory LM-EWMA-DCC and CGARCH-DCC models. The short memory GARCH-DCC 

model is the least successful model. However, the results for the DJIA portfolio are markedly 

different in that the DCC models tend to outperform the non-DCC models. Indeed, the 

superiority of the LM-EWMA model deteriorates significantly, although it still renders better 
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forecasts than the EWMA model. Consistent with the results for the bivariate portfolios, the 

LM-EWMA-DCC model always produces the best portfolios among the DCC models. 

[Insert Table X here] 

In the second experiment, we form hedging portfolios in which one asset is hedged against all 

other assets in the portfolio. In so doing, we select the expected return vectors such that one 

entry is equal to one and all others are set to zero. With this strategy, the LM-EWMA-DCC 

model is the best performing model in 33 of the 34 hedging portfolios of international stocks 

and bonds, and 24 of the 29 portfolios of DJIA components. The LM-EWMA model, though 

still dominating the EWMA model, is generally inferior to the GARCH-DCC and CGARCH-

DCC models. The Diebold-Mariano joint tests for all hedging expected returns are applied 

and the findings are consistent with those of the relative volatilities (Table XI). The LM-

EWMA-DCC model significantly outperforms all other models in both versions of the 

Diebold-Mariano tests. The LM-EWMA performs badly, significantly outperforming only 

the EWMA model. In the DJIA portfolio, the LM-EWMA model is even dominated by the 

unconditional estimator.  

[Insert Table XI here] 

These results show consistently that incorporating long memory in volatility dynamics 

improves the forecasts of the covariance matrix. The LM-EWMA model generally 

outperforms the EWMA model, while the LM-EWMA-DCC model always yields the best 

results among the DCC models. Our results also reveal an important difference in the relative 

forecasting power of the DCC and non-DCC models in low dimensional and high 

dimensional systems, respectively. In particular, the greater flexibility that arises from 

separately estimating volatility and correlation is evidently beneficial in the high dimensional 

case. This deserves attention for future research. 

5.3 Longer Horizon Forecasts 

Practical problems often require forecasts over longer horizons than the 1-step ahead 

forecasts considered above. In this section, we evaluate the forecast performance of different 

conditional volatility models, both statistically and economically, for horizons of up to three 

months. Table XII reports the RMSE of different conditional volatility models for 1-week, 1-

month and 1-quarter ahead forecasts. The benchmarks are the true variances and covariances, 
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proxied by the sum of squares and cross products of daily returns over the forecast horizons. 

The long memory volatility models generally outperform the short memory models, with the 

LM-EWMA and LM-EWMA-DCC models consistently yielding the smallest forecast error, 

although the standard EWMA model again proves itself a simple yet statistically accurate 

model. The MAE results are similar and are hence not reported. 

[Insert Table XII here] 

The Mincer-Zarnowitz regression is implemented for the longer horizons in Table XIII. 

Compared to the 1-step ahead forecasts, the forecasts for longer horizons have higher 

information content, which may be attributable to the use of more accurate proxies of the true 

variances and covariances. Again, the two LM-EWMA models dominate the other short and 

long memory conditional volatility models at all forecast horizons. They are the only two 

models that generally yield conditionally unbiased forecasts for the elements of the 

covariance matrix. To save space, only results for the LM-EWMA model and the two short 

memory EWMA and GARCH-DCC models are reported in Table XIII.  

[Insert Table XIII here] 

The economic usefulness of alternative covariance matrix estimators is assessed for both low 

and high dimensional portfolios over longer investment horizons. We let the investor 

rebalance his portfolios weekly, monthly and quarterly. These rebalancing frequencies would 

cover the situations of most investors in practice, at least approximately, from a day trader to 

a mutual fund. Table XIV gives the out-of-sample performance of the weekly rebalanced 

bivariate portfolios. Results for the conditional volatilities are similar. The gains from using 

the conditional volatility models for a trader who rebalances weekly, as compared to those for 

a day trader, are smaller. The two LM-EWMA models still outperform both the short 

memory models and the long memory CGARCH-DCC, though the gains, again, are lower. 

Among the two LM-EWMA models, neither dominates. The LM-EWMA model tends to 

perform better when the hypothetical vectors of expected returns are close to the 

unconditional mean and in the overall returns (which use the Bayesian priors as the weighting 

factors).  

[Insert Table XIV here] 
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For the monthly and quarterly rebalanced portfolios, the results are similar. The two long 

memory EWMA models consistently produce better forecasts than the short memory and 

constant volatility models. The short memory conditional volatility models either rapidly 

revert to the unconditional volatility at an exponential rate or, in the case of the EWMA 

model, do not converge at all, and consequently have relatively uninteresting long-run 

forecasts. With slowly decaying autocorrelations, the long memory volatility models are able 

to better exploit past information and consequently yield more accurate forecasts over longer 

horizons. The outperformance of the two long memory EWMA models in the monthly and 

quarterly rebalanced portfolios confirms this intuition. To save space, only the out-of-sample 

results for the quarterly rebalanced portfolios are reported. 

[Insert Table XV here] 

Results for the two high dimensional portfolios are consistent with those for the two low 

dimensional portfolios. Under the global minimum variance strategy, the LM-EWMA and 

LM-EWMA-DCC models generally yield the most favourable results over horizons of up to 

three months (Table XVI). The CGARCH-DCC model also consistently outperforms the 

GARCH-DCC model. Similar results are obtained in favour of the long memory volatility 

models under the hedging strategy. However, as with the daily rebalanced portfolios, the 

DCC models outperform the non-DCC models. For all rebalancing frequencies, the LM-

EWMA-DCC consistently yields the most economically useful forecasts in both high 

dimensional portfolios. A similar conclusion, though not reported here, follows from the 

Diebold-Mariano joint tests for the equality of the different models’ forecasts at different 

forecast horizons. 

[Insert Table XVI here] 

5.4 Additional Robustness Tests 

Forecast performance is potentially affected by the size of the rolling window used to 

estimate the conditional volatility models. Therefore, we re-evaluate the forecast performance 

of the multivariate conditional volatility models using estimation windows of two years, five 

years and ten years of daily returns. In the cases of 5-year and 10-year rolling windows, we 

also estimate the conditional covariance matrix using the FIGARCH-DCC model. We do not 

estimate the FIGARCH-DCC model with 1-year and 2-year rolling windows since the 

estimation of the FIGARCH model requires a prohibitively high upper lag cut-off. Following 
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standard practice in the literature, we set the truncation lag for the FIGARCH model equal to 

1000.  

The outperformance of the two parsimonious long memory EWMA models reported above is 

found to be insensitive to the choice of estimation window length, in the both low dimension 

and high dimension cases. To save space, Table XVII reports only the economic evaluation 

for the two bivariate portfolios with a 5-year estimation window. The two long memory LM-

EWMA and LM-EWMA-DCC models consistently produce forecasts that are more accurate 

and informative, and more economically useful than other short and long memory models. 

The simple EWMA model, although not as good as the LM-EWMA model, generally 

outperforms the more sophisticated GARCH model. The long memory FIGARCH model is 

the worst performing model, which may be attributable to the complexity of its specification. 

Although not reported, the use of longer forecast horizons (one week, one month and one 

quarter) yields very similar conclusions. 

[Insert Table XVII here] 

6. Conclusion 

In this paper, we evaluate the economic benefits that arise from allowing for long memory in 

forecasting the covariance matrix of returns over both short and long horizons, using the asset 

allocation framework of Engle and Colacito (2006). In so doing, we compare the 

performance of a number of long memory and short memory multivariate volatility models. 

Incorporating long memory property improves forecasts of the conditional covariance matrix. 

In particular, we find that long memory volatility models dominate short memory and 

unconditional models on the basis of both statistical and economic criteria, especially at 

longer horizons. Moreover, the relatively parsimonious long memory EWMA models 

outperform the more complex multivariate long memory GARCH models. The high degree 

of parameterization of the Component GARCH and FIGARCH models evidently generates 

large estimation errors that are detrimental to their performance. The results are consistent 

across different datasets, and are robust to different investment horizons and estimation 

windows. The findings of the paper are consistent with those in the univariate volatility 

literature. 

The non-DCC conditional covariance matrix estimators (such as the EWMA model with 

exponential weights and the LM-EWMA model with logarithmic weights) impose the same 
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dynamic structure on all elements of the covariance matrix, which facilitates their 

implementation in high dimensional systems, but it comes at a cost in terms of estimation 

error. In a high dimensional system, employing a potentially less correctly specified but more 

flexible DCC structure may yield better results. Also, some of the eigenvalues of the high 

dimensional covariance matrix are inevitably very small, and so the inverse of the covariance 

matrix used in the asset allocation is likely to be ill-conditioned (see, for example, Zumbach, 

2009a). This may partly explain the poor performance of the LM-EWMA model in large 

systems. It would be interesting to investigate this issue in greater detail.  

The use of the long memory conditional covariance matrix produces optimal portfolios with 

lower realised volatility than the static unconditional covariance matrix. However, since our 

aim is simply to evaluate the forecasts of alternative conditional covariance matrices, and to 

choose the estimator that produces the lowest portfolio volatility, we do not explicitly 

consider realised portfolio returns. In particular, it does not follow that the portfolio with the 

lowest volatility is necessarily the best portfolio in terms of portfolio performance measures 

such as the Sharpe ratio. Thus it would also be of interest to investigate further the economic 

value of long memory volatility timing in the asset allocation framework, allowing for 

differences in return as well as risk, and for the effect of transaction costs. 
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Table I. Summary Statistics for the Two Bivariate Systems 

The table reports descriptive statistics for the daily returns on Stock and Bond futures, and the daily excess returns on the S&P500 and DJIA indices. Means 

and standard deviations are annualised. The sample period is from 01 January 1988 to 31 December 2009. The table also reports the fractional difference 

operator, d, estimated using the FIGARCH, Geweke-Porter-Hudak (GPH) and Moulines-Soulier (MS) tests. The GPH and MS estimators are applied to 

both squared returns and log squared returns 

Return 

series 

Mean 

(%) 

Std. 

Dev. 

(%) 

Skewness Kurtosis 
Min 

(%) 

Max 

(%) 

Normality 

test 
Corr. ˆ

FIGARCHd  
Squared returns 

Log squared 

returns 

ˆ
GPHd  ˆ

MSd  ˆ
GPHd  ˆ

MSd  

Stock 6.83 19.06 -0.19 14.18 -10.40 13.20 28936 
-0.038 

0.403 0.357 0.373 0.280 0.387 

Bond 1.48 6.53 -0.28 6.63 -2.86 3.57 3123 0.355 0.410 0.190 0.169 0.189 

S&P500 2.80 18.34 -0.25 12.32 -9.47 10.95 20117 
0.960 

0.492 0.441 0.461 0.449 0.534 

DJIA 3.59 17.72 -0.20 11.62 -8.20 10.51 17194 0.487 0.396 0.417 0.462 0.294 
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Table II. Summary Statistics for the International Stock and Bond Returns 

The table reports summary statistics for the weekly returns on 21 international stock indices and 13 

government bond indices. Means and standard deviations are annualised. The sample period is from 

01 January 1988 to 31 December 2009. 

Return 

series 

Mean 

(%) 

Std. Dev. 

(%) 
Skewness Kurtosis Min (%) Max (%) 

Normality 

test 

Panel A. International stocks 

Australia 7.30 21.64 -1.77 21.33 -34.86 14.52 16657 

Austria 6.03 25.81 -1.52 18.70 -38.22 20.94 12223 

Belgium 5.45 20.98 -1.21 12.68 -26.88 12.53 4757 

Canada 7.58 20.68 -1.13 13.91 -25.92 17.61 5930 

Denmark 9.89 21.00 -1.31 13.35 -26.39 13.66 5446 

France 7.44 21.25 -0.90 10.94 -27.16 13.76 3167 

Germany 6.69 23.49 -0.80 8.93 -26.11 15.00 1800 

Hongkong 9.22 25.37 -0.62 6.57 -21.08 13.85 682 

Ireland 3.44 25.49 -1.72 19.88 -39.31 16.18 14184 

Italy 2.91 24.82 -0.60 8.85 -26.71 19.04 1705 

Japan -1.29 22.56 0.07 4.67 -16.02 11.75 134 

Mexico 19.21 33.81 -0.33 7.66 -30.20 23.23 1060 

Netherland 6.88 20.89 -1.44 17.48 -31.48 14.85 10416 

New Zealand -0.08 22.04 -0.63 7.44 -23.06 12.07 1017 

Norway 8.93 26.82 -0.84 10.37 -28.54 19.82 2733 

Singapore 6.99 26.29 -0.69 13.21 -33.13 23.02 5071 

Spain 6.92 22.28 -0.90 10.21 -26.22 13.76 2641 

Sweden 9.79 26.88 -0.52 7.73 -25.12 19.05 1123 

Switzerland 8.44 19.42 -0.70 11.14 -24.01 13.96 3263 

UK 4.44 19.13 -1.05 16.81 -27.73 16.30 9324 

US 7.03 16.81 -0.81 10.54 -20.19 11.45 2845 

Panel B. International bonds 

Austria 0.92 10.58 -0.03 3.64 -5.85 5.72 20 

Belgium 0.95 10.68 -0.02 3.47 -5.16 5.55 11 

Canada 2.36 8.71 -0.51 6.53 -8.38 5.34 647 

Denmark 1.60 10.92 0.00 3.84 -5.82 5.67 33 

France 1.81 10.54 -0.02 3.47 -4.88 5.79 11 

Germany 0.73 10.62 0.01 3.37 -4.52 5.77 7 

Ireland 1.83 10.89 -0.25 4.19 -7.52 5.94 79 

Japan 1.67 12.11 0.89 8.33 -6.05 14.30 1509 

Netherland 0.55 10.64 -0.02 3.36 -4.82 5.45 6 

Sweden 0.06 12.06 -0.18 3.84 -7.85 5.93 40 

Switzerland 0.95 12.05 0.11 3.72 -6.28 6.89 27 

UK 0.13 10.60 -0.24 4.93 -7.12 6.48 188 

US 1.23 4.43 -0.19 3.82 -2.61 2.06 39 
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Table III. Summary Statistics for the DJIA Components 

The table reports summary statistics for the daily returns on the 29 components of the DJIA index. 

Means and standard deviations are annualised. The sample period is from 01 March 1990 to 31 

December 2009. 

Return 

series 
Mean (%) 

Std. Dev. 

(%) 
Skewness Kurtosis Min (%) Max (%) 

Normality 

test 

AA 3.47 39.12 -0.02 11.23 -17.50 20.87 14102 

AXP 7.22 38.76 0.03 9.94 -19.35 18.77 10043 

BA 4.61 31.89 -0.33 9.73 -19.39 14.38 9525 

BAC 1.51 45.21 -0.29 30.90 -34.21 30.21 162245 

CAT 10.19 33.62 -0.08 7.18 -15.69 13.74 3652 

C 28.74 46.95 0.00 7.48 -22.10 21.82 4175 

CVX 7.62 25.60 0.13 12.63 -13.34 18.94 19331 

DD 2.76 29.39 -0.09 7.10 -12.03 10.86 3513 

DIS 6.43 32.11 0.00 10.40 -20.29 14.82 11410 

GE 5.44 29.93 0.01 11.17 -13.68 17.98 13916 

GM 13.54 35.10 -0.67 16.81 -33.88 13.16 40119 

HD 11.51 40.37 -0.08 9.21 -20.70 18.99 8044 

HPQ 8.14 30.53 0.04 9.76 -16.89 12.37 9537 

IBM 13.99 42.72 -0.38 8.26 -24.89 18.33 5884 

INTC 11.37 23.70 -0.19 9.75 -17.25 11.54 9510 

JNJ 8.01 42.10 0.26 13.11 -23.23 22.39 21336 

JPM 9.39 24.79 0.08 8.01 -11.07 13.00 5230 

KO 10.43 26.89 -0.04 6.98 -13.72 10.31 3305 

MCD 7.12 24.25 0.01 7.50 -10.08 10.50 4214 

MMM 5.82 29.95 -1.09 22.53 -31.17 12.25 80485 

MRK 19.06 35.23 0.01 7.94 -16.96 17.87 5087 

MSFT 10.01 29.62 -0.18 6.07 -11.82 9.69 1997 

PFE 10.26 25.33 -2.78 68.38 -37.66 9.73 897033 

PG 3.50 28.68 0.08 7.39 -13.54 15.08 4027 

T 6.01 30.34 0.34 16.22 -20.07 22.76 36490 

UTX 11.97 28.77 -1.13 28.55 -33.20 12.79 137065 

VZ 1.90 27.61 0.17 7.64 -12.61 13.66 4503 

WMT 11.39 29.21 0.13 5.83 -10.26 10.50 1681 

XOM 8.91 24.83 0.09 11.92 -15.03 15.86 16591 
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Table IV. RMSE, MAE and HMSE for the Two Bivariate Systems 

The table reports the RMSE, MAE and HMSE for each element of the conditional covariance matrix 

estimated using five multivariate conditional volatility models over the forecast period. The squares 

and cross-products of daily returns are used as proxies for the actual variances and covariances. 

 
EWMA 

GARCH 

DCC 
LM-EWMA 

LM-EWMA 

DCC 

CGARCH 

DCC 

Panel A. Root Mean Square Error (RMSE)  

Variances      

Stock 4.7483 4.7953 4.7459 4.7459 4.7649 

Bond 0.3964 0.3978 0.3957 0.3957 0.3988 

S&P500 4.0336 4.0921 4.0434 4.0434 4.0646 

DJIA 3.6876 3.7295 3.6900 3.6900 3.7076 

Covariances      

Stock-Bond 0.7442 0.7593 0.7432 0.7536 0.7575 

S&P500-DJIA 3.7951 3.8402 3.8015 3.8015 3.8166 

Panel B. Mean Absolute Error (MAE) 

Variances      

Stock 1.5342 1.5372 1.5337 1.5337 1.5577 

Bond 0.1803 0.1874 0.1799 0.1799 0.1880 

S&P500 1.4088 1.4251 1.4089 1.4089 1.4407 

DJIA 1.3079 1.3232 1.3077 1.3077 1.3357 

Covariances      

Stock -Bond 0.3298 0.3335 0.3278 0.3295 0.3398 

S&P500 -DJIA 1.3284 1.3435 1.3296 1.3306 1.3583 

Panel C. Heteroskedasticity-adjusted Mean Square Error (HMSE) 

Variances      

Stock 13.5870 8.6617 11.3285 11.3285 8.9257 

Bond 5.0709 4.1601 4.6114 4.6114 4.5520 

S&P500 8.1334 5.5538 6.8703 6.8703 5.6967 

DJIA 9.6358 5.9739 7.9015 7.9015 6.0413 

Covariances      

S&P500-DJIA 9.7683 6.0861 8.0231 7.8463 6.1982 
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Table V. Mincer – Zarnowitz Regressions for the Two Bivariate Systems 

The table reports the estimated coefficients of the Mincer-Zarnowitz regressions for the elements of 

the covariance matrix. The p-values are for the tests of the joint hypothesis H0:
 

0ij
 and 1ij

. 

The numbers in the parentheses are the t-statistics to test 0ij
 and 1ij

, respectively. 

 Intercept Slope R
2
 p-value Intercept Slope R

2
 p-value 

 Panel A. EWMA Panel B. GARCH-DCC 

Stock 0.167 0.888 0.176 0.000 0.312 0.783 0.169 0.000 

 (1.218) (-0.798)   (3.750) (-2.993)   

Bond 0.058 0.657 0.037 0.000 0.051 0.642 0.030 0.000 

 (5.443) (-4.687)   (4.248) (-4.656)   

S&P500 0.132 0.906 0.207 0.001 0.257 0.801 0.193 0.000 

 (1.110) (-0.739)   (3.423) (-2.748)   

DJIA 0.142 0.889 0.179 0.000 0.242 0.801 0.168 0.000 

 (1.275) (-0.876)   (3.204) (-2.627)   

Stock-Bond -0.010 0.698 0.046 0.000 -0.052 0.554 0.022 0.000 

 (-1.263) (-2.762)   (-3.593) (-3.472)   

S&P500-DJIA 0.130 0.899 0.195 0.000 0.228 0.811 0.183 0.000 

 (1.180) (-0.789)   (3.129) (-2.490)   

 Panel C. LM-EWMA Panel D. LM-EWMA-DCC 

Stock -0.006 1.011 0.174 0.154 -0.006 1.011 0.174 0.154 

 (-0.044) (0.074)   (-0.044) (0.074)   

Bond 0.050 0.706 0.037 0.000 0.050 0.706 0.037 0.000 

 (4.377) (-3.853)   (4.377) (-3.853)   

S&P500 0.000 1.011 0.201 0.224 0.000 1.011 0.201 0.224 

 (-0.005) (0.084)   (-0.005) (0.084)   

DJIA 0.005 1.001 0.175 0.051 0.005 1.001 0.175 0.051 

 (0.040) (0.011)   (0.040) (0.011)   

Stock-Bond -0.010 0.735 0.046 0.000 -0.051 0.648 0.030 0.000 

 (-1.278) (-2.357)   (-3.765) (-3.105)   

S&P500-DJIA 0.003 1.008 0.189 0.120 -0.006 1.012 0.189 0.202 

 (0.025) (0.057)   (-0.047) (0.092)   

                            Panel E. CGARCH-DCC      

Stock 0.248 0.802 0.178 0.000      

 (2.712) (-2.329)        

Bond 0.059 0.606 0.028 0.000      

 (4.916) (-5.097)        

S&P500 0.208 0.817 0.203 0.000      

 (2.457) (-2.172)        

DJIA 0.200 0.814 0.177 0.000      

 (2.411) (-1.823)        

Stock-bond -0.067 0.625 0.025 0.000      

 (-4.375) (-2.952)        

S&P500-DJIA 0.184 0.822 0.192 0.000      

 (2.074) (-2.035)        
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Table VI. Comparison of Conditional Volatilities: Bivariate Portfolios 

The table reports the average conditional volatilities for the two bivariate portfolios, constructed with 

the objective of minimizing variance subject to the target excess return of 1. Each row in the table 

shows the results for the pair of expected returns in the corresponding first two columns. The overall 

returns are the pair of weighted returns using the Bayesian prior probabilities. The lowest volatility in 

each row is normalised to 100. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH 

DCC 

LM 

EWMA 

LM 

EWMA 

DCC 

CGARCH 

DCC 
Const 

0.00 1.00 100.247 102.156 100.000 101.909 104.206 105.938 

0.16 0.99 100.243 102.330 100.000 101.983 104.557 105.148 

0.31 0.95 100.402 102.580 100.000 102.077 105.025 104.422 

0.45 0.89 100.505 102.587 100.000 101.956 105.457 103.754 

0.59 0.81 100.580 102.465 100.000 101.827 105.655 103.074 

0.71 0.71 100.521 102.632 100.000 101.746 105.472 102.840 

0.81 0.59 100.390 102.705 100.000 102.017 104.974 103.507 

0.89 0.45 100.317 102.673 100.000 102.040 104.832 105.564 

0.95 0.31 100.237 101.994 100.000 101.301 104.207 108.904 

0.99 0.16 100.465 101.949 100.000 100.509 103.752 111.038 

1.00 0.00 100.385 103.277 100.000 102.335 105.200 106.434 

Overall (weighted) 100.208 102.097 100.000 101.496 104.307 108.365 

 

Panel B. S&P500-DJIA Portfolio 

µSP500 µDJIA EWMA 
GARCH 

DCC 

LM 

EWMA 

LM 

EWMA 

DCC 

CGARCH 

DCC 
Const 

0.00 1.00 100.402 102.054 100.089 100.000 102.233 101.206 

0.16 0.99 100.491 101.925 100.076 100.000 102.227 101.435 

0.31 0.95 100.511 101.534 100.090 100.000 102.136 101.865 

0.45 0.89 100.308 100.836 100.022 100.000 101.695 102.751 

0.59 0.81 100.172 100.917 100.000 100.559 101.547 105.244 

0.71 0.71 100.191 102.031 100.000 100.658 102.946 102.088 

0.81 0.59 100.184 101.040 100.000 100.658 101.317 107.019 

0.89 0.45 100.377 101.256 100.000 100.586 101.988 106.425 

0.95 0.31 100.347 101.473 100.000 100.404 102.137 103.928 

0.99 0.16 100.256 101.681 100.000 100.219 102.119 102.558 

1.00 0.00 100.261 101.697 100.000 100.087 102.045 101.784 

Overall (weighted) 100.204 102.057 100.000 100.719 103.022 102.508 
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Table VII. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios 

The table reports out-of-sample volatilities for the two bivariate portfolios, constructed with the 

objective of minimizing variance subject to the target excess return of 1. Each row in the table shows 

the results for the pair of expected returns in the corresponding first two columns. The overall returns 

are the pair of weighted returns using the Bayesian prior probabilities. The lowest volatility in each 

row is normalised to 100. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH 

DCC 

LM 

EWMA 

LM 

EWMA 

DCC 

CGARCH 

DCC 
Const 

0.00 1.00 100.540 102.133 100.000 101.876 104.291 105.164 

0.16 0.99 100.532 102.228 100.000 101.950 104.659 104.432 

0.31 0.95 100.537 102.320 100.000 102.051 105.031 103.736 

0.45 0.89 100.530 102.372 100.000 102.119 105.435 103.109 

0.59 0.81 100.446 102.462 100.000 102.208 105.816 102.696 

0.71 0.71 100.401 102.638 100.000 102.332 105.791 102.695 

0.81 0.59 100.370 102.808 100.000 102.673 105.027 103.413 

0.89 0.45 100.303 103.046 100.000 102.642 105.631 105.039 

0.95 0.31 100.328 102.932 100.000 102.117 105.474 107.664 

0.99 0.16 100.386 103.133 100.000 100.936 104.811 109.317 

1.00 0.00 100.428 105.932 100.000 103.005 107.182 104.709 

Overall (weighted) 100.312 102.920 100.000 102.192 105.446 107.262 

 

Panel B. S&P500-DJIA Portfolio 

µSP500 µDJIA EWMA 
GARCH 

DCC 

LM 

EWMA 

LM 

EWMA 

DCC 

CGARCH 

DCC 
Const 

0.00 1.00 100.292 103.208 100.130 100.000 103.694 101.879 

0.16 0.99 100.302 102.995 100.110 100.000 103.956 102.280 

0.31 0.95 100.352 102.353 100.132 100.000 104.288 103.012 

0.45 0.89 100.323 101.148 100.048 100.000 102.441 104.170 

0.59 0.81 100.304 101.361 100.000 100.408 102.366 105.967 

0.71 0.71 100.073 102.290 100.000 100.589 102.886 104.349 

0.81 0.59 100.142 102.236 100.000 100.717 101.208 109.425 

0.89 0.45 100.421 101.519 100.000 100.617 101.730 107.279 

0.95 0.31 100.456 102.817 100.000 100.476 102.217 104.268 

0.99 0.16 100.393 102.854 100.000 100.314 102.488 102.723 

1.00 0.00 100.374 102.871 100.000 100.218 102.621 101.934 

Overall (weighted) 100.096 102.368 100.000 100.691 102.936 104.723 
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Table VIII. Diebold-Mariano Tests of the Stock-Bond Portfolio 

The table reports the t-statistics of the Diebold-Mariano tests for the Stock-Bond portfolio using the 
improved version of the test described in Engle and Colacito (2006). Panels A and B correspond to 
[µStock, µBond ] = [0.95; 0.31] and [0.99; 0.16], respectively. Panel C reports the joint tests of all the 
expected vectors of returns. The t-statistics for the standard version of the Diebold-Mariano test are 
reported in parentheses. A positive number indicates that the model in the row is better than that in the 
column, and vice-versa. 

 EWMA 
GARCH 

DCC 
LM 

EWMA 
LM-EWMA 

DCC 
CGARCH 

DCC 
Const 

Panel A. µ=[0.95; 0.31] 

EWMA 
 2.005* -1.227 3.539*** 2.763*** 2.645*** 

 (2.746***) (-2.151**) (3.475***) (4.757***) (4.211***) 

GARCH 
DCC 

-2.005*  -2.302** -0.952 1.132 1.632 

(-2.746***)  (-3.075**) (-1.189) (3.491***) (2.469**) 

LM-EWMA 
1.227 2.302**  3.946*** 3.175*** 2.788*** 

(2.151**) (3.075***)  (4.042***) (5.041***) (4.391***) 

LM-EWMA 
DCC 

-3.539*** 0.952 -3.946***  1.952** 2.102** 

(-3.475***) (1.189) (-4.042***)  (3.943***) (3.094***) 

CGARCH 
DCC 

-2.763*** (-1.132) -3.175*** -1.920*  1.065 

(-4.757***) (-3.491***) (-5.041***) (-4.060***)  (1.382) 

Constant 
-2.645*** -1.632 -2.788*** -2.102** -1.065  

(-4.211***) (-2.469**) (-4.391***) (-3.094***) (-1.382)  

Panel B. µ=[0.99; 0.16] 

EWMA 
 0.804 -0.208 -0.287 1.023 2.272** 

 (1.895*) (-1.985**) (-1.147) (3.136***) (4.266***) 

GARCH 
DCC 

-0.804  -0.812 -1.455 0.807 1.526 

(-1.895*)  (-2.087**) (-1.723*) (3.780***) (2.673***) 

LM-EWMA 
0.208 0.812  -0.112 1.006 2.461** 

(1.985**) (2.087**)  (1.766*) (3.285***) (4.499***) 

LM-EWMA 
DCC 

0.287 1.455 0.112  2.101** 2.341** 

(-1.147) (1.723*) (-1.766*)  (3.090***) (3.886***) 

CGARCH 
DCC 

-1.023 -0.807 -1.006 -2.017**  1.560 

(-3.136***) (-3.780***) (-3.285***) (-3.179***)  (1.954*) 

Constant 
-2.272** -1.526 -2.461** -2.366** -1.560  

(-4.266***) (-2.673***) (-4.499***) (-3.945***) (-1.954*)  

Panel C. Joint tests 

EWMA 
 2.001** -0.422 1.741* 1.742* 3.229*** 

 (4.072***) (-6.393***) (5.806***) (4.710***) (7.849***) 

GARCH 
DCC 

-2.001**  -2.054** -1.944* 0.171 0.044 

(-4.072***)  (-4.442***) (-2.385**) (4.719***) (2.156**) 

LM-EWMA 
0.422 2.054**  1.807* 1.726* 3.629*** 

(6.393***) (4.442***)  (6.624***) (4.957***) (8.451***) 

LM-EWMA 
DCC 

-1.741* 1.944* -1.807*  1.462 2.209** 

(-5.806***) (2.385**) (-6.624***)  (3.719***) (5.003***) 

CGARCH 
DCC 

-1.742* -0.171 -1.726* -1.462  -0.322 

(-4.710***) (-4.719***) (-4.957***) (-3.719***)  (-0.134) 

Constant 
-3.229*** -0.044 -3.629*** -2.209** 0.322  

(-7.849***) (-2.156**) (-8.451***) (-5.003***) (0.134)  
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Table IX. Diebold-Mariano Tests of the S&P500-DJIA Portfolio 

The table reports the t-statistics of the Diebold-Mariano tests for the S&P500-DJIA portfolio using the 

improved version of the test described in Engle and Colacito (2006). The t-statistics for the standard 

version of the Diebold-Mariano test are reported in parentheses. A positive number indicates that the 

model in the row is better than that in the column, and vice-versa. 

 EWMA 
GARCH 

DCC 

LM 

EWMA 

LM 

EWMA 

DCC 

CGARCH 

DCC 
Const 

EWMA  2.671*** 0.338 1.246 3.179*** 2.598*** 

  (5.166***) (-3.329***) (1.469) (6.374***) (5.222***) 

GARCH  

DCC 

-2.671***  -3.033*** -3.296*** -0.368 2.130** 

(-5.166***)  (-6.004***) (-5.545***) (1.307) (3.795***) 

LM EWMA -0.338 3.033***  1.412 3.674*** 2.769*** 

 (3.329***) (6.004***)  (2.813***) (7.161***) (5.455***) 

LM EWMA 

DCC 

-1.246 3.296*** -1.412  2.611*** 2.848*** 

(-1.469) (5.545***) (-2.813***)  (5.939***) (5.438***) 

CGARCH  

DCC 

-3.179*** 0.368 -3.674*** -2.611***  2.004** 

(-6.374***) (-1.307) (-7.161***) (-5.939***)  (3.161***) 

Constant -2.598*** -2.130** -2.769*** -2.848*** -2.004**  

 (-5.222***) (-3.795***) (-5.455***) (-5.438***) (-3.161***)  
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Table X. Comparison of Volatilities: Multivariate Portfolios 

The table reports the volatilities of the global minimum variance portfolios. The lowest volatility in 

each row is normalised to 100. 

 EWMA 
GARCH 

DCC 

LM  

EWMA 

LM EWMA 

DCC 

CGARCH 

DCC 

Panel A. Conditional Volatilities 

International stock 

and bond portfolio 
103.972 113.069 100.000 105.886 106.256 

DJIA portfolio 126.605 102.881 106.554 100.000 102.478 

Panel B. Out-of-Sample Volatilities 

International stock 

and bond portfolio 
102.734 112.645 100.000 103.551 102.853 

DJIA portfolio 125.268 104.119 105.393 100.000 103.663 
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Table XI. Diebold–Mariano Joint Tests: Hedging Multivariate Portfolios 

The table reports the t-statistics of the Diebold–Mariano joint tests for the hedging multivariate 

portfolios, using the improved test of Engle and Colacito (2006). Panel A corresponds to the 

international stock and bond portfolio, while Panel B corresponds to the DJIA portfolio. The t-

statistics for the standard test are reported in parentheses. A positive number indicates that the model 

in the row is better than the model in the column, and vice-versa. 

 EWMA 
GARCH 

DCC 

LM 

EWMA 

LM EWMA 

DCC 

CGARCH 

DCC 
Const 

Panel A. International Stock and Bond Portfolio 

EWMA  -3.44*** -3.62*** -4.63*** -3.49*** -3.04*** 

  (-7.12***) (-9.13***) (-10.64***) (-7.39***) (-2.61***) 

GARCH  

DCC 

3.44***  2.44*** -2.78*** 1.28 0.59 

(7.12***)  (4.37***) (-4.88***) 0.99 (5.06***) 

LM-EWMA 3.62*** -2.44***  -3.74*** -2.58*** -1.50 

 (9.13***) (-4.37***)  (-7.51***) (-4.53***) (-0.37) 

LM-EWMA 

 DCC 

4.63*** 2.78*** 3.74***  2.66*** 4.39*** 

(10.64***) (4.88***) (7.51***) (4.48***) (9.57***)  

CGARCH 

DCC 

3.49*** -1.28 2.58*** -2.66***  0.45 

(7.39***) (-0.99) (4.53***) (-4.48***)  (3.97***) 

Constant 3.04*** -0.59 1.50 -4.39*** -0.45  

 (2.61***) (-5.06***) (0.37) (-9.57***) (-3.97***)  

Panel B. DJIA Portfolio 

EWMA  -7.02*** -9.81*** -9.79*** -9.56*** -13.68*** 

  (-37.75***) (-40.43***) (-36.79***) (-38.16***) (-32.09***) 

GARCH 

DCC 

7.02***  1.77* -1.52 -1.00 0.86 

(37.75***)  (26.10***) (-4.10***) (1.28) (11.10***) 

LM-EWMA 9.81*** -1.77*  -8.79*** -7.58*** -6.57*** 

 (40.43***) (-26.10***)  (-27.93***) (-28.70***) (-12.43***) 

LM-EWMA 

DCC 

9.79*** 1.52 8.79***  2.54** 7.18*** 

(36.79***) (4.10***) (27.93***)  (6.32***) (13.77***) 

CGARCH 

DCC 

9.56*** 1.00 7.58*** -2.54**  3.82*** 

(38.16***) (-1.28) (28.70***) (-6.32***)  (11.92***) 

Constant 13.68*** -0.86 6.57*** -7.18*** -3.82***  

 (32.09***) (-11.10***) (12.43***) (-13.77***) (-11.92***)  
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Table XII. RMSE for Longer Horizon Forecasts: Bivariate Systems 

The table reports the RMSE for each element of the forecast conditional covariance matrix over the 

forecast period. The benchmarks are the realised variances and covariances, proxied by the sum of 

squares and cross products of returns over the forecast horizons, respectively. 

 
EWMA 

GARCH 

DCC 

LM  

EWMA 

LM-EWMA 

DCC 

CGARCH 

DCC 

Panel A. One Week (5-Step) ahead Forecasts  

Variances      

Stock 12.675 13.207 12.668 12.668 12.330 

Bond 0.918 0.938 0.901 0.901 0.952 

S&P500 10.308 10.676 10.411 10.411 10.039 

DJIA 9.611 9.892 9.638 9.638 9.286 

Covariances      

Stock-Bond 1.814 1.892 1.788 1.811 1.880 

S&P500-DJIA 9.783 10.062 9.851 9.858 9.460 

Panel B. One Month (21-Step) ahead Forecasts 

Variances      

Stock 49.667 54.759 47.789 47.789 51.491 

Bond 2.230 2.348 2.128 2.128 2.487 

S&P500 42.384 47.684 41.015 41.015 44.696 

DJIA 38.029 40.468 36.789 36.789 38.583 

Covariances      

Stock-Bond 4.523 4.875 4.737 4.691 4.536 

S&P500-DJIA 39.655 43.093 38.330 38.350 40.755 

Panel C. One Quarter (63-Step) ahead Forecasts 

Variances      

Stock 151.499 168.737 146.514 146.514 165.768 

Bond 5.348 5.630 4.983 4.983 5.974 

S&P500 133.140 151.082 129.748 129.748 142.108 

DJIA 113.798 128.904 111.416 111.416 120.125 

Covariances      

Stock-Bond 7.729 10.210 7.893 10.470 9.377 

S&P500-DJIA 121.775 137.591 118.879 118.890 128.746 
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Table XIII. Mincer – Zarnowitz Regressions for Longer Horizons: Bivariate Systems 

The table reports the results of the Mincer-Zarnowitz regressions for longer horizon forecasts of each element of the covariance matrix. The p-values are for 

the tests of the joint hypothesis: H0:
 

0ij
 and 1ij

.  

 EWMA GARCH-DCC LM-EWMA 

 Intercept Slope R
2
 p-value Intercept Slope R

2
 p-value Intercept Slope R

2
 p-value 

Panel A. One Week (5-Step) ahead Forecasts 

Stock 1.042 0.860 0.412 0.000 1.751 0.750 0.401 0.000 0.074 0.997 0.408 0.025 

Bond 0.282 0.680 0.161 0.000 0.251 0.664 0.120 0.000 0.199 0.782 0.170 0.000 

S&P500 0.759 0.895 0.497 0.002 1.239 0.806 0.480 0.000 -0.051 1.019 0.480 0.341 

DJIA 0.839 0.870 0.437 0.000 1.237 0.796 0.423 0.000 0.049 0.999 0.426 0.021 

Stock-Bond -0.066 0.686 0.176 0.000 -0.184 0.610 0.122 0.000 -0.061 0.752 0.183 0.000 

S&P500-DJIA 0.758 0.884 0.472 0.000 1.134 0.811 0.457 0.000 -0.011 1.011 0.456 0.133 

Panel B. One Month (21-Step) ahead Forecasts 

Stock 8.454 0.730 0.322 0.000 13.066 0.564 0.305 0.000 5.739 0.825 0.348 0.103 

Bond 0.931 0.764 0.350 0.003 0.819 0.747 0.274 0.008 0.615 0.871 0.389 0.148 

S&P500 6.408 0.784 0.394 0.005 11.133 0.604 0.342 0.000 3.996 0.875 0.413 0.325 

DJIA 6.708 0.748 0.346 0.001 9.431 0.629 0.330 0.000 4.459 0.836 0.365 0.129 

Stock-Bond -0.297 0.776 0.379 0.034 -0.543 0.662 0.335 0.000 -0.344 0.739 0.326 0.001 

S&P500-DJIA 6.259 0.768 0.371 0.003 9.708 0.625 0.339 0.000 3.968 0.860 0.391 0.236 

Panel C. One Quarter (63-Step) ahead Forecasts 

Stock 44.494 0.536 0.172 0.005 60.382 0.336 0.065 0.000 37.168 0.623 0.167 0.104 

Bond 3.462 0.660 0.468 0.000 2.910 0.687 0.353 0.016 2.641 0.754 0.482 0.041 

S&P500 34.961 0.614 0.244 0.014 50.654 0.414 0.098 0.000 28.389 0.697 0.206 0.192 

DJIA 34.137 0.583 0.221 0.008 49.335 0.379 0.086 0.000 29.114 0.647 0.196 0.094 

Stock-Bond -0.714 0.886 0.669 0.422 -1.326 0.721 0.479 0.006 -0.756 0.919 0.649 0.840 

S&P500-DJIA 33.000 0.600 0.232 0.011 47.863 0.401 0.091 0.000 27.280 0.677 0.221 0.150 
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Table XIV. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios with Weekly 

Rebalancing  

The table reports out-of-sample volatilities for the weekly rebalanced bivariate portfolios, constructed 

with the objective of minimizing variance subject to the target excess return of 1. Each row in the 

table reports the results for the pair of expected returns in the corresponding first two columns. The 

overall returns are the pair of weighted returns using the Bayesian prior probabilities. The lowest 

volatility in each row is normalised to 100. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH 

DCC 

LM 

EWMA 

LM 

EWMA 

DCC 

CGARCH 

DCC 
Const 

0.00 1.00 100.472 100.590 100.000 100.000 102.243 105.903 

0.16 0.99 100.524 100.524 100.058 100.000 102.446 105.533 

0.31 0.95 100.562 100.449 100.169 100.000 102.528 105.056 

0.45 0.89 100.635 100.424 100.265 100.000 102.594 104.553 

0.59 0.81 100.730 100.389 100.292 100.000 102.530 103.990 

0.71 0.71 100.652 100.478 100.217 100.000 102.262 103.306 

0.81 0.59 100.528 100.642 100.000 100.000 101.925 102.491 

0.89 0.45 100.447 100.767 100.000 100.032 101.374 102.204 

0.95 0.31 100.376 101.207 100.000 100.107 102.468 103.165 

0.99 0.16 100.670 101.547 100.000 100.485 103.486 105.149 

1.00 0.00 100.921 101.800 100.000 100.879 102.550 105.271 

Overall (weighted) 100.360 101.099 100.000 100.049 102.178 102.913 

 

Panel B. S&P500-DJIA Portfolio 

µSP500 µDJIA EWMA 
GARCH 

DCC 

LM 

EWMA 

LM 

EWMA 

DCC 

CGARCH 

DCC 
Const 

0.00 1.00 100.621 100.966 100.207 100.000 100.897 101.655 

0.16 0.99 100.762 100.645 100.352 100.000 100.821 102.345 

0.31 0.95 100.941 100.141 100.612 100.000 100.612 103.388 

0.45 0.89 101.749 100.000 101.435 100.700 100.770 105.493 

0.59 0.81 100.842 100.000 100.591 100.364 100.682 105.755 

0.71 0.71 100.184 100.811 100.000 100.199 100.719 101.560 

0.81 0.59 100.431 101.940 100.000 100.367 101.574 107.827 

0.89 0.45 100.396 100.759 100.000 100.231 100.660 105.805 

0.95 0.31 100.400 101.422 100.044 100.000 101.244 102.222 

0.99 0.16 100.278 101.893 100.111 100.000 101.336 100.557 

1.00 0.00 100.331 102.118 100.199 100.132 101.390 100.000 

Overall (weighted) 100.225 100.856 100.000 100.187 100.677 101.613 
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Table XV. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios with 

Quarterly Rebalancing  

The table reports out-of-sample volatilities for the quarterly rebalanced bivariate portfolios, 

constructed with the objective of minimizing variance subject to the target excess return of 1. Each 

row in the table reports the results for the pair of expected returns of the corresponding first two 

columns. The overall returns are the pair of weighted returns using the Bayesian prior probabilities. 

The lowest volatility in each row is normalised to 100. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH 

DCC 

LM 

EWMA 

LM 

EWMA 

DCC 

CGARCH 

DCC 
Const 

0.00 1.00 100.622 100.000 100.000 100.000 100.415 110.581 

0.16 0.99 101.031 100.000 100.412 100.000 100.412 109.691 

0.31 0.95 101.603 100.000 100.601 100.000 100.200 108.417 

0.45 0.89 101.908 100.000 100.954 100.191 100.000 107.252 

0.59 0.81 102.135 100.000 101.246 100.534 100.000 106.228 

0.71 0.71 101.789 100.650 101.138 100.813 100.000 105.528 

0.81 0.59 100.728 101.019 100.146 100.146 100.000 104.803 

0.89 0.45 100.783 102.611 100.000 100.261 101.044 106.658 

0.95 0.31 100.818 103.855 100.467 100.000 102.336 109.813 

0.99 0.16 100.526 103.891 100.315 100.000 103.260 114.826 

1.00 0.00 100.000 102.844 100.267 101.422 101.778 113.867 

Overall (weighted) 100.727 103.749 100.336 100.000 102.098 109.219 

 

Panel B. S&P500-DJIA Portfolio 

µSP500 µDJIA EWMA 
GARCH 

DCC 

LM 

EWMA 

LM 

EWMA 

DCC 

CGARCH 

DCC 
Const 

0.00 1.00 100.000 102.597 100.519 100.519 103.377 101.818 

0.16 0.99 100.000 102.649 100.442 100.442 103.311 101.987 

0.31 0.95 100.000 102.482 100.355 100.177 102.837 102.128 

0.45 0.89 100.000 101.713 100.000 100.000 101.976 102.635 

0.59 0.81 100.629 101.258 100.449 100.000 101.797 105.121 

0.71 0.71 101.020 100.960 100.000 101.621 106.363 102.461 

0.81 0.59 100.000 106.854 101.168 102.103 106.464 109.891 

0.89 0.45 100.000 105.181 100.361 101.084 105.301 108.434 

0.95 0.31 100.163 103.431 100.000 100.490 104.739 104.248 

0.99 0.16 100.206 102.263 100.000 100.206 103.909 102.469 

1.00 0.00 100.000 101.716 100.000 100.000 103.676 101.471 

Overall (weighted) 100.707 100.865 100.000 101.623 106.049 102.937 
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Table XVI. Comparison of Volatilities: Multivariate Portfolios with Different 

Rebalancing Frequencies 

The table reports out-of-sample volatilities of the global minimum variance multivariate portfolios. 

Conditional volatilities are reported in parentheses. The lowest volatility in each row is normalised to 

100. 

 EWMA 
GARCH 

DCC 

LM  

EWMA 

LM-EWMA 

DCC 

CGARCH 

DCC 

Panel A. International Stock and Bond Portfolio 

Monthly rebalancing 
102.884 123.706 100.000 104.699 110.065 

(102.502) (113.730) (100.000) (105.481) (111.344) 

Quarterly rebalancing 
106.339 128.935 100.000 105.900 113.939 

(103.374) (116.535) (100.000) (107.679) (110.481) 

Panel B. DJIA Portfolio 

Weekly rebalancing 
107.748 102.985 104.699 100.000 102.053 

(106.180) (100.444) (102.825) (100.000) (100.597) 

Monthly rebalancing 
105.261 103.892 103.612 100.000 102.227 

(107.272) (104.615) (104.311) (100.000) (104.273) 

Quarterly rebalancing 
115.392 107.737 108.621 100.000 104.939 

(114.665) (108.247) (107.377) (100.000) (103.760) 
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Table XVII. Comparison of Out-of-Sample Volatilities: Bivariate Portfolios with 

 5-Year Estimation Window 

The table reports out-of-sample volatilities for the minimum variance bivariate portfolios, constructed 

using 5-year estimation window and subject to the excess target return of 1. Each row in the table 

reports the results for the pair of expected returns in the corresponding first two columns. The overall 

returns are the pair of weighted returns using the Bayesian prior probabilities. The lowest volatility in 

each row is normalised to 100. 

Panel A. Stock-Bond Portfolio 

µStock µBond EWMA 
GARCH  

DCC 

LM  

EWMA 

LM 

EWMA 

DCC 

CGARCH 

DCC 

FIGARCH 

DCC 
Const 

0.00 1.00 100.564 102.177 100.000 102.075 103.637 106.967 105.610 

0.16 0.99 100.608 102.128 100.000 102.103 103.572 108.715 104.890 

0.31 0.95 100.588 102.009 100.000 102.058 103.552 110.828 104.140 

0.45 0.89 100.556 101.922 100.000 101.992 103.659 112.969 103.474 

0.59 0.81 100.471 101.883 100.000 101.904 103.808 114.955 102.974 

0.71 0.71 100.387 101.971 100.000 101.817 103.923 116.293 103.015 

0.81 0.59 100.290 102.170 100.000 101.811 103.861 116.761 104.032 

0.89 0.45 100.162 102.184 100.000 101.697 103.424 116.293 106.272 

0.95 0.31 100.236 101.972 100.000 101.191 103.523 114.823 109.278 

0.99 0.16 100.395 101.376 100.000 100.617 103.177 111.655 110.229 

1.00 0.00 100.427 102.484 100.000 102.902 104.224 104.115 104.567 

Overall 

(weighted) 
100.207 102.010 100.000 101.296 103.446 115.106 108.884 

 

Panel B. S&P500-DJIA Portfolio 

µSP500 µDJIA EWMA 
GARCH 

DCC 

LM 

EWMA 

LM 

EWMA 

DCC 

CGARCH 

DCC 

FIGARCH 

DCC 
Const 

0.00 1.00 100.217 101.485 100.031 100.000 101.671 158.014 101.702 

0.16 0.99 100.210 101.446 100.000 100.000 101.683 165.843 102.182 

0.31 0.95 100.254 101.458 100.021 100.000 101.733 170.716 103.042 

0.45 0.89 100.282 101.408 100.000 100.047 101.847 145.211 104.570 

0.59 0.81 100.226 101.068 100.000 100.411 100.503 139.945 107.094 

0.71 0.71 100.102 101.108 100.000 100.382 101.439 111.423 104.680 

0.81 0.59 100.098 101.238 100.000 100.543 100.285 117.528 110.305 

0.89 0.45 100.469 101.278 100.000 100.540 101.293 118.835 107.841 

0.95 0.31 100.528 101.468 100.000 100.372 101.566 129.928 104.463 

0.99 0.16 100.470 101.510 100.000 100.198 101.659 136.940 102.748 

1.00 0.00 100.413 101.535 100.000 100.118 101.712 139.327 101.860 

Overall 

(weighted) 
100.123 101.209 100.000 100.448 101.403 112.275 105.138 
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Figure 1. Autocorrelations of returns (black line), absolute returns (blue line,) and  squared returns (red line). 


