Running Head: Accelerated forgetting in TEA			
2	2		
Accelerated forgetting of real-life events in Transient Epileptic Amnesia			
4	4		
Muhlert, N. ¹ , Milton, F. ² , Butler, C.R. ³ , Kapur, N. ⁴ , & Zeman, A.Z. ¹			
6	6		
7	7		
1. Cognitive and Behavioural Neurology, Peninsula Medical School, Exeter, UK.			
2. Department of Psychology, University of Exeter, Exeter, UK.			
3. Department of Clinical Neurosciences, University of Oxford, Oxford, UK.			
4. Neuropsychology Department, Addenbrooke's Hospital, Cambridge, UK.			
2	12		
3 <u>Address for correspondence</u>	13		
4 Professor Adam Zeman	14		
5 Cognitive & Behavioural Neurology	15		
6 PMS Building	16		
7 Exeter	17		
8 UK	18		
9 EX2 5DW	19		
0 Tel: +44 1392 406 754	20		
1 E-mail: adam.zeman@pms.ac.uk	21		
2	22		

23 Transient Epileptic Amnesia (TEA) is a form of temporal lobe epilepsy associated with 24 ictal and interictal memory disturbance. Some patients with TEA exhibit Accelerated 25 Long-term Forgetting (ALF), in which memory for verbal and non-verbal material is 26 retained normally over short delays but fades at an unusually rapid rate over days to 27 weeks. This study addresses three questions about ALF in TEA: i) whether real-life 28 events undergo ALF in a similar fashion to laboratory-based stimuli; ii) whether ALF can 29 be detected within 24 hours; iii) whether procedural memories are susceptible to ALF. 30 Eleven patients with TEA and eleven matched healthy controls wore a novel, automatic 31 camera, SenseCam, while visiting a local attraction. Memory for images of events was 32 assessed on the same day and after delays of one day, one week, and three weeks. 33 Forgetting of real-life events was compared with forgetting of a word list and with 34 performance on a procedural memory task. On the day of their excursion, patients and 35 controls recalled similar numbers of primary events, associated secondary details 36 (contiguous events, thoughts and sensory information) and items from the word list. In 37 contrast, patients showed ALF for primary events over three weeks, with ALF for 38 contiguous events, thoughts and words over the first day. Retention on the procedural 39 memory task was normal over three weeks. The results indicate that accelerated 40 forgetting in TEA: i) affects memory for real-life events as well as laboratory stimuli; ii) 41 is maximal over the first day; and iii) is specific to declarative memories. 42 43 **Keywords**: transient epileptic amnesia; memory; epilepsy; accelerated forgetting. 44 Word count: 6237 words

45

46

47 **1. Introduction**

48

49 Transient epileptic amnesia (TEA) is a form of temporal lobe epilepsy (TLE) in which 50 recurrent episodes of transient amnesia are the principle manifestation of the seizure 51 disorder (Kapur, 1990; Zeman, Boniface & Hodges, 1998; Butler et al., 2007). The 52 condition typically arises in later life. Its cause is unknown. TEA can be distinguished 53 from transient global amnesia (TGA) by the recurrence and brevity of its amnesic attacks, 54 which typically last between 30 and 60 minutes. The amnesic attacks of TEA often occur 55 upon waking and may be associated with other features of epilepsy, such as olfactory 56 hallucinations. The amnesic episodes respond well to anticonvulsant medication in most 57 cases. Nevertheless, many patients report unusual, persistent memory problems (Gallassi, 58 2006; Butler et al., 2009), including the 'evaporation' of memories for recent events 59 within a few days or weeks. Their performance on standard memory tests is typically within the normal range (Zeman et al., 1998; Mendes, 2002). However, a recent study 60 61 demonstrated accelerated forgetting of words and abstract designs over a period of three 62 weeks (Butler et al., 2007).

63

This form of persistent memory impairment, in which excessively rapid forgetting occurs over days to weeks despite apparently normal learning and initial retention has been described since the early 1990s, in single cases and several case series, predominantly in the context of temporal lobe epilepsy (for reviews, see Bell & Giovagnoli, 2008; Butler & Zeman, 2008). The phenomenon, which has been termed accelerated long-term forgetting 69 (ALF, Butler et al., 2007), is clinically important since it corresponds to patients' 70 subjective memory complaints (Butler et al., 2009) and yet is invisible to standard 71 neuropsychological tests, which typically test memory retention over intervals of up to 72 just 30 minutes. ALF is also of theoretical importance. In the psychological literature, it 73 has generally been held that once information has successfully been encoded into long-74 term memory, forgetting occurs at a rate unaffected by neurological disease (Kopelman, 75 1985), interindividual differences (Maylor, 1993), gender (Mameniskiene, Jatuzis, 76 Kaubrys & Budrys, 2006), or experimental manipulation (Slamecka & McElree, 1983; 77 Underwood, 1954). The phenomenon of ALF challenges this assumption and may 78 provide new insights into processes of long-term memory consolidation.

79

80 A number of important questions about ALF remain unanswered. Firstly, whilst ALF has 81 been demonstrated using laboratory stimuli such as word-lists and meaningless visual 82 designs (Butler et al., 2007; Manes, Graham, Zeman, de Lujan-Calcagno, & Hodges, 83 2005), it has not been systematically investigated using memories for real-life events. 84 Complaints of poor everyday memory are common amongst patients with epilepsy 85 (Vermeulen, Aldenkamp & Alpherts, 1992) and yet these subjective complaints often fail 86 to correlate with objective performance on standard neuropsychological tests of memory 87 (e.g. Corcoran & Thompson, 1992). These discrepancies may arise because subjective 88 complaints are misleading: patients' awareness of their own memory problems may be 89 inaccurate (Sunderland, Harris & Baddeley, 1983), mood disorders may give rise to 90 spurious complaints of memory dysfunction (Corcoran & Thompson, 1992), or patients 91 may use coping strategies in daily life that compensate for their cognitive deficits

92 (Dubreuil, Adam, Bier, & Gagnon, 2006). However, they may also reflect the limited 93 'ecological validity' of traditional neuropsychological tests, such as word-list recall, 94 which may fail to identify problems with memory which matter in everyday life (Chaytor 95 & Schmitter-Edgecombe, 2003). Understanding the relationship between standard 96 memory tests and real-life memory problems is important in predicting everyday 97 function. However, few studies have examined forgetting in epilepsy using ecologically 98 valid stimuli.

99

100 Secondly, the time course of ALF is uncertain. The interval between learning and 101 memory testing has varied across previous studies of ALF: the phenomenon has been 102 reported over delays ranging from 24 hours (Martin et al., 1991) to eight weeks (Blake, 103 Wroe, Breen, & McCarthy, 2000). Most studies have relied on a 30-minute standard 104 delay, and a single longer delay to probe very-long term retention. However, in order to 105 assess the shape of the forgetting curve, memory needs to be probed at several time 106 delays after learning (e.g. Giovagnoli, Casazza & Avanzini, 1995; Butler et al., 2007). 107 Using delays of 30 minutes, one week and three weeks, Butler et al. (2007) found the 108 most pronounced forgetting in patients with TEA to occur between 30 minutes and one 109 week. Given the association between the amnesic episodes of TEA and waking from 110 sleep, Butler et al. (2007) suggested that nocturnal seizure activity in this condition might 111 interfere with memory consolidation processes that are thought to depend upon sleep. If 112 this is the case, it might be expected that ALF will be evident one day after learning.

113

114 Thirdly, it is not known whether ALF affects both declarative and non-declarative 115 memories. Patients with amnesia due to lesions of the medial temporal lobes typically 116 show impaired memory for events and facts (e.g. Scoville & Milner, 1957; Rosenbaum et 117 al., 2008) but normal long-term retention of newly acquired skills (e.g. Corkin, 1968; 118 Reber & Squire, 1998). Given the apparent association of ALF with epilepsy arising from 119 temporal lobe foci, it may be that only declarative memories are affected. If, on the other 120 hand, non-declarative memories such as learning and retention of new motor skills are 121 also forgotten excessively rapidly, then the pathophysiological abnormalities underlying 122 ALF may extend beyond the medial temporal lobes.

123

In this study, we therefore address the following three questions about ALF in a group of patients with TEA and matched, healthy control subjects: i) Can ALF be detected using stimuli derived from real-life events and, if so, how does this relate to performance on laboratory measures? ii) Over what time scale does accelerated forgetting occur? iii) Does ALF affect both declarative and procedural memory?

129

To obtain stimuli from real-life events, we used a novel wearable camera, SenseCam (Hodges et al., 2006), which is activated by a range of environmental sensors (Berry et al., 2007). The automatic capture of images confers additional ecological validity because it minimises intentional encoding of the items that will later be tested. Furthermore, as the images taken are contextually rich they can be used to assess both quantitative recall of events (which we term 'primary events') and also contextual details about that event (which we term 'secondary details'), such as the temporal context, associated thoughts 137 and sensory information from that time. This allows a more fine-grained analysis of 138 retained memories, of the kind used in studies of autobiographical memory (e.g. Levine 139 et al., 2002; Milton et al., 2010). To ensure that the SenseCam images were sufficiently 140 varied and reflected relatively unique events, participants wore a SenseCam during a visit 141 to a local attraction. Forgetting was assessed at several intervals over a period of three 142 weeks using images of the day's activities from the photographic diary. As SenseCam 143 captures images approximately every 30 seconds this approach has the advantage that the 144 large number of resulting images makes it possible to test memory at different intervals 145 using different subsets of the images. In order to compare the SenseCam test with more 146 conventional stimuli, participants' forgetting of a word-list was assessed over the same 147 time period.

148

149 The Serial Reaction Time Task (SRTT, Nissen & Bullemer, 1987) was used to 150 investigate procedural memory. In this well-established task, participants respond as 151 quickly as possible to visual stimuli presented in one of four locations on a computer 152 screen. Reaction times are compared across conditions in which stimuli are either presented in a repeating sequence of locations, or are presented in random locations. 153 154 Healthy subjects show faster reactions over time and respond quicker to sequence trials 155 than random trials (Nissen & Bullemer, 1987). Performance on the SRTT is normal in 156 patients with amnesia caused by diencephalic or medial temporal lesions, although 157 patients have no conscious recollection of having previously encountered the task (Nissen 158 & Bullemer, 1987; Nissen, Willingham & Hartman, 1989; Reber & Squire, 1994). In 159 contrast, impaired learning on the SRTT has been seen in patients with basal ganglia or

160	cerebellar damage (Pascual-Leone et al., 1993) and in healthy subjects following			
161	disruption of prefrontal or cerebellar function with transcranial magnetic stimulation			
162	(Robertson, Tormos, Maeda, & Pascual-Leone, 2001; Torriero, Olivieri, Koch,			
163	Catagirone, & Petrosini, 2004). The role of the basal ganglia in SRTT learning has also			
164	been demonstrated in studies using functional magnetic resonance imaging (fMRI)			
165	(Rauch et al., 1998). We assessed retention on the SRTT to determine whether ALF can			
166	be detected in forms of memory that do not rely upon the limbic system.			
167				
168	In sum, this study tested the following three hypotheses: i) Patients will show greater			
169	forgetting of primary events, secondary details, and word-lists than controls; ii) In line			
170	with Martin et al. (1991), patients will show significantly greater forgetting than controls			
171	over the first 24 hours after acquisition on the SenseCam and list-learning tests; iii) As			
172	procedural learning and retention have been found to be normal in patients with medial			

- 173 temporal lobe damage (Reber & Squire, 1998), retention on the SRT will not significantly
- 174 differ between patients and controls.

175

2. Methods 176

177 2.1 Participants

178 Eleven patients (10 male, 1 female) meeting diagnostic criteria for TEA, and reporting 179 symptoms suggestive of ALF, were recruited from around the United Kingdom via the 180 TIME (The Impairment of Memory in Epilepsy) Project (Butler et al., 2007). The 181 diagnostic criteria for TEA were: (1) a history of recurrent witnessed episodes of transient 182 amnesia; (2) cognitive functions other than memory judged to be intact during typical

183 episodes by a reliable witness; (3) evidence for a diagnosis of epilepsy on the basis of one 184 or more of the following: epileptiform abnormalities on electroencephalography (EEG), 185 the concurrent onset of other clinical features of epilepsy (e.g. lip-smacking, olfactory 186 hallucinations), a clear-cut response to anticonvulsant therapy (Zeman et al., 1998). All 187 patients complained spontaneously of losing memories over days or weeks more rapidly 188 than they would expect. Ten patients had undergone MRI and one patient a CT scan of 189 the brain. Only one probably causative abnormality (a petrous ridge meningioma) was 190 detected. At the time of testing, all patients were on anticonvulsant monotherapy and had 191 been seizure free for over four months. No seizures occurred during the three-week 192 period of testing.

193

Each patient nominated a family member or friend as control subject. These 11 neurologically healthy adults (1 male, 10 female) were well matched to the patients with regard to age and IQ (see Table 1).

197

We explained to participants that the purpose of the study was to investigate aspects of learning and memory in patients with epilepsy. The operation of the SenseCam was outlined and participants were informed that memory for events during their outing would be tested later.

202

203 The study was approved by the Cornwall and Plymouth Research Ethics Committee
204 (NHS-REC 07/H0203/271). All participants gave written, informed consent.

205

206

INSERT TABLE 1 ABOUT HERE

207

208 <u>2.2 Neuropsychological test battery</u>

209 A battery of standard neuropsychological tests was administered to patients and control 210 subjects to assess current and premorbid levels of intelligence (the Wechsler Abbreviated 211 Scale of Intelligence, Wechsler, 1999; and Wechsler Test of Adult Reading, Wechsler, 212 2001), anterograde memory (immediate and 30 minute delayed recall of a prose passage 213 from the Wechsler Memory Scale-III; copy and 30 minute delayed recall of the Rey-214 Osterrieth Complex Figure, Osterrieth & Rey, 1944; word and face recognition on the 215 Warrington Recognition Memory Test, Warrington, 1984), as well as levels of depression 216 and anxiety (the Hospital Anxiety and Depression Scale, Zigmond & Snaith, 1983).

217

218 <u>2.3.1. Real-life event memory procedure</u>

The SenseCam (sized 6.5cm wide x 7cm high x 1.5cm long) is built around a PIC 18F8722 6 MIPS microcontroller with 128KB of flash memory (Hodges et al., 2006). The SenseCam (see Fig 1a) is worn around the neck and pictures are captured using a fish eye lens. This maximizes the field-of-view and ensures that objects at head height are photographed. Images are captured automatically approximately every 30 seconds.

- 224
- 225

INSERT FIGURE 1 ABOUT HERE

- 226
- 227 2.3.2. SenseCam image acquisition and selection

228 Each patient and their nominated control wore a SenseCam during a visit to a local 229 attraction, chosen by the experimenter, to provide a novel and interesting environment for 230 memory encoding. In nine cases, participants were taken to a castle or stately home and 231 grounds; in one case a cooperage; and in one case a science museum (see Fig.2). Whilst it 232 would have been ideal to use the same attraction for all participants, their geographical 233 dispersion made this impossible. The case-control design was used to minimise any 234 resulting bias. The patient and nominated control were asked to remain together for the 235 majority of the excursion. The mean duration of the excursions was 3 hours 7 minutes 236 (range: 2hours 40min – 3hours 50min).

237

238 Following the excursion, images from both patient and control SenseCams were 239 downloaded and reviewed by the researcher and photographs of 20 isolated events were 240 extracted. Events were activities that took place within a single clearly defined spatial 241 context (e.g. the kitchen of a stately home or the rose garden), allowing the visit to be 242 broken down into a linear set of events (one such event can be seen in Fig. 1b). For each 243 event, five sequential images were chosen, except in cases in which two or more images 244 were identical, in which case only one of these images was chosen. To minimise 245 unsystematic variation between patient and control images (e.g. differences in lighting), 246 patients and controls were both shown images of the events taken from the patient's 247 SenseCam, except in cases where substantial differences in viewpoint occurred (e.g. 248 patients and controls in different parts of the same room). This occurred in 21 events 249 (9.5% of all events). In these cases, patients and controls viewed their own respective 250 images of those same events.

- 251
- 252

INSERT FIGURE 2 ABOUT HERE

- 253
- 254 2.3.3. SenseCam event memory testing

255 Memory for events was tested at intervals of i) approximately three hours, ii) one day, iii) 256 one week and iv) three weeks after SenseCam image acquisition. Five different events 257 were selected for each test session. For each event, participants were shown five 258 photographs (as described above). Photographs were presented on a Dell D830 laptop, 259 and measured 125mm (width) by 90mm (height). Presentation times for each photograph 260 were not fixed, and participants were allowed to view the photographs as many times as 261 they wished. For each set of images, participants were initially asked to recall the event pictured (primary event recall: 1 point if correct, e.g. "We had just walked into the main 262 hall"; 0 points if incorrect). Then, participants were asked to recall other secondary 263 264 details associated with that event. This consisted of the events that immediately preceded 265 and followed that event (contiguous event recall: 2 points if both correct; 1 point if only 266 one correct; 0 points if neither correct); the participant's thoughts regarding that event (thought recall: 2 points if specifically about that point in time, e.g. "I remember seeing 267 268 two girls playing with a tennis ball near there, which I thought was odd."; 1 point for a 269 vague thought not specific to that moment in time, e.g. "I quite liked the museum"; 0 270 points if they failed to recall any thoughts), and sensory information (sounds, smells and 271 temperature) regarding the event (sensory information: for each event, a mean score was 272 derived by awarding one point for each of the three types of sensory information present 273 and dividing by three). To ensure that associated detail measures (i.e. contiguous event

- 274 recall, thought recall and sensory information recall) were not affected by overall275 forgetting of events, this data was only analysed for correctly recalled events.
- 276

277 <u>2.4. Word-list test</u>

278 A list of 20 words, taken from the word-list learning and interference trials of the Adult 279 Memory and Information Processing Battery (Coughlan & Hollows, 1985), was used to 280 assess verbal memory. Words were presented orally over a minimum of five trials until 281 the participant attained 80% accuracy (i.e. 16 words) at free recall, or until a maximum of 282 10 trials had occurred. After the learning trials, participants were administered a 283 distractor task (odd/even judgement of numbers) for 40s to prevent rehearsal of the 284 words, and limit the effects of working memory on initial recall. Recall of the words was 285 then assessed immediately after the distractor task (40 seconds) and after 30 minutes, one 286 day, one week, and three weeks. Subjects were not forewarned about the delayed probes, 287 but were explicitly requested not to rehearse the material.

288

289 <u>2.5. Serial Reaction Time Test</u>

The SRTT was created and run using E-prime (Psychological Software Tools, 2002), which collected reaction times and response data. During the task, four dashes were presented in a line in the centre of the screen, denoting the four possible locations for a cue. The cue was a red asterisk, measuring 0.4cm in diameter and positioned 1cm above one of the lines. Responses were made using four corresponding buttons underneath. These were the keys C, V, B and N, and subjects used the first two fingers of each hand to respond. The stimulus remained on the screen until a response was made, and 297 participants were instructed to respond as quickly as possible. The appearance of cues 298 occurred either in a series of random locations, or as part of a 12-item sequence. The 299 position sequence used was 1-2-4-3-1-3-2-1-4-2-3-4 (taken from Reber & Squire, 1998). 300 Each block consisted of 10 intermixed cycles of random (R = 12 random positions) and 301 sequence (S) trials in the order R-S-S-R-S-S-R-S-S-R (modelled on the procedure of Curran, 1997). Each test session consisted of four blocks. SRTT sessions occurred at the 302 303 same time intervals as the word-list test: i.e. an initial session followed by repeated 304 sessions at delays of 30 minutes, one day, one week and three weeks. The presence of the 305 sequence was not disclosed to participants until after the final session.

306

307 <u>2.6. Overall test protocol</u>

308 The first test session occurred on the same day as the excursion (three to four hours later). 309 Participants were given the SenseCam test; were trained and tested on the list learning 310 task, with recall assessed after 40 second (i.e. following distractor task) and 30 minute 311 delays; and performed the SRTT twice, with an inter-session interval of 30 minutes. 312 SenseCam, list-learning and SRTT probes were readministered after delays of one day 313 (approximately 22 hours after the excursion and 16 hours after the first testing session), 314 one week and three weeks. Each session lasted approximately two hours. A battery of 315 standard neuropsychological tests was administered over these subsequent sessions.

316

317 <u>2.7. Statistical Analysis</u>

318 The performance of patients and controls on standard neuropsychological tests was 319 compared using independent samples t-tests or the Mann-Whitney U test where

320 appropriate. Performance at the shortest delay on the SenseCam and list learning tests 321 were compared using independent samples t-tests, to assess whether groups were 322 matched at this time. Rate of forgetting across all the delays was then analysed using 323 repeated-measures Analysis of Variance (ANOVA) with factors of delay and group. In 324 cases where this delay by group interaction was significant, planned comparisons were 325 used to assess delay by group interactions between consecutive pairs of delays, so that the 326 critical time window at which ALF occurs could be determined. Effect sizes for the ANOVAs were determined using partial η^2 , where .14 is a large effect (Stevens, 2002). 327

- 328
- 329

330 Performance on the SRTT was analysed using reaction times for correct responses. The 331 first twelve trials for the first session were considered practice trials and excluded from 332 the analysis. Trials in which reaction times were greater than two standard deviations (i.e. 333 the top five percentile) from a participant's mean at each testing session were removed. 334 Mean random RT and mean sequence RT were calculated from the median reaction time 335 for each twelve-trial set of random and sequence trials within a block, respectively. These 336 mean scores for random and sequence trials were analysed using a repeated-measures 337 ANOVA with factors of group, trial type (random vs. sequence), and block (1-20). 338 Sequence learning scores were then calculated for each block by subtracting the sequence 339 RT from the random RT. This learning score factors out non-specific influences on 340 reaction times to provide a measure of sequence learning (Nissen & Bullemer, 1987). 341 These sequence learning scores were then used to calculate Sequence retention by 342 subtracting the mean sequence learning score in the final block of the first session from that of the first block of each of the later sessions (e.g. 30-minute block 1 minus firstsession block 4). Sequence retention scores across the four intervals were compared using a repeated-measures ANOVA with factors of group (TEA vs. control) and retention interval (30 minute session minus first session vs. one day minus first session vs. one week minus first session vs. three week minus first session).

348

349 **3. Results**

The demographics of the patient and control groups and their performance on the standard neuropsychological test battery are shown in Table 1. Independent-samples ttests confirmed that no significant differences existed between the groups on the standardised anterograde memory tests or on the HADS (for all tests, p>.1). Patients performed slightly better than controls on the Rey figure copy (Mann-Whitney test: U=30, p<.05).

356

357 <u>3.1. SenseCam Test</u>

The performance of the patient and control groups on the primary event recall, contiguous event recall, thought recall, and sensory information recall subsections of the SenseCam test is shown in Figure 3.

361

362 *3.1.1. Primary Event Recall (Figure 3a)*

Patient and control groups did not differ significantly in their ability to recall events from SenseCam images on the same day (t(20)=-0.6, p>.5, r=.13). There were significant main effects of delay (F(3,60)= 7.0, p<.001, η^2_p =.26) and group (F(1,20)=18.5, p<.001,

366 η_{p}^{2} =.48), with poorer performance in the patient group. There was a significant delay by 367 group interaction (F(3,60)=4.1, p<.05, η_{p}^{2} =.17), with patients forgetting more rapidly 368 over time than controls. Planned comparisons did not however reveal significant 369 differences in the forgetting rates of the two groups between consecutive pairs of delays 370 (for all p>.1).

371

372 *3.1.2. Contiguous Event Recall (Figure 3b)*

373 Knowledge for events immediately preceding and following the images, relative to the 374 number of events recalled, did not differ between the two groups when tested on the same 375 day (t(20)=0.2, p>.8, r=.04). Across the four delays there were significant main effects of delay (F(3,60)=5.8, p<.01, η^2_p =.22) and group (F(1,20)=31.2, p<.001, η^2_p =.61), with 376 377 poorer performance overall by patients. There was also a significant delay by group interaction (F(3,60)=10.7, p<.001, η^2_p =.34), with planned comparisons revealing 378 379 significantly greater forgetting in patients than controls between same day and one day delays (F(1,20)=19.2, p<.001, η^2_p =.49), but not between one day and one week delays, or 380 381 between one week and three week delays (for both p>.7).

382

383 *3.1.3. Thought recall (Figure 3c)*

When tested on the same day, the two groups showed no difference in recall of thoughts about the events, relative to the number of events recalled (t(20)<0.1, p>.9, r=.02). Analysis of forgetting rates over the four delays revealed significant main effects of delay (F(3,60)=9.5, p<.001, η^2_p =.32) and group (F(1,20)=12.0, p<.01, η^2_p =.38), with poorer overall recall of thoughts in the patient group. There was also a significant delay by group interaction (F(3,60)=4.2, p<.01, η^2_p =.17). Planned comparisons revealed significantly greater forgetting of thoughts in patients than controls between same day and one day delays (F(1,20)=5.7, p<.05, η^2_p =.22), but not between one day and one week, or between one week and three week delays (for both p>.1).

- 393
- 394

INSERT FIGURE 3 ABOUT HERE

395

396 *3.1.4. Sensory information recall (Figure 3d)*

The two groups showed no difference in proportionate recall of sensory information (sounds, smells, and temperature) recalled from the events when tested on the same day (t(20)=-1.4, p>.1, r=.29). Analysis of forgetting rates over the four delays revealed a significant main effect of delay (F(3,60)=3.2, p<.05, η^2_p =.14) and a non-significant trend for an effect of group (F(1,20)=3.7, p=.069, η^2_p =.16). Furthermore there was a nonsignificant trend for an interaction between delay and group (F(3,60)=2.6, p=.059, η^2_p =.12).

404

405 3.1.5. Effect of exclusion of poor learners

Three of the eleven patients, but none of the controls, failed to reach criterion on the list learning task (see below). Although learning of a word-list is unlikely to be directly related to encoding autobiographical details, the findings were reanalysed after excluding these 'poor learners' and their matched controls, to ensure a general learning deficit in this subset of patients did not account for the results. This did not affect the delay by group interactions for primary event recall (F(3,42)=3.9, p<.05, η^2_p =.22), contiguous 412 event recall (F(3,42)=5.4, p<.01, η^2_p =.28), or sensory information recall (F(3,42)=0.7,

413 p>.5, η^2_p =.05). However the delay by group interaction for thought recall was no longer

- 414 significant (F(3,42)=2.4, p>.05, η^2_p =.15).
- 415
- 416 <u>3.2. List Learning Test</u>

417 Performance in the list-learning tests (Figure 4) was analysed both including and418 excluding the poor learners.

419

420 Excluding the poor learners, independent samples t-tests found no significant difference 421 in the number of learning trials needed to meet the learning criterion by patients 422 (mean=6.4, SD=1.2) or controls (mean=5.6, SD=0.8; t(17)=1.6, p>.1, r=.36), or in words 423 recalled after the 40 second delay (patients: mean=13.4, SD=2.7; controls: mean=15.0, 424 SD=2.6; t(17)=-1.3, p>.2, r=.30). Analysis of forgetting rates revealed significant main effects of delay (F(2.2, 36.7)=43.0, p<.001, η^2_p =.72) and group (F(1,17)=8.6, p<.01, 425 η^2_p =.34) with poorer recall across the five testing points in patients. There was also a 426 significant interaction between delay and group (F(2.2, 36.7)=10.4, p<.001, η^2_p =.38) with 427 planned comparisons revealing greater forgetting in patients between 30-minute and one 428 day delays (F(1,17)=5.6, p<.05, η^2_p =.25) and a non-significant trend for greater forgetting 429 between one day and one week delays (F(1,17)=4.3, p=.054, η^2_p =.20). In contrast, 430 forgetting rates did not differ between 40-seconds and 30-minutes (p>.8, $\eta^2_p <.01$), or 431 between one week and three week delays (p>.1, η^2_{p} =.14). Reanalysis of the data with 432 433 inclusion of the poor learners resulted in significantly poorer recall by patients at the 40 434 seconds delay (t(20)=-2.3, p<.05, r=.46) but had little effect on the pattern of interaction

435 results except that the group by delay interaction became significant between the one 436 week and three week delays (F(1,20)=4.7, p<.05, η_p^2 =.19), with greater forgetting in 437 patients.

438

We investigated whether forgetting on the word-list between the 40 second and 30 minute delays correlated with forgetting between 30 minutes and one day (i.e. the period over which forgetting was most marked). Retention over these two intervals was correlated in controls (r(11)=.7, p<.05), but not in patients either including (r(11)=.2, p>.5) or excluding (r(8)=-.2, p>.5) the poor learners. Thus, in controls, early forgetting predicts subsequent forgetting, but the same is not true for patients with ALF.

445

446 We investigated whether long-term forgetting rates on the word-list and the 'ecological' 447 SenseCam task were correlated in all patients. We used percentage retention between 448 initial recall (i.e. 40 seconds for list learning or same day for SenseCam tests) and both 449 one day and three week probes (i.e. the periods over which forgetting was maximal), 450 comparing word-list recall with recall of primary events, contiguous events, thoughts and 451 sensory information. To account for the increased likelihood of a type I error for these 452 eight analyses, results are reported at a Bonferroni-corrected significance level of p=.006 453 (i.e. p=.05/8). There were no significant correlations between one day retention of the 454 word-list in patients and one day retention on primary event recall (r(11)=.01, p>.9; Fig. 455 6a), contiguous event recall (r(11)=.23, p>.4; Fig. 6b), thought recall (r(11)=-.27, p>.4; 456 Fig. 6c) or sensory recall (r(11)=-.57, p>.05; Fig 6d). Three-week retention of the word-457 list in patients was significantly correlated with three week retention on contiguous event 458 recall (r(11)=.81, p=.003; Fig. 6b) but not primary event recall (r(11)=-.37, p>.03; Fig. 459 6a), thought recall (r(11)=.09, p>.7; Fig. 6c), or sensory information recall (r(11)=-.51, 460 p>.1; Fig. 6d).

- 461
- 462

INSERT FIGURES 4 ABOUT HERE

463

464 <u>3.3. Serial Reaction Time Task</u>

Two patients and their respective controls did not take part in the SRTT task, due to the effects of arthritis. Across all five sessions, patients made errors on a mean of 3.0% of trials, whereas the controls made errors on a mean of 1.9% of trials. A repeated-measures ANOVA carried out on the errors of the two groups across the five test sessions found no effect of test session (F(4,64)=1.3, p>.2, η^2_p =.08), group (F(1,16)=2.3, p>.1, η^2_p =.13) or any interaction between test session and group (F(4,64)=0.9, p>.4, η^2_p =.05).

471

472 3.3.2. Procedural Learning

Procedural learning was compared between patients and controls. The ANOVA revealed a significant effect of trial type (F(1,16)=37.4, p<.001, η^2_p =.70) with faster responses to sequence trials than random trials (see Fig 5a.). There was also a significant effect of block (F(19, 304)=22.1, p<.001, η^2_p =.58) demonstrating learning on the task. There was however no effect of group (F(1,16)=0.9, p>.3, η^2_p =.06) and no significant interactions between trial type and group (F(1,16)=0.1, p>.7, η^2_p <.01), between block and group (F(19, 304)=0.9, p>.5, η^2_p =.06) or between trial type, block and group (F(19, 304)=0.9, 480 p>.4, η^2_p =.06). This indicates that the groups did not differ in their rate of learning on the 481 SRTT, or on differential rates of learning on random and sequence trials.

482

483 3.3.3. Sequence Retention

Repeated-measures ANOVA was then carried out on sequence retention scores between the first session and each of the later sessions. There was no effect of retention interval (F(3,48)=1.2, p>.3, η^2_p =.07), group (F(1,16)<0.1, p>.9, η^2_p <.01) and no interaction between retention interval and group (F(3,48)=0.7, p>.5, η^2_p =.04). This indicates that memory for the sequence was similarly retained by both patient and control groups (see Fig 5b.).

490

491 INSERT FIGURE 5 ABOUT HERE

492 **4. Discussion**

We have explored the long-term retention of memory for real-life events, word-list and procedural skills in patients with TEA and healthy controls. Patients showed accelerated long-term forgetting (ALF) of everyday events over a three week period. They also exhibited accelerated forgetting of contiguous events, thoughts and a word-list over the first day after learning. Patients did not differ from controls in their learning or retention of a newly acquired procedural motor skill.

We discuss our findings in relation to the three principle questions identified inthe introduction.

502 i) Can ALF be detected using stimuli from real-life events and, if so, how does this relate503 to performance on laboratory measures?

504 We have shown that ALF of real life events can be detected over one day – three weeks 505 following learning in patients with TEA. ALF was apparent for memory of primary 506 events with a large effect size over the entire three week period of observation. ALF of 507 primary events is striking, given the informative nature of the probes. Indeed on this task, 508 controls performed at or near ceiling at same day, one day and three week delays. ALF 509 was equally marked for memory of contiguous events and associated thoughts with large 510 effects over the first day following learning. There was a trend towards accelerated 511 forgetting for memory of sensory information in patients which did not reach 512 significance. This may be a relatively insensitive measure as it is easier to deduce 513 information about sensory details from the visual cues than it is to remember contiguous 514 events or concurrent events. Overall, therefore, there is both a quantitative loss and 515 qualitative deterioration of everyday memories in TEA. The latter indicates that, over 516 time, events that are recalled in TEA become stripped of the associative information that 517 characterises episodic memory (see Tulving, 1972). Whether this reflects impaired 518 consolidation, in which case the memories are lost, or reduced accessibility over time, in 519 which case participants may recognise events given sufficient cueing, is unclear. The 520 detection of ALF in patients with TLE on tests both of recall and recognition (Blake et 521 al., 2000) suggests that the deficits may be due to impaired consolidation; this can be 522 addressed in future studies by also employing tests of recognition. However, regardless of 523 the mechanisms underlying forgetting, these results are in accordance with patients'

subjective reports of the 'evaporation' of memory for recent events (Butler & Zeman2008).

526

527 One previous study has compared performance on lab-based tests to objectively measured 528 memory for real-life events over similar time frames in epilepsy. Helmstaedter, Hauff and 529 Elger (1998) found that recall of lists of words and designs after a one week delay 530 predicted one-week delayed recall of aspects of the testing session itself in TLE. 531 However, Helmstaedter et al. did not examine whether participants could recall aspects of 532 the testing session soon after learning and therefore did not assess the relationship 533 between forgetting on the two tasks. In the present study, patients were unimpaired on 534 recall of primary events and secondary details when tested on the same day, but impaired 535 at intervals of more than one day.

536

537 On word-list recall, where ceiling effects were avoided altogether, patients also exhibited 538 ALF. There was a strong correlation (r = .8) between forgetting of the word list over 539 three weeks and forgetting of contiguous events in the SenseCam study. At one day this 540 correlation was weaker (r = .2). This suggests that list-learning tests provide a valid 541 method for assessing some aspects of long-term forgetting in epilepsy but that forgetting 542 rates on these tests may only partially overlap, with similarities becoming more apparent 543 over longer delays. Forgetting of the word-list did not correlate with forgetting of primary 544 events or associated thoughts, despite the similar gradients of the forgetting curves (see 545 Figures 2 a and c, Figure 4). The weak correlation with memory for primary events may 546 reflect the relative insensitivity of this measure. The weak correlation between memory

547 for the word list and for associated thoughts may indicate differential rates of forgetting 548 for different types of material – in this case memory for internal states (e.g. thought 549 recall) as against memory for stimuli experienced as external (e.g. a word list).

550

551 It would be of great interest to know whether the ALF for real-life events documented in 552 this study among patients with TEA can also be demonstrated in patients with other 553 varieties of epilepsy. There is no reason to think that ALF is unique to TEA: it has clearly 554 been described both in single cases (e.g. Kapur et al., 1997; Holdstock, Mayes, Isaac, 555 Gong & Roberts, 2002; Mayes et al., 2003) and in group studies involving patients with 556 other varieties of focal epilepsy (e.g. Martin et al., 1991; Blake et al., 2000; 557 Mameniskiene et al., 2006; for a review, see Butler & Zeman, 2008), usually arising from 558 the temporal lobes. Furthermore, the patients' impaired recall of secondary details seen 559 in this study bears a resemblance to the impairment of autobiographical recall over longer 560 time scales, in both patients with TEA (Milton et al., 2010), and patients with mesial 561 temporal lobe amnesia (e.g. Rosenbaum et al., 2008). We suspect – though at present can 562 not prove – that ALF is simply more common among patients with TEA than among 563 patients with most other forms of focal epilepsy, because it directly involves key 564 structures involved in memory processing. This is inline with our recent finding, of 565 significant hippocampal atrophy in patients with TEA (Butler et al., 2009). Further work 566 comparing long-term memory for real-life events in other varieties of epilepsy, and 567 indeed in other neurological disorders, would therefore be worthwhile.

568

569 ii) What is the time scale of accelerated long-term forgetting?

570 We have found that ALF for both real-life events and for a word list is most pronounced 571 over the first day of retention. Three other studies have assessed forgetting over a 24-hour 572 interval in patients with TLE (Martin et al., 1991; Giovagnoli et al., 1995; Bell, Fine, 573 Dow, Seidenberg & Hermann, 2005). Martin et al. (1991) matched patients and controls 574 for initial learning and found impaired retention in patients over 24 hours. Giovagnoli et 575 al. (1995) also matched patients and controls for initial learning but found no difference 576 in retention after one day, three day, six day or thirteen day delays. However, at the 577 thirteen day delay patients and controls still recalled approximately 90% of the stimuli, 578 suggesting that ceiling effects may have influenced the results. In contrast, Bell et al. 579 (2005) did not match groups for learning and subsequently found no difference in 580 forgetting over the first 24 hours. Loftus (1985) has noted that differences in initial 581 learning ability may confound analyses of forgetting rates. Specifically, when groups are 582 mismatched for initial learning, forgetting rates can be underestimated in the lower-583 performing group as they have less to forget. It is therefore unclear whether patients in 584 the Bell et al. study did indeed show normal forgetting. In the present study, we avoided 585 ceiling effects by using an 80% learning criterion. Although three patients failed to meet 586 our learning criterion, scaling problems cannot account for the present results. The 587 inclusion of these patients would, if anything, have led to an underestimation of 588 forgetting in patients. Furthermore, omission of these poor learners did not affect the 589 findings for recall of events, contiguous events or word-lists. The occurrence of ALF over 590 the first day of retention suggests that an interval of one or a few days should generally be 591 sufficient for the detection of ALF in TEA.

592

593 The rate of forgetting in ALF may offer clues to the underlying pathophysiology. While a 594 subtle impairment of memory encoding remains a possible explanation for ALF, its 595 emergence at one day among patients with TEA who perform normally on memory tests 596 at 30 minutes, taken together with the dissociation between retention at 30 minutes and 597 one day, suggest impairment of an extended but relatively early process of memory 598 consolidation or, alternatively, loss of access to memories. Several mechanisms have 599 been posited for ALF, in particular anti-epileptic drugs (AEDs), clinical and subclinical 600 seizure activity, and structural brain pathology (Butler, Muhlert & Zeman, 2010). AEDs 601 are unlikely to have contributed substantially to ALF, given that ALF has been reported 602 both before and after administration of AEDs (Jansari et al., 2010), and that patients with 603 TEA, who often complained of ALF prior to anticonvulsant treatment, generally 604 responded well to only modest doses of anticonvulsants (Butler et al., 2007). Clinically 605 apparent seizures are not a necessary condition for ALF as patients in the present study 606 were seizure-free, but may well play a part in some patients (see Mameniskiene et al., 607 2006). Subclinical seizure activity may also play a role, and forgetting is reported to be 608 accelerated in patients with TLE who show interictal EEG abnormalities (Mameniskiene 609 et al., 2006). Subclinical seizure activity during sleep could be particularly relevant in 610 patients with TEA, as sleep is thought to play a crucial role in the consolidation of newly 611 acquired memories (e.g. Marshall & Born, 2007), the amnesic attacks of TEA often occur 612 upon awakening (Butler et al., 2007) and ALF appears to be maximal over the first 24 613 hours following learning. Further work is therefore needed to explore the relationships 614 between sleep, interical epileptic discharges and ALF. Alternatively the structural

- 615 pathology underlying TEA may disrupt processes of memory storage and consolidation,
- or accessibility, occurring over the hours and days following acquisition.
- 617

618 iii) Does ALF affect both declarative and procedural memory?

In the serial reaction time task, patients and controls showed normal procedural learning. Sequence learning was then retained normally by patients with TEA. This supports our prediction that procedural memory is intact in TEA. We did not directly investigate whether participants became aware of the repeated sequence in 'sequence trials' but previous work indicates that this is unlikely given the parameters used in our study (Pascual-Leone et al., 1993; Curran, 1997).

625

626 The present findings are similar to those reported in patients with temporal lobe and 627 diencephalic amnesias, who also show intact sequence learning (Nissen & Bullemer, 628 1987; Reber & Squire, 1994; Reber & Squire, 1998), and intact retention of sequence 629 learning over one week delays (Nissen et al., 1989). In contrast, patients with basal 630 ganglia and cerebellar damage show impaired sequence learning on the SRTT (Pascual-631 Leone et al., 1993; Vakil, Kahan, Huberman, & Osimani, 2000). This suggests that the 632 pathophysiology underlying ALF spares the basal ganglia and cerebellum and affects 633 structures involved in declarative memory such as the medial temporal lobe or 634 diencephalic region.

635

636 We acknowledge two particular limitations of the present study: first, the difference in 637 gender distribution between patients and controls, and, second, the small sample size. The

638 first limitation reflects the fact that patients typically nominated their partners as controls, 639 As ten of the patients were male (reflecting the greater prevalence of TEA in males; 640 Butler et al., 2007) the sex ratios of the patient and control groups differed. This is 641 unlikely to account for our findings, given evidence that ALF is unrelated to gender 642 (Mameniskiene et al., 2007). Second, although the effect sizes for ALF were medium to 643 large, future work would undoubtedly benefit from use of larger, gender-matched groups.

644

645 In conclusion, this study provides the first direct evidence that ALF in patients with

646 epilepsy affects retention of memory for real-life events. Among patients with TEA,

recalled memories of significant events became less detailed over time, with loss of the

648 associated information that characterises episodic memory. Retention of a word list at 30

649 minutes was correlated with retention at one day in controls but not in patients, in

650 keeping with the suggestion that ALF reflects disruption of an extended but relatively

early process of memory consolidation. As forgetting was maximal over the first day,

future work should assess whether abnormalities of processes occurring during this time,

such as impairment of consolidation during sleep, account for ALF of declarative

memories in epilepsy. Word-list retention and recall of contiguous events correlated at

three weeks in patients, indicating that word list recall at an extended delay can provide a

656 useful index of memory for everyday events.

657

658

659 **5. References**

- 660 Bell, B.D. (2006). WMS-III logical memory performance after a two-week delay in
- temporal lobe epilepsy and control groups. *Journal of Clinical & Experimental*
- 662 *Neuropsychology*, 28, 1435–43.
- Bell, B.D., Fine, J., Dow, C., Seidenberg, M., & Hermann, B.P. (2005). Temporal lobe
- 664 epilepsy and the selective reminding test: the conventional 30-minute delay suffices.
- 665 *Psychological Assessment*, 17, 103–9.
- 666 Bell, B.D., & Giovagnoli, A.R. (2007). Recent innovative studies of memory in temporal
- 667 lobe epilepsy. *Neuropsychology Review*, 17, 455–76.
- 668 Berry, E., Kapur, N., Williams, L., Hodges, S., Watson, P., Smyth, G., Srinivasan, J.,
- 669 Smith, R., Wilson, B., & Wood, K. (2007). The use of a wearable camera, SenseCam,
- as a pictorial diary to improve autobiographical memory in a patient with limbic

671 encephalitis. *Neuropsychological Rehabilitation*, 17 (4/5), 582-681.

- Blake, R.V., Wroe, S.J., Breen, E.K., & McCarthy, R.A. (2000). Accelerated forgetting in
- patients with epilepsy: evidence for an impairment in memory consolidation. *Brain*,
- 674 123, 472–83.
- 675 Butler, C.R., Graham, K.S., Hodges, J.R., Kapur, N., Wardlaw, J.M., & Zeman, A.Z.
- 676 (2007). The syndrome of transient epileptic amnesia. *Annals of Neurology*, 61, 587–
 677 98.
- 678 Butler, C.R., Bhaduri, A., Acosta-Cabronero, J., Nestor, P.J., Kapur, N., Graham, K.S.,
- 679 Hodges, J.R., & Zeman, A.Z. (2009). Transient epileptic amnesia: regional brain
- atrophy and its relationship to memory deficits. *Brain*, 132(2), 357-68.

- 681 Butler, C.R., Muhlert, N., & Zeman, A.Z. (2010). Accelerated long-term forgetting. In:
- 682 Della Sala S, editor. *Forgetting A brief introduction*. Hove, UK: Psychology Press.
- Butler, C.R., & Zeman, A.Z. (2008). Recent insights into the impairment of memory in
- 684 epilepsy: transient epileptic amnesia, accelerated long-term forgetting and remote
- 685 memory impairment. *Brain*, 131, 2243–63.
- 686 Chaytor, N., & Schmitter-Edgecombe, M. (2003). The ecological validity of
- 687 neuropsychological tests: A review of the literature on everyday cognitive skills.
- 688 *Neuropsychology Review*, 13 (4), 181-97.
- 689 Cohen, D.A., Pascual-Leone, A., Press, D.Z., & Robertson, E.M. (2005). Off-line
- 690 learning of motor skill memory: A double dissociation of goal and movement.
- 691 *Proceedings of the National Academy of Sciences USA*, 102 (50), 18237-41.
- 692 Corcoran, R., & Thompson, P. (1992). Memory failure in epilepsy: retrospective reports
 693 and prospective recordings. *Seizure*, 1, 37–42.
- 694 Corkin, S. (1968). Acquisition of motor skill after bilateral medial temporal-lobe
- 695 excision. *Neuropsychologia*, 6, 255-65.
- 696 Coughlan, A.K., & Hollows, S.E. (1985). The Adult Memory and Information Processing
- 697 *Battery*. Leeds: St. James Hospital.
- 698 Curran, T. (1997). Higher-order associative learning in amnesia: Evidence from the serial
- reaction time task. *Journal of Cognitive Neuroscience*, 9 (4), 522-33.
- Dubreuil, P., Adam, S., Bier, N., & Gagnon, L. (2007). The ecological validity of
- traditional memory evaluation in relation with controlled memory processes and
- routinization. *Archives of Clinical Neuropsychology*, 22, 979-89.

- Gallassi, R. (2006). Epileptic amnesic syndrome: an update and further considerations.
- 704 *Epilepsia*, 47 (Suppl 2), 103–5.
- 705 Giovagnoli, A.R., Casazza, M., & Avanzini, G. (1995). Visual learning on a selective
- reminding procedure and delayed recall in patients with temporal lobe epilepsy.
- 707 *Epilepsia*, 36, 704–11.
- 708 Helmstaedter, C., Hauff, M., & Elger, C.E. (1998). Ecological validity of list-learning
- tests and self-reported memory in healthy individuals and those with temporal lobe

710 epilepsy. Journal of Clinical & Experimental Neuropsychology, 20, 365–75.

- 711 Higginson, C.I., Arnett, P.A., & Voss, W.D. (2000). The ecological validity of clinical
- tests of memory and attention in multiple sclerosis. Archives of Clinical
- 713 *Neuropsychology*, 15, 185–204.
- Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., Smyth, G., Kapur,
- 715 N., & Wood, K. (2006). SenseCam: A retrospective memory aid. In: Dourish P,
- Friday A, editors. *Ubicomp, LNCS 4206* (p. 177-93). Berlin Heidelberg: Springer-

717 Verlag.

- 718 Holdstock, J.S., Mayes, A.R., Isaac, C.L., Gong, Q., & Roberts, S.. Differential
- involvement of the hippocampus and temporal lobe cortices in rapid and slow
- 120 learning of new semantic information. *Neuropsychologia*, 40, 748-768.
- 721 Kapur, N. (1990). Transient epileptic amnesia: a clinically distinct form of neurological
- memory disorder. In: Markowitsch HJ, editor. *Transient global amnesia and related*
- 723 *disorders* (p. 140–51). New York: Hogrefe and Huber.

- Kapur, N., Millar, J., Colbourn, C., Abbott, P., Kennedy, P., & Docherty, T. (1997). Very
- long-term amnesia in association with temporal lobe epilepsy: Evidence for multiple-
- stage consolidation processes. *Brain & Cognition*, 35, 58-70.
- 727 Kopelman, M.D. (1985). Rates of forgetting in Alzheimer-type dementia and Korsakoff's
- syndrome. *Neuropsychologia*, 23, 623–38.
- Levine, B., Svoboda, E., Hay, J.F., Winocur, G., & Moscovitch, M. (2002). Aging and
- autobiographical memory: dissociating episodic from semantic retrieval. *Psychology*
- 731 & Aging, 17 (4), 677-689.
- 732 Loftus, G.R. (1985). Evaluating forgetting curves. *Journal of Experimental Psychology:*
- 733 *Learning, Memory & Cognition,* 11 (2), 397-406.
- 734 Makatura, T.J., Lam, C.S., Leahy, B.J., Castillo, M.T., & Kalpakjian, C.Z. (1999).
- Standardized memory tests and the appraisal of everyday memory. *Brain Injury*, 13,
 355–67.
- 737 Mameniskiene, R., Jatuzis, D., Kaubrys, G., & Budrys, V. (2006). The decay of memory
- between delayed and long-term recall in patients with temporal lobe epilepsy.
- 739 *Epilepsy & Behavior*, 8, 278–88.
- 740 Manes, F., Graham, K.S., Zeman, A., de Lujan Calcagno, M., & Hodges, J.R. (2005).
- Autobiographical amnesia and accelerated forgetting in transient epileptic amnesia.
- *Journal of Neurology, Neurosurgery & Psychiatry*, 76, 1387–91.
- 743 Marshall, L., & Born, J. (2007). The contribution of sleep to hippocampus-dependent
- memory consolidation. *Trends in Cognitive Science*. 11 (10), 442-50.

- 745 Martin, R.C., Loring, D.W., Meador, K.J., Lee, G.P., Thrash, N., & Arena, J.G. (1991).
- 746 Impaired long-term retention despite normal verbal learning in patients with temporal
 747 lobe dysfunction. *Neuropsychology*, 5, 3–12.
- 748 Mayes, A.R., Isaac, C.L., Holdstock, J.L., Cariga, P., Gummer, A. & Roberts, N. (2003).
- Long-term amnesia: a review and detailed illustrative case study. Cortex, 39, 567-
- 750 603.
- 751 Maylor, E.A. (1993). Aging and forgetting in prospective and retrospective memory
- 752 tasks. *Psychology & Aging*, 8 (3), 420-28.
- 753 Mendes, M.H.F. (2002). Transient epileptic amnesia: an under-diagnosed phenomenon?
- 754 Three more cases. *Seizure*, 11 (4), 238-42.
- 755 Milton, F., Muhlert, N., Pindus, D.M., Butler, C.R., Kapur, N., Graham, K.S., & Zeman,
- A.Z. (2010). Remote memory deficits in transient epileptic amnesia. *Brain*, 133 (5),
 1368-1379.
- 758 Nissen, M.J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from
- performance measures. *Cognitive Psychology*, 19, 1-32.
- 760 Nissen, M.J., Willingham, D., & Hartman, M. (1989). Explicit and implicit remembering:
- when is learning preserved in amnesia? *Neuropsychologia*, 27 (3), 341-52.
- 762 Osterreith, P., & Rey, A. (1944). Le test de copie d'une figure complexe. Archives of
- 763 *Psychology*, 30, 205–20.
- 764 Pascual-Leone, A., Grafman, J., Clark, K., Stewart, M., Massaquoi, S., Lou, J.S., &
- Hallett, M. (1993). Procedural learning in Parkinson's disease and cerebellar
- degeneration. *Annals of Neurology*, 34, 594-602.

- 767 Rauch, S.L., Whalen, P.J., Curran, T., McInerney, S., Heckers, S., & Savage C.R. (1998).
- 768 Thalamic deactivation during early implicit sequence learning: a functional MRI
- 769 study. *Neuroreport*, 9, 865-70.
- 770 Reber, P.J., & Squire, L.R. (1994). Parallel brain systems for learning with and without
- awareness. *Learning & Memory*, 1, 217-29.
- 772 Reber, P.J, & Squire LR. (1998). Encapsulation of implicit and explicit memory in
- sequence learning. *Journal of Cognitive Neuroscience*, 10 (2), 248-263.
- Robertson, E.M., Tormos, J.M., Maeda, F., & Pascual-Leone, A. (2001). The role of the
- dorsolateral prefrontal cortex during sequence learning is specific for spatial
- information. *Cerebral Cortex*, 11, 628-35.
- 777 Rosenbaum, R.S., Moscovitch, M., Foster, J.K., Schnyer, D.M., Gao, F., Kovacevic, N.,
- 778 Verfaellie, M., Black, S.E., & Levine, B. (2008). Patterns of autobiographical
- memory loss in medial-temporal lobe amnesic patients. *Journal of Cognitive*
- 780 *Neuroscience*, 20 (8), 1490-1506.
- 781 Scoville, W.B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal
- 182 lesions. Journal of Neurology, Neurosurgery & Psychiatry ,20, 11-21.
- 783 Slamecka, N.J., & McElree, B. (1983). Normal forgetting of verbal lists as a function of
- their degree of learning. Journal of Experimental Psychology: Learning, Memory &
- 785 Cognition, 9 (3), 384-397.
- 786 Stevens, J.P. (2002). Applied multivariate statistics for the social sciences. Hillsdale, NJ:
- 787 Lawrence Erlbaum.

- 788 Sunderland, A., Harris, J.E., & Baddeley, A.D. (1983). Do laboratory tests predict
- everyday memory? A neuropsychological study. Journal of Verbal Learning &
- 790 *Verbal Behavior*, 22, 341-57.
- 791 Torreiro, S., Olivieri, M., Koch, G., Caltagirone, C., Petrosini, L. (2004). Interference of
- 192 left and right cerebellar rTMS with procedural learning. *Journal of Cognitive*
- *Neuroscience*, 16 (9), 1605-11.
- Tulving, E. (1972). Episodic and semantic memory. In: Tulving E, Donaldson W, editors.
- 795 *Organization of memory* (p381-403). New York: Academic Press.
- 796 Underwood, B.J. (1954). Speed of learning and amount retained: A consideration of
- methodology. *Psychological Bulletin*, 51 (3), 276-82.
- 798 Vakil, E., Kahan, S., Huberman, M., & Osimani, A. (2000). Motor and non-motor
- sequence learning in patients with basal ganglia lesions: the case of serial reaction
- time (SRT). *Neuropsychologia*, 38, 1-10.
- 801 Vermeulen, J., Aldenkamp, A.P., & Alpherts, W.C.J. (1993). Memory complaints in
- 802 epilepsy: correlations with cognitive performance and neuroticism. *Epilepsy*
- 803 *Research*, 15, 157–70.
- 804 Warrington, E.K. (1984). *The recognition memory test*. Windsor: NFER.
- 805 Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence. San Antonio: The
- 806 Psychological Corporation.
- 807 Wechsler, D. (2001). Wechsler Test of Adult Reading. San Antonio: The Psychological
- 808 Corporation.

- 809 Zeman, A.Z.J, Boniface, S.J., & Hodges, J.R. (1998). Transient epileptic amnesia: a
- 810 description of the clinical and neuropsychological features in 10 cases and a review of
- 811 the literature. *Journal of Neurology, Neurosurgery & Psychiatry*, 64, 435–43.
- 812 Zigmond, A, & Snaith, R. (1983). The hospital anxiety and depression scale. Acta
- 813 *Psychiatrica Scandinavica*, 67, 361–70.
- 814

815 Acknowledgements 816 This work was supported by Microsoft Research and the Great Western Research 817 Initiative. We thank John Hodges for his help. 818

819 Table 1. Demographic and Neuropsychological profile of Transient Epileptic Amnesia

820 and Control groups.

	TEA Group (n=11)	Control Group (n=11)
	Mean (SD)	Mean (SD)
Age, yr	68.6 (9.9)	66.0 (8.3)
Males: Females	10: 1	1:10
IQ Measures		
WASI Full Scale IQ	122.7 (6.0)	119.6 (13.0)‡
WASI Verbal IQ	119.0 (7.5)	117.2 (10.3)
WASI Performance IQ	121.5 (9.8)‡	115.0 (17.4)†
WTAR Predicted Pre-morbid IQ	112.7 (5.9)	113.8 (5.5) †
Episodic memory scores (max score)		
Story recall immediate (25)	13.7 (3.8)	15.8 (4.5)
Story recall delayed (25)	11.6 (4.1)	14.6 (4.3)
Rey Complex Figure Delayed Recall (36)	16.8 (7.1)	18.1 (7.0)
Warrington Word Recognition (50)	47.2 (3.1)‡	47.8 (1.7) †
Warrington Face Recognition (50)	40.1 (4.4)‡	43.8 (2.5)†
Visuospatial perception (max score)		
Rey Complex Figure Copy (36)	35.9 (0.3)	34.6 (1.7)*
HAD Scores (max score)		
Anxiety Score (21)	7.5 (4.5)	5.1 (2.5)
Depression Score (21)	2.6 (1.4)	2.7 (2.3)

821 *: Mann-Whitney test revealed a significant difference between groups (U=30, p<.05). On all other tests,

822 independent samples t-tests found no significant differences between groups (for each, p>.05).

823 *†*: performance based on 9 participants.

824 *‡*: performance based on 10 participants.

826

Figure Captions

827

828 <u>Figure 1:</u> a) a picture of SenseCam; b) the procedure for presenting SenseCam images.

829

830 <u>Figure 2</u>: Map showing type and location of events.

831

832 Figure 3: Mean performance on SenseCam measures when tested on the same day, and

after delays of one day, one week and three weeks. a) recall of event shown in image b)

recall of contiguous events (immediately preceding and following event shown), relative

to events recalled; c) recall of thoughts from event, relative to events recalled. d) recall of

836 sensory information, relative to events recalled. Error bars show 95% confidence

837 intervals.

838

839 Figure 4: Mean recall performance of TEA and control groups on the list learning test at

the last trial and after delays of 40 seconds, 30 minutes, one day, one week and three

841 weeks. TEA = All patients with TEA; GL = TEA patients who were good learners (only

those meeting the learning criterion). Error bars show 95% confidence intervals.

843

<u>Figure 5</u>: Performance on the serial reaction time task. a) Reaction times for both groups
on sequence and random trials across all 20 blocks; b) Sequence Retention, as measured
by change in random-sequence reaction times between first session and each of the

subsequent delays. Error bars show 95% confidence intervals.

848

- 849 <u>Figure 6</u>: Correlations between retention on the list learning and SenseCam tests between
- 850 40 second or same day respectively, and one day (white triangles and dashed trend-line),
- 851 or three weeks (red squares and unbroken trend-line) for patients with TEA. Figures show
- retention of a) primary events; b) contiguous events; c) thoughts; and d) sensory
- 853 information. $x^2 = two$ overlapping data points.
- 854
- 855

860 Figure 3.

862 Figure 4.

List learning retention (%)

868

869

b.

