
1 
 

Dynamic Asset Allocation in a 

Conditional Value-at-risk 

Framework 

 

 

Lin Zhi Tan 

 

 

 

Submitted by Lin Zhi Tan to the University of Exeter as a thesis for the degree 

of Doctor of Philosophy in Finance In May 2013 

 

 

 

This thesis is available for Library use on the understanding that it is copyright 

material and that no quotation from the thesis may be published without proper 

acknowledgement. 

 

 

 

I certify that all material in this thesis which is not my own work has been 

identified and that no material has previously been submitted and approved for 

the award of a degree by this or any other University. 

 

 

 

Signature: ………………………………………………………….. 

 
 

 
  



2 
 

Acknowledgements 

 

My deepest gratitude goes first and foremost to Professor Richard Harris, my 

supervisor, for his encouragement and continuous support of my PhD research. 

He has guided me through all the stages of research and writing of this thesis. 

Without his consistent and illuminating instruction, this thesis could not have 

reached its present form. I am very lucky to have such an excellent supervisor 

and mentor for my PhD study. 

 

I would like to acknowledge the Board of Examiners for their constructive 

comments and suggestions in my viva. 

 

I would also like to express my gratitude to Dr. Jian Shen for her help with data 

and useful comments. 

 

I am grateful to the staff at the University of Exeter Business School, the IT 

officers and the librarians for their help to support my research. 

 

I gratefully acknowledge the financial support from the Business School of the 

University of Exeter to make me realise the doctoral dream. 

 

This thesis is dedicated to my families. I would like to take this opportunity to 

say thank you to my beloved families for their loving consideration and 

encouragement through all these years. Without your support and 

encouragement, I could not afford to come to the UK and finish my PhD and 

master’s degree in Exeter. 

 

I would like to say thanks to my friends. I really enjoyed my time in Exeter with 

your company. 

 

 
  



3 
 

Abstract 

The thesis first extends the original Black-Litterman model to dynamic asset 

allocation area by using the expected conditional equilibrium return and 

conditional covariances based on three volatility models (the DCC model, the 

EWMA model and the RW model) into the reverse optimisation of the utility 

function (the implied BL portfolio) and the maximised Sharpe ratio optimisation 

model (the SR-BL portfolio). The momentum portfolios are inputted as the view 

portfolios in the Black-Litterman model. The thesis compares performance of 

the dynamic implied BL portfolio and the dynamic SR-BL portfolio in the single 

period and multiple periods with in-sample analysis and out-of-sample analysis. 

The research finds that dynamic BL portfolios can beat benchmark in in-sample 

and out-of-sample analysis, the dynamic implied BL portfolio always show 

better performance than the dynamic SR-BL portfolio. The empirical VaR and 

CVaR of the dynamic SR-BL portfolios are much higher than that of the 

dynamic implied BL portfolio. The dynamic BL portfolios based on the DCC 

volatility model perform best in contrast to other two volatility models. 

In the aim of improving performance of SR-BL portfolios, the thesis further 

constructs dynamic BL portfolios based on two new optimisation models 

including maximised reward to VaR ratio optimisation model (MVaR-BL 

portfolios) and maximised reward to CVaR ratio optimisation model (MCVaR-BL 

portfolios) with assumption of the normal distribution and the t-distribution at 

confidence levels of 99%, 95% and 90%. The thesis compares performance of 

the dynamic MVaR-BL portfolio and the dynamic MCVaR-BL portfolio in the 

single period and multiple periods with in-sample analysis and out-of-sample 

analysis. There are three main findings. Firstly, both the MVaR-BL portfolio and 

the MCVaR-BL portfolio could improve the dynamic SR-BL portfolio 

performance at moderate confidence levels. Secondly, the MVaR-BL portfolio 

and the MCVaR-BL portfolio show similar performance with normal distribution 

assumption, the MCVaR-BL portfolio performs better than the MVaR-BL with t-

distribution assumption at certain confidence levels in single period and multiple 

periods. Thirdly, the performance of the DCC-BL portfolio with t-distribution 

assumption is superior to the performance of the DCC-BL portfolio with normal 

distribution assumption. 



4 
 

As the result of higher empirical VaR and CVaR of dynamic SR-BL portfolios, 

the thesis develops to constrain VaR and CVaR in construction of dynamic BL 

portfolios with assumption of the normal distribution and the t-distribution at 

confidence levels of 99%, 95% and 90%. The research studies the effect of 

assumptions of two distributions, three confidence levels and levels of the VaR 

constraint and the CVaR constraint on dynamic BL portfolios. Both in-sample 

performance and out-of-sample performance could be improved by imposing 

constraints, and they suggest adding moderate CVaR constraints to maximal 

Sharpe ratio optimisation model with t-distribution at certain confidence level 

could obtain the best dynamic DCC-BL portfolio performance in the single 

period and multiple periods. The performance evaluation criterion (higher 

Sharpe ratio, reward to VaR ratio, and reward to CVaR ratio) would affect the 

choice of optimisation models in dynamic asset allocation. 
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CHAPTER 1 
INTRODUCTION 

1.1 Background and Rationale 

It is well known that the concepts of portfolio optimisation and diversification 

play an important role in the development and understanding of financial 

markets and financial decision-making. In 1952, Markowitz made a 

breakthrough with the publication of the theory of portfolio selection. He 

suggested that investors should consider the trade-off between risk and return 

to determine the allocation of assets. Risk is measured as the standard 

deviation of returns around their expected values. The idea is based on the 

theory that a portfolio’s riskiness depends on the covariances of its constituents 

instead of only on the average riskiness of its separate holdings. Building on 

Markowitz’s work, Sharpe (1964) and Lintner (1965) designed the Capital Asset 

Pricing Model (CAPM) to describe asset returns. Since then, the modern 

portfolio theory has been gradually developed and applied to the financial 

markets. However, the portfolio suffers from problems of unrealistic weights 

such as extreme weights (Green and Hollifield, 1992), corner solutions of highly 

concentrated portfolios (Frost and Savarino, 1988; Grupa and Eichhorn, 1998; 

Grauer and Shen, 2000), and the sensitivity of the solution to inputs (Best and 

Grauer, 1991; Best and Grauer, 1992; Black and Litterman, 1992; Broadie, 

1993) in the practice in the use of Markowitz’s mean-variance optimisation. The 

main reason for these problems is estimation errors in the expected returns as a 

key input of the mean-variance model (Merton, 1980; Michaud, 1989; Chopra 

and Ziemba 1993). It is necessary to use some robust estimates of input 

parameters or else resort to new models for optimisation problems to achieve 

reliability, stability, and robustness with regard to estimation errors or modelling 

errors. Several researchers have proposed that the robust estimates should 

include the Bayesian approach (Zellner and Chetty, 1965; Brown, 1976; Frost 

and Savarino, 1986; Black and Litterman, 1990; Polson and Tew, 2000; Pástor, 

2000), a shrinkage estimator (Jorion, 1985; Jorion, 1986; Chopra, 1993; Ledoit 

and Wolf, 2003; Ledoit et al., 2004) and factor models (Fama and French, 1992; 

Fama and French, 1996). Other researchers have focused on optimisation 

modelling areas such as portfolio resampling (Michaud, 1998; Scherer, 2002; 

Scherer, 2004; Michaud, 2008; Harvey et al., 2008) and robust optimisation 

techniques (Fabozzi et al., 2007; Fabozzi et al., 2010).  
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Since mean-variance analysis only uses a single set of estimates from prior 

information, Zellner and Chetty (1965) develop the Bayesian approach which 

combines prior distribution and posterior distribution into a single estimate to 

solve the parameter uncertainty problem. The prior distribution reflects an 

investor’s knowledge about the probability, before external information sources 

are observed. After new information is provided, the investor adjusts their 

beliefs about the probability to obtain the posterior distribution. The Bayesian 

approach assumes that the expected returns are unknown and random. Three 

main methods have been proposed to calculate the prior means, such as 

shrinking the tangency portfolio towards the global minimum-variance portfolio 

(Jorion, 1986), shrinking the tangency portfolio towards the market portfolio 

(Pástor, 2000; Pástor and Stambaugh, 2000), and shrinking the tangency 

portfolio towards the market portfolio, but with the tangency portfolio based on 

subjective investor forecasts instead of sample means (Black and Litterman, 

1990). Herold and Maurer (2003) confirm the superior out-of-sample 

performance of the Bayesian approach in contrast to the mean-variance 

portfolio approach, and also suggest using the promising Black-Litterman 

approach (Black and Litterman, 1990; Bevan and Winkelmann, 1998; He and 

Litterman, 1999; Satchell and Scowcroft, 2000; Drobetz, 2001; Idzorek, 2004) in 

tactical asset allocation.  

A mean-variance analysis which uses standard deviation as a measure of risk 

has conceptual difficulties, given the undesirable properties of satiation and 

increasing absolute risk aversion (Huang and Litzenberger, 1988). Besides, 

asymmetric return distributions make standard deviation an intuitively 

inadequate risk measure because standard deviation equally penalises 

desirable upside and undesirable downside returns (King and Wadhwani, 1990). 

It is well known that the distribution of asset returns is not normal (Mandelbrot, 

1963; Fama, 1965; Müller et al., 1998; Rachev and Mittnik, 2000; Rachev et al., 

2008). Both academics and practitioners have paid attention to measuring 

alternative risk such as the safety first strategy (Roy, 1952), semivariance 

(Markowitz, 1959), lower partial moment (Bawa, 1975), mean absolute deviation 

(Konno and Yamazaki, 1991), Value-at-Risk (VaR) (Jorion, 1997; Ahn et al., 

1999; Basak and Shapiro, 2001), and Conditional Value-at-Risk (CVaR) 

(Rockafellar and Uryasev, 2000; Rockafellar and Uryasev, 2002). Note that VaR 
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fails to meet the coherence of risk measures (Artzner et al., 1999) and convexity 

properties (Tasche, 2002; Fӧllmer and Schied, 2002). However, CVaR has 

tractable properties, including coherent risk measures, easy implementation, 

and it takes into consideration the entire tail that exceeds VaR on average. In 

addition, it is not appropriate to consider only the first and second moment of 

the distribution in portfolio optimisation, which might increase extreme risks 

(Sornette et al., 2000; Amin and Kat, 2003) and might lead to loss of utility for 

investors (Cremers et al., 2005). Because of the shortcomings of mean-

variance optimisation, several researchers have introduced VaR (Huisman et al., 

1999; Campbell, 2001; Favre and Galeano, 2002) and CVaR (Souza and 

Gokcan, 2004; Agarwal and Naik, 2004) to extend portfolio optimisation 

techniques under fat-tail distributions. Alexander and Baptista (2001, 2002, 

2004) thoroughly study the implications of VaR and CVaR constraints on the 

mean-variance model, based on theoretical work.  

It is widely agreed that financial asset return volatilities and correlations are 

time-varying, with persistent dynamics. Asset return volatilities enter as an 

important ingredient in many applications, such as portfolio optimisation and 

market risk measurement. Perhaps the most popular approaches used to model 

the conditional covariance matrix of returns are the multivariate GARCH class of 

models. These models include the Vech and Diagonal Vech models (Bollerslev 

et al., 1988), the BEKK model (Engle and Kroner, 1995), the Constant 

Correlation model (Bollerslev, 1990), the Factor ARCH model (Engle et al., 

1990), and the Dynamic Conditional Correlation model (Engle and Sheppard, 

2001). However, the Vech model and the BEKK model suffer from the curse of 

large dimensionality, and the Diagonal Vech models, the Constant Correlation 

model and the Factor ARCH model have cross-equation restrictions on the 

elements of the covariance matrix (Harris et al., 2007). Other approaches such 

as rolling estimators of the sample covariance matrix, the exponentially 

weighted estimator and multivariate stochastic volatility models (Harvey et al., 

1994) can also be used to estimate the conditional covariance matrix. In the 

portfolio optimisation world, portfolio managers usually work on a large number 

of assets to diversify the unsystematic risk; the relationship and the co-

movement among those assets will directly affect the performance of the whole 

portfolio. The choice of volatility models is an art.  
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Nowadays, the Black-Litterman (BL) model, an intuitive model based on the 

desire to combine neutral market equilibrium returns and individual active views, 

has become the most popular method to estimate the expected return in 

practice. This model creates stable and intuitively appealing mean-variance 

efficient portfolios based on investors’ subjective views, and eliminates the input 

sensitivity of the mean-variance optimisation. More and more portfolio 

managers and financial advisors are choosing this model to support their 

investment decisions. There are a number of recent research papers which 

apply the BL model to comply with asset return regularities, such as non-normal 

distributions and volatility clustering (Giacometti et al, 2007; Meucci, 2006, 2007, 

2008; Martellini and Ziemann, 2007; Beach and Orlov, 2007; Palomba, 2008), 

which can be evaluated by alternative risk measures (Martellini and Ziemann, 

2007; Lejeune, 2011; Veress et al., 2012), and incorporated with trading 

strategies (Fabozzi et al., 2006; Babameto and Harris, 2009), along with other, 

wider applications (Becker and Gürtler, 2009; Da Silva et al., 2009; Cheung, 

2009; Giacometti and Mignacca, 2010; Munda and Strasek, 2011; Mishra et al., 

2011; Fernandes et al., 2011; Braga and Natale, 2012). 

However, the literature regarding taking VaR and CVaR into account in the BL 

model is rather limited. In the application of the BL model, Bevan and 

Winkelmann (1998) analyse portfolio risk by tracking error and the market 

exposure, and mention that VaR can also be used to measure BL portfolios. 

Giacometti et al. (2007) focus on generating VaR and CVaR adjusted 

equilibrium returns with different assumptions of asset return distributions (the 

normal distribution, the t-distribution, and the stable distributions) in the BL 

model. Lejeune (2011) regards the VaR and trading requirements as constraints 

on optimising a BL portfolio in constructing a fund-of-funds following an absolute 

return strategy. None of the studies impose CVaR constraints on a BL portfolio 

and no empirical work has been done in inputting the BL expected return into an 

optimiser which maximises the alternative performance measures, such as 

reward to VaR ratio and reward to CVaR ratio. One of the research aims is to fill 

these gaps, supported by empirical work to compare the performance of BL 

portfolios when optimised by different methods. 

Moreover, few documents focus on extending the application of the BL model 

into the use of volatility models. Beach and Orlov (2007) utilise GARCH models 
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to derive views as an input into the BL model, while Palomba (2008) introduces 

multivariate GARCH estimates for large-scale tactical asset allocation, 

expecting to view returns inputted into the BL approach with tracking error 

constraints. Strictly speaking, tactical asset allocation from their work is driven 

by time-varying expected view returns; they do not actually involve any 

estimation of a conditional BL expected return. Bollerslev et al. (1988) argue 

that investors may have common expectations on returns, which are variable 

conditional expectations instead of constants. They introduce the multivariate 

GARCH process into the CAPM to estimate conditional returns. Since nothing in 

the literature generalises the BL model in a dynamic framework with an 

estimation of conditional BL expected returns based on volatility models, 

another research aim is to extend the original BL model into the dynamic asset 

allocation area.    

1.2 Research Aims and Questions 

Overall, there are two main research aims. The first research aim is to extend 

the original BL model into a dynamic framework to make conditional 

expectations on returns, and then construct a dynamic BL portfolio that can beat 

a benchmark portfolio. The second research aim is to construct dynamic BL 

portfolios with VaR and CVaR taken into account, with the objective of 

improving portfolio performance. On the one hand, VaR and CVaR could be 

used in performance measures which could then become the optimisation 

target; for example, the dynamic, unconstrained BL portfolio allocates assets 

with maximal performance measures such as reward to VaR ratio and reward to 

CVaR ratio. On the other hand, VaR and CVaR could be used as a constraint 

on the portfolio optimisation model with a maximal Sharpe Ratio (SR), and a 

risk-constrained BL portfolio could be formed.  

The research addresses the following questions: 

1. If I introduce the volatility models into the BL model, which one should I 

choose to construct a BL portfolio with better performance? What is the 

impact of the volatility models on the construction of the BL portfolio?  

2. If I construct dynamic, unconstrained BL portfolios, which performance 

measures should be maximised in the optimisation process to achieve 
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better performance? What is the impact of the choice of volatility models, 

distribution assumptions and confidence levels on the performance of 

unconstrained BL portfolios? 

3. If I impose risk constraints, such as VaR and CVaR, on a dynamic BL 

portfolio, which constrained BL portfolio has the better performance? 

What is the impact of the choice of volatility models, distribution 

assumptions and confidence levels on the performance of VaR-

constrained BL portfolios and CVaR-constrained BL portfolios? Will the 

constrained BL portfolios overcome the unconstrained BL portfolios? 

In order to carry out a thorough evaluation of the unconstrained BL portfolio 

performance and the risk-constrained BL portfolio performance, the research 

evaluates both the single period performance and the multiple-period 

performance, based on an in-sample analysis and an out-of-sample analysis. In 

addition, there are plenty of volatility models to be selected in constructing a 

dynamic BL portfolio; the research narrows the choice of volatility models to 

include only rolling window estimators, exponential weighted estimators, and 

DCC models to simplify the covariance matrix forecasting process in asset 

allocation. Besides, this research studies the dynamic asset allocation on a 

monthly basis instead of other high frequency cases. The relaxation of these 

limitations can be accepted, but are beyond the scope of this thesis. 

1.3 The Contributions of this Thesis 

This research makes several contributions. At first, the thesis originally 

constructs a dynamic BL portfolio starting from a conditional estimation of 

equilibrium returns, combined with the view portfolios generated from dynamic 

momentum strategies based on three volatility models including rolling window 

estimators, exponential weighted estimators and DCC models. The thesis then 

uses the reverse optimisation implied in the BL model and uses a maximal SR 

optimisation to get the weight solutions of the implied BL portfolio and the SR-

BL portfolio. The thesis evaluates the performance of these two portfolios in a 

single period and then over multiple periods, based on an in-sample analysis 

and an out-of-sample analysis, and makes a comparison with the benchmark 

portfolio. In single period, when the realised return is negative, the thesis adopts 

the adjusted conditional SR to make the performance evaluation valid, together 
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with the portfolio turnover and the conditional reward to the CVaR ratio to 

evaluate the single period performance. Over multiple periods, the performance 

measures take the empirical VaR and CVaR into account and utilise reward to 

VaR ratios and reward to CVaR ratios to rank performance when compared with 

the rank from the SR. The research finds that, firstly, by using momentum 

strategy to generate views, the dynamic BL portfolio could generate a superior 

in-sample performance and out-of-sample performance to the benchmark 

portfolio. In addition, the dynamic BL portfolio has more balanced and realistic 

weight solutions than the traditional mean-variance portfolio. In addition, it could 

be suggested that the use of the DCC model is the best choice when 

constructing a BL portfolio with the best in-sample and out-of-sample 

performances over multiple periods. However, this suggestion cannot be robust 

in different single periods. Another interesting finding is that the in-sample and 

out-of-sample performances in the implied BL portfolio always outperform the 

SR-BL portfolio over multiple periods, although this finding is not robust in 

different single periods. Higher fat-tail risks are reflected in a highly negative 

skewness and a higher kurtosis appearing in the SR-BL portfolio over multiple 

periods, and the empirical VaR and CVaR are greater. 

Secondly, the thesis takes action to further construct the dynamic, 

unconstrained BL portfolio with maximal reward to VaR ratio (MVaR-BL portfolio) 

and maximal reward to CVaR ratio (MCVaR-BL portfolio) and, for the first time 

to my knowledge, with an interpretation of the mean-VaR efficient frontier and 

the mean-CVaR efficient frontier. The thesis utilises the volatility models and the 

parametric method to estimate the VaR and CVaR in the asset allocation 

process with normal distribution and t-distribution at confidence levels of 99%, 

95% and 90%. In addition, the thesis studies the impact of different volatility 

models, distribution assumptions, and confidence levels on weights solutions, 

single period performance and multiple-period performance in the in-sample 

and out-of-sample analyses. Furthermore, the thesis also makes three pairs of 

comparison among the MVaR-BL portfolio, the MCVaR-BL portfolio and the SR-

BL portfolio. The main findings include, first of all, that both the MVaR-BL 

portfolio and the MCVaR-BL portfolio could perform better than the SR-BL 

portfolio over the single period performance and the multiple period 

performance in the in-sample and out-of-sample analyses. Secondly, in normal 
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distribution, there is a slight difference between the MVaR-BL portfolio and the 

MCVaR portfolio in an out-of-sample analysis; in t-distribution, the MCVaR-BL 

portfolio could overcome the MVaR-BL portfolio in certain circumstances. In 

addition, it could be suggested that the use of the DCC model in the MVaR-BL 

portfolio and the MCVaR-BL portfolio is the best choice in constructing a BL 

portfolio with the best in-sample and out-of-sample performance over multiple 

periods. However, this suggestion cannot be robust in different single periods. 

Finally, the performances of the MVaR-BL portfolio and the MCVaR-BL portfolio 

with a t-distribution assumption are superior to performances with a normal 

distribution assumption.          

Thirdly, the thesis develops the study of adding VaR constraints and CVaR 

constraints to the dynamic, unconstrained BL portfolio, from understanding the 

VaR bounds and CVaR bounds on the mean-variance efficient frontier, to 

practical empirical work with originality. After building a VaR-constrained BL 

(VaR-BL) portfolio and a CVaR-constrained BL (CVaR-BL) portfolio based on 

three volatility models, the thesis compares the in-sample performance and the 

out-of-sample performance among volatility models, and then investigates in-

depth to examine the effect of constraints, distribution assumption, and 

confidence levels on the risk-constrained BL portfolio weight solutions and 

portfolio performance. It can be found that both the in-sample performance and 

the out-of-sample performance of an SR-BL portfolio could be improved by 

imposing VaR and CVaR constraints, and it suggests that adding moderate 

CVaR constraints to the maximal SR optimisation model with t-distribution at 

certain confidence level could obtain the best dynamic BL portfolio performance 

in a single period and over multiple periods, based on the DCC model. In 

addition, the thesis also follows the method of Giacometti et al. (2007) in 

constructing a risk-adjusted BL portfolio with an estimation of VaR-adjusted 

equilibrium return and CVaR-adjusted equilibrium return on the out-of-sample 

basis; the thesis further makes a comparison between unconstrained BL 

portfolios and risk-constrained BL portfolios. The results from the thesis reflect 

that the risk-adjusted performance in both the VaR-adjusted BL portfolio and the 

CVaR-adjusted BL portfolio are better than most of the unconstrained BL 

portfolios, but the active performance fails to beat the MVaR-BL portfolio and 

the MCVaR-BL portfolio. Moreover, the VaR-adjusted BL portfolio and the 
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CVaR-adjusted BL portfolio have quite a limited ability to outperform the VaR-

constrained BL portfolio and the CVaR-constrained BL portfolio in the t-

distribution at a moderate level of constraints. 

1.4 Structure of the Thesis 

The thesis contains seven chapters, including this introduction as Chapter 1. 

Chapter 2 gives an overview of the asset allocation theory and its application, 

including risk measures. 

Chapter 3 provides a thorough review of the BL model, with well-explained 

mathematical formulae and the underlying intuition, extensions and applications 

of the BL model summarised from the literature. This chapter also discusses the 

closely related papers written by Giacometti et al. (2007) and Lejeune (2011). 

Chapter 4 analyses the dataset and examines the time series property of the 

excess return calculated from the data. Then, Chapter 4 demonstrates the 

methodology of constructing a dynamic BL portfolio, involving an estimation of 

conditional equilibrium return in the first step, inputting the view portfolios in the 

second step, and generating the BL expected return in the third step, based on 

an estimation of the covariance matrix via the RW model, the EWMA model and 

the DCC model. Chapter 4 also illustrates the construction of an unconstrained 

BL portfolio with maximal reward to VaR ratio and maximal reward to CVaR 

ratio. The method of adding VaR constraints and CVaR constraints in the 

maximal SR optimiser are also interpreted in this chapter. 

Chapter 5 concentrates on showing the empirical results of the dynamic BL 

portfolios in the in-sample framework, following the methodology illustrated in 

Chapter 4. There are four sections in this chapter. Section 5.1 shows details of 

the construction of a dynamic, unconstrained BL portfolio, including the MVaR-

BL portfolio and the MCVaR-BL portfolio; explains the optimisation process; 

investigates and analyses the effect of distributions and confidence levels on 

the weight solutions, the single period performance and multiple-period 

performance, and makes a comparison between the unconstrained BL 

portfolios. Following the same structure as Section 5.1, Section 5.2 works on 

the VaR-constrained BL portfolio, while Section 5.3 works on the CVaR-

constrained BL portfolio. Conclusions are made in each section. 
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Chapter 6 follows the same structure as Chapter 5 but focuses on working the 

dynamic, unconstrained BL portfolio, the VaR-constrained BL portfolio and the 

CVaR-constrained BL portfolio in the out-of-sample framework. In addition, 

Section 6.4 follows the method of Giacometti et al. (2007) in constructing 

variance-adjusted, VaR-adjusted and CVaR-adjusted BL portfolios, and 

evaluating the single period and multiple-period performances in contrast to the 

unconstrained BL portfolio and the risk-constrained BL portfolio.  

Chapter 7 summarises the research. It also addresses the limitations of the 

research and gives some suggestions for future research. 
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CHAPTER 2 
ASSET ALLOCATION FRAMEWORK AND RISK MEASURES 

 

The research in this chapter has been well documented. The main contribution 

of this chapter is to summarise the basic theory of asset allocation and review 

its application (Section 2.1), as well as the risk measures (Section 2.2). 

2.1 Mean-Variance Analysis and Modern Portfolio Theory 

In 1952, Markowitz founded a quantitative framework for portfolio selection, 

which had a profound impact on the financial industry; he measured portfolio 

return and portfolio risk by the use of mean returns, variance and covariance 

under a set of assumptions. The derived portfolio variance formula indicates the 

importance of diversification in reducing total risk of the portfolio in investment. 

He also defined an efficient frontier where every portfolio on the frontier 

maximises the expected return for a given level of risk, or minimises the 

variance for a given expected return. His model is now widely recognised as the 

cornerstone of the modern portfolio theory.   

2.1.1 Classical Mean-Variance Framework 

2.1.1.1 Assumptions 

The Markowitz model is developed on the basis of several assumptions about 

investor behaviour. Firstly, investors wish to maximise the returns from a total 

set of investments for a given level of risk. In other words, investors aim to 

maximise one-period expected utility, which is the function of expected return 

and the expected variance, demonstrating diminishing marginal utility of wealth. 

The utility curve represents the investor’s sensitivity to changing wealth and risk. 

Secondly, all investors are risk averse. It means that they will choose the asset 

with the lower level of risk given same level of expected return; similarly, they 

prefer higher returns to lower returns for a given risk level. Thirdly, investors 

think that each investment can be represented by a probability distribution of 

expected returns over holding periods. Fourthly, investors estimate the risk of 

the portfolio based on the average squared deviation around the expected 

return.  
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2.1.1.2 Mathematical Model 

During the investment process, Markowitz considers investors’ short-sighted 

behaviour. He thinks the investor will construct portfolio at time t  and hold it for 

a time horizon of t . Only at time tt  , will the investor adjust his investment, 

according to the performance in the period of t . In the classical mean-

variance model based on one period, the unknown parameters are estimated 

from the sample of available data, and the sample estimates are regarded as 

the unbiased true parameters. Suppose the returns tr  on the N  assets at time 

t , where )',,( ,,2,1 tNttt rrr r , follows multivariate normal distribution with a 1N

vector of assets’ expected returns μ , and a NN   covariance matrix ijCov  with 

element of 2

ii  as the variance of each asset i , and 2

ij  as the covariance of 

each asset between asset i  and asset j . Note that the vector of expected 

returns μ  is expressed as )(rμ E , the variance-covariance matrix ijCov  can 

be defined a ])')([( μrμrΣ  E , and the correlation coefficient can be denoted 

by 
ji

ij

ij

Cov


  , which can vary only in the range -1 to 1. The 1N  vector of the 

weight of each asset i  is denoted by w , where )',,( 21 Nwww w . The 

portfolio’s return at time t  is given by ttpr rw',  . The expected return of the 

portfolio is computed as: 

 

and the variance of the portfolio is defined as: 

The variance for a portfolio of assets is the sum of the weighted average of the 

individual variance and the weighted covariance between all the assets in the 

portfolio. If the correlation is not perfect (positive correlation equal to 1), the 

variance of the portfolio is less than the sum of variance of each asset in the 

portfolio. In other words, portfolio risk can be diversified by investing into 

different assets with lower correlation coefficient.  

 μwrw ')(')(  ErE pp  (2.1)  

 Σww'2 p  (2.2)  
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Following Markowitz’s argument, a rational investor would choose the portfolio 

with minimum variance from the set of all possible portfolios for a given level of 

expected return, and the optimisation problem is a constrained minimisation 

problem: 

where 1 is 1N  vector of ones, and 0  is the portfolio’s target expected return. 

Note that the first constraint requires that the expected return should at least 

achieve at the target expected return 0 , and the second constraint is the 

budget constraint, which satisfies investing all of wealth.  

Alternatively, an investor would choose the portfolio with a maximum expected 

return for a given level of risk; therefore, the optimisation problem can also be 

expressed as a constrained maximisation problem: 

where 2

0  is the portfolio’s maximum acceptable risk. Note that the first 

constraint requires that the portfolio risk should be less than the maximum 

acceptable risk. 

In addition, the mean-variance analysis can also be formulated in another way 

with the aim of maximising expected utility. The formulation can be written as: 

 Σww
w

'min  (2.3)  

 subject to 0' μw and 1' 1w  

 
 

 μw
w

'max  (2.4)  

 subject to 2

0' Σww and 1' 1w  

 
 

 )(max UE
w

 (2.5)  

 subject to 1' 1w  
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where Σwwμw '
2

'
2

)( 2 



  ppUE  is the expected quadratic utility 

function 1 .   is the risk aversion coefficient, which reflects the investors’ 

tolerance for taking additional risk which is compensated for one unit of 

increase in expected return. When   is large, a portfolio with more exposure to 

risk becomes more highly penalised, leading to less risky portfolios; conversely, 

a small   implies a small penalty from the contribution of portfolio risk, the 

portfolio would be more risky. 

2.1.1.3 Efficient Frontier 

Setting varying values of 0  in (2.3), 2

0  in (2.4) and   in (2.5) to solve the 

optimisation problem would produce a sequence of portfolios on the curve, 

which represents that the relation between portfolio risk and portfolio return is 

the mean-variance frontier on the curve lmn in Figure 2.1. The upward-sloping 

portion of the curve is the efficient frontier (curve lm in Figure 2.1), which 

provides the best possible trade-off between expected return and risk. These 

three formulations generate the same efficient frontier. On the efficient frontier, 

there is the global minimum variance portfolio which has the smallest variance. 

The point m in Figure 2.1 denotes the global minimum variance portfolio. It can 

be obtained by solving the optimisation problem: 

subject to 1' 1w  

which has the solution: 

                                            
 
 
1
 Fabozzi et al. (2007) show other commonly used utility functions and conclude that the 

portfolio optimisation problem is not sensitive to changes of utility function in normal and 
Student-t distribution. 

 Σww
w

'min  (2.6)  

 

1Σ1

1Σ
w

1

1

' 



m  (2.7)  
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2.1.2 Mean-Variance Analysis with Risk-Free Asset and Capital Asset 

Pricing Model 

Building on the mean-variance portfolio theory, Sharpe (1964) and Lintner 

(1965) design an equilibrium model, the Capital Asset Pricing Model (CAPM), 

with an assumption of the existence of risk-free assets. The risk-free asset has 

zero variance. The covariance of the risk-free asset with any risky asset will 

always equal zero. Their primary assumptions also include:  

 Investors can borrow or lend at the risk-free rate of return; 

 All investors will choose an optimal portfolio on the Markowitz efficient 

frontier;  

 All investors possess homogeneous expectations;  

 All investors have the same one period time horizon;  

 All investments are infinitely divisible; 

 There are no taxes or transaction costs; 

 There is no inflation or any change in interest rates; and  

 Capital markets are in equilibrium.  

Suppose that the risk-free asset exists, and that the expected rate of return 

earned on the risk-free asset is fR , the rate of return earned on each risky 

asset is r , the proportion of the portfolio invested in risky portfolio is rw , and 

1w '1 r  is a risk-free asset. The portion of risk-free assets can be positive or 

negative if risk-free borrowing and lending are allowed. The average rate of 

return p  and the variance 2

p  of the portfolio, when the risk-free asset is 

combined with the portfolio of risky assets, can be expressed as: 

where rΣ  is the covariance of the risky asset portfolio. The variance of portfolio 

that combines the risk-free asset with risky assets is the linear proportion of the 

variance of the risky asset portfolio, because the risk-free asset has zero 

variance and is uncorrelated with risky assets. From the view of investors, they 

prefer selecting a portfolio with the highest expected excess return per unit of 

risk on the efficient frontier. In other words, the Sharpe Ratio (SR), which is 

 ))((')'1()(')( frffrrpp RERRErE  rw1wrw  (2.8)  
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calculated as the ratio between expected excess return and standard deviation, 

could be used to measure portfolio performance, and the optimal portfolio 

should have the maximal SR. Therefore, in practice, the portfolio problem can 

also be expressed as the maximisation of the SR: 

The solved weights of the investor’s optimal portfolio would be given by: 

This optimal portfolio is the tangency portfolio referred to as the market portfolio. 

We can draw the line from the risk-free rate to the efficient frontier at the point 

where the line is tangent to the efficient frontier. This line is called the capital 

market line. The graph of the capital market line is in Figure 2.2. The point M 

represents the market portfolio. The expression for the capital market line can 

be shown as:2 

where )( MrE  is the expected return of the market portfolio, and M  is the 

standard deviation of the market portfolio.  

CAPM is a model that determines the expected rate of return on a risky asset

)( irE . The systematic risk measure for the individual risky asset is the 

covariance with the market portfolio MiCov , . The formula for the risk-return 

relationship is denoted by: 
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i , which is equal to 
2

,

M

MiCov


, is a measure of systematic risk. The market 

portfolio has a beta of 1. There is a linear relationship between the expected 

return and the systematic risk; Figure 2.3 plots the security market line in this 

linear relationship. In equilibrium, all assets and all portfolios of assets should 

plot on the security market line. 

2.1.3 Criticisms of the Mean-Variance Approach 

The simplicity and the intuitive appeal of the mean-variance approach has 

attracted significant attention from academia and industry. However, contrary to 

its theoretical reputation, Markowitz’s classical framework has not been used 

extensively by practitioners as a tool for optimising a large-scale portfolio, due 

to its numerous implementation difficulties.  

The impracticality is that extreme weights or corner solutions from the mean-

variance model may be inconvenient in asset allocation, since the investor can 

neither assign unrealistic weights to each asset, nor diversify risk by investing 

different assets. Imposing constraints on portfolio weights could alleviate this 

problem and enable the portfolio to perform better (Frost and Savarino, 1988; 

Grupa and Eichhorn, 1998; Grauer and Shen, 2000). Discussions regarding the 

non-short selling constraints can be found in the literature (Jagannathan and Ma, 

2003). Additionally, the sensitivity of portfolio weights (Best and Grauer, 1991; 

Best and Grauer, 1992; Black and Litterman, 1992; Broadie, 1993) is an 

annoying problem for practitioners as well, as they have to pay significant 

amounts of transaction costs to buy and sell stocks with weights dramatically 

changed. The main reason for these problems is the estimation errors in the 

inputs of the mean-variance model. The accuracy of the estimation of input data 

will heavily affect the weights allocated to each asset in the mean-variance 

optimisation, called ‘estimation-error maximisers’ (Michaud, 1989). Michaud 

argues that the optimised portfolios tend to overweight (underweight) assets 
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with large (small) expected returns, negative (positive) correlations and small 

(large) variances. Merton (1980) demonstrates that historical returns are bad 

proxies for expected returns. He also demonstrates evidence that the estimated 

variance and covariance from the historical data will be much more accurate 

than the corresponding expected return estimates. Similarly, Chopra and 

Ziemba (1993) verify that the impact of estimation errors on the expected 

returns on portfolio choice dominates that of estimation errors in variances and 

covariance. Therefore, they suggest paying attention to estimate, ‘less noisy’ 

expected returns, followed by a good estimation of variance. To address these 

problems, robust estimates of the input parameters for optimisation problems 

become an important research issue. It is advisable to use the Bayes-Stein 

shrinkage estimator (Jorion, 1985) or the Bayesian estimator (Frost and 

Savarino, 1986)  as alternative estimators of expected return to reduce 

estimation risk and improve out-of-sample portfolio performance. However, 

except for estimation error, Green and Hollifield (1992) explain that the high 

correlation among assets result from the dominance of a single factor in the 

covariance of asset returns triggering the extreme weights. Therefore, it cannot 

ignore the impact of correlations on portfolio weights. Fabozzi et al. (2008) 

suggest using a factor model to model covariance and correlations and 

therefore deal with the issue of highly correlated assets.   

Another significant problem is the computational difficulty associated with inputs 

of the expected returns and the expected variance-covariance structure for all 

assets in the investment universe. For example, if there were 100 assets, it 

would be burdensome for a practitioner to compute 4,950 parameters in the 

covariance matrix. In practice, it is impossible for portfolio managers to estimate 

reliable returns for all assets. Estimation errors exist when they anticipate an 

expected return by using a simple average of historical sample returns. In 

addition, it is widely agreed that financial asset return volatilities and 

correlations are time-varying, with persistent dynamics. Asset return volatilities 

become an important ingredient in many applications, such as portfolio 

optimisation and market risk measurement. The most popular approach to 

modelling the conditional covariance matrix of returns is the multivariate 

GARCH class of models. These models include the Vech and Diagonal Vech 

models (Bollerslev et al., 1988), the BEKK model (Engle and Kroner, 1995), the 
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Constant Correlation model (Bollerslev, 1990), the Factor ARCH model (Engle 

et al., 1990), and the Dynamic Conditional Correlation or DCC model (Engle 

and Sheppard, 2001). However, the Vech model and the BEKK model suffer 

from the curse of large dimensionality, and the Diagonal Vech models, the 

Constant Correlation model and the Factor ARCH model have cross-equation 

restrictions on the elements of the covariance matrix (Harris et al., 2007). Other 

approaches, such as rolling estimators of the sample covariance matrix, 

exponentially weighted estimators and multivariate stochastic volatility models 

(Harvey et al., 1994) can also be used to estimate the conditional covariance 

matrix. In the portfolio optimisation world, a portfolio manager would usually 

work on a large number of assets to diversify the unsystematic risk; the 

relationship and the co-movement among those assets will directly affect the 

performance of the whole portfolio. The choice of volatility models is an art. 

In addition, from the perspective of investor perception against risk and 

distribution of asset returns, investors usually prefer a larger profit to a small or 

negative profit and, obviously, their perception of risk is not symmetric around 

the mean. The use of variance as a measure of risk becomes a critical 

weakness of the mean-variance approach. Besides, it is well known that the 

distribution of asset returns is not normal (Mandelbrot, 1963; Fama, 1965; 

Müller et al., 1998; Rachev and Mittnik, 2000; Rachev et al., 2008). It is not 

appropriate to consider only the first and second moment of distribution in 

portfolio optimisation. Both academics and practitioners focus their attention on 

meeting the requirement of alternative risk measures for portfolio optimisation, 

such as the ‘safety first’ strategy (Roy, 1952), semivariance (Markowitz, 1959), 

lower partial moment (Bawa, 1975), mean absolute deviation (Konno and 

Yamazaki, 1991), VaR (Jorion, 1997; Ahn et al., 1999; Basak and Shapiro, 

2001), and CVaR (Rockafellar and Uryasev, 2000; Rockafellar and Uryasev, 

2002). Because of the shortcomings of mean-variance optimisation, several 

researchers have introduced VaR ( Huisman et al., 1999; Campbell, 2001; 

Favre and Galeano, 2002) and CVaR (Souza and Gokcan, 2004; Agarwal and 

Naik, 2004) to extend portfolio optimisation techniques under fat-tailed 

distributions. Alexander and Baptista (2001, 2002, 2004) thoroughly study the 

implications of VaR and CVaR constraints on the mean-variance model based 
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on theoretical work. I will provide a detailed introduction of VaR and CVaR risk 

measures in Section 2.2.  

2.1.4 Extension of the Traditional Mean-Variance Approach 

Several extensions have been developed to address the issues discussed in 

Section 2.1.3. Fabozzi et al. (2008) provide a complete review of these 

extensions. These extensions mainly work in two directions. One direction to 

obtain robust estimates is the Bayesian approach (Zellner and Chetty, 1965; 

Brown, 1976; Frost and Savarino, 1986; Black and Litterman, 1990; Polson and 

Tew, 2000; Pástor, 2000), including the shrinkage estimator (Jorion, 1985; 

Jorion, 1986; Chopra, 1993; Ledoit and Wolf, 2003; Ledoit et al., 2004), and 

factor models (Fama and French, 1992; Fama and French, 1996). The other 

direction focuses on modelling area such as portfolio resampling (Michaud, 

1998; Scherer, 2002; Scherer, 2004; Michaud, 2008; Harvey et al., 2008), and 

robust optimisation techniques (Fabozzi et al., 2007; Fabozzi et al., 2010). 

Robust portfolio optimisation is not within the scope of this thesis; Fabozzi et al. 

(2007, 2010) investigate and illustrate the recent advances in a comprehensive 

literature review of robust portfolio selection with uncertainty parameters. In this 

section, I will briefly introduce the Bayesian approach.  

Bayesian approach 

While the mean-variance analysis uses only a single set of estimates from prior 

information, the Bayesian approach combines the assessed information from 

external information with a single estimate. Founded by Savage (1954) on this 

idea, the Bayesian approach was developed into a general framework to solve 

the parameter uncertainty problem (Zellner and Chetty, 1965). It is important to 

understand the ‘prior distribution’ and the ‘posterior distribution’ in the Bayesian 

framework. The ‘prior distribution’ reflects an investor’s knowledge of the 

probability before external information sources are observed. After new 

information is provided, the investor would adjust their beliefs about the 

probability. This new probability distribution is the ‘posterior distribution’. The 

Bayesian rule, which allows the forecasting process to combine external 

information and subjective views with traditional prior information, could be 

applied to calculate the new probability distribution. Naturally, a posterior 

distribution of expected return can be obtained by integrating a forecast from 
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empirical data with a prior distribution. Specifically, the Bayesian approach 

shrinks the mean estimators away from the sample means and towards some 

prior values, to generate a weighted average value as the estimate of expected 

return. The Bayesian approach assumes that the expected returns are unknown 

and random. There are three main methods proposed to calculate the prior 

means, such as shrinking the tangency portfolio towards the minimum-variance 

portfolio (Jorion, 1986), shrinking the tangency portfolio towards the market 

portfolio (Pástor, 2000; Pástor and Stambaugh, 2000), and shrinking the 

tangency portfolio towards the market portfolio but with the tangency portfolio, 

based on subjective investor forecasts instead of sample means (Black and 

Litterman, 1990). Herold and Maurer (2003) confirm the superior out-of-sample 

performance of the Bayesian approaches in contrast to the mean-variance 

portfolio. They also suggest using the promising Black-Litterman (BL) approach 

to tactical asset allocation. The BL model estimates the expected returns (mean 

of posterior distribution) based on the market equilibrium return (prior 

information), combined with an investor’s views (new information). I will 

introduce the BL model in detail in Chapter 3.  

Suppose that an investor has information-based beliefs about the mean vector 

and the covariance matrix of excess returns, while the prior for the mean vector 

of the normal distribution is multivariate normal, and the conjugate prior for the 

covariance matrix of a multivariate normal distribution is the inverse Wishart 

distribution in statistics: 

where   represents the confidence an investor places on the value of π , while 

v  reflects the confidence about Χ . The lower   and v  are, the less confidence 

and the higher the uncertainty about those values. 

In Fabozzi et al. (2008), the mean of the predicted excess returns μ~  and their 

covariance matrix Σ
~

 can be computed by, respectively: 
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where N  is the number of assets, and T  is the number of historical 

observations. The predictive mean μ~  is a weighted average of the prior mean 

π  and the sample mean μ̂  which is shrunk towards the prior mean. Σ̂  is the 

sample covariance matrix. The stronger the investor’s belief in the prior mean 

(the higher 




T
), the larger the degree to which the prior mean influences the 

predictive mean.   

2.2 Risk Measures 

Based on Markowitz’s idea of portfolio selection, the construction of portfolios 

should target maximising expected returns at a certain level of risk. After 

inputting the estimates of expected returns and the covariance matrix into the 

portfolio optimisation model, the optimal portfolio can be constructed. However, 

mounting evidence has shown that asset returns are not normal for most 

financial assets; therefore, it is not appropriate to only use the mean and 

standard deviation to reflect the property of the joint asset return distribution. 

The fat-tail risks give rise to negative skewness and high kurtosis which cannot 

be captured by the standard deviation of the portfolio. Consequently, the 

classical mean-variance approach should not be regarded as a better asset 

allocation model. 

In this section, I will review and provide a brief overview of the most common 

downside risk measures such as Value-at-Risk (VaR) and Conditional Value-at-

Risk, or CVaR (Rockafellar and Uryasev, 2000; Rockafellar and Uryasev, 2002) 

used in practice for portfolio selection. Other downside risk measures can be 

found in the literature including the ‘safety first’ strategy (Roy, 1952), 

semivariance (Markowitz, 1959), Low Partial Moment (Bawa, 1976; Fishburn, 

1977; Price et al., 1982). Recent literature also provides other risk measures 

including convex measures (Fӧllmer and Schied, 2002; Frittelli and Rosazza 

Gianin, 2002), generalised deviation measures (Rockafellar et al., 2006), proper 

and ideal risk measures (Stoyanov et al., 2007; Rachev et al., 2008). 

Discussions regarding other risk measures are beyond the scope of this thesis. 
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2.2.1 Value-at-Risk 

In 1994, JP Morgan developed Value-at-Risk or VaR, which has become a 

standard risk measure in financial risk management due to its conceptual 

simplicity, ease of computation, and ready applicability. In recent years, it has 

been widely applied to risk management in the financial industry and in banking 

regulatory mechanisms (Jorion, 1997; Dowd, 1998; Saunders, 2000). As we all 

know, a large number of financial institutions hold net positions in a variety of 

assets. For prudential reasons, they need to measure the overall market risk of 

their portfolio, which is usually referred to as Value-at-Risk or VaR. In addition, 

the Basel Committee on Banking Regulation uses VaR to set minimum capital 

adequacy requirements to cover market risk. VaR measures the predicted 

maximum loss at a specified probability level over a certain time horizon. For 

example, if a portfolio has a ten-day, 99% VaR of £100,000, it means that the 

largest loss of the portfolio could be expected to be £100,000 with 99% certainty 

over the next ten days. If the portfolio has a daily VaR of £100,000 at a 1% 

critical value, this implies that it will lose more than £100,000 in only one day out 

of 100. 

Mathematically, VaR can be expressed as: 

It means that the VaR  is at the value  , such that the probability P  that the 

maximum portfolio loss pR  is, at most  , is at least at confidence level of  , 

such as 99%, 95% and 90%. At the outset, the existing methods to measure 

VaR include historical simulation-bootstrapping techniques, the variance-

covariance model, the Monte Carlo simulation, stress testing, and extreme 

value theory. Each method can generate different results from the others. It is 

prudent to choose the appropriate method to estimate VaR based on the 

underlying assumptions, as well as the mathematical models and quantitative 

techniques used. For example, if the distribution of security returns is assumed 

to be normal, but the real distribution is not normal, the use of the variance-

covariance model with a normality assumption will increase the estimation error. 

In a nutshell, a large element of judgement is required in practical 

implementation. Cuthbertson and Nitzsche (2005) clearly demonstrate how to 

})(|min{)(   pp RPRVaR  (2.20)  
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measure VaR in the implementation of different methods. In this thesis, I will 

only explain the simple variance-covariance method. 

Variance-Covariance Method 

The variance-covariance method can be categorised into parametric models, 

which assume a particular distribution for the portfolio return distribution, and 

use knowledge of that distribution to compute the appropriate quantile. The 

tVaR ,  which measures the maximum loss expected in normal market 

conditions at time t , is calculated as: 

where t̂  and t̂  are the portfolio-forecasted mean and standard deviation 

using sample data until 1t , 1q  denotes the )1(  -quantile of the distribution 

of the portfolio return. 

There are some defects in the variance-covariance method. Firstly, it relies 

heavily on distributional assumptions about portfolio returns. If the asset returns 

are multivariate normal, for example, it can be expected that the actual return 

would be less than tt  ˆ65.1ˆ   only one time in 20 (i.e.. 5% certainty or 5% of 

the time). If the portfolio return distribution is non-normal, the value of 1q  

would change, corresponding to the assumed distribution. Note that there is an 

underlying assumption that a linear relationship exists between the portfolio 

return and the asset returns. Secondly, this method may yield poor 

approximation for ‘non-linear’ portfolios containing options. However, we cannot 

neglect the strength of this method. It is not only easy to use for simple 

portfolios, but also removes the strict requirement for large amounts of data. 

Furthermore, it would be straightforward to incorporate volatility clustering into 

this approach by replacing the unconditional estimate of volatility t̂  with the 

conditional volatility 1|ˆ tt  from the model. Since the forecast of volatilities and 

correlations would be inputted into the model, many multivariate volatility 

models can be applied to estimating VaR. For example, Billio and Pelizzon 

(2000) introduce a multivariate switching regime model to estimate the VaR of 

both single assets and portfolios; they demonstrate that a switching regime 

specification is more accurate than the other two methods used by EWMA and 

)ˆˆ( 1, ttt qVaR     (2.21)  
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GARCH (1, 1) models. Lee et al. (2006) use a multivariate DCC-GARCH model 

to measure VaR and find that the DCC-GARCH (1, 1) model is preferable. 

Santos et al. (2012) find that multivariate GARCH models outperform their 

univariate counterparts to forecast portfolio VaR on an out-of-sample basis. 

Specifically, the DCC model with Student-t distribution seems to be the most 

appropriate specification when implemented to estimate the VaR of the real 

portfolios. 

Artzner et al. (1999) propose that coherent risk measures should satisfy several 

properties including monotonicity, subadditivity, positive homogeneity, and 

translational invariance. These properties can be expressed thus: if there are 

only positive returns, then the risk should be non-positive; the risk of a portfolio 

of two assets should be less than or equal to the sum of the risks of the 

individual assets. If the portfolio is increased c times, the risk becomes c times 

larger, and cash or another risk-free asset does not contribute to portfolio risk. 

Under these restrictive rules, some popular risk measures, including standard 

deviation and semideviation-type risk measures, would not be coherent. 

Because the standard deviation violates the monotonicity property and the 

semideviation-type risk measures, it cannot satisfy the subadditivity requirement. 

In addition, VaR has suffered from some shortcomings. Firstly, it is not 

subadditive. It does not hold that the VaR of a portfolio of two assets, A and B, 

should be less than or equal to the sum of the VaR of the individual asset A and 

asset B. In this case, it is not consistent with the concept of diversification in 

portfolio theory. Secondly, it is too complex and time-consuming to construct the 

optimal portfolio when we solve the non-smooth and non-convex function to 

calculate VaR with scenarios. Thirdly, VaR ignores the worst case scenario that 

the losses may be beyond the VaR value in the left tails. Obviously, the rational 

investor would make a wiser investment in the portfolio with a shorter left tail, 

rather than the one with a longer left tail, if the portfolio has the same expected 

return. These undesirable features motivate the development of Conditional 

Value-at-Risk. 

2.2.2 Conditional Value-at-Risk 

Conditional Value-at-Risk (CVaR) is a coherent risk measure defined by the 

formula: 
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CVaR measures the expected amount of losses in the tail of the distribution of 

possible portfolio losses beyond the portfolio VaR. CVaR can also be referred to 

as expected shortfall, expected tail loss, and tail VaR. CVaR is always at least 

as large as VaR. CVaR has tractable properties: it is a coherent risk measure, it 

is easy to implement and it takes into consideration the entire tail that exceeds 

VaR on average. 

Following Rockafellar and Uryasev (2000), the portfolio loss can be defined as 

the minus return rw' , with the assumption that the distribution of r  is 

continuous. For a given portfolio, the probability of the loss not exceeding a 

threshold   is given by   rrw rw dp )(),( '  . Given a confidence level of  , 

the VaR associated with the portfolio is defined as }),(|min{   wVaR . 

CVaR is defined as the conditional expectation of the loss of the portfolio 

exceeding or equal to VaR, that is: 

It seems difficult to calculate CVaR from formula (2.23), due to its convoluted 

and implicit expression. Rockafellar and Uryasev (2000) demonstrate that 

CVaR is subadditive and can be introduced as the following convex optimisation 

problem: ),(min  wFCVaR  , where ),(  wF  is expressed as: 

where }0,'max{]'[    rwrw . Moreover, ),(  wF  is shown to be 

convex and continuously different with respect to w  and  . An interior 

algorithm can efficiently solve the convex programming problem. 

When the return distribution is not normal, achieving the minimal variance 

comes at the price of taking large, extreme risks under a mean-variance 

framework (Sornette et al., 2000; Amin and Kat, 2003); in order to take fat-tail 

risks into consideration, some researchers have introduced VaR into optimal 

portfolio selection. Campbell et al. (2001) allocate assets by maximising the 
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expected return, subject to the constraint that the expected maximum loss 

should meet the VaR limits set by the risk manager. Their findings highlight the 

impact of non-normal characteristics of the expected return distribution on the 

optimal asset allocation. Favre and Galeano (2002) incorporate modified VaR, 

which utilises the Cornish-Fisher expansion to approximate the quantile, in the 

computation of the optimal portfolio based on the framework of Huisman et al. 

(1999). Gaivoronski and Pflug (2005) apply VaR to optimal portfolio selection, 

with an emphasis on solving VaR optimisation problems and present a 

smoothing algorithm in the computation of mean-VaR efficient portfolios. 

Meanwhile, other researchers pay attention to introducing CVaR into an optimal 

portfolio selection and make comparisons with the mean-variance approach and 

the mean-VaR framework. Agarwal and Naik (2004) develop a mean-CVaR 

framework for hedge funds, and find that the mean-variance framework 

underestimates the tail risk of the hedge fund, compared with the mean-CVaR 

framework. Bertsimas et al. (2004) examine the properties of CVaR and its 

relation to other risk measures. They demonstrate that the mean-CVaR 

optimisation problem can be solved efficiently as a convex optimisation problem 

and a linear optimisation problem in a sample version. They also show that the 

portfolios constructed by the mean-CVaR approach can outperform those 

generated by the mean-variance approach. Souza and Gokcan (2004) 

constructed a mean-CVaR efficient frontier and plotted it on a mean-variance 

graph to identify a ‘skew gap’ that captures the effect of negative skew inherent 

in hedge fund strategies. Alexander and Baptista (2001, 2002, 2004) thoroughly 

study the implications of imposing VaR and CVaR constraints on the mean-

variance model based on theoretical work. They show that, when the CVaR 

bound is larger than the VaR bound, or when a risk-free security is present, a 

CVaR constraint could dominate a VaR constraint as a risk management tool. 

Yamai and Yoshiba (2005) compare the properties of VaR and CVaR, and 

analyse their estimation errors. They stress that both risk measures have 

benefits and drawbacks, and suggest complementing VaR with CVaR for 

effective financial risk management.    

2.3 Conclusions 

Despite the great influence and theoretical impact of Markowitz’s modern 

portfolio theory, which captures the two fundamental economic insights of risk-
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return trade-off and diversification, the mean-variance optimisation approach is 

confronted by several criticisms in practice. Practitioners are reluctant to use 

this approach because of its numerous implementation difficulties in the 

estimation of inputs, and the unreliable solutions of weights in assets. The 

limitations of the mean-variance analysis have stimulated numerous extensions 

in robust estimates of moments of returns, including expected returns, the 

covariance matrix and risk measures. The Bayesian approach has become 

known as a superior method to estimate the prior means to achieve a better 

out-of-sample performance than the mean-variance method; specifically, it is 

suggested that the Black-Litterman model be applied to tactical asset allocation 

(Herold and Maurer, 2003). The next chapter will examine the interpretation of 

the Black-Litterman approach in asset allocation.  

In addition, exploiting the predictability of the covariance matrix in conditional 

volatility models also indicates an interesting direction; however, the choice of 

volatility models is an art. Moreover, the use of alternative risk measures other 

than variance is necessary to capture asymmetric property of returns and to 

measure tail risks in an asset allocation approach. Although VaR has been 

widely applied to risk management in the financial industry and in banking 

regulatory mechanisms, it fails to satisfy the subaddtivity coherent risk 

measures criterion, and ignores the worst case scenario that losses may be 

exceed the VaR value in the left tails, while CVaR remedies these drawbacks 

and becomes a coherent tool to measure risk. Both the mean-VaR framework 

and the mean-CVaR framework have been widely developed and implemented 

in portfolio optimisation when returns distribution has a fat-tail. Yamai and 

Yoshiba (2005) suggest complementing VaR with CVaR to support more 

comprehensive risk management, with a consideration of pros and cons in each 

framework. Chapter 4 will show the methods of constructing Black-Litterman 

portfolio with both VaR and CVaR.  
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Figure 2.1 Feasible Set and Markowitz Efficient Set 
 
The figure plots the feasible set and the efficient set of the Markowitz portfolio 

selection theory. )( prE is the expected return and p  is the standard deviation of 

returns. Point m denotes the global minimum variance portfolios. The curve lmn 
and the area within are the feasible set but only the curve above m is efficient, 
as lower standard deviations for a given return or higher returns for a given 
standard deviation. The curve above m is referred to as efficient set or efficient 
frontier. 
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The figure plots the capital market line (CML) and the efficient frontier. )( prE  is 

the expected return and p  is the standard deviation of returns. fR  is the risk-

free rate. Point m denotes the global minimum variance portfolios. The curve 
lmn and the area within are the feasible set but only the curve above m is 
efficient, as lower standard deviations for a given return or higher returns for a 
given standard deviation. The curve above m is referred to as efficient set or 
efficient frontier. Tangency point M denotes the market portfolio. The line from 

fR  to M is the new efficient frontier when there is a risk-free asset. 

 
 

 

  

Figure 2.2 Capital Market Line and Efficient Frontier 
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The figure plots the security market line (SML). )( MrE is the expected return of 

the market portfolio, and i  is the standardised measure of systematic risk of 

the asset i, which is the covariance of an asset with the market portfolio, divided 

by the variance of the market portfolio. fR  is the risk-free rate. )( irE is the 

expected return of the asset i. 

 

 

 

 
  

Figure 2.3 Security Market Line 
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CHAPTER 3 
LITERATURE REVIEW OF THE BLACK-LITTERMAN MODEL 

 

3.1 Introduction 

With the application of the Bayesian methodology, the Black-Litterman (BL) 

model as proposed by Black and Litterman (1990) has an appealing strength in 

that it can overcome the limitations of the traditional mean-variance model.  

 

Firstly, in the BL model, the absolute or relative views on the expected returns 

from portfolio managers can be inputted into the model. In the traditional mean-

variance model, expected returns and covariances of all assets have to be 

estimated, however, it is not realistic for investors to estimate every single 

parameter for all assets in large-scale investment. Comparatively speaking, it is 

more intuitive and practical for financial industry insiders to seek information 

from a few investment assets and generate some views in the BL model. This is 

the main reason why practitioners prefer using the BL model. Secondly, the BL 

model can mitigate the problem of highly concentrated portfolios, input 

sensitivity, and estimation error maximisation yielded by the classical mean-

variance optimisation model. Several studies contribute to clarifying the intuition 

behind the BL model and illustrate the practical nature of the BL model (Black 

and Litterman, 1991, 1992; Bevan and Winkelmann, 1998; He and Litterman, 

1999; Satchell and Scowcroft, 2000; Drobetz, 2001; Idzorek, 2004). Nowadays, 

the BL model is widely used in the industry because of its robustness; more and 

more portfolio managers and financial advisors employ this model to support 

their investment decisions. There has been a surge in recent research papers 

which generalise the BL model to comply with asset return regularities, 

including non-normal distribution and volatility clustering (Giacometti et al., 

2007; Meucci, 2006, 2007, 2008; Martellini and Ziemann, 2007; Beach and 

Orlov, 2007; Palomba, 2008); to be evaluated by alternative risk measures 

(Martellini and Ziemann, 2007; Lejeune, 2011; Veress et al., 2012); to 

incorporate into trading strategies (Fabozzi et al., 2006; Babameto and Harris, 

2009), and to a broad range of other applications (Becker and Gürtler, 2009; Da 

Silva et al., 2009; Cheung, 2009; Giacometti and Mignacca, 2010; Munda and 

Strasek, 2011; Mishra et al., 2011; Fernandes et al., 2011; Braga and Natale, 

2012). 
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The aim of this chapter is to provide a detailed introduction to the BL model with 

the mathematical formulae and underlying intuition explained. I also summarise 

the most recent studies that extend and apply the BL model to different 

directions. I give a brief introduction to some new approaches and provide some 

critical comments.  

 

The main contribution of this chapter is to provide a complete picture of the 

literature and the mathematical models of the BL model. In addition, based on 

my own critical evaluation, I point out the weakness of some extended BL 

models. Furthermore, motivated by the lack of literature regarding applying the 

BL model to a dynamic environment with some alternative risk constraints, I 

propose a dynamic BL model which starts from a conditional equilibrium return. 

Besides, the alternative risk constraints such as VaR and CVaR could be 

introduced in the optimisation model to construct a risk-constrained, dynamic BL 

portfolio. I will introduce the methodology in Chapter 4. 

 

In the following sections, I will introduce the BL model in detail in Section 3.2. 

Section 3.2.1 describes the first step of the BL model in obtaining the implied 

market equilibrium. Section 3.2.2 shows the approach of translating the 

investors’ view to fit the BL model. Section 3.2.3 displays the formula of the 

Black-Litterman expected return and covariance with the combination of the 

views in the Bayesian framework. Section 3.2.4 constructs the unconstrained 

optimal portfolio and explains the economic intuition behind the model followed 

by He and Litterman (1999). Section 3.3 discusses extensions of the BL model. 

In this section, I emphasise introducing the method of Fabozzi et al. (2006) to 

utilise the momentum strategy in the BL model. I also discuss two recent papers 

written by Giacometti et al. (2007) and Lejeune (2011), which are closely related 

to my research topics. Section 3.4 concludes this chapter. 

 

3.2 The Black-Litterman Model 

In 1990, Black and Litterman published their original work and proposed a 

superior asset allocation approach, which started from the market equilibrium 

returns incorporated with additional investor views to form a new mixed 
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estimate of expected returns. Black and Litterman (1991, 1992) expanded the 

new BL approach to allocate assets at a set of neutral weights and adjust 

towards views from investors with limited details discussed. However, it was not 

easy to understand how to empirically realise this asset allocation process and 

reproduce results. Additional studies have been developed to introduce the BL 

model and to make it more accessible to practitioners (Bevan and Winkelmann, 

1998; He and Litterman, 1999; Satchell and Scowcroft, 2000; Drobetz, 2001; 

Idzorek, 2004). Bevan and Winkelmann (1998) build on the BL model to 

allocate assets, and show in clear detail how to construct an optimal Black-

Litterman portfolio. After the construction of an unconstrained optimal portfolio, 

they measure portfolio risks using tracking error and market exposure. They 

mention that VaR has the same explanations as the tracking error when the 

asset returns are symmetric. He and Litterman (1999) reveal the mystery of the 

Black-Litterman approach: it displays the clear economic intuition of the model 

in that the optimal unconstrained portfolio is the scaled weights of market 

equilibrium portfolio weights added up to a weighted sum of view portfolios. 

Satchell and Scowcroft (2000) devote much effort to demystifying the BL model 

and provide a detailed derivation of the formula in the model. Unlike the paper 

published by He and Litterman (1999), with its emphasis on the mathematics in 

the BL model, Drobetz (2001) pays attention to simple samples to lay out the 

intuition behind the BL model, which avoids the deficiencies of the traditional 

mean-variance approach to portfolio optimisation. Idzorek (2004) presents step-

by-step instructions for practitioners to implement the BL model and obtain 

returns which could be reasonably expected. All of these researchers contribute 

to improving the practical implementation of the original BL model. Walters 

(2009) carries out a thorough survey of studies of the BL approach with a clear 

explanation of the derivation and implied principles.  

 

The basic idea in the BL model is to combine the equilibrium expected returns 

with investor views, which means that the Black-Litterman portfolio gravitates to 

a neutral market capitalisation weighted portfolio that tilts in the direction of 

assets favoured in the views investors have expressed. The degree of 

confidence investors have in the views will reflect the extent of the deviation 

from the equilibrium expected returns. 
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The first step in the BL model is to find the implied market equilibrium return by 

utilising the market capitalisation weights based on CAPM theory (Sharpe, 

1964) and reverse optimisation. The CAPM assumes that all investors hold the 

market portfolio combined with cash in equilibrium. Then the investor views are 

an additional input to the model. When there are no specific views on assets, 

the expected returns of assets can be regarded as the market equilibrium 

returns. Starting from holding the market portfolio, investors can add specific 

views. The expected returns of each asset are estimated by using the Bayesian 

mixed estimation (Theil, 1971) to combine the implied equilibrium return and 

investor views. The next procedure is to optimise the assets in the mean-

variance optimisation (Markowitz, 1952) with the posterior expected returns of 

each asset inputted.   

 

3.2.1 The Implied Equilibrium Return 

Firstly, the BL model assumes that the 1N  excess return vector r  follows a 

multivariate normal distribution with 1N  expected excess return vector μ  and 

NN   covariance matrix of excess returns Σ : 

The variance-covariance matrix is assumed to be known and is estimated 

traditionally with the unbiased historical estimator. However, the vector of 

expected returns is a random vector that follows a normal distribution with 

known parameters π ,   and Σ : 

π  is the 1N  expected equilibrium return vector of the market portfolio, and 

serves as a neutral reference point. The scale parameter   indicates the 

uncertainty of the CAPM prior. The smaller value of  , the higher the 

confidence in the estimation of the implied equilibrium return. There are several 

assumptions to set the value of  . Black and Litterman (1992), He and 

Litterman (1999), Lee (2000) and Idzorek (2005) all claim that the solution to 

this practical problem is to impose   to be close to zero because they believe 

that the uncertainty in the mean is less than the uncertainty in the return, and 

they use small values of   ranging from 0.01 to 0.05. Fabozzi et al. (2006) 

 ),N(~ Σμr  (3.1)  

 ),(~ Σπμ N  (3.2)  
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choose   equal to 0.1. Conversely, Satchell and Scowcroft (2000) provide an 

analytical method which sets 1 . Shi and Irwin (2005) demonstrate instead 

that, theoretically, the parameter has to be equal to 1T , where T  is the number 

of observations of asset returns. Mankert (2006) provides a new approach on 

the value   from the point of view of sampling theory. Fabozzi et al. (2008) 

propose a different approach to selecting   which satisfies the equation: 

where ||.||  means the matrix norms 3  , and the matrix S  is the covariance 

matrix of tt πr  , where tr  is the 1N  vector of observed returns on N  assets 

at time t , and tπ  is the 1N  vector of equilibrium returns on N  assets at time 

t , calculated on rolling basis. 

 

Assuming that the capital market is in equilibrium and clear, according to the 

CAPM theory explained in Chapter 2 equation (2.15), π  could be given by: 

where )()( fm rErE    is the market risk premium, β  is the vector of asset betas. 

Betas describes the correlated volatility of assets in relation to the volatility of 

the market portfolio and it can be written as:  

where MiCov ,  is the covariance of risky assets and the market portfolio, and 2

M  

is the variance of the market portfolio return. Note that MMM Σww '2  , and Mw is 

the 1N  vector of market capitalisation weight, and Σ  is the NN   vector of 

variance covariance matrix of asset excess returns. 

Defining the risk aversion coefficient expressed as:  

                                            
 
 
3
 Fabozzi et al. (2008) show that a simple example of the matrix norm is called Euclidean norm, 

which can be calculated by the square root of the sum of squared elements in the matrix. 

 |||||||| ΣS   (3.3)  

 ))()(( fM rErE  βπ  (3.4)  
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2

)()(

M

fM rErE





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which is a measure for the rate at which the investor is willing to accept 

additional risk for a one unit increase in expected return. Bevan and 

Winkelmann (1998) explain the process of adjusting excess return to achieve a 

target Sharpe Ratio (SR) of 1. Black and Litterman (1992) use an SR closer to 

0.5. Satchell and Scowcroft (2000) and He and Litterman (1999) set   as a 

positive constant. They assume the world average risk aversion to be 2.5. 

Drobetz (2001) sets the value of the risk aversion coefficient to be 3. Idzorek 

(2004) sets a risk premium of 3% divided by the market portfolio variance to 

calculate the risk aversion coefficient of 3.07. Beach and Orlov (2007) calculate 

01.2  for the world portfolio. Babameto and Harris (2009) use a value of 

3.5% for the global market risk premium to get   equal to 1.79. Dimson et al. 

(2007) forecast a geometric world risk premium of 3%-3.5%. The investment 

bank uses the risk premium of 4%-5%. 

Then, the equilibrium excess return π  can be denoted by:  

 

And the implied market capitalisation weights can be expressed as:  

 

3.2.2 Investor Views 

Investors can possess several views on the market returns of some assets in a 

portfolio, which differ from the implied equilibrium return. One of the most 

important parts is to translate these views into the Black-Litterman formula. 

Investors do not have to specify views on all of assets. The uncertainty of the 

views has the random error terms vector ε  which follows the normal distribution 

with a mean of zero and the covariance matrix Ω . Note that these error terms 

are unknown and independent. The investor’s views can be expressed as: 

Let K  be the total number of the views, P  be the NK   matrix of view 

portfolios, and q  be the 1K  vector of expected returns on the view portfolios.  

Idzorek (2005) states that the error term ε  would be a positive or negative value 

other than 0 except when the investor possesses 100% confidence about the 

 
MΣwπ   (3.7)  

 
πΣw 11 


M  (3.8)  

 ),0(~, ΩεεPμq N  (3.9)  
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expressed view. The element entered into the BL model is the variance of each 

error term ii , which constitute Ω , where Ω  is a KK   diagonal covariance 

matrix with off-diagonal elements usually setting equal to zero. The general 

case of Ω  can be given by: 

 

He and Litterman (1999) explain that the assumption of a diagonal Ω  matrix is 

not a restriction because the Ω  matrix can always be transferred as the 

1ˆ  ΧΩΧΩ  format to set Ω̂  as a diagonal matrix. The uncertainty of the views 

could be denoted by the variances of the error terms ε . The larger the variance 

of the error term ii , the greater the uncertainty of the view.  

 

In specifying the relative weighting of each individual asset for each view related 

to more than two assets, He and Litterman (1999) and Idzorek (2005) use a 

market capitalisation weighted scheme, which sets the position equal to the 

value of the asset’s market capitalisation divided by the total market 

capitalisation; Satchell and Scowcroft (2000), however, use an equal weighted 

scheme. Meucci (2006) proposes that the matrix of asset weights within each 

view is invertible, and considers extending the BL method to non-normally 

distributed markets and views. Fabozzi et al. (2006) utilise the momentum 

trading strategy to set weights for each asset.  

 

The choice of the diagonal elements of Ω , ii  is also a practical issue in the use 

of the BL model. Idzorek (2005) follows the method of He and Litterman (1999) 

which set the confidence of the view (the ratio of  /ii  ) as equal to the variance 

of the view portfolio 'PPΣ . Fabozzi et al. (2008) provide two methods to obtain 

ii . The first method is to calculate through the backtesting procedure, which I 

will explain in Section 3.3.1. The second way is to derive the implied standard 

deviation from a statistical assumption about the distribution of a view. For 

example, if an investor has a belief that stock B will outperform stock A by 4% 

within an interval from 2% to 6% at a 90% confidence level then, with the 
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assumption of normal distributed view, it can be derived that the implied 

standard deviation would be 1% based on basic statistical knowledge. 

Therefore, ii  would be equal to squared standard deviation at 0.0001.   

 

In the BL framework, portfolio managers can input absolute or relative views. 

For example, the belief that the expected return of stock B is 1.5% can be 

regarded as the absolute view. The belief that the expected returns of stock C 

are higher than that of stock E by 1% is a relative view. For the above absolute 

views, it means that we can long stock B, while for the relative view, it means 

that we can long stock C and short stock E to get a zero-investment view 

portfolio.  

 

Let me give a simple example to help understanding. The first view is an 

absolute view whereas the second one is a relative view. I can express the two 

views together as: 
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The first row of the P  matrix describes the first absolute view and, similarly, the 

second row represents the second relative view. Since my target is to construct 

a zero-investment view portfolio, I choose the weights of the second view to add 

up to zero, but other weighting schemes are also possible. Note that the error 

terms 1 , 2  do not explicitly enter into the BL model, but their variances do. 

For example: 


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Ω  reflects a greater confidence in the views and, conversely,  
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Ω   reflects a lower confidence in the views.  
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3.2.3 Combination of Both Perspectives  

In the Bayesian approach, the CAPM prior can be combined with the additional 

views, the posterior expected returns are distributed as )ˆ,ˆ( ΣμN , where μ̂  is 

given by:  

Implied relations can easily be found from equation (3.11). In the absence of 

views, the P  matrix is NK   zeros, then the posterior expected return becomes 

πμ ˆ ; when the views uncertainty Ω  is small (high confidence in views), the 

posterior expected returns μ̂  tilt on expected returns in the view portfolios; when 

the views uncertainty Ω  is large (low confidence in views), the posterior 

expected return μ̂  is close to implied equilibrium returns. 

 

In the literature of Black and Litterman (1992), an alternative notion is often 

used:  

Idzorek (2005) interprets that the equation (3.12) reflects that the new expected 

return forms as a weighted average of the implied equilibrium return vector π

and view vector q , while the relative weightings are constituted by a function of 

the scalar   and the uncertainty of views Ω . The greater confidence in the 

views, the lower the weighting in the implied equilibrium return, the higher the 

weighting in the views, the closer the new expected return towards the views 

return, and vice versa. As mentioned above, Idzorek (2005) assumes the ratio 

of  /ii  to be equal to the variance of the view portfolio 'PPΣ .  In this case, only 

'PPΣ  enters into function of the weighting, the scalar   will not affect the new 

vector of expected return anymore. He shows a simple example and explains 

that this approach could avoid the sensitivity problem resulting from choosing 

different values of  . Furthermore, Idzorek (2005) proposes a new method to 

assign an intuitive level of confidence (0% to 100%) to each view, free from the 

effect of setting different values of the scalar  . The magnitude of the tilts away 

from market capitalisation weights should be controlled by the user-specified 

confidence level, based on percentage moves of the weights on the interval 

from 0% confidence to 100% confidence. Then the value of ii  would be the 

 )()'('ˆ 1 PπqΩPPΣΣPπμ    (3.11)  

 ]')[(]')[(ˆ 11111 qΩPπΣPΩPΣμ     (3.12)  



58 
 

solution to minimise the sum of the square difference between the target weight 

vector and the weight calculated from the reverse optimisation, as shown in 

equation (3.17).  

 

Satchell and Scowcroft (2000) demonstrate that the posterior covariance matrix 

Σ̂ , which is the variance of the posterior mean estimate about the actual mean, 

is given by: 

It is the uncertainty in the posterior mean estimate, and is not the covariance of 

the returns.  

 

3.2.4 Unconstrained Optimal Portfolio 

The mean-variance optimisation process starts with an estimation of the 

expected returns and covariance matrix, since the posterior expected returns 

have been estimated in the BL model, together with the predictive covariance, 

the optimal portfolio position could be generated from the optimiser.  

 

The estimated expected returns and covariance can be respectively expressed 

as: 

 

For an investor with the risk aversion parameter  , the maximisation problem 

can be written as: 

 

with the first order condition, it can develop that:  

 

Obviously, the optimal portfolio weights can be given by: 

 111 )')((ˆ   PΩPπΣΣ   (3.13)  

 μμ ˆ~   and ΣΣΣ  ˆ~
 (3.14)  

 
wΣwμw

~
'

2
~'max


  (3.15)  
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He and Litterman (1999) derive the optimal portfolio weights as:  

 

The equation (3.18) decomposes the optimal portfolio weights into two parts, 

scaled by a factor of 
1

1
. One part is the market equilibrium portfolio weights

πΣw 11 


M . When there are no views, the investor will hold an optimal 

portfolio with weights of 
1

Mw
 allocated to each asset. The other part is a 

weighted sum of the view portfolios. The weight for each portfolio is given by the 

corresponding element in the vector Λ , which is defined as:  

where:  

The equation (3.19) reflects the effect of several factors on weights carried in 

the optimal portfolio. The first factor is the views, which can be observed from 

the first term. The higher the expected returns on the view portfolio or the lower 

the confidence of the views, the more weights tilt on the views. The second 

factor is the covariance between the view portfolio and the market equilibrium 

portfolio. The third factor shown in the last term is the covariance of the view 

portfolio with other view portfolios. The negative sign in the front of last two 

terms indicates an inverse relation between the weights of views and these 

covariances. In other words, if the covariance between the view portfolio and 

the market equilibrium portfolio increases, or if the covariance of the view 

portfolio with other view portfolios increases, then the weight for each view 

portfolio would decrease. The final optimal portfolio weights would tilt on the 

market equilibrium portfolio weights. In summary, if we have only partial views 
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on some assets, then, by using a posterior estimate of the variance, we will tilt 

the posterior weights towards assets with lower variance and away from assets 

with higher variance. This tilt will not be very large if we are working with a small 

value of  . 

 

He and Litterman (1999) also discuss other cases, including changing risk 

aversion coefficient  , fixing risk limit 
0  and adding constraints on the 

portfolio. When the risk aversion coefficient is not constant, it resorts to the 

scaled optimal portfolio weights 
*

1

*

1 ww



 . When the standard deviation of the 

portfolio is limited to a specific value 0 , the solution of the optimal portfolio 

weights is *0*

2 ~~
'~

w
μΣμ

w


 . When other constraints are imposed on the 

portfolio, the optimal portfolio could be yielded by inputting μ~  and Σ
~

 into the 

portfolio optimiser.  

 

3.3 Extensions of the Black-Litterman Model 

Of course, the Black-Litterman model never stops developing. It is well-known 

that asset returns often show some empirical regularities consisting of thick-

tailed distributions, volatility clustering, common movements and persistence in 

volatilities, thus more and more academic studies focus on improving and 

extending the BL model in favour of the asset returns properties in recent years. 

 

Several studies are concerned with a clear specification of the required input 

parameters including equilibrium returns and views. The original BL model 

holds the assumption that the prior information and the views are jointly 

normally distributed, however, some asset returns cannot be considered to be 

normally distributed in reality, with negative skewness or leptokurtosis 

properties. Giacometti et al. (2007) extend the original BL model to consider the 

effect of different distributions (normal distribution, t-distribution and stable 

distribution) and the alternative risk measures on market equilibrium returns. 

Meucci (2006, 2008) introduces a copula and opinion-pooling methodology to 

use non-normal views into the BL model, with general application to any market 
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distribution. These approaches enlighten Martellini and Ziemann (2007), who 

propose incorporating higher instances of hedge fund return distributions into 

the BL Bayesian approach to construct a portfolio based on the four-moment 

CAPM. Unlike the work of Giacometti et al. (2007), Martellini and Ziemann 

utilise the non-parametric approach for general return distributions instead of 

the parametric method.  

 

With the development of CAPM theory into the Fama and French Factors Model 

(Fama and French, 1992, 1996), some works apply the Fama and French 

Models into the BL model. Krishnan and Mains (2005) propose a two-factor BL 

model which substitutes the original equilibrium return with a multifactor 

equilibrium return. Gofman and Manela (2010) extend the BL approach to any 

linear multifactor asset pricing model such as the ICAPM, and further provide a 

natural Bayesian framework that incorporates an equilibrium model uncertainty 

into the inference problem. Fabozzi et al. (2006) construct the cross-sectional 

momentum portfolio as the view portfolio. Jones et al. (2007) consider the use 

of size, value and momentum factors in constructing a view portfolio inputted 

into the BL model. Babameto and Harris (2009) incorporate value and 

momentum trading strategies to track the benchmark at the desired tracking 

error level under full investment, long-only and beta-neutral constraints.  

 

Furthermore, to take the volatility of asset returns into account, a few 

researchers have done some theoretical and empirical work to extend the 

original BL model by incorporating the volatility models. Qian and Gorman 

(2001) first build a unified theoretical framework to combine both the mean 

vector and the covariance matrix of investor views into the BL method. They 

agree that the creative work of the BL method, which uses the conditional 

distribution implied by the joint equilibrium distribution to adjust the mean vector, 

can reduce the sensitivity of input resulting from mean-variance optimisation. 

However, they argue that both the mean vector and the covariance matrix of the 

view portfolio should be adjusted in the use of conditional distribution, while the 

BL method fails to adjust the covariance matrix of the views. Beach and Orlov 

(2007) use EGARCH-M models to generate their views as inputted into the BL 

model. Palomba (2008) incorporates multivariate FDCC-GARCH forecasts 

about expected returns and covariance matrices to build a few view portfolios 
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into the BL approach with tracking error constraints in tactical asset allocation. 

Conservatively speaking, these studies carefully introduce volatility models to 

obtain reasonable views. However, the market equilibrium excess return 

covariance matrix is assumed to be constant. They still use the sample 

historical covariance matrix on a rolling basis to investigate the market 

equilibrium return. 

 

In the area of controlling BL portfolio risk, most studies refer to standard 

deviation, market exposure and tracking error (Bevan and Winkelmann, 1998; 

He and Litterman, 1999; Jones et al., 2007; Braga and Natale, 2007; Palomba, 

2008; Babameto and Harris, 2009). There are extremely few studies discussing 

constraining the alternative downside risks, such as VaR and CVaR in BL 

portfolio optimisation. Giacometti et al. (2007) consider VaR and CVaR in the 

BL portfolio, but the research aim is to revise the equilibrium returns to reflect 

the non-normal character of the asset returns in the use of VaR and CVaR, and 

to minimise the forecasting error of the equilibrium returns to the realised 

returns. They do not show the full picture of the risk-constrained optimal 

portfolio. Martellini and Ziemann (2007) modify the VaR with higher moments to 

measure the active hedge fund portfolio, and construct the minimum VaR 

portfolio as the benchmark portfolio to obtain the neutral weights. They report 

the modified VaR to evaluate the performance of the extended BL model. 

However, they do not discuss the effects of VaR constraints on the optimal BL 

portfolio. Lejeune (2011) proposes the new VaR-BL model to construct a fund-

of-funds, with the objective of an absolute return within the specific level of VaR. 

His model also incorporates some specific trading constraints into the 

optimisation problem, such as diversification, but-in-threshold, liquidity and 

currency. In his study of VaR constraints, he emphasises the derivation of 

deterministic equivalent and approximation for the VaR optimisation problem in 

order to demonstrate that deterministic reformulations are convex. Furthermore, 

he investigates the computational efficiency of different software solvers to 

solve the derived optimisation problem. He does not show the empirical results 

and makes an analysis within the framework of different VaR constraints.  

Based on the BL model, Veress et al. (2012) obtain forecasts through the Baltic 

Dry Shipping Index for a number of developed and emerging markets in attempt 

to enhance optimal portfolios evaluated by the downside risk in form of 
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maximum monthly drawdown and Sortino ratios. They consider the downside 

risk, however, they focus on using downside risks to evaluate the portfolio 

performance. 

 

In addition, the number of studies concerned with the application of the BL 

model in recent years include those by Becker and Gürtler (2009), Da Silva et 

al. (2009), Cheung (2009), Giacometti and Mignacca (2010), Munda and 

Strasek (2011), Mishra et al. (2011), Fernandes et al. (2011), and Braga and 

Natale (2012). Becker and Gürtler (2009) make attempt to integrate the 

analysts' dividend forecasts into the BL model. Da Silva et al. (2009) propose a 

remedy to help the portfolio manager reduce unintended trading and take less 

risk when applying the BL model into active investment management. Cheung 

(2009) further applies the BL model to several practical issues, and enables the 

implementation and application of the BL model. Giacometti and Mignacca 

(2010) investigate stress test analysis of the current managed portfolio in the 

use of BL framework. Mishra et al. (2011) examine the BL approach in the 

context of the Indian equity market. Munda and Strasek (2011) use target price 

to develop the ‘Target-to-Real-Price’ (TRP) ratio and generate adjusted views 

returns to input into the BL model. Fernandes et al. (2011) compare the use of a 

portfolio optimisation methodology from the BL approach and resampling 

technique. Braga and Natale (2012) propose a new measure for the marginal 

contribution of each view to the ex-ante tracking error volatility (TEV) in the BL 

framework.  

 

In the following section, I will introduce the useful approach of using trading 

strategies in the BL model. I will also briefly present two methods of considering 

alternative risk measures in the BL framework and make a comparison. In 

addition, I make some comments about these extensions. Motivated by these 

methods, I will propose the dynamic BL model with risk constraints and the 

dynamic BL portfolio optimisation with maximal reward to VaR ratio and reward 

to CVaR ratio in Chapter 4. 
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3.3.1 Incorporating Momentum Trading Strategies into the Black-Litterman 

Model  

Fabozzi et al. (2006) incorporate momentum trading strategies to generate 

investor views as the inputted data of a BL portfolio. Jegadeesh and Titman 

(1993) find that the momentum that past winners of securities generates would 

retain their good performance in the near future within a certain period, while 

the past losers would not change their poor performance. Based on the strategy 

of buying past winners and simultaneous shorting past losers, they provide the 

empirical evidence that this strategy could make promising profits on a 

timescale of three to 12 months. Therefore, Fabozzi et al. (2006) propose 

constructing a cross-sectional momentum portfolio as views in the BL model. In 

this section, I will briefly introduce their methods. Firstly, they rank the securities 

based on their performance over the past nine months; then, a long-short 

portfolio can be constructed by purchasing good performers and selling bad 

performers. The quantity used to rank them is their nine-month normalised 

return: 

where, itp ,  expresses the price of security i  at time t , 
itp ,9  expresses the 

price of the security i  nine months before t , and i  is the volatility of security 

.i  

The top half and the bottom half of securities are allocated weights of 
c

w
i

1


and 
c

w
i

1
  respectively. Then, the view matrix P  in the BL model is a single 

row with elements one of the two quantities above. These weights, calibrated 

with volatilities, are able to balance the weights among less volatile and more 

volatile securities. The parameter c  is a constant whose role is to constrain the 

annual long-short portfolio volatility to a certain level (20% in the application). 

Note that the portfolio weights do not sum to zero with this non-zero-cost long-

short portfolio. Since weights are assigned on each security, the expected 

return of this long-short momentum portfolio as the expected view return q  in 

the BL model will be calculated.  
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The next challenge is to decide the confidence level in the views and they use 

the back-testing procedure. After constructing the momentum portfolios in each 

period t , they hold it for one month and observe its return tmr ,  over the holding 

period. For the same holding period, they observe the realised return 
tar ,
 on the 

portfolio of the actual winners and losers. Then, the residual return is calculated 

as the difference between tmr ,  and 
tar ,
. The series of residuals could be 

obtained by moving the evaluation period one month forward and replicating the 

process. In the end, the level of confidence Ω  in the view equals to the 

variance of the series of residual returns. 

 

Indeed, they provide a simple and convenient method for practitioners to 

introduce momentum strategy into the BL model. However, there are two 

shortcomings in this method. On one hand, they do not consider the pro-cyclical 

effect of the momentum strategy and the counter-cyclical effect of the value 

strategy to combine these two strategies (Bird and Whitaker, 2003). With the 

impetus from the contrasting properties of the momentum strategy and the 

value strategy, Babameto and Harris (2009) utilise the combined value-

momentum strategy to form a BL portfolio with a promising out-of-sample 

performance. On the other hand, they assume the volatility to be constant 

during the holding period when they rank the normalised return. It is not realistic 

because a significant proportion of the literature shows empirical results that the 

volatilities of securities are time-varying.    

 

3.3.2 Alternative Risk Measures in the Black-Litterman Approach  

Giacometti et al. (2007) relax the assumption of multivariate normal distribution 

for the returns in the original BL approach to other return distributions, such as 

t-distribution and stable distribution. They improve the BL model by 

incorporating non-normal return distributions and alternative risk measures into 

the CAPM equilibrium returns. They compare the equilibrium returns obtained 

under different return distributions and different risk measures with the 

unconditional mean. Their empirical results support evidence of a better 

forecast by using stable distribution combined with the dispersion risk measure 

and the CVaR risk measure. I will briefly introduce their methodology. 
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Giacometti et al. (2007) propose to modify the equation (3.15) to the general 

case of different return distributions as follows: 

where )'( rw  indicates the measure of risk (the variance, the VaR, the CVaR) 

of the portfolio return rw' , and the equilibrium returns can be given by: 

where Σ  is the covariance matrix under different distributional assumptions, 

VaR  is the Value-at-Risk for the corresponding distribution at the confidence 

level of  , CVaR  is the Conditional Value-at-Risk for the corresponding 

distribution at the confidence level of   , )(rE  is the expected returns. 

 

Note that they use a different method to set the risk aversion coefficient  . 

They set   equal to the solution of an optimisation problem, which could 

minimise the sum of the squared error between the neutral equilibrium returns 

π  and the day after realisation of return for 20 consecutive months on the basis 

of a rolling window of 110 months. 

 

Obviously, they pay more attention to revising the equilibrium returns with VaR 

and CVaR corresponding to different distributions. The impact of choice of 

distributions and alternative risk measures on the optimal BL portfolio actually 

result from the estimated equilibrium returns. They evaluate the forecasting 

performance instead of the unconstrained BL portfolio performance. The risk-

adjusted BL portfolio performance is out of their research scope.  
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3.3.3 A VaR Black-Litterman Model for the Construction of Absolute 

Return Fund-of-funds 

Lejeune (2011) derives the new VaR-BL model, targeting an absolute return to 

construct a fund-of-funds portfolio. He applies the BL approach to expect asset 

returns, and then imposes the VaR constraints and specific trading constraints, 

including diversification, buy-in threshold, liquidity and currency requirements to 

the probabilistic integer and non-convex optimisation problem. From the 

perspective of providing a solution method, his work involves two steps. The 

first step is to derive a deterministic reformulation of the probabilistic problem 

and the next step is to employ a branch-and-bound algorithm to construct the 

optimal fund-of-funds. Furthermore, they evaluate the computation contribution 

of their solution method to confirm that their algorithm technique is efficient, 

robust and fast. I will summarise their methodology as follows. 

 

The VaR-BL fund-of-funds optimisation problem, which is a non-convex 

probabilistic integer problem, is given by: 

Function (3.26) is the object function with target of achieving the maximal 

absolute return in the optimisation model. The six constraints are the budget 

constraint, quadratic constraint, VaR constraint, holding constraint, threshold 

constraint and the integer constraint. The budget constraint means the entirety 

of the capital is invested. The quadratic constraint ensures the variance of the 

portfolio does not exceed a prescribed maximal value of 2

0 . The VaR constraint 

limits the magnitude of the loss of the capital to be, at most, a specified 

probability level of 1  during a certain period. Taking into the lack of 

 μw ~'max  (3.26)  
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subadditivity property of the VaR risk measure, the author imposes the holding 

constraints to construct a well-diversified portfolio, which could compensate for 

the shortcomings of VaR. In the holding constraints, iL  and iU  are vectors 

specifying the lower and upper bounds of the positions of asset i . The 

threshold constraint that avoids small investments in a number of assets due to 

transaction cost, 
iwL  is the prescribed smallest holding size allowed for asset i . 

i  is a binary variable in the integer constraint. 

 

In order to solve the optimisation problem, the first challenge is to make the 

probability inequality easily computable. Under the normal distribution 

assumption of portfolio returns, Lejeune (2011) rewrites the VaR constraint as:  

 

where, 1

1



F  is the )1(  -percentile of the normal distribution F . When the 

probability distribution of the portfolio returns is unknown, the author utilises the 

well-known probability inequalities to obtain convex approximations.  

 

The second task is to solve the optimisation problem with integer constraints; 

the author resorts to a non-linear, branch-and-bound algorithm. Non-linear, 

branch-and-bound algorithm is out of the scope of the thesis. 

 

Lejeune (2011) is the first researcher to impose the VaR constraints on the BL 

model. He adds diversification constraints to remedy the shortcomings of the 

VaR constraints, which fails to satisfy the subadditivity property in the coherent 

measure. However, there is a possible way to impose the CVaR constraints on 

the BL model, because CVaR, which has the subadditivity property, could 

overcome the VaR risk measures. Moreover, Rockafellar and Uryasev (2000) 

propose a new approach for portfolio optimisation to calculate VaR and optimise 

CVaR simultaneously.  

 

In summary, Giacometti et al. (2007) and Lejeune (2011) enhance the BL model 

by incorporating the alternative risk measures in two different directions. 

Giacometti et al. (2007) focus on revising the market equilibrium return, while 

   
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Lejeune (2011) devotes his attention to imposing constraints. In addition, both 

Giacometti et al. (2007) and Lejeune (2011) develop the portfolio optimisation 

model in a static environment, which means they assume that the covariance 

matrix would be constant. However, it is well known that constant volatility is not 

real asset return regularity.  

3.4 Conclusions 

Having carried out an extensive review of the literature, it is clear that the BL 

model is an intuitive and practical method in the asset allocation process, and 

that the BL model has been gradually developed to comply with robust portfolio 

selection in recent years. The three main directions of enhancement consist of 

extending the market equilibrium return, various methods of generating views, 

and constructing constrained BL portfolios. As discussed in Section 3.3, the 

Fama and French Factor Models could be used to obtain revised market 

equilibrium returns, to construct a portfolio with trading strategies in order to 

generate views, and to control the beta measures of the constrained BL 

portfolio. The multivariate GARCH models are concentrated to produce the view 

returns and view covariances. Alternative risk measures, such as VaR and 

CVaR, are suggested to rewrite the market equilibrium return and evaluate 

portfolio performance. VaR can also be regarded as a limited risk requirement 

in the construction of the portfolio. Other constraints are generally imposed by 

tracking error and variety of trading constraints. 

 

However, nowhere in the literature is anything that contributed to generating a 

conditional CAPM equilibrium return of the BL model in a dynamic environment; 

or that studied the impact of CVaR constraints on the BL model in comparison 

with VaR constraints on the BL model. Furthermore, none of the studies 

constructed a BL portfolio with maximal reward to VaR ratio and reward to 

CVaR ratio. Therefore, according to the studies about conditional CAPM 

(Bollerslev et al., 1988) and alternative risk measures such as VaR and CVaR 

discussed in Chapter 2, it is possible to improve the BL model through these 

three directions in my thesis. I will propose the new dynamic BL model in 

Chapter 4.       
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CHAPTER 4 
DATA AND METHODOLOGY 

 

Chapter 3 focusd on the literature of the BL methodology and provided a 

thorough literature review. According to this review, there is a lack of discussion 

on the topic of building the dynamic BL model based on conditional 

expectations. The corresponding dynamic downside risk constrained BL 

portfolio is also a potential research direction, because no one has made a 

study of downside risk measures in dynamic BL portfolios. In this chapter, the 

main purposes are to describe the data used in the empirical study and to 

introduce the new proposed dynamic BL model with VaR and CVaR taken into 

account in portfolio optimisation. I propose a dynamic BL asset allocation 

approach that extends the original BL model to the dynamic case, based on the 

conditional expectations in CAPM. Taking downside risk measures including 

VaR and CVaR into account, I also propose other two reward-to-risk ratios, 

rather than the Sharpe ratio, as the target function in the optimisation problem. 

In addition, I design a method for investigating the impact of imposing VaR and 

CVaR constraints on the dynamic unconstrained BL portfolio, with normal 

distribution and t-distribution at different confidence levels. Furthermore, the 

portfolio performances are analysed and evaluated in a single period and multi-

period, through in-sample analysis and out-of-sample analysis.  

In the following sections, Section 4.1 focuses on the task of data description 

and analysis of the excess return data property of non-normality and time series 

property. Section 4.2 provides a detailed introduction to the new dynamic BL 

model framework with VaR and CVaR implemented in portfolio optimisation. 

Specifically, Section 4.2.1 describes the estimation of time-varying covariance 

in the use of the Rolling Window method, the EWMA model and the DCC model, 

which is the indispensible step in asset allocation process. Section 4.2.2 gives 

the procedures to construct the dynamic BL portfolio. Starting from the 

estimation of conditional equilibrium returns introduced in Section 4.2.2.1, and 

translating the investor’s views into the BL model explained in Section 4.2.2.2, 

the BL conditional expected returns and covariance matrix, which can be 

anticipated from the combination of equilibrium returns and additional views, are 

described in Section 4.2.2.3. Section 4.2.3 focuses on constructing the 
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unconstrained BL portfolio with the target of maximal reward-to-risk ratios. 

Section 4.2.4 shows the method of allocating assets in the portfolio with VaR 

constraints and Section 4.2.5 changes the VaR constraints to CVaR constraints. 

Section 4.2.6 clarifies in-sample and out-of-sample analysis with BL portfolio 

performance evaluation, in a single period and over multiple periods.  

4.1 Data 

The empirical analysis uses monthly price indices and market values for the 

FTSE 10 industry sectors in the US, UK and Japan, for the period from 

December 1993 to May 2010. The whole sample has 197 observations. All of 

these data are collected from DataStream. The selection of FTSE sector indices 

is to avoid survivorship bias in the FTSE 100, with components of companies 

that might not always exist in indices. The currency of the price indices and 

market values is the US Dollar. In addition, I also collect the US one month 

Treasury Bill rate in the corresponding period from the Kenneth R. French Data 

Library. I use price indices to compute returns, and subtract the Treasury Bill 

rate from returns to calculate the excess return: throughout this thesis, I work 

with the excess returns. The market capitalization of each index is used to 

generate weights of all the indices in each month for the market benchmark 

portfolio.  

Table 4.1 shows the summary statistics of excess returns for each asset from 

January 1994 to May 2010. The Jarque-Bera test is used to test the normality 

property of excess returns at 5% significance level. The null hypothesis of the 

Jarque-Bera test is that the sample comes from a normal distribution with 

unknown mean and variance, against the alternative that it does not come from 

a normal distribution; it is a two-sided goodness-of-fit test, suitable when a fully-

specified null distribution is unknown and its parameters must be estimated. For 

large sample sizes, the test statistic4  has a chi-square distribution with two 

degrees of freedom. As can be seen from Table 4.1, the Jarque-Bera test 

significantly rejects the null hypothesis of normality at 5% significance level for 

                                            
 
 

4 The test statistic is calculated by ]
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tJB , where n  is the sample size, s

is the sample skewness, and k  is the sample kurtosis. 
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each asset with p-values that are close to zero, far less than 0.05; it means that 

the excess return of each asset is not subject to normal distribution. In this case, 

the assumption of normal distribution in models actually does not apply in 

practice; it becomes the motivation to relax the normal distribution assumption. 

In the thesis, I estimate the VaR and CVaR with the normal distribution and t-

distribution and compare the difference between the two different distribution 

assumptions with different confidence levels. 

Table 4.2 reports the time series property of excess return for each asset from 

January 1994 to May 2010, showing the first five autocorrelation coefficients 

and statistic values of the Ljung-Box test for serial correlation up to 10 lags, the 

ARCH test of Engle (1982) and the DCC test of Engle and Sheppard (2001). 

Only a few excess return series display highly significant autocorrelations. In 

particular, the excess return series in UK Basic Materials, UK Financials, UK 

Telecom, USA Industrials, Japan Industrials, Japan Technology, and Japan 

Telecom shows virtually significant autocorrelation. The null hypothesis in the 

Ljung-Box Q-test is that all autocorrelations up to the tested lags are zero. This 

null hypothesis is significantly rejected for tests at lags from 1 to 5 and 10 lags. 

This seems suggest that only these excess returns series might need a 

conditional mean model. However, the possibilities of non-linear dependence of 

excess returns and low power of test still exist; there may be non-linear 

dependence that is picked up by momentum but not by serial correlation. I 

conduct Engle's ARCH test with one and two lags ARCH models to check for 

conditional heteroscedasticity. About 20 out of 30 excess return series reject the 

null hypothesis of no ARCH effects in favour of the alternative ARCH model with 

one and two lagged squared innovations in Engle's ARCH tests. The ARCH test 

suggests that there is evidence of significant volatility clustering for most of the 

assets excess returns. The DCC test is to test the null hypothesis of constant 

correlation against the alternative of dynamic conditional correlation. According 

to Table 4.2, the DCC test for 30 excess return series failed to reject the null of 

a constant correlation in favour of a dynamic structure with p-value bigger than 

10%. Interestingly, the DCC test for 18 excess return series selected from 30 

excess return series suggests that the data set of 18 assets exhibits significant 

time varying conditional correlations with p-value less than 1%. It implies that 

the portfolio constructed by 18 assets actually has the dynamic conditional 
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correlation, and it can be naturally concluded that the portfolio constructed by 

30 assets should have the time-varying conditional correlation as well, because 

these 30 assets contain 18 assets with dynamic conditional correlation. In this 

case, it makes us doubt the power of the DCC test for 30 excess return series. 

The non-rejection of the null hypothesis may be due to the lower power of the 

test. Motivated by the results from Table 4.2, volatility models should be applied 

into the portfolio construction process. 

4.2 Methodology 

The results from Table 4.1 and Table 4.2 support the evidence of volatility 

clustering and non-normality characteristic of asset returns. In order to 

generalize the BL model in the real world, the volatility models and tail risk 

measures should be incorporated into the BL model. The following sections 

develop the new dynamic BL model framework step by step. 

4.2.1 Estimation of Time-Varying Covariance 

Apparently, the data in Table 4.2 do exhibit volatility clustering, as fluctuations 

between any two consecutive months are correlated with the adjacent periods. 

The use of time-varying volatility models is a prerequisite for developing the 

dynamic asset allocation model. In order to narrow the scope of research, I 

select two simple and straightforward volatility models, including the Rolling 

Window method and the EWMA model, to estimate the conditional covariance. 

In addition, the use of the DCC model could reduce the magnitude of estimated 

parameters in large-scale assets, and the results of the DCC test as shown in 

Table 2 confirm the dynamic conditional correlation. Therefore, I also employ 

the DCC model to make an estimation of the covariance matrix. In this thesis, 

without consideration of transaction cost, I rebalance the portfolio every month. I 

use the estimated conditional covariance matrices on each rebalancing date.  

 

4.2.1.1 Covariance Matrix via Historical Rolling Window Estimators 

Consider the specification of models for the full N-dimensional conditional 

distribution of asset (excess) returns )',,,( 21 Ntttt rrr r  with conditional mean 

zero and conditional covariance matrix tH : 
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 where tz  is i.i.d with 0)( tE z  and Nt Iz )var( . The covariance matrix tH  is 

calculated on a window length of M  and rolled forward: 

When selecting the window length M , two considerations have to be balanced. 

On one hand, I should choose a sample that is as long as possible in order to 

increase the precision with which we can make the covariance estimation. On 

the other hand, I should also use a sample that is as short as possible in order 

to increase the relevance of our recent sample. Decreasing the window length 

increases the sensitivity of the rolling variance estimator to observations that lie 

within the window, and consequently increases the volatility of the volatility 

estimator. The choice of window length is actually a tricky problem in practice, 

because it would have a big effect on results. The Rolling Window model could 

capture the time-varying property of volatility and covariance but fail to capture 

the persistence of volatility and covariance, due to equal weights imposed on 

both recent and distant observations. 

4.2.1.2 Covariance Matrix via Exponential Weighted Estimators 

The Exponentially Weighted Moving Average (EWMA) model puts more weight 

on recent observations and less on the distant past, and remedies the 

drawbacks of the Rolling Window model to capture the volatility persistence. 

The covariance matrix can be expressed as:  

 

where   is the decay factor 10    and determines how rapidly the weights 

on past observations decline; typically it is estimated between 0.92 and 0.96. In 

RiskMetrics (J.P. Morgan, 1994), the decay factor is set to 0.94. The first term 

of the right hand side of (4.3), 1tH , determines the persistence in volatility, and 

the second term, '

11)1(  tt rr , represents the response of volatility to one-period 

news. This form of the EWMA estimator is both intuitively appealing and more 
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convenient to implement. The forecasting ability of this model easily overcomes 

other more sophisticated methods that add more generality (e.g., GARCH-type 

models).  

The most general multivariate GARCH (1, 1) model is  

 

where the vech  operator converts the unique upper triangular elements of a 

symmetric matrix into a 1)1(
2

1
NN column vector, and A and B are 

)1(
2

1
)1(

2

1
 NNNN  matrices. This model has a total of NNNN

2

1

2

1 234 

parameters. If we use this model in this paper, 432,915 parameters have to be 

estimated. This is a serious dimensionality problem. In order to reduce the 

dimensionality, I consider using the Dynamic Conditional Correlation model. In 

addition, Table 2 shows the results of the DCC test, which implies that the 

conditional correlation is dynamic, and the DCC model could be used in the 

estimation of the covariance matrix. 

4.2.1.3 Covariance Matrix via Dynamic Conditional Correlation Model  

The returns can be either mean zero or the residuals from a filtered time series5. 

It is a simple but useful decomposition of the covariance matrix into the 

correlation matrix pre- and post-multiplied by the diagonal matrix, which can be 

expressed as: 

Where tH  is the time-varying covariance matrix, tD  is the diagonal matrix of 

time-varying standard deviations from univariate GARCH models, with standard 

                                            
 
 
5
 Engle and Sheppard (2001) explain that the standard errors of the model will not depend on 

the choice of filtration (ARMA), as the cross-partial derivative of the log-likelihood with respect to 
the mean and the variance parameters has expectation zero when using the normal likelihood. 

     )()()()( '

111   tttt vechvechvechvech rrAHBCH  (4.4)  

     ),0(| 1 ttt N H~r   (4.5)  

   tttt DRDH     (4.6)  
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deviations i  on the thi  diagonal, i.e., }.{ it diag D  tR  is the time-varying 

correlations matrix. 

Eagle and Sheppard (2001) propose a decentralized estimation procedure. First, 

one fits to each asset return an appropriate univariate GARCH model and then 

standardizes the returns by the estimated GARCH conditional standard 

deviations. Returns are divided by their conditional volatility to obtain the 

standardized zero-mean residual ttt rDe 1 . Then one exploits the standardized 

return vector te  to model the correlation dynamics with the individual 

correlations in the tR  matrix defined by the corresponding normalized elements 

of tJ . 

where tJ  is the approximation of the conditional correlation matrix tR . In the 

DCC model, tJ  converges to the average correlation J . This model is 

analogous to the multivariate GARCH (1, 1) model (see equation (4.4)), but in 

terms of volatility-adjusted standardized returns. If   and   are positive with 

1   and the initial matrix 1J  is positive definite, tJ  is positive semi-definite. 

As the diagonal elements of tJ  are equal to unity only on average, tJ  is 

rescaled to calculate the conditional correlation matrix 

2

1

2

1

)()(


 tttt diagdiag JJJR . The conditional volatility tD  and conditional 

correlations tR  can be input into equation (4.6) to estimate the conditional 

covariance matrix tH . 

4.2.2 Dynamic BL Model  

In the new dynamic BL model, I define the first and second moments of N  

asset (excess) returns, conditional on the information set Y , as follows: 

ttBLt εμr  ,  

),0(| 1 ttt FY V~ε   

     1

'

11 )()1(   tttt JeeJJ   (4.7)  
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where (excess) returns vector )',,,( 21 Ntttt rrr r , tBL ,μ  is the 1N  vector of 

asset expected (excess) returns in BL model in period t, and tV  is the NN 

covariance matrix, tε  is the 1N  error term vector,  (.)F  is any location-scale 

family distribution. 

4.2.2.1 Conditional Equilibrium Return 

Bollerslev et al. (1988) argue that investors may form common expectations on 

returns which are variable conditional expectations instead of constants. They 

utilize the multivariate generalized autoregressive conditional heteroscedastic 

(GARCH) process into the Capital Asset Pricing Model (CAPM) to estimate 

returns. The idea behind their method is that the expected returns are 

proportional to the conditional non-diversifiable risk, which is represented by the 

conditional covariance of each return with the market portfolio.  

Following Bollerslev et al. (1988), let tr  be the 1N  vector of excess returns of 

all assets in the market at time t , and let tπ  be the 1N  conditional mean 

vector and tH  be the NN   conditional covariance matrix of these returns given 

information available at time 1t . In addition, define 1tw  to be the 1N  vector 

of market capitalization weights at time 1t , and the excess return on the 

market portfolio is denoted by tttMr rw '

1,  . When the CAPM holds, the 

conditional mean vector tπ  satisfy the equation as follows: 

where t  is the risk aversion coefficient. Bollerslev et al. (1988) assumed t  to 

be constant. However, some published works explain that the risk aversion 

coefficient would be time-varying (Brandt and Wang, 2003; Smith and Whitelaw, 

2009; Berardi, 2012). In this thesis, I assume t  to be dynamic. In order to 

make the model simple, I use a simple method (Idzorek, 2004; Babameto and 

Harris, 2009) to calculate the risk aversion coefficient as the value of the global 

market risk premium divided by the market variance, as discussed around the 

Chapter 3 equation (3.6). Note that the market variance 1

'

1  ttt wHw  is time-

varying. 

 
1 tttt wHπ   (4.9)  
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4.2.2.2 Incorporating Momentum Strategies to Generate Views 

Following the method of Fabozzi et al. (2006) introduced in Chapter 3 Section 

3.3.1, I also utilize the momentum strategies to generate views as the inputted 

data of the BL model. The difference is that I substitute the constant standard 

deviation with the time-varying standard deviation to calculate the normalized 

return in the dynamic framework. In addition, Richard (1997) argues that the 

momentum effect is strongest at the six-month horizon with annual excess 

returns exceeding three per cent. Thus, in this thesis, I rank the securities over 

the past six months and the momentum portfolios are formed on t and hold for 6 

months. The normalized six-month return itZ ,  is given by: 

where: 

itp ,1   is price of country index i  at time 1t . 

itp ,6  is price of country industrial index i  six months before t .  

it ,   is volatility of country industrial index i  at time t . 

The top half and the bottom half of the country industrial indexes are allocated 

weights of 
cit

ti

,

,

1


   and 

cit

ti

,

,

1


   respectively. Then, the method of 

obtaining the 1N  vector of view weights matrix tP  at time t , view expected 

return vector tq  at time t  and the confidence level tΩ  in the views at time t  are 

the same as for the Fabozzi et al. (2006) method. 

4.2.2.3 Combining Conditional Equilibrium Returns and Views Together 

Since all the parameters have been obtained from previous steps, the next 

essential work in the BL model is to mix the conditional equilibrium return with 

the views using the Bayesian approach. In the dynamic case, substituting the 

parameters in formula (3.11) in Chapter 3 with the conditional estimations, the 

1N  vector of conditional expected returns tBL,μ  at time  t  is given by:  
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where   is the same scale parameter explained in Chapter 3 section 3.2.1. 

Correspondingly, rewriting the formula (3.13) and fitting into the formula (3.14), 

the estimated NN   vector of covariance matrix tV  could be denoted by:  

 

In modelling the covariance matrix of asset returns, tV , the use of different 

dynamic models will generate different results of the vector of covariance matrix. 

4.2.3 Unconstrained Dynamic BL Portfolio  

From formula (4.11) and formula (4.12), the time-varying expected returns and 

covariance matrix can be estimated. During each single period t , in order to 

construct the unconstrained BL portfolio, there are two methods to allocate 

assets. On the one hand, I can simply use the formula (3.17) to find the implied 

weights of unconstrained BL portfolios. Then, the implied weights *

,tBLw  at time 

t  could be given by, 

 

On the other hand, the mean-variance asset allocation models can be utilized to 

form the unconstrained BL portfolios with the estimation of expected returns and 

covariance matrix as input in each period. The optimisation problem, which is to 

maximise the Sharpe ratio, is expressed as: 

 

 11'1 ))((   ttttttt PΩPπHHV   (4.12)  

 
tBLt

t

tBL ,
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,

1
μVw 


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 subject to 1,21 '

,,  1ww tBLtBL   



80 
 

where tBL,μ  is the expected return of Black-Litterman portfolio and 

tBLttBL ,

'

, wVw  is the conditional portfolio standard deviation, tBL,w  is the 1N

vector of portfolio weights. 1 is the 1N  vector of ones. The vector of optimal 

portfolio positions could be solved as: 

 

In the previous two methods, standard deviation is used to measure risk of 

portfolio. I propose to construct portfolios with maximal reward-to-risk ratios 

where risks are measured by the VaR and CVaR of the portfolio. The portfolio 

mean-VaR optimisation problem with target ratio between expected excess 

return and VaR at time t can be written as: 

 

where tVaR ,  is the expected maximum loss on the Black-Litterman portfolio at 

time t  with a certain probability of 1 . Following Rockafellar and Uryasev 

(2000), the VaR of BL portfolio at time t  can be expressed as: 

where )1(1   F  and (.)F  is the cumulative distribution.   is the 

confidence level equal to 99%, 95% and 90%. 

The portfolio mean-CVaR optimisation problem with target ratio between 

expected excess return and CVaR at time t can be written as: 

 

tBLt
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


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subject to 1,21 '

,,  1ww tBLtBL  

(4.16)  
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subject to 1,21 '

,,  1ww tBLtBL  

where tCVaR ,  is the average loss exceeding the expected maximum loss 

tVaR , at time t  on the Black-Litterman portfolio with a certain probability 1 . 

With application to Rockafellar and Uryasev’s method, CVaR of BL portfolio at 

time t  could be expressed as: 

where 



















1
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)1(

,

1F

t

dgggf
 , g  is denoted by ttBLtBL VaR ,,

'

,  μw .  

4.2.4 VaR-Constrained Dynamic BL Portfolio  

I consider that an investor wishes to maximise the reward-to-risk ratios in each 

period t  subject to downside risk measures constraints. There are two main 

downside risk measures: VaR and CVaR. The portfolio optimisation problems 

with the target of obtaining a maximal Sharpe ratio under VaR constraints can 

therefore be written as follows: 

subject to 1,21, '

,,0,  1ww tBLtBLt VaRVaR  

where 0VaR  is the target VaR. It is an art to set 0VaR  in the dynamic 

environment. In single-period analysis, in order to analyse the effect of imposing 

0VaR on the unconstrained BL portfolio, I set the value of 0VaR  equal to 

decreasing scaling factor k  multiplied by VaR of the unconstrained implied BL 

portfolio at each time t , k  could be equal to 0.99, 0.95, 0.90 and reduces 

sequentially. 0VaR  is not constant during the whole period. The hypothesis is 

that imposing VaR constraints could improve the unconstrained SR-BL 

portfolio’s performance.  
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4.2.5 CVaR-Constrained Dynamic BL Portfolio 

It is well-known that the VaR fails to satisfy the sub-additivity property of 

coherent risk measures, which means the portfolio VaR might be bigger than 

the weighted sum of individual assets VaR. The use of VaR as constraints 

might be invalid to control the risk; it may happen that although the portfolio 

VaR seems to meet the target VaR, the target risk level actually is not strict 

enough to constrain risk at a lower level. In addition, VaR cannot measure the 

possible loss that is beyond VaR. In risk management, it is better to use CVaR 

to measure risk and set suitable constraints. Therefore, I propose to add CVaR 

constraints in the portfolio optimisation process. In the following optimisation 

problems:  

  subject to 1,21, '

,,0,  1ww tBLtBLt CVaRCVaR  

Similar to set 0VaR , I set the value of 0CVaR  equal to decreasing scaling factor 

k  multiplied by the CVaR of the unconstrained implied BL portfolio at each time 

t ,  k  could be equal to 0.99, 0.95, 0.90 and reduces sequentially. 0CVaR  is not 

constant during the whole period. The hypothesis is that imposing CVaR 

constraints could improve the unconstrained portfolio performance. 

4.2.6 BL Portfolio’s Performance Analysis 

In the in-sample analysis, I use 197 return observations from January 1994 to 

May 2010 to estimate 197 time-varying variance covariance matrices of 30 

assets by using the Rolling Window method, the EWMA model and the DCC 

method. I use a natural simulation method to fill in the missing value of rolling 

window volatilities6 in the window length. The starting parameter values for the 

EWMA model and the DCC model are set to be the static covariance matrix 

estimated in the whole sample, and then the estimation rolls forward by one 

                                            
 
 

6
For a window length of M , 2
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month and generates covariance estimates for month 2 (February 1994), and 

so on until the end of sample (May 2010). For each iteration, the starting 

parameter values for each model are set to the values estimated in the previous 

iteration. This procedure results in a total of 197 in-sample estimates. The next 

step is to construct the momentum portfolio as explained in Section 4.2.2.2: I 

use price data from December 1993 to May 2010 to get six-month normalized 

returns, with the initial period of the first six-month normalized return being in 

May 1994, then I hold the momentum portfolio for six months to calculate the 

confidence level in the views using a back-testing procedure; the initial value of 

confidence level in the views is calculated in November 1994. Therefore, the 

whole period of the dynamic BL portfolio is from November 1994 to May 2010 in 

in-sample analysis, with 187 estimates. November 1994 is supposed to be the 

first period to report single period empirical results. However, since I choose the 

rolling window length of 50 to calculate the covariance matrix, in order to avoid 

the bias generated from the simulation method, the 51st period, which is in 

August 1998, should be a better period to make a reasonable comparison 

between the Rolling Window method, the EWMA and the DCC volatility models. 

Therefore, I report detailed single period empirical results in August 1998. In 

order to provide a thorough analysis of the effect of positive and negative view 

portfolio expected return on the dynamic BL model solution, I also report the 

other single period results in November 1998. In portfolio performance 

evaluation, unlike the dynamic conditional results in a different single period, the 

multiple periods’ results emphasise average portfolio performance during the 

whole period from November 1994 to May 2010. Correspondingly, in order to 

avoid any bias generated from the simulation method in the window length, I 

also report multiple periods’ performance results during the sub-period from 

August 1998 to May 2010. Chapter 5 will illustrate the detailed empirical results. 

In the out-of-sample analysis, Giacometti et al. (2007) use a window length of 

110 in the Rolling Window method; thus, I initially estimate each of the three 

volatility models using the first 110 observations (from January 1994 to 

February 2003) to generate a one month ahead out-of-sample forecast of the 

conditional covariance matrix for month 111 (March 2003). The estimation 

sample is then rolled forward by one month, the models re-estimate and use 

this to generate out-of-sample forecasts for month 112 (April 2003), and so on 
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until the end of the sample (May 2010). For each iteration, the starting 

parameter values for each model are set to the values estimated in the previous 

iteration. This procedure results in a total of 88 out-of-sample estimates. Then, I 

construct the momentum portfolio with a holding period of six months to input as 

the view portfolio into the BL portfolio. Thus, the first period of the construction 

of the BL portfolio is on August 2003 and the total of out-of-sample estimates is 

reduced to 82. In order to show the results of portfolio turnover, I report 

conditional single period results in September 2003 and the multiple periods’ 

average performance results during the period from September 2003 to May 

2010. I also compare the proposed dynamic BL portfolio performance with the 

risk-adjusted BL portfolio proposed by Giacometti et al. (2007). Chapter 6 will 

show and analyse detailed empirical results.   

4.2.6.1 Single Period Optimisation Statistics 

In order to make clear comparisons between different optimisation problems 

from the empirical study, I report the BL portfolio statistics including expected 

excess return, standard deviation and expected VaR and CVaR in the 

optimisation problems; I also report the value of maximal expected conditional 

Sharpe ratio, maximal expected excess return to VaR ratio, and maximal 

expected excess return to CVaR ratio, which are natural solutions of 

optimisation problems. Moreover, I would draw the BL portfolio’s efficient 

frontier to illustrate the portfolio selection process. 

4.2.6.2 Performance Evaluation  

Single period 

Following Giamouridis and Vrontos (2007) and Harris and Mazibas (2010), I 

calculate realized returns, conditional Sharpe ratio and portfolio turnover to 

assess the BL portfolio performance in the single period. 

The realized return t

pr  of the portfolio at time t  is calculated as: 

 

The conditional Sharpe ratio is computed as: 

 
ttBLtpr rw '

,,   (4.22)  
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The portfolio turnover is defined as: 

 

This formula means that the sum of the absolute changes in the BL portfolio 

weights from 1t  to t . It implies the measure of the fraction of the portfolio that 

needs to readjust the weights at the rebalancing period. 

In addition, considering the drawbacks of standard deviation and VaR explained 

in Chapter 2 Section 2.2.1, CVaR has tractable properties: it is a coherent risk 

measure, it is easy to implement and it takes into consideration the entire tail 

that exceeds VaR on average. I decide to use the ratio of reward to CVaR 

( 
t

t

p

CVaR

r

,

 ) to evaluate portfolio performance in the single period. Note that if 

the realized returns of the portfolio are negative, the Conditional Sharpe ratio 

and reward to CVaR ratio will be negative as well. However, using these 

negative ratios to compare the performance of the portfolio might be incorrect. 

For example, given the same negative excess return, a larger standard 

deviation or larger CVaR would lead to a larger Sharpe ratio (less negative 

Sharpe ratio) or a larger reward to CVaR ratio (less negative reward to CVaR 

ratio), hence signifying a relatively good performance. Actually, with the same 

returns, since the portfolio has taken a higher risk, it would be an 

underperformer. It is necessary to adjust the Sharpe ratio and reward to CVaR 

ratio when the excess return is negative. Israelsen (2003) proposes a simple 

method to adjust the Sharpe ratio for performance measurement. He calculates 

the adjusted Sharpe ratio as the product of negative excess return and 

percentage of risk. I follow Israelsen (2003)’s method to modify the conditional 

Sharpe ratio and reward to CVaR ratio in order to compare the performance of 

the unconstrained BL portfolio. In order to bring the values to a more 

comparable scale, the adjusted ratios can include a constant multiplier of 100. 
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The adjusted conditional Sharpe ratio is computed as 

tp

tp

r

r
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similarly, the adjusted reward to CVaR ratio is computed as 

tp

tp

r

r

t

tp

CVaR

r

,

,

)(

*100

,

,


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Multiple Periods 

Given the optimized weights obtained from the solutions of the previous 

optimisation problems from the first period to the end, I calculate buy-and-hold 

returns on the portfolio for a holding period of one month, and repeat the 

calculation to the end; therefore, I can obtain the time-varying realized returns of 

the portfolio. I also report the average return of time-varying realized returns, 

standard deviation, skewness and excess kurtosis. In order to evaluate the 

performance of the portfolio in multiple periods, I use the Sharpe ratio and the 

information ratio. In addition, I also employ the ratio between rewards to 

downside risk measures in order to assess performance. For example, I 

calculate the return per unit of tail risk, while tail risk is measured by VaR and 

CVaR based on empirical distribution. With the use of these evaluation criteria, I 

make comparisons between the benchmark, unconstrained BL portfolios and 

the constrained BL portfolios. Moreover, I investigate the effect of the choice of 

different distributions and different confidence levels on the dynamic BL 

portfolio’s performance. 

4.3 Conclusions 

Having described the dataset and studied the non-normal property and time 

series property of excess return data, this chapter moves on to focus on the 

methodology for constructing a dynamic BL portfolio and evaluating the 

portfolio’s performance through in-sample analysis and out-of-sample analysis 

in single period and multiple periods, based on three volatility models. The 

proposed dynamic BL portfolios include unconstrained dynamic BL portfolios 

and constrained dynamic BL portfolios. In the construction of the unconstrained 

BL portfolios, the weight solutions are generated from: the reverse optimisation 

implied in the BL model; the optimisation function with target of maximal Sharpe 
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ratio; the optimisation function with target of maximal reward to VaR ratio; and 

the optimisation function with target of maximal reward to CVaR. In the 

construction of the constrained BL portfolios, the weight solutions are produced 

from the optimisation function with the target of maximal Sharpe ratio with VaR 

constraints and CVaR constraints. Furthermore, this chapter also illustrates the 

methods of evaluating portfolio performance in both a single period and multiple 

periods. The in-sample analysis examines the dynamic BL model in samples 

from November 1994 to May 2010, choosing August 1998 and November 1998 

to make in-depth single-period study, while the out-of-sample analysis define 

the sample in the period from September 2003 to May 2010, simply choosing 

September 2003 to investigate the dynamic BL model. The following chapters, 

Chapter 5 and Chapter 6, will explore the empirical work in detail, through in-

sample analysis and out-of-sample analysis respectively.
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Table 4.1 reports summary statistics for the monthly excess return series on 10 FTSE Sector Indices in UK, US and Japan countries for the period 
January 1994 to May 2010. The table also reports the statistics of the Jarque-Bera tests. All the statistics confirm the rejection of normality hypothesis 
at 5% significance level. 

 
Mean Median Standard Deviation Skewness Excess Kurtosis Min Max Jarque-Bera P-value 

UK BASIC MATS  0.0009 0.0034 0.0802 -1.0695 5.7373 -0.4448 0.2267 99.0608 0.0000 
UK CONSUMER GDS  0.0000 0.0039 0.0728 -0.2152 1.4760 -0.2736 0.2569 20.5856 0.0000 
UK CONSUMER SVS  -0.0024 0.0027 0.0523 -0.7789 1.7558 -0.2218 0.1173 32.6288 0.0000 
UK FINANCIALS  -0.0020 0.0024 0.0699 -0.7914 5.6979 -0.3888 0.2888 80.3093 0.0000 
UK HEALTH CARE  0.0008 0.0050 0.0453 -0.2424 0.5934 -0.1553 0.1499 49.4703 0.0000 
UK TECHNOLOGY  -0.0123 -0.0017 0.1210 -0.3899 0.4525 -0.3671 0.2863 58.2601 0.0000 
UK INDUSTRIALS  -0.0031 0.0043 0.0705 -1.1488 3.3503 -0.2971 0.1437 44.3357 0.0000 
UK OIL & GAS  0.0031 0.0050 0.0607 -0.1751 0.6955 -0.1877 0.1639 44.5982 0.0000 
UK TELECOM  -0.0020 0.0027 0.0666 -0.5598 0.7034 -0.2314 0.1561 53.5819 0.0000 
UK UTILITIES  0.0010 0.0001 0.0477 -0.1261 0.9412 -0.1840 0.1459 35.3153 0.0000 
USA BASIC MATS  0.0018 0.0043 0.0645 -0.5359 2.3774 -0.2853 0.2095 12.6095 0.0018 
USA CONSUMER GDS  -0.0015 0.0032 0.0547 -0.7458 1.7533 -0.2290 0.1172 31.0213 0.0000 
USA CONSUMER SVS  0.0012 0.0039 0.0504 -0.5470 1.0648 -0.1843 0.1295 40.5632 0.0000 
USA FINANCIALS  0.0010 0.0066 0.0646 -1.0445 3.6762 -0.2667 0.1788 39.5728 0.0000 
USA HEALTH CARE  0.0028 0.0094 0.0414 -0.7183 0.9942 -0.1351 0.0977 49.9644 0.0000 
USA INDUSTRIALS  0.0026 0.0088 0.0546 -0.7378 2.2875 -0.2245 0.1604 22.0377 0.0000 
USA OIL & GAS  0.0040 0.0042 0.0544 -0.3279 1.2213 -0.2033 0.1629 29.4997 0.0000 
USA TECHNOLOGY  0.0045 0.0140 0.0837 -0.6133 1.0130 -0.3227 0.2017 44.7577 0.0000 
USA TELECOM  -0.0026 0.0074 0.0571 -0.2520 1.1609 -0.1530 0.2300 29.8485 0.0000 
USA UTILITIES  -0.0018 0.0036 0.0477 -0.5481 0.6412 -0.1457 0.1218 55.5314 0.0000 
JAPAN BASIC MATS  -0.0037 -0.0038 0.0704 0.0130 0.7966 -0.2413 0.2045 39.8553 0.0000 
JAPAN CONSUMER GDS  -0.0005 0.0012 0.0572 -0.0230 0.8656 -0.1744 0.2067 37.4125 0.0000 
JAPAN CONSUMER SVS  -0.0045 -0.0078 0.0515 0.2200 0.1892 -0.1555 0.1447 66.4389 0.0000 
JAPAN FINANCIALS  -0.0094 -0.0143 0.0865 0.1602 0.5040 -0.2542 0.2754 51.9803 0.0000 
JAPAN HEALTH CARE  -0.0012 -0.0001 0.0505 0.1763 1.3412 -0.1646 0.1974 23.6069 0.0000 
JAPAN INDUSTRIALS  -0.0013 0.0049 0.0627 -0.3064 0.2980 -0.2138 0.1642 63.0091 0.0000 
JAPAN OIL & GAS  -0.0049 -0.0051 0.0867 -0.2627 0.9109 -0.3160 0.2397 38.0910 0.0000 
JAPAN TECHNOLOGY  -0.0028 -0.0029 0.0864 0.0165 0.1153 -0.2190 0.2567 68.3161 0.0000 
JAPAN TELECOM  -0.0030 -0.0030 0.0769 0.3943 2.1017 -0.2618 0.3188 11.7277 0.0028 
JAPAN UTILITIES  -0.0034 -0.0063 0.0514 0.2053 0.7984 -0.1247 0.2078 41.1697 0.0000 

Table 4.1 Summary Statistics for the FTSE Sector Indices Excess Returns 



89 
 

Table 4.2 Time Series Property 
Table 4.2 reports the test statistics for autocorrelation, autoregressive conditional heteroskedasticity (ARCH) and dynamic 
conditional correlation for the full sample from January 1994 to May 2010. The Ljung-Box-Q test statistic for the autocorrelation of 
up to order 10 is asymptotically distributed as a central Chisquare with ten d.o.f. The ARCH (1) statistic is asymptotically 
distributed as a central Chi-square with one d.o.f. and the ARCH (4) statistic is asymptotically distributed as a central Chi-square 
with four d.o.f. The DCC statistic is distributed as a central Chi-square with one d.o.f. *, ** and *** denote significance at 10%, 5% 
and 1% levels respectively. In DCC test, 30 assets means the sample includes all assets, 18 assets means the sample includes 
include assets selected with significant autocorrelation in the squared residuals with 1 lag. 

 

p-Value 
 

ACF(1) ACF(2) ACF(3) ACF(4) ACF(5) LB-Q(10) ARCH(1) ARCH(4) DCC test statistic 
UK BASIC MATS  0.30*** 0.19*** 0.08*** 0.07*** -0.14*** 45.27*** 39.95*** 41.33*** 30 Assets 1.4075 0.4947 

 UK CONSUMER GDS  0.01 0.00 0.10 -0.11 -0.06 14.97 0.16 7.76* 18 Assets 9.0402 0.0109 
 UK CONSUMER SVS  0.17** -0.01* 0.02 0.17** -0.04** 15.11 1.51 4.88 

    UK FINANCIALS  0.26*** 0.07*** 0.09*** 0.16*** -0.02*** 28.71*** 7.85*** 26.27*** 
    UK HEALTH CARE  0.02 0.03 0.00 -0.08 0.02 2.36 1.34 17.29*** 

    UK TECHNOLOGY  0.12* 0.01 0.08 0.16* -0.03* 11.64 8.66*** 14.71*** 
    UK INDUSTRIALS  0.12* -0.01 -0.01 0.06 0.06 10.25 0.01 0.88 

    UK OIL & GAS  -0.07 -0.02 -0.01 -0.02 0.01 5.96 3.84* 6.39 
    UK TELECOM  0.14** -0.02 0.2*** 0.03** 0.1** 20.09** 4.37** 20.49*** 
    UK UTILITIES  0.09 0.08 0.05 0.07 -0.03 11.14 3.65* 4.36 
    USA BASIC MATS  0.10 0.05 0.02 0.06 -0.07 17.1* 30.15*** 30.93*** 
    USA CONSUMER GDS  0.05 -0.17** 0.01 0.03 -0.01 12.06 0.42 8.74* 
    USA CONSUMER SVS  0.11 -0.16** 0.08** 0.04* -0.05* 9.89 5.57** 11.56** 
    USA FINANCIALS  0.13* -0.04 0.08 0.11 0.08 17.82* 9.88*** 32.56*** 
    USA HEALTH CARE  0.04 -0.05 -0.01 -0.03 0.12 13.94 1.47 12.16** 
    USA INDUSTRIALS  0.11 -0.1 0.05 0.2*** 0.01** 23.06*** 7.78*** 23.07*** 
    USA OIL & GAS  -0.06 0.04 -0.07 0.08 -0.01 9.59 1.44 6.35 
    USA TECHNOLOGY  -0.01 0.02 0.13 -0.03 0.03 7.37 22.23*** 31.23*** 
    USA TELECOM  0.02 -0.06 0.12 0.05 0.09 15.75 11.22*** 24.83*** 
    USA UTILITIES  0.11 -0.02 0.09 0.08 0.05 15.38 1.09 15.43*** 
    JAPAN BASIC MATS  0.10 -0.01 0.13 0.01 0.08 11.12 20.78*** 23.33*** 
    JAPAN CONSUMER GDS  0.07 -0.03 0.17* 0.03 0.01 13.87 2.12 4.19 
    JAPAN CONSUMER SVS  0.11 -0.10 0.08 -0.07 0.03 12.27 0.34 2.98 
    JAPAN FINANCIALS  0.10 -0.05 0.09 0.00 0.03 8.56 0.07 6.14 
    JAPAN HEALTH CARE  0.05 -0.07 -0.03 -0.03 0.02 5.75 0.05 4.82 
    JAPAN INDUSTRIALS  0.17** 0.02* 0.14** 0.02** 0.03* 12.12 7.12*** 10.91** 
    JAPAN OIL & GAS  -0.03 -0.12 0.14* -0.06* -0.04 14.55 8.25*** 8.79* 
    JAPAN TECHNOLOGY  0.13* 0.13** 0.19*** 0.06*** 0.06*** 19.53** 14.62*** 19.97*** 
    JAPAN TELECOM  0.19*** 0.03** 0.03* 0.01 0.16* 16.31* 4.11** 12.52** 
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CHAPTER 5 
IN-SAMPLE DYNAMIC BLACK-LITTERMAN PORTFOLIOS 

 

With the aim of extending the original Black-Litterman (BL) model to comply 

with the asset return styled facts of volatility clusters, non-normality and 

asymmetric features, I propose to apply the volatility models to the traditional BL 

model. In addition, from the perspective of risk management, I also take tail 

risks into account in the asset allocation process; in other words, I use Value-at-

Risk (VaR) and Conditional Value-at-Risk (CVaR) to measure the tail risk and 

construct the unconstrained BL portfolio in the pursuit of achieving maximum 

reward to VaR ratio and reward to CVaR ratio. Furthermore, I investigate the 

empirical study of the dynamic BL model with risk constraints by constructing a 

dynamic constrained BL portfolio, firstly with VaR constraints, and then with 

CVaR constraints. Moreover, the effects of risk constraints, different confidence 

levels and different assumed distributions on the portfolio performance are 

analysed. 

This chapter concentrates on demonstrating the empirical study of dynamic BL 

portfolios, following the methodology illustrated in Chapter 4. There are four 

sections in this chapter.  

Section 5.1 outlines the details of a dynamic unconstrained BL portfolio. In this 

section, Section 5.1.1 describes the benchmark portfolio and analyses the 

performance of the benchmark portfolio. Section 5.1.2 illustrates how to use 

three volatility models to estimate the conditional covariance matrix. Section 

5.1.3 discusses how to set the dynamic risk aversion coefficient. Section 5.1.4 

estimates the implied equilibrium return based on market portfolio. Section 5.1.5 

combines views from the momentum strategy with the implied equilibrium return 

to generate the expected rate of return. Section 5.1.6 forms the dynamic 

unconstrained BL portfolio with inputs of BL expected return and the BL 

conditional covariance matrix into portfolio optimisers. Section 5.1.7 makes 

comparisons between three portfolio optimisation models through efficient 

frontiers and optimisation statistics. Section 5.1.8 focuses on weight solutions 

among different portfolio optimisers and analyses the effect of different 

confidence levels and different assumed distributions on weights solutions. 
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Section 5.1.9 evaluates all unconstrained BL portfolios in a single period and 

over multiple periods. Section 5.1.10 makes conlusions. 

Section 5.2 focuses on a VaR-constrained dynamic BL portfolio, based on three 

volatility models in assumed the normal distribution and the t-distribution, at 

different confidence levels. Section 5.2.1 describes the process of building a 

VaR-constrained BL portfolio, and creates an explanation through the efficient 

frontier. Section 5.2.2 evaluates the in-sample performance in a single period 

and over multiple periods, based on three volatility models. Section 5.2.3 

analyses the effect of VaR constraints, distributions and confidence levels on 

optimisation process, weights, and performances.  

Similarly, Section 5.3 develops this to construct a CVaR-constrained dynamic 

BL portfolio in assumed the normal distribution and the t-distribution, with 

different confidence levels. Section 5.3.1 illustrates the process of building a 

CVaR-constrained BL portfolio and makes a comparison with the VaR-

constrained BL portfolio through efficient frontier figures. Section 5.3.2 

evaluates the in-sample performance in a single period and over multiple 

periods, based on three volatility models, and contrasts this with the VaR-

constrained BL portfolio. Section 5.3.3 also studies the effect of CVaR 

constraints, distributions and confidence levels on the optimisation process, 

weights, and performances, and compares with the VaR-constrained BL 

portfolio. Conclusions are made in each section. 
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5.1 Construction of the Unconstrained Black-Litterman Portfolio 

5.1.1 Benchmark Portfolio 

The market portfolio is formed by FTSE 10 sector indices in the US, UK and 

Japan. The weight of each asset is the market capitalisation of each asset 

divided by the total market value. The performance of the market portfolio plays 

an important role in providing a benchmark for comparison with other portfolios.  

Table 5.1.1 shows the benchmark portfolio performance and its tail risks. From 

Panel A, it can be seen that the benchmark portfolio had an average return of 

0.08% per month with the standard deviation of 4.3% to get the Sharpe Ratio 

(SR) of 1.82% from January 1994 to May 2010. With the negative skewness of 

0.9079 and a somewhat higher kurtosis of 4.9253, the tail risks of the 

benchmark portfolio should not be neglected. Panel B shows the results of 

using the parametric method to estimate the VaR and CVaR of the benchmark 

portfolio at different confidence levels (90%, 95%, 97.5% and 99%): it can be 

found that the estimated VaR ranged from 5.43% to 9.93% with the normal 

distribution assumption, and ranged from 6.52% to 16.04% with the t-

distribution assumption. The estimated values of CVaR were a little higher than 

VaR, within the range 7.47% and 11.39% with the normal distribution 

assumption and, correspondingly, within the range 10.67% and 22.38% with the 

t-distribution assumption. The estimated values of VaR (11.87%) and CVaR 

(17.1%) at a confidence level of 97.5% with the t-distribution assumption were 

close to the values of empirical VaR (12.85%) and CVaR (16.73%). 

Chapter 4 describes the features of the benchmark portfolio, such as non-

normality, volatility clustering and dynamic constant correlation (DCC). 

Therefore, the use of volatility models is necessary. To make it simple to 

estimate the conditional covariance matrix and to capture some styled facts of 

the benchmark portfolio, I choose the rolling window (RW) model, the 

Exponentially Weighted Moving Average (EWMA) model and the Dynamic 

Constant Correlation (DCC) model to estimate the in-sample conditional 

covariance matrix. In Section 5.1.2, I would show how to use these three 

volatility models. 
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5.1.2 Time-Varying Variance and Covariance Matrix 

Firstly, I use the RW model, as explained in Chapter 4, Section 4.2.1.1, to 

forecast 197 time-varying variance covariance matrices. The choice of the 

window length is an art, balancing the trade-off between the distant data and 

recent data. In order to show the effect of the different window lengths on the 

benchmark volatility, in this section, I choose a window length of 50 and a 

window length of 100 to make a comparison. The first sample has 50 

observations (from January 1994 to February 1998); I calculate the historical 

sample covariance as the forecasted covariance matrix. On a rolling basis, I 

would get 147 historical sample covariance matrices (from March 1998 to May 

2010). Alternatively, I would only get 97 historical sample covariance matrices 

(from May 2002 to May 2010) with the 100 window length (from January 1994 

to April 2002). In order to make a comparison in the same time horizon, this 

means 197 time-varying conditional covariances; I use a natural simulation 

method to fill in the missing values of RW volatilities.7 

Secondly, I utilise the simple EWMA model, as shown in Chapter 4, Section 

4.2.1.2, to make an estimation of 197 conditional covariance matrices, 

according to the equation (4.3) by setting an initial covariance matrix equal to 

the whole sample average covariance matrix.  

Thirdly, when I use the DCC model8 (as described in Chapter 4, Section 4.2.1.3) 

to estimate the conditional covariance matrices, I finish the first step in 

forecasting the univariate GARCH model based on 197 observations in the 

whole sample, and then standardise the returns by the estimated GARCH 

conditional standard deviations.   

Although I have estimated conditional covariance matrices for 30 assets during 

each period, the large dataset of the 3030  vector of conditional covariance 
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8
 I go to Prof. Kevin Sheppard’s matlab codes of the DCC model in the UCSD GARCH Toolbox 

to make parameter estimations, which are provided on the website http://www.spatial-
econometrics.com/, and have been used by modifying the codes, according to the needs of the 
analysis.   

http://www.spatial-econometrics.com/
http://www.spatial-econometrics.com/
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matrices in 197 periods is not convenient to report upon within this thesis. To 

study the effect of different volatility models on the portfolio time-varying 

standard deviation, I firstly calculate the volatility of the market portfolio by

tMttMtM ,

'

,, wHw , where 
tM,w  is the market capitalisation of each index at 

time t , and tH  is the conditional covariance matrix at time t , as can be seen in 

Figure 5.1.1. The simulation method of filling the missing values in the RW 

model leads to a less volatile trend in the previous 50 months and 100 months. 

The trends of monthly volatilities of the benchmark portfolio in the use of 

different volatility models (DCC, EWMA and RW50) were generally similar, with 

peaks and troughs falling in the same sub-periods in the whole period from 

January 1994 to May 2010. The monthly volatilities of the benchmark portfolio 

stayed in the relatively lower level range of between 2.7% and 4.3% before 

August 1998. This was followed by a jump to slightly higher volatilities, caused 

by the adverse effect of the Asian financial crisis; frequent rises and drops of 

volatilities changed to around 5% (DCC model) and 4.5% (EWMA model and 

RW50 model) from September 1998 to May 2003. Then, the tendency of the 

volatilities declined to the lower point of around 2.8% (DCC model) in April 2007 

and around 2.2% (EWMA model and RW 50 model) in June 2007. Because of 

the outbreak of the global financial crisis, it can be observed that the volatilities 

had sharp increases to a peak of 7.5% in November 2008 (DCC model), 6.9% 

in May 2009 (EWMA model), and 5.3% in April 2010 (RW50 model). The 

monthly volatility of the benchmark portfolio calculated by the RW model with a 

window length of 100 showed a relatively flat trend, close to the level of 4.4% 

from May 2002 to March 2009, and with a small increase to 4.8% in December 

2009. Obviously, compared with other methods, the choice of the window length 

of 100 in the RW method significantly decreased the volatility of the benchmark 

portfolio. With this failure to reflect sensitive volatilities in the market, it might not 

be quite suitable to choose a window length of 100 in dynamic asset allocation. 

Therefore, I do not use a window length of 100 in the RW method to elaborate 

the results of the dynamic BL portfolios in the in-sample analysis.    

5.1.3 The Risk Aversion Coefficient 

As discussed in Chapter 3, Section 3.2.1, the risk aversion coefficient could be 

calculated by the formula (3.6). Following the method of Idzorek (2004) and 

http://en.wikipedia.org/wiki/Financial_crisis_of_2007%E2%80%932008
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Babameto and Harris (2009), I set the value of the global market risk premium 

first and then divided it by the market portfolio standard deviation. Dimson et al. 

(2007) forecast a geometric world risk premium of 3-3.5%. The investment 

banks normally use a risk premium of 4%-5%. As Babameto and Harris (2009) 

make a reasonable assumption in setting the value of world risk premium, I 

choose the same reasonable value of 3.5%; on a monthly basis, the value 

would be set to be 0.29%. Since the market portfolio standard deviation is time-

varying, as shown in Figure 5.1.1, thus, the resulting risk aversion coefficient is 

time-varying. To avoid the influence of the simulated data of conditional 

variance in the RW method and to make a comparable analysis, I calculate the 

risk aversion coefficient from the 51st period (March 1998). Figure 5.1.2 shows a 

time-varying risk aversion coefficient with the RW, EWMA, and DCC models 

from March 1998 to May 2010. With the fixed value of the monthly world risk 

premium, it could be easy to conclude that the trend of the monthly risk aversion 

coefficients had an inverse relationship with the trend of the monthly volatilities 

of the benchmark portfolio, as displayed in Figure 5.1.2. The monthly risk 

aversion coefficients plunged 50% to the lower range of between 0.9 and 2.3 in 

September 1998, and stayed in this range until the beginning of 2004. The 

monthly risk aversion coefficients began to climb to their highest points at 3.65 

(DCC), 5.59 (EWMA) and 5.91 (RW50) before the credit crisis in 2007, and then 

descended to the lower level around 1 (RW50) or even below 1 (DCC and 

EWMA) in 2009. The average monthly risk aversion coefficients were around 2, 

specifically 1.83 (DCC), 2.10 (EWMA) and 2.11 (RW 50).    

5.1.4 The Implied Equilibrium Return 

Section 5.1.2 and Section 5.1.3 have provided all the parameters I need to 

estimate the implied equilibrium return. According to the formula (4.9) in 

Chapter 4, Section 4.2.2.1, I can compute the implied equilibrium return for 

each index. The momentum view expected return (discussed in Section 5.1.5) 

would be initially estimated in August 1998; in order to make the analysis 

consistent, I would report the implied equilibrium return in August 1998, as 

shown in Table 5.1.2. The estimated risk aversion coefficients based on three 

volatility models were 2.2166 (DCC), 1.3004 (EWMA) and 3.5373 (RW50) in 

August 1998. The implied equilibrium returns of UK industry indices when the 

DCC model was used showed values more than 0.1% higher than those when 
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the EWMA and RW50 models were used. There were no big differences in the 

implied equilibrium returns of most of the indices used between the EWMA 

model and the RW50 model. Black and Litterman (1992) define the implied 

equilibrium returns as the set of expected returns that would clear the market if 

all investors have identical views. They suggest investors to use these neutral 

means as the starting point to input investor views and set optimisation 

objectives and constraints. The next task is to combine investor views with the 

market portfolio.        

5.1.5  Inputting Views with the Momentum Strategy 

In Chapter 4, Section 4.2.2.2, I described how to use a momentum strategy to 

construct the view portfolio. Fabozzi et al. (2006) set the parameter c as a 

constant to constrain the annual long-short portfolio volatility to a certain level at 

20%. I calculate c  equal to 35 to satisfy this requirement. Table 5.1.3 displays 

the results of the view portfolio weights (P ), the expected return of the view 

portfolio (q ), and the confidence variance (Ω ) in August 1998. 

As shown in Table 5.1.3, the long-short momentum portfolio based on different 

volatility models had 15 of the same assets with negative weights (Japanese 

industrial indices except Japan Utilities, two USA industrial indices including 

USA Oil & Gas and USA Basic Materials, and four UK industrial indices 

including UK Basic Materials, UK Consumer Goods, UK Financials and UK Oil 

& Gas). With another 15 of the same assets in positive positions, the 

momentum portfolio allocated the smallest positive weight of 6.81% in the DCC 

model, 7.05% in the EWMA model and 6.88% in the RW model to UK 

Technology. Simultaneously, it allocated the smallest negative weight of 7.92% 

in the DCC model, 7.49% in the EWMA model and 9.83% in the RW model to 

Japan Oil & Gas. For the DCC method, the remaining positive assets had 

positions ranging between 10.16% (UK Telecom) and 21.24% (USA Health 

Care), and remaining short positions ranging between 9.86% (Japan Financials) 

and 15.80% (USA Oil & Gas). For the EWMA method, the remaining positive 

assets had positions ranging between 10.02% (USA Technology) and 21.90% 

(USA Utilities), and remaining short positions ranging between 7.85% (Japan 

Financials) and 17.33% (Japan Health Care). For the RW method, the 

remaining positive assets had positions ranging between 13.28% (USA 
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Technology) and 24.18% (USA Consumer Services), and remaining short 

positions ranging between 10.33% (Japan Financials) and 21.96% (USA Oil & 

Gas). Comparing positive ranges among the three volatility models, the DCC 

method and the EWMA method had a similar range, and the RW method 

increased to a higher level of range, about 3%. Comparing negative ranges 

among the three volatility models, the EWMA method enhanced the width of 

position range by about 2% on both sides, more than that of the DCC method, 

and the RW method increased the level of the largest negative position by 6% 

in 30 assets more than that of the DCC method. It can be concluded that the 

use of different volatility models would generate different degrees of effect on 

the asset positions of the momentum portfolio. The use of the DCC method 

allocated weights more conservatively than the RW method, and the EWMA 

method stood in the middle. I can also reach the same conclusion in another 

period (November 1998) by ranking the portfolio weights from Panel A in Table 

5.1.4 in order from the smallest to the largest.      

The expected view return was the expected return of the long-short momentum 

portfolio. As shown in Panel B in Table 5.1.3, the expected return was -6.2% 

(DCC), -8.62% (EWMA) and -9.90% (RW50) in August 1998. These negative 

expected returns reflected the negative effect of the Asian financial crisis in 

1998. The expected return changed every month. In November 1998, the 

expected return was 1.91% (DCC), 2.95% (EWMA) and 3.93% (RW 50), as 

shown in Table 5.1.4, Panel B.  

Followed the backtesting method of Fabozzi et al. (2006), as introduced in 

Chapter 3 Section 3.3.1, I calculated the level of confidence Ω  in the view equal 

to 0.47% (DCC), 0.50% (EWMA), and 1.10% (RW50). Since the momentum 

portfolio is the only view inputted into the BL model, the matrix of the level of 

confidence Ω  has only one element, which is equal to the variance of the series 

of residual returns. The lower level of confidence means the greater level of 

certainty of the view, and the expected returns of the BL portfolio would be 

close to the expected returns of the view portfolio.  

It should be remembered that one of the aims in constructing the BL portfolio is 

to build an active, outperforming portfolio with reasonable weights. A better 

realised performance of the momentum portfolio than the benchmark portfolio 
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becomes a point of concern. Figure 5.1.3 shows the accumulative returns of the 

benchmark portfolio and the momentum portfolio from August 1998 to May 

2010. The momentum portfolio can beat the benchmark portfolio during two 

periods from the beginning of 2001 to the end of 2003, and the period of global 

financial crisis from 2008 to 2010. The momentum portfolio, based on the DCC 

model, showed a better performance than the EWMA model and the RW50 

model before June 2003, and then the performance of the momentum portfolio 

based on the EWMA model and the RW50 model gradually overtook that of the 

DCC model. The accumulative returns of the momentum portfolio in the EWMA 

model and the RW50 model had similar values over the whole period, except 

that the accumulative returns with the EWMA model had an average of 9.26% 

higher values than that of the RW50 model in the period after April 2009. 

Table 5.1.5 reports the mean, standard deviation and SR to create a 

performance comparison between the momentum portfolio and the benchmark 

portfolio from November 1994 to May 2010, and in the sub-period from August 

1998 to May 2010. The momentum portfolio always outperformed the 

benchmark portfolio with a much higher SR. The momentum portfolio based on 

the EWMA model was superior to the momentum portfolio based on the DCC 

model and the RW50 model without 50 simulated data in the sub-period.  

5.1.6 Black-Litterman Expected Return and Covariance Matrix 

According to Chapter 4, Section 4.2.2.2, I could use the momentum portfolio 

and translate it as the only view to input into the BL model to calculate the BL 

expected return. Employing the formulae (4.11) and (4.12), I can calculate the 

expected returns for each index and relevant covariance matrices every month. 

Table 5.1.6 reports the BL expected returns for each index in August 1998. 

Table 5.1.7 reports the BL expected returns for each index in November 1998. 

Most of the BL expected returns in Table 5.1.6 and Table 5.1.7 were positive, 

except that the use of the EWMA model generated some negative BL expected 

returns. Black and Litterman (1992) point out that the BL expected returns 

would tilt to the expected returns in the view portfolios with higher confidence in 

views from the market neutral equilibrium returns. However, compared with the 

implied equilibrium returns in relevant periods, the change of BL expected 

returns in each asset was smaller than 80bp in August 1998, and the change of 



99 
 

BL expected returns in each asset was much smaller, not more than 10bp in 

November 1998. It seemed that the BL expected returns were less subject to 

the expected returns of the view portfolios, although I possessed near 100% 

confidence level of views. The main reason was that the expected return of the 

view portfolio was not large enough to have a significant influence on expected 

returns of every asset. For example, the expected return of the view portfolio in 

the DCC model in August 1998 was 6.2%; if the effect was shared by eight 

assets, the change would be 0.8% in each asset.  

5.1.7 Comparison of Unconstrained Portfolio Optimisation Models 

The previous section displayed and compared the weights solutions of different 

unconstrained BL portfolios. In this section, I will focus on illustrating and 

analysing the optimisation process in the use of one volatility model (DCC) in a 

single period (August 1998). 

5.1.7.1 Unconstrained Black-Litterman Portfolio Frontier 

Figure 5.1.6 plots an unconstrained BL portfolio frontier for three different 

optimisation models, including maximal SR optimisation, maximal excess return 

(reward) to VaR ratio optimisation, and maximal excess return (reward) to 

CVaR ratio optimisation, in August 1998 at a confidence level of 99%. In Figure 

5.1.6 (a), the curve above point B is the efficient frontier in the SR-BL model, 

point A is the tangent portfolio that has the highest SR of 10.32% with an 

expected excess return of 0.59%, and a standard deviation of 5.68%. Point B is 

the minimum variance portfolio with minimum standard deviation equal to 2.43%. 

In Figure 5.1.6 (b), the curve above point D is the efficient frontier in the 

maximal VaR-BL model. Point C is the tangent portfolio that has the highest 

reward to VaR ratio of 4.62%, with an expected excess return of 0.59% and a 

VaR of 12.86%, and point D is the minimum VaR portfolio with a minimum VaR 

equal to 5.51%. In Figure 5.1.6 (C), the curve above point F is the efficient 

frontier in the maximal CVaR-BL model. Point E is the tangent portfolio that has 

the highest reward to CVaR ratio of 4.59%, with an expected excess return of 

0.57% and a CVaR of 14.41%; point F is the minimum CVaR portfolio with 

minimum CVaR equal to 6.33%. Note that all results are based on excess 

return, so the starting point of the tangent line is zero. 
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5.1.7.2 Unconstrained Black-Litterman Portfolio Optimisation Statistics 

Figure 5.1.6 is a specific example to show that an unconstrained BL portfolio 

optimisation process is the process to find the tangent portfolio on the efficient 

frontier. In order to analyse the difference between these optimisation models, I 

will report both the statistics inputted into the optimisation models and the 

results produced from the optimisation models in a single period. Table 5.1.8 

shows the statistics for unconstrained BL portfolio optimisation in August 1998. 

According to Panel A, both the implied BL portfolio and the SR-BL portfolio had 

the same value of expected excess return to VaR ratio ( VaR/ ), expected 

excess return to CVaR ratio ( CVaR/ ) and expected conditional Sharpe ratio 

(ECSR), which were higher than the benchmark portfolio. Investors would bear 

higher risk to earn higher return with the construction of an SR-BL portfolio 

compared with the construction of an implied BL portfolio. This can be explained 

by the reason that the SR-BL portfolio allocated assets more aggressively than 

the implied BL portfolio in August 1998, as shown in Table 5.1.9. 

Panel B and Panel C in Table 5.1.8 report the corresponding statistics of an 

unconstrained DCC-MVaR-BL portfolio and a DCC-MCVaR-BL portfolio with the 

normal distribution and the t-distribution at confidence levels of 99%, 95% and 

90% in August 1998. In both the normal distribution and the t-distribution, the 

lower the confidence level, the higher the values of VaR/ , CVaR/  and 

ECSR in the DCC-MVaR-BL portfolio and the DCC-MCVaR-BL portfolio. For 

the normal distribution and the t-distribution, the values of VaR/ , CVaR/  

and ECSR in the DCC-MVaR-BL portfolio were nearly same as the 

corresponding values in the DCC-MCVaR-BL portfolio at confidence levels of 

99%, 95% and 90%, with a difference no larger than 0.1%.  When the normal 

distribution changed to the t-distribution, the decreasing changes of values of 

VaR/ , CVaR/  and ECSR in the DCC-MVaR-BL portfolio were much larger 

at a confidence level of 99% than at the other two confidence levels of 95% and 

90%. However, the decreasing changes of values of VaR/ , CVaR/  and 

ECSR in the DCC-MCVaR-BL portfolio were larger at all three confidence levels 

of 99%, 95% and 90%. In conclusion, the decreasing changes of values of 

VaR/ , CVaR/  and ECSR in the DCC-MCVaR-BL portfolio were more 

subject to the distribution assumption of the t-distribution.  
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When Panel B and Panel C are compared with Panel A, the DCC-MVaR-BL 

portfolio and the DCC-MCVaR-BL portfolio cannot generate a larger ECSR than 

the SR-BL portfolio but can generate larger VaR/  and CVaR/ . These 

results are consistent with the viewpoints of Alexander and Baptista (2003) that 

the investor who uses the highest reward-to-VaR ratio to optimise the asset 

cannot maximise the SR, and the standard deviation of the portfolio selected by 

the maximal reward-to-VaR ratio is higher than the portfolio selected by the 

maximal SR. In addition, different results shown in different confidence levels 

also verify the concern of Alexander and Baptista (2003) that the choice of 

confidence level would have an influence on the reward-to-VaR ratio, and also 

on the rankings of the portfolio performance based on the different evaluation 

ratios. 

5.1.8 Unconstrained Black-Litterman Portfolio 

The main task of this section is to construct the unconstrained BL portfolio by 

using the asset allocation model. In the asset allocation model, the expected 

return and the covariance matrix are important inputs. I will impose the BL 

expected return and the BL covariance matrix onto the portfolio optimiser to 

obtain the optimal portfolio.  

5.1.8.1 Construction of the Implied Black-Litterman Portfolio and the 

Sharpe Ratio Black-Litterman Portfolio 

The simplest method is to use the reverse optimisation, as formula (4.13), to 

allocate assets without any constraints. This portfolio is called the implied BL 

portfolio. The other common method is to allocate assets to get the maximal SR 

as described in optimisation problem (4.14) with the solution (4.15). This 

portfolio is called an unconstrained SR-BL portfolio. Table 5.1.9 and Table 

5.1.10 show weights allocated to each index in the use of both optimisation 

methods in August 1998 and in November 1998. Unlike the traditional mean-

variance method shown in Appendix 5.1.3, which would generate unrealistic 

extreme weights in assets, BL models can generate balanced and more 

reasonable results. According to Table 5.1.8 and Table 5.1.9, there was an 

obvious coincidence in the long or short of each asset between the implied BL 

portfolio and the SR-BL portfolio, no matter which volatility model was used. 

However, the percentage of buying or selling assets was slightly different 
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between the implied BL portfolios and the SR-BL portfolios in the use of the 

same volatility model. The SR-BL portfolio allocated assets with both long 

positions and short positions a little larger than the implied BL portfolio in 

August 1998. Conversely, the SR-BL portfolio allocated assets with both long 

positions and short positions a little smaller than the implied BL portfolio in 

November 1998. Comparing the equation (4.13) and equation (4.15) in Chapter 

4, the numerators of the solution of the BL portfolio are same; the different 

denominators are risk aversion coefficients t  in the implied BL portfolio and 

vector tBLt ,

1' μV1   in the SR-BL portfolio, respectively. In the use of the DCC 

model, the denominator of the SR-BL portfolio was equal to 1.7871, a little lower 

than the risk aversion coefficients  of 2.2166 in August 1998. In November 

1998, the denominator of the SR-BL portfolio was equal to 1.0202, a little higher 

than the risk aversion coefficients   of 0.8949. Different time-varying 

denominators would lead to different solutions between the implied BL portfolio 

and the SR-BL portfolio. Appendix 5.1.2 shows time-varying denominators in 

the implied BL portfolio and the SR-BL portfolio. It can be seen that the values 

of denominators of the SR-BL portfolio were more volatile when compared with 

the implied BL portfolio from November 1994 to May 2010. In the implied BL 

portfolio, the average of the denominators was 1.9266 and the standard 

deviation was 0.8511. In the SR-BL portfolio, the corresponding values were 

1.9553 and 0.9446. Therefore, the maximal SR method would allocate assets 

more conservatively or more aggressively during different periods, compared 

with the reverse optimisation method.  

By observing weights allocated to assets in the implied BL portfolio among three 

volatility models in Table 5.1.9, the positions in the implied DCC-BL portfolio 

ranged from -7.79% at UK Utilities to 12.5% at USA Oil & Gas; the positions in 

the implied EWMA-BL portfolio ranged from -20.05% at Japan Utilities to 22.07% 

at USA Oil & Gas. When the RW model was used, the positions ranged from     

-3.16% at Japan Utilities to 9.03% at USA Oil & Gas. It can be concluded that 

the use of the EWMA model would generate the most aggressive investing 

solutions in assets, followed by the DCC model with moderate investing 

solutions, and then the RW model with conservative investing solutions. This 

conclusion also applied to the SR-BL portfolio. In addition, the weights in Table 

5.1.10 reflected a similar effect of volatility models on weights as well. 
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Figure 5.1.4 shows the weights of each asset in the benchmark portfolio, 

momentum portfolio and implied BL portfolio in the use of the DCC model. 

According to Figure 5.1.4, it can be seen that weights in the implied BL portfolio 

were allocated in a contrary direction compared with weights in the momentum 

portfolio in August 1998. The main reason was that the expected return of the 

momentum portfolio was negative, at -6.20% in August 1998 in the use of DCC 

model, as shown in Table 5.1.3. In November 1998, the expected return of the 

momentum portfolio was positive at 1.91% in the use of the DCC model, as 

shown in Table 5.1.4; weights in the implied BL portfolio tilted to weights in the 

momentum portfolio following the feature of the BL model in Figure 5.1.5. 

Appendix 5.1.4 reports the average value of weights assigned in each index in 

the unconstrained implied BL portfolio and the SR-BL portfolio in the period 

from November 1994 to May 2010 and Appendix 5.1.5 reports the standard 

deviation of time-varying weights in each index. The average positions in the 

implied DCC-BL portfolio ranged from -0.06% at JAPAN Oil & Gas to 12.5% at 

USA Health Care; the average positions in the implied EWMA-BL portfolio 

ranged from -0.02% at UK Utilities to 12.62% at USA Financials. When the RW 

model was used, the average positions ranged from 0.11% at UK Oil & Gas to 

12.68% at USA Healthcare. The average positions in the DCC-SR-BL portfolio 

ranged from -0.86% at UK Utilities to 11.72% at USA Health Care; the average 

positions in the EWMA-SR-BL portfolio ranged from -0.56% at Japan Utilities to 

12.10% at USA Financials. When the RW model was used, the average 

positions ranged from 0.20% at UK Oil & Gas to 12.39% at USA Healthcare. 

Overall, the absolute range was around 12.5%. The average effect of volatility 

models on weights’ range was not significantly different. The use of the EWMA 

model would generate slightly aggressive investing solutions in assets, followed 

by the DCC model with moderate investing solutions, and then the RW model 

with slightly conservative investing solutions. According to Appendix 5.1.5, it 

can be found that the standard deviation of weights in the SR-BL portfolio was 

slightly higher than that of weights in the implied BL portfolio when the DCC 

model and the EWMA model were used. When the RW model was used, the 

standard deviation of weights was much lower than that of weights with other 

models used. Weights in the DCC-BL portfolio were most volatile as can be 
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reflected by the highest average standard deviation of 9.07% (the implied BL 

portfolio) and 11.90% (the SR-BL portfolio). 

5.1.8.2 Construction of the MVaR-BL Portfolio 

I propose a new method, which is closely related, to maximise the reward-to-

risk ratios in the optimisation model. Unlike the SR, in which the risk is 

measured by standard deviation, I measure risk by using VaR with the 

optimisation problem displayed in Chapter 4, Section 4.2.3, function (4.16). This 

unconstrained BL portfolio is named the MVaR-BL portfolio. In this Section, VaR 

is estimated by the parametric method with the assumption of the normal 

distribution and the t-distribution at the confidence level of 99% in the use of 

different volatility models. Then I study the effect of distribution assumptions 

and three confidence levels on an MVaR-BL portfolio based on the DCC model 

(DCC-MVaR-BL portfolio). 

The results of weights allocated in the MVaR-BL portfolios in August 1998 and 

in November 1998 can be found in Table 5.1.11 and Table 5.1.12. In August 

1998, five assets including UK Technology, UK Telecom, UK Utilities, USA 

Consumer Goods and USA Telecom had short positions, no matter which 

volatility models were used. Unlike the RW model which allocated positive 

weights to four assets such as UK Consumer Services, UK Health Care, USA 

Utilities and Japan Utilities, both the DCC model and the EWMA model 

allocated negative weights to these assets. Exceptionally, the EWMA model 

took short positions on USA Consumer Services, USA Financials and USA 

Industrials. In November 1998, five assets, including UK Basic Materials, UK 

Consumer Goods, UK Industrials, UK Oil & Gas and USA Consumer Goods 

had short positions under three volatility models; the UK Consumer Services 

index was allocated negative weights in the use of the EWMA model. To sum 

up, the general direction of long or short of the selected asset was the same in 

the use of three volatility models under the normal distribution and the t-

distribution assumptions. However, the choice of volatility models and 

distribution assumptions had different effects on the specific position of each 

asset. According to Table 5.1.11, in August 1998, for the normal distribution, the 

positions ranged between -6.89% at USA Telecom and 14.63% at Japan 

Technology in the use of the DCC model; the positions ranged between -28.25% 

at UK Telecom and 27.07% at Japan Technology in the use of the EWMA 
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model. When the RW model was used, the positions ranged from -3.94% at UK 

Telecom to 11.24% at USA Health Care. When the distribution assumption 

changed to the t-distribution, the position range narrowed to between -4.83% at 

UK Telecom and 10.61% at Japan Financials in the use of the DCC model; the 

positions range slightly narrowed to between -26.22% at UK Telecom and 22.19% 

at Japan Technology in the use of EWMA model. When the RW model was 

used, the positions stayed similar, ranging from -3.99% at UK Telecom to 11.02% 

at USA Health Care. Therefore, similar to the implied BL portfolio and the SR-

BL portfolio, weights allocated in the MVaR-BL portfolio based on the use of the 

EWMA model were the most aggressive; compared with the other two volatility 

models, the use of the RW model would generate weights that were more 

conservative than that of the DCC model under either the normal distribution 

assumption or the t-distribution assumption. The positions range could be 

slightly narrower with the the t-distribution assumption compared with the 

normal distribution in the use of the DCC model and the RW model. The 

average absolute values of the change of the weights between the normal 

distribution and the t-distribution were 2.95% (DCC model), 1.97% (EWMA 

model) and 0.2% (RW model) in August 1998. The average absolute values of 

the change of weights between the normal distribution and the t-distribution 

were 1.04% (DCC model), 0.23% (EWMA model) and 0.73% (RW model) in 

November 1998. Thus, the choice of the the t-distribution assumption would 

have more impact on weights solutions based on the DCC model and the 

EWMA model at a confidence level of 99% in the MVaR-BL portfolio. 

Compared with the implied BL portfolio in August 1998, the average absolute 

values of the change of the weights in the MVaR-BL portfolio were 2.01% (DCC 

model), 6.71% (EWMA model) and 1.91% (RW model) for the normal 

distribution in August 1998. For the t-distribution, the average absolute values of 

the change of weights between the implied BL portfolio and the MVaR-BL 

portfolio were 3.46% (DCC model), 7.75% (EWMA model) and 1.90% (RW 

model) in August 1998. Compared with the weights solutions in the implied BL 

portfolio, it was apparent that the use of the EWMA model could generate the 

most diverse weights solutions in an MVaR-BL portfolio than the use of the 

DCC model and the RW model. It can also be found that the effect of the use of 

the RW model on weights solutions was not sensitive to the assumption of 



106 
 

distribution in differences between construction of an implied BL portfolio and an 

MVaR-BL portfolio, but the use of the DCC model and the EWMA model would 

have a bigger effect on generating different weights solutions with an 

assumption of the t-distribution. In November 1998, the findings were similar.   

Compared with the SR-BL portfolio in August 1998, the average absolute 

values of the change of the weights in the MVaR-BL portfolio were 2.30% (DCC 

model), 10.87% (EWMA model) and 2.05% (RW model) for the normal 

distribution in August 1998. For the t-distribution, the average absolute values of 

the change of weights between the SR-BL portfolio and the MVaR-BL portfolio 

were 4.31% (DCC model), 11.47% (EWMA model) and 2.03% (RW model) in 

August 1998. The finding was similar. The use of the EWMA model could 

generate the most diverse weights solutions in an MVaR-BL portfolio, 

contrasting with an SR-BL portfolio, than the use of the DCC model and the 

EWMA model. Moreover, the change from the normal distribution to the 

assumption of the t-distribution would not affect the difference of weights 

solutions between the SR-BL portfolio and the MVaR-BL portfolio in the use of 

the RW model. However, the effect of the use of the EWMA model on weights 

solutions was more sensitive to the assumption of distribution in different 

weights solutions between construction of an SR-BL portfolio and an MVaR-BL 

portfolio than that when the DCC model was used. In November 1998, the 

findings were similar. 

Appendix 5.1.6 reports average value of weights allocated to each index in the 

unconstrained MVaR-BL portfolio in the period from November 1994 to May 

2010, and Appendix 5.1.7 reports the standard deviation of time-varying weights 

in each index. According to Appendix 5.1.6, most of average values of weights 

in each index were positive; the average effect of different volatility models on 

weights was not significantly different. For the normal distribution, the average 

absolute position range was 0.1211 in the use of the DCC model, slightly 

narrower than 0.1285 in the use of the EWMA model and the RW model. When 

the distribution assumption changed to the t-distribution, the average absolute 

position range became slightly wider to be 0.1357 (DCC model), 0.1332 (EWMA 

model), and 0.1282 (RW model). Therefore, Appendix 5.1.6 also confirmed the 

finding that the choice of the the t-distribution assumption would have more 

impact on weights solutions based on the DCC model and the EWMA model at 
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a confidence level of 99% in the MVaR-BL portfolio. In addition, Appendix 5.1.7 

showed that the DCC-MVaR-BL portfolio had most volatile weight solutions over 

the full sample with much bigger average standard deviation, and the choice of 

the t-distribution exaggerated this effect at a confidence level of 99%. However, 

the average standard deviation in both the EWMA-MVaR-BL portfolio and the 

RW-MVaR-BL portfolio decreased under the t-distribution, meaning that less 

volatile weight solutions were allocated. 

5.1.8.3 Effect of Distribution Assumption and Confidence Levels on DCC-

MVaR-BL Portfolio 

Table 5.1.13 shows the positions of each asset in a DCC-MVaR-BL portfolio in 

August 1998 under the normal distribution and the t-distribution at confidence 

levels of 99%, 95% and 90%. For the normal distribution, the positions of assets 

ranged between -6.89% (USA Telecom) and 14.63% (Japan Technology) at 99% 

confidence level; between -7.02% (USA Telecom) and 14.61% (Japan 

Technology) at 95% confidence level, and between -7.01% (USA Telecom) and 

14.19% (Japan Technology) at 90% confidence level. For the t-distribution, the 

positions of assets narrowed the range between -4.83% (UK Telecom) and 

10.61% (Japan Financials) at 99% confidence level; between -6.87% (USA 

Telecom) and 14.55% (Japan Technology) at 95% confidence level, and 

between -7.03% (USA Telecom) and 14.58% (Japan Technology) at 90% 

confidence level. When I ranked assets by positions from greater short positions 

to the bigger long positions, the ranks of each asset for the normal distribution 

were similar to the ranks for the t-distribution at confidence levels of 95% and 

90%. Therefore, it can be seen that the choice of distribution assumption had a 

slight impact on the weights solutions of the MVaR-BL portfolio at confidence 

levels of 95% and 90%. Appendix 5.1.8 also confirmed this conclusion and 

reflected that the choice of the t-distribution would allocate more volatile weights 

than that of the normal distribution at confidence levels of 95% and 90%. In 

addition, the weights solutions of the MVaR-BL portfolio for the t-distribution at a 

confidence level of 99% with the narrowest position range were significantly 

different with other MVaR-BL portfolios in August 1998, however, the average 

value of weights in the MVaR-BL portfolio for the t-distribution at a confidence 

level of 99% had the widest absolute position range over the full sample. 
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5.1.8.4 Construction of the MCVaR-BL Portfolio 

I propose a new optimisation method to maximise the reward-to-CVaR ratio. 

The optimisation problem is displayed in Chapter 4, Section 4.2.3, function 

(4.18). This unconstrained BL portfolio is named as the MCVaR-BL portfolio. 

CVaR is estimated by the parametric method with the assumption of the normal 

distribution and the t-distribution at a confidence level of 99% in the use of 

different volatility models. 

As can be seen in Table 5.1.14 and Table 5.1.15, the results of weights 

allocated in an MCVaR-BL portfolio in August 1998 and in November 1998 

showed the same direction of long or short selected assets as an MVaR-BL 

portfolio in the corresponding periods. However, the choice of volatility models 

and distribution assumptions has different effects on the specific position of 

each asset. According to Table 5.1.14, for the normal distribution, the positions 

ranged between -5.99% at USA Telecom and 12.29% at Japan Technology in 

the use of the DCC model; the positions ranged between -28.28% at UK 

Telecom and 26.34% at Japan Technology in the use of the EWMA model. 

When the RW model was used, the positions ranged between -3.62% at UK 

Telecom and 11.21% at USA Health Care. With the assumption changed to the 

t-distribution, the range of positions narrowed between -5.15% at UK Telecom 

and 11.29% at Japan Financials in the use of the DCC model, and the range of 

positions based on the use of the EWMA model significantly narrowed between 

-12.11% at UK Technology and 20.10% at Japan Oil & Gas. When the RW 

model was used, the range of positions slightly narrowed to between -3.55% at 

UK Telecom and 11.15% at USA Health Care. Therefore, similar to the MVaR-

BL portfolio, weights allocated in the MCVaR-BL portfolio based on the use of 

the EWMA model were the most aggressive when compared with the other two 

volatility models; the use of the RW model would generate weights that are 

more conservative than that of the DCC model under either the normal 

distribution assumption or the t-distribution assumption. In addition, the choice 

of the t-distribution assumption could narrow the positions range between the 

maximum short position and the maximum long position in the construction of 

an MCVaR-BL portfolio, especially in the use of the EWMA model. The 

calculated average absolute values of the change of the weights between the 

normal distribution and the t-distribution were 1.01% (DCC model), 6% (EWMA 
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model) and 0.2% (RW model) in August 1998. The average absolute values of 

the change of the weights between the normal distribution and the t-distribution 

were 2.16% (DCC model), 1.71% (EWMA model) and 0.08% (RW model) 

respectively in November 1998. Thus, the choice of the t-distribution 

assumption would have more impact on weights solutions based on the DCC 

and EWMA models at a confidence level of 99% in the MCVaR-BL portfolio. 

Compared with the MVaR-BL portfolio in August 1998, the average absolute 

values of the change of the weights in the MCVaR-BL portfolio were 1.67% 

(DCC model), 0.28% (EWMA model) and 0.17% (RW model) for the normal 

distribution in August 1998. For the t-distribution, the average absolute values of 

the change of weights between the MVaR-BL portfolio and the MCVaR-BL 

portfolio were 0.42% (DCC model), 4.71% (EWMA model) and 0.19% (RW 

model) in August 1998. It was interesting to find that the use of the DCC model 

could generate the most diverse weights solutions in the MCVaR-BL portfolio 

than the use of the EWMA model and the RW model could for the normal 

distribution. Additionally, the use of the EWMA model could generate the most 

diverse weights solutions in the MCVaR-BL portfolio than the use of the DCC 

model and the RW model could for the t-distribution.  

Compared with the MVaR-BL portfolio in November 1998, the average absolute 

values of the change of the weights in the MCVaR-BL portfolio were 0.08% 

(DCC model), 0.06% (EWMA model) and 0.68% (RW model) for the normal 

distribution. For the t-distribution, the average absolute values of the change of 

the weights between the MVaR-BL portfolio and the MCVaR-BL portfolio were 

1.68% (DCC model), 1.61% (EWMA model) and 0.03% (RW model). It meant 

that the weights solutions in the MVaR-BL portfolio and in the MCVaR-BL 

portfolio had no difference for the normal distribution, no matter which volatility 

model was selected. However, the weights solutions in the MCVaR-BL portfolio 

were different to the weights solutions in the MVaR-BL portfolio for the t-

distribution in the use of the DCC model and the EWMA model.  

Appendix 5.1.9 reports average value of weights allocated to each index in the 

unconstrained MCVaR-BL portfolio in the period from November 1994 to May 

2010, and Appendix 5.1.10 reports the standard deviation of time-varying 

weights in each index. According to Appendix 5.1.9, most of average values of 
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weights in each index were positive; the average effect of different volatility 

models on weights was not significantly different. For the normal distribution, 

the average absolute position range was 0.1227 in the use of the DCC model, 

slightly narrower than 0.1304 and 0.1284 in the use of the EWMA model and 

the RW model respectively. When the distribution assumption changed to the t-

distribution, the average absolute position range became slightly wider, at 

0.1366 (DCC model) and 0.1393 (EWMA model), and slightly narrower, at 

0.1282 (RW model). Therefore, Appendix 5.1.9 also confirmed the finding that 

the choice of the the t-distribution assumption would have more impact on 

weights solutions based on the DCC model and the EWMA model at a 

confidence level of 99% in the MCVaR-BL portfolio. In addition, Appendix 5.1.10 

showed that the DCC-MCVaR-BL portfolio had most volatile weight solutions 

over the full sample with much bigger average standard deviation than other 

MCVaR-BL portfolios in the use of the EWMA model and the RW model. The 

choice of the t-distribution had the impact of decreasing the average standard 

deviation on both the DCC-MCVaR-BL portfolio and the RW-MCVaR-BL 

portfolio, but the impact of increasing the average standard deviation on the 

EWMA-MCVaR-BL portfolio. Compared to the MVaR-BL portfolio, the MCVaR-

BL portfolio in the use of the RW model had similar average absolute position 

range and less volatile weight solutions, the DCC-MCVaR-BL portfolio had 

wider average absolute position range and less volatile weight solutions for the 

t-distribution. 

5.1.8.5 Effect of Distribution Assumption and Confidence Levels on DCC-

MCVaR-BL Portfolio 

Table 5.1.16 shows the positions of each asset in a DCC-MCVaR-BL portfolio in 

August 1998 under the normal distribution and the t-distribution at confidence 

levels of 99%, 95% and 90%. For the normal distribution, the positions of assets 

ranged between -5.99% (USA Telecom) and 12.29% (Japan Technology) at 99% 

confidence level; between -6.87% (USA Telecom) and 14.52% (Japan 

Technology) at 95% confidence level, and between -6.86% (USA Telecom) and 

14.36% (Japan Technology) at 90% confidence level. For the t-distribution, the 

positions of assets ranged between -5.15% (UK Telecom) and 11.29% (Japan 

Financials) at 99% confidence level; between -5.34% (UK Telecom) and 11.10% 

(Japan Financials) at 95% confidence level, and between -6.03% (USA 
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Telecom) and 12.38% (Japan Technology) at 90% confidence level. Therefore, 

it can be seen that the change of the normal distribution to the t-distribution 

could narrow the positions range in the DCC-MCVaR-BL portfolio at all three 

confidence levels in August 1998. In addition, the higher the confidence level, 

the narrower the position range in the DCC-MCVaR-BL portfolio. Compared 

with the DCC-MVaR-BL portfolio in Table 5.1.13, most positions in the DCC-

MCVaR-BL portfolio had a relatively narrower range in both distributions at each 

confidence level, except for the t-distribution at a confidence level of 99%.  

However, Appendix 5.1.11 shows the average effect that the change of the 

normal distribution to the t-distribution could widen the absolute position range 

at the confidence levels of 99% and 95%. In addition, the higher the confidence 

level, the wider the absolute position range in the DCC-MCVaR-BL portfolio. 

Besides, the choice of the t-distribution in the DCC-MCVaR-BL could generate 

relatively less volatile weight solutions over the full sample. Compared with the 

DCC-MVaR-BL portfolio in Appendix 5.1.8, the DCC-MCVaR-BL portfolio had 

wider absolute position range and less volatile weight solutions for the t-

distribution at higher confidence levels. 

5.1.9 Performance Evaluation of the Unconstrained BL Portfolios 

As I have constructed the optimal unconstrained BL portfolios, I will evaluate the 

real performance of the optimal unconstrained BL portfolio in a single period 

and over multiple periods. 

5.1.9.1 Single Period Performance 

Single Period Performance in August 1998 

Table 5.1.17 reports the results of the unconstrained BL portfolio and the 

benchmark portfolio for the portfolio evaluation criteria including realised excess 

return, conditional Sharpe ratio (CSR), portfolio turnover and reward to CVaR 

ratio in August 1998 and November 1998. Considering the negative realised 

excess return in August 1998, the CSR and conditional reward to CVaR ratio 

were adjusted. The ranking rule is that the larger the ratios, the better the 

portfolio performance. In August 1998, most unconstrained BL portfolios could 

not beat the benchmark with relative lower adjusted CSR and lower adjusted 

reward to CVaR ratio, except the implied BL portfolio. Based on an adjusted 
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CSR portfolio evaluation criterion, the implied BL portfolio outperformed the 

benchmark in the use of RW50 model. Based on the alternative portfolio 

evaluation criterion of the adjusted reward to CVaR ratio, the implied BL 

portfolio in the use of DCC model and EWMA model outperformed the 

benchmark. The performance of the SR-BL portfolio was worse than the implied 

BL portfolio because of more aggressive investment allocation, as explained in 

Section 5.1.8.1. The values of portfolio turnover in the SR-BL portfolio at 3.6583 

(DCC model) and 7.0786 (EWMA model) were much higher than those in the 

implied BL portfolio: 1.6803 (DCC model) and 5.5327 (EWMA model).  

At a confidence level of 99%, when the adjusted CSR is used to evaluate the 

portfolio performance, the MVaR-BL portfolio performed better for the t-

distribution assumption than for the normal distribution in the use of DCC model, 

with the value equal to -0.7311. When the adjusted reward to CVaR ratio is 

used, the MVaR-BL portfolio performed better for the t-distribution assumption 

than for the normal distribution in the use of three volatility models. At 

confidence levels of 95% and 90%, the MVaR-BL portfolio had better risk-

adjusted performance for the t-distribution assumption than for the normal 

distribution assumption in the use of EWMA model and RW50 model. In 

addition, when the distribution assumption changed from the normal distribution 

to the t-distribution, the portfolio turnover would be lower. 

At a confidence level of 99%, the MCVaR-BL portfolio had a better risk-adjusted 

performance for the t-distribution assumption than for the normal distribution in 

the use of all three volatility models. At confidence levels of 95% and 90%, the 

MCVaR-BL portfolio performed better for the t-distribution assumption than for 

the normal distribution in the use of the DCC model and the RW50 model. In 

addition, when the distribution assumption changed from the normal distribution 

to the t-distribution, the portfolio turnover would be reduced. 

Compared with the SR-BL portfolio, the performances of most of the MVaR-BL 

portfolios and the MCVaR-BL portfolios were better and, surprisingly, the 

portfolio turnover could be reduced by using alternative optimisation models. 

Furthermore, let me make a comparison between the MVaR-BL portfolio and 

the MCVaR-BL portfolio. For the normal distribution assumption, the risk-

adjusted performance of the MCVaR-BL portfolio was superior in the use of the 
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DCC model and the RW50 model at a confidence level of 99%, and the 

performance of the MCVaR-BL portfolio was better in the use of the EWMA 

model and the RW50 model at confidence levels of 95% and 90%. For the t-

distribution assumption, the MCVaR-BL portfolio outperformed the MVaR-BL 

portfolio with higher risk-adjusted performance ratios in the use of the EWMA 

model and the RW50 model at a confidence level of 99%, and the MCVaR-BL 

portfolio overtook the MVaR-BL portfolio in the use of the DCC model and the 

RW50 model at a confidence level of 95%. At a confidence level of 90%, the 

MCVaR-BL portfolio showed a better risk-adjusted performance in the use of all 

three volatility models. In addition, the MCVaR-BL portfolio always had lower 

values of portfolio turnover. 

Single Period Performance in November 1998 

As shown in Table 5.1.17 Panel B, the realised returns of the benchmark and 

the unconstrained BL portfolios were positive in November 1998; the traditional 

SR and reward to CVaR ratio can be used to evaluate portfolio performance. 

Compared with the benchmark portfolio, both the implied BL portfolio and the 

SR-BL portfolio can beat the benchmark portfolio in the use of the DCC model, 

and most of the MVaR-BL portfolio and the MCVaR-BL portfolio can beat the 

benchmark portfolio as well in the use of the DCC model and the RW50 model. 

Besides, some MVaR-BL portfolios and MCVaR-BL portfolios can outperform 

the implied BL portfolio and the SR-BL portfolio in the use of the EWMA model 

and the RW50 model. 

In November 1998, in the use of all three volatility models, the MVaR-BL 

portfolio performed better for the normal distribution assumption than for the t-

distribution at a confidence level of 99%; however, the MVaR-BL portfolio 

performed better for the t-distribution at a confidence level of 95%. However, at 

a confidence level of 90%, the performance of the MVaR-BL portfolio was better 

for the t-distribution only in the use of the EWMA model. In addition, when the 

distribution assumption changed from the normal distribution to the t-distribution, 

the portfolio turnover is lower. 

At confidence levels of 99% and 95%, the MCVaR-BL portfolio performed better 

for the normal distribution assumption than for the t-distribution in the use of all 

three volatility models. However, at a confidence level of 90%, the MCVaR-BL 
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portfolio performed better for the t-distribution assumption than for the normal 

distribution. In addition, the MCVaR-BL portfolios always have lower values of 

portfolio turnover in the the t-distribution assumption. 

For the normal distribution assumption, in contrast to the MVaR-BL portfolio, the 

MCVaR-BL portfolio underperformed at a confidence level of 99%; conversely, 

the MCVaR-BL portfolio outperformed at a confidence level of 95%. At a 

confidence level of 90%, the MCVaR-BL portfolio had a better performance only 

in the use of the EWMA model. For the t-distribution assumption, the MCVaR-

BL portfolio performed better than the MVaR-BL portfolio in the use of the DCC 

model and the EWMA model only at a confidence level of 90%. Moreover, the 

MCVaR-BL portfolios had a lower portfolio turnover than the MVaR-BL portfolio. 

Overall, although the time-varying performances of the unconstrained BL 

portfolios cannot give reliable suggestion about which volatility model should be 

selected to achieve best performance, these single-period performances indeed 

provided some evidences that the unconstrained implied BL portfolio had a 

superior performance to the SR-BL portfolio. Moreover, the MVaR-BL portfolio 

and the MCVaR-BL portfolio could perform better than the implied BL portfolio 

and the SR-BL portfolio with a choice of a certain volatility model at an 

acceptable confidence level. Additionally, the MCVaR-BL portfolio could beat 

the MVaR-BL portfolio in certain circumstances and the MCVaR-BL portfolio 

could provide a relatively lower portfolio turnover. Therefore, it is better to 

analyse the average performance over multiple periods to get reliable 

conclusions. 

5.1.9.2 Multiple Periods Performance 

In this section, I would like to analyse the performance of the unconstrained BL 

portfolio in the in-sample basis. I choose the whole sample period of multiple 

periods from November 1994 to May 2010 (see Table 5.1.18), and also the sub-

period from August 1998 to May 2010 (see Table 5.1.19) to make a comparable 

analysis between the three volatility models.  

Table 5.1.18 reports the results of realised unconstrained BL portfolio 

performance compared with the benchmark portfolio performance in the period 

from November 1994 to May 2010. The benchmark portfolio had the SR of 1.14% 

with the average return of 0.05%, and standard deviation equal to 4.35%. The 
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negative skewness of -0.9217 indicated that the left tail risk exists in the 

benchmark portfolio. The reward to VaR ratio and the reward to CVaR ratio 

were 0.38% and 0.29%, respectively. According to Table 5.1.18, it can be found 

that all unconstrained BL portfolios outperformed the benchmark portfolio with 

much higher values of SR, reward to VaR ratio and reward to CVaR ratio.  

The unconstrained implied BL portfolio had a relatively higher kurtosis which 

indicated bigger fat-tail risk than the benchmark portfolio. The unconstrained 

implied BL portfolio based on the DCC model showed the best performance, 

with the highest SR (21.7%), information ratio (28.25%), reward to VaR ratio 

(10.37%) and reward to CVaR ratio (8.15%). By ranking SR and reward to 

CVaR ratio, the implied EWMA-BL portfolio performed better than the implied 

RW50-BL portfolio. However, when information ratio and reward to VaR ratio 

were used to evaluate performance, the implied RW50-BL portfolio 

outperformed the implied EWMA-BL portfolio.  

The performances of the unconstrained SR-BL portfolio were worse than the 

unconstrained implied BL portfolio. In the unconstrained SR-BL portfolios, the 

unconstrained DCC-SR-BL portfolio, which had a relatively higher kurtosis of 

33.3293, performed best in unconstrained SR-BL portfolios with the highest SR 

(15.78%), reward to VaR ratio (7.51%) and reward to CVaR ratio (4.16%), 

followed by the unconstrained RW50-SR-BL portfolio with moderate 

corresponding ratios. However, when the information ratio was used to evaluate 

the active portfolio performance, the unconstrained RW50-SR-BL portfolio 

showed the best performance with an information ratio of 27.31%, followed by 

the unconstrained DCC-SR-BL portfolio with an information ratio of 17.73%. 

The unconstrained EWMA-SR-BL portfolio which had the largest negative 

skewness (-3.8259) and the highest kurtosis (38.7782) performed worst, with 

the lowest evaluation ratios.  

Compared with the SR-BL portfolio, MVaR-BL portfolios could improve 

performance. In MVaR-BL portfolios, based on evaluation ratios of SR, reward 

to VaR ratio and reward to CVaR ratio, at three different confidence levels, the 

risk-adjusted performances of the DCC-MVaR-BL portfolio were better than the 

EWMA-MVaR-BL portfolio and the RW50-MVaR-BL portfolio in both distribution 

assumptions. However, when I evaluated the active portfolio performance 
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tracking the benchmark, the RW50-MVaR-BL portfolio was superior to the other 

portfolios. Furthermore, I will make a comparison between the portfolio 

performance for the normal distribution and the t-distribution. At a confidence 

level of 99%, the change from the normal distribution to the t-distribution 

improved the performance of the DCC-MVaR-BL portfolio and the EWMA-

MVaR-BL portfolio. At a confidence level of 95%, the DCC-MVaR-BL portfolio 

for the t-distribution overtook the performance of the DCC-MVaR-BL portfolio for 

the normal distribution. At a confidence level of 90%, both the DCC-MVaR-BL 

portfolio and the RW50-MVaR-BL portfolio for the t-distribution performed better. 

The MVaR-BL portfolio could also improve active portfolio performance for the t-

distribution at all three confidence levels with different volatility models. 

Compared with the SR-BL portfolio, MCVaR-BL portfolios could improve 

performance. In MCVaR-BL portfolios, at all three different confidence levels, 

the risk-adjusted performances of the DCC-MCVaR-BL portfolio were better 

than the EWMA-MCVaR-BL portfolio and the RW50-MCVaR-BL portfolio in both 

distribution assumptions with higher risk-adjusted performance evaluation ratios. 

However, when I evaluated the active portfolio performance, the RW50-

MCVaR-BL portfolio was superior to the other portfolios. Furthermore, I will 

make a comparison between the portfolio performance for the normal 

distribution and the t-distribution. At confidence levels of 99% and 95%, the 

change from the normal distribution to the t-distribution improved the 

performance of the DCC-MCVaR-BL portfolio and the EWMA-MCVaR-BL 

portfolio. At a confidence level of 90%, the DCC-MCVaR-BL portfolio for the t-

distribution performed better than for the normal distribution. The MCVaR-BL 

portfolio could also improve active portfolio performance for the t-distribution at 

three confidence levels with difference volatility models. 

Compared with the MVaR-BL portfolio, the MCVaR-BL portfolio could perform 

better at certain confidence levels in both distribution assumptions. Specifically, 

for the normal distribution, both the DCC-MCVaR-BL portfolio and the EWMA-

MCVaR-BL portfolio showed a better performance than the corresponding 

MVaR-BL portfolios at a confidence level of 99%, and the DCC-MCVaR-BL 

portfolio outperformed the DCC-MVaR-BL portfolio at a confidence level of 95%. 

For the t-distribution, both the risk-adjusted performance and the active portfolio 

performance in the DCC-MCVaR-BL portfolio were superior to the DCC-MVaR-
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BL portfolio at a confidence level of 99%; additionally, both the risk-adjusted 

performance and the active portfolio performance in the DCC-MCVaR-BL 

portfolio and EWMA-MCVaR-BL portfolio were better than the MVaR-BL 

portfolios.   

Besides this, it is also worth taking a look at the empirical VaR and empirical 

CVaR of the unconstrained BL portfolio. In contrast to the benchmark portfolio 

with values of 13.14% (empirical VaR) and 16.92% (empirical CVaR), the 

unconstrained BL portfolio in the use of the RW50 model was slightly higher, 

with empirical VaR around 13.50% and empirical CVaR around 17.50%. 

However, based on the DCC model and the EWMA model, the empirical VaR 

and empirical CVaR of the unconstrained BL portfolios were much higher than 

the benchmark.  

Since the unconstrained BL portfolio performances in the sub-period from 

August 1998 to May 2010 were similar to the performance in the whole period, I 

reported the results in Table 5.1.19 without further analysis. 

5.1.10 Conclusions  

There are several primary findings about the unconstrained BL portfolios 

through the in-sample analysis. Firstly, they benefit from the outperformance of 

the view portfolio constructed by the momentum strategy; all of the 

unconstrained BL portfolios based on different optimisation models have shown 

an attractive performance, no matter if in single period or in multiple periods, 

when compared with the benchmark portfolio. It is obvious that the 

unconstrained BL portfolios have the favourable feature of allocating assets with 

more balanced and realistic weights than the traditional mean-variance method. 

Secondly, to decide whether the implied BL portfolio performance performs 

better than the SR-BL portfolio performance in a single period, a comparison 

between denominators in both weight solutions function is necessary. In 

multiple periods, the implied BL portfolio is superior to the SR-BL portfolio. It is 

worth noticing that the SR-BL portfolio has larger empirical VaR and empirical 

CVaR over multiple periods. The use of different volatility models would have 

different degrees of effect on asset positions and performances in the implied 

BL portfolio and the SR-BL portfolio. The use of the EWMA model would 
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generate the most aggressive investing solutions in assets, followed by the 

DCC model with moderate investing solutions, and then the RW50 model with 

conservative investing solutions in some single periods. However, the average 

effect of different volatility models on average absolute position range is not 

significantly different. The use of the DCC model could generate most volatile 

weight solutions. In some single periods, the implied BL portfolio and the SR-BL 

portfolio based on RW50 might show the best performance. In multiple periods, 

the unconstrained implied DCC-BL portfolio has a better performance than the 

other two implied BL portfolios based on the EWMA and RW50 models. 

However, the unconstrained DCC-SR-BL portfolio could only perform best in 

risk-adjusted performance while the unconstrained RW50-SR-BL portfolio could 

have the best active performance.    

Thirdly, the use of maximal reward to VaR ratio and maximal reward to CVaR 

ratio optimisation models could improve the performance of the implied BL 

portfolio and the SR-BL portfolio in a single period and over multiple periods at 

acceptable levels of confidence. In the construction of the dynamic MVaR-BL 

portfolio and dynamic MCVaR-BL portfolio, not only the choice of different 

volatility models but also the distribution assumptions and confidence levels 

impose different effects on weights solutions, single period performance and 

multiple-period performance. Similar to the effect on the SR-BL portfolio, the 

use of the EWMA model might generate the most aggressive weight solutions, 

the use of the RW50 model solves most conservative positions, and the use of 

the DCC model stands in the middle; the MVaR-BL portfolio and the MCVaR-BL 

portfolio based on the RW50 model might show the best performance in some 

single periods. However, the average effect of different volatility models on 

average absolute position range is not significantly different. The use of the 

DCC model could generate most volatile weight solutions. The change of the 

normal distribution to the t-distribution could increase the average standard 

deviation of the DCC-MVaR-BL portfolio but decrease the average standard 

deviation of the DCC-MCVaR-BL portfolio. In multiple periods, the risk-adjusted 

performances of the MVaR-BL portfolio and the MCVaR-BL portfolio based on 

the DCC model are better than the use of the EWMA model in both distribution 

assumptions. The MVaR-BL portfolio and the MCVaR-BL portfolio based on 

RW50 have superior active performance than other volatility models. Both the 
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MVaR-BL portfolio and the MCVaR-BL portfolio perform better for the t-

distribution than for the normal distribution based on the DCC model and the 

EWMA model. Additionally, the MCVaR-BL portfolio could beat the MVaR-BL 

portfolio in certain circumstances and the MCVaR-BL portfolio could provide a 

relatively lower portfolio turnover.  

5.2 Value-at-Risk-Constrained Black-Litterman Portfolio 

As can be concluded from the results of unconstrained BL portfolio performance, 

the SR-BL portfolios have larger empirical VaR than the benchmark portfolio 

and the implied BL portfolio. The negative skewness and high kurtosis also 

reflect larger tail risks.  

Motivated by reducing the tail risk, I will impose VaR constraints on the 

unconstrained SR-BL portfolio. The constraints are set to be the scaling factor 

k  multiplied by 0VaR , which is the VaR of the implied BL portfolio, and k  is 

equal to 0.99, 0.95, 0.90, and 0.80, and reduces sequentially until the SR-BL 

portfolio unbinds.        

5.2.1 Construction of the VaR-Constrained BL Portfolio 

In the empirical study of VaR constraints, the distribution assumptions and the 

confidence levels are important factors to take into account. According to the 

optimisation problem in formula (4.20), I construct a VaR-constrained BL 

portfolio with the normal distribution and the t-distribution at confidence levels of 

99%, 95% and 90%. 

  

5.2.1.1 VaR-Constrained BL Portfolio Frontier 

Figure 5.2.1 plots the VaR-constrained BL portfolio frontier with different 

distribution assumptions (the normal distribution and the t-distribution) and 

confidence levels (99%, 95% and 90%) as k  equal to 0.99. Note that the 

constraint is equal to 0VaRk  , where 0VaR  is the estimated VaR of the implied 

BL portfolio. 0VaR  is equal to -10.35% in August 1998. The light blue line 

represents the VaR constraints for the t-distribution; the green line represents 

the VaR constraints for the normal distribution. The black point M is the 

minimum variance portfolio, and the red square point T is the tangent portfolio 
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that has the maximum SR. The left direction of the black arrow means the VaR 

constraints tighten as the VaR constraints line moves to left. Alexander and 

Baptista (2004) explain that portfolios that meet a VaR constraint should be on 

or above a line with intercept – 0VaRk   and slope   (see Chapter 4, equation 

(4.17)) in the mean-standard deviation frontier. Therefore, the selected portfolio 

should be on the efficient frontier from point M to the intersection point of the 

line and the efficient frontier. When the value of 0VaRk   decreases, the 

intercept of this line increases, and the slope   increases when the confidence 

level increases; the constraint would tighten. Setting the same 0VaRk  , the 

slope in the lower confidence level of 90% is apparently smaller than in the 

higher confidence level of 99%; at same confidence level, the slope for the t-

distribution is much higher than for the normal distribution. Thus, constraints in 

higher confidence level or for the t-distribution are tighter, and become tighter 

as k  reduces.  

When k  is equal to 0.99, in Figure 5.2.1(a), the tangent portfolio with maximal 

SR cannot be selected in both the normal distribution and the t-distribution. In 

Figure 5.2.1(b), the tangent portfolio can be selected for the normal distribution 

but is omitted for the t-distribution. In Figure 5.2.1(c), the tangent portfolio can 

be selected in both the normal distribution and the t-distribution.   

5.2.1.2 Weights of VaR-Constrained BL Portfolios 

Table 5.2.1 and Table 5.2.2 show weights allocated in the VaR-constrained BL 

portfolio based on the three volatility models in August 1998 and in November 

1998.  

 

In August 1998, for the normal distribution, the positions of the DCC-VaR-

constrained BL portfolio were narrowest, with a range between -7.06% (USA 

Consumer Goods) and 16.55% (USA Oil & Gas). The widest range of positions 

in the EWMA-VaR-constrained BL portfolio was between -26.14% (USA 

Industrials) and 43.17% (Japan Industrials); the range of positions in the RW50-

VaR-constrained BL portfolio was moderate within the interval from -11.11% 

(USA Industrials) to 22.13% (Japan Industrials). For the t-distribution, the range 

of positions in the DCC-VaR-constrained BL portfolio was narrowest, between   

-11.78% (USA Industrials) and 20.32% (USA Oil & Gas).  The widest range of 
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positions in the EWMA-VaR-constrained BL portfolio was between -35.83% 

(USA Industrials) and 59.62% (Japan Industrials); the range of positions in the 

RW50-VaR-constrained BL portfolio was moderate, within the interval from -

11.02% (USA Industrials) to 22.13% (Japan Industrials). In addition, the 

average absolute value of the change of the weights between the normal 

distribution and the t-distribution was 5.75% (DCC model), 8.01% (EWMA 

model) and 0.2% (RW model) in August 1998.  

 

In November 1998, for the normal distribution, the positions in the DCC-VaR-BL 

portfolio ranged between -4.34% (UK Consumer Services) and 17.65% (USA 

Health Care), and the relative wider positions range in the EWMA-VaR-BL 

portfolio was between -6.36% (UK Consumer Services) and 19.23% (USA 

Health Care). The narrowest positions range was in the RW50-VaR-BL portfolio 

within the interval from -1.61% (UK Consumer Goods) to 15.14% (USA Health 

Care). For the t-distribution, the positions in the DCC-VaR-BL portfolio ranged 

between -7.06% (Japan Technology) and 15.93% (Japan Consumer Services), 

and the relatively wider positions range in the EWMA-VaR-BL portfolio was 

between -16.89% (USA Industrials) and 39.61% (Japan Industrials). The 

narrowest positions range was in the RW50-VaR-BL portfolio within the interval 

from -1.34% (USA Consumer Goods) to 14.75% (USA Health Care). In addition, 

the average absolute value of the change of the weights between the normal 

distribution and the t-distribution were 4.26% (DCC model), 7.12% (EWMA 

model) and 0.34% (RW model).   

Therefore, in some single periods, weights allocated in the EWMA-VaR-BL 

portfolio were the most aggressive compared with the other two VaR-

constrained portfolios in the use of DCC model and RW50 model, under either 

the normal distribution assumption or the t-distribution assumption. The change 

from the normal distribution to the t-distribution could widen the positions range 

in the DCC-VaR-BL portfolio and the EWMA-VaR-BL portfolio. The positions 

range in the RW50-VaR-BL portfolio was insensitive to the distribution 

assumption. The choice of the t-distribution assumption would have had more 

impact on weights solutions based on the DCC model and the EWMA model at 

a confidence level of 99% in the VaR-constrained portfolio.  
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Compared with the SR-BL portfolio in Table 5.1.9, the range of positions in the 

VaR-constrained BL portfolio was wider in August 1998. Conversely, the range 

of the positions in the VaR-constrained BL portfolio was narrower, in contrast to 

the implied BL portfolio and the SR-BL portfolio in November 1998. Therefore, 

the effect of adding VaR constraints on position range was not consistent in 

different single periods. 

 

Appendix 5.2.1 reports average value of weights allocated to each index in the 

unconstrained MCVaR-BL portfolio in the period from November 1994 to May 

2010, and Appendix 5.2.2 reports the standard deviation of time-varying weights 

in each index. According to Appendix 5.2.1, it can be found that the EWMA-

VaR-BL portfolio had the widest average absolute position range for the t-

distribution and the change from the normal distribution to the t-distribution 

could widen the positions range in the VaR-BL portfolio. It can also be 

concluded that the DCC-VaR-BL portfolio had most volatile weight solutions for 

the normal distribution and the EWMA-VaR-BL portfolio had most volatile 

weight solutions for the t-distribution from Appendix 5.2.2. In addition, the 

change from the normal distribution to the t-distribution could make weight 

solutions less volatile in the use of the DCC model and more volatile in the use 

of the EWMA model and the RW model. 

 

5.2.2 Performance Evaluation 

5.2.2.1 Single Period Performance 

Table 5.2.3 reports the results of the VaR-constrained BL portfolio performance 

evaluated by realised return, CSR, portfolio turnover, and reward to CVaR ratio 

in August 1998 and November 1998. In August 1998, according to Table 5.2.3 

Panel A, it can be found that the RW50-VaR-BL portfolio performed best, 

followed by the DCC-VaR-BL portfolio and then the EWMA-VaR-BL portfolio by 

ranking adjusted evaluation ratios. The DCC-VaR-BL portfolio had a much 

lower portfolio turnover than the EWMA-VaR-BL portfolio. When the normal 

distribution assumption was changed to the t-distribution, the performance of 

the VaR-constrained BL portfolio became better with an improved adjusted CSR 

and adjusted reward to CVaR ratio, and reduced portfolio turnover. 
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Compared with the implied BL portfolio and the SR-BL portfolio in August 1998 

(Table 5.1.17), the VaR-constrained BL portfolio could beat these portfolios, 

with higher adjusted evaluation ratios and a relatively lower portfolio turnover, 

especially with the t-distribution assumption. Furthermore, the VaR-constrained 

BL portfolio could outperform the benchmark portfolio with the t-distribution.  

In November 1998, ranking the CSR and reward to CVaR ratio from the 

smallest to largest, I can easily point out that the performance of the RW50-

VaR-BL portfolio was superior to the DCC-VaR-BL portfolio and the EWMA-

VaR-BL portfolio, and that the DCC-VaR-BL portfolio performed slightly better 

than the EWMA-VaR-BL portfolio. The change from the normal distribution to 

the t-distribution could increase the CSR and reward to CVaR ratio and 

decrease portfolio turnover in the DCC-VaR-BL portfolio and RW50-VaR-BL 

portfolio. Briefly, the t-distribution assumption had a positive effect on 

performance of the DCC-VaR-BL portfolio and RW50-VaR-BL portfolio.  

In contrast to the SR-BL portfolio in November 1998, all of the VaR-constrained 

BL portfolios showed a better performance except the EWMA-VaR-BL portfolio 

with the t-distribution. While the DCC-VaR-BL portfolio overtook the implied BL 

portfolio with higher evaluation ratios and lower portfolio turnover with the t-

distribution, the RW50-VaR-BL portfolio could beat the implied BL portfolio at 

the price of a higher portfolio turnover. Moreover, the VaR-constrained BL 

portfolios in the use of the DCC model and the RW50 model performed better 

than the benchmark portfolio with the normal distribution assumption and the t-

distribution assumption.   

Overall, these single-period performances indeed provided some evidences that 

adding the VaR constraint could improve the performance of the unconstrained 

implied BL portfolio and the SR-BL portfolio. In addition, these single-period 

performances suggested the use of the RW model and the t-distribution 

assumption. However, it is still necessary to evaluate average performances 

over multiple periods to get more reliable conclusion.  

5.2.2.2 Multiple Periods Performance 

In this section, I would like to analyse the performance of the VaR-constrained 

BL portfolio in the in-sample basis. I choose the whole sample period as firstly, 

the multiple periods from November 1994 to May 2010 (see Table 5.2.4 Panel A 
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and Panel B), and the sub-period from August 1998 to May 2010 (see Table 

5.2.4 Panel C and Panel D) to make a comparable analysis between the three 

volatility models. 

 

From Table 5.2.4 Panel A, for the normal distribution, the DCC-VaR-BL portfolio 

bore the largest fat-tail risks reflected in the highest kurtosis (13.2598), highest 

VaR (18.95%) and highest CVaR (22.78%). Simultaneously, I can find that the 

risk-adjusted performance of the DCC-VaR-BL portfolio had a better 

performance than the other VaR-constrained BL portfolios, with the highest SR 

(19.22%), reward to VaR ratio (6.99%) and reward to CVaR ratio (5.81%). 

However, the EWMA-VaR-BL actually had the best active portfolio performance 

with the highest information ratio (26.65%). From Table 5.2.4 Panel B, for the t-

distribution, the DCC-VaR-BL portfolio had a relatively higher kurtosis 

(10.7419%), the highest VaR (13.27%) and highest CVaR (16.09%) in contrast 

to the other VaR-constrained BL portfolios. The best risk-adjusted performance 

and active performance of the DCC-VaR-BL portfolio, with the highest SR 

(16.55%), reward to VaR ratio (5.95%) and reward to CVaR ratio (4.91%), 

compensated for taking greater risks. Making the comparison between the 

performance for the normal distribution and the performance for the t-

distribution, I can observe that the change from the normal distribution to the t-

distribution actually had a negative effect on multiple period performances, 

leading to worse performances with lower evaluation ratios in whole periods at a 

confidence level of 99%.  

 

Compared with the multiple-period performance of the benchmark portfolio and 

the unconstrained SR-BL portfolio in the whole period in Table 5.1.18, the VaR-

constrained BL portfolios perform better with both the normal distribution and 

the t-distribution. I can conclude that adding the VaR constraint could improve 

the performance of the SR-BL portfolio and beat the benchmark portfolio.   

Since the VaR-constrained BL portfolio performances in the sub-period from 

August 1998 to May 2010 were similar to performance in the whole period, I just 

report the results in Table 5.2.4 without further detailed analysis. When I made 

a comparison with the performance of the unconstrained SR-BL portfolio and 

the benchmark portfolio in the sub-period, I can also reach a similar conclusion, 
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that adding the VaR constraint could improve the performance of the SR-BL 

portfolio and beat the benchmark portfolio with certain conditions such as using 

the DCC model and the EWMA model with the normal distribution assumption.  

5.2.3 Effects of VaR Constraints, Distributions and Confidence Levels  

As can be seen from Table 5.2.4, the DCC-VaR-BL portfolio performed best 

among the VaR-constrained BL portfolios. Thus, in order to investigate the 

effects of VaR constraints, distributions and confidence levels specifically on the 

VaR-constrained BL portfolio, I would focus on studying the effects of 

increasingly tight levels of constraints on DCC-VaR-BL portfolios in this section.  

5.2.3.1 Effects on Optimisation Model  

Table 5.2.5 reports the statistics inputted in the VaR-constrained SR-BL model, 

such as estimated expected BL return (  ) and standard deviation (based on 

DCC model), and the results of ECSR, expected excess return to VaR ratio 

( VaR/ ) and expected excess return to CVaR ratio ( CVaR/ ). The 

decreasing scaling factor multiplied by the estimated VaR of the implied BL 

portfolio means the increasingly tight levels of constraints. 

According to Table 5.2.5, at a confidence level of 99%, for the normal 

distribution and the t-distribution, the smaller the VaR factor, the tighter the VaR 

constraint, the lower the ECSR, VaR/ , and  CVaR/ . All ECSR were lower 

than the maximal SR of 10.32%. Figure 5.2.1 could interpret the decreasing 

tendency of the ECSR. It was because the tangent portfolio with maximal SR 

cannot be selected in both the normal distribution and the t-distribution that the 

VaR constraint continued to tighten, as can be seen in Figure 5.2.1(a), as well 

as the situation for the t-distribution at a confidence level of 95% in Figure 5.2.1 

(b). At confidence levels of 95% and 90%, evaluation ratios began to decrease 

at a certain level of VaR factor. The reason was that the tangent portfolio with 

maximal SR can be selected as shown in Figure 5.2.1 (b) for the normal 

distribution and, in Figure 5.2.1 (b), in both distributions.  

5.2.3.2 Effects on Weights Solutions 

Table 5.2.6 shows the positions of each asset in a VaR-constrained BL portfolio 

in August 1998 for the normal distribution and the t-distribution, at confidence 

levels of 99% (Panel A), 95% (Panel B), and 90% (Panel C). In Panel A, at the 
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99% confidence level, the positions range for the normal distribution gradually 

widened from the interval of -7.06% (USA Consumer Goods) and 16.55% (USA 

Oil & Gas) at 0.99 VaR factor, to the interval of -9.99% (USA Industrials) and 

19.19% (USA Oil & Gas) at 0.7 VaR factor. For the t-distribution, the positions 

range further widened to the interval of -13.31% (USA Industrials) and 21.30% 

(USA Oil & Gas) at 0.90 VaR factor.  

At the 95% confidence level, for the normal distribution, the positions range 

stayed between -9.51% (UK Utilities) and 14.70% (USA Oil & Gas) until the 

VaR factor reduced to 0.80 to move the range upward between -8% (UK 

Utilities) and 15.23% (USA Oil & Gas), and then widened to the interval of -7.10% 

(USA Consumer Goods) and 16.39% (USA Oil & Gas). For the t-distribution, the 

positions range gradually widened from the interval of -7.24% (USA Consumer 

Goods) and 15.78% (USA Oil & Gas) to the interval of -8.93% (USA Industrials) 

and 18.51% (USA Oil & Gas) as the constraints tightened.  

At the 90% confidence level, for the normal distribution and the t-distribution, 

the positions range stayed between -9.51% (UK Utilities) and 14.70% (USA Oil 

& Gas) until the VaR constraints tightened by a product of 0.7 and shifted 

upward to the range between -7.25% (USA Consumer Goods) and 15.75% 

(USA Oil & Gas). 

Overall, the positions range for the t-distribution was wider than for the normal 

distribution. The higher confidence level would have the most effect on the 

positions range. However, the direction of long or short of the selected asset 

and the rank of positions were less subject to the change of distribution at the 

same level of confidence.  

5.2.3.3 Effects on Portfolio Performance in the Single Period  

Table 5.2.7 reports VaR-constrained BL portfolio performance results, including 

realised excess return, adjusted CSR, portfolio turnover and adjusted reward to 

CVaR ratio in August 1998. As can be seen, in negative realised excess return, 

SR would be negative; however, negative SR might be invalid to evaluate the 

portfolio performance. Thus, I followed Israelsen’s (2003) method to adjust the 

SR. Adjusted CSR is equal to the product of negative realised excess return 

and the standard deviation multiplied by 100. Similarly, I adjusted the reward to 
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CVaR ratio equal to the negative realised excess return multiplied by CVaR and 

a constant of 100.  

In August 1998, at the 99% confidence level, I observed that the lower the value 

of the VaR factor (the tighter the VaR constraints), the better the single period 

performance (the higher the adjusted CSR and reward to CVaR ratio, the lower 

the portfolio turnover). With the same VaR constraints, the VaR-constrained BL 

portfolio for the t-distribution showed a better performance than for the normal 

distribution. At the 95% confidence level, the VaR-constrained BL portfolio 

began to show a better performance after the VaR constraints tightened by the 

VaR factor of 0.9 for the normal distribution. The VaR-constrained BL portfolio 

performed better as the VaR constraints became tighter for the t-distribution. At 

the same level of VaR factor, the performance of the VaR-constrained BL 

portfolio for the t-distribution outperformed expectations with higher evaluation 

ratios and lower portfolio turnover. At the 90% confidence level, the 

performance of the VaR-constrained BL portfolio could not improve until quite 

restrictive VaR constraints were imposed. In Table 5.2.8, which reports VaR-

constrained BL portfolio performance results in November 1998, I can reach the 

same conclusions as in Table 5.2.7. However, it is still necessary to investigate 

the effect of portfolio performance over multiple periods to get more reliable 

conclusion. 

Compared with the implied BL portfolio and the SR-BL portfolio in Table 5.1.17, 

I can apparently find that adding relatively restrictive VaR constraints could 

significantly improve the BL portfolio performance, even beat the performance 

of the implied BL portfolio and the benchmark portfolio in August 1998 and 

November 1998. In addition, the SR-BL portfolio within a moderate level of VaR 

constraints can outperform the MVaR-BL portfolio and MCVaR-BL portfolio in 

both single periods.  

5.2.3.4 Effects on Portfolio Performance in Multiple Periods 

Let us move to investigate the effect of confidence levels, distribution 

assumptions and VaR constraints on the performance of the VaR-constrained 

BL portfolio over multiple periods between November 1994 and May 2010 (see 

Table 5.2.9) and in sub-periods between August 1998 and May 2010 (see Table 

5.2.10).  
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As can be seen in Table 5.2.9 Panel A, with the normal distribution assumption 

at the 99% confidence level, as the VaR limits became tighter, the performance 

of the VaR-constrained BL portfolio firstly improved and then deteriorated. 

When the VaR factor was equal to 0.90, the constrained BL portfolio performed 

best, with the highest SR (19.44%), information ratio (25.90%), reward to VaR 

ratio (7.22%), and reward to CVaR ratio (5.98%). At the 95% confidence level, 

as the VaR constraints became more restrictive, the performance of the VaR-

constrained BL portfolio could be enhanced by showing increasing the SR, 

information ratio and reward to CVaR ratio. However, the VaR-constrained BL 

portfolio showed a worse performance than the VaR-constrained BL portfolio at 

the 99% confidence level with the same VaR limits until the VaR factor reduced 

to 0.70; the performance of the VaR-constrained BL portfolio at the 95% 

confidence level overtook this to reach higher evaluation ratios. When the VaR 

factor was equal to 0.60, the VaR-constrained BL portfolio performed best, with 

SR, information ratio, reward to VaR ratio and reward to CVaR equal to 19.45%, 

25.81%, 7.27% and 6.02%, respectively. At the 90% confidence level, as the 

VaR constraints increased, the performance of the VaR-constrained BL portfolio 

became better, as evaluated by SR, information ratio and reward to CVaR ratio. 

It showed the best performance at the value of 0.5 in the VaR factor with the SR, 

information ratio, reward to VaR ratio and reward to CVaR equal to 19.42%, 

25.79%, 7.14% and 5.95%, respectively. However, at the same level of VaR 

limits (except the factor of 0.5), the VaR-constrained BL portfolio at the 90% 

confidence level performed worse than at the 95% confidence level. Therefore, 

it can be concluded that adding a moderate level of VaR constraints on the BL 

portfolio can improve the portfolio performance at each confidence level with the 

normal distribution assumption. In addition, it also showed that the higher the 

confidence level, the greater the impact of VaR constraints on BL portfolios to 

improve performance with the normal distribution assumption. Moreover, it was 

worth mentioning that the evaluation ratio of reward to VaR ratio might give 

different rankings of the BL portfolio performance when compared with other 

evaluation ratios with the normal distribution and the t-distribution assumption at 

a confidence level of 90%. This finding was consistent with the view of 

Alexander and Baptista (2003) that the confidence level could have an influence 

on performance ranking by reward to VaR ratio. It would be prudent to use the 
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reward to VaR ratio to evaluate the portfolio performance because the VaR 

failed to consider the risk beyond the VaR under non-normality.  

As can be seen in Table 5.2.9 Panel B, with the the t-distribution assumption, at 

the 99% confidence level, the performance of the VaR-constrained BL portfolio 

performed worse with tighter VaR limits. At the VaR factor of 0.9, the worst 

performance had the lowest evaluation ratios including SR (15.16%), 

information ratio (18.04%), reward to VaR ratio (5.32%) and reward to CVaR 

ratio (4.49%). At the 95% and 90% confidence levels, as the VaR limits became 

tighter, the active portfolio performance and risk-adjusted performance of the 

VaR-constrained BL portfolio firstly improved and then deteriorated with turning 

points at VaR factors of 0.8 and 0.6 respectively. Sometimes, SR and reward to 

VaR ratio can generate different rankings of portfolio performance. Specifically, 

for the normal distribution, at the 90% confidence level, the SR increased as the 

VaR factor decreased to 0.7; however, the reward to VaR ratio decreased, 

leading to totally different rankings. Alexander and Baptista (2003) suggested 

that non-normality measures should be used when the portfolio performance 

ranking from the reward to VaR ratios is significantly different from the ranking 

by SR. Nevertheless, the rankings of the portfolio performance from the reward 

to VaR ratio for the t-distribution still contradicted the rankings from the SR. I 

noticed that ranking from the reward to CVaR ratio could be consistent with SR, 

so the reward to CVaR ratio could also be used to evaluate the portfolio 

performance. Portfolio managers should be careful to use different evaluation 

ratios to evaluate the portfolio performance when tail risks exist in the portfolio.  

Making a comparison between the normal distribution and the t-distribution, it 

can be found that the VaR-constrained BL portfolio actually performed worse for 

the t-distribution than for the normal distribution because of the negative effects 

of too much restrictive VaR bound for the t-distribution at a confidence level of 

99%. However, at the confidence levels of 95% and 90%, the improved 

performance of the VaR-constrained BL portfolio for the t-distribution benefited 

from the positive effect of a more restrictive VaR constraint. 

Compared with the implied DCC-BL portfolio in Table 5.1.18, the VaR-

constrained BL portfolio underperformed. However, in contrast to the DCC-SR-

BL portfolio in Table 5.1.18, the VaR-constrained BL portfolio outperformed with 
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a much higher SR, information ratio and reward to CVaR ratio. Note that the 

reward to VaR ratio might distort the portfolio performance evaluation because 

of the limitations of VaR risk measures. In addition, when we made a 

comparison between the DCC-VaR-BL portfolio, the DCC-MVaR-BL portfolio 

and the DCC-MCVaR-BL portfolio, we can find that the DCC-VaR-BL portfolio 

was superior. 

Table 5.2.10 shows realised VaR-constrained BL portfolio performance in the 

sub-period from August 1994 to May 2010. Similar to Table 5.2.9, the tendency 

of the improving performance of the VaR-constrained BL portfolio as the VaR 

constraints increased to the moderate level can also be seen in Table 5.2.10. 

The conclusions from Table 5.2.9 also apply to Table 5.2.10 except the 

conclusions related to the comparison with the SR-BL portfolio. Thus, I will not 

analyse or explain the VaR-constrained BL portfolio in detail as shown in Table 

5.2.10, but instead focus on comparing Table 5.2.10 with Table 5.1.19. In the 

sub-period, the VaR-constrained BL portfolio cannot beat the implied BL 

portfolio, but the VaR-constrained BL portfolio can outperform the SR-BL 

portfolio with a higher SR and reward to CVaR ratio. In addition, most of the 

VaR-constrained BL portfolios could perform better than the MVaR-BL portfolios 

and MCVaR portfolios with the normal distribution assumption. 

5.2.4 Conclusions 

In the in-sample analysis, the main finding of this section is that adding 

acceptable levels of VaR constraints on the SR-BL portfolio could improve the 

realised performance of the SR-BL portfolio in the single period and over 

multiple periods. I have shown some evidences that the VaR-constrained BL 

portfolio, especially for the t-distribution and based on the three different 

volatility models could even overtake the implied BL portfolio, the MVaR-BL 

portfolio and the MCVaR-BL portfolio in the single period and over multiple 

periods.  

The choice of volatility models, distributions and confidence levels has different 

influences on weights solutions and performances in the VaR-constrained BL 

portfolio. In some single periods, the use of the EWMA model tends to allocate 

assets most aggressively with the widest position range. The change from the 

normal distribution to the t-distribution could widen the positions range in the 
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DCC-VaR-BL portfolio and the EWMA-VaR-BL portfolio. The positions range in 

the RW50-VaR-BL portfolio is insensitive to the distribution assumption. The 

choice of the t-distribution assumption would have more impact on weights 

solutions based on the DCC model and the EWMA model at a confidence level 

of 99% in the VaR-constrained portfolio. The DCC-VaR-BL portfolio allocates 

most volatile weights for the normal distribution and then allocates less volatile 

weights for the t-distribution. The single period performance is not consistent 

with the multiple-period performance. In the single period, the higher confidence 

level would have a greater impact on VaR constraints on the DCC-BL portfolio 

to improve performance with the normal distribution assumption. The RW50-

VaR-BL portfolio could show a better performance in both distributions than 

other VaR-constrained portfolios. In addition, the change from the normal 

distribution to the t-distribution could improve performance in the DCC-VaR-BL 

portfolio and the RW50-VaR-BL portfolio. However, these conclusions from the 

single-period performance might not be reliable without supplement of the 

multiple-period performance. Over multiple periods, the risk-adjusted 

performance of the DCC-VaR-BL portfolio actually has better performance than 

other VaR-constrained BL portfolios; the EWMA-VaR-BL portfolio has the best 

active portfolio for the normal distribution. For the t-distribution, the DCC-VaR-

BL portfolio shows the best risk-adjusted performance and active performance 

but takes greater risks. 

5.3 Conditional Value-at-Risk-Constrained Black-Litterman Portfolio 

As can be concluded from the results of the unconstrained BL portfolio 

performance, the SR-BL portfolios have larger CVaR than the benchmark 

portfolio and the implied BL portfolio. The tail risk reflected by negative 

skewness and high kurtosis should be considered in the construction of a 

portfolio. In addition, using the reward to VaR ratio to rank performance might 

mislead the portfolio manager into choosing the portfolio that actually performs 

worse, as interpreted in Section 5.2.3.4. Motivated by the better properties of 

CVaR, which considers risks beyond VaR, I will impose the CVaR constraint on 

the unconstrained SR-BL portfolio. The constraint is set to be the scaling factor 

k  multiplied by CVaR0, which is the CVaR of the implied BL portfolio. In the 

dynamic environment, CVaR0 is time-varying. k  is equal to 0.99, 0.95, 0.90, 

and 0.80 and reduces sequentially until the SR-BL portfolio unbinds. 
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5.3.1 Construction of the CVaR-Constrained BL Portfolio 

In the empirical study of CVaR constraints, the distribution assumptions and the 

confidence levels are important factors to take into account. Before we start to 

construct the CVaR-constrained BL portfolio, the first important thing is to 

understand the efficient frontier. In Section 5.3.1.1, I will display the CVaR-

constrained BL portfolio frontier and explain the optimisation process. 

5.3.1.1 CVaR-Constrained BL Portfolio Frontier 

Figure 5.3.1 and Figure 5.3.2 plot the VaR constraints and CVaR constraints on 

the BL portfolio frontier for the normal distribution and the t-distribution, 

respectively, at confidence levels of 99%, 95% and 90% as k  equal to 0.99. 

Note that the constraint is equal to 0CVaRk  , where 0CVaR  is the estimated 

CVaR of the implied BL portfolio. 0CVaR  is equal to -11.93% in August 1998. 

The green line represents the VaR constraint, and the purple line represents the 

CVaR constraint. The black point M is the minimum variance portfolio, and the 

red square point T is the tangent portfolio that has the maximum SR. The left 

direction of the black arrow means the VaR bound and CVaR bound decreased 

as k  reduces.  

Similar to VaR constraints, Alexander and Baptista (2004) illustrate that the 

portfolios that meet a CVaR constraint should be on or above a line with 

intercept – 0CVaRk   and slope   (see Chapter 4, equation (4.19)) in the 

mean-standard deviation frontier. Therefore, the selected portfolio should be on 

the efficient frontier from the point M to the intersection point of the line and the 

efficient frontier. When the value k  decreases, the intercept of this line 

increases, and the slope   increases when the confidence level increases; the 

CVaR constraint would tighten. Setting the same 0CVaRk  , the slope in the 

lower confidence level of 90% (Figure 5.3.1 (c)) is apparently smaller than in the 

higher confidence level of 99% (Figure 5.3.1 (a)); at the same confidence level, 

the slope for the t-distribution (Figure 5.3.2) is much higher than for the normal 

distribution (Figure 5.3.1). Therefore, CVaR constraints at a higher confidence 

level or for the t-distribution are tighter, and become tighter as k  reduces. Since

   , the CVaR constraint, has a larger slope than the VaR constraint, giving 

rise to a more restrictive constraint, as can be shown in Figure 5.3.1 and Figure 
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5.3.2, that the line of the CVaR constraint with a larger slope is at the left of the 

VaR constraint.  

When k  is equal to 0.99, in Figure 5.3.1(a) and Figure 5.3.2 (a), the tangent 

portfolio with maximal SR cannot be selected in both the normal distribution and 

the t-distribution at the 99% confidence level with both VaR and CVaR 

constraint. At the 95% confidence level, the tangent portfolio can be selected for 

the normal distribution (Figure 5.3.1 (b)) but omitted for the t-distribution (Figure 

5.3.2 (b)). At the 90% confidence level, the tangent portfolio can be selected 

within both the VaR and CVaR constraint in Figure 5.3.1(c) for the normal 

distribution, however, the tighter CVaR constraint would exclude the choice of 

the tangent portfolio but the VaR constraint would still include the tangent 

portfolio for the t-distribution.    

5.3.1.2 Weights of CVaR-Constrained BL Portfolios 

In this part, I will show the weights allocated to the CVaR-constrained BL 

portfolio in August 1998 (Table 5.3.1). With the normal distribution assumption, 

the position in the DCC-CVaR-BL portfolio ranged between -7.09% (USA 

Consumer Goods) and 16.56% (USA Oil & Gas); the position in the RW50-

CVaR-BL portfolio had a much wider range of between -11.53% (USA 

Industrials) and 21.92% (Japan Industrials), and the position in the EWMA-

CVaR-BL portfolio had the widest range within the interval -27.07% (USA 

Industrials) and 42.58% (USA Oil & Gas). When the normal distribution 

assumption changed to the t-distribution assumption, the position range in the 

DCC-CVaR-BL portfolio widened to the interval between -15.80% (USA 

Industrials) and 27.03% (USA Consumer Services). Followed by the EWMA-

CVaR-BL portfolio which also had a wider position range of between -38.45% 

(USA Industrials) and 64.33% (Japan Industrials), the positions range in the 

RW50-CVaR-BL portfolio increased to the widest range of between -58.65% 

(USA Industrials) and 81.30% (Japan Industrials). In addition, the average value 

of the absolute difference average absolute value of the change of the weights 

between the normal distribution and the t-distribution were 9.20% (DCC model), 

10.23% (EWMA model) and 17.72% (RW50 model) in August 1998. Thus, the 

impact of the change of distribution assumption on the positions range in the 

CVaR-BL portfolios was greater in the use of the EWMA model and the RW50 
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model, which also generated much a wider range than the use of the DCC 

model.  

Compared with the VaR-BL portfolio in August 1998, the position range in the 

DCC-CVaR-BL portfolio stayed nearly in the same range, while the position 

range in the EWMA-CVaR-BL shifted downward by about 76 basis points and 

the position range in the RW50-CVaR-BL shifted downward by about 32 basis 

points for the normal distribution. However, for the t-distribution, the position 

range in the CVaR-BL portfolio was about 10.73% wider than the VaR-BL 

portfolio based on the DCC model, and about 7.33% wider and 106.80% wider 

in the use of the EWMA model and the RW50 model, respectively. Undoubtedly, 

compared with the implied BL portfolio and the SR-BL portfolio in August 1998, 

the CVaR-BL portfolio would allocate assets with a much wider position range. 

In November 1998, for the normal distribution, the positions in the DCC-VaR-BL 

portfolio ranged between -4.42% (UK Consumer Services) and 17.65% (USA 

Health Care), and the relative wider positions range in the EWMA-VaR-BL 

portfolio were between -6.44% (UK Consumer Services) and 19.41% (USA 

Health Care), and the narrowest positions range was in the RW50-VaR-BL 

portfolio within the interval from -2.15% (UK Consumer Goods) and 16.99% 

(USA Health Care). For the t-distribution, the positions in the DCC-VaR-BL 

portfolio ranged between -10.02% (Japan Technology) and 21.00% (Japan 

Consumer Services), and the relative wider positions range in the EWMA-VaR-

BL portfolio was between -23.02% (USA Industrials) and 52.08% (Japan 

Industrials); the widest positions range was in the RW50-VaR-BL portfolio, 

within the interval from -57.18% (USA Industrials) and 61.12% (Japan 

Industrials). In addition, the average absolute value of the change of the weights 

between the normal distribution and the t-distribution were 6.59% (DCC model), 

9.79% (EWMA model) and 17.33% (RW model).     

Compared with the VaR-BL portfolio in November 1998, for the normal 

distribution, the position range in the DCC-CVaR-BL portfolio stayed nearly in 

the same range, while the position range in the EWMA-CVaR-BL portfolio was 

slightly wider by about 28 basis points, and the position range in the RW50-

CVaR-BL portfolio was wider by about 2.39%. However, for the t-distribution, 

the DCC-CVaR-BL portfolio increased the width of the position range by 8.03%, 
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the EWMA-CVaR-BL portfolio increased the width of the position range by a 

higher value of 18.60%, and the RW50-CVaR-BL portfolio substantially 

increased the width of the position range by 102.20%. 

Therefore, I can find that both the EWMA-CVaR-BL portfolio and the RW50-

CVaR-BL portfolio might allocate extreme weights to some assets with a much 

wider position range for the t-distribution than for the normal distribution. The 

position range in the DCC-CVaR-BL portfolio would also be slightly wider for the 

t-distribution than for the normal distribution. In addition, I can conclude that the 

normal distribution assumption in the CVaR-BL portfolio would not result in a 

large difference in the position range from the VaR-BL portfolio; however, the t-

distribution assumption has the impact of widening the position range in the 

CVaR-BL portfolio, especially in the use of the EWMA model and the RW 

model. According to Appendix 5.3.1, the conclusions are similar. The portfolio 

manager needs to be cautious about imposing CVaR constraints on a BL 

portfolio based on the EWMA model and the RW model to allocate assets. In 

addition, from Appendix 5.3.2, it can be found that the DCC-CVaR-BL portfolio 

would generate most volatile weight solutions for the normal distribution and 

least volatile weight solutions for the t-distribution compared with other CVaR-

BL portfolios. Moreover, the change from the normal distribution to the t-

distribution could make weight solutions less volatile in the use of the DCC 

model and more volatile in the use of the EWMA model and the RW model. 

 
5.3.2 Performance Evaluation 

After I analysed the impact of different volatility models and distribution 

assumptions on weights allocation in the CVaR-BL portfolio in Section 5.3.1, I 

would investigate the CVaR-BL portfolio performance in single period and over 

multiple periods in this section. 

5.3.2.1 Single Period Performance 

Table 5.3.3 shows the CVaR-constrained BL portfolio performance in August 

1998 and November 1998 with assumption of the normal distribution and the t-

distribution at a confidence level of 99%.  

In August 1998, as can be seen in Table 5.3.3 Panel A, the realised returns 

were negative; adjusted CSR and adjusted reward to CVaR ratio were used to 
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rank the portfolio performance. The RW50-CVaR-BL portfolio showed the best 

performance with the highest adjusted evaluation ratios, followed by the DCC-

CVaR-BL portfolio and then the EWMA-CVaR-BL, which performed the worst. 

The portfolio turnover in the EWMA-CVaR portfolio with the value of 5.1408 for 

the normal distribution and 2.4236 for the t-distribution was higher than the 

DCC-CVaR portfolio with the value of 3.2105 for the normal distribution and 

1.6783 for the t-distribution. The change from the normal distribution to the t-

distribution improved the portfolio performance with higher adjusted evaluation 

ratios and lower portfolio turnover. 

In November 1998, the realised returns of the CVaR-BL portfolio became 

positive. Similar to the rank of portfolio performance in August 1998, the RW50-

CVaR-BL portfolio performed best with the highest CSR and reward to CVaR 

ratio, followed by the DCC-CVaR-BL portfolio and then the EWMA-CVaR-BL, 

which performed worst. The values of portfolio turnover for the normal 

distribution also gave the same rank, but gave an inverse rank for the t-

distribution. The change from the normal distribution to the t-distribution 

improved the DCC-CVaR-BL portfolio performance with higher evaluation ratios 

and lower portfolio turnover. The change from the normal distribution to the t-

distribution improved the RW50-CVaR-BL portfolio performance to reach higher 

evaluation ratios at the cost of higher portfolio turnover. The EWMA-CVaR-BL 

portfolio failed to get any benefit from the the t-distribution assumption, with 

worse portfolio performance. 

Overall, these single-period performances indeed provided some evidences that 

adding the CVaR constraint could improve the performance of the 

unconstrained implied BL portfolio and the SR-BL portfolio. For the normal 

distribution, the performance of the CVaR-constrained BL portfolio was similar 

to that of the VaR-constrained BL portfolio except that the use of the RW50 

model would mean the deterioration of the performance of the CVaR-

constrained BL portfolio. For the t-distribution, the performance of the CVaR-

constrained BL portfolio was better than that of the VaR-constrained BL portfolio 

in August 1998; however, the CVaR-constrained BL portfolio cannot beat the 

VaR-constrained BL portfolio in November 1998. Thus, we cannot be sure if the 

CVaR-constrained BL portfolio always performs better by evaluating the 
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portfolio performance in a single period. It is necessary to evaluate the portfolio 

performance over multiple periods.    

5.3.2.2 Multiple Periods Performance 

In this section, I will evaluate the CVaR-constrained BL portfolio performance 

and compare the difference among the use of the three different volatility 

models over multiple periods from November 1994 to May 2010 (see Table 

5.3.4, Panel A and Panel B) and the sub-period from August 1998 to May 2010 

(see Table 5.3.4, Panel C and Panel D).  

As can be seen in Table 5.3.4, Panel A, for the normal distribution, the DCC-

CVaR-BL portfolio performed best with the highest SR of 19.21%, reward to 

VaR ratio of 7.00%, and reward to CVaR ratio of 5.82%. The EWMA-CVaR-BL 

portfolio showed the second best performance with SR, reward to VaR ratio and 

reward to CVaR ratio equal to 17.85%, 6.62%, and 4.98%, respectively. The 

RW50-CVaR-BL portfolio performed worst with the lowest evaluation ratios. 

However, CVaR-BL portfolios displayed an inverse rank in active portfolio 

performance evaluated by the information ratios. For the t-distribution (see 

Panel B), the risk-adjusted performance and the active performance of the 

CVaR-BL portfolio can be ranked in the order of DCC-CVaR-BL portfolio, 

EWMA-CVaR-BL portfolio and RW50-CVaR-BL portfolio. The CVaR-BL 

portfolio for the t-distribution performed worse than the CVaR-BL portfolio for 

the normal distribution, especially in the use of the RW50 model. Compared 

with the VaR-BL portfolios, most of the CVaR-BL portfolios underperformed 

except the RW50-CVaR-BL portfolio for the normal distribution which could beat 

the corresponding VaR-BL portfolio. It was because the bigger CVaR bound at 

the high confidence level of 99% was too restrictive to impose a positive effect 

on improving CVaR-BL portfolio performance. Compared with the multiple-

period performance of the benchmark portfolio and the unconstrained SR-BL 

portfolio in the whole period in Table 5.1.18, the CVaR-constrained BL portfolios 

performed better for the normal distribution, and only the EWMA-CVaR-BL 

portfolio could beat the implied EWMA-BL portfolio.  

In the sub-period from August 1998 to May 2010, similar to the performance in 

the whole period, the DCC-CVaR-BL portfolio behaved best, followed by the 

EWMA-CVaR-BL portfolio and then the RW50-CVaR-BL portfolio. The CVaR-
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BL portfolio performed better for the normal distribution than for the t-distribution. 

Compared with the multiple period performance of the benchmark portfolio and 

the unconstrained SR-BL portfolio in the whole period in Table 5.1.19, both the 

DCC-CVaR-BL portfolios and the EWMA-CVaR-BL portfolio for the normal 

distribution performed better. 

5.3.3 Effects of CVaR Constraints, Distributions and Confidence Levels 

According to Table 5.3.4, the DCC-VaR-BL portfolio showed the best 

performance among the VaR-constrained BL portfolios, therefore, in this section, 

I would concentrate on studying effects of distributions and confidence levels on 

the DCC-VaR-BL portfolio at increasing tightness levels of constraints. 

5.3.3.1 Effects on Optimisation Model  

Table 5.3.5 shows the statistics of the inputs and outputs of the optimisation 

model based on increasing CVaR constraints, two distribution assumptions and 

three different confidence levels. According to Table 5.3.5, Panel A with the 

normal distribution, at the 99% confidence level, the ECSR and reward to 

alternative risk ratios decreased as the CVaR constraints increased, because 

the choice of portfolio was all below the optimal point with the tighter CVaR 

constraints. Figure 5.3.1 also reflected this relationship. At the 95% confidence 

level, the ECSR stayed at the highest ratio of 10.32% from 0.99 CVaR factor to 

0.90 CVaR factor, and expected reward to VaR ratio and reward to CVaR ratio 

stayed at 6.69% and 5.27%, respectively. When the CVaR factor kept 

decreasing, the CVaR limits became tighter, and the expected evaluation ratios 

inevitably reduced because the CVaR constraints moved away from the optimal 

point with maximal SR, as can be seen in Figure 5.3.1 (b). At a confidence level 

of 90%, the selected optimal portfolio with maximal SR did not change because 

the CVaR constraints were above the optimal point T in Figure 5.3.1 (c) until the 

CVaR factor reduced close to 0.6. As the CVaR factor decreased from 0.6, the 

evaluation ratios decreased.  

 

According to Table 5.3.5, Panel B, with the t-distribution, at a confidence level of 

99%, the CVaR constraints were too tight to choose the portfolio with maximal 

expected SR. When the CVaR factor was larger than 0.90, the selected portfolio 

was close to the minimum variance portfolio; when the CVaR factor was smaller 
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than 0.90, the CVaR constraint was unbounded to find appropriate weight 

solutions (see Figure 5.3.2 (a)). At confidence levels of 95% and 90%, the 

CVaR constraints were not loose enough to contain the optimal portfolio with 

maximal SR (see Figure 5.3.2 (b) and Figure 5.3.2 (c)), therefore, the expected 

evaluation ratios would decrease as the CVaR constraints tightened. 

 

Compared with the VaR-constrained BL portfolio optimisation statistics in Table 

5.2.5, it can be found that the CVaR-constrained BL portfolio optimisation 

produced the same results as the VaR-constrained BL portfolio for the normal 

distribution, but generated portfolios with a smaller standard deviation and lower 

expected evaluation ratios. 

5.3.3.2 Effects on Weight Solutions 

Section 5.3.3.1 displayed the statistics for the CVaR-constrained BL portfolios 

optimisation. In Section 5.3.3.2, I showed the weight solutions of the CVaR-

constrained portfolios, and analysed the effect of using different distribution 

assumptions, different confidence levels and decreasing CVaR constraints on 

weight solutions. 

 

Table 5.3.6 shows the positions of each asset in the CVaR-constrained BL 

portfolio in August 1998 under the normal distribution and the t-distribution at a 

confidence level of 99% (Panel A), 95% (Panel B), and 90% (Panel C). In Panel 

A, at 99% confidence level, the positions range for the normal distribution 

gradually widened from the interval of -7.09% (USA Consumer Goods) and 

16.56% (USA Oil & Gas) at 0.99 CVaR factor to the interval of -9.97% (USA 

Industrials) and 19.20% (USA Oil & Gas) at 0.7 CVaR factor. For the t-

distribution, the positions range further widened to the interval of -15.80% (USA 

Industrials) and 22.62% (USA Consumer Services) at 0.99 CVaR factor and 

shift upward to the interval of -10.25% (USA Consumer Goods) and 29.85% 

(USA Consumer Services). 

 

At 95% confidence level, for the normal distribution, the positions stayed in the 

range between -9.54% (UK Utilities) and 14.71% (USA Oil & Gas) until the 

CVaR factor reduced to 0.80 to move the range upward between -7.20% (USA 

Consumer Goods) and 16.09% (USA Oil & Gas), and then towards the interval 
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of -6.95% (USA Consumer Goods) and 17.19% (USA Oil & Gas). For the           

t-distribution, the positions range gradually widened from the interval of -8.13% 

(USA Industrials) and 18.04% (USA Oil & Gas) to the interval of -12.41% (USA 

Industrials) and 20.75% (USA Oil & Gas) as the constraints tightened.  

At 90% confidence level, for the normal distribution, the positions stayed in the 

range between -9.54% (UK Utilities) and 14.71% (USA Oil & Gas) until the VaR 

constraint tightened by a product of 0.7, shifted upward to the range between     

-7.22% (USA Consumer Goods) and 15.76% (USA Oil & Gas). For the               

t-distribution, the positions range gradually widened from the interval of -7.14% 

(USA Consumer Goods) and 15.98% (USA Oil & Gas) at 0.90 CVaR factor to 

the interval of -9.16% (USA Industrials) and 18.71% (USA Oil & Gas) as the 

constraints tightened. 

Compared with Table 5.2.6, related to the VaR-BL portfolio weights solutions, 

most of the weight solutions in the CVaR-BL portfolio were slightly different for 

the normal distribution, leading to the same statistical results in optimisation in 

Table 5.3.5, Panel A. However, for the t-distribution, the CVaR-BL portfolio 

allocated each asset with very different positions but the same long and short 

direction at the 99% confidence level and the 90% confidence level. At the 

same confidence level, the position range in the CVaR-BL portfolio was wider 

than the VaR-BL portfolio position range for the t-distribution because of more 

restrictive CVaR constraints than VaR constraints.   

Overall, in the CVaR-constrained BL portfolio, the positions range for the          

t-distribution was wider than for the normal distribution, a higher confidence 

level would have the effect of widening the positions range. Since the the          

t-distribution and the higher confidence level would lead to more restrictive 

CVaR constraints, we can conclude that the use of a high level of CVaR 

constraints tightness would have the tendency of widening the position range. 

However, the direction of long or short of the selected asset and the rank of 

positions are less subject to the change of distribution at same level of 

confidence. 

5.3.3.3 Effects on Portfolio Performance in the Single Period 

In Section 5.3.3.2, I have figured out the weight solutions of the CVaR-BL 

portfolios. The next important task, in Section 5.3.3.3, is to evaluate the realised 
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CVaR-BL portfolio performance and investigate the effect of CVaR constraints, 

distributions, and confidence levels on portfolio performance in the single period 

(see Table 5.3.7 and Table 5.3.8) and over multiple periods (see Table 5.3.9 

and Table 5.3.10).  

In August 1998, the realised expected excess return was negative; the 

performance evaluation may not have much validity in the use of the traditional 

SR. Therefore, I followed Israelsen’s (2003) method to calculate the adjusted 

SR and adjusted reward to CVaR ratio in the same way. I also computed 

portfolio turnover to measure the possible transaction cost.  

Table 5.3.7 reports the results of portfolio performance evaluation in August 

1998 with the normal distribution assumption and the t-distribution assumption 

at confidence levels of 99%, 95% and 90% as the CVaR constraints increased. 

At the 99% confidence level, for the normal distribution, the realised CVaR-BL 

portfolio performance became better with increasing adjusted CSR and 

adjusted reward to CVaR ratios and decreasing portfolio turnover as the 

increasing CVaR constraints were imposed. However, the extremely tight CVaR 

constraints had a negative effect on improving CVaR-BL portfolio performance 

for the t-distribution. At confidence levels of 95% and 90%, the realised CVaR-

BL portfolio did not improve performance until the CVaR constraint increased to 

a certain level for the normal distribution. Nevertheless, for the t-distribution, the 

tighter CVaR constraints on the CVaR-BL portfolio could generate a better 

performance with higher evaluation ratios and lower portfolio turnover. In 

addition, the CVaR-BL portfolio for the t-distribution performed better than for 

the normal distribution with the same CVaR bound at the same confidence level. 

In November 1998 (see Table 5.3.8), the realised excess return was positive; I 

can also find that imposing more restrictive CVaR constraint could improve 

single period performance, as reflected in August 1998.  

Compared with the VaR-BL portfolio in Table 5.2.7 and Table 5.2.8, the CVaR-

BL portfolio performed better with constraints that were more restrictive. In 

contrast to the implied BL portfolio, some CVaR-BL portfolios with relatively 

tighter constraints could beat the implied BL portfolio. In addition, the SR-BL 

portfolio within a moderate level of CVaR constraints can outperform the MVaR-

BL portfolio and MCVaR-BL portfolio in both single periods.   
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5.3.3.4 Effects on Portfolio Performance in Multiple Periods  

I have found that a higher confidence level and the t-distribution would increase 

CVaR limits, and imposing a moderate level of CVaR limits on an SR-BL 

portfolio could improve realised portfolio single period performance. I would 

investigate whether imposing CVaR limits on an SR-BL portfolio could improve 

realised portfolio performance over multiple periods, and the effect of CVaR 

limits, distribution assumptions and confidence levels on performance in the 

whole multiple period between November 1994 and May 2010 (see Table 5.3.9) 

and the sub-period between August 1998 and May 2010 (see Table 5.3.10). 

According to Table 5.3.9, Panel A, for the normal distribution, as the CVaR 

became tighter at 99% confidence level, the performance of the CVaR-BL 

portfolio first slightly improved to achieve the highest evaluation ratios, including 

SR (19.44%), information ratio (25.90%), reward to VaR ratio (7.23%) and 

reward to CVaR ratio (5.98%) at a CVaR factor of 0.90. Then it deteriorated to 

the worst performance with SR, information ratio, reward to VaR ratio and 

reward to CVaR ratio equal to 14.40%, 15.83%, 4.93% and 4.28%, respectively. 

Similarly, at confidence levels of 95% and 90%, the evaluation ratios of the 

CVaR-BL portfolio gradually climbed to the highest level when the CVaR factor 

reduced to 0.7 and 0.6 and continued to perform badly as the CVaR factor kept 

decreasing. For the t-distribution, as can be seen in Table 5.3.9, Panel B, the 

increasing CVaR constraints cannot improve the CVaR-constrained BL portfolio 

performance at confidence levels of 99% and 95% because the CVaR 

constraints were too tight to have a positive effect on performance with a higher 

confidence level. When the confidence level lowered to 90%, the performance 

of the CVaR-constrained BL portfolio for the t-distribution was similar to the 

performance for the normal distribution at 95% confidence level; the increasing 

CVaR limits first showed a positive effect on performance with increasing 

evaluation ratios before the CVaR factor decreased to 0.8 and then showed a 

negative effect on performance. At the same confidence level of 99%, the 

CVaR-BL portfolio performed worse for the t-distribution than for the normal 

distribution, resulting from overly restrictive constraints for the t-distribution; 

however, at confidence levels of 95% and 90%, the CVaR-BL portfolio could 

perform better for the t-distribution than for the normal distribution at relatively 

higher CVaR factors. Moreover, the evaluation ratio of reward to VaR ratio 
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might give different rankings to the CVaR-BL portfolio performance compared 

with other evaluation ratios with the normal distribution and the t-distribution 

assumption at a confidence level of 90%. Caution should be exercised in using 

the reward to VaR ratio to evaluate the portfolio performance because the VaR 

failed to consider the risk beyond the VaR. 

In contrast to the VaR-BL portfolio in Table 5.2.9, the CVaR-BL portfolio showed 

nearly the same performance for the normal distribution at a 99% confidence 

level. Most of the CVaR-BL portfolios could slightly outperform the VaR-BL 

portfolio for the normal distribution at 95% and 90% confidence levels at 

constraints factor higher than 0.7, but the CVaR-BL portfolio could 

underperform the VaR-BL portfolio when the constraints factor decreased lower 

than 0.7. For the t-distribution, the CVaR-BL portfolio failed to overtake the 

VaR-BL portfolio at the 99% confidence level; however, the CVaR-BL could be 

superior to the VaR-BL portfolio at the 95% confidence level when the 

constraints factor decreased from 0.99 to 0.90; after the constraint factor kept 

decreasing from 0.8 to 0.6, the VaR-BL portfolio showed a better performance 

than the CVaR-BL portfolio. Similarly, at the 90% confidence level, there was a 

turning constraint factor of 0.6 to show that the CVaR-BL portfolio could be 

overcome by the VaR-BL portfolio.    

Let us compare with the SR-BL portfolio, MVaR-BL portfolio and MCVaR-BL 

portfolio in Table 5.1.18. When I made a comparison between the CVaR-BL 

portfolio and the SR-BL portfolio, I found that adding a moderate level of CVaR 

constraints on the SR-BL portfolio could significantly improve the SR-BL 

portfolio performance. Moreover, in contrast to the MVaR-BL portfolio and the 

MCVaR-BL portfolio, the CVaR-constrained BL portfolio performed best with 

both distributions at all three confidence levels except the MCVaR-BL portfolio 

with the t-distribution at the 99% confidence level. 

Table 5.3.10 reports the realised CVaR-constrained BL portfolio performance in 

the sub-period from August 1994 to May 2010. Similarly to Table 5.3.9, the 

tendency of improving performance of CVaR-constrained BL portfolio as the 

CVaR constraint increased to a moderate level can also be seen in Table 5.3.10. 

The conclusions from Table 5.3.9 also applied to Table 5.3.10. Thus, I would 

not analyse and explain CVaR-constrained BL portfolio in detail in Table 5.3.10, 
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but focus on comparing Table 5.3.10 with Table 5.1.19. In the sub-period, the 

CVaR-constrained BL portfolio cannot beat the implied BL portfolio, but the 

CVaR-constrained BL portfolio can outperform the SR-BL portfolio with a higher 

SR, information ratio and reward to CVaR ratio. In addition, most of the CVaR-

constrained BL portfolios could perform better than the MVaR-BL portfolios and 

the MCVaR portfolios for the normal distribution. 

5.3.4 Conclusions   

In the in-sample analysis, the findings from the CVaR-constrained BL portfolio 

are similar to the findings from the VaR-constrained BL portfolio as an 

outperformer, in contrast to unconstrained BL portfolios and the benchmark 

portfolio. Furthermore, several CVaR-constrained BL portfolios could show an 

even better performance than the VaR-constrained BL portfolio in single period 

and multiple periods at a moderate level of CVaR constraint, which is more 

restrictive than the VaR constraint.  

Similarly, the choice of volatility models, distributions, and confidence levels 

also has different effects on weights solutions and performances in the CVaR-

constrained BL portfolio. CVaR constraints at a higher confidence level or for 

the t-distribution are tighter, and are tighter as k  reduces. Based on the EWMA 

model and the RW model, there is an obvious tendency that the position range 

in the CVaR-constrained BL portfolio would widen as the CVaR constraints 

tighten, while the position range in the DCC-CVaR-BL portfolio is slightly 

sensitive. However, the direction of long or short of the selected asset and the 

rank of positions are less subject to the change of distribution at the same level 

of confidence. In some single periods, the RW50-CVaR-BL portfolio might show 

the best performance, and the change from the normal distribution to the          

t-distribution could improve the DCC-CVaR-BL portfolio and the RW50-CVaR-

BL portfolio performance at the price of carrying inscrutable portfolio turnover. 

We cannot be sure that the CVaR-constrained BL always performs better for 

the t-distribution in different single periods. Over multiple periods, risk-adjusted 

performance and active performance of the CVaR-constrained BL portfolio are 

not always consistent. The DCC-CVaR-BL portfolio only performs best in risk-

adjusted performance for the normal distribution but also could perform best in 

active performance for the t-distribution at a moderate level of CVaR constraints. 
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Imposing tightening CVaR constraints on an SR-BL portfolio would have a 

‘diminishing effect’ on improving the multiple period performance, which first 

improves with tighter limits and then deteriorates as the limits become too tight. 
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Table 5.1.1 Benchmark Portfolio Performance and Tail Risk 

This table reports the summary statistics of the benchmark portfolio performance from 
January 1994 to May 2010. This table also shows the estimated VaR and CVaR of the 
portfolio at different confidence levels (10%, 5%, 2.5%, 1%), with assumptions of 
normal distribution and t-distribution. 

     Panel A: Performance Evaluation 
     Expected 

Return 
Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

0.0008 0.0430 -0.9079 4.9253 0.0182 0.1285 0.1673 
 

        Panel B: Estimated Tail Risk  
     Normal Distribution: 

      VaR(0.99) 0.0993 CVaR(0.99) 0.1139 
    VaR(0.975) 0.0835 CVaR(0.975) 0.0998 
    VaR(0.95) 0.0700 CVaR(0.95) 0.0880 
    VaR(0.90) 0.0543 CVaR(0.90) 0.0747 
    

        t-Distribution: 
      VaR(0.99) 0.1604 CVaR(0.99) 0.2238 

    VaR(0.975) 0.1187 CVaR(0.975) 0.1710 
    VaR(0.95) 0.0909 CVaR(0.95) 0.1370 
    VaR(0.90) 0.0652 CVaR(0.90) 0.1067 
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Table 5.1.2 Risk Aversion Coefficient and Implied Equilibrium Return in August 
1998 

This table reports the risk aversion coefficient   (Panel A) and implied equilibrium 

return of each index π  (Panel B) in August 1998. 
2
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
 , the numerator is 

market risk premium and the denominator is market variance. Hwπ  , where   is the 

risk aversion coefficient, H  is the conditional covariance matrix in the use of the RW 
model with a window length of 50, the EWMA model and the DCC model, w  is the 
market capitalisation weight of each index.  

Panel A: Risk Aversion Coefficient 
  

 
DCC EWMA RW50 

Risk Aversion Coefficient 2.2166 1.3004 3.5373 

    Panel B: Implied Equilibrium Return 
  

 
DCC EWMA RW50 

UK BASIC MATS  0.0041 0.0020 0.0018 

UK CONSUMER GDS  0.0036 0.0013 0.0018 

UK CONSUMER SVS  0.0027 0.0017 0.0018 

UK FINANCIALS  0.0032 0.0027 0.0031 

UK HEALTH CARE  0.0018 0.0017 0.0022 

UK TECHNOLOGY  0.0051 0.0026 0.0026 

UK INDUSTRIALS  0.0040 0.0022 0.0010 

UK OIL & GAS  0.0030 0.0024 0.0022 

UK TELECOM  0.0036 0.0019 0.0014 

UK UTILITIES  0.0018 0.0011 0.0022 

USA BASIC MATS  0.0036 0.0029 0.0031 

USA CONSUMER GDS  0.0030 0.0037 0.0025 

USA CONSUMER SVS  0.0029 0.0031 0.0028 

USA FINANCIALS  0.0033 0.0047 0.0036 

USA HEALTH CARE  0.0022 0.0029 0.0029 

USA INDUSTRIALS  0.0034 0.0032 0.0035 

USA OIL & GAS  0.0026 0.0022 0.0022 

USA TECHNOLOGY  0.0043 0.0042 0.0044 

USA TELECOM  0.0025 0.0021 0.0021 

USA UTILITIES  0.0019 0.0007 0.0016 

JAPAN BASIC MATS  0.0023 0.0017 0.0018 

JAPAN CONSUMER GDS  0.0026 0.0024 0.0030 

JAPAN CONSUMER SVS  0.0018 0.0015 0.0021 

JAPAN FINANCIALS  0.0032 0.0036 0.0035 

JAPAN HEALTH CARE  0.0017 0.0011 0.0023 

JAPAN INDUSTRIALS  0.0026 0.0018 0.0023 

JAPAN OIL & GAS  0.0028 0.0021 0.0025 

JAPAN TECHNOLOGY  0.0031 0.0027 0.0034 

JAPAN TELECOM  0.0017 0.0019 0.0024 

JAPAN UTILITIES  0.0007 0.0003 0.0012 
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Table 5.1.3 The Views Portfolio Weights, Expected Return and Confidence 
Variance in August 1998 

This table reports the view portfolio weights ( P ), the view portfolio expected return       

( q  ), and the confidence variance (Ω ) in August 1998, based on three volatility models 

including the DCC model, the EWMA model and RW model with a window length of 50. 

The view portfolio is constructed by the momentum strategy and translated into the BL 

model, following the method of Fabozzi et al. (2006). 

Panel A: The View Portfolio Weights ( P ) 
  

  
DCC EWMA RW50 

 
UK BASIC MATS  -0.0911 -0.1284 -0.1832 

 
UK CONSUMER GDS  -0.0926 -0.1132 -0.1360 

 
UK CONSUMER SVS  0.1764 0.1900 0.2314 

 
UK FINANCIALS  -0.1553 -0.1401 -0.1807 

 
UK HEALTH CARE  0.1905 0.2019 0.2369 

 
UK TECHNOLOGY  0.0681 0.0705 0.0688 

 
UK INDUSTRIALS  0.1017 0.1129 0.1718 

 
UK OIL & GAS  -0.1331 -0.1471 -0.1936 

 
UK TELECOM  0.1016 0.1300 0.1762 

 
UK UTILITIES  0.1798 0.1824 0.1755 

 
USA BASIC MATS  -0.1386 -0.1447 -0.2007 

 
USA CONSUMER GDS  0.1649 0.1170 0.2083 

 
USA CONSUMER SVS  0.1950 0.1517 0.2418 

 
USA FINANCIALS  0.1652 0.1008 0.1841 

 
USA HEALTH CARE  0.2124 0.1579 0.2291 

 
USA INDUSTRIALS  0.1686 0.1505 0.2179 

 
USA OIL & GAS  -0.1580 -0.1656 -0.2196 

 
USA TECHNOLOGY  0.1162 0.1002 0.1328 

 
USA TELECOM  0.1673 0.1623 0.2173 

 
USA UTILITIES  0.1767 0.2190 0.2357 

 
JAPAN BASIC MATS  -0.1404 -0.0885 -0.1125 

 
JAPAN CONSUMER GDS  -0.1498 -0.1456 -0.1523 

 
JAPAN CONSUMER SVS  -0.1656 -0.1407 -0.1552 

 
JAPAN FINANCIALS  -0.0986 -0.0785 -0.1033 

 
JAPAN HEALTH CARE  -0.1638 -0.1733 -0.1835 

 
JAPAN INDUSTRIALS  -0.1535 -0.1406 -0.1568 

 
JAPAN OIL & GAS  -0.0792 -0.0749 -0.0983 

 
JAPAN TECHNOLOGY  -0.1256 -0.1057 -0.1214 

 
JAPAN TELECOM  -0.1517 -0.1421 -0.1515 

 
JAPAN UTILITIES  0.1653 0.1974 0.1879 

 
Panel B: Expected Return of the View Portfolio ( q  ) 

 

  
DCC EWMA RW50 

 
Expected Return -0.0620 -0.0862 -0.0990 

 
Panel C: Confidence Variance of the View Portfolio (Ω ) 

 

  
DCC EWMA RW50 

 
 Confidence Variance 0.0047 0.0050 0.0110 
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Table 5.1.4 The Views Portfolio Weights, Expected Return and Confidence 
Variance in November 1998 

This table reports the view portfolio weights ( P ), the view portfolio expected return       

( q  ), and the confidence variance (Ω ) in November 1998, based on three volatility 

models including the DCC model, the EWMA model and the RW model with a window 

length of 50. The view portfolio is constructed by the momentum strategy and 

translated into the BL model following the method of Fabozzi et al. (2006). 

Panel A: The View Portfolio Weights ( P ) 
  

  
DCC EWMA RW50 

 
UK BASIC MATS  -0.0851 -0.1257 -0.1656 

 
UK CONSUMER GDS  -0.0838 -0.1022 -0.1253 

 
UK CONSUMER SVS  -0.1686 -0.2062 -0.2208 

 
UK FINANCIALS  -0.0988 -0.1295 -0.1594 

 
UK HEALTH CARE  0.1414 0.1845 0.2204 

 
UK TECHNOLOGY  -0.0527 -0.0690 -0.0653 

 
UK INDUSTRIALS  -0.0859 -0.1157 -0.1500 

 
UK OIL & GAS  -0.1060 -0.1310 -0.1611 

 
UK TELECOM  0.1135 0.1334 0.1666 

 
UK UTILITIES  0.1671 0.1640 0.1784 

 
USA BASIC MATS  -0.1183 -0.1528 -0.1808 

 
USA CONSUMER GDS  -0.0840 -0.1174 -0.1537 

 
USA CONSUMER SVS  0.1180 0.1463 0.1922 

 
USA FINANCIALS  -0.0748 -0.1027 -0.1345 

 
USA HEALTH CARE  0.1365 0.1524 0.1972 

 
USA INDUSTRIALS  -0.1136 -0.1469 -0.1849 

 
USA OIL & GAS  -0.1324 -0.1553 -0.1889 

 
USA TECHNOLOGY  0.0795 0.0949 0.1184 

 
USA TELECOM  0.1195 0.1492 0.1884 

 
USA UTILITIES  0.1768 0.2132 0.2336 

 
JAPAN BASIC MATS  0.0729 0.0864 0.1048 

 
JAPAN CONSUMER GDS  -0.1465 -0.1452 -0.1486 

 
JAPAN CONSUMER SVS  0.1314 0.1293 0.1420 

 
JAPAN FINANCIALS  -0.0553 -0.0692 -0.0865 

 
JAPAN HEALTH CARE  0.1638 0.1283 0.1535 

 
JAPAN INDUSTRIALS  0.1292 0.1417 0.1535 

 
JAPAN OIL & GAS  0.0636 0.0708 0.0887 

 
JAPAN TECHNOLOGY  -0.0790 -0.0977 -0.1141 

 
JAPAN TELECOM  0.1043 0.1338 0.1410 

 
JAPAN UTILITIES  0.0820 0.1240 0.1527 

 
Panel B: Expected Return of the View Portfolio ( q  ) 

 
  

DCC EWMA RW50 

 
Expected Return 0.0191 0.0295 0.0393 

 
Panel C: Confidence Variance of the View Portfolio ( Ω  ) 

 
  

DCC EWMA RW50 

 
 Confidence Variance 0.0047 0.0050 0.0110 
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Table 5.1.5 Portfolio Performance of the Momentum Portfolio and Benchmark 
Portfolio 

This table shows the average return, standard deviation and Sharpe Ratio (SR) of the 

constructed momentum portfolio and the benchmark portfolio from November 1994 to 

May 2010, and in the sub-period from August 1998 to May 2010. Note that the initial 

period for constructing the momentum portfolio is in November 1994, because I use the 

six-month interval price data from December 1993 to May 1994 to calculate the 

normalised return to create the ranking and then use the subsequent six months as the 

holding period from June 1994 to November 1994. To avoid the noise from the 

simulated data of conditional variance in the RW method with a window length of 50 

and to make a comparable analysis, I evaluate the portfolio performance from the 56th 

period (August 1998).      

Panel A: Nov-94 - May-10 
   

 
DCC EWMA RW50 Benchmark 

Average Return 0.0058 0.0069 0.0161 0.0005 

Standard Deviation 0.0536 0.0579 0.0967 0.0435 

Sharpe Ratio 0.1078 0.1200 0.1661 0.0114 

     Panel B: Aug-98 - May-10 
   

 
DCC EWMA RW50 Benchmark 

Average Return -0.0003 0.0006 0.0000 -0.0014 

Standard Deviation 0.0503 0.0541 0.0597 0.0467 

Sharpe Ratio -0.0066 0.0111 0.0000 -0.0305 
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Table 5.1.6 The BL Expected Returns for Each Index in August 1998 

This table reports the BL expected return BLμ  for each index in August 1998 in the use 

of three volatility models. )()'( '1
, tttttttttttBL πqΩPHPPHπμ P  , where   is set to 

be 0.1. 

 
DCC EWMA RW50 

UK BASIC MATS  0.0059 0.0039 0.0025 

UK CONSUMER GDS  0.0042 0.0022 0.0023 

UK CONSUMER SVS  0.0020 0.0006 0.0016 

UK FINANCIALS  0.0026 0.0020 0.0029 

UK HEALTH CARE  0.0013 0.0005 0.0020 

UK TECHNOLOGY  0.0025 -0.0015 0.0003 

UK INDUSTRIALS  0.0039 0.0018 0.0007 

UK OIL & GAS  0.0041 0.0032 0.0029 

UK TELECOM  0.0014 -0.0021 0.0005 

UK UTILITIES  0.0011 -0.0008 0.0017 

USA BASIC MATS  0.0037 0.0032 0.0031 

USA CONSUMER GDS  0.0021 0.0019 0.0020 

USA CONSUMER SVS  0.0018 0.0007 0.0020 

USA FINANCIALS  0.0018 0.0017 0.0023 

USA HEALTH CARE  0.0011 0.0009 0.0021 

USA INDUSTRIALS  0.0027 0.0020 0.0031 

USA OIL & GAS  0.0032 0.0023 0.0023 

USA TECHNOLOGY  0.0030 0.0030 0.0039 

USA TELECOM  0.0012 -0.0009 0.0010 

USA UTILITIES  0.0009 -0.0018 0.0002 

JAPAN BASIC MATS  0.0051 0.0088 0.0051 

JAPAN CONSUMER GDS  0.0045 0.0049 0.0049 

JAPAN CONSUMER SVS  0.0041 0.0059 0.0046 

JAPAN FINANCIALS  0.0069 0.0105 0.0068 

JAPAN HEALTH CARE  0.0035 0.0050 0.0043 

JAPAN INDUSTRIALS  0.0049 0.0063 0.0048 

JAPAN OIL & GAS  0.0079 0.0103 0.0060 

JAPAN TECHNOLOGY  0.0055 0.0078 0.0059 

JAPAN TELECOM  0.0037 0.0056 0.0046 

JAPAN UTILITIES  0.0018 0.0025 0.0025 
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Table 5.1.7 The BL Expected Returns for Each Index in November 1998 

This table reports the BL expected return BLμ  for each index in November 1998 in the 

use of three volatility models. )()'( '1
, tttttttttttBL πqΩPHPPHπμ P  , where   is set 

to be 0.1. 

 
DCC EWMA RW50 

UK BASIC MATS  0.0017 0.0005 0.0015 

UK CONSUMER GDS  0.0014 -0.0004 0.0008 

UK CONSUMER SVS  0.0012 0.0006 0.0012 

UK FINANCIALS  0.0024 0.0021 0.0024 

UK HEALTH CARE  0.0017 0.0018 0.0018 

UK TECHNOLOGY  0.0026 -0.0006 0.0013 

UK INDUSTRIALS  0.0019 0.0005 0.0010 

UK OIL & GAS  0.0016 0.0012 0.0017 

UK TELECOM  0.0018 0.0021 0.0015 

UK UTILITIES  0.0011 0.0013 0.0013 

USA BASIC MATS  0.0019 0.0018 0.0024 

USA CONSUMER GDS  0.0031 0.0027 0.0029 

USA CONSUMER SVS  0.0026 0.0026 0.0027 

USA FINANCIALS  0.0041 0.0036 0.0038 

USA HEALTH CARE  0.0023 0.0029 0.0028 

USA INDUSTRIALS  0.0027 0.0028 0.0031 

USA OIL & GAS  0.0014 0.0012 0.0017 

USA TECHNOLOGY  0.0035 0.0043 0.0041 

USA TELECOM  0.0023 0.0026 0.0024 

USA UTILITIES  0.0010 0.0005 0.0008 

JAPAN BASIC MATS  0.0032 0.0033 0.0029 

JAPAN CONSUMER GDS  0.0015 0.0024 0.0028 

JAPAN CONSUMER SVS  0.0018 0.0026 0.0027 

JAPAN FINANCIALS  0.0040 0.0046 0.0046 

JAPAN HEALTH CARE  0.0015 0.0027 0.0026 

JAPAN INDUSTRIALS  0.0019 0.0023 0.0025 

JAPAN OIL & GAS  0.0028 0.0042 0.0039 

JAPAN TECHNOLOGY  0.0030 0.0032 0.0035 

JAPAN TELECOM  0.0020 0.0023 0.0027 

JAPAN UTILITIES  0.0019 0.0019 0.0018 
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Table 5.1.8 Statistics for Unconstrained BL Portfolio Optimisation in August 1998 

This table reports both the statistics inputted into the optimisation models, such as 

estimated expected BL return and standard deviation (based on the DCC model), and 

the results produced by the optimisation models, including Expected Conditional 

Sharpe Ratio (ECSR), expected excess return to VaR ratio ( VaR/ ) and expected 

excess return to CVaR ratio ( CVaR/ ). An implied BL portfolio is constructed by 

reverse optimisation of the utility function. The SR-BL portfolio is constructed by 

achieving maximal SR in the optimisation problem. MVaR-BL portfolio is constructed by 

achieving maximal excess return to VaR ratio in the optimisation problem. MCVaR-BL 

portfolio is constructed by achieving maximal excess return to conditional VaR ratio in 

the optimisation problem. Both VaR and CVaR are estimated by the parametric method 

with assumption of normal distribution (‘N’) and t-distribution (‘t’) at confidence levels 

99%, 95%, and 90%. 

Panel A: Unconstrained Implied BL and SR-BL Statistics in  Aug-98 

 
Benchmark 

Implied 
BL SR-BL 

   Expected Return 0.0029 0.0048 0.0059 
   Standard 

Deviation 0.0370 0.0465 0.0568 
   VaR 0.0812 0.1035 0.1264 
   CVaR 0.0935 0.1193 0.1456 
   VaR/  0.0357 0.0464 0.0464 
   CVaR/  0.0310 0.0403 0.0403 
   ECSR 0.0784 0.1032 0.1032 
    

Unconstrained MVaR-BL and MCVaR-BL Statistics in  Aug-98 
  

Panel B: Normal Distribution 

     
 

0.99 0.95 0.90 

 

MVaR-      
BL 

MCVaR-
BL 

 MVaR-
BL 

MCVaR-
BL 

MVaR-
BL 

MCVaR-
BL 

Expected Return 0.0059 0.0057 0.0060 0.0059 0.0059 0.0059 
Standard 
Deviation 0.0578 0.0562 0.0581 0.0576 0.0574 0.0573 

VaR 0.1286 0.1251 0.0896 0.0889 0.0677 0.0676 

CVaR 0.1482 0.1441 0.1139 0.1129 0.0949 0.0948 

VaR/  0.0462 0.0459 0.0666 0.0666 0.0873 0.0872 

CVaR/  0.0401 0.0398 0.0524 0.0524 0.0623 0.0622 

ECSR 0.1027 0.1021 0.1028 0.1028 0.1029 0.1028 

Panel C: t-Distribution 
     

 
0.99 0.95 0.90 

 

 MVaR-    
BL 

MCVaR-
BL 

 MVaR-
BL 

MCVaR-
BL 

MVaR-
BL 

MCVaR-
BL 

Expected Return 0.0052 0.0054 0.0059 0.0055 0.0060 0.0058 
Standard 
Deviation 0.0512 0.0532 0.0577 0.0541 0.0580 0.0563 

VaR 0.1867 0.1940 0.1170 0.1098 0.0829 0.0806 

CVaR 0.2621 0.2724 0.1788 0.1677 0.1389 0.1351 

VaR/  0.0278 0.0279 0.0506 0.0502 0.0719 0.0714 

CVaR/  0.0198 0.0199 0.0331 0.0329 0.0429 0.0426 
ECSR 0.1015 0.1017 0.1028 0.1019 0.1028 0.1022 



154 
 

Table 5.1.9 Weights in the Unconstrained Implied BL Portfolio and the SR-BL 
Portfolio in August 1998 

This table reports the weights assigned in each index in August 1998. Weights in the 

unconstrained implied BL portfolio are calculated by tBLt

t

tBL ,
1*

,

1
μVw 


.The SR-BL 

portfolios allocate asset to achieve the maximal SR in the optimisation problem, 

weights can be calculated by 
tBLt

tBLt
tBL

,
1

,
1

*
,

' μV1

μV
w





  . 

 
DCC EWMA RW50 

 
Implied  BL SR-BL  Implied  BL SR-BL  Implied  BL SR-BL  

UK BASIC MATS  0.0532 0.0648 0.1469 0.1989 0.0484 0.0546 

UK CONSUMER GDS  0.0503 0.0614 0.1268 0.1825 0.0342 0.0402 

UK CONSUMER SVS  -0.0647 -0.0789 -0.1798 -0.2621 -0.0285 -0.0334 

UK FINANCIALS  0.1180 0.1436 0.1922 0.2776 0.0806 0.0931 

UK HEALTH CARE  -0.0594 -0.0723 -0.1802 -0.2407 -0.0173 -0.0182 

UK TECHNOLOGY  -0.0257 -0.0313 -0.0664 -0.0967 -0.0073 -0.0085 

UK INDUSTRIALS  -0.0365 -0.0447 -0.1060 -0.1399 -0.0243 -0.0275 

UK OIL & GAS  0.0702 0.0857 0.1630 0.2306 0.0467 0.0543 

UK TELECOM  -0.0286 -0.0350 -0.1165 -0.1791 -0.0174 -0.0212 

UK UTILITIES  -0.0779 -0.0954 -0.1831 -0.2619 -0.0275 -0.0315 

USA BASIC MATS  0.0956 0.1171 0.1831 0.2487 0.0710 0.0805 

USA CONSUMER GDS  -0.0615 -0.0747 -0.1038 -0.1440 -0.0258 -0.0287 

USA CONSUMER SVS  -0.0157 -0.0202 -0.0803 -0.1025 0.0275 0.0329 

USA FINANCIALS  0.0310 0.0381 0.0062 0.0079 0.0722 0.0830 

USA HEALTH CARE  0.0340 0.0414 -0.0286 -0.0441 0.0888 0.1020 

USA INDUSTRIALS  -0.0243 -0.0294 -0.1008 -0.1325 0.0111 0.0157 

USA OIL & GAS  0.1205 0.1471 0.2207 0.3242 0.0903 0.1042 

USA TECHNOLOGY  0.0421 0.0515 -0.0064 -0.0153 0.0703 0.0811 

USA TELECOM  -0.0554 -0.0674 -0.1452 -0.2077 -0.0206 -0.0241 

USA UTILITIES  -0.0300 -0.0368 -0.1761 -0.2610 0.0054 0.0055 

JAPAN BASIC MATS  0.0846 0.1022 0.1108 0.1474 0.0394 0.0454 

JAPAN CONSUMER GDS  0.1030 0.1255 0.1859 0.2464 0.0620 0.0698 

JAPAN CONSUMER SVS  0.1036 0.1257 0.1733 0.2426 0.0553 0.0637 

JAPAN FINANCIALS  0.0747 0.0916 0.1110 0.1548 0.0483 0.0552 

JAPAN HEALTH CARE  0.0961 0.1178 0.2018 0.2885 0.0551 0.0650 

JAPAN INDUSTRIALS  0.0908 0.1125 0.1665 0.2752 0.0489 0.0598 

JAPAN OIL & GAS  0.0434 0.0531 0.0855 0.1303 0.0256 0.0292 

JAPAN TECHNOLOGY  0.0763 0.0928 0.1283 0.1838 0.0404 0.0468 

JAPAN TELECOM  0.0836 0.1019 0.1617 0.2278 0.0414 0.0472 

JAPAN UTILITIES  -0.0720 -0.0876 -0.2005 -0.2797 -0.0316 -0.0363 

 

 



155 
 

Table 5.1.10 Weights in the Unconstrained Implied BL Portfolio and the SR-BL 

Portfolio in November 1998 

This table reports the weights assigned in each index in November 1998. Weights in 

the unconstrained implied BL portfolio is calculated by tBLt

t

tBL ,
1*

,

1
μVw 


. The SR-BL 

portfolios allocate asset to achieve the maximal SR in the optimisation problem, 

weights can be calculated by 
tBLt

tBLt
tBL

,
1

,
1

*
,

' μV1

μV
w





  . 

 
DCC EWMA RW50 

 
Implied  BL SR-BL  Implied  BL SR-BL  Implied  BL SR-BL  

UK BASIC MATS  -0.0275 -0.0247 -0.0465 -0.0429 -0.0187 -0.0185 

UK CONSUMER GDS  -0.0305 -0.0276 -0.0399 -0.0369 -0.0160 -0.0157 

UK CONSUMER SVS  -0.0483 -0.0442 -0.0679 -0.0644 -0.0143 -0.0142 

UK FINANCIALS  -0.0022 -0.0021 -0.0172 -0.0167 0.0131 0.0127 

UK HEALTH CARE  0.0872 0.0785 0.1091 0.1026 0.0640 0.0633 

UK TECHNOLOGY  -0.0140 -0.0125 -0.0218 -0.0205 -0.0028 -0.0028 

UK INDUSTRIALS  -0.0213 -0.0189 -0.0357 -0.0321 -0.0098 -0.0094 

UK OIL & GAS  -0.0398 -0.0354 -0.0525 -0.0488 -0.0218 -0.0215 

UK TELECOM  0.0651 0.0584 0.0765 0.0705 0.0450 0.0444 

UK UTILITIES  0.0783 0.0705 0.0811 0.0775 0.0383 0.0380 

USA BASIC MATS  -0.0234 -0.0211 -0.0405 -0.0386 -0.0036 -0.0039 

USA CONSUMER GDS  -0.0164 -0.0147 -0.0322 -0.0299 -0.0062 -0.0065 

USA CONSUMER SVS  0.1292 0.1162 0.1442 0.1376 0.1111 0.1101 

USA FINANCIALS  0.0846 0.0760 0.0713 0.0668 0.0940 0.0929 

USA HEALTH CARE  0.1962 0.1765 0.2063 0.1941 0.1714 0.1699 

USA INDUSTRIALS  0.0125 0.0115 -0.0040 -0.0067 0.0298 0.0290 

USA OIL & GAS  -0.0140 -0.0129 -0.0264 -0.0264 0.0104 0.0102 

USA TECHNOLOGY  0.1473 0.1325 0.1560 0.1457 0.1334 0.1320 

USA TELECOM  0.0733 0.0660 0.0889 0.0808 0.0540 0.0529 

USA UTILITIES  0.1332 0.1203 0.1529 0.1430 0.0977 0.0965 

JAPAN BASIC MATS  0.0434 0.0387 0.0511 0.0466 0.0301 0.0296 

JAPAN CONSUMER GDS  -0.0329 -0.0297 -0.0354 -0.0334 0.0033 0.0032 

JAPAN CONSUMER SVS  0.0741 0.0673 0.0765 0.0713 0.0429 0.0425 

JAPAN FINANCIALS  0.0056 0.0051 -0.0013 -0.0020 0.0146 0.0144 

JAPAN HEALTH CARE  0.0807 0.0728 0.0695 0.0647 0.0381 0.0376 

JAPAN INDUSTRIALS  0.0652 0.0589 0.0737 0.0697 0.0366 0.0362 

JAPAN OIL & GAS  0.0293 0.0264 0.0341 0.0333 0.0172 0.0169 

JAPAN TECHNOLOGY  -0.0185 -0.0168 -0.0279 -0.0269 -0.0042 -0.0042 

JAPAN TELECOM  0.0518 0.0462 0.0670 0.0642 0.0314 0.0312 

JAPAN UTILITIES  0.0432 0.0388 0.0633 0.0577 0.0337 0.0331 
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Table 5.1.11 Weights in the Unconstrained MVaR-BL Portfolio in August 1998 

This table reports weights allocated to each index in the unconstrained MVaR-BL 

portfolio in August 1998. The weight in the MVaR-BL portfolio is the solution to the 

optimisation problem with the target of maximal expected excess return to VaR ratio. 

VaR is estimated by the parametric method with the assumption of normal distribution 

and t-distribution at the confidence level of 99%.  

Aug 98  Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  0.1000 0.1417 0.0352 0.0816 0.1406 0.0359 

UK CONSUMER GDS  0.0466 0.1266 0.0348 0.0368 0.1201 0.0348 

UK CONSUMER SVS  -0.0398 -0.0351 0.0150 -0.0104 -0.0265 0.0146 

UK FINANCIALS  0.0505 0.0636 0.0447 0.0180 0.0233 0.0423 

UK HEALTH CARE  -0.0619 -0.0765 0.0100 -0.0211 -0.0681 0.0093 

UK TECHNOLOGY  -0.0343 -0.0832 -0.0131 -0.0241 -0.1041 -0.0154 

UK INDUSTRIALS  -0.0297 0.0479 0.0170 0.0145 0.0569 0.0178 

UK OIL & GAS  0.1016 0.1037 0.0302 0.0439 0.0773 0.0300 

UK TELECOM  -0.0381 -0.2825 -0.0394 -0.0483 -0.2622 -0.0399 

UK UTILITIES  -0.0687 -0.1266 -0.0254 -0.0426 -0.1294 -0.0262 

USA BASIC MATS  0.0713 0.0628 0.0272 0.0333 0.0485 0.0253 

USA CONSUMER GDS  -0.0573 -0.0723 -0.0013 -0.0343 -0.0737 -0.0028 

USA CONSUMER SVS  0.0053 -0.0499 0.0543 0.0315 -0.0470 0.0521 

USA FINANCIALS  0.0261 -0.0029 0.0836 0.0453 -0.0219 0.0791 

USA HEALTH CARE  0.0269 0.0161 0.1124 0.0723 0.0159 0.1102 

USA INDUSTRIALS  0.0053 -0.0275 0.0432 0.0186 -0.0231 0.0400 

USA OIL & GAS  0.1152 0.1108 0.0559 0.0623 0.0803 0.0553 

USA TECHNOLOGY  0.0567 0.0221 0.0868 0.0620 -0.0037 0.0829 

USA TELECOM  -0.0689 -0.1680 -0.0288 -0.0429 -0.1625 -0.0301 

USA UTILITIES  -0.0381 -0.0818 0.0105 -0.0032 -0.0684 0.0095 

JAPAN BASIC MATS  0.0872 0.1153 0.0393 0.0755 0.1613 0.0442 

JAPAN CONSUMER GDS  0.1210 0.0976 0.0527 0.0827 0.0900 0.0538 

JAPAN CONSUMER SVS  0.0902 0.1294 0.0492 0.0715 0.1368 0.0525 

JAPAN FINANCIALS  0.1118 0.1462 0.0677 0.1061 0.2034 0.0691 

JAPAN HEALTH CARE  0.0527 0.1212 0.0360 0.0390 0.1202 0.0383 

JAPAN INDUSTRIALS  0.1281 0.1677 0.0462 0.0835 0.1495 0.0496 

JAPAN OIL & GAS  0.0498 0.0869 0.0313 0.0973 0.1592 0.0351 

JAPAN TECHNOLOGY  0.1463 0.2707 0.0674 0.0956 0.2219 0.0690 

JAPAN TELECOM  0.1008 0.1862 0.0497 0.0615 0.1559 0.0525 

JAPAN UTILITIES  -0.0567 -0.0102 0.0077 -0.0059 0.0295 0.0113 
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Table 5.1.12 Weights in the Unconstrained MVaR-BL Portfolio in November 1998 

This table reports weights allocated to each index in the unconstrained MVaR-BL 

portfolio in November 1998. The weight in the MVaR-BL portfolio is the solution to the 

optimisation problem with the target of maximal expected excess return to VaR ratio. 

VaR is estimated by the parametric method with the assumption of normal distribution 

and t-distribution at the confidence level of 99%.  

Nov 98 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  -0.0434 -0.0757 -0.0237 -0.0247 -0.0741 -0.0092 

UK CONSUMER GDS  -0.0429 -0.0900 -0.0366 -0.0300 -0.0904 -0.0184 

UK CONSUMER SVS  0.0040 -0.0128 0.0045 0.0052 -0.0139 0.0097 

UK FINANCIALS  0.0155 0.0178 0.0269 0.0205 0.0180 0.0315 

UK HEALTH CARE  0.0608 0.0566 0.0390 0.0458 0.0540 0.0327 

UK TECHNOLOGY  -0.0076 -0.0313 0.0049 -0.0257 -0.0378 -0.0056 

UK INDUSTRIALS  -0.0330 -0.0830 -0.0243 -0.0208 -0.0821 -0.0083 

UK OIL & GAS  -0.0262 -0.0384 -0.0188 -0.0157 -0.0375 -0.0099 

UK TELECOM  0.0419 0.0793 0.0399 0.0222 0.0746 0.0247 

UK UTILITIES  0.0311 0.0648 0.0282 0.0165 0.0609 0.0150 

USA BASIC MATS  -0.0072 -0.0182 0.0044 0.0036 -0.0166 0.0139 

USA CONSUMER GDS  -0.0089 -0.0174 -0.0014 -0.0017 -0.0168 0.0064 

USA CONSUMER SVS  0.0835 0.0831 0.0835 0.0799 0.0820 0.0822 

USA FINANCIALS  0.1119 0.0997 0.1123 0.1128 0.1002 0.1146 

USA HEALTH CARE  0.1780 0.1750 0.1600 0.1638 0.1730 0.1533 

USA INDUSTRIALS  0.0517 0.0590 0.0570 0.0540 0.0588 0.0581 

USA OIL & GAS  0.0230 0.0083 0.0230 0.0292 0.0086 0.0303 

USA TECHNOLOGY  0.1343 0.1500 0.1304 0.1209 0.1510 0.1253 

USA TELECOM  0.0552 0.0807 0.0483 0.0354 0.0761 0.0318 

USA UTILITIES  0.0788 0.0876 0.0751 0.0676 0.0828 0.0641 

JAPAN BASIC MATS  0.0319 0.0521 0.0334 0.0402 0.0566 0.0316 

JAPAN CONSUMER GDS  0.0203 0.0288 0.0285 0.0262 0.0310 0.0306 

JAPAN CONSUMER SVS  0.0401 0.0555 0.0368 0.0404 0.0565 0.0334 

JAPAN FINANCIALS  0.0179 0.0234 0.0322 0.0480 0.0297 0.0389 

JAPAN HEALTH CARE  0.0450 0.0579 0.0290 0.0363 0.0580 0.0250 

JAPAN INDUSTRIALS  0.0147 0.0277 0.0211 0.0179 0.0303 0.0212 

JAPAN OIL & GAS  0.0235 0.0658 0.0315 0.0337 0.0705 0.0258 

JAPAN TECHNOLOGY  0.0079 0.0063 0.0116 0.0173 0.0111 0.0169 

JAPAN TELECOM  0.0357 0.0217 0.0145 0.0306 0.0226 0.0147 

JAPAN UTILITIES  0.0624 0.0659 0.0289 0.0504 0.0630 0.0198 
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Table 5.1.13  Effect of Distribution Assumptions and Confidence Levels on 
MVaR-BL Portfolio Weights 

This table shows positions of each asset in the MVaR-BL portfolio in August 1998 

under normal distribution and t-distribution at confidence levels of 99%, 95% and 90%. 

Note that the covariance matrix applied to the MVaR-BL model is the DCC covariance 

matrix in this table.  

 
Normal Distribution t-Distribution 

 
0.99 0.95 0.90 0.99 0.95 0.90 

UK BASIC MATS  0.1000 0.0993 0.0904 0.0816 0.0985 0.0968 

UK CONSUMER GDS  0.0466 0.0478 0.0459 0.0368 0.0463 0.0469 

UK CONSUMER SVS  -0.0398 -0.0413 -0.0494 -0.0104 -0.0408 -0.0439 

UK FINANCIALS  0.0505 0.0525 0.0658 0.0180 0.0526 0.0566 

UK HEALTH CARE  -0.0619 -0.0623 -0.0625 -0.0211 -0.0621 -0.0629 

UK TECHNOLOGY  -0.0343 -0.0360 -0.0438 -0.0241 -0.0354 -0.0390 

UK INDUSTRIALS  -0.0297 -0.0323 -0.0468 0.0145 -0.0320 -0.0375 

UK OIL & GAS  0.1016 0.1037 0.1106 0.0439 0.1028 0.1066 

UK TELECOM  -0.0381 -0.0394 -0.0344 -0.0483 -0.0371 -0.0376 

UK UTILITIES  -0.0687 -0.0685 -0.0682 -0.0426 -0.0685 -0.0687 

USA BASIC MATS  0.0713 0.0718 0.0779 0.0333 0.0725 0.0742 

USA CONSUMER GDS  -0.0573 -0.0588 -0.0590 -0.0343 -0.0572 -0.0591 

USA CONSUMER SVS  0.0053 0.0029 -0.0018 0.0315 0.0048 0.0015 

USA FINANCIALS  0.0261 0.0249 0.0315 0.0453 0.0270 0.0265 

USA HEALTH CARE  0.0269 0.0259 0.0272 0.0723 0.0271 0.0257 

USA INDUSTRIALS  0.0053 0.0036 0.0053 0.0186 0.0054 0.0040 

USA OIL & GAS  0.1152 0.1180 0.1284 0.0623 0.1171 0.1219 

USA TECHNOLOGY  0.0567 0.0530 0.0499 0.0620 0.0562 0.0522 

USA TELECOM  -0.0689 -0.0702 -0.0701 -0.0429 -0.0687 -0.0703 

USA UTILITIES  -0.0381 -0.0378 -0.0361 -0.0032 -0.0378 -0.0379 

JAPAN BASIC MATS  0.0872 0.0887 0.0891 0.0755 0.0872 0.0890 

JAPAN CONSUMER GDS  0.1210 0.1214 0.1197 0.0827 0.1209 0.1217 

JAPAN CONSUMER SVS  0.0902 0.0924 0.0944 0.0715 0.0905 0.0933 

JAPAN FINANCIALS  0.1118 0.1117 0.1107 0.1061 0.1112 0.1114 

JAPAN HEALTH CARE  0.0527 0.0558 0.0650 0.0390 0.0538 0.0584 

JAPAN INDUSTRIALS  0.1281 0.1292 0.1285 0.0835 0.1282 0.1299 

JAPAN OIL & GAS  0.0498 0.0508 0.0465 0.0973 0.0486 0.0484 

JAPAN TECHNOLOGY  0.1463 0.1461 0.1419 0.0956 0.1455 0.1458 

JAPAN TELECOM  0.1008 0.1031 0.1052 0.0615 0.1011 0.1044 

JAPAN UTILITIES  -0.0567 -0.0559 -0.0618 -0.0059 -0.0578 -0.0584 
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Table 5.1.14 Weights in the Unconstrained MCVaR-BL Portfolio in August 1998 

This table reports weights allocated to each index in the unconstrained MCVaR-BL 

portfolio in August 1998. The weight in the MCVaR-BL portfolio is the solution to the 

optimisation problem with the target of maximal expected excess return to CVaR ratio. 

Correspondingly, CVaR is also estimated by the parametric method with the 

assumption of normal distribution and t distribution at the confidence level of 99%.  

Aug 98 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  0.1005 0.1447 0.0341 0.0875 0.0450 0.0327 

UK CONSUMER GDS  0.0481 0.1288 0.0339 0.0387 0.0146 0.0312 

UK CONSUMER SVS  -0.0197 -0.0327 0.0155 -0.0144 -0.0272 0.0142 

UK FINANCIALS  0.0220 0.0581 0.0411 0.0180 0.0035 0.0393 

UK HEALTH CARE  -0.0407 -0.0763 0.0111 -0.0268 -0.0191 0.0109 

UK TECHNOLOGY  -0.0220 -0.0833 -0.0109 -0.0268 -0.1211 -0.0173 

UK INDUSTRIALS  0.0073 0.0533 0.0176 0.0128 -0.0119 0.0156 

UK OIL & GAS  0.0657 0.1019 0.0267 0.0490 0.0092 0.0258 

UK TELECOM  -0.0549 -0.2828 -0.0362 -0.0515 -0.1174 -0.0355 

UK UTILITIES  -0.0564 -0.1297 -0.0248 -0.0478 -0.0636 -0.0244 

USA BASIC MATS  0.0437 0.0626 0.0248 0.0359 0.0158 0.0234 

USA CONSUMER GDS  -0.0488 -0.0707 -0.0014 -0.0382 -0.0517 -0.0026 

USA CONSUMER SVS  0.0174 -0.0484 0.0546 0.0270 -0.0011 0.0531 

USA FINANCIALS  0.0263 -0.0031 0.0813 0.0407 0.0157 0.0788 

USA HEALTH CARE  0.0473 0.0162 0.1121 0.0655 0.0703 0.1115 

USA INDUSTRIALS  0.0070 -0.0255 0.0416 0.0163 0.0083 0.0400 

USA OIL & GAS  0.0789 0.1073 0.0527 0.0652 0.0291 0.0517 

USA TECHNOLOGY  0.0541 0.0184 0.0842 0.0607 0.0466 0.0824 

USA TELECOM  -0.0599 -0.1684 -0.0269 -0.0485 -0.0805 -0.0268 

USA UTILITIES  -0.0216 -0.0805 0.0118 -0.0095 -0.0282 0.0111 

JAPAN BASIC MATS  0.0849 0.1174 0.0422 0.0796 0.1847 0.0476 

JAPAN CONSUMER GDS  0.1016 0.0960 0.0526 0.0878 0.0767 0.0540 

JAPAN CONSUMER SVS  0.0829 0.1281 0.0503 0.0748 0.1213 0.0535 

JAPAN FINANCIALS  0.1133 0.1557 0.0691 0.1129 0.1911 0.0712 

JAPAN HEALTH CARE  0.0436 0.1187 0.0366 0.0409 0.0990 0.0389 

JAPAN INDUSTRIALS  0.1061 0.1623 0.0461 0.0896 0.1162 0.0495 

JAPAN OIL & GAS  0.0895 0.0935 0.0339 0.1018 0.2010 0.0388 

JAPAN TECHNOLOGY  0.1229 0.2634 0.0649 0.1035 0.1346 0.0663 

JAPAN TELECOM  0.0814 0.1812 0.0489 0.0658 0.0911 0.0509 

JAPAN UTILITIES  -0.0204 -0.0062 0.0122 -0.0106 0.0481 0.0143 
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Table 5.1.15 Weights in the Unconstrained MCVaR-BL Portfolio in November 1998 

This table reports weights allocated to each index in the unconstrained MCVaR-BL 

portfolio in November 1998. The weight in the MCVaR-BL portfolio is the solution to the 

optimisation problem with the target of maximal expected excess return to CVaR ratio. 

Correspondingly, CVaR is also estimated by the parametric method with the 

assumption of normal distribution and t-distribution at the confidence level of 99%.  

Nov 98 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  -0.0419 -0.0755 -0.0102 0.0049 -0.0340 -0.0085 

UK CONSUMER GDS  -0.0418 -0.0905 -0.0197 0.0010 -0.0467 -0.0176 

UK CONSUMER SVS  0.0043 -0.0132 0.0094 0.0192 -0.0026 0.0099 

UK FINANCIALS  0.0163 0.0178 0.0312 0.0388 0.0265 0.0317 

UK HEALTH CARE  0.0596 0.0559 0.0331 0.0302 0.0394 0.0324 

UK TECHNOLOGY  -0.0079 -0.0330 -0.0045 0.0054 -0.0397 -0.0065 

UK INDUSTRIALS  -0.0317 -0.0830 -0.0093 0.0120 -0.0389 -0.0076 

UK OIL & GAS  -0.0252 -0.0381 -0.0105 0.0007 -0.0230 -0.0096 

UK TELECOM  0.0407 0.0781 0.0257 0.0184 0.0388 0.0240 

UK UTILITIES  0.0301 0.0639 0.0159 0.0090 0.0271 0.0143 

USA BASIC MATS  -0.0061 -0.0178 0.0133 0.0242 0.0018 0.0144 

USA CONSUMER GDS  -0.0079 -0.0173 0.0059 0.0166 -0.0034 0.0068 

USA CONSUMER SVS  0.0836 0.0828 0.0823 0.0868 0.0791 0.0822 

USA FINANCIALS  0.1126 0.0998 0.1144 0.1236 0.1065 0.1147 

USA HEALTH CARE  0.1771 0.1745 0.1537 0.1523 0.1575 0.1530 

USA INDUSTRIALS  0.0522 0.0590 0.0580 0.0615 0.0576 0.0582 

USA OIL & GAS  0.0237 0.0084 0.0299 0.0409 0.0200 0.0306 

USA TECHNOLOGY  0.1338 0.1505 0.1257 0.1239 0.1347 0.1250 

USA TELECOM  0.0539 0.0796 0.0328 0.0246 0.0418 0.0310 

USA UTILITIES  0.0781 0.0863 0.0648 0.0650 0.0636 0.0635 

JAPAN BASIC MATS  0.0315 0.0533 0.0317 0.0126 0.0529 0.0316 

JAPAN CONSUMER GDS  0.0207 0.0295 0.0305 0.0263 0.0329 0.0307 

JAPAN CONSUMER SVS  0.0397 0.0558 0.0335 0.0203 0.0471 0.0332 

JAPAN FINANCIALS  0.0191 0.0250 0.0383 0.0280 0.0474 0.0394 

JAPAN HEALTH CARE  0.0439 0.0579 0.0252 0.0131 0.0437 0.0249 

JAPAN INDUSTRIALS  0.0147 0.0285 0.0212 0.0114 0.0292 0.0211 

JAPAN OIL & GAS  0.0231 0.0671 0.0261 0.0012 0.0573 0.0256 

JAPAN TECHNOLOGY  0.0083 0.0077 0.0166 0.0121 0.0223 0.0172 

JAPAN TELECOM  0.0349 0.0219 0.0146 0.0078 0.0209 0.0147 

JAPAN UTILITIES  0.0608 0.0650 0.0203 0.0083 0.0400 0.0195 
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Table 5.1.16 Effect of Distribution Assumptions and Confidence Levels on 
MCVaR-BL Portfolio Weights 

This table shows positions of each asset in the MVaR-BL portfolio in August 1998 

under normal distribution and t-distribution at confidence levels of 99%, 95%, and 90%. 

Note that the covariance matrix applied to the MCVaR-BL model is the DCC 

covariance matrix in this table. 

 

Normal Distribution t-Distribution 

 
0.99 0.95 0.90 0.99 0.95 0.90 

UK BASIC MATS  0.1005 0.0978 0.0938 0.0875 0.0926 0.1004 

UK CONSUMER GDS  0.0481 0.0462 0.0453 0.0387 0.0435 0.0480 

UK CONSUMER SVS  -0.0197 -0.0413 -0.0445 -0.0144 -0.0147 -0.0202 

UK FINANCIALS  0.0220 0.0536 0.0597 0.0180 0.0186 0.0225 

UK HEALTH CARE  -0.0407 -0.0622 -0.0627 -0.0268 -0.0312 -0.0412 

UK TECHNOLOGY  -0.0220 -0.0359 -0.0396 -0.0268 -0.0223 -0.0231 

UK INDUSTRIALS  0.0073 -0.0332 -0.0400 0.0128 0.0128 0.0061 

UK OIL & GAS  0.0657 0.1034 0.1067 0.0490 0.0541 0.0667 

UK TELECOM  -0.0549 -0.0366 -0.0343 -0.0515 -0.0534 -0.0550 

UK UTILITIES  -0.0564 -0.0685 -0.0683 -0.0478 -0.0500 -0.0565 

USA BASIC MATS  0.0437 0.0730 0.0762 0.0359 0.0376 0.0442 

USA CONSUMER GDS  -0.0488 -0.0573 -0.0575 -0.0382 -0.0422 -0.0493 

USA CONSUMER SVS  0.0174 0.0045 0.0027 0.0270 0.0239 0.0169 

USA FINANCIALS  0.0263 0.0274 0.0299 0.0407 0.0344 0.0257 

USA HEALTH CARE  0.0473 0.0271 0.0273 0.0655 0.0591 0.0466 

USA INDUSTRIALS  0.0070 0.0055 0.0059 0.0163 0.0120 0.0065 

USA OIL & GAS  0.0789 0.1180 0.1233 0.0652 0.0695 0.0800 

USA TECHNOLOGY  0.0541 0.0560 0.0544 0.0607 0.0572 0.0536 

USA TELECOM  -0.0599 -0.0687 -0.0686 -0.0485 -0.0524 -0.0603 

USA UTILITIES  -0.0216 -0.0377 -0.0372 -0.0095 -0.0130 -0.0220 

JAPAN BASIC MATS  0.0849 0.0873 0.0878 0.0796 0.0810 0.0854 

JAPAN CONSUMER GDS  0.1016 0.1208 0.1206 0.0878 0.0923 0.1024 

JAPAN CONSUMER SVS  0.0829 0.0907 0.0918 0.0748 0.0777 0.0836 

JAPAN FINANCIALS  0.1133 0.1110 0.1103 0.1129 0.1110 0.1134 

JAPAN HEALTH CARE  0.0436 0.0543 0.0579 0.0409 0.0412 0.0442 

JAPAN INDUSTRIALS  0.1061 0.1283 0.1287 0.0896 0.0951 0.1071 

JAPAN OIL & GAS  0.0895 0.0481 0.0457 0.1018 0.0964 0.0888 

JAPAN TECHNOLOGY  0.1229 0.1452 0.1436 0.1035 0.1098 0.1238 

JAPAN TELECOM  0.0814 0.1013 0.1025 0.0658 0.0716 0.0825 

JAPAN UTILITIES  -0.0204 -0.0583 -0.0613 -0.0106 -0.0121 -0.0207 
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Table 5.1.17 Single Period Unconstrained BL Portfolio Performance Evaluation 

This table reports the results of unconstrained BL portfolios and the benchmark portfolio for the portfolio evaluation criteria, including realised excess return, 

Conditional Sharpe Ratio (CSR), Portfolio Turnover (PT) and reward to CVaR ratio. The standard deviation is estimated by conditional covariance matrix of 

three volatility models. An implied BL portfolio is constructed by reverse optimisation of the utility function. SR-BL portfolio is constructed by achieving 

maximal SR in the optimisation problem. The MVaR-BL portfolio is constructed by achieving maximal return to VaR ratio in the optimisation problem. The 

MCVaR-BL portfolio is constructed by achieving maximal return to CVaR ratio in the optimisation problem. Both VaR and CVaR are estimated by the 

parametric method in the optimisation model with assumptions of normal distribution (‘N’) and t-distribution (‘t’) at confidence levels of 99%, 95% and 90%. 

Panel A reports results in August 1998. Panel B reports results in November 1998. August 1998 is the first period to construct the portfolio in the use of the 

RW method with a 50 window length, therefore, there are no results of PT shown for RW50. Following Israelsen’s (2003) method, the CSR and the reward to 

CVaR ratio in August 1998 were adjusted to make a comparison. 

 
Realised Excess Return Adjusted CSR Portfolio Turnover Adjusted Reward to CVaR  

Panel A: Aug 98 DCC EWMA RW50 DCC EWMA RW50 DCC EWMA RW50 DCC EWMA RW50 

Benchmark -0.1420 -0.1420 -0.1420 -0.5135 -0.6705 -0.4065 N/A N/A N/A -3.3845 -3.8028 -3.0993 

Implied BL -0.1156 -0.1255 -0.1223 -0.5382 -1.1718 -0.3874 1.6803 5.5327 N/A -2.7711 -4.6971 -2.5276 

SR-BL -0.1412 -0.1803 -0.1415 -0.8025 -2.4199 -0.5193 3.6583 7.0786 N/A -4.1322 -9.7018 -3.3848 

99% Confidence Level: 
          

  

MVaR-BL N  -0.1466 -0.1434 -0.1439 -0.8476 -1.4563 -0.5060 3.2693 4.0572 N/A -4.4069 -5.9384 -3.4207 

MVaR-BL t  -0.1428 -0.1383 -0.1422 -0.7311 -1.5057 -0.5091 2.3449 4.0130 N/A -3.9866 -5.9249 -3.3794 

MCVaR-BL N -0.1431 -0.1447 -0.1427 -0.8049 -1.4771 -0.5007 2.9954 3.9932 N/A -4.1935 -6.0319 -3.3712 

MCVaR-BL t  -0.1440 -0.1328 -0.1414 -0.7665 -1.2651 -0.5076 2.4305 3.0912 N/A  -4.1168 -5.1364 -3.3508 

95% Confidence Level: 
          

  

MVaR-BL N  -0.1451 -0.1434 -0.1466 -0.8426 -1.4731 -0.5322 3.3499 4.2666 N/A -4.3500 -5.9822 -3.5677 

MVaR-BL t  -0.1463 -0.1430 -0.1444 -0.8440 -1.4511 -0.5076 3.2838 4.0765 N/A -4.3908 -5.9130 -3.4389 

MCVaR-BL N  -0.1462 -0.1430 -0.1446 -0.8427 -1.4509 -0.5089 3.2905 4.0782 N/A -4.3848 -5.9106 -3.4482 

MCVaR-BL t  -0.1429 -0.1479 -0.1418 -0.7729 -1.5214 -0.5044 2.8456 3.9529 N/A  -4.1016 -6.2411 -3.3555 

90% Confidence Level: 
           

 

MVaR-BL N  -0.1439 -0.1416 -0.1516 -0.8269 -1.4890 -0.5678 3.3894 4.6409 N/A -4.2759 -5.9746 -3.8108 

MVaR-BL t  -0.1448 -0.1437 -0.1476 -0.8393 -1.4862 -0.5363 3.3524 4.3470 N/A -4.3329 -6.0248 -3.6069 

MCVaR-BL N  -0.1457 -0.1432 -0.1459 -0.8356 -1.4630 -0.5242 3.3269 4.1741 N/A -4.3498 -5.9488 -3.5262 
MCVaR-BL t  -0.1428 -0.1440 -0.1435 -0.8048 -1.4655 -0.5005 3.0196 4.0323 N/A  -4.1849 -5.9799 -3.3921 
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Table 5.1.17 (continued) 

 
Realised Excess Return Conditional Sharpe Ratio Portfolio Turnover 

Conditional Reward to 
CVaR Ratio 

Panel B: Nov 98 DCC EWMA  RW50 DCC EWMA  RW50 DCC EWMA  RW50 DCC EWMA  RW50 

Benchmark 0.0510 0.0510 0.0510 0.8960 1.0277 1.3658 N/A N/A N/A 0.5064 0.6276 1.0510 

Implied BL 0.0485 0.0481 0.0485 0.9344 0.9129 1.3247 0.9230 2.6271 0.9230 0.5123 0.5210 0.9882 

SR-BL 0.0444 0.0448 0.0479 0.9132 0.9124 1.3257 1.5992 2.5124 0.9144 0.5213 0.5206 0.9898 

99% Confidence Level: 
           MVaR-BL N  0.0492 0.0571 0.0533 0.9342 0.9870 1.3715 0.9752 1.7999 0.4565 0.5397 0.5882 1.0601 

MVaR-BL t  0.0482 0.0578 0.0517 0.8752 0.9778 1.3265 0.5066 1.7276 0.2917 0.4890 0.5795 0.9909 

MCVaR-BL N  0.0493 0.0574 0.0519 0.9338 0.9858 1.3313 0.9545 1.7825 0.3009 0.5393 0.5870 0.9981 

MCVaR-BL t  0.0510 0.0534 0.0516 0.8874 0.9488 1.3233 0.0341 1.2606 0.2865 0.4991 0.5528 0.9862 

95% Confidence Level: 
           MVaR-BL N  0.0488 0.0561 0.0532 0.9322 0.9843 1.3665 1.0434 1.9550 0.5735 0.5379 0.5856 1.0523 

MVaR-BL t  0.0492 0.0569 0.0533 0.9342 0.9871 1.3726 0.9906 1.8109 0.6010 0.5397 0.5883 1.0619 

MCVaR-BL N  0.0491 0.0568 0.0533 0.9342 0.9871 1.3731 0.9967 1.8151 0.6023 0.5397 0.5882 1.0627 

MCVaR-BL t  0.0482 0.0577 0.0518 0.8766 0.9824 1.3285 0.7449 1.7557 0.2954 0.4901 0.5837 0.9939 

90% Confidence Level: 
           MVaR-BL N  0.0488 0.0524 0.0535 0.9342 0.9529 1.3838 1.1535 2.0095 0.6099 0.5396 0.5565 1.0799 

MVaR-BL t  0.0486 0.0558 0.0533 0.9307 0.9826 1.3725 1.0571 1.9724 0.5873 0.5366 0.5840 1.0618 

MCVaR-BL N  0.0489 0.0563 0.0530 0.9331 0.9855 1.3615 1.0300 1.8964 0.5605 0.5387 0.5867 1.0443 

MCVaR-BL t  0.0493 0.0573 0.0533 0.9340 0.9866 1.3706 0.9638 1.7908 0.4547 0.5395 0.5877 1.0587 
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Table 5.1.18 Unconstrained BL Portfolio Performance in Multiple Periods (Nov 94 – May 10) 

This table shows realised unconstrained BL portfolio performance compared with the benchmark performance in the period from November 1994 to May 
2010. Return is the average realised excess return, Sharpe Ratio is the average excess realised return divided by the standard deviation. Information Ratio is 
the average active return divided by the standard deviation of active return. Both VaR and CVaR are measured on the empirical distribution. Reward to VaR 
ratio and Reward to CVaR ratio evaluate the excess return per unit of tail risk. In the construction of the portfolio, both VaR and CVaR are estimated by the 
parametric method with assumption of normal distribution (‘N’) and t-distribution (‘t’) at confidence levels of 99%, 95% and 90%. The implied BL portfolio is 
constructed by reverse optimisation of the utility function. The SR-BL portfolio is constructed by achieving maximal SR in the optimisation problem. The 
MVaR-BL portfolio is constructed by achieving maximal return to VaR ratio in the optimisation problem. The MCVaR-BL portfolio is constructed by achieving 
maximal return to CVaR ratio in the optimisation problem. 

  
   Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward to 
VaR Ratio 

Reward to 
CVaR Ratio 

Benchmark   0.0005 0.0435 -0.9217 4.8813 0.0114 - 0.1314 0.1692 0.0038 0.0029 

Implied BL 

DCC 0.0161 0.0741 1.6980 13.5684 0.2170 0.2825 0.1550 0.1973 0.1037 0.0815 

EWMA 0.0118 0.0663 1.1784 14.2414 0.1773 0.2397 0.1945 0.2347 0.0605 0.0501 

RW50 0.0078 0.0537 0.9112 10.3663 0.1459 0.2530 0.1215 0.1631 0.0645 0.0480 

SR-BL 

DCC 0.0168 0.1067 2.9898 33.3293 0.1578 0.1773 0.2241 0.4052 0.0751 0.0416 

EWMA 0.0080 0.0776 -3.8259 38.7728 0.1030 0.1366 0.1723 0.4573 0.0464 0.0175 

RW50 0.0069 0.0506 -0.0394 6.6242 0.1359 0.2731 0.1338 0.1769 0.0514 0.0389 

99% Confidence Level: 
          

MVaR-BL N 

DCC 0.0168 0.1002 2.6574 25.9971 0.1673 0.1901 0.2273 0.3604 0.0737 0.0465 

EWMA 0.0081 0.0744 -2.1733 16.6340 0.1087 0.1325 0.3252 0.4441 0.0249 0.0182 

RW50 0.0055 0.0492 -0.0741 6.7730 0.1122 0.2340 0.1357 0.1746 0.0406 0.0316 

MVaR-BL t 

DCC 0.0177 0.0914 1.7811 14.2931 0.1934 0.2181 0.2006 0.3001 0.0881 0.0589 

EWMA 0.0115 0.0651 0.1921 10.4777 0.1769 0.2345 0.2024 0.2694 0.0569 0.0427 

RW50 0.0052 0.0475 -0.3752 5.9277 0.1099 0.2538 0.1347 0.1733 0.0388 0.0301 

MCVaR-BL N 

DCC 0.0172 0.1019 2.1356 23.3166 0.1688 0.1890 0.2271 0.3907 0.0758 0.0440 

EWMA 0.0097 0.0685 -1.9666 17.1389 0.1420 0.2013 0.2123 0.3725 0.0458 0.0261 

RW50 0.0053 0.0487 -0.1731 6.3070 0.1089 0.2342 0.1350 0.1738 0.0393 0.0305 

MCVaR-BL t 

DCC 0.0167 0.0840 2.2125 14.9555 0.1988 0.2292 0.2041 0.2253 0.0819 0.0741 

EWMA 0.0102 0.0672 -0.3290 10.9595 0.1518 0.1990 0.2717 0.2953 0.0376 0.0345 

RW50 0.0050 0.0462 -0.4476 5.6863 0.1086 0.2632 0.1342 0.1694 0.0374 0.0296 
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Table 5.1.18 (continued) 

95% Confidence Level: 
          

MVaR-BL N 
DCC 0.0156 0.0965 2.6794 31.1439 0.1618 0.1861 0.2163 0.3654 0.0722 0.0427 
EWMA 0.0112 0.0705 -1.1705 14.0331 0.1588 0.2184 0.2100 0.3558 0.0533 0.0315 
RW50 0.0061 0.0509 0.2809 8.5933 0.1194 0.2289 0.1373 0.1764 0.0442 0.0344 

MVaR-BL t 
DCC 0.0178 0.1031 2.7070 25.3649 0.1731 0.1958 0.2139 0.3685 0.0834 0.0484 
EWMA 0.0077 0.0753 -2.2108 16.3470 0.1026 0.1245 0.3465 0.4426 0.0223 0.0174 
RW50 0.0056 0.0496 0.0294 7.2542 0.1132 0.2297 0.1360 0.1749 0.0413 0.0321 

MCVaR-BL 
N 

DCC 0.0180 0.1042 2.7141 25.3831 0.1726 0.1951 0.2181 0.3707 0.0825 0.0485 
EWMA 0.0082 0.0744 -2.0069 14.9794 0.1097 0.1333 0.3463 0.4255 0.0235 0.0192 
RW50 0.0057 0.0498 0.0707 7.4625 0.1147 0.2301 0.1361 0.1750 0.0419 0.0326 

MCVaR-BL t 
DCC 0.0171 0.0923 1.9659 17.3624 0.1849 0.2113 0.2008 0.3127 0.0850 0.0546 
EWMA 0.0118 0.0657 0.1737 10.5876 0.1802 0.2411 0.2119 0.2747 0.0559 0.0431 
RW50 0.0052 0.0479 -0.3091 6.0802 0.1083 0.2422 0.1344 0.1732 0.0385 0.0299 

90% Confidence Level: 
          

MVaR-BL N 
DCC 0.0164 0.0970 2.8621 29.8258 0.1689 0.1941 0.2157 0.3477 0.0760 0.0471 
EWMA 0.0115 0.0729 -0.3907 14.7680 0.1583 0.2096 0.1917 0.3409 0.0602 0.0339 
RW50 0.0060 0.0500 -0.1221 7.0089 0.1209 0.2479 0.1404 0.1830 0.0430 0.0330 

MVaR-BL t 
DCC 0.0164 0.0962 2.9324 31.1876 0.1700 0.1952 0.2132 0.3465 0.0768 0.0472 
EWMA 0.0110 0.0714 -1.1526 14.2593 0.1545 0.2109 0.2326 0.3752 0.0474 0.0294 
RW50 0.0063 0.0517 0.4229 9.7389 0.1226 0.2282 0.1379 0.1802 0.0459 0.0352 

MCVaR-BL 
N 

DCC 0.0157 0.0966 2.5736 30.4959 0.1620 0.1857 0.2215 0.3680 0.0707 0.0425 
EWMA 0.0109 0.0700 -1.3407 14.3504 0.1554 0.2149 0.2253 0.3679 0.0483 0.0296 
RW50 0.0061 0.0511 0.4030 9.2824 0.1197 0.2248 0.1369 0.1759 0.0446 0.0347 

MCVaR-BL t 
DCC 0.0165 0.0984 2.6333 25.7018 0.1676 0.1910 0.2272 0.3542 0.0726 0.0466 
EWMA 0.0074 0.0761 -2.2782 16.2389 0.0971 0.1174 0.3593 0.4421 0.0206 0.0167 
RW50 0.0054 0.0492 -0.0412 6.8735 0.1101 0.2279 0.1354 0.1742 0.0400 0.0311 
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Table 5.1.19 Unconstrained BL Portfolio Performance in a Sub-period (Aug 98 – May 10) 

This table shows realised unconstrained BL portfolio performance compared with the benchmark performance in the sub-period from August 

1998 to May 2010. Return is the average realised excess return, risk is the standard deviation, SR is the average excess realised return divided 

by the standard deviation. Information Ratio is the average active return divided by the standard deviation of active return. Both VaR and CVaR 

are measured on the empirical distribution. Reward to VaR ratio and Reward to CVaR ratio evaluate the excess return per unit of tail risk. In 

construction of portfolio, both VaR and CVaR is estimated by the parametric method with assumption of normal distribution (‘N’) and t-

distribution (‘t’) at confidence level of 99%, 95%,90%. The implied BL portfolio is constructed by reverse optimisation of the utility function. The 

SR-BL portfolio is constructed by achieving maximal SR in the optimisation problem. MVaR-BL portfolio is constructed by achieving maximal 

return to VaR ratio in the optimisation problem. The MCVaR-BL portfolio is constructed by achieving maximal return to conditional VaR ratio in 

the optimisation problem. 

Aug 98- May 10  Return Risk Skewness Kurtosis 
Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward to 
VaR Ratio 

Reward to 
CVaR Ratio 

Benchmark   -0.0014 0.0467 -0.8860 4.5499 -0.0305 - 0.1459 0.1780 -0.0098 -0.0080 

Implied BL 

DCC 0.0130 0.0752 1.6127 14.4827 0.1730 0.2638 0.1675 0.2093 0.0777 0.0622 

EWMA 0.0087 0.0693 1.1489 14.8658 0.1259 0.2082 0.2300 0.2333 0.0379 0.0374 

RW50 0.0051 0.0530 0.0356 6.4232 0.0972 0.2918 0.1284 0.1778 0.0401 0.0290 

SR-BL 

DCC 0.0150 0.1174 2.9202 30.0047 0.1277 0.1601 0.2821 0.4538 0.0532 0.0330 

EWMA 0.0046 0.0844 -3.9208 35.7595 0.0540 0.0994 0.2217 0.5566 0.0205 0.0082 

RW50 0.0048 0.0527 -0.2759 6.0001 0.0904 0.2818 0.1467 0.1890 0.0325 0.0252 

99% Confidence Level: 

MVaR-BL N 

DCC 0.0153 0.1104 2.5860 23.2672 0.1385 0.1752 0.2674 0.3975 0.0572 0.0385 

EWMA 0.0044 0.0799 -2.3766 15.6055 0.0549 0.0932 0.4008 0.4556 0.0110 0.0096 

RW50 0.0028 0.0498 -0.6159 5.1348 0.0561 0.2482 0.1484 0.1848 0.0188 0.0151 

MVaR-BL t 

DCC 0.0169 0.1004 1.7206 12.8620 0.1684 0.2088 0.2218 0.3326 0.0762 0.0508 

EWMA 0.0093 0.0697 0.1540 10.1775 0.1331 0.2097 0.2440 0.2765 0.0380 0.0336 

RW50 0.0027 0.0488 -0.7334 5.1057 0.0550 0.2646 0.1468 0.1838 0.0183 0.0146 

MCVaR-BL N 

DCC 0.0160 0.1127 2.0535 20.5940 0.1423 0.1764 0.2711 0.4391 0.0591 0.0365 

EWMA 0.0066 0.0733 -2.1778 16.4459 0.0905 0.1642 0.2645 0.4151 0.0251 0.0160 

RW50 0.0027 0.0498 -0.6023 5.1435 0.0544 0.2442 0.1473 0.1843 0.0184 0.0147 

MCVaR-BL t 

DCC 0.0154 0.0914 2.1906 13.9749 0.1689 0.2157 0.2104 0.2313 0.0733 0.0667 

EWMA 0.0075 0.0725 -0.3494 10.3838 0.1036 0.1673 0.2906 0.2955 0.0259 0.0254 

RW50 0.0025 0.0476 -0.7460 5.0924 0.0525 0.2719 0.1455 0.1789 0.0172 0.0140 
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Table 5.1.19 (continued) 

95% Confidence Level: 

MVaR-BL N 
DCC 0.0136 0.1055 2.6546 28.7592 0.1293 0.1678 0.2657 0.4046 0.0514 0.0337 
EWMA 0.0079 0.0737 -1.6426 13.7627 0.1072 0.1851 0.2610 0.3927 0.0302 0.0201 
RW50 0.0031 0.0502 -0.6427 5.1037 0.0623 0.2647 0.1510 0.1863 0.0207 0.0168 

MVaR-BL t 
DCC 0.0166 0.1137 2.6157 22.5851 0.1465 0.1831 0.2689 0.4070 0.0619 0.0409 
EWMA 0.0039 0.0809 -2.3933 15.2673 0.0477 0.0835 0.4016 0.4553 0.0096 0.0085 
RW50 0.0029 0.0499 -0.6234 5.1297 0.0572 0.2513 0.1489 0.1851 0.0192 0.0154 

MCVaR-BL 
N 

DCC 0.0168 0.1150 2.6199 22.5656 0.1462 0.1824 0.2694 0.4104 0.0624 0.0410 
EWMA 0.0043 0.0797 -2.2161 14.0565 0.0540 0.0918 0.3983 0.4323 0.0108 0.0099 
RW50 0.0029 0.0499 -0.6274 5.1388 0.0588 0.2545 0.1491 0.1852 0.0197 0.0158 

MCVaR-BL t 
DCC 0.0161 0.1014 1.9091 15.6466 0.1584 0.2002 0.2238 0.3497 0.0718 0.0459 
EWMA 0.0097 0.0704 0.1320 10.2760 0.1372 0.2172 0.2529 0.2802 0.0382 0.0345 
RW50 0.0026 0.0490 -0.7131 5.0452 0.0539 0.2578 0.1464 0.1838 0.0180 0.0144 

90% Confidence Level: 

MVaR-BL N 
DCC 0.0144 0.1057 2.8404 27.7814 0.1364 0.1757 0.2648 0.3794 0.0544 0.0380 
EWMA 0.0076 0.0738 -1.2859 13.7266 0.1033 0.1762 0.2373 0.3822 0.0321 0.0199 
RW50 0.0035 0.0507 -0.7004 5.3330 0.0683 0.2762 0.1562 0.1933 0.0222 0.0179 

MVaR-BL t 
DCC 0.0146 0.1051 2.9071 28.8546 0.1391 0.1787 0.2634 0.3783 0.0555 0.0386 
EWMA 0.0076 0.0743 -1.6961 13.9033 0.1024 0.1771 0.2976 0.4030 0.0256 0.0189 
RW50 0.0033 0.0505 -0.6850 5.2637 0.0650 0.2712 0.1523 0.1911 0.0215 0.0172 

MCVaR-BL 
N 

DCC 0.0137 0.1057 2.5404 28.0441 0.1297 0.1676 0.2655 0.4090 0.0516 0.0335 
EWMA 0.0077 0.0736 -1.7507 14.0583 0.1051 0.1826 0.2834 0.3994 0.0273 0.0194 
RW50 0.0031 0.0500 -0.6348 5.1242 0.0627 0.2655 0.1503 0.1859 0.0209 0.0169 

MCVaR-BL t 
DCC 0.0150 0.1084 2.5662 23.0522 0.1381 0.1756 0.2661 0.3893 0.0563 0.0385 
EWMA 0.0035 0.0821 -2.4120 14.9481 0.0429 0.0770 0.4015 0.4559 0.0088 0.0077 
RW50 0.0027 0.0498 -0.6076 5.1347 0.0545 0.2438 0.1480 0.1846 0.0183 0.0147 
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Table 5.2.1 Weights in the VaR-Constrained BL Portfolio in August 1998 

This table reports weights allocated to each index in the VaR-constrained BL portfolio in 

August 1998. The standard deviation is estimated by a conditional covariance matrix of 

DCC, EWMA and RW50 models. VaR is estimated by the parametric method in the 

optimisation model with assumption of normal distribution and t-distribution at a confidence 

level of 99%. The VaR constraint ( 0VaR ) is set to be equal to the scaling factor 0.99 

multiplied by the estimated VaR of the implied BL portfolio in the corresponding period.  

Aug 98 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  0.1005 0.1447 0.0341 0.0875 0.0450 0.0327 

UK CONSUMER GDS  0.0481 0.1288 0.0339 0.0387 0.0146 0.0312 

UK CONSUMER SVS  -0.0197 -0.0327 0.0155 -0.0144 -0.0272 0.0142 

UK FINANCIALS  0.0220 0.0581 0.0411 0.0180 0.0035 0.0393 

UK HEALTH CARE  -0.0407 -0.0763 0.0111 -0.0268 -0.0191 0.0109 

UK TECHNOLOGY  -0.0220 -0.0833 -0.0109 -0.0268 -0.1211 -0.0173 

UK INDUSTRIALS  0.0073 0.0533 0.0176 0.0128 -0.0119 0.0156 

UK OIL & GAS  0.0657 0.1019 0.0267 0.0490 0.0092 0.0258 

UK TELECOM  -0.0549 -0.2828 -0.0362 -0.0515 -0.1174 -0.0355 

UK UTILITIES  -0.0564 -0.1297 -0.0248 -0.0478 -0.0636 -0.0244 

USA BASIC MATS  0.0437 0.0626 0.0248 0.0359 0.0158 0.0234 

USA CONSUMER GDS  -0.0488 -0.0707 -0.0014 -0.0382 -0.0517 -0.0026 

USA CONSUMER SVS  0.0174 -0.0484 0.0546 0.0270 -0.0011 0.0531 

USA FINANCIALS  0.0263 -0.0031 0.0813 0.0407 0.0157 0.0788 

USA HEALTH CARE  0.0473 0.0162 0.1121 0.0655 0.0703 0.1115 

USA INDUSTRIALS  0.0070 -0.0255 0.0416 0.0163 0.0083 0.0400 

USA OIL & GAS  0.0789 0.1073 0.0527 0.0652 0.0291 0.0517 

USA TECHNOLOGY  0.0541 0.0184 0.0842 0.0607 0.0466 0.0824 

USA TELECOM  -0.0599 -0.1684 -0.0269 -0.0485 -0.0805 -0.0268 

USA UTILITIES  -0.0216 -0.0805 0.0118 -0.0095 -0.0282 0.0111 

JAPAN BASIC MATS  0.0849 0.1174 0.0422 0.0796 0.1847 0.0476 

JAPAN CONSUMER GDS  0.1016 0.0960 0.0526 0.0878 0.0767 0.0540 

JAPAN CONSUMER SVS  0.0829 0.1281 0.0503 0.0748 0.1213 0.0535 

JAPAN FINANCIALS  0.1133 0.1557 0.0691 0.1129 0.1911 0.0712 

JAPAN HEALTH CARE  0.0436 0.1187 0.0366 0.0409 0.0990 0.0389 

JAPAN INDUSTRIALS  0.1061 0.1623 0.0461 0.0896 0.1162 0.0495 

JAPAN OIL & GAS  0.0895 0.0935 0.0339 0.1018 0.2010 0.0388 

JAPAN TECHNOLOGY  0.1229 0.2634 0.0649 0.1035 0.1346 0.0663 

JAPAN TELECOM  0.0814 0.1812 0.0489 0.0658 0.0911 0.0509 

JAPAN UTILITIES  -0.0204 -0.0062 0.0122 -0.0106 0.0481 0.0143 
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Table 5.2.2 Weights in the VaR-Constrained BL Portfolio in November 1998 

This table reports weights allocated to each index in the VaR-constrained BL portfolio in 

November 1998. In the portfolio construction, the standard deviation is estimated by the 

conditional covariance matrix of DCC, EWMA and RW50 models. VaR is estimated by the 

parametric method in the optimisation model with assumption of normal distribution and t-

distribution at a confidence level of 99%. The VaR constraint ( 0VaR ) is set to be equal to the 

scaling factor 0.99 multiplied by the estimated VaR of the implied BL portfolio in the 

corresponding period.  

Nov 98 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  -0.0248 -0.0436 -0.0117 -0.0521 -0.1409 -0.0059 

UK CONSUMER GDS  -0.0275 -0.0372 -0.0161 0.0102 0.0327 -0.0067 

UK CONSUMER SVS  -0.0434 -0.0636 0.0179 0.0928 -0.1104 0.0233 

UK FINANCIALS  -0.0020 -0.0158 0.0242 -0.0117 0.0301 0.0241 

UK HEALTH CARE  0.0784 0.1018 0.0447 0.0616 0.1844 0.0461 

UK TECHNOLOGY  -0.0126 -0.0203 0.0014 -0.0177 -0.0236 0.0005 

UK INDUSTRIALS  -0.0192 -0.0330 -0.0095 -0.0238 0.1126 -0.0024 

UK OIL & GAS  -0.0357 -0.0488 -0.0126 -0.0653 -0.1192 -0.0091 

UK TELECOM  0.0586 0.0713 0.0464 0.0336 -0.0173 0.0477 

UK UTILITIES  0.0705 0.0755 0.0404 0.0725 0.1411 0.0431 

USA BASIC MATS  -0.0211 -0.0372 0.0045 0.0513 0.0230 0.0049 

USA CONSUMER GDS  -0.0147 -0.0301 -0.0110 -0.0477 -0.0267 -0.0134 

USA CONSUMER SVS  0.1162 0.1350 0.0749 0.1256 0.2004 0.0719 

USA FINANCIALS  0.0761 0.0665 0.0849 0.0083 0.0143 0.0765 

USA HEALTH CARE  0.1765 0.1923 0.1514 0.1377 0.1603 0.1475 

USA INDUSTRIALS  0.0112 -0.0047 0.0449 -0.0379 -0.1689 0.0411 

USA OIL & GAS  -0.0127 -0.0250 0.0300 0.0492 0.0826 0.0330 

USA TECHNOLOGY  0.1326 0.1455 0.1027 0.0512 0.0680 0.0928 

USA TELECOM  0.0659 0.0830 0.0422 0.0446 0.0355 0.0389 

USA UTILITIES  0.1199 0.1428 0.0934 0.1410 0.1650 0.0980 

JAPAN BASIC MATS  0.0391 0.0473 0.0400 -0.0310 0.0359 0.0409 

JAPAN CONSUMER GDS  -0.0297 -0.0329 0.0263 0.0431 -0.0749 0.0256 

JAPAN CONSUMER SVS  0.0667 0.0709 0.0404 0.1593 -0.0094 0.0408 

JAPAN FINANCIALS  0.0050 -0.0013 0.0078 -0.0277 -0.0852 0.0010 

JAPAN HEALTH CARE  0.0727 0.0651 0.0322 0.1233 -0.0335 0.0324 

JAPAN INDUSTRIALS  0.0587 0.0694 0.0286 0.1408 0.3961 0.0298 

JAPAN OIL & GAS  0.0263 0.0321 0.0219 -0.0020 0.0312 0.0180 

JAPAN TECHNOLOGY  -0.0167 -0.0264 0.0030 -0.0706 -0.0971 0.0000 

JAPAN TELECOM  0.0466 0.0626 0.0161 0.0384 0.0785 0.0162 

JAPAN UTILITIES  0.0389 0.0590 0.0404 0.0029 0.1153 0.0434 
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Table 5.2.3 VaR-Constrained BL Portfolio Performance in the Single Period 

This table reports the VaR-constrained BL portfolio performance evaluated by realised 

return, CSR, PT, reward to CVaR ratio in August 1998 and November 1998. The standard 

deviation is calculated by a dynamic covariance matrix of DCC, EWMA and RW50 models. 

VaR is estimated by the parametric method in the optimisation model with assumption of 

normal distribution and t distribution at a confidence level of 99%. The VaR constraint ( 0VaR

) is set to be equal to the scaling factor 0.99 multiplied by the estimated VaR of the implied 

BL portfolio in the corresponding period. Note that I follow Israelsen’s (2003) method to 

adjust the CSR and the reward to CVaR ratio in August 1998 because the negative realised 

excess return would lead to invalid SR measures for portfolio evaluation. 

Panel A: Aug 1998 
       

 
Normal Distribution  t-Distribution 

 

Realised 
Excess 
Return 

Adjusted 
CSR PT 

Adjusted 
Reward 
to CVaR  

Realised 
Return 

Adjusted 
CSR PT 

Adjusted 
Reward 
to CVaR  

DCC -0.1166 -0.5372 3.2104 -2.7915 -0.0661 -0.1850 1.7834 -0.9305 

EWMA -0.1236 -1.1429 5.1285 -4.5738 -0.0737 -0.4143 3.0409 -1.6472 

RW50 -0.0953 -0.2717 N/A -1.6323 -0.0343 -0.0653 N/A -0.2918 

         Panel B:  Nov 1998 
      

 
Normal Distribution  t-Distribution 

 

Realised 
Excess 
Return CSR PT 

Reward 
to CVaR  

Realised 
Return CSR PT 

Reward 
to CVaR  

DCC 0.0444 0.9132 1.5942 0.5212 0.0326 0.9909 1.2594 0.5918 

EWMA 0.0448 0.9129 2.4943 0.5210 0.0288 0.9001 1.4859 0.5099 

RW50 0.0458 1.3896 0.7923 1.0894 0.0382 1.7210 1.4397 1.8226 
 

 

  



171 
 

Table 5.2.4 VaR-Constrained BL Portfolio Performance in Multiple Periods 

This table shows realised VaR-constrained BL portfolio performance in the period from November 1994 to May 2010, and the sub-period from 

August 1998 to May 2010. Return is the average realised excess return, Sharpe Ratio is the average excess realised return divided by the 

standard deviation. Information Ratio is the average active return divided by the standard deviation of active return. Reward to VaR ratio and 

Reward to CVaR ratio evaluate the excess return per unit of tail risk on the empirical distribution. In the construction of the portfolio, VaR is 

estimated by the parametric method in the optimisation model with assumption of normal distribution and t-distribution at a confidence level of 

99%. The VaR constraint ( 0VaR ) is set to be equal to the scaling factor 0.99 multiplied by the estimated VaR of the implied BL portfolio in the 

corresponding period. 

Panel A: Normal Distribution (Nov 94-May 10) 
       

 
Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward to 
VaR 

Reward to 
CVaR 

DCC 0.0132 0.0689 1.2655 13.2598 0.1922 0.2560 0.1895 0.2278 0.0699 0.0581 

EWMA 0.0099 0.0553 -0.0008 7.3906 0.1787 0.2665 0.1485 0.1980 0.0665 0.0499 

RW50 0.0056 0.0462 0.2770 7.1026 0.1212 0.2290 0.1069 0.1469 0.0523 0.0381 

Panel B: t-Distribution (Nov 94-May 10) 
       

 
Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward to 
VaR 

Reward to 
CVaR 

DCC 0.0079 0.0477 0.9542 10.7419 0.1655 0.2087 0.1327 0.1609 0.0595 0.0491 

EWMA 0.0060 0.0388 1.2181 14.9013 0.1559 0.1731 0.1166 0.1415 0.0519 0.0427 

RW50 0.0014 0.0383 0.5419 6.7292 0.0365 0.0311 0.0979 0.1115 0.0143 0.0125 

Panel C: Normal Distribution (Aug 98-May 10) 
       

 
Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward to 
VaR 

Reward to 
CVaR 

DCC 0.0105 0.0717 1.2366 13.8451 0.1467 0.2314 0.2183 0.2290 0.0482 0.0459 

EWMA 0.0073 0.0575 -0.1498 7.4068 0.1265 0.2390 0.1634 0.2118 0.0445 0.0343 

RW50 0.0036 0.0478 -0.0211 6.1351 0.0751 0.2476 0.1160 0.1597 0.0310 0.0225 

Panel D: t-Distribution (Aug 98-May 10) 
       

 
Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward to 
VaR 

Reward to 
CVaR 

DCC 0.0055 0.0488 0.8070 11.1746 0.1124 0.1917 0.1556 0.1610 0.0352 0.0341 

EWMA 0.0044 0.0408 1.1484 15.1532 0.1078 0.1734 0.1389 0.1404 0.0316 0.0313 

RW50 0.0003 0.0402 0.0377 4.3037 0.0081 0.0615 0.1085 0.1117 0.0030 0.0029 
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Table 5.2.5 Effects on the VaR-Constrained BL Portfolio Optimisation (Aug 1998) 

This table reports the statistics inputted into the VaR-constrained SR-BL model such as 

estimated expected BL return ( ) and standard deviation (based on the DCC model) and 

the results of ECSR, expected excess return to VaR ratio ( VaR/ ) and expected excess 

return to CVaR ratio ( CVaR/ ) in the optimisation process. VaR and CVaR are estimated 

by the parametric method in the optimisation model with assumption of normal distribution 

and t-distribution at confidence levels of 99%, 95% and 90%. The VaR constraint ( 0VaR ) is 

set to be equal to the scaling factor (VaR Factor) multiplied by the estimated VaR of the 

implied BL portfolio in the corresponding period. 

Panel A: Normal Distribution 
99% Confidence Level: 

      VaR 
Factor 

Expected 
Return 

Standard 
Deviation VaR CVaR VaR/  CVaR/  ECSR 

0.99 0.0047 0.0461 0.1025 0.1181 0.0461 0.0400 0.1025 
0.95 0.0045 0.0442 0.0983 0.1133 0.0459 0.0399 0.1022 
0.90 0.0043 0.0419 0.0931 0.1073 0.0457 0.0396 0.1016 
0.80 0.0037 0.0372 0.0828 0.0954 0.0447 0.0388 0.0995 
0.70 0.0031 0.0325 0.0724 0.0834 0.0426 0.0370 0.0950 
0.60 0.0023 0.0277 0.0621 0.0715 0.0374 0.0325 0.0839 
0.50 0.0011 0.0247 0.0565 0.0648 0.0195 0.0170 0.0445 

        95% Confidence Level: 
      VaR 

Factor 
Expected 

Return 
Standard 
Deviation VaR CVaR VaR/  CVaR/  CSR 

0.99 0.0059 0.0568 0.0876 0.1114 0.0669 0.0527 0.1032 
0.95 0.0059 0.0568 0.0876 0.1114 0.0669 0.0527 0.1032 
0.90 0.0059 0.0568 0.0876 0.1114 0.0669 0.0527 0.1032 
0.80 0.0055 0.0537 0.0828 0.1052 0.0669 0.0526 0.1031 
0.70 0.0048 0.0470 0.0724 0.0921 0.0666 0.0524 0.1027 
0.60 0.0041 0.0402 0.0621 0.0789 0.0654 0.0515 0.1010 
0.50 0.0032 0.0334 0.0517 0.0657 0.0621 0.0489 0.0962 

        90% Confidence Level: 
      VaR 

Factor 
Expected 

Return 
Standard 
Deviation VaR CVaR VaR/  CVaR/  CSR 

0.99 0.0059 0.0568 0.0813 0.1362 0.0722     0.0431 0.1032 
0.95 0.0059 0.0568 0.0813 0.1362 0.0722 0.0431 0.1032 
0.90 0.0059 0.0568 0.0813 0.1362 0.0722 0.0431 0.1032 
0.80 0.0059 0.0568 0.0813 0.1362 0.0722 0.0431 0.1032 
0.70 0.0052 0.0507 0.0724 0.1214 0.0720 0.0430 0.1030 
0.60 0.0044 0.0434 0.0621 0.1040 0.0713 0.0425 0.1020 
0.50 0.0036 0.0361 0.0517 0.0866 0.0688 0.0411 0.0987 
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Table 5.2.5 (continued) 

Panel B: t-Distribution 
99% Confidence Level: 

     VaR 
Factor 

Expected 
Return 

Standard 
Deviation VaR CVaR VaR/  CVaR/  CSR 

0.99 0.0024 0.0280 0.1025 0.1437 0.0232 0.0165 0.0850 
0.95 0.0021 0.0268 0.0983 0.1378 0.0218 0.0156 0.0800 
0.90 0.0018 0.0253 0.0931 0.1305 0.0190 0.0136 0.0699 
0.80 0.0012 0.0252 0.0932 0.1304 0.0133 0.0095 0.0492 
0.70 N/A N/A N/A N/A N/A N/A N/A 

        95% Confidence Level: 
     VaR 

Factor 
Expected 

Return 
Standard 
Deviation VaR CVaR VaR/  CVaR/  CSR 

0.99 0.0052 0.0505 0.1025 0.1565 0.0508 0.0332 0.1030 
0.95 0.0050 0.0485 0.0983 0.1502 0.0507 0.0332 0.1028 
0.90 0.0047 0.0459 0.0931 0.1423 0.0505 0.0331 0.1025 
0.80 0.0041 0.0408 0.0828 0.1265 0.0498 0.0326 0.1012 
0.70 0.0035 0.0356 0.0724 0.1106 0.0484 0.0317 0.0984 
0.60 0.0028 0.0304 0.0621 0.0947 0.0449 0.0294 0.0916 
0.50 0.0017 0.0251 0.0517 0.0786 0.0325 0.0214 0.0672 

        90% Confidence Level: 
     VaR 

Factor 
Expected 

Return 
Standard 
Deviation VaR CVaR VaR/  CVaR/  CSR 

0.99 0.0059 0.0568 0.0813 0.1362 0.0722 0.0431 0.1032 
0.95 0.0059 0.0568 0.0813 0.1362 0.0722 0.0431 0.1032 
0.90 0.0059 0.0568 0.0813 0.1362 0.0722 0.0431 0.1032 
0.80 0.0059 0.0568 0.0813 0.1362 0.0722 0.0431 0.1032 
0.70 0.0052 0.0507 0.0724 0.1214 0.0720 0.0430 0.1030 
0.60 0.0044 0.0434 0.0621 0.1040 0.0713 0.0425 0.1020 
0.50 0.0036 0.0361 0.0517 0.0866 0.0688 0.0411 0.0987 
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Table 5.2.6 Effects on Weights of the VaR-Constrained BL Portfolio (Aug 98) 

This table shows the positions of each asset in a VaR-constrained BL portfolio in August 1998 under normal distribution and t-distribution at a 

confidence level of 99% (Panel A), 95% (Panel B), and 90% (Panel C). Note that the covariance matrix applied to the VaR-constrained BL 

model is the DCC covariance matrix in this table. 

Panel A: 99% Confidence Level Normal Distribution 
 

t-Distribution 

VaR Factor: 0.99 0.95 0.90 0.80 0.70 
 

0.99 0.95 0.90 0.80 0.70 

UK BASIC MATS  0.0301 0.0238 0.0158 -0.0011 -0.0198 
 

-0.0414 -0.0485 -0.0599 -0.1182 N/A 
UK CONSUMER GDS  0.0499 0.0479 0.0452 0.0397 0.0335 

 
0.0264 0.0241 0.0204 0.0269 N/A 

UK CONSUMER SVS  -0.0159 -0.0045 0.0101 0.0407 0.0747 
 

0.1138 0.1266 0.1474 0.2200 N/A 
UK FINANCIALS  0.1184 0.1138 0.1079 0.0954 0.0816 

 
0.0657 0.0605 0.0521 0.0109 N/A 

UK HEALTH CARE  -0.0391 -0.0330 -0.0252 -0.0090 0.0090 
 

0.0298 0.0366 0.0475 0.0756 N/A 
UK TECHNOLOGY  -0.0325 -0.0327 -0.0330 -0.0335 -0.0341 

 
-0.0348 -0.0350 -0.0354 -0.0307 N/A 

UK INDUSTRIALS  -0.0404 -0.0396 -0.0386 -0.0365 -0.0343 
 

-0.0316 -0.0307 -0.0294 -0.0119 N/A 
UK OIL & GAS  0.0381 0.0295 0.0185 -0.0046 -0.0301 

 
-0.0595 -0.0692 -0.0848 -0.0899 N/A 

UK TELECOM  -0.0362 -0.0364 -0.0367 -0.0373 -0.0380 
 

-0.0388 -0.0391 -0.0395 -0.0435 N/A 
UK UTILITIES  -0.0421 -0.0325 -0.0202 0.0055 0.0340 

 
0.0669 0.0777 0.0951 0.1202 N/A 

USA BASIC MATS  0.0965 0.0928 0.0882 0.0783 0.0674 
 

0.0548 0.0507 0.0441 0.0634 N/A 
USA CONSUMER GDS  -0.0706 -0.0698 -0.0688 -0.0667 -0.0643 

 
-0.0616 -0.0607 -0.0592 -0.0282 N/A 

USA CONSUMER SVS  0.0501 0.0625 0.0785 0.1121 0.1494 
 

0.1923 0.2064 0.2291 0.2195 N/A 
USA FINANCIALS  0.0130 0.0085 0.0028 -0.0093 -0.0227 

 
-0.0381 -0.0432 -0.0513 -0.0414 N/A 

USA HEALTH CARE  0.0757 0.0818 0.0897 0.1063 0.1247 
 

0.1459 0.1528 0.1640 0.1285 N/A 
USA INDUSTRIALS  -0.0585 -0.0637 -0.0704 -0.0844 -0.0999 

 
-0.1178 -0.1237 -0.1331 -0.0653 N/A 

USA OIL & GAS  0.1655 0.1688 0.1731 0.1820 0.1919 
 

0.2032 0.2070 0.2130 0.2222 N/A 
USA TECHNOLOGY  0.0264 0.0219 0.0161 0.0040 -0.0095 

 
-0.0250 -0.0301 -0.0383 -0.1088 N/A 

USA TELECOM  -0.0360 -0.0302 -0.0228 -0.0074 0.0096 
 

0.0293 0.0357 0.0461 0.0891 N/A 
USA UTILITIES  -0.0115 -0.0069 -0.0011 0.0111 0.0246 

 
0.0402 0.0454 0.0536 -0.0112 N/A 

JAPAN BASIC MATS  0.1019 0.1017 0.1014 0.1007 0.1000 
 

0.0992 0.0989 0.0985 0.1650 N/A 
JAPAN CONSUMER GDS  0.1034 0.0994 0.0943 0.0834 0.0714 

 
0.0576 0.0530 0.0457 0.0220 N/A 

JAPAN CONSUMER SVS  0.1273 0.1275 0.1277 0.1281 0.1285 
 

0.1291 0.1292 0.1295 0.0963 N/A 
JAPAN FINANCIALS  0.0488 0.0410 0.0312 0.0106 -0.0123 

 
-0.0386 -0.0472 -0.0612 -0.0688 N/A 

JAPAN HEALTH CARE  0.0593 0.0488 0.0354 0.0072 -0.0239 
 

-0.0599 -0.0717 -0.0907 -0.0641 N/A 
JAPAN INDUSTRIALS  0.1293 0.1326 0.1368 0.1457 0.1556 

 
0.1669 0.1707 0.1767 0.0836 N/A 

JAPAN OIL & GAS  0.0217 0.0161 0.0089 -0.0063 -0.0231 
 

-0.0425 -0.0488 -0.0591 -0.0930 N/A 
JAPAN TECHNOLOGY  0.0497 0.0418 0.0318 0.0107 -0.0126 

 
-0.0395 -0.0484 -0.0626 -0.0814 N/A 

JAPAN TELECOM  0.1035 0.1037 0.1040 0.1047 0.1055 
 

0.1064 0.1067 0.1072 0.1612 N/A 
JAPAN UTILITIES  -0.0259 -0.0147 -0.0003 0.0298 0.0631 

 
0.1016 0.1142 0.1345 0.1521 N/A 
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Table 5.2.6 (continued) 

Panel B: 95% Confidence Level Normal Distribution t-Distribution 
VaR Factor: 0.99 0.95 0.90 0.80 0.7 0.99 0.95 0.90 0.80 0.70 
UK BASIC MATS  0.0649 0.0649 0.0649 0.0550 0.0331 0.0447 0.0380 0.0295 0.0119 -0.0070 
UK CONSUMER GDS  0.0614 0.0614 0.0614 0.0581 0.0509 0.0547 0.0525 0.0498 0.0440 0.0377 
UK CONSUMER SVS  -0.0790 -0.0790 -0.0790 -0.0610 -0.0214 -0.0424 -0.0303 -0.0149 0.0171 0.0515 
UK FINANCIALS  0.1441 0.1441 0.1441 0.1368 0.1206 0.1292 0.1243 0.1180 0.1050 0.0911 
UK HEALTH CARE  -0.0725 -0.0725 -0.0725 -0.0630 -0.0420 -0.0531 -0.0467 -0.0385 -0.0215 -0.0033 
UK TECHNOLOGY  -0.0314 -0.0314 -0.0314 -0.0317 -0.0324 -0.0321 -0.0323 -0.0325 -0.0331 -0.0337 
UK INDUSTRIALS  -0.0446 -0.0446 -0.0446 -0.0434 -0.0407 -0.0421 -0.0413 -0.0403 -0.0381 -0.0358 
UK OIL & GAS  0.0857 0.0857 0.0857 0.0721 0.0422 0.0580 0.0489 0.0373 0.0133 -0.0126 
UK TELECOM  -0.0349 -0.0349 -0.0349 -0.0353 -0.0361 -0.0357 -0.0359 -0.0362 -0.0369 -0.0376 
UK UTILITIES  -0.0951 -0.0951 -0.0951 -0.0800 -0.0467 -0.0643 -0.0541 -0.0412 -0.0144 0.0145 
USA BASIC MATS  0.1168 0.1168 0.1168 0.1110 0.0983 0.1050 0.1011 0.0962 0.0859 0.0749 
USA CONSUMER GDS  -0.0751 -0.0751 -0.0751 -0.0738 -0.0710 -0.0724 -0.0716 -0.0706 -0.0683 -0.0659 
USA CONSUMER SVS  -0.0192 -0.0192 -0.0192 0.0006 0.0440 0.0210 0.0343 0.0512 0.0861 0.1239 
USA FINANCIALS  0.0379 0.0379 0.0379 0.0308 0.0152 0.0234 0.0187 0.0126 0.0000 -0.0135 
USA HEALTH CARE  0.0415 0.0415 0.0415 0.0512 0.0727 0.0613 0.0679 0.0762 0.0935 0.1121 
USA INDUSTRIALS  -0.0297 -0.0297 -0.0297 -0.0379 -0.0560 -0.0465 -0.0520 -0.0590 -0.0736 -0.0893 
USA OIL & GAS  0.1470 0.1470 0.1470 0.1523 0.1639 0.1578 0.1613 0.1658 0.1751 0.1851 
USA TECHNOLOGY  0.0515 0.0515 0.0515 0.0443 0.0286 0.0369 0.0321 0.0260 0.0133 -0.0003 
USA TELECOM  -0.0676 -0.0676 -0.0676 -0.0586 -0.0387 -0.0492 -0.0431 -0.0354 -0.0193 -0.0021 
USA UTILITIES  -0.0367 -0.0367 -0.0367 -0.0295 -0.0137 -0.0220 -0.0172 -0.0111 0.0017 0.0154 
JAPAN BASIC MATS  0.1033 0.1033 0.1033 0.1029 0.1020 0.1025 0.1022 0.1019 0.1012 0.1005 
JAPAN CONSUMER GDS  0.1258 0.1258 0.1258 0.1194 0.1054 0.1128 0.1085 0.1031 0.0918 0.0796 
JAPAN CONSUMER SVS  0.1265 0.1265 0.1265 0.1267 0.1272 0.1269 0.1271 0.1273 0.1278 0.1282 
JAPAN FINANCIALS  0.0912 0.0912 0.0912 0.0791 0.0524 0.0665 0.0584 0.0480 0.0265 0.0034 
JAPAN HEALTH CARE  0.1173 0.1173 0.1173 0.1008 0.0644 0.0836 0.0725 0.0584 0.0290 -0.0026 
JAPAN INDUSTRIALS  0.1109 0.1109 0.1109 0.1162 0.1277 0.1217 0.1251 0.1296 0.1389 0.1488 
JAPAN OIL & GAS  0.0530 0.0530 0.0530 0.0441 0.0244 0.0348 0.0288 0.0212 0.0054 -0.0116 
JAPAN TECHNOLOGY  0.0931 0.0931 0.0931 0.0807 0.0535 0.0679 0.0596 0.0490 0.0270 0.0034 
JAPAN TELECOM  0.1020 0.1020 0.1020 0.1024 0.1033 0.1028 0.1031 0.1035 0.1042 0.1050 
JAPAN UTILITIES  -0.0879 -0.0879 -0.0879 -0.0702 -0.0313 -0.0519 -0.0400 -0.0249 0.0065 0.0403 
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Table 5.2.6 (continued) 

Panel C: 90% Confidence Level Normal Distribution t-Distribution 
VaR Factor: 0.99 0.95 0.90 0.80 0.70 0.99 0.95 0.90 0.80 0.70 
UK BASIC MATS  0.0649 0.0649 0.0649 0.0649 0.0649 0.0649 0.0649 0.0649 0.0649 0.0452 
UK CONSUMER GDS  0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0549 
UK CONSUMER SVS  -0.0790 -0.0790 -0.0790 -0.0790 -0.0790 -0.0790 -0.0790 -0.0790 -0.0790 -0.0433 
UK FINANCIALS  0.1441 0.1441 0.1441 0.1441 0.1441 0.1441 0.1441 0.1441 0.1441 0.1296 
UK HEALTH CARE  -0.0725 -0.0725 -0.0725 -0.0725 -0.0725 -0.0725 -0.0725 -0.0725 -0.0725 -0.0535 
UK TECHNOLOGY  -0.0314 -0.0314 -0.0314 -0.0314 -0.0314 -0.0314 -0.0314 -0.0314 -0.0314 -0.0321 
UK INDUSTRIALS  -0.0446 -0.0446 -0.0446 -0.0446 -0.0446 -0.0446 -0.0446 -0.0446 -0.0446 -0.0422 
UK OIL & GAS  0.0857 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857 0.0857 0.0587 
UK TELECOM  -0.0349 -0.0349 -0.0349 -0.0349 -0.0349 -0.0349 -0.0349 -0.0349 -0.0349 -0.0356 
UK UTILITIES  -0.0951 -0.0951 -0.0951 -0.0951 -0.0951 -0.0951 -0.0951 -0.0951 -0.0951 -0.0651 
USA BASIC MATS  0.1168 0.1168 0.1168 0.1168 0.1168 0.1168 0.1168 0.1168 0.1168 0.1053 
USA CONSUMER GDS  -0.0751 -0.0751 -0.0751 -0.0751 -0.0751 -0.0751 -0.0751 -0.0751 -0.0751 -0.0725 
USA CONSUMER SVS  -0.0192 -0.0192 -0.0192 -0.0192 -0.0192 -0.0192 -0.0192 -0.0192 -0.0192 0.0200 
USA FINANCIALS  0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0379 0.0238 
USA HEALTH CARE  0.0415 0.0415 0.0415 0.0415 0.0415 0.0415 0.0415 0.0415 0.0415 0.0608 
USA INDUSTRIALS  -0.0297 -0.0297 -0.0297 -0.0297 -0.0297 -0.0297 -0.0297 -0.0297 -0.0297 -0.0461 
USA OIL & GAS  0.1470 0.1470 0.1470 0.1470 0.1470 0.1470 0.1470 0.1470 0.1470 0.1575 
USA TECHNOLOGY  0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 0.0515 0.0373 
USA TELECOM  -0.0676 -0.0676 -0.0676 -0.0676 -0.0676 -0.0676 -0.0676 -0.0676 -0.0676 -0.0496 
USA UTILITIES  -0.0367 -0.0367 -0.0367 -0.0367 -0.0367 -0.0367 -0.0367 -0.0367 -0.0367 -0.0224 
JAPAN BASIC MATS  0.1033 0.1033 0.1033 0.1033 0.1033 0.1033 0.1033 0.1033 0.1033 0.1025 
JAPAN CONSUMER GDS  0.1258 0.1258 0.1258 0.1258 0.1258 0.1258 0.1258 0.1258 0.1258 0.1131 
JAPAN CONSUMER SVS  0.1265 0.1265 0.1265 0.1265 0.1265 0.1265 0.1265 0.1265 0.1265 0.1269 
JAPAN FINANCIALS  0.0912 0.0912 0.0912 0.0912 0.0912 0.0912 0.0912 0.0912 0.0912 0.0671 
JAPAN HEALTH CARE  0.1173 0.1173 0.1173 0.1173 0.1173 0.1173 0.1173 0.1173 0.1173 0.0844 
JAPAN INDUSTRIALS  0.1109 0.1109 0.1109 0.1109 0.1109 0.1109 0.1109 0.1109 0.1109 0.1214 
JAPAN OIL & GAS  0.0530 0.0530 0.0530 0.0530 0.0530 0.0530 0.0530 0.0530 0.0530 0.0353 
JAPAN TECHNOLOGY  0.0931 0.0931 0.0931 0.0931 0.0931 0.0931 0.0931 0.0931 0.0931 0.0685 
JAPAN TELECOM  0.1020 0.1020 0.1020 0.1020 0.1020 0.1020 0.1020 0.1020 0.1020 0.1028 
JAPAN UTILITIES  -0.0879 -0.0879 -0.0879 -0.0879 -0.0879 -0.0879 -0.0879 -0.0879 -0.0879 -0.0527 
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Table 5.2.7 Effects on VaR-Constrained SR-BL Portfolio Performance Evaluation  
(Aug 98) 

This table reports VaR-constrained BL portfolio performance results including realised 
return, CSR, PT and reward to CVaR ratio in August 1998.  The standard deviation is 
estimated by a conditional covariance matrix of the DCC model. VaR is estimated by the 
parametric method in the optimisation model with assumption of normal distribution and t-

distribution at confidence levels of 99%, 95% and 90%. The VaR constraint ( 0VaR ) is set to 

be equal to the scaling factor k  multiplied by the estimated VaR of the implied BL portfolio. 
The scaling factor k  is called VaR factor. Following Israelsen’s (2003) method, the adjusted 
CSR is equal to the product of negative realised excess return and the standard deviation 
multiplied by 100. Using this idea, I adjust the reward to CVaR ratio equal to the product of 
negative realised excess return and CVaR multiplied by 100. 
 

Panel A: 99% Confidence Level 
                                        Normal Distribution t-Distribution 

VaR  
Factor 

Realised 
Excess 
Return 

Adjusted 
CSR 

Portfolio 
Turnover 

Adjusted 
Reward to 
CVaR 

Realised 
Excess 
Return 

Adjusted 
CSR 

Portfolio 
Turnover 

Adjusted 
Reward 
to CVaR 

0.99 -0.1166 -0.5372 3.2104 -2.7915 -0.0661 -0.1850 1.7834 -0.9305 

0.95 -0.1122 -0.4958 3.1625 -2.5794 -0.0611 -0.1639 1.7147 -0.8108 

0.90 -0.1065 -0.4458 3.0055 -2.3220 -0.0531 -0.1345 1.6541 -0.6402 

0.80 -0.0946 -0.3516 2.6077 -1.8313 -0.0507 -0.1279 1.4237 -0.5984 

0.70 -0.0814 -0.2641 2.1825 -1.3660 N/A N/A N/A N/A 

0.60 -0.0650 -0.1799 1.7735 -0.9016 N/A N/A N/A N/A 

0.50 -0.0528 -0.1307 1.8450 -0.6273 N/A N/A N/A N/A 

         Panel B: 95% Confidence Level 
                                       Normal Distribution t-Distribution 

VaR  
Factor 

Realised 
Excess 
Return 

Adjusted 
CSR 

Portfolio 
Turnover 

Adjusted 
Reward to 
CVaR 

Realised 
Excess 
Return 

Adjusted 
CSR 

Portfolio 
Turnover 

Adjusted 
Reward 
to CVaR 

0.99 -0.1412 -0.8023 3.6582 -4.1311 -0.1269 -0.6408 3.3383 -3.3179 

0.95 -0.1412 -0.8023 3.6582 -4.1311 -0.1222 -0.5920 3.2790 -3.0706 

0.90 -0.1412 -0.8023 3.6582 -4.1311 -0.1162 -0.5333 3.2059 -2.7714 

0.80 -0.1342 -0.7204 3.4873 -3.7197 -0.1038 -0.4231 2.9162 -2.2046 

0.70 -0.1187 -0.5577 3.2360 -2.8960 -0.0904 -0.3220 2.4730 -1.6753 

0.60 -0.1024 -0.4118 2.8767 -2.1461 -0.0750 -0.2282 1.9896 -1.1702 

0.50 -0.0842 -0.2812 2.2801 -1.4578 -0.0512 -0.1283 1.6679 -0.6038 

         Panel C: 90% Confidence Level 
                                        Normal Distribution t-Distribution 

VaR  
Factor 

Realised 
Excess 
Return 

Adjusted 
CSR 

Portfolio 
Turnover 

Adjusted 
Reward to 
CVaR 

Realised 
Excess 
Return 

Adjusted 
CSR 

Portfolio 
Turnover 

Adjusted 
Reward 
to CVaR 

0.99 -0.1412 -0.8023 3.6582 -4.1311 -0.1412 -0.8023 3.6582 -4.1311 

0.95 -0.1412 -0.8023 3.6582 -4.1311 -0.1412 -0.8023 3.6582 -4.1311 

0.90 -0.1412 -0.8023 3.6582 -4.1311 -0.1412 -0.8023 3.6582 -4.1311 

0.80 -0.1412 -0.8023 3.6582 -4.1311 -0.1412 -0.8023 3.6582 -4.1311 

0.70 -0.1412 -0.8023 3.6582 -4.1311 -0.1272 -0.6445 3.3435 -3.3367 

0.60 -0.1319 -0.6948 3.4317 -3.5910 -0.1102 -0.4781 3.1413 -2.4884 

0.50 -0.1114 -0.4886 3.1539 -2.5425 -0.0916 -0.3304 2.5219 -1.7199 
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Table 5.2.8 Effects on VaR-Constrained SR-BL Portfolio Performance Evaluation  
(Nov 98) 

This table reports VaR-constrained BL portfolio performance results including realised 
excess return, CSR, PT and reward to CVaR ratio in November 1998. The standard 
deviation is estimated by a conditional covariance matrix of the DCC model. VaR is 
estimated by the parametric method in the optimisation model with assumption of normal 
distribution and t-distribution at confidence levels of 99%, 95% and 90%. The VaR constraint 

( 0VaR ) is set to be equal to the scaling factor k  multiplied by the estimated VaR of the 

implied BL portfolio. The scaling factor k  is called VaR factor. August 1998 is the first period 
to construct a portfolio in the use of the RW method with a 50 window length, therefore, 
there are no results of PT shown for RW50. Following Israelsen’s (2003) method, the 
adjusted CSR is equal to the product of negative realised excess return and the standard 
deviation multiplied by 100. Using this idea, I adjust the reward to CVaR ratio equal to the 
product of negative realised excess return and CVaR multiplied by 100. 

Panel A: 99% Confidence Level 

t-Distribution                                         Normal Distribution 

VaR  Realised 
Excess 
Return 

Conditional 
Sharpe 
Ratio 

Portfolio 
Turnover 

Reward 
to 
CVaR 

Realised 
Excess 
Return 

Conditional 
Sharpe 
Ratio 

Portfolio 
Turnover 

Reward 
to CVaR Factor 

0.99 0.0444 0.9132 1.5942 0.5212 0.0326 0.9909 1.2594 0.5918 

0.95 0.0444 0.9132 1.5743 0.5212 0.0314 0.9940 1.2451 0.5947 
0.90 0.0444 0.9132 1.5414 0.5212 0.0297 0.9938 1.2447 0.5946 

0.80 0.0407 0.9407 1.4109 0.5455 0.0254 0.9570 1.2892 0.5603 
0.70 0.0367 0.9694 1.3099 0.5716 N/A N/A N/A N/A 

0.60 0.0322 0.9924 1.2531 0.5932 N/A N/A N/A N/A 

0.50 0.0260 0.9658 1.2768 0.5683 N/A N/A N/A N/A 

         Panel B: 95% Confidence Level 

t-Distribution                                        Normal Distribution 

VaR  Realised 
Excess 
Return 

Conditional 
Sharpe 
Ratio 

Portfolio 
Turnover 

Reward 
to 
CVaR 

Realised 
Excess 
Return 

Conditional 
Sharpe 
Ratio 

Portfolio 
Turnover 

Reward 
to CVaR Factor 

0.99 0.0444 0.9132 1.5942 0.5212 0.0444 0.9132 1.5942 0.5212 

0.95 0.0444 0.9132 1.5942 0.5212 0.0444 0.9132 1.5942 0.5212 
0.90 0.0444 0.9132 1.5942 0.5212 0.0444 0.9132 1.5942 0.5212 

0.80 0.0444 0.9132 1.5942 0.5212 0.0435 0.9201 1.5043 0.5272 
0.70 0.0444 0.9132 1.5942 0.5212 0.0393 0.9506 1.3687 0.5544 

0.60 0.0428 0.9250 1.4793 0.5315 0.0348 0.9812 1.2861 0.5826 

0.50 0.0372 0.9656 1.3168 0.5682 0.0293 0.9926 1.2457 0.5934 

         Panel C: 90% Confidence Level 

t-Distribution                                         Normal Distribution 

VaR Realised 
Excess 
Return 

Conditional 
Sharpe 
Ratio 

Portfolio 
Turnover 

Reward 
to 
CVaR 

Realised 
Excess 
Return 

Conditional 
Sharpe 
Ratio 

Portfolio 
Turnover 

Reward 
to CVaR Factor 

0.99 0.0444 0.9132 1.5942 0.5212 0.0444 0.9132 1.5942 0.5212 
0.95 0.0444 0.9132 1.5942 0.5212 0.0444 0.9132 1.5942 0.5212 

0.90 0.0444 0.9132 1.5942 0.5212 0.0444 0.9132 1.5942 0.5212 
0.80 0.0444 0.9132 1.5942 0.5212 0.0444 0.9132 1.5942 0.5212 

0.70 0.0444 0.9132 1.5942 0.5212 0.0444 0.9132 1.5942 0.5212 
0.60 0.0444 0.9132 1.5942 0.5212 0.0444 0.9132 1.5942 0.5212 
0.50 0.0444 0.9132 1.5942 0.5212 0.0394 0.9501 1.3711 0.5540 
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Table 5.2.9 Effects on VaR-Constrained BL Portfolio Performance in Multiple Periods (Nov 94-May 10) 

This table shows realised VaR-constrained BL portfolio performance in the period from November 1994 to May 2010. The conditional 
covariance matrix applied to the portfolio construction is the DCC model. Return is the average realised excess return, risk is the standard 
deviation, SR is the average excess realised return divided by the standard deviation. Information Ratio is the average active return divided by 
the standard deviation of active return. Reward to VaR ratio and Reward to CVaR ratio evaluate the excess return per unit of tail risk on the 
empirical distribution. In the construction of the portfolio, VaR is estimated by the parametric method with assumption of normal distribution and 

t-distribution at confidence levels of 99%, 95% and 90%. The VaR constraint ( 0VaR ) is set to be equal to the scaling factor k  multiplied by the 

estimated VaR of the implied BL portfolio. The scaling factor k  is called VaR factor. 

Panel A: Normal Distribution (Nov 94 - May 10) 
        

VaR Factor Return 
Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical  
CVaR 

Reward 
to VaR 

Reward to 
CVaR 

 99% Confidence Level: 
        0.99 0.0132 0.0689 1.2655 13.2598 0.1922 0.2560 0.1895 0.2278 0.0699 0.0581 

0.95 0.0131 0.0676 1.3673 13.9462 0.1935 0.2575 0.1835 0.2211 0.0713 0.0592 
0.90 0.0127 0.0654 1.3925 14.0490 0.1944 0.2590 0.1761 0.2127 0.0722 0.0598 
0.80 0.0116 0.0600 1.3177 13.1911 0.1936 0.2585 0.1611 0.1957 0.0721 0.0594 
0.70 0.0101 0.0539 1.1980 12.3143 0.1867 0.2465 0.1459 0.1782 0.0690 0.0565 
0.60 0.0081 0.0478 1.0340 11.1983 0.1696 0.2123 0.1325 0.1599 0.0690 0.0565 
0.50 0.0060 0.0415 0.8318 9.9352 0.1440 0.1608 0.1215 0.1398 0.0491 0.0427 

 95% Confidence Level: 
        0.99 0.0143 0.0776 1.0805 12.0869 0.1922 0.2560 0.2243 0.2773 0.0637 0.0516 

0.95 0.0142 0.0767 1.0595 11.9605 0.1846 0.2377 0.2243 0.2725 0.0631 0.0520 
0.90 0.0140 0.0757 1.0384 11.8600 0.1848 0.2397 0.2243 0.2664 0.0624 0.0525 
0.80 0.0136 0.0734 1.0356 11.9931 0.1856 0.2444 0.2134 0.2546 0.0638 0.0535 
0.70 0.0133 0.0695 1.2360 13.0337 0.1917 0.2551 0.1925 0.2308 0.0692 0.0577 
0.60 0.0124 0.0639 1.4576 14.4292 0.1945 0.2581 0.1710 0.2066 0.0727 0.0602 
0.50 0.0105 0.0557 1.3362 13.1450 0.1885 0.2477 0.1492 0.1817 0.0704 0.0578 

90% Confidence Level: 
        0.99 0.0150 0.0843 1.3622 14.6555 0.1776 0.2181 0.2243 0.3150 0.0668 0.0475 

0.95 0.0149 0.0831 1.3002 14.0508 0.1787 0.2209 0.2243 0.3087 0.0662 0.0481 
0.90 0.0147 0.0817 1.2277 13.3753 0.1800 0.2244 0.2243 0.3008 0.0656 0.0489 
0.80 0.0145 0.0788 1.1149 12.3723 0.1834 0.2327 0.2243 0.2849 0.0644 0.0507 
0.70 0.0140 0.0760 1.0429 11.8938 0.1846 0.2388 0.2243 0.2690 0.0626 0.0522 
0.60 0.0136 0.0729 1.0659 12.0696 0.1867 0.2461 0.2108 0.2509 0.0645 0.0542 
0.50 0.0131 0.0672 1.3978 14.0736 0.1942 0.2579 0.1828 0.2196 0.0714 0.0595 
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Table 5.2.9 (continued) 
 

Panel B: t-Distribution (Nov 94 - May 10) 
        VaR 

Factor  Return 
Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward 
to CVaR 

 99% Confidence Level:  
        0.99 0.0079 0.0477 0.9542 10.7419 0.1655 0.2087 0.1327 0.1609 0.0595 0.0491 

0.95 0.0075 0.0462 0.9046 10.4302 0.1617 0.1994 0.1300 0.1562 0.0575 0.0479 
0.90 0.0067 0.0445 0.8444 9.9797 0.1516 0.1804 0.1267 0.1503 0.0532 0.0449 
0.80 0.0054 0.0407 0.7032 9.1800 0.1330 0.1464 0.1200 0.1376 0.0451 0.0394 
0.70 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 95% Confidence Level:  
        0.99 0.0135 0.0716 1.1062 12.3292 0.1882 0.2495 0.2035 0.2434 0.0662 0.0554 

0.95 0.0134 0.0704 1.1715 12.6750 0.1902 0.2529 0.1971 0.2362 0.0680 0.0567 
0.90 0.0132 0.0688 1.2759 13.3155 0.1889 0.2563 0.1889 0.2271 0.0700 0.0583 
0.80 0.0125 0.0643 1.3888 13.9640 0.1946 0.2593 0.1726 0.2087 0.0724 0.0599 
0.70 0.0112 0.0582 1.3092 13.0604 0.1919 0.2554 0.1561 0.1899 0.0715 0.0588 
0.60 0.0090 0.0516 1.1623 11.8980 0.1751 0.2267 0.1394 0.1706 0.0648 0.0530 
0.50 0.0070 0.0447 0.9439 10.5598 0.1573 0.1849 0.1268 0.1497 0.0554 0.0470 

90% Confidence Level: 
        0.99 0.0145 0.0792 1.1315 12.4880 0.1830 0.2316 0.2243 0.2869 0.0646 0.0505 

0.95 0.0144 0.0783 1.1009 12.2380 0.1839 0.2341 0.2243 0.2817 0.0642 0.0511 
0.90 0.0142 0.0771 1.0694 12.0231 0.1845 0.2367 0.2243 0.2751 0.0634 0.0517 
0.80 0.0138 0.0749 1.0263 11.8364 0.1848 0.2410 0.2225 0.2622 0.0622 0.0528 
0.70 0.0135 0.0717 1.1115 12.3108 0.1884 0.2496 0.2042 0.2438 0.0662 0.0555 
0.60 0.0130 0.0669 1.4175 14.2426 0.1942 0.2579 0.1811 0.2180 0.0717 0.0596 
0.50 0.0115 0.0592 1.4214 13.8357 0.1938 0.2566 0.1578 0.1915 0.0727 0.0599 
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Table 5.2.10 Effects on VaR-Constrained BL Portfolio Performance in Sub-period (Aug 98-May 10) 

This table shows realised VaR-constrained BL portfolio performance in the period from November 1994 to May 2010. The conditional 
covariance matrix applied to the portfolio construction is the DCC model. Return is the average realised excess return, risk is the standard 
deviation, SR is the average excess realised return divided by the standard deviation. Information Ratio is the average active return divided by 
the standard deviation of active return. Reward to VaR ratio and Reward to CVaR ratio evaluate the excess return per unit of tail risk on the 
empirical distribution. In the construction of the portfolio, VaR is estimated by the parametric method with assumption of normal distribution and 

t-distribution at confidence levels of 99%, 95% and 90%. The VaR constraint ( 0VaR ) is set to be equal to the scaling factor k  multiplied by the 

estimated VaR of the implied BL portfolio. The scaling factor k  is called VaR factor.  
Panel A: Normal Distribution (Aug 98 - May 10)                 

VaR Factor Return 
Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical  
CVaR 

Reward to 
VaR 

Reward to 
CVaR 

 99% Confidence Level: 

        0.99 0.0105 0.0717 1.2366 13.8451 0.1467 0.2314 0.2183 0.2290 0.0482 0.0459 
0.95 0.0104 0.0703 1.3455 14.6298 0.1475 0.2331 0.2120 0.2222 0.0489 0.0466 
0.90 0.0100 0.0677 1.3580 14.8033 0.1471 0.2346 0.2040 0.2137 0.0489 0.0466 
0.80 0.0089 0.0615 1.2011 13.8472 0.1443 0.2369 0.1880 0.1964 0.0472 0.0452 
0.70 0.0075 0.0550 1.0521 12.9342 0.1363 0.2285 0.1717 0.1785 0.0436 0.0420 
0.60 0.0056 0.0486 0.8846 11.7044 0.1147 0.1933 0.1552 0.1597 0.0359 0.0350 
0.50 0.0038 0.0425 0.6634 10.0369 0.0904 0.1505 0.1382 0.1388 0.0278 0.0277 

 95% Confidence Level: 

        0.99 0.0117 0.0818 1.0355 12.1711 0.1425 0.2113 0.2631 0.2798 0.0443 0.0417 
0.95 0.0115 0.0807 1.0103 12.0984 0.1422 0.2128 0.2624 0.2732 0.0437 0.0420 
0.90 0.0112 0.0794 0.9838 12.0669 0.1416 0.2144 0.2615 0.2649 0.0430 0.0424 
0.80 0.0108 0.0766 0.9774 12.3486 0.1406 0.2181 0.2450 0.2557 0.0440 0.0421 
0.70 0.0106 0.0723 1.2044 13.6178 0.1462 0.2301 0.2221 0.2317 0.0476 0.0456 
0.60 0.0096 0.0660 1.4200 15.3028 0.1461 0.2335 0.1990 0.2072 0.0485 0.0466 
0.50 0.0078 0.0567 1.1913 13.8416 0.1381 0.2283 0.1756 0.1818 0.0446 0.0431 

90% Confidence Level: 

        0.99 0.0125 0.0902 1.3456 14.3381 0.1391 0.1951 0.2687 0.3311 0.0467 0.0379 
0.95 0.0124 0.0888 1.2799 13.8133 0.1396 0.1976 0.2678 0.3224 0.0463 0.0384 
0.90 0.0122 0.0870 1.2018 13.2262 0.1402 0.2007 0.2666 0.3116 0.0457 0.0391 
0.80 0.0119 0.0834 1.0757 12.3831 0.1422 0.2085 0.2642 0.2901 0.0449 0.0409 
0.70 0.0113 0.0799 0.9898 12.0767 0.1417 0.2137 0.2618 0.2684 0.0432 0.0422 
0.60 0.0107 0.0760 1.0098 12.4810 0.1414 0.2198 0.2424 0.2514 0.0443 0.0427 
0.50 0.0103 0.0697 1.3765 14.8561 0.1474 0.2327 0.2122 0.2199 0.0484 0.0468 
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Table 5.2.10 (continued) 

Panel B: t-Distribution                 

VaR 
Factor  Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward 
to CVaR 

 99% Confidence Level:  
        0.99 0.0055 0.0488 0.8070 11.1746 0.1124 0.1917 0.1556 0.1610 0.0352 0.0341 

0.95 0.0052 0.0473 0.7542 10.8036 0.1105 0.1864 0.1516 0.1562 0.0345 0.0335 
0.90 0.0047 0.0455 0.6803 10.2378 0.1043 0.1745 0.1464 0.1500 0.0324 0.0316 
0.80 0.0034 0.0418 0.5508 9.3063 0.0817 0.1383 0.1360 0.1367 0.0251 0.0250 
0.70 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 95% Confidence Level:  
        0.99 0.0107 0.0747 1.0609 12.7539 0.1432 0.2240 0.2335 0.2448 0.0458 0.0437 

0.95 0.0107 0.0734 1.1338 13.1677 0.1452 0.2281 0.2266 0.2375 0.0471 0.0449 
0.90 0.0105 0.0715 1.2475 13.9164 0.1468 0.2316 0.2179 0.2283 0.0482 0.0460 
0.80 0.0097 0.0664 1.3433 14.7439 0.1465 0.2348 0.2004 0.2096 0.0485 0.0464 
0.70 0.0084 0.0594 1.1769 13.7059 0.1420 0.2347 0.1828 0.1904 0.0462 0.0443 
0.60 0.0064 0.0525 1.0086 12.4986 0.1226 0.2078 0.1649 0.1705 0.0390 0.0377 
0.50 0.0049 0.0456 0.7758 10.8697 0.1077 0.1755 0.1465 0.1491 0.0335 0.0330 

90% Confidence Level: 
        0.99 0.0119 0.0839 1.0946 12.4771 0.1420 0.2075 0.2645 0.2927 0.0450 0.0407 

0.95 0.0118 0.0828 1.0594 12.2779 0.1425 0.2098 0.2637 0.2856 0.0447 0.0413 
0.90 0.0116 0.0813 1.0223 12.1332 0.1423 0.2120 0.2627 0.2767 0.0440 0.0418 
0.80 0.0110 0.0785 0.9683 12.0972 0.1407 0.2150 0.2584 0.2602 0.0427 0.0424 
0.70 0.0107 0.0748 1.0649 12.7630 0.1433 0.2238 0.2349 0.2447 0.0456 0.0438 
0.60 0.0102 0.0694 1.3979 15.0241 0.1474 0.2330 0.2100 0.2186 0.0487 0.0468 
0.50 0.0087 0.0605 1.3103 14.6303 0.1443 0.2357 0.1849 0.1917 0.0472 0.0456 
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Table 5.3.1 Weights in the CVaR-Constrained BL Portfolio in August 1998 

This table reports weights allocated to each index in a CVaR-constrained BL portfolio in 

August 1998. The standard deviation is estimated by a conditional covariance matrix of the 

DCC, EWMA and RW50 models. CVaR is estimated by the parametric method in the 

optimisation model with assumption of normal distribution and t-distribution at a confidence 

level of 99%. The CVaR constraint ( 0CVaR ) is set to be equal to the scaling factor 0.99 

multiplied by the estimated CVaR of the implied BL portfolio in the corresponding period.  

Aug-98 Normal distribution t-Distribution 

99% Confidence Level: DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  0.0302 0.0416 -0.0195 -0.0562 -0.1406 -0.2946 

UK CONSUMER GDS  0.0500 0.1427 0.0411 0.0188 0.1020 0.0452 

UK CONSUMER SVS  -0.0157 -0.2198 -0.0949 0.1832 -0.1806 -0.3185 

UK FINANCIALS  0.1180 0.2251 0.1251 0.0137 0.1686 0.2424 

UK HEALTH CARE  -0.0390 -0.0913 0.0253 0.0900 0.0857 0.1859 

UK TECHNOLOGY  -0.0325 -0.0755 -0.0150 -0.0376 -0.0546 -0.0394 

UK INDUSTRIALS  -0.0405 0.0093 0.0507 -0.0430 0.1926 0.3389 

UK OIL & GAS  0.0380 0.1357 0.0544 -0.1410 0.0164 0.0556 

UK TELECOM  -0.0361 -0.1851 -0.0621 -0.0356 -0.1923 -0.2133 

UK UTILITIES  -0.0420 -0.1099 -0.0085 0.1456 0.0572 0.0761 

USA BASIC MATS  0.0966 0.2175 0.1132 0.0460 0.1427 0.2263 

USA CONSUMER GDS  -0.0709 -0.0934 0.0059 -0.0604 -0.0270 0.1360 

USA CONSUMER SVS  0.0494 0.0477 0.1358 0.2703 0.2262 0.5171 

USA FINANCIALS  0.0135 -0.0425 0.0489 -0.0545 -0.0949 -0.0799 

USA HEALTH CARE  0.0756 0.0178 0.0500 0.2050 0.0818 -0.1411 

USA INDUSTRIALS  -0.0581 -0.2707 -0.1153 -0.1580 -0.3845 -0.5865 

USA OIL & GAS  0.1656 0.2735 0.0590 0.2200 0.2200 -0.1085 

USA TECHNOLOGY  0.0263 -0.0104 0.0659 -0.0615 -0.0119 0.0090 

USA TELECOM  -0.0359 -0.1159 -0.0309 0.0751 -0.0298 -0.0561 

USA UTILITIES  -0.0116 -0.1141 0.1179 0.0431 0.0512 0.5270 

JAPAN BASIC MATS  0.1018 0.1126 0.0142 0.0685 0.0506 -0.1029 

JAPAN CONSUMER GDS  0.1033 0.1030 0.0081 0.0304 -0.0822 -0.2268 

JAPAN CONSUMER SVS  0.1271 0.1268 0.0332 0.1483 0.0033 -0.0800 

JAPAN FINANCIALS  0.0487 0.0558 -0.0054 -0.0914 -0.0643 -0.2280 

JAPAN HEALTH CARE  0.0594 0.2153 0.1009 -0.1004 0.1320 0.2389 

JAPAN INDUSTRIALS  0.1299 0.4258 0.2192 0.2127 0.6433 0.8130 

JAPAN OIL & GAS  0.0217 0.0827 0.0523 -0.0773 0.0378 0.1352 

JAPAN TECHNOLOGY  0.0496 0.0705 0.0224 -0.1107 -0.0463 -0.0644 

JAPAN TELECOM  0.1035 0.1615 0.0025 0.1041 0.0650 -0.1662 

JAPAN UTILITIES  -0.0258 -0.1366 0.0057 0.1530 0.0329 0.1598 
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Table 5.3.2 Weights in the CVaR-Constrained BL Portfolio in November 1998 

This table reports weights allocated to each index in a CVaR-constrained BL portfolio in 

November 1998. The standard deviation is estimated by a conditional covariance matrix of 

DCC, EWMA and RW50 models. CVaR is estimated by the parametric method in the 

optimisation model with assumption of normal distribution and t-distribution at confidence 

level of 99%. The CVaR constraint ( 0CVaR ) is set to be equal to the scaling factor 0.99 

multiplied by the estimated CVaR of the implied BL portfolio in the corresponding period.  

Nov-98 Normal distribution t-Distribution 

99% Confidence Level: DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  -0.0247 -0.0429 -0.0185 -0.0670 -0.1780 -0.3185 

UK CONSUMER GDS  -0.0276 -0.0369 -0.0157 0.0308 0.0593 0.0313 

UK CONSUMER SVS  -0.0442 -0.0644 -0.0142 0.1679 -0.1287 -0.2175 

UK FINANCIALS  -0.0021 -0.0167 0.0127 -0.0171 0.0477 0.1555 

UK HEALTH CARE  0.0785 0.1026 0.0633 0.0523 0.2157 0.2093 

UK TECHNOLOGY  -0.0125 -0.0205 -0.0028 -0.0206 -0.0249 -0.0315 

UK INDUSTRIALS  -0.0189 -0.0321 -0.0094 -0.0264 0.1683 0.3897 

UK OIL & GAS  -0.0354 -0.0488 -0.0215 -0.0815 -0.1452 -0.1046 

UK TELECOM  0.0584 0.0705 0.0444 0.0200 -0.0508 -0.1164 

UK UTILITIES  0.0705 0.0775 0.0380 0.0736 0.1655 0.1722 

USA BASIC MATS  -0.0211 -0.0386 -0.0039 0.0909 0.0453 0.2999 

USA CONSUMER GDS  -0.0147 -0.0299 -0.0065 -0.0658 -0.0252 -0.0475 

USA CONSUMER SVS  0.1162 0.1376 0.1101 0.1307 0.2253 0.4690 

USA FINANCIALS  0.0760 0.0668 0.0929 -0.0290 -0.0058 -0.0133 

USA HEALTH CARE  0.1765 0.1941 0.1699 0.1165 0.1477 0.1631 

USA INDUSTRIALS  0.0115 -0.0067 0.0290 -0.0648 -0.2302 -0.5718 

USA OIL & GAS  -0.0129 -0.0264 0.0102 0.0832 0.1224 -0.0328 

USA TECHNOLOGY  0.1325 0.1457 0.1320 0.0066 0.0391 0.0109 

USA TELECOM  0.0660 0.0808 0.0529 0.0329 0.0173 -0.1211 

USA UTILITIES  0.1203 0.1430 0.0965 0.1525 0.1738 0.3331 

JAPAN BASIC MATS  0.0387 0.0466 0.0296 -0.0694 0.0312 -0.0471 

JAPAN CONSUMER GDS  -0.0297 -0.0334 0.0032 0.0833 -0.0907 -0.1279 

JAPAN CONSUMER SVS  0.0673 0.0713 0.0425 0.2100 -0.0392 -0.0768 

JAPAN FINANCIALS  0.0051 -0.0020 0.0144 -0.0457 -0.1174 -0.1494 

JAPAN HEALTH CARE  0.0728 0.0647 0.0376 0.1511 -0.0713 -0.0751 

JAPAN INDUSTRIALS  0.0589 0.0697 0.0362 0.1856 0.5208 0.6112 

JAPAN OIL & GAS  0.0264 0.0333 0.0169 -0.0175 0.0311 0.1534 

JAPAN TECHNOLOGY  -0.0168 -0.0269 -0.0042 -0.1002 -0.1243 -0.1325 

JAPAN TELECOM  0.0462 0.0642 0.0312 0.0340 0.0845 0.0961 

JAPAN UTILITIES  0.0388 0.0577 0.0331 -0.0169 0.1367 0.0890 
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Table 5.3.3 CVaR-Constrained BL Portfolio Performance in a Single Period 

This table reports the CVaR-constrained BL portfolio performance evaluated by realised 

return, CSR, PT, and reward to CVaR ratio in August 1998 and November 1998. The 

standard deviation is estimated by a conditional covariance matrix of DCC, EWMA and 

RW50 models. CVaR is estimated by the parametric method in the optimisation model with 

assumption of normal distribution and t-distribution at a confidence level of 99%. The CVaR 

constraint ( 0CVaR ) is set to be equal to the scaling factor 0.99 multiplied by the estimated 

CVaR of the implied BL portfolio in the corresponding period. Note that I follow Israelsen’s 

(2003) method to adjust the CSR and the reward to CVaR ratio in August 1998 because the 

negative realised excess return would lead to invalid SR measures for portfolio evaluation. 

Panel A: Aug 1998 
      

 
Normal Distribution  t-Distribution 

 

Realised 
Return 

Adjusted 
CSR PT 

Adjusted 
Reward 
to CVaR 

Realised 
Return 

Adjusted 
CSR PT 

Adjusted 
Reward 
to CVaR 

DCC -0.1166 -0.5371 3.2105 -2.7905 -0.0362 -0.0880 1.6783 -0.3654 

EWMA -0.1237 -1.1435 5.1408 -4.5773 -0.0596 -0.2752 2.4236 -1.0881 

RW50 -0.1118 -0.3505 N/A -2.1833 -0.0024 -0.0037 N/A -0.0103 

         Panel B:  Nov 1998 
      

 
Normal Distribution  t-Distribution 

 

Realised 
Return CSR PT 

Reward 
to CVaR  

Realised 
Return CSR PT 

Reward 
to CVaR  

DCC 0.0444 0.9132 1.5992 0.5213 0.0262 0.9685 1.2714 0.5708 

EWMA 0.0448 0.9124 2.5124 0.5206 0.0228 0.8739 1.2002 0.4878 

RW50 0.0479 1.3257 0.8673 0.9898 0.0350 1.9181 1.9260 2.5674 
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Table 5.3.4 CVaR-Constrained BL Portfolio Performance in Multiple Periods 

This table shows realised CVaR-constrained BL portfolio performance in the period from November 1994 to May 2010, and the sub-period from 

August 1998 to May 2010. Return is the average realised excess return, Sharpe Ratio is the average excess realised return divided by the 

standard deviation. Information Ratio is the average active return divided by the standard deviation of active return. Reward to VaR ratio and 

Reward to CVaR ratio evaluate the excess return per unit of tail risk on the empirical distribution. In the construction of the portfolio, CVaR is 

estimated by the parametric method in the optimisation model with assumption of normal distribution and t-distribution at a confidence level of 

99%. The CVaR constraint ( 0CVaR ) is set to be equal to the scaling factor 0.99 multiplied by the estimated CVaR of the implied BL portfolio in 

the corresponding period. 

Panel A: Normal Distribution (Nov 94-May 10) 

 
Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward 
to CVaR 

DCC 0.0133 0.0690 1.2940 13.4657 0.1921 0.2557 0.1895 0.2278 0.0700 0.0582 
EWMA 0.0099 0.0553 -0.0018 7.3818 0.1785 0.2664 0.1492 0.1986 0.0662 0.0498 
RW50 0.0064 0.0486 0.0745 6.7634 0.1322 0.2668 0.1164 0.1605 0.0552 0.0401 

Panel B: t-Distribution (Nov 94-May 10) 

 
Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward 
to CVaR 

DCC 0.0058 0.0411 0.7205 9.2884 0.1409 0.1562 0.1209 0.1393 0.0479 0.0415 
EWMA 0.0043 0.0316 1.5039 16.6840 0.1377 0.1197 0.0941 0.1149 0.0462 0.0378 
RW50 -0.0004 0.0373 0.3149 5.6752 -0.0114 -0.0262 0.0933 0.1041 -0.0046 -0.0041 

Panel C: Normal Distribution (Aug 98-May 10) 

 
Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward 
to CVaR 

DCC 0.0105 0.0719 1.2701 14.0619 0.1468 0.2311 0.2183 0.2291 0.0483 0.0460 
EWMA 0.0073 0.0576 -0.1505 7.3944 0.1263 0.2388 0.1645 0.2121 0.0442 0.0343 
RW50 0.0043 0.0505 -0.1882 6.0535 0.0856 0.2825 0.1253 0.1752 0.0345 0.0247 

Panel D: t-Distribution (Aug 98-May 10) 

 
Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward 
to CVaR 

DCC 0.0041 0.0421 0.5516 9.4172 0.0962 0.1564 0.1373 0.1386 0.0295 0.0293 
EWMA 0.0028 0.0331 1.4235 17.1082 0.0859 0.1265 0.1132 0.1138 0.0251 0.0250 
RW50 -0.0010 0.0401 -0.0934 3.6951 -0.0247 0.0120 0.0971 0.1069 -0.0102 -0.0093 
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Table 5.3.5 Effects on CVaR-Constrained BL Portfolio Optimisation (Aug 98) 

This table reports the statistics inputted into the CVaR-constrained SR-BL model, such as 

estimated expected BL return ( ) and standard deviation (based on the DCC model) and 

the results of ECSR, Reward to VaR ratio ( VaR/ ) and Reward to CVaR ratio ( CVaR/ ). 

VaR and CVaR are estimated by the parametric method in the optimisation model with 

assumption of normal distribution and t-distribution at confidence levels of 99%, 95% and 

90%. The CVaR constraint ( 0CVaR ) is set to be equal to the scaling factor (CVaR Factor) 

multiplied by the estimated CVaR of the implied BL portfolio in the corresponding period. 

Panel A: Normal Distribution 
99% Confidence Level 

      CVaR 
Factor 

Expected 
Return 

Standard 
Deviation VaR CVaR VaR/  CVaR/  CSR 

0.99 0.0047 0.0461 0.1025 0.1181 0.0461 0.0400 0.1025 
0.95 0.0045 0.0442 0.0983 0.1133 0.0459 0.0399 0.1022 
0.90 0.0043 0.0419 0.0931 0.1073 0.0457 0.0396 0.1016 
0.80 0.0037 0.0372 0.0828 0.0954 0.0447 0.0388 0.0995 
0.70 0.0031 0.0325 0.0724 0.0834 0.0426 0.0370 0.0950 
0.60 0.0023 0.0277 0.0621 0.0715 0.0374 0.0325 0.0839 
0.50 0.0011 0.0247 0.0565 0.0648 0.0195 0.0170 0.0445 

        95% Confidence Level 
      CVaR 

Factor 
Expected 

Return 
Standard 
Deviation VaR CVaR VaR/  CVaR/  CSR 

0.99 0.0059 0.0568 0.0876 0.1114 0.0669 0.0527 0.1032 
0.95 0.0059 0.0568 0.0876 0.1114 0.0669 0.0527 0.1032 
0.90 0.0059 0.0568 0.0876 0.1114 0.0669 0.0527 0.1032 
0.80 0.0055 0.0537 0.0828 0.1052 0.0669 0.0526 0.1031 
0.70 0.0048 0.0470 0.0724 0.0921 0.0666 0.0524 0.1027 
0.60 0.0041 0.0402 0.0621 0.0789 0.0654 0.0515 0.1010 
0.50 0.0032 0.0334 0.0517 0.0657 0.0621 0.0489 0.0962 

        90% Confidence Level 
      CVaR 

Factor 
Expected 

Return 
Standard 
Deviation VaR CVaR VaR/  CVaR/  CSR 

0.99 0.0059 0.0568 0.0670 0.0939 0.0876 0.0625 0.1032 
0.95 0.0059 0.0568 0.0670 0.0939 0.0876 0.0625 0.1032 
0.90 0.0059 0.0568 0.0670 0.0939 0.0876 0.0625 0.1032 
0.80 0.0059 0.0568 0.0670 0.0939 0.0876 0.0625 0.1032 
0.70 0.0059 0.0568 0.0670 0.0939 0.0876 0.0625 0.1032 
0.60 0.0054 0.0527 0.0621 0.0870 0.0875 0.0624 0.1031 
0.50 0.0045 0.0439 0.0517 0.0725 0.0866 0.0618 0.1021 
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Table 5.3.5 (continued) 

Panel B: t-Distribution 
99% Confidence Level 

      CVaR 
Factor 

Expected 
Return 

Standard 
Deviation VaR CVaR VaR/  CVaR/  CSR 

0.99 0.0012 0.0251 0.0928 0.1192 0.0134 0.0104 0.0496 
0.95 0.0012 0.0250 0.0926 0.1189 0.0134 0.0104 0.0494 
0.90 0.0012 0.0245 0.0905 0.1163 0.0132 0.0102 0.0487 
0.80 N/A N/A N/A N/A N/A N/A N/A 
0.70 N/A N/A N/A N/A N/A N/A N/A 
0.60 N/A N/A N/A N/A N/A N/A N/A 
0.50 N/A N/A N/A N/A N/A N/A N/A 

        95% Confidence Level 
      CVaR 

Factor 
Expected 

Return 
Standard 
Deviation VaR CVaR VaR/  CVaR/  CSR 

0.99 0.0038 0.0381 0.0773 0.1181 0.0492 0.0322 0.1000 
0.95 0.0036 0.0365 0.0742 0.1133 0.0487 0.0319 0.0990 
0.90 0.0034 0.0346 0.0703 0.1073 0.0479 0.0314 0.0975 
0.80 0.0028 0.0307 0.0626 0.0954 0.0451 0.0296 0.0921 
0.70 0.0021 0.0267 0.0549 0.0835 0.0388 0.0255 0.0796 
0.60 N/A N/A N/A N/A N/A N/A N/A 
0.50 N/A N/A N/A N/A N/A N/A N/A 

        90% Confidence Level 
      CVaR 

Factor 
Expected 

Return 
Standard 
Deviation VaR CVaR VaR/  CVaR/  CSR 

0.99 0.0051 0.0493 0.0705 0.1181 0.0719 0.0429 0.1029 
0.95 0.0049 0.0473 0.0676 0.1133 0.0718 0.0428 0.1027 
0.90 0.0046 0.0448 0.0641 0.1073 0.0715 0.0427 0.1023 
0.80 0.0040 0.0398 0.0570 0.0954 0.0704 0.0420 0.1008 
0.70 0.0034 0.0348 0.0499 0.0835 0.0680 0.0407 0.0976 
0.60 0.0027 0.0297 0.0429 0.0716 0.0624 0.0374 0.0900 
0.50 0.0014 0.0244 0.0360 0.0596 0.0386 0.0233 0.0570 
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Table 5.3.6 Effects on Weights of the CVaR-Constrained BL Portfolio (Aug 98) 

This table shows positions of each asset in a CVaR-constrained BL portfolio in August 1998 under normal distribution and t-distribution at 

confidence levels of 99% (Panel A), 95% (Panel B), and 90% (Panel C). Note that the covariance matrix applied to the CVaR-constrained BL 

model is the DCC covariance matrix in this table. 

Panel A: 99% Confidence Level Normal Distribution   t-Distribution 

CVaR Factor 0.99 0.95 0.90 0.80 0.70 0.99 0.95 0.90 0.80 
 UK BASIC MATS  0.0302 0.0239 0.0158 -0.0010 -0.0196 -0.0562 -0.0906 -0.0688 N/A 
 UK CONSUMER GDS  0.0500 0.0480 0.0454 0.0398 0.0335 0.0188 0.0239 0.0054 N/A 
 UK CONSUMER SVS  -0.0157 -0.0043 0.0103 0.0409 0.0747 0.1832 0.2772 0.1839 N/A 
 UK FINANCIALS  0.1180 0.1133 0.1073 0.0951 0.0816 0.0137 0.0905 0.0496 N/A 
 UK HEALTH CARE  -0.0390 -0.0330 -0.0253 -0.0090 0.0090 0.0900 -0.0103 0.0621 N/A 
 UK TECHNOLOGY  -0.0325 -0.0327 -0.0330 -0.0335 -0.0341 -0.0376 -0.0249 -0.0338 N/A 
 UK INDUSTRIALS  -0.0405 -0.0398 -0.0388 -0.0366 -0.0343 -0.0430 -0.0383 -0.0154 N/A 
 UK OIL & GAS  0.0380 0.0294 0.0184 -0.0047 -0.0301 -0.1410 -0.1413 -0.1026 N/A 
 UK TELECOM  -0.0361 -0.0363 -0.0366 -0.0373 -0.0380 -0.0356 -0.0209 -0.0513 N/A 
 UK UTILITIES  -0.0420 -0.0324 -0.0201 0.0056 0.0339 0.1456 0.1379 0.1381 N/A 
 USA BASIC MATS  0.0966 0.0929 0.0882 0.0781 0.0672 0.0460 -0.0045 0.0019 N/A 
 USA CONSUMER GDS  -0.0709 -0.0702 -0.0692 -0.0669 -0.0644 -0.0604 -0.0719 -0.0415 N/A 
 USA CONSUMER SVS  0.0494 0.0620 0.0781 0.1119 0.1491 0.2703 0.2843 0.2262 N/A 
 USA FINANCIALS  0.0135 0.0090 0.0033 -0.0088 -0.0224 -0.0545 -0.1382 -0.0549 N/A 
 USA HEALTH CARE  0.0756 0.0818 0.0896 0.1062 0.1246 0.2050 0.1831 0.1681 N/A 
 USA INDUSTRIALS  -0.0581 -0.0632 -0.0699 -0.0839 -0.0997 -0.1580 -0.1450 -0.0791 N/A 
 USA OIL & GAS  0.1656 0.1690 0.1732 0.1821 0.1920 0.2200 0.2683 0.2070 N/A 
 USA TECHNOLOGY  0.0263 0.0218 0.0160 0.0039 -0.0095 -0.0615 -0.0359 -0.0736 N/A 
 USA TELECOM  -0.0359 -0.0302 -0.0229 -0.0077 0.0095 0.0751 0.0651 0.0690 N/A 
 USA UTILITIES  -0.0116 -0.0071 -0.0013 0.0109 0.0245 0.0431 0.0809 0.0502 N/A 
 JAPAN BASIC MATS  0.1018 0.1016 0.1014 0.1007 0.1000 0.0685 0.1394 0.0790 N/A 
 JAPAN CONSUMER GDS  0.1033 0.0993 0.0942 0.0835 0.0716 0.0304 -0.0336 0.0417 N/A 
 JAPAN CONSUMER SVS  0.1271 0.1273 0.1275 0.1280 0.1285 0.1483 0.0884 0.0998 N/A 
 JAPAN FINANCIALS  0.0487 0.0409 0.0311 0.0106 -0.0122 -0.0914 -0.0603 -0.1012 N/A 
 JAPAN HEALTH CARE  0.0594 0.0489 0.0354 0.0072 -0.0239 -0.1004 -0.1278 -0.0662 N/A 
 JAPAN INDUSTRIALS  0.1299 0.1331 0.1372 0.1458 0.1554 0.2127 0.1613 0.1531 N/A 
 JAPAN OIL & GAS  0.0217 0.0161 0.0089 -0.0062 -0.0230 -0.0773 -0.0481 -0.0582 N/A 
 JAPAN TECHNOLOGY  0.0496 0.0418 0.0317 0.0106 -0.0125 -0.1107 -0.0663 -0.0552 N/A 
 JAPAN TELECOM  0.1035 0.1038 0.1042 0.1048 0.1056 0.1041 0.0742 0.1173 N/A 
 JAPAN UTILITIES  -0.0258 -0.0146 -0.0003 0.0299 0.0631 0.1530 0.1832 0.1491 N/A 
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Table 5.3.6 (continued) 

Panel B: 95% Confidence Level Normal Distribution   t-Distribution 
CVaR Factor 0.99 0.95 0.90 0.80 0.70 0.99 0.95 0.90 0.80 0.70 
UK BASIC MATS  0.0648 0.0648 0.0582 0.0389 0.0183 0.0022 -0.0036 -0.0111 -0.0277 -0.0489 
UK CONSUMER GDS  0.0614 0.0614 0.0593 0.0527 0.0462 0.0408 0.0389 0.0364 0.0309 0.0239 
UK CONSUMER SVS  -0.0789 -0.0789 -0.0664 -0.0313 0.0059 0.0351 0.0456 0.0593 0.0892 0.1277 
UK FINANCIALS  0.1436 0.1436 0.1387 0.1244 0.1091 0.0975 0.0933 0.0877 0.0757 0.0601 
UK HEALTH CARE  -0.0723 -0.0723 -0.0663 -0.0473 -0.0276 -0.0121 -0.0065 0.0007 0.0167 0.0371 
UK TECHNOLOGY  -0.0313 -0.0313 -0.0317 -0.0323 -0.0329 -0.0334 -0.0336 -0.0338 -0.0344 -0.0351 
UK INDUSTRIALS  -0.0447 -0.0447 -0.0439 -0.0415 -0.0392 -0.0370 -0.0362 -0.0353 -0.0333 -0.0307 
UK OIL & GAS  0.0857 0.0857 0.0769 0.0498 0.0218 -0.0003 -0.0082 -0.0185 -0.0411 -0.0701 
UK TELECOM  -0.0350 -0.0350 -0.0352 -0.0358 -0.0365 -0.0372 -0.0374 -0.0377 -0.0383 -0.0391 
UK UTILITIES  -0.0954 -0.0954 -0.0853 -0.0551 -0.0238 0.0006 0.0095 0.0210 0.0462 0.0785 
USA BASIC MATS  0.1171 0.1171 0.1133 0.1018 0.0896 0.0800 0.0766 0.0722 0.0625 0.0501 
USA CONSUMER GDS  -0.0747 -0.0747 -0.0741 -0.0720 -0.0695 -0.0673 -0.0666 -0.0656 -0.0634 -0.0607 
USA CONSUMER SVS  -0.0202 -0.0202 -0.0074 0.0321 0.0732 0.1055 0.1170 0.1321 0.1651 0.2074 
USA FINANCIALS  0.0381 0.0381 0.0336 0.0197 0.0050 -0.0066 -0.0107 -0.0161 -0.0281 -0.0434 
USA HEALTH CARE  0.0414 0.0414 0.0481 0.0672 0.0872 0.1030 0.1087 0.1161 0.1325 0.1533 
USA INDUSTRIALS  -0.0294 -0.0294 -0.0349 -0.0510 -0.0678 -0.0813 -0.0861 -0.0923 -0.1064 -0.1241 
USA OIL & GAS  0.1471 0.1471 0.1503 0.1609 0.1719 0.1804 0.1835 0.1875 0.1962 0.2075 
USA TECHNOLOGY  0.0515 0.0515 0.0469 0.0324 0.0177 0.0063 0.0021 -0.0033 -0.0153 -0.0305 
USA TELECOM  -0.0674 -0.0674 -0.0613 -0.0437 -0.0251 -0.0106 -0.0053 0.0015 0.0168 0.0362 
USA UTILITIES  -0.0368 -0.0368 -0.0322 -0.0179 -0.0030 0.0086 0.0128 0.0182 0.0303 0.0457 
JAPAN BASIC MATS  0.1022 0.1022 0.1023 0.1020 0.1015 0.1008 0.1006 0.1004 0.0997 0.0989 
JAPAN CONSUMER GDS  0.1255 0.1255 0.1211 0.1087 0.0957 0.0856 0.0819 0.0771 0.0665 0.0529 
JAPAN CONSUMER SVS  0.1257 0.1257 0.1262 0.1268 0.1274 0.1279 0.1281 0.1283 0.1287 0.1293 
JAPAN FINANCIALS  0.0916 0.0916 0.0836 0.0593 0.0341 0.0145 0.0075 -0.0018 -0.0219 -0.0479 
JAPAN HEALTH CARE  0.1178 0.1178 0.1066 0.0738 0.0395 0.0126 0.0029 -0.0096 -0.0373 -0.0727 
JAPAN INDUSTRIALS  0.1125 0.1125 0.1158 0.1255 0.1360 0.1441 0.1471 0.1510 0.1596 0.1707 
JAPAN OIL & GAS  0.0531 0.0531 0.0472 0.0295 0.0111 -0.0033 -0.0085 -0.0153 -0.0302 -0.0493 
JAPAN TECHNOLOGY  0.0928 0.0928 0.0845 0.0604 0.0348 0.0147 0.0075 -0.0020 -0.0225 -0.0490 
JAPAN TELECOM  0.1019 0.1019 0.1023 0.1032 0.1041 0.1047 0.1049 0.1052 0.1059 0.1068 
JAPAN UTILITIES  -0.0876 -0.0876 -0.0762 -0.0413 -0.0047 0.0241 0.0345 0.0479 0.0773 0.1152 
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Table 5.3.6 (continued) 

Panel C: 90% Confidence Level Normal Distribution   t-Distribution 
CVaR Factor 0.99 0.95 0.90 0.80 0.70 0.99 0.95 0.90 0.80 0.70 
UK BASIC MATS  0.0648 0.0648 0.0648 0.0648 0.0448 0.0408 0.0342 0.0259 0.0084 -0.0104 
UK CONSUMER GDS  0.0614 0.0614 0.0614 0.0614 0.0547 0.0533 0.0513 0.0486 0.0430 0.0367 
UK CONSUMER SVS  -0.0789 -0.0789 -0.0789 -0.0789 -0.0422 -0.0348 -0.0229 -0.0078 0.0237 0.0579 
UK FINANCIALS  0.1436 0.1436 0.1436 0.1436 0.1288 0.1258 0.1209 0.1147 0.1020 0.0883 
UK HEALTH CARE  -0.0723 -0.0723 -0.0723 -0.0723 -0.0531 -0.0491 -0.0429 -0.0349 -0.0181 0.0000 
UK TECHNOLOGY  -0.0313 -0.0313 -0.0313 -0.0313 -0.0321 -0.0322 -0.0324 -0.0326 -0.0332 -0.0338 
UK INDUSTRIALS  -0.0447 -0.0447 -0.0447 -0.0447 -0.0422 -0.0417 -0.0410 -0.0401 -0.0378 -0.0354 
UK OIL & GAS  0.0857 0.0857 0.0857 0.0857 0.0581 0.0525 0.0435 0.0321 0.0083 -0.0174 
UK TELECOM  -0.0350 -0.0350 -0.0350 -0.0350 -0.0356 -0.0358 -0.0360 -0.0363 -0.0369 -0.0376 
UK UTILITIES  -0.0954 -0.0954 -0.0954 -0.0954 -0.0643 -0.0580 -0.0481 -0.0353 -0.0089 0.0198 
USA BASIC MATS  0.1171 0.1171 0.1171 0.1171 0.1053 0.1029 0.0990 0.0941 0.0837 0.0727 
USA CONSUMER GDS  -0.0747 -0.0747 -0.0747 -0.0747 -0.0727 -0.0722 -0.0714 -0.0704 -0.0681 -0.0657 
USA CONSUMER SVS  -0.0202 -0.0202 -0.0202 -0.0202 0.0200 0.0282 0.0414 0.0581 0.0929 0.1305 
USA FINANCIALS  0.0381 0.0381 0.0381 0.0381 0.0240 0.0211 0.0163 0.0104 -0.0021 -0.0155 
USA HEALTH CARE  0.0414 0.0414 0.0414 0.0414 0.0613 0.0653 0.0717 0.0799 0.0969 0.1153 
USA INDUSTRIALS  -0.0294 -0.0294 -0.0294 -0.0294 -0.0461 -0.0494 -0.0548 -0.0616 -0.0760 -0.0916 
USA OIL & GAS  0.1471 0.1471 0.1471 0.1471 0.1576 0.1598 0.1634 0.1679 0.1771 0.1871 
USA TECHNOLOGY  0.0515 0.0515 0.0515 0.0515 0.0367 0.0338 0.0291 0.0231 0.0108 -0.0027 
USA TELECOM  -0.0674 -0.0674 -0.0674 -0.0674 -0.0491 -0.0454 -0.0395 -0.0320 -0.0163 0.0008 
USA UTILITIES  -0.0368 -0.0368 -0.0368 -0.0368 -0.0222 -0.0192 -0.0145 -0.0085 0.0040 0.0176 
JAPAN BASIC MATS  0.1022 0.1022 0.1022 0.1022 0.1021 0.1021 0.1019 0.1017 0.1011 0.1004 
JAPAN CONSUMER GDS  0.1255 0.1255 0.1255 0.1255 0.1125 0.1099 0.1058 0.1005 0.0895 0.0776 
JAPAN CONSUMER SVS  0.1257 0.1257 0.1257 0.1257 0.1266 0.1267 0.1270 0.1272 0.1277 0.1282 
JAPAN FINANCIALS  0.0916 0.0916 0.0916 0.0916 0.0668 0.0617 0.0536 0.0433 0.0221 -0.0008 
JAPAN HEALTH CARE  0.1178 0.1178 0.1178 0.1178 0.0839 0.0770 0.0661 0.0521 0.0231 -0.0083 
JAPAN INDUSTRIALS  0.1125 0.1125 0.1125 0.1125 0.1225 0.1245 0.1279 0.1321 0.1409 0.1506 
JAPAN OIL & GAS  0.0531 0.0531 0.0531 0.0531 0.0350 0.0313 0.0253 0.0178 0.0023 -0.0146 
JAPAN TECHNOLOGY  0.0928 0.0928 0.0928 0.0928 0.0679 0.0628 0.0546 0.0442 0.0225 -0.0010 
JAPAN TELECOM  0.1019 0.1019 0.1019 0.1019 0.1030 0.1031 0.1034 0.1037 0.1044 0.1052 
JAPAN UTILITIES  -0.0876 -0.0876 -0.0876 -0.0876 -0.0521 -0.0447 -0.0330 -0.0181 0.0129 0.0465 
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Table 5.3.7 Effects on CVaR-Constrained SR-BL Portfolio Performance Evaluation 
(Aug 98) 

This table reports CVaR-constrained BL portfolio performance results including realised 

excess return, adjusted CSR, PT and adjusted reward to CVaR ratio in August 1998. The 

standard deviation is estimated by a conditional covariance matrix of DCC, EWMA and 

RW50 models. CVaR is estimated by the parametric method in the optimisation model with 

assumption of normal distribution and t-distribution at a confidence level of 99%. The CVaR 

constraint ( 0CVaR ) is set to be equal to the scaling factor 0.99 multiplied by the estimated 

CVaR of the implied BL portfolio in the corresponding period. Following Israelsen’s (2003) 

method, adjusted conditional Sharpe Ratio is equal to the product of negative realised 

excess return and the standard deviation multiplied by 100. Using this idea, I adjust the 

reward to CVaR ratio equal to the product of negative realised excess return and CVaR 

multiplied by 100. 

Panel A: 99% Confidence Level 

t-Distribution                                         Normal Distribution 
CVaR Realised 

Excess 
Return 

Adjusted 
CSR PT 

Adjusted 
Reward 
to CVaR 

Realised 
Excess 
Return 

Adjusted 
CSR PT 

Adjusted 
Reward 
to CVaR Factor 

0.99 -0.1166 -0.5371 3.2105 -2.7905 -0.0362 -0.0880 1.6783 -0.3654 
0.95 -0.1121 -0.4957 3.1616 -2.5783 -0.0291 -0.0737 1.7066 -0.2811 
0.90 -0.1065 -0.4457 3.0049 -2.3212 -0.0401 -0.0982 1.2276 -0.4228 
0.80 -0.0946 -0.3518 2.6077 -1.8326 N/A N/A N/A N/A 
0.70 -0.0814 -0.2645 2.1826 -1.3683 N/A N/A N/A N/A 
0.60 -0.0651 -0.1806 1.7732 -0.9056 N/A N/A N/A N/A 
0.50 -0.0283 -0.0741 1.6500 -0.2772 N/A N/A N/A N/A 

Panel B: 95% Confidence Level 

t-Distribution                                        Normal Distribution 
CVaR Realised 

Excess 
Return 

Adjusted 
CSR PT 

Adjusted 
Reward 
to CVaR 

Realised 
Excess 
Return 

Adjusted 
CSR PT 

Adjusted 
Reward 
to CVaR Factor 

0.99 -0.1412 -0.8025 3.6583 -4.1322 -0.0969 -0.3686 2.6799 -1.9208 
0.95 -0.1412 -0.8025 3.6583 -4.1322 -0.0928 -0.3387 2.5447 -1.7638 
0.90 -0.1366 -0.7482 3.5458 -3.8598 -0.0875 -0.3024 2.3711 -1.5713 
0.80 -0.1227 -0.5973 3.2863 -3.0970 -0.0758 -0.2324 2.0056 -1.1938 
0.70 -0.1082 -0.4606 3.0684 -2.3977 -0.0608 -0.1625 1.7150 -0.8028 
0.60 -0.0926 -0.3375 2.5474 -1.7572 N/A N/A N/A N/A 
0.50 -0.0744 -0.2250 1.9736 -1.1531 N/A N/A N/A N/A 

Panel C: 90% Confidence Level 
t-Distribution                                         Normal Distribution 

CVaR Realised 
Excess 
Return 

Adjusted 
CSR PT 

Adjusted 
Reward 
to CVaR 

Realised 
Excess 
Return 

Adjusted 
CSR PT 

Adjusted 
Reward 
to CVaR Factor 

0.99 -0.1412 -0.8025 3.6583 -4.1322 -0.1240 -0.6112 3.3031 -3.1677 
0.95 -0.1412 -0.8025 3.6583 -4.1322 -0.1194 -0.5645 3.2456 -2.9301 
0.90 -0.1412 -0.8025 3.6583 -4.1322 -0.1135 -0.5082 3.1765 -2.6428 
0.80 -0.1412 -0.8025 3.6583 -4.1322 -0.1013 -0.4029 2.8317 -2.0994 
0.70 -0.1270 -0.6416 3.3398 -3.3222 -0.0880 -0.3060 2.3931 -1.5906 
0.60 -0.1099 -0.4758 3.1313 -2.4765 -0.0725 -0.2154 1.9167 -1.1000 
0.50 -0.0914 -0.3292 2.5130 -1.7136 -0.0449 -0.1096 1.6752 -0.4938 
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Table 5.3.8 Effects on CVaR-Constrained SR-BL Portfolio Performance Evaluation 
(Nov 98) 

This table reports CVaR-constrained BL portfolio performance results including realised 

return, CSR, PT and reward to CVaR ratio in August 1998. The standard deviation is 

estimated by a conditional covariance matrix of DCC, EWMA and RW50 models. CVaR is 

estimated by the parametric method in the optimisation model with assumption of normal 

distribution and t-distribution at a confidence level of 99%. The CVaR constraint ( 0CVaR ) is 

set to be equal to the scaling factor 0.99 multiplied by the estimated CVaR of the implied BL 

portfolio in the corresponding period.  

Panel A: 99% Confidence Level 

t-Distribution                                         Normal Distribution 
CVaR 

Realised 
Return CSR PT 

Reward 
to CVaR 

Realised 
Return CSR PT 

Reward 
to 

CVaR Factor 
0.99 0.0444 0.9132 1.5992 0.5213 0.0262 0.9685 1.2714 0.5708 
0.95 0.0444 0.9132 1.5759 0.5213 0.0242 0.9338 1.3167 0.5394 
0.90 0.0445 0.9141 1.5397 0.5220 0.0202 0.8088 1.4906 0.4357 
0.80 0.0407 0.9401 1.4123 0.5449 N/A N/A N/A N/A 
0.70 0.0367 0.9691 1.3101 0.5714 N/A N/A N/A N/A 
0.60 0.0322 0.9930 1.2498 0.5938 N/A N/A N/A N/A 
0.50 0.0260 0.9664 1.2752 0.5689 N/A N/A N/A N/A 

         Panel B: 95% Confidence Level 

t-Distribution                                        Normal Distribution 
CVaR 

Realised 
Return CSR PT 

Reward 
to CVaR 

Realised 
Return CSR PT 

Reward 
to 

CVaR Factor 
0.99 0.0444 0.9132 1.5992 0.5213 0.0415 0.9344 1.4383 0.5399 
0.95 0.0444 0.9132 1.5992 0.5213 0.0402 0.9436 1.3977 0.5481 
0.90 0.0444 0.9132 1.5992 0.5213 0.0386 0.9560 1.3423 0.5593 
0.80 0.0444 0.9132 1.5992 0.5213 0.0351 0.9794 1.2873 0.5809 
0.70 0.0444 0.9131 1.5411 0.5211 0.0312 0.9948 1.2394 0.5956 
0.60 0.0399 0.9461 1.3899 0.5503 N/A N/A N/A N/A 
0.50 0.0345 0.9832 1.2793 0.5845 N/A N/A N/A N/A 

         Panel C: 90% Confidence Level 

t-Distribution                                         Normal Distribution 
CVaR 

Realised 
Return CSR PT 

Reward 
to CVaR 

Realised 
Return CSR PT 

Reward 
to 

CVaR Factor 
0.99 0.0444 0.9132 1.5992 0.5213 0.0444 0.9132 1.5992 0.5213 
0.95 0.0444 0.9132 1.5992 0.5213 0.0444 0.9132 1.5992 0.5213 
0.90 0.0444 0.9132 1.5992 0.5213 0.0444 0.9132 1.5905 0.5213 
0.80 0.0444 0.9132 1.5992 0.5213 0.0428 0.9261 1.4762 0.5325 
0.70 0.0444 0.9132 1.5992 0.5213 0.0386 0.9557 1.3429 0.5591 
0.60 0.0444 0.9132 1.5486 0.5213 0.0341 0.9855 1.2741 0.5867 
0.50 0.0394 0.9502 1.3726 0.5540 0.0285 0.9897 1.2452 0.5907 
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Table 5.3.9 Effects on CVaR-Constrained BL Portfolio Performance in Multiple Periods (Nov 94-May 10) 

This table shows realised CVaR-constrained BL portfolio performance in the period November 1994 to May 2010. The conditional covariance 

matrix applied to the portfolio construction is the DCC model. Return is the average realised excess return, risk is the standard deviation, 

Sharpe Ratio is the average excess realised return divided by the standard deviation. Information Ratio is the average active return divided by 

the standard deviation of active return. Reward to VaR ratio and Reward to CVaR ratio evaluate the excess return per unit of tail risk on the 

empirical distribution. In the construction of the portfolio, The CVaR constraint ( 0CVaR ) is set to be equal to the scaling factor k  multiplied by 

the estimated CVaR of the implied BL portfolio. The scaling factor k  is called CVaR factor.  

Panel A: Normal Distribution (Nov 94 - May 10)           

CVaR 
Factor Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical  
CVaR 

Reward to 
VaR 

Reward to 
CVaR 

 99% Confidence Level: 
        0.99 0.0133 0.0690 1.2940 13.4657 0.1921 0.2557 0.1895 0.2278 0.0700 0.0582 

0.95 0.0131 0.0676 1.3657 13.9287 0.1936 0.2576 0.1835 0.2211 0.0713 0.0592 
0.90 0.0127 0.0654 1.3945 14.0568 0.1944 0.2590 0.1760 0.2126 0.0723 0.0598 
0.80 0.0116 0.0601 1.3165 13.1659 0.1932 0.2580 0.1611 0.1956 0.0721 0.0593 
0.70 0.0101 0.0540 1.1860 12.2390 0.1873 0.2474 0.1459 0.1782 0.0693 0.0568 
0.60 0.0079 0.0476 1.0575 11.3082 0.1650 0.2056 0.1324 0.1599 0.0594 0.0492 
0.50 0.0060 0.0415 0.8347 9.8482 0.1440 0.1583 0.1215 0.1399 0.0493 0.0428 

 95% Confidence Level: 
        0.99 0.0140 0.0757 1.0567 11.9643 0.1850 0.2398 0.2241 0.2659 0.0625 0.0527 

0.95 0.0139 0.0750 1.0457 11.9473 0.1849 0.2411 0.2219 0.2617 0.0625 0.0530 
0.90 0.0137 0.0739 1.0472 12.0392 0.1854 0.2433 0.2154 0.2566 0.0636 0.0534 
0.80 0.0134 0.0707 1.1906 12.7840 0.1902 0.2526 0.1977 0.2369 0.0680 0.0568 
0.70 0.0128 0.0660 1.3818 13.9654 0.1943 0.2588 0.1786 0.2151 0.0719 0.0596 
0.60 0.0115 0.0594 1.3642 13.4418 0.1936 0.2575 0.1588 0.1928 0.0724 0.0596 
0.50 0.0091 0.0514 1.2047 12.1321 0.1766 0.2272 0.1389 0.1697 0.0654 0.0535 

90% Confidence Level: 
        0.99 0.0145 0.0793 1.1465 12.5640 0.1831 0.2317 0.2241 0.2864 0.0647 0.0507 

0.95 0.0144 0.0783 1.1172 12.3226 0.1840 0.2342 0.2241 0.2811 0.0643 0.0513 
0.90 0.0142 0.0772 1.0865 12.1161 0.1846 0.2368 0.2241 0.2746 0.0636 0.0519 
0.80 0.0139 0.0750 1.0450 11.9517 0.1848 0.2410 0.2221 0.2618 0.0624 0.0529 
0.70 0.0135 0.0718 1.1340 12.4662 0.1885 0.2495 0.2037 0.2436 0.0664 0.0555 
0.60 0.0130 0.0672 1.4957 14.8471 0.1940 0.2569 0.1808 0.2176 0.0721 0.0599 
0.50 0.0114 0.0591 1.4048 13.6892 0.1931 0.2559 0.1575 0.1912 0.0724 0.0596 
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Table 5.3.9 (continued) 

Panel B: t-Distribution (Nov 94 - May 10)               
CVaR 
Factor  Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward 
to CVaR 

 99% Confidence Level:  
        0.99 0.0058 0.0411 0.7205 9.2884 0.1409 0.1562 0.1209 0.1393 0.0479 0.0415 

0.95 0.0055 0.0398 0.6663 9.0208 0.1375 0.1472 0.1186 0.1350 0.0462 0.0406 
0.90 0.0053 0.0387 0.5530 8.3054 0.1375 0.1445 0.1142 0.1293 0.0466 0.0412 
0.80 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
0.70 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 95% Confidence Level:  
        0.99 0.0118 0.0609 1.2966 13.1027 0.1940 0.2596 0.1638 0.1988 0.0722 0.0595 

0.95 0.0114 0.0591 1.2656 12.8286 0.1934 0.2589 0.1588 0.1932 0.0719 0.0591 
0.90 0.0109 0.0565 1.2071 12.4541 0.1923 0.2569 0.1526 0.1860 0.0713 0.0585 
0.80 0.0091 0.0515 1.1090 11.6381 0.1769 0.2303 0.1400 0.1713 0.0651 0.0532 
0.70 0.0073 0.0462 0.9837 10.8418 0.1583 0.1941 0.1300 0.1559 0.0562 0.0469 
0.60 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

90% Confidence Level: 
         0.99 0.0135 0.0710 1.1660 12.6676 0.1894 0.2514 0.1995 0.2391 0.0674 0.0563 

0.95 0.0133 0.0698 1.2374 13.0856 0.1911 0.2542 0.1932 0.2319 0.0691 0.0575 
0.90 0.0132 0.0681 1.3608 13.9065 0.1931 0.2569 0.1855 0.2232 0.0709 0.0590 
0.80 0.0123 0.0631 1.3642 13.7105 0.1945 0.2595 0.1694 0.2051 0.0724 0.0599 
0.70 0.0110 0.0570 1.2672 12.8013 0.1930 0.2569 0.1533 0.1867 0.0718 0.0589 
0.60 0.0089 0.0504 1.1286 11.7628 0.1761 0.2267 0.1370 0.1676 0.0648 0.0529 
0.50 0.0066 0.0439 0.9146 10.2978 0.1507 0.1752 0.1254 0.1470 0.0527 0.0450 
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Table 5.3.10 Effects on CVaR-Constrained BL Portfolio Performance in Sub-period (Aug 98-May 10) 

This table shows realised CVaR-constrained BL portfolio performance in the sub-period August 1998 to May 2010. The conditional covariance 

matrix applied to the portfolio construction is the DCC model. Return is the average realised excess return, risk is the standard deviation, 

Sharpe Ratio is the average excess realised return divided by the standard deviation. Information Ratio is the average active return divided by 

the standard deviation of active return. Reward to VaR ratio and Reward to CVaR ratio evaluate the excess return per unit of tail risk on the 

empirical distribution. In the construction of the portfolio, The CVaR constraint ( 0CVaR ) is set to be equal to the scaling factor k  multiplied by 

the estimated CVaR of the implied BL portfolio. The scaling factor k  is called CVaR factor. 

Panel A: Normal Distribution (Aug 98 - May 10)             
CVaR 
Factor Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical  
CVaR 

Reward to 
VaR 

Reward to 
CVaR 

 99% Confidence Level: 

        0.99 0.0105 0.0719 1.2701 14.0619 0.1468 0.2311 0.2183 0.2291 0.0483 0.0460 
0.95 0.0104 0.0703 1.3434 14.6084 0.1476 0.2332 0.2120 0.2223 0.0489 0.0467 
0.90 0.0100 0.0678 1.3604 14.8106 0.1472 0.2346 0.2039 0.2137 0.0489 0.0467 
0.80 0.0088 0.0615 1.1980 13.8126 0.1439 0.2363 0.1879 0.1964 0.0471 0.0450 
0.70 0.0076 0.0551 1.0379 12.8324 0.1372 0.2297 0.1717 0.1785 0.0440 0.0423 
0.60 0.0055 0.0485 0.9027 11.8704 0.1137 0.1912 0.1552 0.1596 0.0355 0.0345 
0.50 0.0041 0.0423 0.6693 10.1693 0.0971 0.1549 0.1383 0.1389 0.0297 0.0296 

 95% Confidence Level: 

        0.99 0.0113 0.0795 1.0048 12.1774 0.1418 0.2146 0.2612 0.2642 0.0431 0.0427 
0.95 0.0111 0.0786 0.9908 12.2146 0.1409 0.2152 0.2576 0.2599 0.0430 0.0426 
0.90 0.0109 0.0773 0.9913 12.3731 0.1407 0.2171 0.2482 0.2571 0.0438 0.0423 
0.80 0.0107 0.0737 1.1557 13.2933 0.1453 0.2277 0.2276 0.2380 0.0470 0.0450 
0.70 0.0101 0.0684 1.3499 14.7139 0.1472 0.2341 0.2069 0.2159 0.0487 0.0466 
0.60 0.0088 0.0607 1.2429 14.1445 0.1442 0.2365 0.1857 0.1933 0.0471 0.0453 
0.50 0.0065 0.0523 1.0470 12.7664 0.1243 0.2089 0.1644 0.1696 0.0395 0.0383 

90% Confidence Level: 

        0.99 0.0119 0.0839 1.1114 12.5543 0.1421 0.2076 0.2643 0.2921 0.0451 0.0408 
0.95 0.0118 0.0828 1.0777 12.3649 0.1426 0.2100 0.2635 0.2850 0.0448 0.0414 
0.90 0.0116 0.0813 1.0417 12.2297 0.1425 0.2122 0.2625 0.2761 0.0441 0.0420 
0.80 0.0111 0.0785 0.9901 12.2195 0.1408 0.2151 0.2579 0.2600 0.0429 0.0425 
0.70 0.0107 0.0749 1.0916 12.9263 0.1434 0.2239 0.2344 0.2445 0.0458 0.0439 
0.60 0.0103 0.0698 1.4901 15.6753 0.1475 0.2321 0.2095 0.2182 0.0491 0.0472 
0.50 0.0087 0.0603 1.2853 14.4462 0.1435 0.2349 0.1845 0.1914 0.0469 0.0452 
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Table 5.3.10 (continued) 

Panel B: t-Distribution (Aug 98 - May 10)               

CVaR 
Factor  Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward 
to CVaR 

 99% Confidence Level:  
        0.99 0.0041 0.0421 0.5516 9.4172 0.0962 0.1564 0.1373 0.1386 0.0295 0.0293 

0.95 0.0038 0.0407 0.5075 9.2533 0.0929 0.1482 0.1338 0.1339 0.0283 0.0283 
0.90 0.0037 0.0397 0.3942 8.3715 0.0933 0.1464 0.1272 0.1289 0.0291 0.0288 
0.80 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 95% Confidence Level:  
         0.99 0.0091 0.0625 1.1884 13.7405 0.1450 0.2375 0.1907 0.1998 0.0475 0.0454 

0.95 0.0087 0.0604 1.1371 13.4229 0.1441 0.2381 0.1854 0.1939 0.0470 0.0449 
0.90 0.0083 0.0578 1.0693 13.0334 0.1430 0.2381 0.1787 0.1866 0.0462 0.0443 
0.80 0.0065 0.0525 0.9588 12.1954 0.1239 0.2106 0.1652 0.1715 0.0394 0.0379 
0.70 0.0051 0.0471 0.8200 11.2611 0.1086 0.1837 0.1516 0.1556 0.0338 0.0329 
0.60 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

90% Confidence Level: 
         0.99 0.0107 0.0741 1.1291 13.1419 0.1446 0.2264 0.2293 0.2405 0.0467 0.0446 

0.95 0.0106 0.0727 1.2086 13.6368 0.1461 0.2296 0.2225 0.2332 0.0477 0.0456 
0.90 0.0104 0.0709 1.3411 14.5805 0.1473 0.2323 0.2140 0.2243 0.0488 0.0465 
0.80 0.0095 0.0650 1.3005 14.4668 0.1460 0.2356 0.1969 0.2059 0.0482 0.0461 
0.70 0.0084 0.0582 1.1284 13.4193 0.1437 0.2380 0.1797 0.1871 0.0465 0.0447 
0.60 0.0063 0.0513 0.9764 12.3625 0.1223 0.2068 0.1622 0.1675 0.0386 0.0374 
0.50 0.0044 0.0447 0.7598 10.7040 0.0995 0.1646 0.1443 0.1463 0.0308 0.0304 
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Figure 5.1.1 Monthly Volatility of the Benchmark Portfolio 

This figure plots the time-varying standard deviation for the benchmark portfolio from 

January 1994 to May 2010. The time-varying standard deviation is calculated by the 

DCC model (blue line), the EWMA model (red line), the RW method (green line) with a 

window length of 50; the RW method (purple line) with a window length of 100. Note 

that a simple simulation technique is used to estimate volatilities for 50 missing values 

and 100 missing values in the RW method. For a window length of M ,
2

1  is the 

sample historical variance. 

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Figure 5.1.2 Time-Varying Risk Aversion Coefficient 

This figure plots the time-varying risk aversion coefficient from March 1998 to May 

2010. The risk aversion coefficient is calculated by the monthly world risk premium 

divided by monthly time-varying market variance. The monthly world risk premium is 

set at 0.29% (=3.5%/12). The time-varying standard deviation is calculated by the DCC 

model (blue line), the EWMA model (red line), and the RW method (green line) with a 

window length of 50. To avoid the noise from the simulated data of conditional variance 

in the RW method and to make a comparable analysis, I report the risk aversion 

coefficient from the 51st period (March 1998). 
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Figure 5.1.3 Accumulative Returns of the Benchmark Portfolio and the Momentum 

  Portfolio 

This figure plots the accumulative returns of the benchmark portfolio and the 

momentum portfolio from August 1998 to May 2010. Based on the time-varying 

standard deviation, which is estimated by the DCC model (blue line), the EWMA model 

(red line), and the RW method (green line) with a window length of 50, the momentum 

portfolio is constructed by the method of Fabozzi et al. (2006). 
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Figure 5.1.4 Comparison of Weights in August 1998 

This figure plots the weights of each asset in the benchmark portfolio, the momentum 

portfolio and the implied BL portfolio in August 1998. 

 

 

Figure 5.1.5  Comparison of Weights in November 1998 

This figure plots the weights of each asset in the benchmark portfolio, the momentum 

portfolio and the implied BL portfolio in November 1998. 
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Figure 5.1.6 (a) 

 
Figure 5.1.6 (b) Figure 5.1.6 (c) 

Figure 5.1.6 The Unconstrained Portfolio Frontier 

This figure plots unconstrained portfolio frontier for three different optimisation models. Point A in Figure 5.1.6 (a) is the tangent portfolio 
that has the highest Sharpe Ratio (SR). Point B is the minimum variance portfolio. The curve above point B is the efficient frontier in the 
SR-BL model. Point C in Figure 5.1.6 (b) is the tangent portfolio that has the highest reward to VaR ratio, and Point D is the minimum 
VaR portfolio; the curve above Point D is the efficient frontier in the MVaR-BL model. Point E in Figure 5.1.6 (c) is the tangent portfolio 
that has the highest reward to CVaR ratio and Point F is the minimum CVaR portfolio; the curve above Point F is the efficient frontier in 
the MCVaR-BL model. Note that all of results are based on excess return, so the starting point of the tangent line is zero.  
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Figure 5.2.1 (a) Figure 5.2.1 (b) Figure 5.2.1 (c) 

 
Figure 5.2.1 The VaR-Constrained BL Portfolio Frontier  

This figure plots the VaR-constrained BL portfolio frontier with different distribution assumptions (normal distribution and t-distribution) 

and confidence levels (99%, 95%, and 90%) when scaling VaR factor k  is equal to 0.99. Note that the constraint is equal to 0VaRk  , 

where 0VaR  is the estimated VaR of the implied BL portfolio. 0VaR  is equal to -10.35% in August 1998. The light blue line represents the 

VaR constraints in t-distribution, the green line represents the VaR constraints in normal distribution. The black point M is the minimum 
variance portfolio, and the red square point T is the tangent portfolio that has the maximum SR. The left direction of the black arrow 
means the VaR constraints tighten as the VaR constraints line move to left. 
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 Figure 5.3.1 (a)  Figure 5.3.1 (b) Figure 5.3.1 (c)  

 

Figure 5.3.1 Comparison between VaR Constraints and CVaR Constraints on the BL Portfolio Frontier (Normal Distribution) 

This figure plots the VaR constraints and the CVaR constraints on the BL portfolio frontier with a normality assumption at different 

confidence levels (99%, 95%, 90%) when scaling CVaR factor k  is equal to 0.99. Note that the constraint is equal to 0CVaRk  , where 

0CVaR  is the estimated CVaR of the implied BL portfolio. 0CVaR  is equal to -11.93% in August 1998. The green line represents the VaR 

constraints, and the purple line represents the CVaR constraints. The black point M is the minimum variance portfolio, and the red square 
point T is the tangent portfolio that has the maximum SR. The left direction of the black arrow means the VaR constraints and CVaR 
constraints tighten as constraints lines move to left. 
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Figure 5.3.2 (a) Figure 5.3.2 (b) Figure 5.3.2 (c) 

 

Figure 5.3.2 Comparison between VaR Constraints and CVaR Constraints on the BL Portfolio Frontier (t-Distribution) 

This figure plots the VaR constraints and CVaR constraints on the BL portfolio frontier with a t distribution assumption at different 

confidence levels (99%, 95%, 90%) when scaling CVaR factor k  is equal to 0.99. Note that the constraint is equal to 0CVaRk  , where 

0CVaR  is the estimated CVaR of the implied BL portfolio. 0CVaR  is equal to -11.93% in August 1998. The light blue line represents the 

VaR constraints, and the purple line represents the CVaR constraints. The black point M is the minimum variance portfolio, and the red 
square point T is the tangent portfolio that has the maximum SR. The left direction of the black arrow means the VaR constraints and the 
CVaR constraints tighten as constraints lines move to left.
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Appendix 5.1.1 Risk Aversion Coefficient and Implied Equilibrium Return in 
November 1998 

This appendix reports the risk aversion coefficient   (Panel A) and implied equilibrium 

return of each index π  (Panel B) in August 1998. 
2

)()(

M

fM rErE





 , the numerator is 

market risk premium and the denominator is market variance. Hwπ  , where   is 

the risk aversion coefficient, H  is the conditional covariance matrix in the use of the 
RW model with a window length of 50, the EWMA model and the  DCC model, w  is 
the market capitalisation weight of each index.  

Panel A: Risk Aversion Coefficient 
  

 
DCC EWMA RW50 

Risk Aversion Coefficient 0.8949 1.1774 2.0794 

    Panel B: Implied Equilibrium Return 
  

 
DCC EWMA RW50 

UK BASIC MATS  0.0027 0.0018 0.0020 

UK CONSUMER GDS  0.0025 0.0011 0.0015 

UK CONSUMER SVS  0.0017 0.0014 0.0016 

UK FINANCIALS  0.0032 0.0026 0.0027 

UK HEALTH CARE  0.0015 0.0017 0.0018 

UK TECHNOLOGY  0.0039 0.0010 0.0019 

UK INDUSTRIALS  0.0030 0.0022 0.0018 

UK OIL & GAS  0.0023 0.0020 0.0022 

UK TELECOM  0.0020 0.0017 0.0014 

UK UTILITIES  0.0011 0.0009 0.0012 

USA BASIC MATS  0.0026 0.0026 0.0028 

USA CONSUMER GDS  0.0040 0.0035 0.0033 

USA CONSUMER SVS  0.0031 0.0031 0.0029 

USA FINANCIALS  0.0048 0.0044 0.0042 

USA HEALTH CARE  0.0023 0.0029 0.0028 

USA INDUSTRIALS  0.0032 0.0031 0.0032 

USA OIL & GAS  0.0019 0.0019 0.0022 

USA TECHNOLOGY  0.0041 0.0042 0.0041 

USA TELECOM  0.0023 0.0023 0.0022 

USA UTILITIES  0.0011 0.0006 0.0008 

JAPAN BASIC MATS  0.0029 0.0023 0.0023 

JAPAN CONSUMER GDS  0.0017 0.0024 0.0027 

JAPAN CONSUMER SVS  0.0015 0.0020 0.0023 

JAPAN FINANCIALS  0.0039 0.0044 0.0043 

JAPAN HEALTH CARE  0.0011 0.0019 0.0022 

JAPAN INDUSTRIALS  0.0020 0.0019 0.0022 

JAPAN OIL & GAS  0.0023 0.0028 0.0031 

JAPAN TECHNOLOGY  0.0032 0.0031 0.0034 

JAPAN TELECOM  0.0017 0.0021 0.0025 

JAPAN UTILITIES  0.0010 0.0011 0.0014 
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Appendix 5.1.2 Denominators in Weights Solutions (Nov 94 – May 10) 

 
This appendix shows the time-varying denominators in the weights calculation of the 
implied BL portfolio and the SR-BL portfolio. Weights in the unconstrained implied BL 

portfolio are calculated by tBLt
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Appendix 5.1.3 Weights in the Traditional Mean-Variance Portfolio  
(Nov 94 – May 10) 

 
This table reports the weights allocated to each asset in the use of traditional 
mean-variance model with short-selling and without short-selling in the period 
from November 1994 to May 2010. 
 

 
Short Non-Short 

UK BASIC MATS  0.3258 0 

UK CONSUMER GDS  0.5419 0 

UK CONSUMER SVS  -0.6925 0 

UK FINANCIALS  -0.4961 0 

UK HEALTH CARE  0.0405 0 

UK TECHNOLOGY  -0.5110 0 

UK INDUSTRIALS  -0.1783 0 

UK OIL & GAS  -0.0733 0 

UK TELECOM  0.1016 0 

UK UTILITIES  0.6328 0 

USA BASIC MATS  -0.9184 0 

USA CONSUMER GDS  -0.7857 0 

USA CONSUMER SVS  1.3015 0 

USA FINANCIALS  -0.2253 0 

USA HEALTH CARE  1.1630 0.4796 

USA INDUSTRIALS  1.4963 0 

USA OIL & GAS  1.2291 0.4687 

USA TECHNOLOGY  0.4165 0.0517 

USA TELECOM  -1.0000 0 

USA UTILITIES  -0.4064 0 

JAPAN BASIC MATS  0.2738 0 

JAPAN CONSUMER GDS  0.1870 0 

JAPAN CONSUMER SVS  -0.2913 0 

JAPAN FINANCIALS  -0.7356 0 

JAPAN HEALTH CARE  0.2024 0 

JAPAN INDUSTRIALS  -0.0141 0 

JAPAN OIL & GAS  -0.3372 0 

JAPAN TECHNOLOGY  -0.2026 0 

JAPAN TELECOM  0.3094 0 

JAPAN UTILITIES  -0.3539 0 
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This table reports the average value of weights assigned in each index in the 
unconstrained implied BL portfolio and the SR-BL portfolio in the period from 
November 1994 to May 2010. An implied BL portfolio is constructed by reverse 
optimisation of the utility function. The SR-BL portfolio is constructed by achieving 
maximal SR in the optimisation problem. 
 

 
DCC EWMA RW50 

 
Implied  BL SR-BL  Implied  BL SR-BL  Implied  BL SR-BL  

UK BASIC MATS  0.0055 0.0045 0.0111 0.0135 0.0087 0.0092 

UK CONSUMER GDS  0.0092 0.0090 0.0115 0.0134 0.0120 0.0108 

UK CONSUMER SVS  0.0120 0.0162 0.0125 0.0158 0.0168 0.0161 

UK FINANCIALS  0.0390 0.0368 0.0429 0.0434 0.0384 0.0368 

UK HEALTH CARE  0.0322 0.0164 0.0338 0.0214 0.0358 0.0328 

UK TECHNOLOGY  0.0023 0.0046 0.0024 0.0037 0.0062 0.0065 

UK INDUSTRIALS  0.0179 0.0211 0.0225 0.0269 0.0232 0.0231 

UK OIL & GAS  0.0025 0.0009 0.0083 0.0106 0.0011 0.0021 

UK TELECOM  0.0167 0.0224 0.0156 0.0162 0.0188 0.0184 

UK UTILITIES  0.0067 -0.0086 0.0058 -0.0004 0.0097 0.0085 

USA BASIC MATS  0.0318 0.0289 0.0380 0.0411 0.0301 0.0297 

USA CONSUMER GDS  0.0385 0.0323 0.0430 0.0369 0.0384 0.0362 

USA CONSUMER SVS  0.0982 0.1088 0.0955 0.0949 0.0891 0.0878 

USA FINANCIALS  0.1212 0.1172 0.1262 0.1210 0.1203 0.1196 

USA HEALTH CARE  0.1249 0.1140 0.1253 0.1153 0.1268 0.1239 

USA INDUSTRIALS  0.0808 0.0828 0.0753 0.0736 0.0714 0.0697 

USA OIL & GAS  0.0510 0.0458 0.0544 0.0515 0.0494 0.0501 

USA TECHNOLOGY  0.1055 0.1162 0.1037 0.1060 0.1074 0.1076 

USA TELECOM  0.0331 0.0309 0.0245 0.0230 0.0279 0.0270 

USA UTILITIES  0.0405 0.0321 0.0366 0.0352 0.0402 0.0395 

JAPAN BASIC MATS  0.0115 0.0165 0.0068 0.0120 0.0124 0.0139 

JAPAN CONSUMER GDS  0.0149 0.0272 0.0196 0.0279 0.0213 0.0225 

JAPAN CONSUMER SVS  0.0263 0.0344 0.0214 0.0193 0.0189 0.0200 

JAPAN FINANCIALS  0.0341 0.0401 0.0333 0.0373 0.0353 0.0361 

JAPAN HEALTH CARE  0.0096 0.0071 0.0108 0.0075 0.0098 0.0108 

JAPAN INDUSTRIALS  0.0117 0.0204 0.0117 0.0194 0.0135 0.0158 

JAPAN OIL & GAS  -0.0006 -0.0052 -0.0002 -0.0012 0.0011 0.0020 

JAPAN TECHNOLOGY  0.0093 0.0172 0.0084 0.0146 0.0083 0.0100 

JAPAN TELECOM  0.0101 0.0175 0.0073 0.0057 0.0066 0.0083 

JAPAN UTILITIES  0.0036 -0.0074 0.0017 -0.0056 0.0044 0.0054 

Absolute Position Range 0.1255 0.1259 0.1263 0.1266 0.1257 0.1219 

 
  

Appendix 5.1.4 Average Value of Weights in the Unconstrained Implied BL 
Portfolio and the SR-BL Portfolio (Nov 94 – May 10) 
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This table reports standard deviation of weights assigned in each index in the 
unconstrained implied BL portfolio and the SR-BL portfolio in the period from 
November 1994 to May 2010. An implied BL portfolio is constructed by reverse 
optimisation of the utility function. The SR-BL portfolio is constructed by achieving 
maximal SR in the optimisation problem. 
 

 
DCC EWMA RW50 

 
Implied  BL SR-BL  Implied  BL SR-BL  Implied  BL SR-BL  

UK BASIC MATS  0.0772 0.1025 0.0701 0.0734 0.0438 0.0378 

UK CONSUMER GDS  0.0757 0.0963 0.0776 0.0891 0.0396 0.0344 

UK CONSUMER SVS  0.1023 0.1347 0.0960 0.1055 0.0546 0.0478 

UK FINANCIALS  0.0827 0.1184 0.0726 0.0804 0.0425 0.0365 

UK HEALTH CARE  0.1239 0.1577 0.1091 0.1183 0.0570 0.0495 

UK TECHNOLOGY  0.0444 0.0538 0.0439 0.0485 0.0224 0.0201 

UK INDUSTRIALS  0.0773 0.0969 0.0754 0.0875 0.0435 0.0370 

UK OIL & GAS  0.0901 0.1226 0.0812 0.0906 0.0447 0.0383 

UK TELECOM  0.0812 0.1108 0.0762 0.0866 0.0442 0.0381 

UK UTILITIES  0.1189 0.1543 0.1068 0.1130 0.0528 0.0478 

USA BASIC MATS  0.0831 0.1051 0.0772 0.0844 0.0465 0.0394 

USA CONSUMER GDS  0.0990 0.1257 0.0985 0.1036 0.0562 0.0488 

USA CONSUMER SVS  0.1039 0.1495 0.0949 0.1023 0.0569 0.0482 

USA FINANCIALS  0.0880 0.0945 0.0791 0.0751 0.0498 0.0439 

USA HEALTH CARE  0.1304 0.1451 0.1186 0.1122 0.0672 0.0565 

USA INDUSTRIALS  0.0958 0.1347 0.0884 0.0906 0.0537 0.0458 

USA OIL & GAS  0.1010 0.1227 0.0909 0.0926 0.0547 0.0480 

USA TECHNOLOGY  0.0724 0.1231 0.0720 0.0854 0.0480 0.0473 

USA TELECOM  0.0938 0.1243 0.0849 0.0966 0.0509 0.0434 

USA UTILITIES  0.1108 0.1340 0.1058 0.1156 0.0589 0.0517 

JAPAN BASIC MATS  0.0823 0.1133 0.0683 0.0743 0.0345 0.0319 

JAPAN CONSUMER GDS  0.0999 0.1390 0.0901 0.1029 0.0448 0.0409 

JAPAN CONSUMER SVS  0.1114 0.1552 0.1046 0.1179 0.0484 0.0441 

JAPAN FINANCIALS  0.0671 0.0908 0.0611 0.0693 0.0381 0.0365 

JAPAN HEALTH CARE  0.1133 0.1534 0.0957 0.1027 0.0483 0.0428 

JAPAN INDUSTRIALS  0.0895 0.1237 0.0768 0.0893 0.0402 0.0371 

JAPAN OIL & GAS  0.0603 0.0842 0.0532 0.0604 0.0271 0.0243 

JAPAN TECHNOLOGY  0.0626 0.0783 0.0629 0.0703 0.0321 0.0290 

JAPAN TELECOM  0.0714 0.0848 0.0724 0.0858 0.0375 0.0331 

JAPAN UTILITIES  0.1103 0.1400 0.0957 0.1066 0.0486 0.0429 

Average Standard Deviation 0.0907 0.1190 0.0833 0.0910 0.0462 0.0408 

 
 
 
  

Appendix 5.1.5 Standard Deviation of Weights in the Unconstrained Implied BL 
Portfolio and the SR-BL Portfolio (Nov 94 – May 10) 
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This table reports average value of weights allocated to each index in the 
unconstrained MVaR-BL portfolio in the period from November 1994 to May 2010. The 
weight in the MVaR-BL portfolio is the solution to the optimisation problem with the 
target of maximal expected excess return to VaR ratio. VaR is estimated by the 
parametric method with the assumption of normal distribution and t-distribution at the 
confidence level of 99%. 
 

 
Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  0.0102 0.0115 0.0085 0.0148 0.0052 0.0084 

UK CONSUMER GDS  0.0111 0.0115 0.0093 0.0103 0.0086 0.0083 

UK CONSUMER SVS  0.0132 0.0146 0.0183 0.0124 0.0142 0.0176 

UK FINANCIALS  0.0265 0.0365 0.0379 0.0314 0.0357 0.0372 

UK HEALTH CARE  0.0189 0.0257 0.0291 0.0300 0.0300 0.0279 

UK TECHNOLOGY  0.0025 -0.0003 0.0044 -0.0117 -0.0018 0.0035 

UK INDUSTRIALS  0.0231 0.0250 0.0212 0.0186 0.0237 0.0220 

UK OIL & GAS  -0.0022 0.0059 -0.0006 0.0039 0.0011 0.0000 

UK TELECOM  0.0203 0.0128 0.0177 0.0156 0.0105 0.0169 

UK UTILITIES  -0.0017 0.0119 0.0092 0.0079 0.0123 0.0098 

USA BASIC MATS  0.0245 0.0296 0.0243 0.0226 0.0261 0.0236 

USA CONSUMER GDS  0.0293 0.0316 0.0333 0.0289 0.0313 0.0318 

USA CONSUMER SVS  0.0928 0.0852 0.0874 0.0853 0.0877 0.0863 

USA FINANCIALS  0.1189 0.1281 0.1279 0.1240 0.1314 0.1281 

USA HEALTH CARE  0.1147 0.1230 0.1264 0.1235 0.1265 0.1264 

USA INDUSTRIALS  0.0718 0.0703 0.0685 0.0667 0.0695 0.0674 

USA OIL & GAS  0.0485 0.0582 0.0511 0.0524 0.0515 0.0524 

USA TECHNOLOGY  0.1113 0.1008 0.1088 0.1012 0.1010 0.1088 

USA TELECOM  0.0297 0.0219 0.0243 0.0272 0.0228 0.0237 

USA UTILITIES  0.0241 0.0393 0.0400 0.0342 0.0368 0.0412 

JAPAN BASIC MATS  0.0190 0.0144 0.0134 0.0196 0.0143 0.0151 

JAPAN CONSUMER GDS  0.0352 0.0249 0.0266 0.0287 0.0247 0.0266 

JAPAN CONSUMER SVS  0.0251 0.0196 0.0183 0.0227 0.0224 0.0189 

JAPAN FINANCIALS  0.0403 0.0372 0.0381 0.0442 0.0370 0.0387 

JAPAN HEALTH CARE  0.0114 0.0126 0.0119 0.0171 0.0167 0.0128 

JAPAN INDUSTRIALS  0.0280 0.0173 0.0164 0.0210 0.0168 0.0182 

JAPAN OIL & GAS  -0.0004 -0.0004 0.0014 0.0074 -0.0001 0.0011 

JAPAN TECHNOLOGY  0.0252 0.0090 0.0105 0.0118 0.0099 0.0100 

JAPAN TELECOM  0.0228 0.0119 0.0083 0.0146 0.0171 0.0081 

JAPAN UTILITIES  0.0057 0.0105 0.0083 0.0137 0.0171 0.0093 

Absolute Position Range 0.1211 0.1285 0.1285 0.1357 0.1332 0.1282 

 
  

Appendix 5.1.6 Average Value of Weights in the Unconstrained MVaR-BL 
Portfolio (Nov 94 – May 10) 
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This table reports standard deviation of weights allocated to each index in the 
unconstrained MVaR-BL portfolio in the period from November 1994 to May 
2010. The weight in the MVaR-BL portfolio is the solution to the optimisation 
problem with the target of maximal expected excess return to VaR ratio. VaR is 
estimated by the parametric method with the assumption of normal distribution 
and t-distribution at the confidence level of 99%. 
 

 
Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  0.0854 0.1123 0.0301 0.0898 0.1303 0.0247 

UK CONSUMER GDS  0.0879 0.0704 0.0328 0.0771 0.0718 0.0272 

UK CONSUMER SVS  0.0730 0.0613 0.0274 0.0605 0.0519 0.0207 

UK FINANCIALS  0.0900 0.0700 0.0397 0.0809 0.0614 0.0301 

UK HEALTH CARE  0.1026 0.0762 0.0333 0.1197 0.0621 0.0251 

UK TECHNOLOGY  0.1027 0.0743 0.0241 0.1550 0.0708 0.0252 

UK INDUSTRIALS  0.0789 0.0827 0.0317 0.0667 0.0784 0.0233 

UK OIL & GAS  0.0873 0.1035 0.0367 0.0937 0.1125 0.0285 

UK TELECOM  0.1131 0.0939 0.0369 0.1014 0.0856 0.0304 

UK UTILITIES  0.0919 0.0642 0.0299 0.0959 0.0610 0.0233 

USA BASIC MATS  0.0862 0.0775 0.0271 0.0750 0.0724 0.0222 

USA CONSUMER GDS  0.0818 0.0583 0.0371 0.0740 0.0568 0.0319 

USA CONSUMER SVS  0.0853 0.0613 0.0284 0.0854 0.0510 0.0232 

USA FINANCIALS  0.1067 0.0669 0.0391 0.0994 0.0720 0.0362 

USA HEALTH CARE  0.1086 0.0712 0.0440 0.1036 0.0660 0.0396 

USA INDUSTRIALS  0.0621 0.0448 0.0251 0.0588 0.0379 0.0200 

USA OIL & GAS  0.1016 0.0894 0.0432 0.0933 0.1000 0.0337 

USA TECHNOLOGY  0.1169 0.0897 0.0424 0.1328 0.0804 0.0405 

USA TELECOM  0.0893 0.0717 0.0337 0.0759 0.0621 0.0268 

USA UTILITIES  0.1213 0.0760 0.0300 0.1100 0.0683 0.0257 

JAPAN BASIC MATS  0.0913 0.0493 0.0285 0.0899 0.0491 0.0240 

JAPAN CONSUMER GDS  0.1129 0.0579 0.0241 0.1107 0.0514 0.0212 

JAPAN CONSUMER SVS  0.0701 0.0676 0.0260 0.0673 0.0731 0.0221 

JAPAN FINANCIALS  0.0986 0.0823 0.0386 0.1054 0.0797 0.0381 

JAPAN HEALTH CARE  0.0793 0.0846 0.0268 0.0782 0.0749 0.0213 

JAPAN INDUSTRIALS  0.0993 0.0613 0.0316 0.1115 0.0574 0.0258 

JAPAN OIL & GAS  0.1168 0.0622 0.0287 0.1219 0.0666 0.0287 

JAPAN TECHNOLOGY  0.1296 0.0842 0.0331 0.1587 0.0815 0.0320 

JAPAN TELECOM  0.0946 0.1063 0.0366 0.1011 0.1064 0.0351 

JAPAN UTILITIES  0.0882 0.1051 0.0352 0.0983 0.0951 0.0256 

Average Standard Deviation 0.0951 0.0759 0.0327 0.0964 0.0729 0.0277 

 
 
  

Appendix 5.1.7 Standard Deviation of Weights in the Unconstrained MVaR-BL 
Portfolio (Nov 94 – May 10) 
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This table shows average value of weights in each index and average standard 
deviation in the unconstrained MVaR-BL portfolio in the period from November 1994 to 
May 2010. Note that the covariance matrix applied to the MVaR-BL model is the DCC 
covariance matrix in this table.  
 

 
Normal Distribution t-Distribution 

 
0.99 0.95 0.90 0.99 0.95 0.90 

UK BASIC MATS  0.0102 0.0070 0.0064 0.0148 0.0095 0.0072 

UK CONSUMER GDS  0.0111 0.0131 0.0142 0.0103 0.0113 0.0136 

UK CONSUMER SVS  0.0132 0.0129 0.0127 0.0124 0.0130 0.0125 

UK FINANCIALS  0.0265 0.0293 0.0305 0.0314 0.0265 0.0298 

UK HEALTH CARE  0.0189 0.0195 0.0205 0.0300 0.0188 0.0198 

UK TECHNOLOGY  0.0025 0.0041 0.0031 -0.0117 0.0015 0.0039 

UK INDUSTRIALS  0.0231 0.0210 0.0207 0.0186 0.0209 0.0205 

UK OIL & GAS  -0.0022 -0.0036 -0.0039 0.0039 -0.0029 -0.0035 

UK TELECOM  0.0203 0.0233 0.0239 0.0156 0.0209 0.0229 

UK UTILITIES  -0.0017 -0.0025 -0.0022 0.0079 -0.0027 -0.0013 

USA BASIC MATS  0.0245 0.0274 0.0289 0.0226 0.0258 0.0284 

USA CONSUMER GDS  0.0293 0.0340 0.0358 0.0289 0.0295 0.0344 

USA CONSUMER SVS  0.0928 0.0975 0.0988 0.0853 0.0943 0.0977 

USA FINANCIALS  0.1189 0.1224 0.1218 0.1240 0.1193 0.1221 

USA HEALTH CARE  0.1147 0.1178 0.1203 0.1235 0.1159 0.1194 

USA INDUSTRIALS  0.0718 0.0771 0.0770 0.0667 0.0729 0.0765 

USA OIL & GAS  0.0485 0.0493 0.0486 0.0524 0.0487 0.0495 

USA TECHNOLOGY  0.1113 0.1143 0.1144 0.1012 0.1122 0.1144 

USA TELECOM  0.0297 0.0323 0.0345 0.0272 0.0302 0.0333 

USA UTILITIES  0.0241 0.0254 0.0258 0.0342 0.0243 0.0262 

JAPAN BASIC MATS  0.0190 0.0152 0.0152 0.0196 0.0191 0.0148 

JAPAN CONSUMER GDS  0.0352 0.0330 0.0312 0.0287 0.0354 0.0318 

JAPAN CONSUMER SVS  0.0251 0.0225 0.0222 0.0227 0.0249 0.0219 

JAPAN FINANCIALS  0.0403 0.0369 0.0362 0.0442 0.0413 0.0361 

JAPAN HEALTH CARE  0.0114 0.0099 0.0079 0.0171 0.0109 0.0087 

JAPAN INDUSTRIALS  0.0280 0.0246 0.0231 0.0210 0.0277 0.0238 

JAPAN OIL & GAS  -0.0004 -0.0060 -0.0068 0.0074 -0.0012 -0.0059 

JAPAN TECHNOLOGY  0.0252 0.0196 0.0183 0.0118 0.0247 0.0192 

JAPAN TELECOM  0.0228 0.0191 0.0176 0.0146 0.0227 0.0186 

JAPAN UTILITIES  0.0057 0.0036 0.0033 0.0137 0.0047 0.0039 

Absolute Position Range 0.1211 0.1284 0.1286 0.1357 0.1222 0.1280 

Average Standard Deviation 0.0951 0.0941 0.0964 0.0964 0.0995 0.0947 

 
  

Appendix 5.1.8 Average Effect of Distribution Assumptions and Confidence 
Levels on MVaR-BL Portfolio Weights 
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This table reports average value of weights allocated to each index in the 
unconstrained MCVaR-BL portfolio in the period from November 1994 to May 2010. 
The weight in the MCVaR-BL portfolio is the solution to the optimisation problem with 
the target of maximal expected excess return to CVaR ratio. CVaR is estimated by the 
parametric method with the assumption of normal distribution and t-distribution at the 
confidence level of 99%. 
 

 
Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  0.0111 0.0160 0.0085 0.0139 0.0012 0.0075 

UK CONSUMER GDS  0.0122 0.0107 0.0088 0.0104 0.0087 0.0071 

UK CONSUMER SVS  0.0134 0.0162 0.0183 0.0113 0.0158 0.0170 

UK FINANCIALS  0.0285 0.0385 0.0377 0.0335 0.0372 0.0357 

UK HEALTH CARE  0.0228 0.0239 0.0290 0.0331 0.0329 0.0267 

UK TECHNOLOGY  -0.0022 0.0019 0.0042 -0.0102 -0.0012 0.0032 

UK INDUSTRIALS  0.0220 0.0256 0.0217 0.0157 0.0240 0.0219 

UK OIL & GAS  -0.0011 0.0068 -0.0004 0.0073 -0.0040 0.0008 

UK TELECOM  0.0195 0.0132 0.0171 0.0109 0.0093 0.0162 

UK UTILITIES  0.0010 0.0120 0.0096 0.0102 0.0132 0.0087 

USA BASIC MATS  0.0238 0.0314 0.0240 0.0235 0.0237 0.0231 

USA CONSUMER GDS  0.0296 0.0310 0.0330 0.0272 0.0341 0.0312 

USA CONSUMER SVS  0.0909 0.0864 0.0868 0.0809 0.0901 0.0860 

USA FINANCIALS  0.1206 0.1293 0.1279 0.1254 0.1353 0.1282 

USA HEALTH CARE  0.1173 0.1218 0.1264 0.1263 0.1295 0.1262 

USA INDUSTRIALS  0.0707 0.0701 0.0679 0.0654 0.0700 0.0673 

USA OIL & GAS  0.0476 0.0580 0.0515 0.0551 0.0461 0.0535 

USA TECHNOLOGY  0.1083 0.1031 0.1088 0.0974 0.1027 0.1090 

USA TELECOM  0.0285 0.0224 0.0238 0.0238 0.0220 0.0240 

USA UTILITIES  0.0253 0.0388 0.0404 0.0373 0.0365 0.0417 

JAPAN BASIC MATS  0.0198 0.0142 0.0139 0.0214 0.0134 0.0163 

JAPAN CONSUMER GDS  0.0337 0.0258 0.0268 0.0262 0.0247 0.0263 

JAPAN CONSUMER SVS  0.0249 0.0172 0.0186 0.0212 0.0230 0.0194 

JAPAN FINANCIALS  0.0416 0.0357 0.0384 0.0481 0.0365 0.0385 

JAPAN HEALTH CARE  0.0124 0.0095 0.0120 0.0184 0.0191 0.0133 

JAPAN INDUSTRIALS  0.0262 0.0178 0.0172 0.0203 0.0138 0.0192 

JAPAN OIL & GAS  0.0027 -0.0011 0.0008 0.0128 -0.0023 0.0025 

JAPAN TECHNOLOGY  0.0210 0.0090 0.0106 0.0103 0.0083 0.0106 

JAPAN TELECOM  0.0191 0.0077 0.0082 0.0113 0.0166 0.0087 

JAPAN UTILITIES  0.0086 0.0070 0.0084 0.0117 0.0198 0.0102 

Absolute Position Range 0.1227 0.1304 0.1284 0.1366 0.1393 0.1274 

 
  

Appendix 5.1.9 Average Value of Weights in the Unconstrained MCVaR-BL 
Portfolio (Nov 94 – May 10) 
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This table reports standard deviation of weights allocated to each index in the 
unconstrained MVaR-BL portfolio in the period from November 1994 to May 2010. The 
weight in the MVaR-BL portfolio is the solution to the optimisation problem with the 
target of maximal expected excess return to VaR ratio. VaR is estimated by the 
parametric method with the assumption of normal distribution and t-distribution at the 
confidence level of 99%. 
 

 
Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  0.0870 0.0837 0.0278 0.0872 0.1443 0.0229 

UK CONSUMER GDS  0.0856 0.0701 0.0319 0.0728 0.0653 0.0239 

UK CONSUMER SVS  0.0702 0.0534 0.0259 0.0594 0.0463 0.0170 

UK FINANCIALS  0.0900 0.0593 0.0365 0.0775 0.0627 0.0233 

UK HEALTH CARE  0.1108 0.0679 0.0298 0.1108 0.0760 0.0194 

UK TECHNOLOGY  0.1297 0.0628 0.0241 0.1322 0.0733 0.0264 

UK INDUSTRIALS  0.0773 0.0797 0.0286 0.0697 0.0744 0.0210 

UK OIL & GAS  0.0888 0.1031 0.0343 0.0866 0.1308 0.0224 

UK TELECOM  0.1126 0.0919 0.0349 0.0932 0.0847 0.0256 

UK UTILITIES  0.0903 0.0638 0.0272 0.0863 0.0586 0.0193 

USA BASIC MATS  0.0829 0.0629 0.0248 0.0669 0.0732 0.0197 

USA CONSUMER GDS  0.0806 0.0563 0.0357 0.0715 0.0674 0.0297 

USA CONSUMER SVS  0.0836 0.0516 0.0264 0.0800 0.0552 0.0206 

USA FINANCIALS  0.1094 0.0653 0.0376 0.0948 0.0906 0.0352 

USA HEALTH CARE  0.1121 0.0683 0.0421 0.0917 0.0741 0.0379 

USA INDUSTRIALS  0.0605 0.0420 0.0227 0.0543 0.0396 0.0178 

USA OIL & GAS  0.0990 0.0886 0.0395 0.0828 0.1156 0.0281 

USA TECHNOLOGY  0.1267 0.0796 0.0420 0.1252 0.0772 0.0393 

USA TELECOM  0.0864 0.0682 0.0305 0.0670 0.0597 0.0215 

USA UTILITIES  0.1218 0.0709 0.0288 0.0982 0.0648 0.0233 

JAPAN BASIC MATS  0.0912 0.0494 0.0273 0.0890 0.0540 0.0215 

JAPAN CONSUMER GDS  0.1176 0.0526 0.0231 0.0995 0.0468 0.0199 

JAPAN CONSUMER SVS  0.0689 0.0538 0.0245 0.0669 0.0718 0.0207 

JAPAN FINANCIALS  0.0992 0.0747 0.0385 0.1130 0.0770 0.0377 

JAPAN HEALTH CARE  0.0783 0.0668 0.0252 0.0728 0.0782 0.0192 

JAPAN INDUSTRIALS  0.1043 0.0599 0.0296 0.1062 0.0713 0.0232 

JAPAN OIL & GAS  0.1212 0.0627 0.0289 0.1237 0.0869 0.0264 

JAPAN TECHNOLOGY  0.1502 0.0836 0.0325 0.1507 0.0765 0.0303 

JAPAN TELECOM  0.1078 0.0786 0.0358 0.0975 0.1070 0.0324 

JAPAN UTILITIES  0.0870 0.0807 0.0322 0.0853 0.0988 0.0213 

Average Standard Deviation 0.0977 0.0684 0.0310 0.0904 0.0767 0.0249 

 
  

Appendix 5.1.10 Standard Deviation of Weights in the Unconstrained MCVaR-BL 
Portfolio (Nov 94 – May 10) 
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This table shows average value of weights in each index and average standard 
deviation in the unconstrained MCVaR-BL portfolio in the period from November 1994 
to May 2010. Note that the covariance matrix applied to the MCVaR-BL model is the 
DCC covariance matrix in this table. 
 

MCVaR-BL Portfolio Weights Normal Distribution t-Distribution 

 
0.99 0.95 0.90 0.99 0.95 0.90 

UK BASIC MATS  0.0111 0.0096 0.0075 0.0139 0.0135 0.0097 

UK CONSUMER GDS  0.0122 0.0125 0.0127 0.0104 0.0114 0.0112 

UK CONSUMER SVS  0.0134 0.0122 0.0128 0.0113 0.0132 0.0126 

UK FINANCIALS  0.0285 0.0270 0.0290 0.0335 0.0299 0.0264 

UK HEALTH CARE  0.0228 0.0184 0.0190 0.0331 0.0274 0.0201 

UK TECHNOLOGY  -0.0022 0.0004 0.0048 -0.0102 -0.0070 0.0028 

UK INDUSTRIALS  0.0220 0.0215 0.0204 0.0157 0.0200 0.0223 

UK OIL & GAS  -0.0011 -0.0022 -0.0035 0.0073 0.0013 -0.0017 

UK TELECOM  0.0195 0.0209 0.0239 0.0109 0.0194 0.0194 

UK UTILITIES  0.0010 -0.0026 -0.0018 0.0102 0.0066 0.0004 

USA BASIC MATS  0.0238 0.0260 0.0272 0.0235 0.0223 0.0235 

USA CONSUMER GDS  0.0296 0.0294 0.0333 0.0272 0.0289 0.0290 

USA CONSUMER SVS  0.0909 0.0943 0.0970 0.0809 0.0872 0.0912 

USA FINANCIALS  0.1206 0.1202 0.1227 0.1254 0.1228 0.1192 

USA HEALTH CARE  0.1173 0.1156 0.1170 0.1263 0.1223 0.1158 

USA INDUSTRIALS  0.0707 0.0741 0.0769 0.0654 0.0680 0.0709 

USA OIL & GAS  0.0476 0.0491 0.0489 0.0551 0.0509 0.0488 

USA TECHNOLOGY  0.1083 0.1123 0.1142 0.0974 0.1050 0.1106 

USA TELECOM  0.0285 0.0308 0.0334 0.0238 0.0294 0.0293 

USA UTILITIES  0.0253 0.0239 0.0251 0.0373 0.0333 0.0257 

JAPAN BASIC MATS  0.0198 0.0182 0.0145 0.0214 0.0189 0.0195 

JAPAN CONSUMER GDS  0.0337 0.0351 0.0327 0.0262 0.0287 0.0347 

JAPAN CONSUMER SVS  0.0249 0.0242 0.0233 0.0212 0.0225 0.0247 

JAPAN FINANCIALS  0.0416 0.0407 0.0366 0.0481 0.0414 0.0403 

JAPAN HEALTH CARE  0.0124 0.0105 0.0090 0.0184 0.0161 0.0121 

JAPAN INDUSTRIALS  0.0262 0.0280 0.0244 0.0203 0.0211 0.0277 

JAPAN OIL & GAS  0.0027 -0.0019 -0.0058 0.0128 0.0033 0.0010 

JAPAN TECHNOLOGY  0.0210 0.0253 0.0203 0.0103 0.0140 0.0240 

JAPAN TELECOM  0.0191 0.0224 0.0195 0.0113 0.0153 0.0218 

JAPAN UTILITIES  0.0086 0.0038 0.0048 0.0117 0.0129 0.0069 

Absolute Position Range 0.1227 0.1228 0.1285 0.1366 0.1298 0.1209 

Average Standard Deviation 0.0977 0.1010 0.0941 0.0904 0.0973 0.0929 

        
  

Appendix 5.1.11 Average Effect of Distribution Assumptions and Confidence 
Levels on MCVaR-BL Portfolio Weights 
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This table reports average value of weights allocated to each index in the VaR-
constrained BL portfolio in the period from November 1994 to May 2010. VaR is 
estimated by the parametric method in the optimisation model with assumption of 
normal distribution and t-distribution at a confidence level of 99%. The VaR constraint    

( 0VaR ) is set to be equal to the scaling factor 0.99 multiplied by the estimated VaR of 

the implied BL portfolio in the corresponding period. 
 

 
Normal Distribution t-Distribution 

 
DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  0.0059 0.0051 -0.0081 0.0140 -0.0596 -0.0632 

UK CONSUMER GDS  0.0109 0.0142 0.0108 0.0184 0.0257 0.0050 

UK CONSUMER SVS  0.0153 0.0172 0.0177 0.0498 0.0443 0.0124 

UK FINANCIALS  0.0361 0.0396 0.0428 -0.0080 0.0148 0.0616 

UK HEALTH CARE  0.0317 0.0273 0.0228 0.0586 0.0152 -0.0179 

UK TECHNOLOGY  0.0003 0.0013 -0.0001 -0.0240 -0.0155 -0.0207 

UK INDUSTRIALS  0.0185 0.0210 0.0362 0.0296 0.0111 0.0891 

UK OIL & GAS  -0.0046 0.0042 -0.0134 -0.0563 -0.0168 -0.0575 

UK TELECOM  0.0169 0.0154 0.0222 0.0261 0.0133 0.0365 

UK UTILITIES  0.0098 0.0154 0.0267 0.0515 0.0817 0.0777 

USA BASIC MATS  0.0262 0.0350 0.0285 -0.0231 -0.0072 0.0294 

USA CONSUMER GDS  0.0333 0.0384 0.0282 0.0052 0.0326 0.0021 

USA CONSUMER SVS  0.1045 0.1016 0.1064 0.1346 0.1772 0.1746 

USA FINANCIALS  0.1119 0.1115 0.1045 0.0653 0.0381 0.0505 

USA HEALTH CARE  0.1286 0.1317 0.1388 0.1465 0.2245 0.1762 

USA INDUSTRIALS  0.0706 0.0616 0.0437 0.0205 -0.0114 -0.0431 

USA OIL & GAS  0.0563 0.0616 0.0711 0.0940 0.1273 0.1257 

USA TECHNOLOGY  0.0984 0.0946 0.0855 0.0427 0.0184 0.0200 

USA TELECOM  0.0340 0.0221 0.0177 0.0493 0.0000 -0.0144 

USA UTILITIES  0.0442 0.0384 0.0549 0.0976 0.0544 0.1178 

JAPAN BASIC MATS  0.0112 0.0109 0.0197 -0.0047 0.0096 0.0360 

JAPAN CONSUMER GDS  0.0235 0.0256 0.0368 0.0600 0.0630 0.0828 

JAPAN CONSUMER SVS  0.0422 0.0310 0.0406 0.1360 0.0959 0.1195 

JAPAN FINANCIALS  0.0265 0.0271 0.0190 -0.0388 -0.0366 -0.0391 

JAPAN HEALTH CARE  0.0029 0.0065 -0.0081 -0.0549 -0.0114 -0.0716 

JAPAN INDUSTRIALS  0.0192 0.0254 0.0264 0.0572 0.0844 0.0663 

JAPAN OIL & GAS  -0.0021 -0.0052 -0.0021 -0.0086 -0.0335 -0.0086 

JAPAN TECHNOLOGY  0.0044 0.0045 0.0000 -0.0407 -0.0338 -0.0268 

JAPAN TELECOM  0.0109 0.0075 0.0071 0.0171 0.0062 -0.0005 

JAPAN UTILITIES  0.0126 0.0095 0.0236 0.0853 0.0883 0.0801 

Absolute Position Range 0.1333 0.1370 0.1521 0.2027 0.2842 0.2479 
  

Appendix 5.2.1 Average Value of Weights in the VaR-Constrained BL Portfolio 
(Nov 94 – May 10) 
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This table reports standard deviation of weights allocated to each index in the VaR-
constrained BL portfolio in the period from November 1994 to May 2010. VaR is 
estimated by the parametric method in the optimisation model with assumption of 
normal distribution and t-distribution at a confidence level of 99%. The VaR constraint   

( 0VaR ) is set to be equal to the scaling factor 0.99 multiplied by the estimated VaR of 

the implied BL portfolio in the corresponding period. 
 

 
Normal Distribution t-Distribution 

 
DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  0.0696 0.0625 0.0410 0.0888 0.0876 0.0788 

UK CONSUMER GDS  0.0678 0.0692 0.0352 0.0456 0.0638 0.0761 

UK CONSUMER SVS  0.0907 0.0910 0.0548 0.1079 0.0877 0.1272 

UK FINANCIALS  0.0836 0.0671 0.0406 0.0774 0.0778 0.0923 

UK HEALTH CARE  0.1100 0.0972 0.0540 0.0773 0.0850 0.1268 

UK TECHNOLOGY  0.0401 0.0397 0.0185 0.0309 0.0309 0.0311 

UK INDUSTRIALS  0.0708 0.0700 0.0466 0.0872 0.0791 0.1435 

UK OIL & GAS  0.0835 0.0816 0.0491 0.0757 0.1161 0.1139 

UK TELECOM  0.0746 0.0725 0.0402 0.0504 0.0619 0.0774 

UK UTILITIES  0.1032 0.0902 0.0440 0.0618 0.0758 0.0780 

USA BASIC MATS  0.0768 0.0715 0.0454 0.0812 0.0897 0.1072 

USA CONSUMER GDS  0.0890 0.0882 0.0513 0.0928 0.0777 0.0841 

USA CONSUMER SVS  0.1086 0.0958 0.0548 0.1259 0.1372 0.1528 

USA FINANCIALS  0.0878 0.0772 0.0631 0.1332 0.1036 0.1453 

USA HEALTH CARE  0.1103 0.0902 0.0547 0.1036 0.0887 0.1000 

USA INDUSTRIALS  0.0911 0.0879 0.0664 0.0993 0.1378 0.1656 

USA OIL & GAS  0.0866 0.0821 0.0490 0.0833 0.1107 0.1110 

USA TECHNOLOGY  0.0680 0.0692 0.0417 0.0521 0.0631 0.0611 

USA TELECOM  0.0834 0.0768 0.0454 0.0726 0.0734 0.0794 

USA UTILITIES  0.0965 0.0961 0.0742 0.0881 0.1324 0.2182 

JAPAN BASIC MATS  0.0777 0.0617 0.0358 0.0622 0.0720 0.0748 

JAPAN CONSUMER GDS  0.0987 0.0804 0.0443 0.0787 0.1151 0.0899 

JAPAN CONSUMER SVS  0.1185 0.0880 0.0558 0.0932 0.1084 0.1477 

JAPAN FINANCIALS  0.0598 0.0526 0.0294 0.0444 0.0649 0.0671 

JAPAN HEALTH CARE  0.1023 0.0832 0.0496 0.0806 0.0972 0.1345 

JAPAN INDUSTRIALS  0.0839 0.0852 0.0540 0.0719 0.1373 0.1397 

JAPAN OIL & GAS  0.0569 0.0525 0.0290 0.0442 0.0528 0.0685 

JAPAN TECHNOLOGY  0.0535 0.0520 0.0282 0.0501 0.0600 0.0595 

JAPAN TELECOM  0.0649 0.0694 0.0374 0.0495 0.0630 0.0690 

JAPAN UTILITIES  0.0955 0.0811 0.0451 0.0703 0.0946 0.0825 

Average Standard Deviation 0.0835 0.0761 0.0460 0.0760 0.0882 0.1034 

 
  

Appendix 5.2.2 Standard Deviation of Weights in the VaR-Constrained BL 
Portfolio (Nov 94 – May 10) 
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This table reports average value of weights allocated to each index in the CVaR-
constrained BL portfolio in the period from November 1994 to May 2010. CVaR is 
estimated by the parametric method in the optimisation model with assumption of 
normal distribution and t-distribution at a confidence level of 99%. The CVaR constraint 

( 0CVaR ) is set to be equal to the scaling factor 0.99 multiplied by the estimated CVaR 

of the implied BL portfolio in the corresponding period. 
 

 
Normal Distribution t-Distribution 

 
DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  0.0058 0.0053 0.0047 0.0133 -0.0873 -0.0865 

UK CONSUMER GDS  0.0109 0.0140 0.0111 0.0195 0.0309 -0.0013 

UK CONSUMER SVS  0.0153 0.0172 0.0172 0.0566 0.0615 0.0082 

UK FINANCIALS  0.0361 0.0393 0.0386 -0.0178 0.0062 0.0704 

UK HEALTH CARE  0.0317 0.0275 0.0306 0.0623 0.0115 -0.0441 

UK TECHNOLOGY  0.0003 0.0014 0.0045 -0.0288 -0.0207 -0.0299 

UK INDUSTRIALS  0.0185 0.0210 0.0260 0.0372 0.0052 0.1161 

UK OIL & GAS  -0.0046 0.0043 -0.0026 -0.0678 -0.0232 -0.0760 

UK TELECOM  0.0169 0.0154 0.0193 0.0286 0.0105 0.0464 

UK UTILITIES  0.0097 0.0154 0.0145 0.0643 0.1035 0.0983 

USA BASIC MATS  0.0263 0.0348 0.0287 -0.0324 -0.0207 0.0315 

USA CONSUMER GDS  0.0333 0.0387 0.0337 -0.0011 0.0262 -0.0124 

USA CONSUMER SVS  0.1045 0.1012 0.0926 0.1436 0.2051 0.2053 

USA FINANCIALS  0.1118 0.1118 0.1154 0.0420 0.0124 0.0231 

USA HEALTH CARE  0.1288 0.1315 0.1290 0.1569 0.2578 0.1952 

USA INDUSTRIALS  0.0705 0.0621 0.0631 0.0039 -0.0372 -0.0792 

USA OIL & GAS  0.0562 0.0615 0.0566 0.1053 0.1529 0.1507 

USA TECHNOLOGY  0.0985 0.0949 0.1009 0.0231 -0.0121 -0.0102 

USA TELECOM  0.0340 0.0218 0.0243 0.0492 -0.0091 -0.0284 

USA UTILITIES  0.0442 0.0385 0.0437 0.1060 0.0544 0.1500 

JAPAN BASIC MATS  0.0111 0.0107 0.0153 -0.0044 0.0134 0.0442 

JAPAN CONSUMER GDS  0.0234 0.0256 0.0257 0.0745 0.0822 0.1060 

JAPAN CONSUMER SVS  0.0421 0.0308 0.0249 0.1665 0.1208 0.1598 

JAPAN FINANCIALS  0.0265 0.0272 0.0313 -0.0549 -0.0556 -0.0670 

JAPAN HEALTH CARE  0.0030 0.0064 0.0057 -0.0682 -0.0213 -0.1033 

JAPAN INDUSTRIALS  0.0194 0.0253 0.0194 0.0712 0.0992 0.0800 

JAPAN OIL & GAS  -0.0022 -0.0050 0.0003 -0.0149 -0.0455 -0.0129 

JAPAN TECHNOLOGY  0.0044 0.0047 0.0065 -0.0541 -0.0467 -0.0370 

JAPAN TELECOM  0.0109 0.0074 0.0083 0.0170 0.0070 -0.0053 

JAPAN UTILITIES  0.0125 0.0097 0.0106 0.1032 0.1183 0.1082 

Absolute Position Range 0.1333 0.1365 0.1316 0.2347 0.3451 0.3087 
  

Appendix 5.3.1 Average Value of Weights in the CVaR-Constrained BL Portfolio 
(Nov 94 – May 10) 
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This table reports standard deviation of weights allocated to each index in the CVaR-
constrained BL portfolio in the period from November 1994 to May 2010. CVaR is 
estimated by the parametric method in the optimisation model with assumption of 
normal distribution and t-distribution at a confidence level of 99%. The CVaR constraint 

( 0CVaR ) is set to be equal to the scaling factor 0.99 multiplied by the estimated CVaR 

of the implied BL portfolio in the corresponding period. 
 

 
Normal Distribution t-Distribution 

 
DCC EWMA RW50 DCC EWMA  RW50 

UK BASIC MATS  0.0696 0.0625 0.0375 0.1005 0.1158 0.1043 

UK CONSUMER GDS  0.0678 0.0701 0.0336 0.0424 0.0691 0.1050 

UK CONSUMER SVS  0.0909 0.0923 0.0491 0.1109 0.1000 0.1703 

UK FINANCIALS  0.0836 0.0673 0.0364 0.0770 0.0929 0.1251 

UK HEALTH CARE  0.1101 0.0975 0.0497 0.0755 0.0899 0.1754 

UK TECHNOLOGY  0.0401 0.0397 0.0187 0.0279 0.0312 0.0401 

UK INDUSTRIALS  0.0708 0.0703 0.0388 0.1020 0.0927 0.1962 

UK OIL & GAS  0.0835 0.0821 0.0416 0.0777 0.1439 0.1506 

UK TELECOM  0.0747 0.0727 0.0385 0.0466 0.0666 0.1087 

UK UTILITIES  0.1034 0.0907 0.0440 0.0531 0.0772 0.1044 

USA BASIC MATS  0.0768 0.0719 0.0397 0.0844 0.1089 0.1421 

USA CONSUMER GDS  0.0891 0.0892 0.0490 0.0992 0.0816 0.1064 

USA CONSUMER SVS  0.1085 0.0948 0.0471 0.1344 0.1707 0.2037 

USA FINANCIALS  0.0879 0.0777 0.0499 0.1561 0.1193 0.1922 

USA HEALTH CARE  0.1104 0.0909 0.0538 0.1124 0.1001 0.1307 

USA INDUSTRIALS  0.0911 0.0886 0.0521 0.1132 0.1733 0.2206 

USA OIL & GAS  0.0867 0.0823 0.0447 0.0912 0.1387 0.1469 

USA TECHNOLOGY  0.0680 0.0692 0.0436 0.0522 0.0726 0.0805 

USA TELECOM  0.0835 0.0767 0.0434 0.0739 0.0806 0.1017 

USA UTILITIES  0.0966 0.0967 0.0558 0.0863 0.1554 0.2941 

JAPAN BASIC MATS  0.0779 0.0618 0.0327 0.0652 0.0860 0.0999 

JAPAN CONSUMER GDS  0.0990 0.0803 0.0407 0.0856 0.1368 0.1184 

JAPAN CONSUMER SVS  0.1190 0.0880 0.0458 0.0894 0.1375 0.2041 

JAPAN FINANCIALS  0.0597 0.0526 0.0333 0.0409 0.0729 0.0946 

JAPAN HEALTH CARE  0.1022 0.0835 0.0435 0.0768 0.1135 0.1855 

JAPAN INDUSTRIALS  0.0846 0.0848 0.0429 0.0787 0.1611 0.1834 

JAPAN OIL & GAS  0.0570 0.0525 0.0254 0.0441 0.0628 0.0895 

JAPAN TECHNOLOGY  0.0535 0.0523 0.0266 0.0549 0.0744 0.0779 

JAPAN TELECOM  0.0649 0.0697 0.0345 0.0508 0.0675 0.0906 

JAPAN UTILITIES  0.0956 0.0810 0.0422 0.0632 0.1172 0.1074 

Average Standard Deviation 0.0835 0.0763 0.0412 0.0789 0.1037 0.1383 

 

Appendix 5.3.2 Standard Deviation of Weights in the CVaR-Constrained 
BL Portfolio (Nov 94 – May 10) 
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CHAPTER 6 OUT-OF-SAMPLE DYNAMIC BLACK-LITTERMAN 
PORTFOLIOS 

 

According to the empirical results from the Chapter 5, the dynamic BL portfolio 

using the Sharpe ratio optimisation method does not always perform well with 

the sample. Resorting to other reward to risk ratio optimisations, such as reward 

to VaR and reward to CVaR optimisation, the in-sample portfolio performance 

could be enhanced. Adding moderate VaR constraints or CVaR constraints 

would also improve the portfolio performance. The aim of this chapter is to 

study whether the performance of the out-of-sample risk-constrained dynamic 

BL portfolio could be improved by these methods. The new method of 

Giacometti et al. (2007) will also be applied in order to estimate the tail risk-

adjusted BL expected return and this will be compared to the performance of 

the out-of-sample BL portfolio. 

Section 6.1 details the procedure of construction and performance evaluation of 

the out-of-sample dynamic unconstrained BL portfolio, while Section 6.2 and 

Section 6.3 focus on the construction of the out-of-sample dynamic VaR-

constrained BL portfolio and the out-of-sample dynamic CVaR-constrained BL 

portfolio with performance evaluation, respectively. Section 6.4 applies the 

Giacometti et al. (2007) method to construct a new BL portfolio with a risk-

adjusted BL expected return and evaluates the performance.  

6.1 Out-of-sample Dynamic Unconstrained BL Portfolios 

It is important to examine if the unconstrained BL portfolio and risk constrained 

BL portfolio can generate a better performance than the benchmark within the 

out-of-sample framework. Therefore, an out-of-sample analysis for these BL 

portfolios will be conducted. In their out-of-sample analysis, Giacometti et al. 

(2007) use a window length of 110 in the rolling window method, thus initial 

estimates for each of the three volatility models will be made using the first 110 

observations (from January 1994 to February 2003) in order to generate a one-

month ahead out-of-sample forecast of the conditional covariance matrix for 

month 111 (March 2003). The estimation sample is then rolled forward by one 

month and the models are re-estimated and used to generate out-of-sample 

forecasts for month 112 (April 2003) and so on until the end of the sample (May 
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2010). The starting parameter values for every iteration of each model are set to 

the values estimated in the previous iteration and this procedure results in a 

total of 88 out-of-sample estimates. A momentum portfolio can then be 

constructed using a holding period of six months to input as the view portfolio 

into the BL portfolio. Thus, the first period for the construction of the BL portfolio 

is August 2003 and the total number of out-of-sample estimates is reduced to 

82. In order to show the results of the portfolio turnover, the results from 

September 2003 are reported in this chapter.   

Based on the one-step ahead forecast for the covariance matrix at time 1t , 

the same procedure as introduced in Sections 4.2.3 to 4.2.5 is used to construct 

an out-of-sample unconstrained BL portfolio, a VaR-constrained BL portfolio 

and a CVaR-constrained BL portfolio. In addition, the out-of-sample BL 

portfolio’s performance is evaluated using the same methods as discussed in 

Section 4.2.6.2. Comparisons are made between the unconstrained BL 

portfolios and the risk-constrained BL portfolios and these are discussed in 

Sections 6.1, 6.2 and 6.3. In Section 6.4, the method of Giacometti et al. (2007) 

introduced in Section 3.3.2 is followed in order to construct risk-adjusted BL 

portfolios which are then compared with the previous unconstrained BL portfolio 

and risk-constrained BL portfolio. 

6.1.1 Construction of Out-of-Sample Unconstrained BL Portfolio 

6.1.1.1 Estimation of Implied Equilibrium Return 

The first important task in the estimation of the out-of-sample implied 

equilibrium return is to forecast the one-step ahead covariance matrix. As 

described in Section 4.2.1, the rolling window method can be used in 

conjunction with equation (4.2), the EWMA model with equation (4.3), and the 

DCC model with equation (4.6), in order to forecast the 3030  vector of the 

covariance matrix 1tH .  

Derived from the equation (4.9), the one-step ahead conditional equilibrium 

return vector 1tπ  can be forecasted using: 

 
tttt wHπ 111     (6.1)  



223 
 

where tw  is the 1N  vector of market capitalisation weights at time t , 1t  is 

the risk aversion coefficient at time 1t , which is equal to the global market risk 

premium divided by the market variance ttt wHw 1

'

 . 

According to Table 6.1.1 Panel A, the risk aversion coefficient in the DCC model 

was the lowest at 1.4798, followed by 1.5714 in the RW110 model and 1.6713 

in the EWMA model. In Table 6.1.1 Panel B, the implied equilibrium returns in 

both the EWMA model and the RW110 model were the same for each asset, 

whilst the implied equilibrium returns in the DCC model were a little higher.  

6.1.1.2 Estimation of Views Portfolio 

Different to the in-sample momentum portfolio, when the momentum portfolio 

was constructed using the out-of-sample framework, then the normalised six-

month return can be expressed as: 

Where, itp ,  is the price of country index i  at time t , itp ,5  is the price of country 

industrial index i  five months before t , and it ,1  is the one step ahead volatility 

of the country industrial index i  at time 1t . 

The top and bottom half of the country industrial indexes are allocated weights 

of 
cit

ti

,1

1,

1



 


  and 
cit

ti

,1

1,

1



 


 , respectively. Similar to the in-sample 

calculation, c is set equal to 35. The method for obtaining the 1N  vector of 

the view weights matrix 1tP  at time 1t , the view expected return vector 1tq  

at time 1t , and the confidence level 1tΩ   in the views at time 1t , are same 

as that of Fabozzi et al. (2006) and the results are shown in Table 6.1.2. The 

view weights matrix 1tP , view expected return vector 1tq , and the confidence 

level 1tΩ  in the out-of-sample view portfolio based on the EWMA model were 

close to the corresponding results based on the RW110 model; however, the 

DCC model generated more different results. The choice of volatility models did 

not affect the direction of the long or short of an asset but instead affected the 

specific positions within the momentum portfolio.  
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Table 6.1.3 compares the performance of the momentum portfolio with the 

benchmark portfolio from September 2003 to May 2010. It was evident from this 

that the momentum portfolio based on the rolling window method performed 

worst with a negative average return of -0.04%. Both the momentum portfolio 

based on the DCC model and the EWMA model with Sharpe ratios equal to 

3.71% and 4.42%, respectively, overcame the benchmark portfolio when the 

Sharpe ratio was equal to 1.06%.  

6.1.1.3 Estimation of BL Expected Return in out of sample  

When considering the momentum portfolio as the only view portfolio inputted 

into the BL model, the 1N  vector of conditional expected returns 1, tBLμ  in the 

out-of-sample can be forecast as detailed in Section 4.2.2.3, and this can be 

denoted by: 

The estimated NN   vector of covariance matrix 1tV  in the out-of-sample can 

be expressed as:  

 

Table 6.1.4 reports the BL expected return for each asset in September 2003. 

As can be seen, the BL expected return based on the EWMA model and the 

RW110 model were almost the same with all of positive estimates. In contrast, 

the BL expected return based on the DCC model showed significantly different 

results and negative estimates were obtained for several of the assets.   

6.1.1.4 Construction of Out-of-Sample Implied BL Portfolios and SR-BL 

Portfolios 

Implied BL portfolio 

Since the BL expected return 1, tBLμ  and the corresponding covariance matrix 

1tV  have been estimated, according to equation (4.13) in Section 4.2.3, the 

implied weights *

1, tBLw   at time t+1 in the BL model can be calculated by: 

 )()'( 1
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11111111, 
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SR-BL portfolio 

In addition, the unconstrained BL portfolio (the SR-BL portfolio) can be 

constructed by solving the maximisation of the Sharpe ratio (SR) optimisation 

problem, as shown below: 

where 1, tBLμ  is the expected return of the BL portfolio and 1,1

'

1,  tBLttBL wVw  is 

the conditional portfolio standard deviation, 1, tBLw  is the 1N  vector of 

portfolio weights. The vector of optimal portfolio positions can be solved as: 

Table 6.1.5 reports the weights allocated in the implied BL portfolio and the SR-

BL portfolio based on the DCC, EWMA and RW110 models in September 2003. 

The SR-BL portfolio had smaller positions for both the long and short assets 

than the implied BL portfolio, regardless of which volatility model was chosen. 

Based on each volatility model, the rank of the asset from the largest negative 

weight to the largest positive weight was nearly the same for the implied BL 

portfolio and the SR-BL portfolio; however, the position ranges of the implied BL 

portfolio were obviously wider than those of the SR-BL portfolio. Specifically, in 

the DCC model which had the widest position range, the position in the implied 

portfolio ranged between -11.46% (Japan Consumer Goods) and 33.91% (USA 

Health Care), whilst the position range in the SR-BL portfolio was narrower, 

between -7.95% (Japan Consumer Goods) and 23.45% (USA Health Care). In 

the EWMA model, which had the narrowest position range, the position range in 

the implied BL portfolio was within the interval -4.20% (UK Basic Materials) to 

21.76% (USA Health Care), and the position range in the SR-BL portfolio with a 

reduced width was within the interval -3.65% (UK Consumer Services) to 19.20% 
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(USA Health Care). Slightly wider than the EWMA model, the position range in 

the implied BL portfolio was within the interval -4.31% (UK Basic Materials) to 

21.83% (USA Health Care), whereas in the RW110 model, the position range in 

the SR-BL portfolio was narrower and within the interval -3.77% (UK Basic 

Materials) to 19.44% (USA Health Care). Therefore, the use of the DCC model 

was found to construct the implied BL portfolio with the most aggressive weight 

allocation in September 2003. It should be noted that the assets with short 

selling in the implied BL portfolio and the SR-BL portfolio were not consistent 

with the view portfolio, but instead demonstrated a converse relationship 

between long and short positions. This was due to the expected return of the 

view portfolio being negative, which led to the inverse effect observed for the 

direction of long or short assets. In addition, as explained in section 5.1.8.1, the 

value of 1t  in equation (6.5) and the value of 1,

1

1' 



 tBLt μV1  in equation (6.7), are 

the determiner of the different weights solutions in the implied BL portfolio and 

the SR-BL portfolio. 

Appendix 6.1.1 reports average value of weights assigned in each index in the 

out-of-sample unconstrained implied BL portfolio and the SR-BL portfolio and 

Appendix 6.1.2 reports standard deviation of weights in the period from 

September 2003 to May 2010. It can be concluded that the use of the DCC 

model could construct the implied BL portfolio and the SR-BL portfolio with 

widest average absolute position range and with most volatile weight solutions 

compared with other volatility models. In addition, the DCC-SR-BL portfolio 

could have narrower average absolute position range and less volatile weight 

solutions than the implied DCC-BL portfolio. 

6.1.1.5 Construction of the Out-of-Sample Unconstrained MVaR-BL 

Portfolios  

When the SR-BL portfolio is constructed, the optimisation function in the 

optimisation problem is to optimise the Sharpe ratio, which in turn adjusts the 

excess return with the risk measured by the standard deviation. To construct 

the MVaR-BL portfolio, the forecasted VaR is used to measure the risk within 

the portfolio, and the optimisation problem here is to solve the weights in order 

to satisfy the maximal ratio between the excess expected BL return and the 

expected VaR in the BL portfolio. The optimisation problem can be written as: 
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As explained in Section 4.2.3, by changing equation (4.17), the VaR of the BL 

portfolio at time 1t  can be expressed as: 

where )1(1   F  and (.)F  is the cumulative distribution.   is the 

confidence level equal to 99%, 95% and 90%. 

Table 6.1.6 shows weight solutions in the unconstrained MVaR-BL portfolio 

based on the DCC, EWMA and RW110 models with the normal distribution and 

the t-distribution assumption in September 2003. For the normal distribution, the 

position range in the DCC-MVaR-BL portfolio was the widest between -12.69% 

(Japan Consumer Goods) and 27.85% (USA Health Care), while the RW110-

MVaR-BL portfolio had a much narrower position range between -3.93% (UK 

Consumer Services) and 19.53% (USA Health Care). The position range in the 

EWMA-MVaR-BL portfolio was the narrowest between -3.73% (UK Basic Mats) 

and 19.18% (USA Health Care). For the t-distribution, the position range in the 

DCC-MVaR-BL portfolio was the widest between -13.00% (Japan Consumer 

Goods) and 28.30% (USA Health Care), while the RW110-MVaR-BL portfolio 

had a much narrower position range between -3.82% (UK Consumer Services) 

and 19.15% (USA Health Care). The position range in the EWMA-MVaR-BL 

portfolio was the narrowest between -3.99% (UK Basic Mats) and 19.60% (USA 

Health Care). It was found that the position range for the t-distribution was wider 

than the position range for the normal distribution, and the change to the           

t-distribution had a greater effect on widening the position range in the DCC-

MVaR-BL portfolio. In addition, the average of the absolute value of the weights 

difference between the normal distribution and the t-distribution was calculated 

at 40bp for the DCC model, 3bp for the EWMA model and 4bp for the RW110 

model. Therefore it can be said that the weight solutions in the EWMA-MVaR-

BL portfolio and the RW110-MVaR-BL portfolio were not sensitive to the change 

to the t-distribution. The position range in the MVaR-BL portfolio was narrower 
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than the implied BL portfolio but wider than the SR-BL portfolio when using the 

same volatility model.       

Appendix 6.1.3 reports average value of weights assigned in each index in the 

out-of-sample unconstrained MVaR-BL portfolio and Appendix 6.1.4 reports 

standard deviation of weights in the period from September 2003 to May 2010. 

It can be concluded that the use of the DCC model could construct the out-of-

sample unconstrained MVaR-BL portfolio with the widest average absolute 

position range and with most volatile weight solutions compared with other 

volatility models. In addition, the average absolute position range and average 

standard deviation of weight in the out-of-sample unconstrained MVaR-BL 

portfolio seemed to be insensitive to the change to the t-distribution in the use of 

three volatility models. Moreover, the average absolute position range in the 

DCC-MVaR-BL portfolio was slightly wider than that in the implied BL portfolio 

and the SR-BL portfolio, and the average standard deviation in the DCC-MVaR-

BL portfolio was slightly smaller than that in the implied BL portfolio and slightly 

bigger than that in the SR-BL portfolio.       

Effect of the Distribution Assumption and Confidence Levels on the out-of-

sample DCC-MVaR-BL Portfolio 

Table 6.1.6 demonstrates that the change to the t-distribution would impose a 

greater effect by widening the position range in the DCC-MVaR-BL portfolio. 

Therefore the effect of the distribution assumption and confidence levels on the 

weight solutions in the out-of-sample DCC-MVaR-BL portfolio will be 

investigated. Table 6.1.7 reports the position of each asset in the MVaR-BL 

portfolio in September 2003 for the normal distribution and the t-distribution at 

confidence levels of 99%, 95% and 90%. For the normal distribution the weights 

allocated to each asset at a confidence level of 99% are very different to the 

weights allocated to each asset for the confidence levels of 95% and 90%. The 

position range at a confidence level of 99% was about 9.12% wider than the 

position range for the confidence levels of 95% and 90% which was within the 

interval between -7.95% (Japan Consumer Goods) and 23.46% (USA Health 

Care). For the t-distribution, the position range at a confidence level of 99% was 

approximately 0.87% wider than the position range at a confidence level of 95% 

and was within the interval between -12.66% (Japan Consumer Goods) and 

27.76% (USA Health Care). In addition, it was 1.29% wider than the position 



229 
 

range at a confidence level of 90% which was within the interval between -12.54% 

(Japan Consumer Goods) and 27.47% (USA Health Care). Therefore, it can be 

concluded that the weight solutions are not sensitive to the choice of a lower 

confidence level between 95% and 90% within the normal distribution. 

Nevertheless, a higher confidence level would lead to a wider position range in 

both distributions, and the change from the normal distribution to the                  

t-distribution would widen the position range. These conclusions can also apply 

to Appendix 6.1.5. Appendix 6.1.5 also reflects that a confidence level of 99% 

would lead to most volatile weight solutions over the out of sample. 

Moreover, when ranking the position of each asset from the largest short 

position to the largest long position, it was found that the choice of the 

distribution assumptions and the confidence levels had no impact on the ranks 

of the assets in Table 6.1.7. 

6.1.1.6 Construction of Out-of-Sample MCVaR-BL Portfolios 

To build the out-of-sample MCVaR-BL portfolio, another essential task is to 

forecast the CVaR in order to measure the tail risk in the portfolio. The 

optimisation problem in this case is to solve the weights to satisfy the maximal 

ratio between the excess expected BL return and the expected CVaR in the BL 

portfolio. The optimisation problem can be expressed as: 

  subject to 1,21 '

1,1,   1ww tBLtBL  

As explained in Section 4.2.3, by changing equation (4.19), the CVaR of the BL 

portfolio at time 1t  can be expressed as: 
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Table 6.1.8 shows the weights solution in the unconstrained MCVaR-BL 

portfolio based on the DCC, EWMA and RW110 models with the normal 

distribution and the t-distribution at a confidence level of 99% in September 
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2003. For the normal distribution, the DCC-MCVaR-BL portfolio had the widest 

range of between -12.96% (Japan Consumer Goods) and 28.22% (USA Health 

Care), much wider than the range between -3.76% (UK Basic Mats) and 19.18% 

(USA Health Care) as determined for the EWMA-MCVaR-BL portfolio and the 

range between -3.93% (UK Consumer Services) and 19.53% (USA Health Care) 

for the RW110-MCVaR-BL portfolio. For the t-distribution, the position range of 

assets in the DCC-MCVaR-BL portfolio increased the width from -12.94% 

(Japan Consumer Goods) to 32.43% (USA Health Care). The interval was 

much wider than the slightly widened range between -4.02% (UK Basic Mats) 

and 19.10% (USA Health Care) found in the EWMA-MCVaR-BL portfolio, and 

the slightly widened range between -3.93% (UK Consumer Services) and 19.53% 

(USA Health Care) in the RW110-MCVaR-BL portfolio. Thus, it can be 

concluded that the DCC-MCVaR-BL portfolio invested assets more aggressively 

with a widest position range than the other two MCVaR-BL portfolios, and these 

portfolios had weights solutions with a wider range for the t-distribution than for 

the normal distribution. Compared with the out-of-sample MVaR-BL portfolio, 

the out-of-sample MCVaR-BL portfolio had a much wider position range when 

using the DCC model, but nearly the same position range when the EWMA and 

RW110 models were used, additionally, the MVaR-BL portfolio and the MCVaR-

BL portfolio consistently chose the same assets to long or short when using the 

same volatility model. The position range in the MCVaR-BL portfolio was 

narrower than the implied BL portfolio but wider than the SR-BL portfolio when 

using the same volatility model. 

Appendix 6.1.6 reports average value of weights assigned in each index in the 

out-of-sample unconstrained MCVaR-BL portfolio and Appendix 6.1.7 reports 

standard deviation of weights in the period from September 2003 to May 2010. 

It can be concluded that the use of the DCC model could construct the out-of-

sample unconstrained MCVaR-BL portfolio with the widest average absolute 

position range and with most volatile weight solutions compared with other 

volatility models. In addition, the average absolute position range and average 

standard deviation of weight in the out-of-sample unconstrained MCVaR-BL 

portfolio seemed to be insensitive to the change to the t-distribution in the use of 

three volatility models. Moreover, the average absolute position range in the 

DCC-MCVaR-BL portfolio was close to that in the DCC-MVaR-BL portfolio, and 
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the average standard deviation in the DCC-MCVaR-BL portfolio was much 

smaller than that in the DCC-MVaR-BL portfolio.       

Effect of Distribution Assumption and Confidence Levels on out-of-sample 

DCC-MCVaR-BL Portfolio 

Table 6.1.8 has demonstrated that a change to the t-distribution would have a 

greater effect on widening the position range in the DCC-MCVaR-BL portfolio. 

Therefore the effect of the distribution assumption and confidence levels on 

weight solutions in the out-of-sample DCC-MCVaR-BL portfolio was 

investigated. Table 6.1.9 reports the position of each asset in the DCC-MCVaR-

BL portfolio in September 2003 with the normal distribution and the t-distribution 

assumptions for confidence levels of 99%, 95% and 90%. For the normal 

distribution, when the confidence level was reduced to 95% the position range 

narrowed to between -12.65% (Japan Consumer Goods) and 27.73% (USA 

Health Care) compared to the interval between -12.96% and 28.22% for the 

corresponding assets at the 99% confidence level. When the confidence level 

was further reduced to 90% then the position range further narrowed to 

between -12.59% (Japan Consumer Goods) and 27.59% (USA Health Care). 

When the normal distribution was changed to the t-distribution there was no 

change in allocating the largest short position in Japan Consumer Goods and 

the largest long position in USA Health Care, although the position range 

substantially widened to between -12.94% and 32.43% at the 99% confidence 

level, moderately widened to between -12.98% and 28.27% at the 95% 

confidence level and only slightly widened at the 90% confidence level to 

between -12.71% and 27.91%. In both distributions, the higher the confidence 

level, the wider the position range in the DCC-MCVaR-BL portfolio. However, 

this effect was not obvious on average absolute position range over the out of 

sample in Appendix 6.1.8, it showed the effect that the higher the confidence 

level, the more volatile weight solutions. Moreover, ranking the position of each 

asset from the largest short position to the largest long position, it was found 

that the choice of the distribution assumptions and the confidence levels had no 

impact on the ranking of assets in Table 6.1.7. Compared with the DCC-MVaR-

BL portfolio shown in Table 6.1.7, the DCC-MCVaR-BL portfolio ranked each 

asset similarly, from the largest short position to the largest long position, to the 

DCC-MVaR-BL portfolio. The DCC-MCVaR-BL portfolio always had a wider 
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position range than the DCC-MVaR-BL portfolio for each confidence level 

regardless of the distribution, this conclusion also applied to Appendix 6.1.8. In 

addition, the DCC-MCVaR-BL portfolio could allocate much less volatile weights 

than the DCC-MVaR-BL portfolio could at the confidence level of 99% 

according to Appendix 6.1.8. 

6.1.2 Single Period Out-of-Sample Performance 

The evaluation of the out-of-sample unconstrained BL portfolio performance for 

the single period of September 2003 is shown in Table 6.1.10. 

6.1.2.1 Out-of-sample Implied BL portfolio and SR-BL portfolio 

The implied DCC-BL portfolio performed best with the highest conditional 

Sharpe ratio of 88.05% and a reward to CVaR ratio of 49.34% at the cost of the 

highest portfolio turnover of 2.95, followed by the implied EWMA-BL portfolio 

with a Sharpe ratio equal to 73.51% and a reward to CVaR ratio of 38.08%. The 

implied RW110-BL portfolio performed the worst. 

In the SR-BL portfolios, the DCC-SR-BL portfolio still demonstrated a better 

performance than the EWMA-SR-BL and RW110-SR-BL portfolios, with a 

conditional Sharpe ratio of 88.16% and a reward to CVaR ratio equal to 49.42%, 

even better than the implied DCC-BL portfolio. In addition, the portfolio turnover 

decreased to 1.7944, much less than that of the implied DCC-BL portfolio. 

Both the implied BL and the SR-BL portfolios overcame the benchmark portfolio 

for September 2003. 

6.1.2.2 Out-of-sample MVaR-BL portfolio 

At each confidence level the DCC-MVaR-BL portfolio always performed the 

best followed by the EWMA-MVaR-BL portfolio, whilst the RW110-MVaR-BL 

portfolio performed the worst. In addition, the portfolio turnover of over 2.33 in 

the DCC-MVaR-BL portfolio was much greater than that of the RW110-MVaR-

BL portfolio which was close to 0.71, while the EWMA-MVaR-BL portfolio 

possessed the lowest portfolio turnover of around 0.67. 

For the normal distribution and the t-distribution, the DCC-MVaR-BL portfolio 

demonstrated an improved performance as the confidence level decreased 

from 99% to 90%. Concretely, the conditional Sharpe ratio increased from 84.46% 
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to 90.68%, the reward to CVaR ratio increased from 46.39% to 51.58%, and the 

portfolio turnover reduced from 2.3908 to 2.3390 for the normal distribution. For 

the t-distribution, the conditional Sharpe ratio increased from 83.69% to 90.93%, 

the reward to CVaR ratio increased from 45.78% to 51.79%, and the portfolio 

turnover reduced from 2.3989 to 2.3279.  In contrast, the performance of the 

EWMA-MVaR-BL and the RW110-MVaR-BL portfolios were barely sensitive to 

any change in the confidence level, exhibiting only a slight decrease in their 

evaluation ratios of less than 0.2%.     

For each confidence level, when the normal distribution was changed to the t-

distribution, then both the EWMA-MVaR-BL and the RW110-MVaR-BL 

portfolios demonstrated a slightly improved performance and an increased 

portfolio turnover. However, the performance of the DCC-MVaR-BL portfolio 

failed to improve exhibiting decreased evaluation ratios and an increased 

portfolio turnover for confidence levels of 99% and 95%. At the 90% confidence 

level, the DCC-MVaR-BL portfolio behaved better with an improved conditional 

Sharpe ratio and a reward to CVaR ratio, whilst the portfolio turnover was 

reduced. 

The MVaR-BL portfolio successfully overcame the benchmark portfolio in 

September 2003. Compared with the implied BL and SR-BL portfolios under 

both distribution assumptions, the DCC-MVaR-BL portfolio only outperformed at 

the confidence levels of 95% and 90%, whilst the EWMA-MVaR-BL portfolio 

only outperformed at confidence levels of 99% and 95%; however, the RW110-

MVaR-BL portfolio outperformed at all of the confidence levels. In addition, the 

portfolio turnover in the MVaR-BL portfolio was much less than that in the 

implied BL portfolio, but slightly higher than that of the SR-BL portfolio.   

6.1.2.3 Out-of-sample MCVaR-BL portfolio 

For each confidence level the DCC-MCVaR-BL portfolio always performed the 

best, the RW110-MCVaR-BL portfolio performed the worst, and the EWMA-

MCVaR-BL portfolio was ranked in the middle. In addition, the portfolio turnover 

in the DCC-MCVaR-BL portfolio was over 2.33, much higher than the RW110-

MCVaR-BL portfolio which was close to 0.71, whilst the EWMA-MCVaR-BL 

portfolio had the lowest portfolio turnover of around 0.67.  
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Under both distribution assumptions, as the confidence level was reduced from 

99% to 90%, the portfolio turnover was reduced for the MCVaR-BL portfolio, 

while only the DCC-MCVaR-BL portfolio demonstrated a gradually enhanced 

performance. In contrast, the performance of the RW110-MCVaR-BL portfolio 

was not subject to any impact resulting from a decrease in the confidence level. 

For the normal distribution, the EWMA-MCVaR-BL portfolio performed a little 

worse and was further decreased by a lower confidence level. For the t-

distribution, the EWMA-MCVaR-BL portfolio gave the best performance which 

was reflected by the highest Sharpe ratio (73.69%) and reward to CVaR ratio 

(38.21%) when the confidence level decreased to 95%, although the evaluation 

ratios dropped slightly at the confidence level of 90%.   

At each confidence level, when the normal distribution was changed to the t-

distribution, then the portfolio turnover in the MCVaR-BL portfolio increased and 

the DCC-MCVaR-BL portfolio performed worse. However, the EWMA-MCVaR-

BL portfolio showed a slightly improved performance for the 95% and 90% 

confidence levels, and the RW110-MCVaR portfolio demonstrated a slightly 

improved performance at the 99% and 90% confidence levels but showed no 

change at a 95% confidence level. 

The MCVaR-BL portfolio significantly outperformed the benchmark portfolio in 

September 2003, and exhibited a superior performance to the implied BL 

portfolio with a much lower portfolio turnover based on the EWMA and RW110 

models. In addition, the performance of the RW110-MCVaR-BL portfolio was 

better than that of the RW110-SR-BL and EWMA-MCVaR-BL portfolios. It was 

better at the 99% confidence level for the normal distribution and at the 95% 

and 90% confidence levels for the t-distribution. The DCC-MCVaR-BL portfolio 

also performed better than the implied BL portfolio and the SR-BL portfolio 

under both distribution assumptions at a confidence level of 90% and for the 

normal distribution at a confidence level of 95%.  

Compared with the MVaR-BL portfolio, the MCVaR-BL portfolio demonstrated a 

similar performance for the normal distribution; however, for the t-distribution, 

the DCC-MCVaR-BL portfolio behaved worse whilst the other two MCVaR-BL 

portfolios behaved slightly better at relative lower confidence levels. 
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6.1.3 Multiple Period Out-of-Sample Performance 

In the dynamic asset allocation process, the portfolio performance is time-

varying for a single period. However, the previous single-period performance 

indeed provides some evidences that the out-of-sample MVaR-BL portfolio and 

the MCVaR-BL portfolio could perform better than the out-of-sample implied BL 

portfolio and the SR-BL portfolio with a choice of a certain volatility model at an 

acceptable confidence level. Additionally, the MCVaR-BL portfolio could beat 

the MVaR-BL portfolio in certain circumstances. It is necessary to evaluate the 

average performance of the out-of-sample unconstrained BL portfolios in the 

multiple periods to check the validity of conclusions from the single-period 

performance. Table 6.1.11 displays the average performance of the out-of-

sample unconstrained BL portfolios. 

As can be seen in Table 6.1.11, the benchmark portfolio had the biggest 

negative skewness of 1.4455, which reflects the left tail risk. Therefore, it was 

not surprising to see that the empirical VaR and empirical CVaR were highest in 

the benchmark portfolio at 16.55% and 17.94%, respectively.     

6.1.3.1 Out-of-sample Implied BL portfolio and SR-BL portfolio 

According to Table 6.1.11, in the implied BL portfolio the risk-adjusted 

performance in the implied DCC-BL portfolio was best, with the Sharpe ratio, 

reward to VaR ratio and reward to CVaR ratio equal to 16.04%, 6.57% and 

6.50%, respectively. The active performance in the implied DCC-BL portfolio 

was also the best with a value of 26.73% for the information ratio. The risk-

adjusted performance in the implied EWMA-BL portfolio was better than that of 

the implied RW110-BL portfolio, but the implied RW110-BL portfolio had a 

better active performance than the implied EWMA-BL portfolio.  

Ranking by the Sharpe, reward to VaR and reward to CVaR ratios from the 

highest to the lowest value in the SR-BL portfolio and the implied BL portfolio, 

the DCC-SR-BL portfolio performed the best, followed by the EWMA-SR-BL 

and RW110-SR-BL portfolios. When compared to the active portfolio 

performance, the DCC-SR-BL portfolio remained the best, but the RW110-SR-

BL portfolio outperformed the EWMA-SR-BL portfolio.  
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For multiple periods, all of the SR-BL portfolios underperformed compared to 

the implied BL portfolios. Both the implied BL portfolio and the SR-BL portfolio 

beat the benchmark portfolio and exhibited less empirical VaR and CVaR than 

the benchmark portfolio. 

6.1.3.2 Out-of-sample MVaR-BL portfolio 

From Table 6.1.11 it can be seen that at each confidence level the risk-adjusted 

performance and active performance of the DCC-MVaR-BL portfolio was 

always better than the other two MVaR-BL portfolios. In addition, compared to 

the RW110-MVaR-BL portfolio, the EWMA-MVaR-BL portfolio demonstrated a 

better risk-adjusted performance but worse active portfolio performance.  

Under both distribution assumptions, the DCC-MVaR-BL portfolio behaved 

better at a confidence level of 99% than at confidence levels of 95% and 90%, 

and the choice of confidence level did not affect the out-of-sample performance 

of both the EWMA-MVaR-BL and RW110-MVaR-BL portfolios. 

At each confidence level the DCC-MVaR-BL portfolio showed a slightly better 

out-of-sample performance for the t-distribution than for the normal distribution, 

while the performance of the EWMA-MVaR-BL and RW110-MVaR-BL portfolios 

were not sensitive to a change in distribution assumption. 

For multiple periods, the MVaR-BL portfolio overtook the benchmark portfolio. 

While the performance of the DCC-MVaR-BL portfolio was substantially better 

than the performance of the DCC-SR-BL portfolio, the performance of the 

MVaR-BL portfolio based on the EWMA model showed only a limited 

improvement and the performance of the RW110-MVaR-BL portfolio was nearly 

even with those of the corresponding SR-BL portfolios. The MVaR-BL portfolio 

was unable to perform better than the implied BL portfolio.  

6.1.3.3 Out-of-sample MCVaR-BL portfolio 

Table 6.1.11 compares the MCVaR-BL portfolios. The DCC-MCVaR-BL 

portfolio showed impressive risk-adjusted and active performances, whilst the 

risk-adjusted performance in the EWMA-MCVaR-BL portfolio was inferior. This 

was followed by the RW110-MCVaR-BL portfolio, where the active performance 

was better than that of the EWMA-MCVaR-BL portfolio. The performance rank 

was same for the MVaR-BL, implied BL and SR-BL portfolios. 
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For the normal distribution, when the confidence level was reduced from 99% to 

95%, the performance of the DCC-MCVaR-BL portfolio slightly deteriorated due 

to the risk-adjusted performance and the active performance, however when the 

confidence level was further reduced to 90%, then the DCC-MCVaR-BL 

portfolio had a slightly improved performance. The EWMA-MCVaR-BL and 

RW110-MCVaR-BL portfolios exhibited a barely altered performance as the 

confidence level changed. For the t-distribution at a confidence level of 99%, 

the DCC-MCVaR-BL portfolio achieved the best performance with the Sharpe, 

information, reward to VaR and reward to CVaR ratios improving to 14.17%, 

21.64%, 5.54% and 5.39%, respectively. When the confidence level was 

lowered to 95% and then further to 90%, the MCVaR-BL portfolio at first 

performed worse and then the performance was enhanced a little. 

For each confidence level the change from the normal distribution to the t-

distribution had an obviously positive effect on improving the performance of the 

DCC-MCVaR-BL portfolio, but only an extremely small positive effect was 

evident on the performance of both the EWMA-MCVaR-BL and RW110-

MCVaR-BL portfolios.  

For multiple periods, the MCVaR-BL portfolio performed dramatically better than 

the benchmark portfolio. The DCC-MCVaR-BL portfolio apparently 

outperformed the SR-BL portfolio; however, the EWMA-MCVaR-BL portfolio 

showed a tiny improvement and the RW110-MCVaR-BL portfolio hardly 

overtook it. None of the MCVaR-BL portfolios could beat the implied BL portfolio.  

There was no large difference observed between the out-of-sample 

performance of the MVaR-BL portfolio and the MCVaR-BL portfolio at lower 

confidence levels of 95% and 90%. For the t-distribution and a confidence level 

of 99%, the DCC-MCVaR-BL portfolio performed better than the DCC-MVaR-BL 

portfolio.  

6.1.4 Conclusions 

Several findings concerning the unconstrained BL portfolios can be concluded 

through this out-of-sample analysis. Firstly, within the out-of-sample framework, 

the dynamic unconstrained BL portfolios demonstrate a superior performance to 

the benchmark portfolio for both a single period and for multiple periods. In 
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addition, the weight solutions for the out-of-sample unconstrained BL portfolios 

are more balanced and reasonable than those obtained using the traditional 

mean-variance method.     

Secondly, the dynamic implied BL portfolio and the SR-BL portfolio have 

different weights solutions but same directions for long or short assets. Different 

volatility models have different influences on the dynamic implied BL portfolio 

and the SR-BL portfolio. The use of the DCC model to construct the implied BL 

portfolio and SR-BL portfolios results in the most aggressive weight allocations 

with the widest range, and demonstrates a better performance for both a single 

period and for multiple periods than when using the two other models (EWMA 

and RW110). It is worth noting that the SR-BL portfolio had a bigger empirical 

VaR and empirical CVaR for multiple periods, especially when employing the 

DCC model. 

Thirdly, both the MVaR-BL portfolio and the MCVaR-BL portfolio at certain 

confidence levels are able to outperform the implied-BL and SR-BL portfolios for 

a single period; however, for multiple periods the MVaR-BL portfolio and the 

MCVaR-BL portfolio could only overcome the SR-BL portfolio. Although the 

MCVaR-BL portfolio could not perform better than the MVaR-BL portfolio for a 

single period, the MCVaR-BL portfolio actually could outperform the MVaR-BL 

portfolio for multiple periods. The use of different volatility models, distribution 

assumptions and confidence levels are key elements which affect the weights 

solutions and performance of the MVaR-BL and MCVaR-BL portfolios. For a 

single period, it is found that changing to the t-distribution has a greater effect 

on widening the position range in the MVaR-BL and MCVaR-BL portfolios when 

using the DCC model, whilst the weight solutions in the MVaR-BL and MCVaR-

BL portfolios when employing the EWMA and RW110 models are not sensitive 

to the change to the t-distribution. The higher confidence level leads to a wider 

position range for both distributions, and the change from the normal distribution 

to the t-distribution widen the position range in the MVaR-BL and MCVaR-BL 

portfolios when the DCC model is used. The out-of-sample MCVaR-BL portfolio 

has a much wider position range than the MVaR-BL portfolio, however both are 

consistent in choosing the same assets to long or short under the same volatility 

model. For the out-of-sample single-period performance for the normal 

distribution and the t-distribution, the DCC-MVaR-BL and DCC-MCVaR-BL 
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portfolios demonstrate a better performance than when utilising the other two 

volatility models, and the performance improves as the confidence level 

decreases from 99% to 90%. Both the MVaR-BL and MCVaR-BL portfolios 

based upon the EWMA and RW110 models demonstrate a slightly improved 

performance at a higher confidence level, whilst the MVaR-BL and MCVaR-BL 

portfolios employing the DCC model behave better at a lower confidence level 

when the normal distribution is changed to the t-distribution. Regarding the 

multiple-period out-of-sample performance, the MVaR-BL and MCVaR-BL 

portfolios based upon the DCC model perform better at a higher confidence 

level with the t-distribution. The DCC-MCVaR-BL portfolio could achieve the 

best performance for the t-distribution at a confidence level of 99%, significantly 

better than other MVaR-BL portfolios and MCVaR-BL portfolios. 

6.2 Out-of-sample Dynamic VaR-Constrained BL Portfolios  

Function (4.20) represents the optimisation function with VaR constraints for the 

in-sample portfolio. Similarly, for the out-of-sample portfolio, the optimisation 

function can be denoted as: 

subject to 1,21, '

1,1,01,   1ww tBLtBLt VaRVaR  

where 0VaR  is the target VaR, and  1, tVaR  is calculated as equation (6.9). 

In Table 6.1.11, it can be seen that the empirical VaR in the SR-BL portfolio 

were larger than the implied BL portfolio; therefore, the VaR constraint ( 0VaR ) 

was initially set equal to the scaling factor 0.99 and multiplied by the estimated 

VaR of the implied BL portfolio in the corresponding period. Since the 

optimisation process with VaR constraint has been discussed in detail in 

Chapter 5, Section 5.2.1.1, it will not be discussed again here.  

6.2.1 Construction of VaR-Constrained BL Portfolios 

The weight solutions obtained using function (6.12) is used to form the VaR-

constrained BL portfolio. Table 6.2.1 reports the weights allocated to each index 
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in the VaR-constrained BL portfolio in September 2003. Comparing Table 6.2.1 

with Table 6.1.5, it can be observed that the VaR-BL portfolio weight solutions 

for the normal distribution were nearly the same as those for the SR-BL portfolio. 

The reason for this was that the loose VaR limit was not sufficiently large 

enough to change the weight solution for the normal distribution. When the 

distribution was changed from the normal distribution to the t-distribution, the 

VaR constraint was tightened and the position range in the DCC-VaR-BL 

portfolio changed from between -7.94% (Japan Consumer Goods) and 23.49% 

(USA Health Care) to between -3.70% (USA Industrials) and 25.49% (USA 

Health Care). The absolute value of the position range actually decreased to 

about 2.24%. Both the EWMA-VaR-BL and RW110-VaR-BL portfolios were 

unbounded and arose as a result of the VaR constraint being too tight and the t-

distribution assumption.  

Appendix 6.2.1 reports average value of weights allocated to each index in the 

out-of-sample VaR-constrained BL portfolio in the period from September 2003 

to May 2010 and Appendix 6.2.2 reports the standard deviation of time-varying 

weights in each index. It can be concluded that the change from the normal 

distribution to the t-distribution has the effect of widening the average absolute 

position range and increasing the average standard deviation of weights on the 

out-of-sample VaR-constrainted BL portfolio. In addition, for the t-distribution, 

the VaR-BL portfolio using the DCC model has narrowest average absolute 

position range and most volatile weight solutions than using the EWMA model 

and the RW110 model.   

6.2.2 Single Period Out-of-Sample VaR-Constrained BL Performance 

Table 6.2.2 shows the out-of-sample VaR-constrained BL portfolio performance 

in September 2003. For the normal distribution, the DCC-VaR-BL portfolio 

performed  best with much higher conditional Sharpe and reward to CVaR 

ratios equal to 88.04% and 49.33%, respectively, and the cost of a greater 

portfolio turnover was 1.7957. The EWMA-VaR-BL portfolio performed slightly 

better than the RW110-VaR-BL portfolio with a small increase in the conditional 

evaluation ratios and a lower portfolio turnover. For the t-distribution, the tighter 

VaR limit improved the DCC-VaR-BL performance and resulted in an increased 

conditional Sharpe ratio (91.58%) and reward to CVaR ratio (52.35%). Both the 
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EWMA-VaR-BL and RW110-VaR-BL portfolios were unbounded, and so the 

results of their performance were not reported. This single-period performance 

indeed provided some evidence that the VaR-BL portfolio using the DCC model 

performed better than using other two volatility models. However, it is still 

necessary to evaluate average performances over multiple periods to get more 

reliable conclusion. 

6.2.3 Multiple Periods Out-of-Sample VaR-Constrained BL Performance 

Table 6.2.3 reports the results of the out-of-sample VaR-constrained BL 

portfolio performance for multiple periods from September 2003 to May 2010. It 

should be noted that if the VaR constraint was too tight to bind the SR-BL 

portfolio, then the positions in the minimum variance portfolio were used to 

replace the missing weight solutions for some single periods. The risk-adjusted 

performance and the active performance of the DCC-VaR-BL portfolio were 

best for both the normal distribution and the t-distribution and gave the highest 

evaluation ratios compared to the other two VaR-BL portfolios. For the normal 

distribution, the EWMA-VaR-BL portfolio performed better than the RW110-

VaR-BL portfolio, but it was outperformed by the RW110-VaR-BL portfolio when 

the normal distribution was changed to the t-distribution. In addition, the 

performance of the VaR-BL portfolio for the t-distribution was better than the 

performance of the VaR-BL portfolio for the normal distribution. This indicates 

that the tighter VaR constraints improve the multi-period out-of-sample 

performance.    

Compared with the SR-BL portfolio performance in Table 6.1.11, it was found 

that the VaR-constrained BL portfolio could perform better for both the normal 

distribution and the t-distribution. Moreover, when comparison were made with 

the MVaR-BL and MCVaR-BL portfolios, the VaR-constrained BL portfolio 

based on the EWMA and RW110 models demonstrated a better risk-adjusted 

performance for both distributions and a better active performance with the 

normal distribution in multiple periods. From the perspective of contrasting risk-

adjusted performance, the DCC-VaR-BL portfolio with the t-distribution at a 99% 

confidence level was able to outperform the DCC-MVaR-BL portfolio for both 

distributions; however, it was not better than the performance of the DCC-

MCVaR-BL portfolio with the t-distribution. In addition, the active performance of 
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the DCC-VaR-BL portfolio was always worse than that of the DCC-MVaR-BL 

and DCC-MCVaR-BL portfolios. With regards to portfolio risk measurement, all 

of the VaR-constrained BL portfolios had smaller risks than the SR-BL portfolios 

as measured by standard deviation, empirical VaR and empirical CVaR. 

Furthermore, all the VaR-constrained BL portfolios outperformed the benchmark 

portfolio. Nevertheless, the implied DCC-BL portfolio still performed the best. It 

should be noted that adding the VaR constraint onto the EWMA-SR-BL and 

RW110-SR-BL portfolios resulted in a multi-period performance that was even 

better than the implied BL portfolio.  

6.2.4 Effects of Distributions and Confidence Levels  

There are three main tasks in this section. The first task is to determine the 

weight solutions of the out-of-sample VaR-constrained BL portfolio at 

decreasing level of VaR constraints with different distribution assumptions and 

alter confidence levels. Secondly, the effects on the out-of-sample VaR-

constrained BL portfolio performance for a single period will be investigated 

(September 2003), and finally, these effects on the out-of-sample VaR-

constrained BL portfolio performance for multiple periods (from September 2003 

to May 2010) will be determined. Since Sections 6.2.2 and 6.2.3 concluded that 

the DCC-VaR-BL portfolio always performed better than the other two VaR-

constrained BL portfolios for a single period and for multiple periods, only the 

effects on the DCC-VaR-BL portfolio will be investigated. 

6.2.4.1 Effects on Weights of the Out-of-sample VaR-Constrained BL 

Portfolio 

Table 6.2.4 displays the positions of each asset within the VaR-constrained BL 

portfolio in September 2003 for the normal distribution and the t-distribution at a 

confidence level of 99%. It should be noted that the expected VaR of the 

implied DCC-BL portfolio was 14.45%, whilst the expected VaR of the DCC-SR-

BL was much lower at 10.01%. Therefore, when adding the scaling factors 

multiplied by the VaR of the implied BL portfolio as the 0VaR , these VaR 

constraints were not sufficiently tight enough to bind the DCC-SR-BL portfolio 

for the normal distribution, but when altered to the t-distribution then this 

increased the VaR constraints. As can be seen in Table 6.2.4, the positions did 

not change for the normal distribution and resulted from unbounded VaR 
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constraints; however, for the t-distribution at a confidence level of 99%, as the 

VaR bounds tightened the position range gradually became wider. When the 

VaR factors decreased from 0.99 to 0.80, it was found that the largest short 

position in the USA Industrials increased from 8.52% to 12.69%, and the largest 

long position in the USA Health Care increased from 25.49% to 28.47%.  

Weights were not reported for each asset for confidence levels of 95% and 90% 

with both distributions. It was because the VaR constraints at the lower 

confidence level were not sufficiently tight enough to bind the DCC-SR-BL 

portfolio. This reason can also explain why weight solutions for a confidence 

level of 99% in the normal distribution are same.   

6.2.4.2 Effects on the Out-of-sample VaR-Constrained BL Portfolios 

Performance in the Single Period 

Table 6.2.5 reports the results for the performance of the out-of-sample VaR-

constrained BL portfolios in September 2003 for the normal distribution and the 

t-distribution at confidence levels of 99%, 95% and 90%, as the VaR factor fell 

to 0.7. As explained earlier, the loose VaR bound failed to constrain the SR-BL 

portfolio at a lower confidence level for both distributions, so the results of the 

DCC-VaR-BL portfolio were same for 95% and 90% confidence levels. The 

performance of the DCC-VaR-BL portfolio at a confidence level of 99% was 

provided in Table 6.2.5, Panel A. For the normal distribution, it was found that 

the portfolio turnover increased as the VaR constraints tightened, although the 

performance did not change. The explanation for this was that the weights 

changes became greater during the previous period when the VaR factor fell to 

0.7. When the distribution was changed to the t-distribution, the single period 

out-of-sample performance was gradually improved as the VaR bounds became 

tighter. 

6.2.4.3 Effects on the Out-of-sample VaR-Constrained BL Portfolios 

Performance in Multiple Periods 

Since the single period out-of-sample performance has demonstrated a 

preference for tighter VaR constraints, what is the out-of-sample performance 

for multiple periods? Table 6.2.6 displays the performance of the DCC-VaR-BL 

portfolios for multiple periods from September 2003 to May 2010. 
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For the normal distribution at a 99% confidence level, the mean return of the 

DCC-VaR-BL remained at nearly the same level of 44bp as the VaR factor fell 

to 0.7. The risk, as measured by standard deviation, empirical VaR and 

empirical CVaR, demonstrated a decreasing trend which led to an increasing 

trend for the risk-adjusted performance evaluation ratios. However, the active 

portfolio performance was not strictly consistent with the increasing trend of the 

risk-adjusted performance. Different evaluation ratios generated slightly 

different ranking for the risk-adjusted performance of the DCC-VaR-BL portfolio. 

At a confidence level of 95%, as the VaR constraint tightened, the negative 

skewness of the portfolio became smaller and this led to less tail risks as 

reflected by the decreased empirical VaR and CVaR. As the risk-adjusted 

performance of the DCC-VaR-BL portfolio improved, the same ranking was 

generated by the different evaluation ratios, and the active performance was 

consistent with the increasing trend. At a confidence level of 90%, as the VaR 

factor decreased from 0.99 to 0.90, both the risk-adjusted performance and the 

active performance deteriorated with slightly decreasing evaluation ratios. 

However, when the VaR factor fell first to 0.8 and then further to 0.7, both the 

risk-adjusted performance and the active performance demonstrated a better 

performance. In addition, it was found that a higher confidence level resulted in 

a better performance for both distributions. 

For the t-distribution at a confidence level of 99%, while the decreasing VaR 

factor reflected the increasing VaR constraint, the mean return and risk were 

much reduced. Each risk-adjusted performance ratio fell from the highest point 

to a relatively low point then rallied to a relatively high point before dropping to a 

much lower level, while the information ratio decreased gradually. At a 

confidence level of 95%, there was a general trend of increasing evaluation 

ratios as the VaR factor decreased; however, the performance rankings based 

on different evaluation ratios were slightly different. At a confidence level of 90%, 

the mean return slightly increased as the VaR constraint tightened, the negative 

skewness of the portfolio became smaller and the empirical VaR and CVaR 

decreased. Both the risk-adjusted and the active performance of the DCC-VaR-

BL portfolio were consistent with an improving performance and were denoted 

the same rank by different evaluation ratios. The risk-adjusted performance in 

the DCC-VaR-BL portfolio was best at a 99% confidence level, but worsened as 
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the confidence level was reduced. The active portfolio performance of the DCC-

VaR-BL portfolio was best at a moderate confidence level of 95%.  

At each confidence level, the risk adjusted performance of the DCC-VaR-BL 

portfolio was better for the t-distribution than the normal distribution. In addition, 

the active performance for the t-distribution was better than for the normal 

distribution at confidence levels of 95% and 90%. 

When thinking about the effect of the confidence level and distribution on the 

VaR limit, it is known that a higher confidence level leads to tighter VaR 

constraints, and these are further increased for the t-distribution. Therefore, it 

can be summarised that tighter VaR constraints for higher confidence levels 

improve the performance of the SR-BL portfolio. 

Compared with the results shown in Table 6.1.11, all of the DCC-VaR-BL 

portfolios outperformed the benchmark portfolio. Most of DCC-VaR-BL portfolio 

constrained at an intermediate level performed better than the DCC-SR-BL 

portfolio. In addition, the risk-adjusted performance of the DCC-VaR-

constrained BL portfolio at a confidence level of 99% for the t-distribution 

outperformed the DCC-MVaR-BL and DCC-MCVaR-BL portfolios. It should be 

noted that although the DCC-MCVaR-BL portfolio achieved a higher Sharpe 

ratio of 14.17% at a confidence level of 99% for the t-distribution, when 

considering the greater negative skewness of -0.6143 and higher kurtosis of 

3.7680, it was not appropriate to use the Sharpe ratio to rank performance, and 

the reward to CVaR ratio would be a better choice. When the information ratio 

was used to rank the active portfolio performance, the DCC-MVaR-BL and 

DCC-MCVaR-BL portfolios were superior to the DCC VaR-constrained BL 

portfolio. None of DCC-VaR-BL portfolios were able to perform better than the 

implied BL portfolio.   

6.2.4 Conclusions 

The superior performance of VaR-constrained BL portfolio provides evidence 

that adding an intermediate level of the VaR constraint to the SR-BL portfolio 

improves the SR-BL portfolio performance for a single period and for multiple 

periods using an out-of-sample framework. Employing the DCC model to 

construct a dynamic VaR-constrained BL portfolio results in a better 
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performance than using the EWMA and RW110 models for both a single period 

and for multiple periods. Although the risk-adjusted performance DCC-VaR-BL 

portfolio outperforms that of the MVaR-BL and MCVaR-BL portfolios in some 

circumstances, the DCC-VaR-BL portfolio is not the best choice to achieve the 

best active portfolio performance. The implied BL portfolio that has the best 

performance for multiple periods is the VaR-constrained BL portfolio based on 

the DCC model; however, the use of the EWMA and RW110 models for the 

VaR-constrained BL portfolio could outperform the corresponding implied BL 

portfolio. 

After I study the effect of the distribution assumptions and confidence levels on 

the DCC-VaR-BL portfolio, I can conclude that the out-of-sample DCC-VaR-BL 

portfolio performance could be improved by adding tighter VaR constraints. 

However, if the VaR constraints were too tight, the performance would 

deteriorate. It shows a diminishing effect of adding tighter VaR constraints. 

6.3 Out-of-sample Dynamic CVaR-Constrained BL Portfolios 

In Section 6.2, it was illustrated that adding the VaR constraint at intermediate 

levels significantly improved the performance of the out-of-sample SR-BL 

portfolio. In addition, the empirical CVaR in the SR-BL portfolio was relative 

higher than in the implied BL portfolio, as can be seen in Table 6.1.11. One of 

research questions in this section is to examine whether adding the CVaR 

constraint could improve the out-of-sample SR-BL portfolio performance and 

the out-of-sample VaR-constrained BL portfolio performance for a single period 

and for multiple periods and this question will be studied in the following three 

sub-sections. Another research task is to investigate the effects of the level of 

CVaR constraints, distribution assumptions, and confidence levels on the 

CVaR-constrained BL portfolio performance, and these will be discussed in 

Section 6.3.4.   

6.3.1 Construction of Out-of-sample CVaR-Constrained BL Portfolios 

The first task before evaluating the CVaR-constrained BL portfolio is to 

construct it. As proposed in the method in Section 4.2.5, the out-of-sample 

CVaR-constrained BL portfolio optimisation problem can be rewritten as: 



247 
 

subject to 1,21, '

1,1,01,   1ww tBLtBLt CVaRCVaR  

Similar to set 0VaR , I set the value of 0CVaR  equal to decreasing scaling factor 

k  multiplied by CVaR of unconstrained implied BL portfolio at each time t , k  

could be equal to 0.99, 0.95, 0.90 and reduces sequentially. 0CVaR  is not 

constant during the whole period.  

The weight solutions from the optimisation problem are used to construct the 

CVaR-constrained BL portfolio and Table 6.3.1 reports the weights allocated to 

each asset for September 2003. Comparing Table 6.3.1 with Table 6.1.5, 

similar to the VaR-BL portfolio, the CVaR-BL portfolio weight solutions for the 

normal distribution were nearly the same as those for the SR-BL portfolio. This 

was because that the CVaR limit was not large enough to change the weights 

solution for the normal distribution. However, when the distribution was changed 

to the t-distribution, the CVaR limit was tightened, and the position range in the 

DCC-CVaR-BL portfolio was changed from between -7.95% (Japan Consumer 

Goods) and 23.45% (USA Health Care) to a wider of between -12.35% (USA 

Industrials) and 28.25% (USA Health Care). The absolute value of the position 

range was actually widened about 9.20%. The position range in the DCC-

CVaR-BL portfolio was approximately 11.41% wider than the position range in 

the DCC-VaR-BL portfolio for the t-distribution compared with the results shown 

in Table 6.2.1. As the VaR-constrained BL portfolio is based upon the EWMA 

and RW110 models, both EWMA-CVaR-BL portfolio and the RW110-CVaR-BL 

portfolio were unbounded because the CVaR constraints were too tight for the t-

distribution assumption, thus no weights solution were reported in the table.  

Appendix 6.3.1 reports average value of weights allocated to each index in the 

out-of-sample CVaR-constrained BL portfolio in the period from September 

2003 to May 2010 and Appendix 6.3.2 reports the standard deviation of time-

varying weights in each index. Similar to the out-of-sample VaR-constrained BL 

portfolio, it can be concluded that the change from the normal distribution to the 

t-distribution has the effect of widening the average absolute position range and 

increasing the average standard deviation of weights on the out-of-sample 
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CVaR-constrainted BL portfolio. In addition, for the t-distribution, the CVaR-BL 

portfolio using the DCC model has narrowest average absolute position range 

and most volatile weight solutions than using the EWMA model and the RW110 

model. Moreover, for the t-distribution, the CVaR-BL portfolio has wider average 

absolute position range and more volatile weight solutions than the VaR-BL 

portfolio over the out of sample. 

6.3.2 Single Period Out-of-Sample CVaR-Constrained BL Portfolio 

Performance 

Table 6.3.2 reports the out-of-sample CVaR-constrained BL portfolio 

performance in September 2003. For the normal distribution, the DCC-CVaR-

BL portfolio performed best with a much higher conditional Sharpe ratio and 

reward to CVaR ratio equal to 88.16% and 49.42%, respectively, and the price 

for the greater portfolio turnover was 1.7944. The EWMA-CVaR-BL portfolio 

performed slightly better than the RW110-CVaR-BL portfolio, with a marginally 

higher conditional evaluation ratios and a lower portfolio turnover. For the t-

distribution, the tighter CVaR constraint improved the DCC-CVaR-BL 

performance resulting in a higher conditional Sharpe ratio (95.95%) and a 

reward to CVaR ratio (56.25%). Both the EWMA-CVaR-BL and RW110-CVaR-

BL portfolios were unbounded and so the performance results were not 

reported.  

In contrast to the VaR-constrained BL portfolio shown in Table 6.2.2, the single-

period performance of the CVaR-constrained BL portfolio as detailed in Table 

6.3.2 demonstrated a slightly better performance but at a cost of a higher 

portfolio turnover. This single-period performance indeed provided some 

evidence that the CVaR-BL portfolio using the DCC model performed better 

than using other two volatility models and the CVaR-BL portfolio could perform 

better than the VaR-BL portfolio. However, it is still necessary to evaluate 

average performances over multiple periods to get more reliable conclusion. 

6.3.3 Multiple Period Out-of-Sample Performance CVaR-Constrained BL 

Portfolio Performance 

Table 6.3.3 reports the results of the out-of-sample VaR-constrained BL 

portfolio performance for multiple periods from September 2003 to May 2010. It 
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should be noted that if the CVaR constraints were too tight for binding the SR-

BL portfolio, then the positions in the minimum variance portfolio were used to 

replace the missing weight solutions for some single periods.  

For the normal distribution, the risk-adjusted performance and the active 

performance of the DCC-CVaR-BL portfolio were best with the highest 

evaluation ratios compared to the other two VaR-BL portfolios. The EWMA-

CVaR-BL portfolio performed better than the RW110-VaR-BL portfolio. However, 

for the t-distribution, the EWMA-CVaR-BL portfolio had the best risk-adjusted 

performance, followed by the DCC-CVaR-BL portfolio and then the RW110-

VaR-BL portfolio. If the CVaR-BL portfolios were ranked using the information 

ratio then the DCC-CVaR-BL portfolio showed the most outstanding active 

performance with an information ratio equal to 10.71%, followed by the RW110-

CVaR-BL and the EWMA-CVaR-BL portfolios with information ratios equal to 

7.08% and 2.95%, respectively. In addition, performance of the CVaR-BL 

portfolio for a multiple period and the t-distribution was better than the 

performance of the CVaR-BL portfolio with the normal distribution. This 

reflected that tighter CVaR constraints could improve the multi-period out-of-

sample performance.  

Compared to the SR-BL portfolio performance shown in Table 6.1.11, the 

CVaR-constrained BL portfolio performed better for both the normal distribution 

and the t-distribution. Moreover, when compared to the MVaR-BL and MCVaR-

BL portfolios, the CVaR-constrained BL portfolio based upon the EWMA and 

RW110 models demonstrated a better risk-adjusted performance for both 

distributions and a better active performance for multiple periods with the 

normal distribution. The DCC-CVaR-BL portfolio for the t-distribution, where the 

CVaR constraint was much tighter than for the normal distribution, outperformed 

the DCC-MVaR-BL portfolio and the DCC-MCVaR-BL with the normal 

distribution; however, this performance was not observed for the normal 

distribution. Moreover, the active performance for the DCC-CVaR-BL portfolio 

was always worse than that of the DCC-MVaR-BL portfolio and the DCC-

MCVaR-BL for both distributions. With regards to portfolio risk measurement, all 

of the CVaR-constrained BL portfolios had smaller risks than the SR-BL 

portfolios, the MVaR-BL portfolios and the MCVaR-BL portfolios as measured 

by standard deviation, empirical VaR and empirical CVaR. Furthermore, all of 
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the CVaR-constrained BL portfolios outperformed the benchmark portfolio. 

Although the DCC-CVaR-BL portfolio was inferior to the implied DCC-BL 

portfolio which always gave the best risk-adjusted performance and active 

performance for multiple periods, the CVaR-BL portfolio based on the EWMA 

and RW110 models with the t-distribution, outperformed the risk-adjusted 

performance for the implied BL portfolio. 

Compared to the VaR-BL portfolio performance shown in Table 6.2.3, the 

CVaR-BL portfolio with the normal distribution did not demonstrate any 

differences, but the EWMA-CVaR-BL portfolio had a better risk-adjusted 

performance with the t-distribution.  

6.3.4 Effects on Out-of-sample CVaR-Constrained BL Portfolios 

Performance 

Since the DCC-CVaR-BL portfolio performed relatively better than the other two 

VaR-constrained BL portfolios for a single period and for multiple periods, as 

explained in sections 6.3.2 and 6.3.3, the effects of the level of CVaR 

constraints, distribution assumptions, and confidence level on the DCC-VaR-BL 

portfolio would be investigated.  

6.3.4.1 Effects on Weights of the Out-of-sample CVaR-Constrained BL 

Portfolio 

Table 6.3.4 shows the positions of each asset in the DCC-CVaR-BL portfolio in 

September 2003 for the normal distribution and the t-distribution at a confidence 

level of 99% as the CVaR factor decreases. It should be noted that the 

expected CVaR of the implied DCC-BL portfolio was 16.65%, whilst the 

expected VaR of the DCC-SR-BL was much lower at 11.52%. Therefore, when 

adding the scaling factors multiplied by the CVaR of the implied BL portfolio as 

the 0CVaR , these CVaR constraints were insufficiently tight to bind the DCC 

SR-BL portfolio for the normal distribution, but when altered to the t-distribution 

then the CVaR constraints were increased. Since the CVaR constraints at a 

lower confidence level were not tight enough to bind the DCC-SR-BL portfolio, 

and the weights allocated were the same as those at a confidence level of 99% 

for the normal distribution, the weights for each asset for confidence levels of 95% 

and 90% for both distributions are not reported. 
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As can be seen in Table 6.3.4, the positions barely changed for the normal 

distribution due to the unbounded CVaR constraints; however, for the t-

distribution the CVaR constraint tightened at a confidence level of 99%, and the 

position range gradually became wider. Specifically, when the CVaR factors 

decreased from 0.99 to 0.80, it was found that the largest short position in the 

USA Industrials increased from 12.35% to 17.02%, and the largest long position 

in USA Health Care increased from 28.25% to 31.55%.  

Compared with the weight solutions for the VaR-constrained BL portfolio, the 

CVaR-constrained BL portfolio allocated assets with the same positions for the 

normal distribution; however, when this was altered to the t-distribution, then the 

position range in the CVaR-constrained BL portfolio was much wider for each 

level of constraint factor.  

6.3.4.2 Effects on the out-of-sample CVaR-Constrained BL portfolios 

performance in the single period 

Table 6.3.5 reports the out-of-sample CVaR-constrained BL portfolios 

performance results for September 2003 for the normal distribution and the t-

distribution at confidence levels of 99%, 95% and 90% as the CVaR factor 

decreased to 0.7. As explained earlier, the CVaR limit was not sufficiently tight 

to constrain the SR-BL portfolio at a lower confidence level for both distributions; 

consequently, the results for the DCC-CVaR-BL portfolio were nearly same at 

both 95% and 90% confidence levels. The performance of the DCC-CVaR-BL 

portfolio at a confidence level of 99% is shown in Table 6.3.5, Panel A. For the 

normal distribution, the portfolio turnover increased smoothly as the CVaR 

constraints tightened, while the performance barely changed. A reasonable 

explanation for the increasing portfolio turnover was that the weights changes 

became greater in the previous period when the CVaR factor was reduced to 

0.7. Unlike the performance for the normal distribution, the single period out-of-

sample performance showed obvious signs of improvement. For example, as 

the CVaR factor reduced from 0.99 to 0.90, the conditional evaluation ratios 

gradually increased and portfolio turnover gradually decreased.  
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6.3.4.3 Effects on the out-of-sample CVaR-Constrained BL portfolios 

performance in multiple periods 

For a single period there were some evidences to support the statement that 

the performance of the DCC-SR-BL portfolio can be improved by adding an 

intermediate level of CVaR constraints, although the effects of distribution 

assumptions and confidence levels need to be considered. However, it was still 

necessary to do investigate multiple periods to get reliable conclusions. Table 

6.3.6 reports the performance of the DCC-CVaR-BL portfolios for multiple 

periods from September 2003 to May 2010. 

 

For the normal distribution at a 99% confidence level, the mean return of the 

DCC-CVaR-BL portfolio remained at nearly the same level of 44bp when the 

CVaR factor was reduced to 0.7, and risk as measured by the standard 

deviation, empirical VaR and empirical CVaR showed a decreasing trend which 

led to an increasing trend for the risk-adjusted performance evaluation ratios. 

However, the active portfolio performance was not strictly consistent with the 

increasing trend for the risk-adjusted performance. Different evaluation ratios 

generated slightly different rankings for the risk-adjusted performance of the 

DCC-CVaR-BL portfolio. At confidence levels of 95% and 90%, as the CVaR 

constraint tightened, the negative skewness of the portfolio became smaller and 

this led to less tail risks as reflected in the decreased empirical VaR and CVaR. 

The risk-adjusted performance of the DCC-CVaR-BL portfolio improved with 

same ranking being denoted by the different evaluation ratios, and the active 

performance was consistent with the enhancing trend. In addition, at a higher 

confidence level, risk-adjusted performance and active performance was better 

with tighter CVaR constraints. 

For the t-distribution at a confidence level of 99%, while the CVaR factor 

decreased, the mean return and risk decreased smoothly. At first, the risk-

adjusted performance ratios and the information ratio improved to the highest 

values but then deteriorated. At confidence levels of 95% and 90%, there was 

an increasing trend in the risk-adjusted performance evaluation ratios as the 

CVaR factor was reduced; however, the active performance rank based on the 

information ratio was inconsistent. The risk-adjusted performance for the DCC-
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CVaR-BL portfolio was best at a 99% confidence level, but worsened at lower 

confidence levels. The active portfolio performance for the DCC-VaR-BL 

portfolio was best at a moderate confidence level of 95% and a CVaR 

constraints factor of 0.80. 

For each confidence level, the risk adjusted performance of the DCC-CVaR-BL 

portfolio was better for the t-distribution than the normal distribution. The active 

performance for the t-distribution was better than for the normal distribution at 

confidence levels of 95% and 90%. 

Comparisons with Table 6.1.11 indicated that all of the DCC-CVaR-BL portfolios 

could outperform the benchmark portfolio. In contrast to the risk-adjusted 

performance, all of DCC-CVaR-BL portfolios performed better than the DCC-

SR-BL portfolio. When evaluating the active performance, most of the DCC-

CVaR-BL portfolios performed better for the normal distribution at all three 

confidence levels and for the t-distribution with confidence levels of 95% and 

90%. In addition, the risk-adjusted performance of the DCC-CVaR-constrained 

BL portfolio for the t-distribution with certain constraints was able to outperform 

the DCC-MVaR-BL and DCC-MCVaR-BL portfolios. When the information ratio 

was used to rank the active portfolio performance, then the DCC-MVaR-BL and 

DCC-MCVaR-BL portfolios were better than the DCC CVaR-constrained BL 

portfolio. None of DCC-CVaR-BL portfolios performed better than the implied 

BL portfolio.   

Comparisons with the DCC-VaR-BL portfolio shown in Table 6.2.5 revealed that 

the DCC-CVaR-BL portfolio demonstrated the same performance for normal 

distribution at a confidence level of 99%, whilst at a lower confidence level the 

DCC-CVaR-BL portfolio performed better. For the t-distribution, the DCC-CVaR-

BL portfolio also had a superior performance to the DCC-VaR-BL portfolio for 

each confidence level.  

A higher confidence level and the t-distribution led to tighter CVaR constraints, 

and the CVaR constraints were relatively tighter than the VaR constraints for 

the same level of confidence. The main finding for the CVaR-constrained BL 

portfolio was that tighter CVaR constraints at intermediate levels resulted in a 

better performance of the constrained SR-BL portfolio for multiple periods. 
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6.3.5 Conclusions 

Similar to the out-of-sample VaR-constrained BL portfolio, the out-of-sample 

CVaR-constrained BL portfolio also exhibits an attractive performance for a 

single period and for multiple periods, thereby supporting the argument that 

imposing an intermediate level of CVaR constraint enhances the performance 

of the SR-BL portfolio. In addition, using the DCC model to construct a dynamic 

CVaR-constrained BL portfolio results in a better performance than when the 

EWMA and RW110 models are employed for both a single period and for 

multiple periods. The risk-adjusted performance of the DCC-CVaR-BL portfolio 

is better than that of the MVaR-BL and MCVaR-BL portfolios under certain 

circumstances but they have a better active performance. The CVaR-

constrained BL portfolio outperforms the implied BL portfolio based upon the 

EWMA model and RW110 models. In addition, the CVaR-constrained BL 

portfolio even demonstrates a better performance than the VaR-constrained BL 

portfolio for the t-distribution for a single period and multiple periods.     

When investigating the effect of distribution assumptions and confidence levels 

on the DCC-CVaR-BL portfolio, it is found that a tighter CVaR constraint 

generates a positive effect by improving the performance if the constraint line 

excludes the maximal Sharpe ratio point. However, this effect diminishes as the 

CVaR constraint tightens. Note that the change to t-distribution assumption and 

a higher confidence level could result in a tighter CVaR constraint. Another 

trend noted is that the tighter the constraint, the wider the positions range within 

the portfolio.  
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6.4 Out-of-sample Risk-Adjusted BL Portfolio 

Giacometti et al. (2007) proposed a revision to the equilibrium returns for VaR 

and CVaR corresponding to different distributions and Section 3.3.2 reviewed 

the method of their estimation of the risk-adjusted equilibrium return. The main 

aim of this section is to construct the out-of-sample risk-adjusted BL portfolio 

based on the RW110 model and to evaluate the portfolio performance for a 

single period and for multiple periods. Comparisons will also be made with other 

dynamic BL portfolios built in the previous three sections.  

6.4.1 Construction of the Risk-Adjusted BL Portfolio 

The main difference between forming the BL portfolio and the risk-adjusted BL 

portfolio is the different method used in estimating the equilibrium return. The 

first step in building the risk-adjusted BL portfolio is to adjust the equilibrium 

returns with VaR and CVaR for different confidence levels and different 

distributions. The second step is to input the view portfolio constructed by the 

momentum portfolio into the BL model. The final step is to combine the risk-

adjusted equilibrium returns with the view portfolio in order to form the BL 

portfolio. The following sections provide more details about each procedure. 

6.4.1.1 Estimation of Risk-Adjusted Implied Equilibrium Return 

Following the method of Giacometti et al. (2007) as reviewed Section 3.3.2, in 

order to present the equation consistent with those in the previous sections, the 

revised equilibrium returns can be denoted as follows: 
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is equal to 99%, 95% and 90%. )(rE is the expected returns of each asset. It 

should be noted that the risk aversion coefficients 1t  are equal to the solution 

of an optimisation problem, which minimises the sum of the squared error 

between the neutral equilibrium returns 1tπ  and the day after calculating the 

return for 82 consecutive months for a rolling window of 110 months. The same 

values for all of the out-of-sample periods are therefore fixed equal to the 

solution for the first period. 

Table 6.4.1 reports the results of the risk aversion coefficients   (Panel A and 

Panel C) and the implied equilibrium return for each index π  (Panel B and 

Panel D), for the variance-adjusted, VaR-adjusted and CVaR-adjusted BL 

portfolios for September 2003, with assumptions of the normal distribution and 

the t-distribution at confidence levels of 99%, 95% and 90%. Panel A shows 

that the risk aversion coefficients   for equation (6.1) was equal to 0.5, which is 

the same as the value reported by Giacometti et al. (2007). When VaR was 

considered in the equilibrium return, the risk aversion coefficients   for 

equation (6.15) differed depending on the distribution assumption and the 

confidence level. In the cases detailed by Giacometti et al. (2007), the risk 

aversion coefficients were set to be equal to 0.30, which was close to the value 

for the normal distribution at a confidence level of 90% (Panel A). The risk 

aversion coefficients solved for other cases were lower than 0.30, and were 

smaller for the t-distribution than for the normal distribution. In addition, the 

CVaR-adjusted risk aversion coefficients in Panel C were a little smaller than 

the VaR-adjusted risk aversion coefficients presented in Panel A for the same 

level of confidence and same distribution. Compared with the risk aversion 

coefficients in Table 6.1.1, the alternative risk aversion coefficients of 0.5 was 

approximately three times smaller than the value, around 1.5714, and the VaR 

and CVaR risk aversion coefficients were nearly 10 times smaller. Therefore, it 

was expected that the equilibrium returns would also be smaller. As can be 

seen in Table 6.4.1 Panel B and Panel D, the implied equilibrium returns for 

each asset were much smaller than the implied equilibrium returns shown in 

Table 6.1.1. The implied equilibrium return for each asset less than 20bp was 

not quite sensitive to the choice of risk measure, and the effect of the 

distribution assumption and confidence level were small.   
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6.4.1.2 Estimation of Risk-Adjusted BL Expected Return 

After estimating the implied equilibrium returns, the view portfolio was inputted 

into the BL model. The parameters for the view portfolio were shown in Table 

6.1.2, and the risk-adjusted BL expected return can be estimated using 

equation (6.3).  

Table 6.4.2 reports the BL expected returns for the variance-adjusted, VaR-

adjusted and CVaR-adjusted BL portfolios for September 2003, with 

assumptions of the normal distribution and the t-distribution at confidence levels 

of 99%, 95% and 90%. After combining the view portfolio with the market 

portfolio, several negative expected BL returns were estimated in the assets, 

including UK Basic Materials, UK Consumer Goods, UK Technology, UK 

Industrials and Japan Technology, similar to the BL portfolio expected returns 

based on the DCC model shown in Table 6.1.4. However, the values of the BL 

expected returns were much smaller and were caused by small values for the 

risk aversion coefficients. Moreover, the expected returns of assets that were 

less than 12bp were not quite sensitive to the choice of risk measurement, and 

the effects of the distribution assumption and confidence level were small.  

6.4.1.3 Construction of Unconstrained Risk-Adjusted BL Portfolios 

According to equations (6.5) and (6.7), the weight solutions for the variance-

adjusted, VaR-adjusted and CVaR-adjusted BL portfolios for the normal 

distribution and the t-distribution at confidence levels of 99%, 95% and 90% can 

be solved. Table 6.4.3 reports the positions allocated for each asset under 

these different conditions for September 2003. The common observation was 

that all of the BL portfolios possessed the same decision regarding the long or 

short position for a selected asset, but the positions of assets were different. 

Specifically, the largest short position was allocated to UK Consumer Services 

and the largest long position was allocated to USA Health Care.  

The position range in the implied variance-adjusted BL portfolio was between    

-16.19% (UK Consumer Services) and 36.2% (USA Health Care); however, the 

position range in the variance-adjusted SR-BL portfolio narrowed to between     

-11.73% (UK Consumer Services) and 25.94% (USA Health Care).  
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In the VaR-adjusted SR-BL portfolio9, the position range was slightly wider at a 

confidence level of 99% with an absolute value of 42.80%, than at confidence 

levels of 95% and 90% with an absolute value of 42.54% for the normal 

distribution. For the t-distribution, the absolute value of the position range at 

confidence levels of 99%, 95% and 90% was 39.31%, 40.20% and 41.31%, 

respectively. The position range became wider as the confidence level 

decreased, and the position range for the t-distribution was slightly narrower 

than for the normal distribution. This conclusion also applied to Appendix 6.1.4, 

Panel A, which reports average value of weights assigned in each index in the 

implied variance-adjusted BL portfolio and the VaR-adjusted SR-BL portfolio in 

the period from September 2003 to May 2010. 

In the CVaR-adjusted SR-BL portfolio10, when the confidence level was reduced 

from 99% to 90%, the largest short position was UK Consumer Services which 

increased from 12.90% to 13.42% and the largest long position was USA Health 

Care which increased from 26.92% to 27.23% for the normal distribution, 

leading to a wider position range. For the t-distribution, the largest short position 

was UK Consumer Services which increased from 12.53% to 12.99% and the 

largest long position was USA Health Care which increased from 26.53% to 

26.79%, again leading to a wider position range. The position range became 

wider as the confidence level decreased, and the position range for the t-

distribution was slightly narrower than for the normal distribution. Compared 

with the VaR-adjusted SR-BL portfolio for the same distribution level of 

confidence, the position range of the CVaR-adjusted SR-BL portfolio was a little 

narrower. These conclusions also applied to Appendix 6.1.4, Panel B, which 

reported average value of weights assigned in each index in the CVaR-adjusted 

SR-BL portfolio in the period from September 2003 to May 2010. 

In addition, according to Appendix 6.1.5, which reports standard deviation of 

weights assigned in each index in the out-of-sample unconstrained risk-

adjusted BL portfolio in the period from September 2003 to May 2010, it can be 

found that the weight solutions became more volatile as the confidence level 

                                            
 
 
9
 Weights in the VaR-adjusted implied BL portfolio were not reasonable so the maximised 

Sharpe ratio optimisation model was employed. 
10

 Weights in CVaR-adjusted implied BL portfolio were are not reasonable and so the 
maximised Sharpe ratio optimisation model was employed. 
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decreased. Moreover, the average standard deviation of weight solutions for the 

t-distribution was smaller than for the normal distribution. Compared with the 

VaR-adjusted SR-BL portfolio for the same distribution level of confidence, the 

average standard deviation of weight solutions of the CVaR-adjusted SR-BL 

portfolio was smaller. The variance-adjusted SR-BL portfolio allocated asset 

more volatile than the implied variance-adjusted BL portfolio did. 

6.4.2 Single Period Out-of-Sample Risk-Adjusted BL Portfolio 

Performance 

After constructing the risk-adjusted BL portfolios their performance for a single 

period will now be evaluated. Table 6.4.4 shows the performance of the risk-

adjusted BL portfolios evaluated by their excess return, conditional Sharpe ratio, 

portfolio turnover and reward to CVaR ratio for September 2003. Surprisingly, 

all of the risk-adjusted BL portfolios outperformed all of the BL portfolios 

constructed within the previous sections with much higher evaluation ratios for 

September 2003. 

The implied variance-adjusted BL portfolio had the highest excess return of 8.20% 

and performed better than the variance-adjusted SR-BL portfolio which had a 

bigger conditional Sharpe ratio and a reward to CVaR ratio at the price of the 

highest portfolio turnover which was equal to 2.6756.    

For the normal distribution, as the confidence level decreased the VaR-adjusted 

SR-BL portfolio performed worse with gradually decreasing evaluation ratios; 

however, for the t-distribution the VaR-adjusted SR-BL portfolio performed 

better with gradually increasing evaluation ratios at the cost of an increasing 

portfolio turnover. For the same level of confidence, the VaR-adjusted SR-BL 

portfolio with the t-distribution always performed better than with the normal 

distribution and produced a higher portfolio turnover with the t-distribution. 

Compared to the variance-adjusted BL portfolio, the VaR-adjusted SR-BL 

portfolio with the t-distribution performed better. 

For the normal distribution and the t-distribution, the performance of the CVaR-

adjusted SR-BL portfolio improved with gradually increasing evaluation ratios, 

as the confidence level was decreased. For the same level of confidence, the 

CVaR-adjusted SR-BL portfolio with the normal distribution always 
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demonstrated a better performance than with the t-distribution which produced 

a higher portfolio turnover. Compared with the variance-adjusted BL portfolio, all 

of the CVaR-adjusted SR-BL portfolios behaved better for either distribution. In 

contrast to the VaR-adjusted SR-BL portfolios, the performance of the CVaR-

adjusted SR-BL portfolios was better with the normal distribution at each 

confidence level at the cost of a larger portfolio turnover; however, when the 

distribution was altered to the t-distribution, the VaR-adjusted SR-BL portfolios 

outperformed the CVaR-adjusted SR-BL portfolios.    

This single-period performance indeed provided some evidence that the implied 

variance-adjusted portfolio performed better than the variance-adjusted SR-BL 

portfolio, and the CVaR-adjusted SR-BL portfolios could beat the VaR-adjusted 

SR-BL portfolios with the normal distribution. However, it is still necessary to 

evaluate average performances over multiple periods to get more reliable 

conclusion. 

6.4.3 Multiple-Period Out-of-Sample Risk-Adjusted BL Portfolio 

Performance 

Table 6.4.5 shows the performance of the out-of-sample risk-adjusted 

unconstrained BL portfolios for the period from September 2003 to May 2010. 

All of the risk-adjusted unconstrained BL portfolios demonstrated a negative 

skewness for multiple periods.  

Compared to the other risk-adjusted unconstrained BL portfolios, the implied 

variance-adjusted BL portfolio not only showed the best risk-adjusted 

performance as evaluated by the risk-adjusted evaluation ratios, including the 

Sharpe ratio, reward to VaR ratio and reward to CVaR ratio, but also exhibited 

the best active portfolio performance as evaluated by the information ratio. 

Compared to the out-of-sample unconstrained implied BL portfolio shown in 

Table 6.1.11, the implied variance-adjusted BL portfolio performed worse than 

the implied DCC-BL portfolio but better than the implied RW110-BL portfolio 

with regards to the risk-adjusted performance. In addition, the risk-adjusted 

performance of the implied variance-adjusted BL portfolio outperformed other 

unconstrained SR-BL, MVaR-BL and MCVaR-BL portfolios, as well as the VaR-

constrained BL portfolio (see Table 6.2.3) and the CVaR-constrained BL 

portfolio (see Table 6.3.3). The performance of the variance-adjusted SR-BL 
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portfolio was atrocious with extreme negative skewness and high kurtosis, 

leading to quite small risk-adjusted evaluation ratios. 

Furthermore, the VaR-adjusted SR-BL portfolio performed even worse with the 

normal distribution although this was partially improved by reducing the lower 

confidence level. When the normal distribution was changed to the t-distribution, 

the VaR-adjusted SR-BL portfolio performance notably increased to a stunning 

level with a Sharpe ratio and information ratio rocketing from 2.80% to 13.04% 

and from 1.97% to 13.47%, respectively at a confidence level of 99%. As the 

confidence level decreased, the VaR-adjusted SR-BL portfolio performance 

decreased slightly. Compared to the out-of-sample unconstrained implied BL 

portfolio (see Table 6.1.11), the VaR-adjusted SR-BL portfolio with the t-

distribution could only outperform the implied EWMA-BL portfolio and the risk-

adjusted performance of the implied RW110-BL portfolio rather than the active 

performance. When comparisons were made with the out-of-sample 

unconstrained SR-BL portfolios, then the VaR-adjusted SR-BL portfolio with the 

t-distribution always outperformed. Moreover, the VaR-adjusted SR-BL portfolio 

with the t-distribution behaved better than most of the MVaR-BL portfolios and 

the MCVaR-BL portfolios for a risk-adjusted performance as evaluated by the 

Sharpe ratio and active performance. However, compared to the VaR-

constrained BL portfolio (see Tables 6.2.3 and 6.2.5), the VaR-adjusted SR-BL 

portfolio with the t-distribution could only outperform the EWMA-VaR-BL 

portfolio, and failed to be better than the DCC-VaR-BL and RW110-VaR-BL 

portfolios with the t-distribution at an intermediate level of VaR constraints. In 

contrast to the CVaR-constrained BL portfolio (see Tables 6.3.3 and 6.3.5), the 

VaR-adjusted SR-BL portfolio could only outperform the RW110-CVaR-BL 

portfolio with the t-distribution at a confidence level of 99% rather than the other 

CVaR-BL portfolio with the t-distribution at an intermediate level of CVaR 

constraints. 

The risk-adjusted performance and the active performance for the CVaR-

adjusted BL portfolios became worse as the confidence level was reduced for 

the normal distribution and the t-distribution. In addition, the CVaR-adjusted BL 

portfolios demonstrated a better risk-adjusted performance and active 

performance for the t-distribution than the normal distribution. At each 

confidence level the CVaR-adjusted BL portfolios outperformed the VaR-
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adjusted BL portfolios for both the normal distribution and the t-distribution. The 

use of the CVaR-adjusted equilibrium return in the BL portfolios also 

significantly improved the performance of the variance-adjusted SR-BL portfolio. 

Compared with the out-of-sample unconstrained implied BL portfolio shown in 

Table 6.1.11, the CVaR-adjusted SR-BL portfolio with the t-distribution 

outperformed the implied BL portfolio based on the EWMA and RW110 models 

for the risk-adjusted performance rather than the active performance, and also 

performed better than all of the unconstrained SR-BL portfolios. In contrast to 

the MVaR-BL portfolios and the MCVaR-BL portfolios, the CVaR-adjusted 

portfolio demonstrated a better risk-adjusted performance as evaluated by the 

Sharpe ratio but a worse active performance. If performance was evaluated by 

the reward to VaR and reward to CVaR ratios, the CVaR-adjusted portfolio was 

inferior to the DCC-MVaR-BL and DCC-MCVaR-BL portfolios. In comparison to 

the VaR-constrained BL portfolio (see Tables 6.2.3 and 6.2.5), the CVaR-

adjusted SR-BL portfolio with the t-distribution could only outperform the 

EWMA-VaR-BL portfolio, and not the DCC-VaR-BL and RW110-VaR-BL 

portfolios with the t-distribution at an intermediate level of VaR constraints. 

Furthermore, in contrast to the CVaR-constrained BL portfolio (see Tables 6.3.3 

and 6.3.5), the CVaR-adjusted SR-BL portfolio only outperformed the RW110-

CVaR-BL portfolio with the t-distribution at a confidence level of 99%, and 

demonstrated a limited ability to perform better than other CVaR-BL portfolios 

with the t-distribution at an intermediate level of CVaR constraints. 

6.4.4 Conclusions 

The two main procedures utilised in the construction of the risk-adjusted BL 

portfolio from the unconstrained BL portfolio are the estimation of the risk 

aversion coefficients and the risk-adjusted equilibrium return. It is found that 

using the method of Giacometti et al. (2007) produces much smaller values of 

the estimated risk aversion coefficients and the equilibrium return than those of 

the unconstrained BL portfolio. After inputting the same view portfolio into the 

risk-adjusted BL model, the estimated expected returns are also smaller. It is 

found that the reverse optimisation employed in the BL model would be invalid 

when the VaR-adjusted and CVaR-adjusted expected returns are used, and the 

weights solutions are unrealistic; however, using the maximal Sharpe ratio 

optimiser could remedy this problem. Therefore, comparisons are made with the 
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other unconstrained BL portfolios using the VaR-adjusted SR-BL and CVaR-

adjusted SR-BL portfolios.  

The out-of-sample risk-adjusted BL portfolio demonstrates an impressive single-

period performance, which is superior to the unconstrained BL portfolios and 

the risk constrained BL portfolios, as illustrated in the previous three sections, 

however, this conclusion may not be reliable without further evaluation of the 

average performance. In addition, both the VaR-adjusted BL portfolio and the 

CVaR-adjusted BL portfolio perform better than the variance-adjusted BL 

portfolio. The CVaR-adjusted BL portfolio outperforms the VaR-adjusted BL 

portfolio under certain circumstances. The effects of the distribution assumption 

and confidence level are inconsistent for the VaR-adjusted BL and the CVaR-

adjusted BL portfolios.  

For multiple periods, the implied variance-adjusted BL portfolio exhibits the best 

risk-adjusted performance and active portfolio performance of the risk-adjusted 

BL portfolios. The implied variance-adjusted BL portfolio outperforms all of the 

unconstrained BL portfolios and the risk-constrained BL portfolios except for the 

implied DCC-BL portfolio. The risk-adjusted performance of both the VaR-

adjusted BL portfolio and the CVaR-adjusted BL portfolio was better than most 

of the unconstrained BL portfolios, but the active performance fails to be better 

than that of the MVaR-BL and the MCVaR-BL portfolio. In addition, the VaR-

adjusted BL portfolio and the CVaR-adjusted BL portfolio demonstrate a limited 

ability to outperform the VaR-constrained BL portfolio and CVaR-constrained BL 

portfolio for the t-distribution at an intermediate level of constraints. Finally, the 

CVaR-adjusted BL portfolio performs better than the VaR-adjusted BL portfolio 

at a lower confidence level. 
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Pannel A: Risk Aversion Coefficient 
  

 
DCC EWMA RW110 

Risk Aversion Coefficient 1.4798 1.6713 1.5714 

    Pannel B: Implied Eqiulibrium Return 
  

 
DCC EWMA RW110 

UK BASIC MATS  0.0030 0.0025 0.0025 

UK CONSUMER GDS  0.0027 0.0022 0.0023 

UK CONSUMER SVS  0.0026 0.0023 0.0023 

UK FINANCIALS  0.0031 0.0030 0.0030 

UK HEALTH CARE  0.0011 0.0012 0.0012 

UK TECHNOLOGY  0.0041 0.0048 0.0048 

UK INDUSTRIALS  0.0042 0.0033 0.0033 

UK OIL & GAS  0.0017 0.0023 0.0023 

UK TELECOM  0.0023 0.0027 0.0027 

UK UTILITIES  0.0009 0.0009 0.0009 

USA BASIC MATS  0.0031 0.0029 0.0029 

USA CONSUMER GDS  0.0034 0.0031 0.0031 

USA CONSUMER SVS  0.0037 0.0032 0.0032 

USA FINANCIALS  0.0034 0.0034 0.0034 

USA HEALTH CARE  0.0019 0.0019 0.0019 

USA INDUSTRIALS  0.0034 0.0032 0.0032 

USA OIL & GAS  0.0019 0.0019 0.0019 

USA TECHNOLOGY  0.0040 0.0052 0.0052 

USA TELECOM  0.0041 0.0028 0.0028 

USA UTILITIES  0.0015 0.0013 0.0013 

JAPAN BASIC MATS  0.0020 0.0018 0.0018 

JAPAN CONSUMER GDS  0.0023 0.0023 0.0023 

JAPAN CONSUMER SVS  0.0016 0.0016 0.0016 

JAPAN FINANCIALS  0.0028 0.0026 0.0026 

JAPAN HEALTH CARE  0.0013 0.0013 0.0012 

JAPAN INDUSTRIALS  0.0024 0.0024 0.0024 

JAPAN OIL & GAS  0.0018 0.0017 0.0016 

JAPAN TECHNOLOGY  0.0038 0.0037 0.0037 

JAPAN TELECOM  0.0025 0.0028 0.0028 

JAPAN UTILITIES  0.0007 0.0007 0.0007 
  

Table 6.1.1 Out-of-sample Risk Aversion Coefficient and Implied Equilibrium 
Return in September 2003 

 
This table reports the risk aversion coefficient   (Panel A) and implied equilibrium 

return of each index π  (Panel B) in September 2003. 
2

)()(

M

fM rErE





 , the numerator 

is market risk premium and the denominator is market variance.  Hwπ  , where   is 

the risk aversion coefficient, H  is the conditional covariance matrix in the use of the 
RW model with a window length of 110, the EWMA model and the DCC model, w  is 
the market capitalisation weight of each index.  
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This table reports the view portfolio weights ( P  ), the view portfolio expected return     

( q  ), and the confidence variance ( Ω  ) in December based on three volatility models 

including the DCC model, the EWMA model and the rolling window model with a 
window length of 110. The view portfolio is constructed by the momentum strategy and 
translated into BL model following the method of Fabozzi et al. (2006). 
 

Panel A: The View Portfolio Weights ( P  ) 
  

  
DCC EWMA RW110 

 
UK BASIC MATS  0.0984 0.1319 0.1306 

 
UK CONSUMER GDS  0.0752 0.0987 0.0998 

 
UK CONSUMER SVS  0.1246 0.1641 0.1592 

 
UK FINANCIALS  0.1439 0.1397 0.1374 

 
UK HEALTH CARE  -0.1995 -0.1941 -0.1882 

 
UK TECHNOLOGY  0.0576 0.0597 0.0580 

 
UK INDUSTRIALS  0.0702 0.1047 0.1024 

 
UK OIL & GAS  -0.1784 -0.1444 -0.1402 

 
UK TELECOM  -0.1024 -0.1170 -0.1142 

 
UK UTILITIES  -0.1819 -0.1864 -0.1814 

 
USA BASIC MATS  0.1239 0.1401 0.1363 

 
USA CONSUMER GDS  -0.1178 -0.1323 -0.1309 

 
USA CONSUMER SVS  0.1253 0.1539 0.1521 

 
USA FINANCIALS  -0.1300 0.1408 0.1367 

 
USA HEALTH CARE  -0.1930 -0.1938 -0.1901 

 
USA INDUSTRIALS  0.1399 0.1539 0.1527 

 
USA OIL & GAS  -0.1834 -0.1696 -0.1710 

 
USA TECHNOLOGY  -0.0855 -0.0841 -0.0823 

 
USA TELECOM  -0.0956 -0.1336 -0.1299 

 
USA UTILITIES  -0.1248 -0.1641 -0.1593 

 
JAPAN BASIC MATS  0.1220 0.1036 0.1133 

 
JAPAN CONSUMER GDS  0.1337 -0.1305 -0.1325 

 
JAPAN CONSUMER SVS  -0.1497 -0.1517 -0.1547 

 
JAPAN FINANCIALS  0.0837 0.0858 0.0902 

 
JAPAN HEALTH CARE  -0.1463 -0.1594 -0.1563 

 
JAPAN INDUSTRIALS  0.1276 0.1261 0.1311 

 
JAPAN OIL & GAS  -0.0786 -0.0913 -0.0889 

 
JAPAN TECHNOLOGY  0.0838 0.0791 0.0826 

 
JAPAN TELECOM  0.1046 0.0912 0.0919 

 
JAPAN UTILITIES  -0.1510 -0.1580 -0.1541 

Panel B: Expected Return of the View Portfolio ( q  ) 

  

  
DCC EWMA RW110 

 
Expected Return -0.0451 -0.0239 -0.0242 

Panel C: Confidence Variance of the View Portfolio ( Ω  ) 
 

  
DCC EWMA RW110 

 
 Confidence Variance 0.0025 0.0035 0.0037 

 
 

 

Table 6.1.2 Out-of-Sample Views Portfolio Weights, Expected Return and 
Confidence Variance in September 2003 
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Table 6.1.3 Out-of-sample Portfolio Performance of the Momentum Portfolio and 

Benchmark Portfolio 

 

This table shows the average return, standard deviation and Sharpe Ratio (SR) of the 

constructed momentum portfolio and the benchmark portfolio from September 2003 to 

May 2010. Note that the initial period for constructing the momentum portfolio is in 

August 2003 in the out-of-sample analysis.      

 

 
DCC EWMA RW110 Benchmark 

Average Return 0.0016 0.0019 -0.0004 0.0005 

Standard Deviation 0.0443 0.0433 0.0465 0.0436 

Sharpe Ratio 0.0371 0.0442 -0.0090 0.0106 
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This table reports the BL expected return BLμ  for each index in September 2003 

in the use of three volatility models to forecast corresponding covariance 

matrices. )()'( '1
, tttttttttttBL πqΩPHPPHπμ P  , where   is set to be 0.1. 

 

Sep-03 DCC EWMA RW110 

UK BASIC MATS  -0.0004 0.0016 0.0015 

UK CONSUMER GDS  -0.0019 0.0007 0.0008 

UK CONSUMER SVS  0.0004 0.0016 0.0016 

UK FINANCIALS  0.0018 0.0024 0.0023 

UK HEALTH CARE  0.0022 0.0018 0.0015 

UK TECHNOLOGY  -0.0006 0.0031 0.0028 

UK INDUSTRIALS  -0.0011 0.0018 0.0018 

UK OIL & GAS  0.0012 0.0021 0.0021 

UK TELECOM  0.0017 0.0025 0.0022 

UK UTILITIES  0.0022 0.0015 0.0014 

USA BASIC MATS  0.0012 0.0020 0.0021 

USA CONSUMER GDS  0.0020 0.0023 0.0024 

USA CONSUMER SVS  0.0019 0.0024 0.0025 

USA FINANCIALS  0.0036 0.0031 0.0031 

USA HEALTH CARE  0.0030 0.0021 0.0021 

USA INDUSTRIALS  0.0021 0.0026 0.0026 

USA OIL & GAS  0.0021 0.0019 0.0019 

USA TECHNOLOGY  0.0018 0.0041 0.0041 

USA TELECOM  0.0049 0.0027 0.0028 

USA UTILITIES  0.0035 0.0017 0.0016 

JAPAN BASIC MATS  0.0001 0.0018 0.0016 

JAPAN CONSUMER GDS  -0.0006 0.0019 0.0017 

JAPAN CONSUMER SVS  0.0003 0.0018 0.0015 

JAPAN FINANCIALS  0.0001 0.0027 0.0021 

JAPAN HEALTH CARE  0.0017 0.0019 0.0017 

JAPAN INDUSTRIALS  -0.0008 0.0017 0.0017 

JAPAN OIL & GAS  0.0015 0.0024 0.0020 

JAPAN TECHNOLOGY  -0.0019 0.0023 0.0021 

JAPAN TELECOM  -0.0004 0.0021 0.0020 

JAPAN UTILITIES  0.0015 0.0014 0.0011 
 
  

Table 6.1.4 The Out-of-sample BL Expected Returns for Each Index in September 
2003 
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This table reports the weights assigned in each index in September 2003. Weights in 

the unconstrained implied BL portfolio are calculated by tBLt

t

tBL ,
1*

,

1
μVw 


. The SR-BL 

portfolio allocates asset to achieve the maximal SR in the optimisation problem, 

weights can be calculated by 
tBLt

tBLt
tBL

,
1

,
1

*
,

' μV1

μV
w





  . 

 

Sep-03 DCC EWMA RW110 

 
Implied  BL SR-BL  Implied  BL SR-BL  Implied  BL SR-BL  

UK BASIC MATS  -0.0940 -0.0652 -0.0420 -0.0364 -0.0431 -0.0377 

UK CONSUMER GDS  -0.0732 -0.0507 -0.0325 -0.0287 -0.0341 -0.0304 

UK CONSUMER SVS  -0.1075 -0.0747 -0.0410 -0.0365 -0.0411 -0.0369 

UK FINANCIALS  -0.1064 -0.0737 -0.0121 -0.0108 -0.0129 -0.0117 

UK HEALTH CARE  0.2244 0.1555 0.0967 0.0852 0.0965 0.0860 

UK TECHNOLOGY  -0.0543 -0.0375 -0.0172 -0.0152 -0.0173 -0.0154 

UK INDUSTRIALS  -0.0474 -0.0329 -0.0138 -0.0123 -0.0142 -0.0127 

UK OIL & GAS  0.1787 0.1248 0.0542 0.0476 0.0542 0.0481 

UK TELECOM  0.1182 0.0818 0.0593 0.0524 0.0595 0.0532 

UK UTILITIES  0.1863 0.1290 0.0732 0.0647 0.0734 0.0655 

USA BASIC MATS  -0.1024 -0.0710 -0.0282 -0.0252 -0.0284 -0.0256 

USA CONSUMER GDS  0.1287 0.0892 0.0600 0.0528 0.0609 0.0541 

USA CONSUMER SVS  -0.0244 -0.0166 0.0464 0.0410 0.0453 0.0404 

USA FINANCIALS  0.2781 0.1927 0.1004 0.0884 0.1003 0.0894 

USA HEALTH CARE  0.3391 0.2345 0.2176 0.1920 0.2183 0.1944 

USA INDUSTRIALS  -0.0825 -0.0574 0.0028 0.0025 0.0014 0.0013 

USA OIL & GAS  0.2237 0.1542 0.1032 0.0912 0.1055 0.0940 

USA TECHNOLOGY  0.1932 0.1341 0.1395 0.1231 0.1397 0.1245 

USA TELECOM  0.1161 0.0803 0.0698 0.0617 0.0698 0.0622 

USA UTILITIES  0.1530 0.1064 0.0886 0.0782 0.0886 0.0790 

JAPAN BASIC MATS  -0.1089 -0.0753 -0.0235 -0.0207 -0.0282 -0.0250 

JAPAN CONSUMER GDS  -0.1146 -0.0795 0.0655 0.0579 0.0675 0.0603 

JAPAN CONSUMER SVS  0.1616 0.1120 0.0682 0.0604 0.0708 0.0635 

JAPAN FINANCIALS  -0.0618 -0.0428 -0.0081 -0.0071 -0.0107 -0.0095 

JAPAN HEALTH CARE  0.1562 0.1085 0.0689 0.0600 0.0694 0.0610 

JAPAN INDUSTRIALS  -0.1058 -0.0736 -0.0229 -0.0205 -0.0262 -0.0236 

JAPAN OIL & GAS  0.0799 0.0553 0.0355 0.0314 0.0356 0.0318 

JAPAN TECHNOLOGY  -0.0726 -0.0503 -0.0165 -0.0146 -0.0187 -0.0167 

JAPAN TELECOM  -0.0947 -0.0657 -0.0222 -0.0196 -0.0236 -0.0209 

JAPAN UTILITIES  0.1567 0.1085 0.0642 0.0568 0.0644 0.0575 

 
  

Table 6.1.5 Weights in the Out-of-sample Unconstrained Implied BL Portfolio and 
the SR-BL Portfolio in September 2003 
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This table reports weights allocated to each index in the unconstrained MVaR-BL 
portfolio in September 2003. The weight in the MVaR-BL portfolio is the solution to the 
optimisation problem with the target of maximal expected excess return to VaR ratio. 
VaR is estimated by parametric method with the assumption of the normal distribution 
and the t-distribution at the confidence level of 99%.  
 

Sep-03 Normal Distribution t-Distribution 

 
DCC EWMA RW110 DCC EWMA  RW110 

UK BASIC MATS  -0.0769 -0.0373 -0.0359 -0.0844 -0.0382 -0.0356 

UK CONSUMER GDS  -0.0671 -0.0287 -0.0300 -0.0681 -0.0286 -0.0304 

UK CONSUMER SVS  -0.1227 -0.0362 -0.0393 -0.1252 -0.0360 -0.0399 

UK FINANCIALS  -0.1146 -0.0104 -0.0109 -0.1180 -0.0104 -0.0109 

UK HEALTH CARE  0.1633 0.0853 0.0860 0.1622 0.0850 0.0857 

UK TECHNOLOGY  -0.0474 -0.0152 -0.0155 -0.0325 -0.0152 -0.0151 

UK INDUSTRIALS  -0.0088 -0.0119 -0.0131 -0.0064 -0.0116 -0.0129 

UK OIL & GAS  0.1405 0.0485 0.0474 0.1398 0.0489 0.0476 

UK TELECOM  0.0835 0.0523 0.0533 0.0875 0.0523 0.0539 

UK UTILITIES  0.1211 0.0646 0.0651 0.1199 0.0645 0.0647 

USA BASIC MATS  -0.1110 -0.0250 -0.0257 -0.1133 -0.0244 -0.0255 

USA CONSUMER GDS  0.1152 0.0532 0.0543 0.1185 0.0530 0.0545 

USA CONSUMER SVS  -0.0319 0.0410 0.0401 -0.0291 0.0405 0.0402 

USA FINANCIALS  0.2535 0.0881 0.0885 0.2566 0.0882 0.0885 

USA HEALTH CARE  0.2785 0.1918 0.1953 0.2830 0.1915 0.1960 

USA INDUSTRIALS  -0.0869 0.0031 0.0004 -0.0882 0.0039 -0.0002 

USA OIL & GAS  0.1834 0.0897 0.0946 0.1840 0.0887 0.0947 

USA TECHNOLOGY  0.1817 0.1232 0.1250 0.1943 0.1231 0.1247 

USA TELECOM  0.1066 0.0611 0.0624 0.1148 0.0614 0.0622 

USA UTILITIES  0.0961 0.0786 0.0797 0.0942 0.0785 0.0794 

JAPAN BASIC MATS  -0.1045 -0.0207 -0.0252 -0.1121 -0.0206 -0.0253 

JAPAN CONSUMER GDS  -0.1269 0.0577 0.0617 -0.1300 0.0578 0.0627 

JAPAN CONSUMER SVS  0.1397 0.0600 0.0652 0.1366 0.0600 0.0658 

JAPAN FINANCIALS  -0.0334 -0.0071 -0.0101 -0.0413 -0.0071 -0.0106 

JAPAN HEALTH CARE  0.1218 0.0614 0.0608 0.1183 0.0620 0.0607 

JAPAN INDUSTRIALS  -0.1107 -0.0205 -0.0245 -0.1131 -0.0210 -0.0247 

JAPAN OIL & GAS  0.0833 0.0310 0.0317 0.0765 0.0308 0.0326 

JAPAN TECHNOLOGY  -0.0345 -0.0148 -0.0169 -0.0326 -0.0146 -0.0172 

JAPAN TELECOM  -0.0978 -0.0193 -0.0208 -0.0959 -0.0195 -0.0216 

JAPAN UTILITIES  0.1072 0.0565 0.0566 0.1041 0.0569 0.0562 
 
  

Table 6.1.6 Weights in the Out-of-sample Unconstrained MVaR-BL portfolio in 
September 2003 
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This table shows positions of each asset in the MVaR-BL portfolio in September 2003 
under the normal distribution and the t-distribution at confidence levels of 99%, 95% 
and 90%. Note that the covariance matrix applied to the MVaR-BL model is the DCC 
covariance matrix in this table. 
 

MVaR-BL Portfolio Weights Normal Distribution t-Distribution 

 
0.99 0.95 0.9 0.99 0.95 0.9 

UK BASIC MATS  -0.0769 -0.0654 -0.0652 -0.0844 -0.0759 -0.0725 

UK CONSUMER GDS  -0.0671 -0.0507 -0.0507 -0.0681 -0.0668 -0.0656 

UK CONSUMER SVS  -0.1227 -0.0747 -0.0747 -0.1252 -0.1224 -0.1205 

UK FINANCIALS  -0.1146 -0.0733 -0.0737 -0.1180 -0.1141 -0.1121 

UK HEALTH CARE  0.1633 0.1549 0.1555 0.1622 0.1629 0.1621 

UK TECHNOLOGY  -0.0474 -0.0376 -0.0376 -0.0325 -0.0478 -0.0489 

UK INDUSTRIALS  -0.0088 -0.0329 -0.0329 -0.0064 -0.0084 -0.0075 

UK OIL & GAS  0.1405 0.1254 0.1248 0.1398 0.1404 0.1400 

UK TELECOM  0.0835 0.0817 0.0818 0.0875 0.0832 0.0828 

UK UTILITIES  0.1211 0.1287 0.1290 0.1199 0.1208 0.1203 

USA BASIC MATS  -0.1110 -0.0706 -0.0710 -0.1133 -0.1107 -0.1093 

USA CONSUMER GDS  0.1152 0.0891 0.0892 0.1185 0.1150 0.1141 

USA CONSUMER SVS  -0.0319 -0.0167 -0.0166 -0.0291 -0.0319 -0.0319 

USA FINANCIALS  0.2535 0.1932 0.1927 0.2566 0.2531 0.2520 

USA HEALTH CARE  0.2785 0.2346 0.2345 0.2830 0.2776 0.2747 

USA INDUSTRIALS  -0.0869 -0.0578 -0.0574 -0.0882 -0.0866 -0.0855 

USA OIL & GAS  0.1834 0.1532 0.1542 0.1840 0.1830 0.1821 

USA TECHNOLOGY  0.1817 0.1341 0.1341 0.1943 0.1808 0.1774 

USA TELECOM  0.1066 0.0804 0.0803 0.1148 0.1061 0.1043 

USA UTILITIES  0.0961 0.1067 0.1064 0.0942 0.0959 0.0960 

JAPAN BASIC MATS  -0.1045 -0.0749 -0.0753 -0.1121 -0.1040 -0.1029 

JAPAN CONSUMER GDS  -0.1269 -0.0795 -0.0795 -0.1300 -0.1266 -0.1254 

JAPAN CONSUMER SVS  0.1397 0.1128 0.1119 0.1366 0.1397 0.1396 

JAPAN FINANCIALS  -0.0334 -0.0431 -0.0428 -0.0413 -0.0328 -0.0314 

JAPAN HEALTH CARE  0.1218 0.1081 0.1085 0.1183 0.1217 0.1211 

JAPAN INDUSTRIALS  -0.1107 -0.0736 -0.0735 -0.1131 -0.1104 -0.1097 

JAPAN OIL & GAS  0.0833 0.0552 0.0553 0.0765 0.0834 0.0830 

JAPAN TECHNOLOGY  -0.0345 -0.0503 -0.0502 -0.0326 -0.0343 -0.0339 

JAPAN TELECOM  -0.0978 -0.0659 -0.0656 -0.0959 -0.0979 -0.0988 

JAPAN UTILITIES  0.1072 0.1089 0.1085 0.1041 0.1070 0.1063 
 
 
 
 
 
 
 
 
 
 

Table 6.1.7 Effect of Distribution Assumptions and Confidence Levels on out-of-sample 
MVaR-BL Portfolio Weights 
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Table 6.1.8 Weights in an Out-of-sample Unconstrained MCVaR-BL portfolio in 
September 2003 

 
This table reports weights allocated to each index in an unconstrained MCVaR-BL 
portfolio in September 2003. The weight in the MCVaR-BL portfolio is the solution to 
the optimisation problem with the target of maximal expected excess return to CVaR. 
Correspondingly, CVaR is also estimated by the parametric method with the 
assumption of the normal distribution and the t-distribution at the confidence level of 
99%.  
 

Sep-03 Normal Distribution t-Distribution 

 
DCC EWMA RW110 DCC EWMA  RW110 

UK BASIC MATS  -0.0837 -0.0376 -0.0359 -0.1087 -0.0402 -0.0356 

UK CONSUMER GDS  -0.0677 -0.0287 -0.0300 -0.0880 -0.0287 -0.0304 

UK CONSUMER SVS  -0.1252 -0.0362 -0.0393 -0.1223 -0.0354 -0.0400 

UK FINANCIALS  -0.1179 -0.0104 -0.0109 -0.1212 -0.0106 -0.0110 

UK HEALTH CARE  0.1618 0.0853 0.0860 0.2097 0.0840 0.0857 

UK TECHNOLOGY  -0.0332 -0.0152 -0.0155 -0.0691 -0.0147 -0.0151 

UK INDUSTRIALS  -0.0060 -0.0118 -0.0131 -0.0622 -0.0114 -0.0128 

UK OIL & GAS  0.1397 0.0486 0.0474 0.1639 0.0501 0.0477 

UK TELECOM  0.0869 0.0523 0.0533 0.1034 0.0513 0.0541 

UK UTILITIES  0.1194 0.0646 0.0651 0.1715 0.0642 0.0647 

USA BASIC MATS  -0.1132 -0.0249 -0.0257 -0.1172 -0.0231 -0.0255 

USA CONSUMER GDS  0.1182 0.0532 0.0543 0.1139 0.0527 0.0545 

USA CONSUMER SVS  -0.0294 0.0409 0.0401 -0.0392 0.0398 0.0402 

USA FINANCIALS  0.2561 0.0881 0.0885 0.2633 0.0890 0.0886 

USA HEALTH CARE  0.2822 0.1918 0.1953 0.3243 0.1910 0.1962 

USA INDUSTRIALS  -0.0882 0.0032 0.0003 -0.0973 0.0054 -0.0003 

USA OIL & GAS  0.1836 0.0895 0.0946 0.2090 0.0877 0.0947 

USA TECHNOLOGY  0.1936 0.1232 0.1250 0.1784 0.1226 0.1246 

USA TELECOM  0.1140 0.0612 0.0624 0.1013 0.0622 0.0621 

USA UTILITIES  0.0937 0.0786 0.0797 0.1382 0.0787 0.0793 

JAPAN BASIC MATS  -0.1113 -0.0206 -0.0252 -0.1236 -0.0200 -0.0254 

JAPAN CONSUMER GDS  -0.1296 0.0577 0.0617 -0.1294 0.0578 0.0629 

JAPAN CONSUMER SVS  0.1369 0.0600 0.0652 0.1468 0.0598 0.0659 

JAPAN FINANCIALS  -0.0402 -0.0070 -0.0101 -0.0766 -0.0078 -0.0107 

JAPAN HEALTH CARE  0.1184 0.0616 0.0608 0.1415 0.0630 0.0606 

JAPAN INDUSTRIALS  -0.1127 -0.0206 -0.0245 -0.1206 -0.0216 -0.0248 

JAPAN OIL & GAS  0.0772 0.0309 0.0317 0.0651 0.0314 0.0326 

JAPAN TECHNOLOGY  -0.0319 -0.0148 -0.0170 -0.0874 -0.0140 -0.0172 

JAPAN TELECOM  -0.0956 -0.0194 -0.0209 -0.1095 -0.0201 -0.0217 

JAPAN UTILITIES  0.1040 0.0566 0.0566 0.1419 0.0572 0.0561 
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This table shows positions of each asset in the MVaR-BL portfolio in September 2003 
under the normal distribution and the t-distribution at confidence levels of 99%, 95% 
and 90%. Note that the covariance matrix applied to the MCVaR-BL model is the DCC 
covariance matrix in this table. 
 

MCVaR-BL Portfolio Weights Normal Distribution t-Distribution 

 
0.99 0.95 0.90 0.99 0.95 0.90 

UK BASIC MATS  -0.0837 -0.0756 -0.0739 -0.1087 -0.0841 -0.0776 

UK CONSUMER GDS  -0.0677 -0.0667 -0.0661 -0.0880 -0.0679 -0.0674 

UK CONSUMER SVS  -0.1252 -0.1222 -0.1214 -0.1223 -0.1252 -0.1230 

UK FINANCIALS  -0.1179 -0.1140 -0.1130 -0.1212 -0.1180 -0.1149 

UK HEALTH CARE  0.1618 0.1628 0.1623 0.2097 0.1620 0.1636 

UK TECHNOLOGY  -0.0332 -0.0480 -0.0485 -0.0691 -0.0328 -0.0471 

UK INDUSTRIALS  -0.0060 -0.0083 -0.0077 -0.0622 -0.0062 -0.0092 

UK OIL & GAS  0.1397 0.1403 0.1401 0.1639 0.1398 0.1407 

UK TELECOM  0.0869 0.0831 0.0829 0.1034 0.0873 0.0837 

UK UTILITIES  0.1194 0.1207 0.1203 0.1715 0.1197 0.1214 

USA BASIC MATS  -0.1132 -0.1105 -0.1099 -0.1172 -0.1133 -0.1112 

USA CONSUMER GDS  0.1182 0.1149 0.1145 0.1139 0.1184 0.1154 

USA CONSUMER SVS  -0.0294 -0.0319 -0.0319 -0.0392 -0.0292 -0.0319 

USA FINANCIALS  0.2561 0.2530 0.2525 0.2633 0.2564 0.2537 

USA HEALTH CARE  0.2822 0.2773 0.2759 0.3243 0.2827 0.2791 

USA INDUSTRIALS  -0.0882 -0.0865 -0.0860 -0.0973 -0.0882 -0.0871 

USA OIL & GAS  0.1836 0.1829 0.1824 0.2090 0.1838 0.1836 

USA TECHNOLOGY  0.1936 0.1805 0.1789 0.1784 0.1940 0.1823 

USA TELECOM  0.1140 0.1059 0.1050 0.1013 0.1145 0.1070 

USA UTILITIES  0.0937 0.0959 0.0958 0.1382 0.0940 0.0963 

JAPAN BASIC MATS  -0.1113 -0.1039 -0.1032 -0.1236 -0.1118 -0.1049 

JAPAN CONSUMER GDS  -0.1296 -0.1265 -0.1259 -0.1294 -0.1298 -0.1271 

JAPAN CONSUMER SVS  0.1369 0.1397 0.1397 0.1468 0.1367 0.1397 

JAPAN FINANCIALS  -0.0402 -0.0326 -0.0318 -0.0766 -0.0408 -0.0340 

JAPAN HEALTH CARE  0.1184 0.1216 0.1214 0.1415 0.1183 0.1219 

JAPAN INDUSTRIALS  -0.1127 -0.1104 -0.1100 -0.1206 -0.1129 -0.1109 

JAPAN OIL & GAS  0.0772 0.0835 0.0834 0.0651 0.0768 0.0830 

JAPAN TECHNOLOGY  -0.0319 -0.0342 -0.0339 -0.0874 -0.0323 -0.0348 

JAPAN TELECOM  -0.0956 -0.0980 -0.0983 -0.1095 -0.0958 -0.0977 

JAPAN UTILITIES  0.1040 0.1069 0.1066 0.1419 0.1041 0.1074 

 

Table 6.1.9 Effect of Distribution Assumptions and Confidence Levels on out-of-
sample MCVaR-BL Portfolio Weights 
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This table reports the results of out-of-sample unconstrained BL portfolios and the benchmark portfolio for the portfolio evaluation criteria 
including realised excess return, Conditional Sharpe Ratio (CSR), Portfolio Turnover (PT) and return to CVaR ratio in September 2003.  
The standard deviation is estimated by conditional covariance matrix of three volatility models. An implied BL portfolio is constructed by 
reverse optimisation of the utility function. SR-BL portfolio is constructed by achieving maximal SR in the optimisation problem. The 
MVaR-BL portfolio is constructed by achieving maximal return to VaR ratio in the optimisation problem. MCVaR-BL portfolio is 
constructed by achieving maximal return to CVaR ratio in the optimisation problem. Both VaR and CVaR are estimated by the parametric 
method in the optimisation model with assumption of the normal distribution (‘N’) and the t-distribution (‘t’) at confidence levels of 99%, 
95% and 90%.  
 

Sep-03 Realized Excess Return Conditional Sharpe Ratio Portfolio Turnover Reward to CVaR Ratio 

 
DCC EWMA  RW110 DCC EWMA  RW110 DCC EWMA  RW110 DCC EWMA  RW110 

Benchmark 0.0026 0.0026 0.0026 0.0579 0.0626 0.0612 N/A N/A N/A 0.0238 0.0258 0.0252 
Implied BL 0.0571 0.0297 0.0296 0.8805 0.7351 0.7285 2.9584 0.8064 0.8466 0.4934 0.3808 0.3762 

SR-BL 0.0396 0.0262 0.0264 0.8816 0.7358 0.7295 1.7944 0.6633 0.7077 0.4942 0.3814 0.3769 
99% Confidence Level: 

           MVaR-BL N  0.0436 0.0262 0.0265 0.8446 0.7361 0.7321 2.3908 0.6661 0.7143 0.4639 0.3816 0.3787 
MVaR-BL t  0.0434 0.0263 0.0266 0.8369 0.7371 0.7343 2.3989 0.6698 0.7197 0.4578 0.3823 0.3803 

MCVaR-BL N  0.0436 0.0262 0.0265 0.8446 0.7365 0.7321 2.3908 0.6679 0.7145 0.4639 0.3818 0.3787 
MCVaR-BL t  0.0479 0.0261 0.0266 0.7671 0.7330 0.7349 2.9584 0.6690 0.7206 0.4041 0.3793 0.3807 

95% Confidence Level: 
           MVaR-BL N  0.0460 0.0262 0.0264 0.9023 0.7354 0.7298 2.3529 0.6661 0.7077 0.5119 0.3811 0.3771 

MVaR-BL t  0.0459 0.0262 0.0265 0.9012 0.7359 0.7319 2.3559 0.6661 0.7138 0.5109 0.3814 0.3786 
MCVaR-BL N  0.0460 0.0262 0.0265 0.9023 0.7358 0.7322 2.3529 0.6660 0.7141 0.5119 0.3814 0.3788 
MCVaR-BL t  0.0435 0.0263 0.0265 0.8401 0.7369 0.7322 2.3955 0.6678 0.7152 0.4603 0.3821 0.3788 

90% Confidence Level: 
           MVaR-BL N  0.0460 0.0262 0.0264 0.9068 0.7351 0.7297 2.3390 0.6653 0.7077 0.5157 0.3809 0.3770 

MVaR-BL t  0.0460 0.0262 0.0264 0.9093 0.7353 0.7301 2.3279 0.6661 0.7078 0.5179 0.3810 0.3773 
MCVaR-BL N  0.0460 0.0262 0.0264 0.9068 0.7356 0.7296 2.3390 0.6661 0.7076 0.5157 0.3812 0.3769 
MCVaR-BL t  0.0458 0.0262 0.0265 0.8949 0.7362 0.7320 2.3715 0.6661 0.7142 0.5055 0.3817 0.3786 

 
 
 

Table 6.1.10 Out-of-Sample Unconstrained BL Portfolio Performance Evaluation in the Single Period 
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Table 6.1.11 Out-of-sample Unconstrained BL Portfolio Performance in Multiple Periods (Sep 03 – May 10) 
This table shows realised unconstrained BL portfolios performance compared with the benchmark performance in the period from September 2003 to 
May 2010. Return is the average realised excess return, risk is the standard deviation, Sharpe Ratio is the average excess realized return divided by 
the standard deviation. Information Ratio is the average active return divided by the standard deviation of active return. Both VaR and CVaR are 
measured on the empirical distribution. Return to VaR ratio and Return to CVaR ratio evaluate the excess return per unit of tail risk. In the 
construction of portfolio, both VaR and CVaR are estimated by the parametric method with assumption of the normal distribution (‘N’) and the t-
distribution (‘t’) at confidence levels of 99%, 95% and 90%.  

     Return Risk Skewness Kurtosis 
Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward to 
VaR Ratio 

Reward to 
CVaR Ratio 

Benchmark   0.0005 0.0436 -1.4455 7.0937 0.0106 N/A 0.1655 0.1794 0.0028 0.0026 

Implied BL 

DCC 0.0073 0.0458 -0.3187 4.1294 0.1604 0.2673 0.1119 0.1131 0.0657 0.0650 

EWMA 0.0030 0.0384 -0.7122 3.6712 0.0788 0.1585 0.1008 0.1057 0.0300 0.0287 

RW110 0.0029 0.0403 -0.8634 4.4114 0.0720 0.1739 0.1208 0.1301 0.0240 0.0223 

SR-BL 

DCC 0.0041 0.0442 -1.1515 5.5083 0.0922 0.1336 0.1494 0.1603 0.0273 0.0254 

EWMA 0.0025 0.0386 -0.7854 3.8574 0.0655 0.1215 0.1070 0.1080 0.0236 0.0234 

RW110 0.0022 0.0406 -0.9703 4.4691 0.0550 0.1238 0.1222 0.1290 0.0183 0.0173 

99% Confidence Level: 

          

MVaR-BL N 

DCC 0.0053 0.0431 -0.6852 3.9800 0.1234 0.2006 0.1142 0.1169 0.0466 0.0455 

EWMA 0.0025 0.0386 -0.7840 3.8577 0.0660 0.1224 0.1069 0.1079 0.0238 0.0236 

RW110 0.0022 0.0406 -0.9696 4.4699 0.0549 0.1233 0.1221 0.1290 0.0183 0.0173 

MVaR-BL t 

DCC 0.0055 0.0429 -0.6505 3.8958 0.1273 0.2086 0.1091 0.1123 0.0500 0.0486 

EWMA 0.0025 0.0386 -0.7834 3.8574 0.0661 0.1227 0.1068 0.1078 0.0239 0.0237 

RW110 0.0022 0.0406 -0.9689 4.4651 0.0549 0.1230 0.1220 0.1287 0.0183 0.0173 

MCVaR-BL N 

DCC 0.0053 0.0431 -0.6875 3.9868 0.1228 0.2000 0.1142 0.1169 0.0463 0.0453 

EWMA 0.0025 0.0386 -0.7845 3.8571 0.0660 0.1224 0.1069 0.1079 0.0238 0.0236 

RW110 0.0022 0.0406 -0.9698 4.4691 0.0549 0.1233 0.1221 0.1290 0.0183 0.0173 

MCVaR-BL t 

DCC 0.0060 0.0427 -0.6143 3.7680 0.1417 0.2164 0.1091 0.1123 0.0554 0.0539 

EWMA 0.0026 0.0386 -0.7799 3.8594 0.0664 0.1234 0.1068 0.1077 0.0240 0.0238 

RW110 0.0022 0.0406 -0.9679 4.4671 0.0551 0.1235 0.1220 0.1287 0.0183 0.0174 
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Table 6.1.11 (continued) 

95% Confidence Level: 
          

MVaR-BL N 

DCC 0.0053 0.0431 -0.6795 3.9827 0.1229 0.1995 0.1144 0.1207 0.0463 0.0440 

EWMA 0.0025 0.0386 -0.7844 3.8577 0.0659 0.1222 0.1069 0.1080 0.0238 0.0236 

RW110 0.0022 0.0406 -0.9700 4.4693 0.0550 0.1237 0.1221 0.1290 0.0183 0.0173 

MVaR-BL t 

DCC 0.0053 0.0431 -0.6839 3.9780 0.1231 0.2001 0.1142 0.1204 0.0465 0.0441 

EWMA 0.0025 0.0386 -0.7842 3.8578 0.0660 0.1225 0.1069 0.1079 0.0238 0.0236 

RW110 0.0022 0.0406 -0.9696 4.4696 0.0550 0.1233 0.1221 0.1290 0.0183 0.0173 

MCVaR-BL N 

DCC 0.0053 0.0431 -0.6894 3.9848 0.1224 0.1987 0.1142 0.1204 0.0461 0.0438 

EWMA 0.0025 0.0386 -0.7842 3.8581 0.0660 0.1225 0.1069 0.1079 0.0238 0.0236 

RW50 0.0022 0.0406 -0.9698 4.4695 0.0550 0.1237 0.1221 0.1290 0.0183 0.0173 

MCVaR-BL t 

DCC 0.0053 0.0427 -0.6671 3.9321 0.1231 0.2014 0.1091 0.1123 0.0481 0.0468 

EWMA 0.0026 0.0386 -0.7838 3.8573 0.0661 0.1227 0.1069 0.1078 0.0239 0.0237 

RW110 0.0022 0.0406 -0.9700 4.4704 0.0548 0.1229 0.1221 0.1290 0.0182 0.0172 

90% Confidence Level: 
          

MVaR-BL N 

DCC 0.0053 0.0431 -0.6795 3.9827 0.1229 0.1995 0.1144 0.1207 0.0463 0.0440 

EWMA 0.0025 0.0386 -0.7861 3.8620 0.0657 0.1218 0.1071 0.1083 0.0237 0.0234 

RW110 0.0022 0.0406 -0.9703 4.4695 0.0551 0.1239 0.1221 0.1290 0.0183 0.0173 

MVaR-BL t 

DCC 0.0053 0.0432 -0.6792 3.9756 0.1234 0.2006 0.1143 0.1205 0.0466 0.0442 

EWMA 0.0025 0.0386 -0.7857 3.8616 0.0657 0.1219 0.1071 0.1083 0.0237 0.0234 

RW110 0.0022 0.0406 -0.9701 4.4693 0.0551 0.1238 0.1221 0.1290 0.0183 0.0173 

MCVaR-BL N 

DCC 0.0053 0.0431 -0.6801 3.9753 0.1232 0.2001 0.1143 0.1204 0.0465 0.0441 

EWMA 0.0025 0.0386 -0.7854 3.8617 0.0658 0.1220 0.1071 0.1082 0.0237 0.0235 

RW110 0.0022 0.0406 -0.9704 4.4700 0.0550 0.1235 0.1221 0.1290 0.0183 0.0173 

MCVaR-BL t 

DCC 0.0053 0.0431 -0.6858 3.9801 0.1235 0.2008 0.1142 0.1203 0.0466 0.0442 

EWMA 0.0025 0.0386 -0.7842 3.8578 0.0660 0.1225 0.1069 0.1079 0.0238 0.0236 

RW110 0.0022 0.0406 -0.9699 4.4695 0.0549 0.1233 0.1221 0.1290 0.0183 0.0173 
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This table reports weights allocated to each index in the out-of-sample VaR-
constrained BL portfolio in September 2003. The standard deviation is estimated by the 
conditional covariance matrix of DCC, EWMA and RW110 models. VaR is estimated by 
the parametric method in the optimisation model with assumption of the normal 
distribution and the t-distribution at confidence level of 99%. The VaR constraints          

( 0VaR ) is set to be equal to the scaling factor 0.99 multiplied by the estimated VaR of 

the implied BL portfolio in the corresponding period.  
 

 
Normal Distribution t-Distribution 

 
DCC EWMA RW110 DCC EWMA  RW110 

UK BASIC MATS  -0.0651 -0.0370 -0.0384 -0.0716 N/A N/A 
UK CONSUMER GDS  -0.0507 -0.0286 -0.0303 -0.0230 N/A N/A 
UK CONSUMER SVS  -0.0744 -0.0362 -0.0366 -0.0631 N/A N/A 
UK FINANCIALS  -0.0737 -0.0106 -0.0115 -0.0667 N/A N/A 
UK HEALTH CARE  0.1555 0.0852 0.0859 0.1533 N/A N/A 
UK TECHNOLOGY  -0.0376 -0.0151 -0.0154 -0.0270 N/A N/A 
UK INDUSTRIALS  -0.0329 -0.0122 -0.0126 -0.0370 N/A N/A 
UK OIL & GAS  0.1239 0.0478 0.0482 0.1164 N/A N/A 
UK TELECOM  0.0818 0.0523 0.0530 0.0864 N/A N/A 
UK UTILITIES  0.1291 0.0646 0.0654 0.1179 N/A N/A 
USA BASIC MATS  -0.0710 -0.0249 -0.0253 -0.0320 N/A N/A 
USA CONSUMER GDS  0.0892 0.0529 0.0542 0.0837 N/A N/A 
USA CONSUMER SVS  -0.0169 0.0408 0.0403 -0.0196 N/A N/A 
USA FINANCIALS  0.1926 0.0886 0.0894 0.1358 N/A N/A 
USA HEALTH CARE  0.2349 0.1919 0.1944 0.2549 N/A N/A 
USA INDUSTRIALS  -0.0571 0.0024 0.0013 -0.0852 N/A N/A 
USA OIL & GAS  0.1549 0.0911 0.0939 0.1542 N/A N/A 
USA TECHNOLOGY  0.1338 0.1230 0.1244 0.1213 N/A N/A 
USA TELECOM  0.0804 0.0616 0.0622 0.0475 N/A N/A 
USA UTILITIES  0.1060 0.0781 0.0789 0.0958 N/A N/A 
JAPAN BASIC MATS  -0.0754 -0.0207 -0.0252 -0.0673 N/A N/A 
JAPAN CONSUMER GDS  -0.0794 0.0578 0.0602 -0.0360 N/A N/A 
JAPAN CONSUMER SVS  0.1119 0.0602 0.0632 0.1152 N/A N/A 
JAPAN FINANCIALS  -0.0428 -0.0072 -0.0096 -0.0404 N/A N/A 
JAPAN HEALTH CARE  0.1083 0.0607 0.0618 0.0859 N/A N/A 
JAPAN INDUSTRIALS  -0.0733 -0.0202 -0.0233 -0.0216 N/A N/A 
JAPAN OIL & GAS  0.0554 0.0313 0.0317 0.0309 N/A N/A 
JAPAN TECHNOLOGY  -0.0503 -0.0145 -0.0167 -0.0761 N/A N/A 
JAPAN TELECOM  -0.0656 -0.0196 -0.0210 -0.0401 N/A N/A 
JAPAN UTILITIES  0.1086 0.0567 0.0574 0.1076 N/A N/A 

 
 

 
 
 
 
 
 
 
 
 
 

Table 6.2.1 Weights in the Out-of-sample VaR-Constrained BL Portfolio in 
September 2003 
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Table 6.2.2 Out-of-sample VaR-Constrained BL Portfolio Performance in the 
Single Period 

 
This table reports the out-of-sample VaR-constrained BL portfolio performance 
evaluated by realized return, Conditional Sharpe Ratio (CSR), Portfolio Turnover (PT), 
reward to CVaR ratio in September 2003. The standard deviation is forecasted by the 
dynamic covariance matrix of DCC, EWMA, and RW110 models. VaR is estimated by 
the parametric method in the optimisation model with assumption of the normal 
distribution and the t-distribution at a confidence level of 99%. The VaR constraints       

( 0VaR ) is set to be equal to the scaling factor 0.99 multiplied by the estimated VaR of 

the implied BL portfolio in the corresponding period. 
 

Sep-03 Normal Distribution t-Distribution 

 

Realized 
Excess 
Return CSR 

Portfolio 
Turnover 

Reward 
to 

CVaR 

Realized 
Excess 
Return CSR 

Portfolio 
Turnover 

Reward 
to 

CVaR 

DCC 0.0395 0.8804 1.7957 0.4933 0.0359 0.9158 2.2581 0.5235 

EWMA 0.0262 0.7351 0.6401 0.3808 N/A N/A N/A N/A 

RW110 0.0264 0.7286 0.6784 0.3762 N/A N/A N/A N/A 
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This table shows realised out-of-sample VaR-constrained BL portfolio performance in the period from September 2003 to May 2010. Return is 
the average realised excess return, Sharpe Ratio is the average excess realised return divided by the standard deviation. Information Ratio is 
the average active return divided by the standard deviation of active return. Reward to VaR ratio and Reward to CVaR ratio evaluate the 
excess return per unit of tail risk on the empirical distribution. In the construction of the portfolio, VaR is estimated by the parametric method in 
the optimisation model with assumption of the normal distribution and the t-distribution at a confidence level of 99%. The VaR constraints          

( 0VaR ) is set to be equal to the scaling factor 0.99 multiplied by the estimated VaR of the implied BL portfolio in the corresponding period. 

 

Panel A: Normal Distribution (Sep 03 - May 10) 
      

 
Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward to 
CVaR 

DCC 0.0044 0.0404 -0.6667 3.8162 0.1094 0.1681 0.1009 0.1070 0.0438 0.0413 

EWMA 0.0028 0.0371 -0.7160 3.6565 0.0766 0.1382 0.0982 0.1045 0.0289 0.0272 

RW110 0.0024 0.0395 -0.9436 4.5374 0.0608 0.1356 0.1198 0.1286 0.0201 0.0187 

           Panel B: t-Distribution (Sep 03 - May 10) 
       

 
Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward to 
CVaR 

DCC 0.0043 0.0317 -0.3232 3.6576 0.1364 0.1452 0.0789 0.0796 0.0548 0.0543 

EWMA 0.0019 0.0186 -0.6901 3.7181 0.0998 0.0494 0.0496 0.0512 0.0374 0.0362 

RW110 0.0037 0.0248 -0.7243 3.9740 0.1481 0.1041 0.0773 0.0823 0.0475 0.0447 

Table 6.2.3 Out-of-sample VaR-Constrained BL portfolio Performance in Multiple Periods 
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This table shows positions of each asset in the VaR-constained BL portfolio in September 
2003 under the normal distribution and the t-distribution at confidence level of 99%. Note 
that the covariance matrix applied to VaR-constained BL model is the DCC covariance 
matrix in this table. 
 

99% Confidence Level: 
       

 
Normal Distribution t-Distribution 

VaR Factor:  0.99 0.95 0.90 0.80 0.99 0.95 0.90 0.80 

UK BASIC MATS   -0.0651 -0.0651 -0.0651 -0.0651 -0.0716 -0.0735 -0.0759 -0.0812 

UK CONSUMER GDS   -0.0507 -0.0507 -0.0507 -0.0507 -0.0230 -0.0149 -0.0045 0.0182 

UK CONSUMER SVS   -0.0744 -0.0744 -0.0744 -0.0744 -0.0631 -0.0598 -0.0555 -0.0463 

UK FINANCIALS   -0.0737 -0.0737 -0.0737 -0.0737 -0.0667 -0.0647 -0.0621 -0.0564 

UK HEALTH CARE   0.1555 0.1555 0.1555 0.1555 0.1533 0.1527 0.1518 0.1501 

UK TECHNOLOGY   -0.0376 -0.0376 -0.0376 -0.0376 -0.0270 -0.0239 -0.0200 -0.0113 

UK INDUSTRIALS   -0.0329 -0.0329 -0.0329 -0.0329 -0.0370 -0.0382 -0.0398 -0.0432 

UK OIL & GAS   0.1239 0.1239 0.1239 0.1239 0.1164 0.1142 0.1114 0.1054 

UK TELECOM   0.0818 0.0818 0.0818 0.0818 0.0864 0.0877 0.0895 0.0932 

UK UTILITIES   0.1291 0.1291 0.1291 0.1291 0.1179 0.1147 0.1105 0.1013 

USA BASIC MATS   -0.0710 -0.0710 -0.0710 -0.0710 -0.0320 -0.0207 -0.0060 0.0259 

USA CONSUMER GDS   0.0892 0.0892 0.0892 0.0892 0.0837 0.0821 0.0800 0.0756 

USA CONSUMER SVS   -0.0169 -0.0169 -0.0169 -0.0169 -0.0196 -0.0204 -0.0214 -0.0236 

USA FINANCIALS   0.1926 0.1926 0.1926 0.1926 0.1358 0.1193 0.0978 0.0514 

USA HEALTH CARE   0.2349 0.2349 0.2349 0.2349 0.2549 0.2607 0.2683 0.2847 

USA INDUSTRIALS   -0.0571 -0.0571 -0.0571 -0.0571 -0.0852 -0.0934 -0.1040 -0.1269 

USA OIL & GAS   0.1549 0.1549 0.1549 0.1549 0.1542 0.1539 0.1536 0.1529 

USA TECHNOLOGY   0.1338 0.1338 0.1338 0.1338 0.1213 0.1176 0.1129 0.1026 

USA TELECOM   0.0804 0.0804 0.0804 0.0804 0.0475 0.0379 0.0255 -0.0014 

USA UTILITIES   0.1060 0.1060 0.1060 0.1060 0.0958 0.0929 0.0890 0.0807 

JAPAN BASIC MATS   -0.0754 -0.0754 -0.0754 -0.0754 -0.0673 -0.0650 -0.0619 -0.0553 

JAPAN CONSUMER GDS   -0.0794 -0.0794 -0.0794 -0.0794 -0.0360 -0.0234 -0.0070 0.0285 

JAPAN CONSUMER SVS   0.1119 0.1119 0.1119 0.1119 0.1152 0.1161 0.1173 0.1200 

JAPAN FINANCIALS   -0.0428 -0.0428 -0.0428 -0.0428 -0.0404 -0.0397 -0.0387 -0.0367 

JAPAN HEALTH CARE   0.1083 0.1083 0.1083 0.1083 0.0859 0.0794 0.0710 0.0527 

JAPAN INDUSTRIALS   -0.0733 -0.0733 -0.0733 -0.0733 -0.0216 -0.0066 0.0129 0.0552 

JAPAN OIL & GAS   0.0554 0.0554 0.0554 0.0554 0.0309 0.0238 0.0145 -0.0055 

JAPAN TECHNOLOGY   -0.0503 -0.0503 -0.0503 -0.0503 -0.0761 -0.0836 -0.0934 -0.1145 

JAPAN TELECOM   -0.0656 -0.0656 -0.0656 -0.0656 -0.0401 -0.0327 -0.0231 -0.0022 

JAPAN UTILITIES   0.1086 0.1086 0.1086 0.1086 0.1076 0.1074 0.1070 0.1063 

  

Table 6.2.4 Effects on Weights of VaR-Constrained BL Portfolio (Sep 03) 
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Table 6.2.5 Effects on out-of-sample VaR-constrained BL Portfolio Performance 
Evaluation (Sep 03) 

 
This table reports the out-of-sample VaR-constrained BL portfolio performance results 
including realized excess return, Conditional Sharpe Ratio (CSR), Portfolio Turnover (PT) 
and conditional reward to CVaR ratio in September 2003. The standard deviation is 
forecasted by the conditional covariance matrix of the DCC model. VaR is estimated by the 
parametric method in the optimisation model with assumption of the normal distribution and 

the t-distribution at confidence levels of 99%, 95% and 90%. The VaR constraint ( 0VaR ) is 

set to be equal to the scaling factor k  multiplied by the estimated VaR of the implied BL 
portfolio. The scaling factor k  is called VaR factor. 
 

 

Panel A: 99% Confidence Level 

t-Distribution                                         Normal Distribution 

VaR  
Realized 
Return CSR PT 

Reward 
to CVaR 

Realized 
Return CSR PT 

Reward 
to 
CVaR Factor 

0.99 0.0395 0.8804 1.7957 0.4933 0.0359 0.9158 2.2581 0.5235 

0.95 0.0395 0.8804 1.8060 0.4933 0.0348 0.9263 2.3090 0.5327 

0.90 0.0395 0.8804 1.8236 0.4933 0.0335 0.9394 2.4309 0.5443 

0.80 0.0395 0.8805 1.9773 0.4933 0.0305 0.9636 2.6427 0.5663 

0.70 0.0395 0.8805 2.2679 0.4933 N/A N/A  N/A  N/A  

         Panel B: 95% Confidence Level 

t-Distribution                                        Normal Distribution 

VaR  
Realized 
Return CSR PT 

Reward 
to CVaR 

Realized 
Return CSR PT 

Reward 
to 
CVaR Factor 

0.99 0.0395 0.8804 1.7957 0.4933 0.0395 0.8804 1.7957 0.4933 

0.95 0.0395 0.8804 1.7957 0.4933 0.0395 0.8804 1.7957 0.4933 

0.90 0.0395 0.8804 1.7957 0.4933 0.0395 0.8804 1.7957 0.4933 

0.80 0.0395 0.8804 1.7957 0.4933 0.0395 0.8804 1.8487 0.4933 

0.70 0.0395 0.8804 1.7957 0.4933 0.0395 0.8804 2.0694 0.4933 

         Panel C: 90% Confidence Level 

t-Distribution                                         Normal Distribution 

VaR  
Realized 
Return CSR PT 

Reward 
to CVaR 

Realized 
Return CSR PT 

Reward 
to 
CVaR Factor 

0.99 0.0395 0.8804 1.7957 0.4933 0.0395 0.8804 1.7957 0.4933 

0.95 0.0395 0.8804 1.7957 0.4933 0.0395 0.8804 1.7957 0.4933 

0.90 0.0395 0.8804 1.7957 0.4933 0.0395 0.8804 1.7957 0.4933 

0.80 0.0395 0.8804 1.7957 0.4933 0.0395 0.8804 1.7957 0.4933 

0.70 0.0395 0.8804 1.7957 0.4933 0.0395 0.8804 1.7957 0.4933 
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This table shows realised VaR-constrained BL portfolio performance in the period from September 2003 to May 2010. The conditional 
covariance matrix applied to the portfolio construction is the DCC model. Return is the average realised excess return, risk is the standard 
deviation, Sharpe Ratio is the average excess realised return divided by the standard deviation. Information Ratio is the average active return 
divided by the standard deviation of active return. Reward to VaR ratio and Reward to CVaR ratio evaluate the excess return per unit of tail risk 
on the empirical distribution. In construction of portfolio, VaR is estimated by the parametric method in the optimisation model with assumption 

of the normal distribution and the t-distribution at confidence levels of 99%, 95% and 90%. The VaR constraint ( 0VaR ) is set to be equal to the 

scaling factor k  (VaR factor) multiplied by the estimated VaR of the implied BL portfolio.  
 

Panel A: Normal Distribution                 

VaR 
Factor Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical  
CVaR 

Reward to 
VaR 

Reward to 
CVaR 

 99% Confidence Level : 
        0.99 0.0044 0.0404 -0.6667 3.8162 0.1094 0.1681 0.1009 0.1070 0.0438 0.0413 

0.95 0.0044 0.0399 -0.6569 3.8444 0.1099 0.1672 0.1005 0.1071 0.0436 0.0409 

0.90 0.0044 0.0388 -0.6268 3.8484 0.1129 0.1683 0.0982 0.1035 0.0446 0.0424 

0.80 0.0044 0.0364 -0.5280 3.8137 0.1196 0.1665 0.0892 0.0901 0.0489 0.0484 

0.70 0.0043 0.0341 -0.3906 3.7911 0.1267 0.1573 0.0825 0.0828 0.0523 0.0522 

 95% Confidence Level : 
        0.99 0.0042 0.0426 -0.9241 4.4914 0.0975 0.1455 0.1286 0.1416 0.0323 0.0294 

0.95 0.0042 0.0424 -0.8831 4.3356 0.0991 0.1490 0.1242 0.1347 0.0338 0.0312 

0.90 0.0043 0.0420 -0.8354 4.1690 0.1012 0.1534 0.1187 0.1260 0.0358 0.0338 

0.80 0.0044 0.0414 -0.7454 3.9146 0.1062 0.1632 0.1076 0.1085 0.0408 0.0405 

0.70 0.0044 0.0405 -0.6713 3.8050 0.1094 0.1685 0.1013 0.1069 0.0437 0.0415 

90% Confidence Level : 
        0.99 0.0040 0.0441 -1.1519 5.5102 0.0916 0.1324 0.1492 0.1741 0.0271 0.0232 

0.95 0.0040 0.0441 -1.1529 5.5201 0.0907 0.1305 0.1492 0.1741 0.0268 0.0230 

0.90 0.0040 0.0440 -1.1352 5.4382 0.0902 0.1297 0.1478 0.1718 0.0269 0.0231 

0.80 0.0041 0.0430 -0.9757 4.7028 0.0955 0.1411 0.1337 0.1497 0.0307 0.0274 

0.70 0.0042 0.0421 -0.8422 4.1919 0.1008 0.1526 0.1195 0.1273 0.0355 0.0333 

 

Table 6.2.6 Effects on out-of-sample VaR-Constrained BL Portfolio Performance in Multiple Periods (Sep 03-May 10) 
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Table 6.2.6 (continued) 

Panel B: t-Distribution                 

VaR 
Factor  Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward to 
VaR 

Reward to 
CVaR 

 99% Confidence Level:  
        0.99 0.0043 0.0317 -0.3232 3.6576 0.1364 0.1452 0.0789 0.0796 0.0548 0.0543 

0.95 0.0040 0.0310 -0.2834 3.5863 0.1293 0.1296 0.0780 0.0789 0.0514 0.0508 

0.90 0.0041 0.0303 -0.2731 3.4587 0.1337 0.1264 0.0767 0.0780 0.0529 0.0520 

0.80 0.0036 0.0287 -0.2176 3.2909 0.1248 0.1022 0.0735 0.0761 0.0487 0.0470 

 95% Confidence Level:  
        0.99 0.0044 0.0410 -0.7134 3.8477 0.1075 0.1658 0.1044 0.1062 0.0422 0.0415 

0.95 0.0044 0.0408 -0.6912 3.8182 0.1091 0.1685 0.1028 0.1066 0.0433 0.0418 

0.90 0.0044 0.0403 -0.6641 3.8188 0.1095 0.1681 0.1007 0.1070 0.0438 0.0413 

0.80 0.0044 0.0382 -0.6056 3.8363 0.1146 0.1686 0.0961 0.1002 0.0456 0.0437 

0.70 0.0044 0.0356 -0.4844 3.8001 0.1223 0.1645 0.0858 0.0859 0.0508 0.0507 

90% Confidence Level: 
        0.99 0.0041 0.0432 -1.0078 4.8403 0.0944 0.1388 0.1367 0.1544 0.0298 0.0264 

0.95 0.0041 0.0429 -0.9586 4.6306 0.0962 0.1426 0.1321 0.1471 0.0312 0.0280 

0.90 0.0042 0.0425 -0.9012 4.4032 0.0984 0.1473 0.1262 0.1378 0.0331 0.0303 

0.80 0.0043 0.0418 -0.7978 4.0546 0.1032 0.1574 0.1143 0.1191 0.0377 0.0362 

0.70 0.0044 0.0410 -0.7096 3.8404 0.1076 0.1660 0.1042 0.1063 0.0424 0.0415 
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This table reports weights allocated to each index in a CVaR-constrained BL portfolio in 
September 2003. The standard deviation is estimated by a conditional covariance matrix of 
the DCC, EWMA and RW110 models. CVaR is estimated by the parametric method in the 
optimisation model with assumption of the normal distribution and the t-distribution at a 

confidence level of 99%. The CVaR constraint ( 0CVaR ) is set to be equal to the scaling 

factor 0.99 multiplied by the estimated CVaR of the implied BL portfolio in the corresponding 
period.  
 

 
Normal Distribution t-Distribution 

 
DCC EWMA RW110 DCC EWMA  RW110 

UK BASIC MATS  -0.0652 -0.0364 -0.0377 -0.0807 N/A N/A 
UK CONSUMER GDS  -0.0507 -0.0287 -0.0304 0.0151 N/A N/A 
UK CONSUMER SVS  -0.0747 -0.0365 -0.0369 -0.0474 N/A N/A 
UK FINANCIALS  -0.0737 -0.0108 -0.0117 -0.0573 N/A N/A 
UK HEALTH CARE  0.1555 0.0852 0.0860 0.1504 N/A N/A 
UK TECHNOLOGY  -0.0375 -0.0152 -0.0154 -0.0124 N/A N/A 
UK INDUSTRIALS  -0.0329 -0.0123 -0.0127 -0.0427 N/A N/A 
UK OIL & GAS  0.1248 0.0476 0.0481 0.1066 N/A N/A 
UK TELECOM  0.0818 0.0524 0.0532 0.0926 N/A N/A 
UK UTILITIES  0.1290 0.0647 0.0655 0.1025 N/A N/A 
USA BASIC MATS  -0.0710 -0.0252 -0.0256 0.0217 N/A N/A 
USA CONSUMER GDS  0.0892 0.0528 0.0541 0.0763 N/A N/A 
USA CONSUMER SVS  -0.0166 0.0410 0.0404 -0.0234 N/A N/A 
USA FINANCIALS  0.1927 0.0884 0.0894 0.0576 N/A N/A 
USA HEALTH CARE  0.2345 0.1920 0.1944 0.2825 N/A N/A 
USA INDUSTRIALS  -0.0574 0.0025 0.0013 -0.1235 N/A N/A 
USA OIL & GAS  0.1542 0.0912 0.0940 0.1527 N/A N/A 
USA TECHNOLOGY  0.1341 0.1231 0.1245 0.1039 N/A N/A 
USA TELECOM  0.0803 0.0617 0.0622 0.0022 N/A N/A 
USA UTILITIES  0.1064 0.0782 0.0790 0.0818 N/A N/A 
JAPAN BASIC MATS  -0.0753 -0.0207 -0.0250 -0.0561 N/A N/A 
JAPAN CONSUMER GDS  -0.0795 0.0579 0.0603 0.0233 N/A N/A 
JAPAN CONSUMER SVS  0.1120 0.0604 0.0635 0.1192 N/A N/A 
JAPAN FINANCIALS  -0.0428 -0.0071 -0.0095 -0.0370 N/A N/A 
JAPAN HEALTH CARE  0.1085 0.0600 0.0610 0.0556 N/A N/A 
JAPAN INDUSTRIALS  -0.0736 -0.0205 -0.0236 0.0498 N/A N/A 
JAPAN OIL & GAS  0.0553 0.0314 0.0318 -0.0029 N/A N/A 
JAPAN TECHNOLOGY  -0.0503 -0.0146 -0.0167 -0.1115 N/A N/A 
JAPAN TELECOM  -0.0657 -0.0196 -0.0209 -0.0050 N/A N/A 
JAPAN UTILITIES  0.1085 0.0568 0.0575 0.1064 N/A N/A 
  

Table 6.3.1 Weights in the Out-of-sample CVaR-Constrained BL Portfolio  
in September 2003 
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This table reports the out-of-sample CVaR-constrained BL portfolio performance evaluated 
by realized return, Conditional Sharpe Ratio (CSR), Portfolio Turnover (PT), Reward to 
CVaR ratio in September 2003. The standard deviation is estimated by a conditional 
covariance matrix of the DCC, EWMA and RW110 models. CVaR is estimated by the 
parametric method in the optimisation model with assumption of the normal distribution and 

the t-distribution at confidence level of 99%. The CVaR constraint ( 0CVaR ) is set to be 

equal to the scaling factor 0.99 multiplied by the estimated CVaR of the implied BL portfolio 
in the corresponding period. 
 

Sep-03 Normal Distribution t-Distribution 

  
Realised 
Return CSR PT 

Reward 
to CVaR  

Realised 
Return CSR PT 

Reward  
to CVaR  

DCC 0.0396 0.8816 1.7944 0.4942 0.0308 0.9595 2.9216 0.5625 

EWMA 0.0262 0.7358 0.6387 0.3814 N/A N/A N/A N/A 

RW110 0.0264 0.7295 0.6766 0.3769 N/A N/A N/A N/A 

Table 6.3.2 Out-of-sample CVaR-Constrained BL Portfolio Performance  
in the Single Period 
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This table shows realised out-of-sample CVaR-constrained BL portfolio performance in the period from September 2003 to May 2010. Return is 
the average realised excess return, Sharpe Ratio is the average excess realised return divided by the standard deviation. Information Ratio is 
the average active return divided by the standard deviation of active return. Reward to VaR ratio and Reward to CVaR ratio evaluate the 
excess return per unit of tail risk on the empirical distribution. In the construction of the portfolio, CVaR is estimated by the parametric method in 
the optimisation model with assumption of the normal distribution and the t-distribution at a confidence level of 99%. The CVaR constraint         

( 0CVaR ) is set to be equal to the scaling factor 0.99 multiplied by the estimated CVaR of the implied BL portfolio in the corresponding period. 

 

Panel A: The normal distribution (Sep 03 - May 10) 
      

 
Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward 
to CVaR 

DCC 0.0044 0.0404 -0.6656 3.8163 0.1094 0.1679 0.1010 0.1070 0.0437 0.0413 

EWMA 0.0028 0.0371 -0.7162 3.6564 0.0765 0.1381 0.0981 0.1045 0.0289 0.0271 

RW110 0.0024 0.0395 -0.9443 4.5393 0.0608 0.1355 0.1199 0.1287 0.0200 0.0187 

           Panel B: the t-distribution (Sep 03 - May 10) 
       

 
Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward 
to CVaR 

DCC 0.0037 0.0290 -0.2504 3.3095 0.1270 0.1071 0.0740 0.0763 0.0497 0.0482 

EWMA 0.0015 0.0116 -0.2190 3.6936 0.1335 0.0295 0.0294 0.0299 0.0527 0.0517 

RW110 0.0030 0.0247 -0.4627 3.5157 0.1205 0.0708 0.0724 0.0789 0.0412 0.0378 

Table 6.3.3 Out-of-sample CVaR-Constrained BL Portfolio Performance in Multiple Periods 
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This table shows positions of each asset in the CVaR-constained BL portfolio in September 
2003 under the normal distribution and the t-distribution at confidence level of 99%. Note 
that the covariance matrix applied to CVaR-constained BL model is the DCC covariance 
matrix in this table. 
 

99% Confidence Level: 
        

 
Normal Distribution t-Distribution 

CVaR Factor: 0.99 0.95 0.90 0.80 0.99 0.95 0.90 0.80 

UK BASIC MATS  -0.0652 -0.0652 -0.0652 -0.0655 -0.0807 -0.0825 -0.0851 -0.0913 

UK CONSUMER GDS  -0.0507 -0.0507 -0.0507 -0.0507 0.0151 0.0231 0.0340 0.0611 

UK CONSUMER SVS  -0.0747 -0.0747 -0.0746 -0.0744 -0.0474 -0.0441 -0.0397 -0.0287 

UK FINANCIALS  -0.0737 -0.0737 -0.0736 -0.0735 -0.0573 -0.0552 -0.0525 -0.0456 

UK HEALTH CARE  0.1555 0.1555 0.1554 0.1552 0.1504 0.1497 0.1488 0.1467 

UK TECHNOLOGY  -0.0375 -0.0375 -0.0376 -0.0376 -0.0124 -0.0094 -0.0053 0.0050 

UK INDUSTRIALS  -0.0329 -0.0329 -0.0329 -0.0328 -0.0427 -0.0439 -0.0456 -0.0497 

UK OIL & GAS  0.1248 0.1248 0.1248 0.1247 0.1066 0.1044 0.1015 0.0940 

UK TELECOM  0.0818 0.0818 0.0818 0.0817 0.0926 0.0940 0.0958 0.1002 

UK UTILITIES  0.1290 0.1290 0.1290 0.1291 0.1025 0.0993 0.0950 0.0841 

USA BASIC MATS  -0.0710 -0.0710 -0.0709 -0.0708 0.0217 0.0329 0.0481 0.0861 

USA CONSUMER GDS  0.0892 0.0892 0.0891 0.0890 0.0763 0.0747 0.0726 0.0672 

USA CONSUMER SVS  -0.0166 -0.0166 -0.0167 -0.0168 -0.0234 -0.0242 -0.0253 -0.0278 

USA FINANCIALS  0.1927 0.1927 0.1928 0.1932 0.0576 0.0411 0.0190 -0.0365 

USA HEALTH CARE  0.2345 0.2345 0.2345 0.2345 0.2825 0.2883 0.2960 0.3155 

USA INDUSTRIALS  -0.0574 -0.0574 -0.0574 -0.0575 -0.1235 -0.1317 -0.1426 -0.1702 

USA OIL & GAS  0.1542 0.1542 0.1542 0.1540 0.1527 0.1525 0.1523 0.1516 

USA TECHNOLOGY  0.1341 0.1341 0.1342 0.1341 0.1039 0.1003 0.0954 0.0831 

USA TELECOM  0.0803 0.0803 0.0803 0.0803 0.0022 -0.0073 -0.0201 -0.0523 

USA UTILITIES  0.1064 0.1064 0.1064 0.1063 0.0818 0.0788 0.0749 0.0650 

JAPAN BASIC MATS  -0.0753 -0.0753 -0.0753 -0.0752 -0.0561 -0.0538 -0.0507 -0.0429 

JAPAN CONSUMER GDS  -0.0795 -0.0795 -0.0795 -0.0796 0.0233 0.0359 0.0529 0.0955 

JAPAN CONSUMER SVS  0.1120 0.1120 0.1120 0.1123 0.1192 0.1202 0.1215 0.1248 

JAPAN FINANCIALS  -0.0428 -0.0428 -0.0429 -0.0429 -0.0370 -0.0363 -0.0353 -0.0328 

JAPAN HEALTH CARE  0.1085 0.1085 0.1085 0.1083 0.0556 0.0490 0.0402 0.0183 

JAPAN INDUSTRIALS  -0.0736 -0.0736 -0.0735 -0.0737 0.0498 0.0647 0.0849 0.1351 

JAPAN OIL & GAS  0.0553 0.0553 0.0553 0.0553 -0.0029 -0.0099 -0.0195 -0.0433 

JAPAN TECHNOLOGY  -0.0503 -0.0503 -0.0502 -0.0501 -0.1115 -0.1190 -0.1291 -0.1543 

JAPAN TELECOM  -0.0657 -0.0657 -0.0657 -0.0658 -0.0050 0.0023 0.0122 0.0372 

JAPAN UTILITIES  0.1085 0.1085 0.1086 0.1089 0.1064 0.1062 0.1059 0.1049 

  

Table 6.3.4 Effects on Weights of CVaR-Constrained BL Portfolio (Sep 03)  
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This table reports out-of-sample CVaR-constrained BL portfolio performance results 
including realized return, Conditional Sharpe Ratio (CSR), Portfolio Turnover (PT) and 
reward to CVaR ratio in September 2003. The standard deviation is forecasted by a 
conditional covariance matrix of the DCC model. CVaR is estimated by the parametric 
method in the optimisation model with assumption of the normal distribution and the t-

distribution at confidence levels of 99%, 95% and 90%. The CVaR constraint ( 0CVaR ) is set 

to be equal to the scaling factor k multiplied by the estimated CVaR of the implied BL 
portfolio. The scaling factor k is called CVaR factor. 
 

 

Panel A: 99% Confidence Level 

t-Distribution                                         Normal Distribution 

CVaR  
Realized 
Return CSR PT 

Reward 
to 
CVaR 

Realized 
Return CSR PT 

Reward 
to 
CVaR Factor 

0.99 0.0396 0.8816 1.7944 0.4942 0.0308 0.9595 2.9216 0.5625 

0.95 0.0396 0.8816 1.8051 0.4942 0.0298 0.9662 2.4386 0.5687 

0.90 0.0396 0.8814 1.8239 0.4941 0.0284 0.9720 2.3684 0.5740 

0.80 0.0396 0.8818 1.9788 0.4944 0.0249 0.9595 1.5720 0.5625 

0.70 0.0396 0.8811 2.2690 0.4938 N/A N/A N/A N/A 

         Panel B: 95% Confidence Level 

t-Distribution                                        Normal Distribution 

CVaR  
Realized 
Return CSR PT 

Reward 
to 
CVaR 

Realized 
Return CSR PT 

Reward 
to 
CVaR Factor 

0.99 0.0396 0.8816 1.7944 0.4942 0.0396 0.8817 1.9319 0.4943 

0.95 0.0396 0.8816 1.7944 0.4942 0.0396 0.8817 1.9319 0.4943 

0.90 0.0396 0.8816 1.7944 0.4942 0.0396 0.8812 2.1283 0.4940 

0.80 0.0396 0.8816 1.7944 0.4942 0.0383 0.8927 2.2570 0.5036 

0.70 0.0396 0.8816 1.8183 0.4943 0.0348 0.9270 2.3363 0.5333 

         Panel C: 90% Confidence Level 

t-Distribution                                         Normal Distribution 

CVaR  
Realized 
Return CSR PT 

Reward 
to 
CVaR 

Realized 
Return CSR PT 

Reward 
to 
CVaR Factor 

0.99 0.0396 0.8816 1.7944 0.4942 0.0396 0.8816 1.7944 0.4942 

0.95 0.0396 0.8816 1.7944 0.4942 0.0396 0.8816 1.7944 0.4942 

0.90 0.0396 0.8816 1.7944 0.4942 0.0396 0.8816 1.8015 0.4942 

0.80 0.0396 0.8816 1.7944 0.4942 0.0396 0.8814 1.8790 0.4941 

0.70 0.0396 0.8816 1.7944 0.4942 0.0396 0.8813 2.1235 0.4940 

Table 6.3.5 Effects on Out-of-sample CVaR-Constrained SR-BL Portfolio Performance 
Evaluation (Sep 03) 
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This table shows realised CVaR-constrained BL portfolio performance in the period from September 2003 to May 2010. The 
conditional covariance matrix applied to the portfolio construction is the DCC model. Return is the average realised excess return, 
risk is the standard deviation, Sharpe Ratio is the average excess realised return divided by the standard deviation. Information 
Ratio is the average active return divided by the standard deviation of active return. Reward to VaR ratio and Reward to CVaR ratio 
evaluate the excess return per unit of tail risk on the empirical distribution. In construction of portfolio, CVaR is estimated by the 
parametric method in the optimisation model with assumption of the normal distribution and the t-distribution at confidence levels of 
99%, 95% and 90%. The CVaR constraint ( 0CVaR ) is set to be equal to the scaling factor k  (CVaR factor) multiplied by the 

estimated CVaR of the implied BL portfolio.  
 
Panel A: Normal Distribution                 

CVaR 
Factor Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical  
CVaR 

Reward 
to VaR 

Reward 
to CVaR 

 99% Confidence Level : 
        0.99 0.0044 0.0404 -0.6656 3.8163 0.1094 0.1679 0.1010 0.1070 0.0437 0.0413 

0.95 0.0044 0.0399 -0.6563 3.8446 0.1100 0.1672 0.1005 0.1071 0.0436 0.0409 
0.90 0.0044 0.0388 -0.6255 3.8481 0.1129 0.1684 0.0981 0.1034 0.0447 0.0424 
0.80 0.0044 0.0364 -0.5261 3.8140 0.1198 0.1668 0.0891 0.0901 0.0490 0.0485 
0.70 0.0043 0.0341 -0.3893 3.7924 0.1268 0.1575 0.0825 0.0828 0.0524 0.0522 

 95% Confidence Level : 
        0.99 0.0042 0.0421 -0.8348 4.1694 0.1010 0.1532 0.1187 0.1260 0.0358 0.0337 

0.95 0.0043 0.0418 -0.8011 4.0660 0.1029 0.1568 0.1148 0.1198 0.0375 0.0359 
0.90 0.0044 0.0415 -0.7615 3.9556 0.1051 0.1612 0.1097 0.1118 0.0398 0.0390 
0.80 0.0044 0.0408 -0.6915 3.8197 0.1088 0.1678 0.1029 0.1066 0.0431 0.0416 
0.70 0.0044 0.0391 -0.6353 3.8476 0.1121 0.1681 0.0990 0.1048 0.0442 0.0418 

90% Confidence Level : 
        0.99 0.0041 0.0432 -1.0061 4.8363 0.0943 0.1385 0.1367 0.1543 0.0298 0.0264 

0.95 0.0041 0.0429 -0.9564 4.6247 0.0961 0.1424 0.1319 0.1468 0.0312 0.0280 
0.90 0.0042 0.0425 -0.8990 4.3977 0.0983 0.1472 0.1260 0.1376 0.0331 0.0303 
0.80 0.0043 0.0418 -0.7963 4.0520 0.1031 0.1572 0.1142 0.1189 0.0377 0.0362 
0.70 0.0044 0.0410 -0.7075 3.8398 0.1076 0.1659 0.1042 0.1063 0.0423 0.0415 

 
 

Table 6.3.6 Effects on Out-of-sample CVaR-Constrained BL Portfolio Performance in Multiple Periods (Sep 03-May 10) 
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Table 6.3.6 (continued) 
Panel B: t-Distribution                 

CVaR 
Factor  Return 

Standard 
Deviation Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward 
to VaR 

Reward 
to CVaR 

 99% Confidence Level:  
        0.99 0.0037 0.0290 -0.2504 3.3095 0.1270 0.1071 0.0740 0.0763 0.0497 0.0482 

0.95 0.0041 0.0281 -0.2538 3.3486 0.1476 0.1211 0.0726 0.0757 0.0570 0.0547 
0.90 0.0042 0.0277 -0.3252 3.3333 0.1502 0.1200 0.0713 0.0746 0.0584 0.0558 
0.80 0.0036 0.0269 -0.3554 3.1870 0.1325 0.0982 0.0672 0.0699 0.0530 0.0509 
0.70 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 95% Confidence Level:  
        0.99 0.0044 0.0369 -0.5507 3.8250 0.1182 0.1675 0.0912 0.0928 0.0479 0.0470 

0.95 0.0044 0.0361 -0.5107 3.8127 0.1207 0.1660 0.0878 0.0883 0.0497 0.0494 
0.90 0.0044 0.0352 -0.4559 3.7998 0.1239 0.1630 0.0844 0.0851 0.0516 0.0512 
0.80 0.0042 0.0332 -0.3393 3.7916 0.1274 0.1493 0.0809 0.0810 0.0522 0.0522 
0.70 0.0041 0.0309 -0.2939 3.5893 0.1313 0.1309 0.0778 0.0787 0.0522 0.0515 

90% Confidence Level: 
        0.99 0.0044 0.0409 -0.6994 3.8296 0.1083 0.1671 0.1035 0.1065 0.0428 0.0416 

0.95 0.0044 0.0406 -0.6785 3.8095 0.1095 0.1689 0.1019 0.1068 0.0437 0.0416 
0.90 0.0044 0.0400 -0.6605 3.8351 0.1096 0.1672 0.1005 0.1071 0.0437 0.0410 
0.80 0.0044 0.0377 -0.5854 3.8308 0.1159 0.1685 0.0943 0.0974 0.0464 0.0449 
0.70 0.0044 0.0352 -0.4582 3.7962 0.1238 0.1633 0.0844 0.0852 0.0516 0.0512 
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Following Giacometti et al. (2007)  method, this table reports the results of risk aversion 

coefficients   (Panel A and Panel C) and implied equilibrium return of each index π  (Panel 

B and Panel D) of variance-adjusted, VaR-adjusted and CVaR-adjusted BL portfolios in 
September 2003, with assumptions of the normal distribution and the t-distribution at 
confidence levels of 99%, 95% and 90%.  
 

Panel A: Risk Aversion Coefficient 
      

 Variance 

VaR 

 
Normal Distribution t-Distribution 

 
99% 95% 90% 99% 95% 90% 

Risk Aversion Coefficient 0.5000 0.1633 0.2417 0.3247 0.0975 0.1800 0.2623 

Panel B: Implied Eqiulibrium Return 
    UK BASIC MATS  0.0008 0.0010 0.0010 0.0006 0.0007 0.0007 0.0007 

UK CONSUMER GDS  0.0007 0.0008 0.0008 0.0006 0.0007 0.0006 0.0006 

UK CONSUMER SVS  0.0007 0.0009 0.0009 0.0006 0.0007 0.0006 0.0006 

UK FINANCIALS  0.0009 0.0012 0.0012 0.0008 0.0009 0.0008 0.0008 

UK HEALTH CARE  0.0004 0.0005 0.0005 0.0003 0.0003 0.0003 0.0003 

UK TECHNOLOGY  0.0015 0.0019 0.0019 0.0012 0.0014 0.0013 0.0013 

UK INDUSTRIALS  0.0011 0.0013 0.0013 0.0008 0.0010 0.0009 0.0009 

UK OIL & GAS  0.0007 0.0010 0.0010 0.0006 0.0007 0.0006 0.0006 

UK TELECOM  0.0009 0.0011 0.0011 0.0007 0.0008 0.0008 0.0007 

UK UTILITIES  0.0003 0.0004 0.0004 0.0002 0.0003 0.0003 0.0002 

USA BASIC MATS  0.0009 0.0012 0.0012 0.0007 0.0009 0.0008 0.0008 

USA CONSUMER GDS  0.0010 0.0013 0.0013 0.0008 0.0009 0.0009 0.0008 

USA CONSUMER SVS  0.0010 0.0013 0.0013 0.0008 0.0009 0.0009 0.0008 

USA FINANCIALS  0.0011 0.0014 0.0014 0.0009 0.0010 0.0009 0.0009 

USA HEALTH CARE  0.0006 0.0008 0.0008 0.0005 0.0005 0.0005 0.0005 

USA INDUSTRIALS  0.0010 0.0013 0.0013 0.0008 0.0009 0.0009 0.0008 

USA OIL & GAS  0.0006 0.0008 0.0008 0.0005 0.0006 0.0005 0.0005 

USA TECHNOLOGY  0.0016 0.0021 0.0021 0.0013 0.0015 0.0014 0.0014 

USA TELECOM  0.0009 0.0011 0.0011 0.0007 0.0008 0.0008 0.0007 

USA UTILITIES  0.0004 0.0005 0.0005 0.0003 0.0004 0.0004 0.0003 

JAPAN BASIC MATS  0.0006 0.0007 0.0007 0.0005 0.0005 0.0005 0.0005 

JAPAN CONSUMER GDS  0.0007 0.0009 0.0009 0.0006 0.0007 0.0006 0.0006 

JAPAN CONSUMER SVS  0.0005 0.0006 0.0006 0.0004 0.0005 0.0004 0.0004 

JAPAN FINANCIALS  0.0008 0.0010 0.0010 0.0007 0.0008 0.0007 0.0007 

JAPAN HEALTH CARE  0.0004 0.0005 0.0005 0.0003 0.0004 0.0003 0.0003 

JAPAN INDUSTRIALS  0.0008 0.0009 0.0009 0.0006 0.0007 0.0007 0.0006 

JAPAN OIL & GAS  0.0005 0.0006 0.0006 0.0004 0.0005 0.0005 0.0004 

JAPAN TECHNOLOGY  0.0012 0.0014 0.0014 0.0009 0.0011 0.0010 0.0010 

JAPAN TELECOM  0.0009 0.0010 0.0011 0.0007 0.0008 0.0008 0.0007 

JAPAN UTILITIES  0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

 
 
 
 

Table 6.4.1 Out-of-sample Risk Aversion Coefficient and Risk-Adjusted Implied 
Equilibrium Return in September 2003 
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Table 6.4.1 (continued) 

Panel C: Risk Aversion Coefficient 
     

 
CVaR 

 
Normal Distribution t-Distribution 

 
99% 95% 90% 99% 95% 90% 

Risk Aversion Coefficient 0.1406 0.1867 0.2243 0.0687 0.1153 0.1509 

Panel D: Implied Eqiulibrium Return 
    UK BASIC MATS  0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 

UK CONSUMER GDS  0.0006 0.0006 0.0006 0.0007 0.0006 0.0006 

UK CONSUMER SVS  0.0006 0.0006 0.0006 0.0007 0.0007 0.0006 

UK FINANCIALS  0.0008 0.0008 0.0008 0.0009 0.0009 0.0008 

UK HEALTH CARE  0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

UK TECHNOLOGY  0.0014 0.0013 0.0013 0.0014 0.0014 0.0014 

UK INDUSTRIALS  0.0009 0.0009 0.0009 0.0010 0.0009 0.0009 

UK OIL & GAS  0.0006 0.0006 0.0006 0.0007 0.0006 0.0006 

UK TELECOM  0.0008 0.0007 0.0007 0.0008 0.0008 0.0008 

UK UTILITIES  0.0003 0.0003 0.0002 0.0003 0.0003 0.0003 

USA BASIC MATS  0.0008 0.0008 0.0008 0.0009 0.0008 0.0008 

USA CONSUMER GDS  0.0009 0.0009 0.0008 0.0009 0.0009 0.0009 

USA CONSUMER SVS  0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 

USA FINANCIALS  0.0010 0.0009 0.0009 0.0010 0.0010 0.0010 

USA HEALTH CARE  0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 

USA INDUSTRIALS  0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 

USA OIL & GAS  0.0005 0.0005 0.0005 0.0006 0.0006 0.0005 

USA TECHNOLOGY  0.0015 0.0014 0.0014 0.0015 0.0015 0.0015 

USA TELECOM  0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 

USA UTILITIES  0.0004 0.0004 0.0003 0.0004 0.0004 0.0004 

JAPAN BASIC MATS  0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 

JAPAN CONSUMER GDS  0.0007 0.0006 0.0006 0.0007 0.0007 0.0007 

JAPAN CONSUMER SVS  0.0004 0.0004 0.0004 0.0005 0.0004 0.0004 

JAPAN FINANCIALS  0.0007 0.0007 0.0007 0.0008 0.0007 0.0007 

JAPAN HEALTH CARE  0.0004 0.0003 0.0003 0.0004 0.0004 0.0004 

JAPAN INDUSTRIALS  0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 

JAPAN OIL & GAS  0.0005 0.0004 0.0004 0.0005 0.0005 0.0005 

JAPAN TECHNOLOGY  0.0010 0.0010 0.0010 0.0011 0.0010 0.0010 

JAPAN TELECOM  0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 

JAPAN UTILITIES  0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 
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Based on risk-adjusted equilibrium returns (Giacometti et al., 2007), this table reports the BL 
expected returns of variance-adjusted, VaR-adjusted and CVaR-adjusted Black-Litterman 
portfolios in September 2003, with assumptions of the normal distribution and the t-
distribution at confidence levels of 99%, 95% and 90%. 
 

 Variance 

VaR 

 
Normal Distribution t-Distribution 

Panel A: 99% 95% 90% 99% 95% 90% 

UK BASIC MATS  -0.00020 -0.00003 -0.00002 -0.00001 -0.00027 -0.00030 -0.00033 

UK CONSUMER GDS  -0.00074 -0.00062 -0.00061 -0.00060 -0.00080 -0.00083 -0.00086 

UK CONSUMER SVS  0.00001 0.00019 0.00020 0.00020 -0.00005 -0.00008 -0.00011 

UK FINANCIALS  0.00030 0.00058 0.00059 0.00061 0.00021 0.00017 0.00014 

UK HEALTH CARE  0.00073 0.00086 0.00087 0.00087 0.00070 0.00068 0.00066 

UK TECHNOLOGY  -0.00043 -0.00010 -0.00009 -0.00007 -0.00056 -0.00063 -0.00069 

UK INDUSTRIALS  -0.00043 -0.00019 -0.00018 -0.00017 -0.00052 -0.00057 -0.00061 

UK OIL & GAS  0.00057 0.00081 0.00082 0.00083 0.00051 0.00048 0.00045 

UK TELECOM  0.00037 0.00060 0.00061 0.00062 0.00029 0.00025 0.00022 

UK UTILITIES  0.00076 0.00085 0.00086 0.00086 0.00073 0.00072 0.00071 

USA BASIC MATS  0.00010 0.00037 0.00038 0.00040 0.00002 -0.00002 -0.00006 

USA CONSUMER GDS  0.00032 0.00060 0.00061 0.00062 0.00023 0.00019 0.00014 

USA CONSUMER SVS  0.00032 0.00060 0.00061 0.00063 0.00023 0.00019 0.00015 

USA FINANCIALS  0.00075 0.00108 0.00109 0.00110 0.00065 0.00061 0.00056 

USA HEALTH CARE  0.00080 0.00103 0.00104 0.00104 0.00075 0.00072 0.00070 

USA INDUSTRIALS  0.00046 0.00075 0.00076 0.00077 0.00037 0.00033 0.00029 

USA OIL & GAS  0.00061 0.00081 0.00082 0.00083 0.00055 0.00053 0.00050 

USA TECHNOLOGY  0.00059 0.00103 0.00105 0.00107 0.00045 0.00038 0.00031 

USA TELECOM  0.00089 0.00113 0.00114 0.00116 0.00081 0.00077 0.00073 

USA UTILITIES  0.00073 0.00086 0.00087 0.00087 0.00069 0.00067 0.00066 

JAPAN BASIC MATS  0.00040 0.00048 0.00049 0.00049 0.00035 0.00033 0.00030 

JAPAN CONSUMER GDS  0.00018 0.00033 0.00033 0.00034 0.00011 0.00008 0.00005 

JAPAN CONSUMER SVS  0.00041 0.00050 0.00050 0.00051 0.00037 0.00034 0.00032 

JAPAN FINANCIALS  0.00035 0.00049 0.00050 0.00051 0.00028 0.00024 0.00021 

JAPAN HEALTH CARE  0.00080 0.00090 0.00090 0.00091 0.00076 0.00074 0.00073 

JAPAN INDUSTRIALS  0.00009 0.00022 0.00022 0.00023 0.00002 -0.00002 -0.00005 

JAPAN OIL & GAS  0.00087 0.00099 0.00100 0.00100 0.00082 0.00080 0.00078 

JAPAN TECHNOLOGY  -0.00032 -0.00011 -0.00010 -0.00009 -0.00043 -0.00047 -0.00052 

JAPAN TELECOM  0.00012 0.00027 0.00028 0.00029 0.00004 0.00000 -0.00004 

JAPAN UTILITIES  0.00062 0.00066 0.00066 0.00066 0.00060 0.00059 0.00058 

 
 
  

Table 6.4.2 The Out-of-sample Risk-Adjusted BL Expected Returns for Each Index in 
September 2003 
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Table 6.4.2 (continued) 

 

CVaR 

 

Normal Distribution t-Distribution 

Panel B: 99% 95% 90% 99% 95% 90% 

UK BASIC MATS  -0.00029 -0.00030 -0.00032 -0.00026 -0.00028 -0.00029 

UK CONSUMER GDS  -0.00082 -0.00083 -0.00084 -0.00079 -0.00081 -0.00082 

UK CONSUMER SVS  -0.00007 -0.00008 -0.00010 -0.00004 -0.00006 -0.00007 

UK FINANCIALS  0.00019 0.00017 0.00015 0.00023 0.00021 0.00019 

UK HEALTH CARE  0.00069 0.00068 0.00067 0.00070 0.00069 0.00069 

UK TECHNOLOGY  -0.00060 -0.00063 -0.00066 -0.00054 -0.00058 -0.00061 

UK INDUSTRIALS  -0.00055 -0.00057 -0.00059 -0.00051 -0.00053 -0.00055 

UK OIL & GAS  0.00049 0.00047 0.00046 0.00052 0.00050 0.00049 

UK TELECOM  0.00027 0.00025 0.00023 0.00030 0.00028 0.00027 

UK UTILITIES  0.00073 0.00072 0.00072 0.00074 0.00073 0.00073 

USA BASIC MATS  0.00000 -0.00002 -0.00004 0.00003 0.00001 0.00000 

USA CONSUMER GDS  0.00020 0.00018 0.00016 0.00024 0.00022 0.00020 

USA CONSUMER SVS  0.00021 0.00019 0.00017 0.00025 0.00022 0.00021 

USA FINANCIALS  0.00063 0.00061 0.00059 0.00067 0.00064 0.00063 

USA HEALTH CARE  0.00074 0.00072 0.00071 0.00076 0.00074 0.00073 

USA INDUSTRIALS  0.00035 0.00033 0.00031 0.00039 0.00036 0.00035 

USA OIL & GAS  0.00054 0.00053 0.00051 0.00056 0.00055 0.00054 

USA TECHNOLOGY  0.00041 0.00037 0.00034 0.00047 0.00043 0.00040 

USA TELECOM  0.00079 0.00077 0.00075 0.00082 0.00080 0.00078 

USA UTILITIES  0.00068 0.00067 0.00066 0.00070 0.00069 0.00068 

JAPAN BASIC MATS  0.00034 0.00032 0.00031 0.00036 0.00034 0.00033 

JAPAN CONSUMER GDS  0.00010 0.00008 0.00007 0.00012 0.00011 0.00009 

JAPAN CONSUMER SVS  0.00035 0.00034 0.00033 0.00037 0.00036 0.00035 

JAPAN FINANCIALS  0.00026 0.00024 0.00022 0.00029 0.00027 0.00025 

JAPAN HEALTH CARE  0.00075 0.00074 0.00073 0.00077 0.00076 0.00075 

JAPAN INDUSTRIALS  0.00000 -0.00002 -0.00003 0.00003 0.00001 0.00000 

JAPAN OIL & GAS  0.00081 0.00080 0.00079 0.00083 0.00082 0.00081 

JAPAN TECHNOLOGY  -0.00045 -0.00048 -0.00050 -0.00041 -0.00044 -0.00046 

JAPAN TELECOM  0.00002 0.00000 -0.00002 0.00005 0.00003 0.00001 

JAPAN UTILITIES  0.00060 0.00059 0.00059 0.00061 0.00060 0.00060 
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This table reports the weights assigned in each index in September 2003, with assumptions 
of the normal distribution and the t-distribution at confidence levels of 99%, 95% and 90%. 
Weights in the unconstrained variance-adjusted implied BL portfolio are calculated by 

tBLt

t

tBL ,
1*

,

1
μVw 


. The variance-adjusted SR-BL portfolio allocates asset to achieve the 

maximal Sharpe ratio in the optimisation problem, weights can be calculated by 

tBLt

tBLt
tBL

,
1

,
1

*
,

' μV1

μV
w





  . Note that weights in the VaR-adjusted and the CVaR-adjusted BL 

portfolios are allocated by solving maximal Sharpe ratio optimisation problem. 
 

 
Variance 

VaR 

 
Normal Distribution t-Distribution 

Panel A: Implied BL SR-BL 99% 95% 90% 99% 95% 90% 

UK BASIC MATS  -0.1424 -0.1015 -0.1140 -0.1144 -0.1141 -0.1088 -0.1123 -0.1164 

UK CONSUMER GDS  -0.1102 -0.0795 -0.0751 -0.0739 -0.0738 -0.0851 -0.0878 -0.0913 

UK CONSUMER SVS  -0.1619 -0.1173 -0.1350 -0.1332 -0.1333 -0.1265 -0.1314 -0.1385 

UK FINANCIALS  -0.1173 -0.0852 -0.0442 -0.0417 -0.0417 -0.0934 -0.0968 -0.1001 

UK HEALTH CARE  0.2370 0.1724 0.1687 0.1667 0.1665 0.1825 0.1851 0.1896 

UK TECHNOLOGY  -0.0620 -0.0444 -0.0357 -0.0355 -0.0351 -0.0478 -0.0496 -0.0515 

UK INDUSTRIALS  -0.0922 -0.0660 -0.0421 -0.0418 -0.0409 -0.0720 -0.0757 -0.0785 

UK OIL & GAS  0.1585 0.1142 0.1528 0.1495 0.1504 0.1217 0.1238 0.1340 

UK TELECOM  0.1443 0.1045 0.1067 0.1053 0.1056 0.1104 0.1133 0.1162 

UK UTILITIES  0.2087 0.1491 0.1003 0.0993 0.0989 0.1584 0.1650 0.1691 

USA BASIC MATS  -0.1319 -0.0940 -0.0590 -0.0581 -0.0577 -0.1019 -0.1069 -0.1122 

USA CONSUMER GDS  0.1583 0.1139 0.1219 0.1216 0.1214 0.1205 0.1256 0.1293 

USA CONSUMER SVS  -0.0702 -0.0491 0.0091 0.0050 0.0092 -0.0593 -0.0686 -0.0712 

USA FINANCIALS  -0.0036 -0.0046 -0.0384 -0.0356 -0.0361 -0.0156 -0.0204 -0.0264 

USA HEALTH CARE  0.3602 0.2594 0.2930 0.2922 0.2920 0.2666 0.2706 0.2746 

USA INDUSTRIALS  -0.1145 -0.0831 -0.0571 -0.0566 -0.0560 -0.0926 -0.0962 -0.1019 

USA OIL & GAS  0.2330 0.1676 0.1376 0.1398 0.1382 0.1761 0.1832 0.1797 

USA TECHNOLOGY  0.2005 0.1444 0.1386 0.1384 0.1378 0.1468 0.1481 0.1497 

USA TELECOM  0.1664 0.1194 0.0781 0.0792 0.0773 0.1259 0.1295 0.1325 

USA UTILITIES  0.2073 0.1486 0.1249 0.1232 0.1228 0.1569 0.1604 0.1691 

JAPAN BASIC MATS  -0.1145 -0.0846 -0.1058 -0.1041 -0.1047 -0.0912 -0.0942 -0.0948 

JAPAN CONSUMER GDS  0.1661 0.1185 0.0888 0.0905 0.0892 0.1251 0.1297 0.1347 

JAPAN CONSUMER SVS  0.1861 0.1322 0.1186 0.1211 0.1175 0.1401 0.1443 0.1515 

JAPAN FINANCIALS  -0.0796 -0.0568 -0.0500 -0.0502 -0.0489 -0.0623 -0.0647 -0.0696 

JAPAN HEALTH CARE  0.1859 0.1354 0.1787 0.1741 0.1761 0.1439 0.1468 0.1513 

JAPAN INDUSTRIALS  -0.1258 -0.0876 -0.0935 -0.0929 -0.0925 -0.0950 -0.0998 -0.1071 

JAPAN OIL & GAS  0.1014 0.0739 0.0774 0.0759 0.0764 0.0787 0.0804 0.0828 

JAPAN TECHNOLOGY  -0.0819 -0.0602 -0.0422 -0.0421 -0.0416 -0.0652 -0.0673 -0.0698 

JAPAN TELECOM  -0.0937 -0.0672 -0.0726 -0.0724 -0.0716 -0.0726 -0.0750 -0.0782 

JAPAN UTILITIES  0.1792 0.1277 0.0695 0.0707 0.0688 0.1356 0.1409 0.1435 

 
 

Table 6.4.3 Weights in the Out-of-sample Risk-Adjusted Unconstrained BL Portfolio in 
September 2003 
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Table 6.4.3 (continued) 

 
CVaR 

 
Normal Distribution t-Distribution 

Panel B: 99% 95% 90% 99% 95% 90% 

UK BASIC MATS  -0.1102 -0.1124 -0.1152 -0.1080 -0.1092 -0.1106 

UK CONSUMER GDS  -0.0866 -0.0881 -0.0895 -0.0841 -0.0859 -0.0871 

UK CONSUMER SVS  -0.1290 -0.1320 -0.1342 -0.1253 -0.1274 -0.1299 

UK FINANCIALS  -0.0957 -0.0971 -0.0996 -0.0915 -0.0945 -0.0965 

UK HEALTH CARE  0.1841 0.1855 0.1894 0.1801 0.1834 0.1857 

UK TECHNOLOGY  -0.0485 -0.0498 -0.0506 -0.0474 -0.0480 -0.0487 

UK INDUSTRIALS  -0.0742 -0.0759 -0.0770 -0.0711 -0.0727 -0.0744 

UK OIL & GAS  0.1224 0.1236 0.1292 0.1217 0.1221 0.1221 

UK TELECOM  0.1119 0.1137 0.1153 0.1095 0.1110 0.1124 

UK UTILITIES  0.1618 0.1655 0.1658 0.1565 0.1597 0.1619 

USA BASIC MATS  -0.1038 -0.1072 -0.1088 -0.1011 -0.1027 -0.1036 

USA CONSUMER GDS  0.1232 0.1263 0.1262 0.1195 0.1214 0.1234 

USA CONSUMER SVS  -0.0634 -0.0699 -0.0668 -0.0570 -0.0606 -0.0642 

USA FINANCIALS  -0.0174 -0.0211 -0.0241 -0.0136 -0.0165 -0.0185 

USA HEALTH CARE  0.2692 0.2710 0.2723 0.2653 0.2676 0.2697 

USA INDUSTRIALS  -0.0948 -0.0964 -0.0999 -0.0906 -0.0937 -0.0955 

USA OIL & GAS  0.1792 0.1845 0.1814 0.1733 0.1773 0.1810 

USA TECHNOLOGY  0.1467 0.1483 0.1483 0.1461 0.1469 0.1473 

USA TELECOM  0.1277 0.1298 0.1310 0.1246 0.1266 0.1280 

USA UTILITIES  0.1580 0.1604 0.1648 0.1570 0.1571 0.1580 

JAPAN BASIC MATS  -0.0932 -0.0950 -0.0953 -0.0889 -0.0922 -0.0948 

JAPAN CONSUMER GDS  0.1277 0.1300 0.1301 0.1236 0.1260 0.1286 

JAPAN CONSUMER SVS  0.1423 0.1443 0.1468 0.1391 0.1409 0.1427 

JAPAN FINANCIALS  -0.0628 -0.0649 -0.0666 -0.0613 -0.0628 -0.0627 

JAPAN HEALTH CARE  0.1454 0.1472 0.1504 0.1424 0.1447 0.1460 

JAPAN INDUSTRIALS  -0.0974 -0.0996 -0.1019 -0.0944 -0.0957 -0.0977 

JAPAN OIL & GAS  0.0794 0.0808 0.0819 0.0772 0.0794 0.0802 

JAPAN TECHNOLOGY  -0.0662 -0.0677 -0.0681 -0.0634 -0.0657 -0.0670 

JAPAN TELECOM  -0.0738 -0.0751 -0.0773 -0.0721 -0.0731 -0.0741 

JAPAN UTILITIES  0.1377 0.1412 0.1420 0.1341 0.1366 0.1383 
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This table reports the results of out-of-sample risk-adjusted unconstrained BL portfolios for 
the portfolio evaluation criterion including realized excess return, Conditional Sharpe Ratio 
(CSR), and Portfolio Turnover (PT) and reward to CVaR ratio in September 2003. The 
standard deviation is estimated rolling window method with window length of 110. The 
implied BL portfolio is constructed by reverse optimisation of the utility function. The SR-BL 
portfolio is constructed by achieving maximal Sharpe ratio in the optimisation problem. Both 
VaR and CVaR is estimated by the parametric method in the optimisation model with 
assumption of the normal distribution (‘N’) and the t-distribution (‘t’) at confidence levels of 
99%, 95% and 90%. 
 

 
Realized Excess Return CSR PT Reward to CVaR 

Implied BL 0.0820 1.3655 2.6756 1.0507 

SR-BL 0.0589 1.3641 1.4859 1.0485 

99% Confidence Level: 
    -VaR N  0.0521 1.2677 1.4789 0.9071 

 -VaR t  0.0626 1.3904 2.0551 1.0906 

 -CVaR N  0.0637 1.3980 2.1273 1.1033 

 -CVaR t  0.0620 1.3872 2.0062 1.0855 

95% Confidence Level: 
    -VaR N  0.0517 1.2633 1.4623 0.9011 

 -VaR t  0.0646 1.4019 2.1992 1.1097 

 -CVaR N  0.0647 1.4023 2.2122 1.1103 

 -CVaR t  0.0630 1.3930 2.0850 1.0950 

90% Confidence Level: 
    -VaR N  0.0515 1.2607 1.4746 0.8977 

 -VaR t  0.0667 1.4136 2.3476 1.1294 

 -CVaR N  0.0656 1.4075 2.2713 1.1190 

 -CVaR t  0.0640 1.4009 2.1468 1.1080 
 

Table 6.4.4 Out-of-Sample Risk-Adjusted Unconstrained BL Portfolio Performance 
Evaluation in the Single Period 
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This table shows realised out-of-sample risk-adjusted unconstrained BL portfolios performance in the period from September 2003 to May 
2010. Return is the average realized excess return, risk is the standard deviation, Sharpe Ratio is the average excess realized return divided by 
the standard deviation. Information Ratio is the average active return divided by the standard deviation of active return. Both VaR and CVaR 
are measured on the empirical distribution. Return to VaR ratio and Return to CVaR ratio evaluate the excess return per unit of tail risk. In 
construction of portfolio, both VaR and CVaR are estimated by the parametric method with assumption of the normal distribution (‘N’) and the t-
distribution (‘t’) at confidence levels of 99%, 95% and 90%.  
 

 
 Return Risk Skewness Kurtosis 

Sharpe 
Ratio 

Information 
Ratio 

Empirical 
VaR 

Empirical 
CVaR 

Reward to 
VaR Ratio 

Reward to 
CVaR Ratio 

implied BL 0.0074 0.0485 -0.7874 6.3160 0.1531 0.1667 0.1644 0.2032 0.0452 0.0365 

SR-BL 0.0026 0.0632 -3.4104 23.3042 0.0415 0.0372 0.3142 0.4289 0.0083 0.0061 

99% Confidence Level: 
          -VaR N  0.0020 0.0717 -2.7274 20.0491 0.0280 0.0197 0.3745 0.4376 0.0054 0.0046 

 -VaR t  0.0064 0.0487 -0.6489 5.4425 0.1304 0.1347 0.1536 0.1771 0.0413 0.0359 

 -CVaR N  0.0064 0.0496 -0.7582 6.0132 0.1285 0.1309 0.1651 0.1950 0.0386 0.0327 

 -CVaR t  0.0063 0.0482 -0.5959 5.1651 0.1308 0.1364 0.1468 0.1665 0.0429 0.0379 

95% Confidence Level: 
          -VaR N  0.0022 0.0733 -2.4920 19.0190 0.0303 0.0219 0.3767 0.4330 0.0059 0.0051 

 -VaR t  0.0064 0.0507 -0.8891 6.7230 0.1265 0.1270 0.1769 0.2137 0.0362 0.0300 

 -CVaR N  0.0065 0.0510 -0.8886 6.8550 0.1269 0.1274 0.1791 0.2172 0.0362 0.0298 

 -CVaR t  0.0064 0.0491 -0.6892 5.6538 0.1297 0.1332 0.1582 0.1842 0.0402 0.0345 

90% Confidence Level: 
          -VaR N  0.0025 0.0756 -2.1156 18.0422 0.0335 0.0250 0.3797 0.4281 0.0067 0.0059 

 -VaR t  0.0064 0.0537 -1.3017 9.1521 0.1189 0.1157 0.2080 0.2628 0.0307 0.0243 

 -CVaR N  0.0063 0.0521 -1.0815 7.8338 0.1210 0.1194 0.1924 0.2382 0.0328 0.0265 

 -CVaR t  0.0064 0.0499 -0.7872 6.1809 0.1281 0.1300 0.1680 0.1997 0.0380 0.0320 

Table 6.4.5 Out-of-sample Risk-Adjusted Unconstrained BL Portfolios Performance in Multiple Periods (Sep 03 – May 10) 
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Figure 6.1.1 Out-of-sample Monthly Volatility of Benchmark Portfolio 
This figure plots the time-varying standard deviation for the benchmark portfolio from March 

2003 to May 2010. The time-varying standard deviation is calculated by the DCC model 

(blue line), the EWMA model (red line), and the RW method (green line) with a window 

length of 110. 
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This figure plots the time-varying risk aversion coefficient from August 2003 to May 

2010. The risk aversion coefficient is calculated by the monthly world risk premium 

divided by monthly time-varying market variance. The monthly world risk premium is 

set at 0.29% (=3.5%/12). The time-varying standard deviation is calculated by the 

DCC model (blue line), the EWMA model (red line), the RW method (green line) with 

a window length of 110.  
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Figure 6.1.2 Out-of-Sample Time-Varying Risk Aversion Coefficient 
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Appendix 6.1.1 Average Value of Weights in the Out-of-sample Unconstrained 
Implied BL Portfolio and the SR-BL Portfolio (Sep 03 – May 10) 

 
This table reports average value of weights assigned in each index in the out-of-sample 
unconstrained implied BL portfolio and the SR-BL portfolio in the period from September 
2003 to May 2010. An implied BL portfolio is constructed by reverse optimisation of the utility 
function. The SR-BL portfolio is constructed by achieving maximal SR in the optimisation 
problem. 
 

 
DCC EWMA RW110 

 
Implied  BL SR-BL  Implied  BL SR-BL  Implied  BL SR-BL  

UK BASIC MATS  0.0030 0.0065 0.0043 0.0046 0.0017 0.0019 

UK CONSUMER GDS  0.0030 0.0010 0.0118 0.0122 0.0134 0.0139 

UK CONSUMER SVS  -0.0061 -0.0008 -0.0008 -0.0008 -0.0023 -0.0023 

UK FINANCIALS  0.0177 0.0190 0.0231 0.0229 0.0225 0.0222 

UK HEALTH CARE  0.0210 0.0133 0.0175 0.0162 0.0168 0.0149 

UK TECHNOLOGY  0.0000 0.0042 0.0077 0.0082 0.0058 0.0066 

UK INDUSTRIALS  0.0192 0.0218 0.0298 0.0299 0.0288 0.0296 

UK OIL & GAS  0.0067 0.0040 0.0116 0.0114 0.0114 0.0117 

UK TELECOM  0.0181 0.0125 0.0159 0.0158 0.0192 0.0186 

UK UTILITIES  0.0262 0.0177 0.0203 0.0184 0.0198 0.0183 

USA BASIC MATS  0.0110 0.0125 0.0147 0.0145 0.0110 0.0111 

USA CONSUMER GDS  0.0424 0.0350 0.0449 0.0446 0.0462 0.0455 

USA CONSUMER SVS  0.0778 0.0750 0.0789 0.0779 0.0778 0.0776 

USA FINANCIALS  0.1295 0.1246 0.1216 0.1206 0.1219 0.1206 

USA HEALTH CARE  0.1183 0.1089 0.1078 0.1051 0.1054 0.1029 

USA INDUSTRIALS  0.0727 0.0666 0.0631 0.0628 0.0641 0.0629 

USA OIL & GAS  0.0941 0.0844 0.0761 0.0753 0.0795 0.0787 

USA TECHNOLOGY  0.0952 0.0984 0.1033 0.1030 0.1015 0.1017 

USA TELECOM  0.0512 0.0463 0.0321 0.0320 0.0355 0.0352 

USA UTILITIES  0.0598 0.0517 0.0422 0.0416 0.0475 0.0468 

JAPAN BASIC MATS  -0.0020 0.0050 0.0089 0.0099 0.0052 0.0059 

JAPAN CONSUMER GDS  0.0010 0.0046 0.0189 0.0190 0.0178 0.0179 

JAPAN CONSUMER SVS  0.0373 0.0355 0.0203 0.0207 0.0205 0.0208 

JAPAN FINANCIALS  0.0311 0.0280 0.0314 0.0317 0.0342 0.0343 

JAPAN HEALTH CARE  0.0338 0.0258 0.0210 0.0209 0.0206 0.0201 

JAPAN INDUSTRIALS  0.0085 0.0152 0.0169 0.0173 0.0158 0.0165 

JAPAN OIL & GAS  0.0097 0.0127 0.0118 0.0122 0.0110 0.0120 

JAPAN TECHNOLOGY  -0.0010 0.0054 0.0094 0.0101 0.0061 0.0069 

JAPAN TELECOM  0.0232 0.0229 0.0144 0.0146 0.0167 0.0169 

JAPAN UTILITIES  0.0499 0.0424 0.0280 0.0274 0.0308 0.0303 

Absolute Position Range 0.1355 0.1254 0.1224 0.1214 0.1242 0.1229 
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This table reports standard deviation of weights assigned in each index in the out-of-sample 
unconstrained implied BL portfolio and the SR-BL portfolio in the period from September 
2003 to May 2010. An implied BL portfolio is constructed by reverse optimisation of the utility 
function. The SR-BL portfolio is constructed by achieving maximal SR in the optimisation 
problem. 
 

 
DCC EWMA RW110 

 
Implied  BL SR-BL  Implied  BL SR-BL  Implied  BL SR-BL  

UK BASIC MATS  0.0446 0.0432 0.0268 0.0267 0.0283 0.0284 

UK CONSUMER GDS  0.0638 0.0554 0.0292 0.0290 0.0325 0.0328 

UK CONSUMER SVS  0.0650 0.0592 0.0352 0.0346 0.0390 0.0389 

UK FINANCIALS  0.0486 0.0442 0.0307 0.0298 0.0331 0.0328 

UK HEALTH CARE  0.0930 0.0810 0.0474 0.0463 0.0537 0.0533 

UK TECHNOLOGY  0.0405 0.0367 0.0175 0.0176 0.0196 0.0200 

UK INDUSTRIALS  0.0595 0.0544 0.0273 0.0273 0.0304 0.0312 

UK OIL & GAS  0.0847 0.0728 0.0338 0.0334 0.0392 0.0392 

UK TELECOM  0.0681 0.0570 0.0284 0.0279 0.0312 0.0311 

UK UTILITIES  0.0964 0.0906 0.0469 0.0463 0.0513 0.0516 

USA BASIC MATS  0.0569 0.0525 0.0324 0.0321 0.0356 0.0358 

USA CONSUMER GDS  0.0832 0.0704 0.0470 0.0463 0.0509 0.0501 

USA CONSUMER SVS  0.0722 0.0634 0.0401 0.0381 0.0458 0.0455 

USA FINANCIALS  0.0587 0.0520 0.0435 0.0421 0.0464 0.0448 

USA HEALTH CARE  0.1065 0.0912 0.0634 0.0592 0.0701 0.0675 

USA INDUSTRIALS  0.0643 0.0556 0.0370 0.0360 0.0412 0.0391 

USA OIL & GAS  0.0783 0.0638 0.0354 0.0344 0.0405 0.0401 

USA TECHNOLOGY  0.0574 0.0638 0.0231 0.0245 0.0260 0.0284 

USA TELECOM  0.0723 0.0601 0.0327 0.0325 0.0363 0.0366 

USA UTILITIES  0.0767 0.0683 0.0365 0.0357 0.0392 0.0393 

JAPAN BASIC MATS  0.0597 0.0557 0.0299 0.0301 0.0341 0.0347 

JAPAN CONSUMER GDS  0.0736 0.0670 0.0346 0.0342 0.0407 0.0409 

JAPAN CONSUMER SVS  0.0988 0.0867 0.0422 0.0416 0.0476 0.0478 

JAPAN FINANCIALS  0.0575 0.0493 0.0246 0.0248 0.0270 0.0274 

JAPAN HEALTH CARE  0.0927 0.0814 0.0411 0.0404 0.0475 0.0477 

JAPAN INDUSTRIALS  0.0585 0.0555 0.0316 0.0318 0.0355 0.0364 

JAPAN OIL & GAS  0.0512 0.0448 0.0220 0.0218 0.0257 0.0257 

JAPAN TECHNOLOGY  0.0540 0.0500 0.0230 0.0232 0.0263 0.0269 

JAPAN TELECOM  0.0627 0.0567 0.0253 0.0251 0.0288 0.0290 

JAPAN UTILITIES  0.0846 0.0774 0.0385 0.0382 0.0433 0.0439 

Average Standard Deviation 0.0695 0.0620 0.0342 0.0337 0.0382 0.0382 

 
  

Appendix 6.1.2 Standard Deviation of Weights in the Out-of-sample 
Unconstrained Implied BL Portfolio and the SR-BL Portfolio (Sep 03 – May 10) 
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This table reports average value of weights allocated to each index in the out-of-sample 
unconstrained MVaR-BL portfolio in the period from September 2003 to May 2010. The 
weight in the MVaR-BL portfolio is the solution to the optimisation problem with the target of 
maximal expected excess return to VaR ratio. VaR is estimated by the parametric method 
with the assumption of normal distribution and t-distribution at the confidence level of 99%. 
 

 
 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW110 DCC EWMA  RW110 

UK BASIC MATS  0.0067 0.0048 0.0019 0.0053 0.0048 0.0019 

UK CONSUMER GDS  0.0015 0.0121 0.0139 0.0016 0.0122 0.0139 

UK CONSUMER SVS  -0.0075 -0.0009 -0.0022 -0.0073 -0.0008 -0.0021 

UK FINANCIALS  0.0196 0.0228 0.0222 0.0191 0.0227 0.0222 

UK HEALTH CARE  0.0157 0.0161 0.0149 0.0163 0.0161 0.0149 

UK TECHNOLOGY  0.0009 0.0081 0.0066 0.0006 0.0082 0.0066 

UK INDUSTRIALS  0.0196 0.0299 0.0296 0.0194 0.0298 0.0296 

UK OIL & GAS  0.0038 0.0112 0.0117 0.0041 0.0113 0.0117 

UK TELECOM  0.0145 0.0158 0.0186 0.0154 0.0158 0.0187 

UK UTILITIES  0.0208 0.0186 0.0183 0.0216 0.0188 0.0184 

USA BASIC MATS  0.0105 0.0143 0.0111 0.0104 0.0140 0.0111 

USA CONSUMER GDS  0.0392 0.0447 0.0455 0.0400 0.0447 0.0455 

USA CONSUMER SVS  0.0754 0.0779 0.0776 0.0760 0.0779 0.0777 

USA FINANCIALS  0.1288 0.1208 0.1205 0.1291 0.1209 0.1205 

USA HEALTH CARE  0.1125 0.1051 0.1030 0.1137 0.1053 0.1031 

USA INDUSTRIALS  0.0726 0.0628 0.0629 0.0723 0.0630 0.0630 

USA OIL & GAS  0.0903 0.0754 0.0787 0.0908 0.0754 0.0787 

USA TECHNOLOGY  0.0937 0.1030 0.1017 0.0940 0.1029 0.1016 

USA TELECOM  0.0477 0.0320 0.0352 0.0487 0.0319 0.0352 

USA UTILITIES  0.0549 0.0415 0.0468 0.0557 0.0414 0.0467 

JAPAN BASIC MATS  -0.0015 0.0100 0.0059 -0.0027 0.0100 0.0060 

JAPAN CONSUMER GDS  -0.0008 0.0190 0.0179 -0.0010 0.0189 0.0180 

JAPAN CONSUMER SVS  0.0340 0.0209 0.0207 0.0341 0.0208 0.0206 

JAPAN FINANCIALS  0.0319 0.0317 0.0343 0.0308 0.0317 0.0343 

JAPAN HEALTH CARE  0.0298 0.0207 0.0200 0.0300 0.0207 0.0199 

JAPAN INDUSTRIALS  0.0090 0.0172 0.0165 0.0078 0.0172 0.0165 

JAPAN OIL & GAS  0.0101 0.0122 0.0119 0.0087 0.0122 0.0119 

JAPAN TECHNOLOGY  0.0007 0.0100 0.0069 -0.0005 0.0101 0.0069 

JAPAN TELECOM  0.0217 0.0146 0.0169 0.0210 0.0146 0.0169 

JAPAN UTILITIES  0.0439 0.0274 0.0303 0.0448 0.0275 0.0304 

Absolute Position Range 0.1362 0.1216 0.1228 0.1364 0.1217 0.1226 
 
  

Appendix 6.1.3 Average Value of Weights in the Out-of-sample Unconstrained 
MVaR-BL Portfolio (Sep 03 – May 10) 
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This table reports standard deviation of weights allocated to each index in the out-of-sample 
unconstrained MVaR-BL portfolio in the period from September 2003 to May 2010. The 
weight in the MVaR-BL portfolio is the solution to the optimisation problem with the target of 
maximal expected excess return to VaR ratio. VaR is estimated by the parametric method 
with the assumption of normal distribution and t-distribution at the confidence level of 99%. 
 

 
 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW110 DCC EWMA  RW110 

UK BASIC MATS  0.0416 0.0266 0.0284 0.0437 0.0265 0.0285 

UK CONSUMER GDS  0.0620 0.0290 0.0327 0.0615 0.0290 0.0326 

UK CONSUMER SVS  0.0685 0.0345 0.0389 0.0684 0.0344 0.0386 

UK FINANCIALS  0.0481 0.0298 0.0327 0.0495 0.0299 0.0326 

UK HEALTH CARE  0.0855 0.0463 0.0533 0.0871 0.0460 0.0534 

UK TECHNOLOGY  0.0394 0.0175 0.0200 0.0414 0.0175 0.0200 

UK INDUSTRIALS  0.0603 0.0273 0.0313 0.0603 0.0274 0.0312 

UK OIL & GAS  0.0842 0.0333 0.0392 0.0828 0.0332 0.0392 

UK TELECOM  0.0601 0.0279 0.0311 0.0617 0.0279 0.0311 

UK UTILITIES  0.0887 0.0463 0.0513 0.0888 0.0462 0.0512 

USA BASIC MATS  0.0561 0.0320 0.0358 0.0568 0.0321 0.0359 

USA CONSUMER GDS  0.0790 0.0463 0.0502 0.0800 0.0465 0.0501 

USA CONSUMER SVS  0.0742 0.0377 0.0455 0.0733 0.0372 0.0456 

USA FINANCIALS  0.0561 0.0421 0.0448 0.0545 0.0420 0.0449 

USA HEALTH CARE  0.1012 0.0589 0.0673 0.1031 0.0586 0.0671 

USA INDUSTRIALS  0.0637 0.0361 0.0391 0.0626 0.0362 0.0391 

USA OIL & GAS  0.0699 0.0346 0.0402 0.0711 0.0347 0.0402 

USA TECHNOLOGY  0.0609 0.0245 0.0284 0.0615 0.0246 0.0284 

USA TELECOM  0.0659 0.0323 0.0365 0.0672 0.0324 0.0364 

USA UTILITIES  0.0682 0.0356 0.0393 0.0696 0.0355 0.0391 

JAPAN BASIC MATS  0.0615 0.0304 0.0347 0.0632 0.0305 0.0346 

JAPAN CONSUMER GDS  0.0780 0.0342 0.0408 0.0782 0.0341 0.0406 

JAPAN CONSUMER SVS  0.0937 0.0414 0.0477 0.0943 0.0410 0.0476 

JAPAN FINANCIALS  0.0536 0.0247 0.0274 0.0533 0.0248 0.0274 

JAPAN HEALTH CARE  0.0850 0.0405 0.0475 0.0856 0.0404 0.0472 

JAPAN INDUSTRIALS  0.0603 0.0312 0.0363 0.0618 0.0307 0.0362 

JAPAN OIL & GAS  0.0519 0.0218 0.0256 0.0533 0.0218 0.0255 

JAPAN TECHNOLOGY  0.0548 0.0232 0.0270 0.0567 0.0233 0.0270 

JAPAN TELECOM  0.0606 0.0251 0.0291 0.0601 0.0252 0.0291 

JAPAN UTILITIES  0.0725 0.0382 0.0440 0.0751 0.0382 0.0441 

Average Standard Deviation 0.0669 0.0336 0.0382 0.0676 0.0336 0.0381 
 

 
  

Appendix 6.1.4 Standard Deviation of Weights in the Out-of-sample 
Unconstrained MVaR-BL Portfolio (Sep 03 – May 10) 
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This table shows average value of weights in each index and average standard deviation in 
the out-of-sample unconstrained MVaR-BL portfolio in the period from September 2003 to 
May 2010. Note that the covariance matrix applied to the MVaR-BL model is the DCC 
covariance matrix in this table. 
 

 
 Normal Distribution t-Distribution 

 
0.99 0.95 0.90 0.99 0.95 0.90 

UK BASIC MATS 0.0102 0.0065 0.0065 0.0148 0.0069 0.0076 

UK CONSUMER GDS 0.0111 0.0011 0.0010 0.0103 0.0016 0.0017 

UK CONSUMER SVS 0.0132 -0.0008 -0.0008 0.0124 -0.0072 -0.0071 

UK FINANCIALS 0.0265 0.0191 0.0190 0.0314 0.0198 0.0199 

UK HEALTH CARE 0.0189 0.0132 0.0133 0.0300 0.0158 0.0155 

UK TECHNOLOGY 0.0025 0.0042 0.0042 -0.0117 0.0012 0.0018 

UK INDUSTRIALS 0.0231 0.0217 0.0218 0.0186 0.0197 0.0199 

UK OIL & GAS -0.0022 0.0040 0.0040 0.0039 0.0038 0.0034 

UK TELECOM 0.0203 0.0126 0.0126 0.0156 0.0147 0.0140 

UK UTILITIES -0.0017 0.0177 0.0177 0.0079 0.0209 0.0201 

USA BASIC MATS 0.0245 0.0125 0.0125 0.0226 0.0102 0.0101 

USA CONSUMER GDS 0.0293 0.0349 0.0350 0.0289 0.0389 0.0385 

USA CONSUMER SVS 0.0928 0.0750 0.0750 0.0853 0.0752 0.0747 

USA FINANCIALS 0.1189 0.1246 0.1246 0.1240 0.1284 0.1282 

USA HEALTH CARE 0.1147 0.1089 0.1089 0.1235 0.1121 0.1111 

USA INDUSTRIALS 0.0718 0.0666 0.0666 0.0667 0.0724 0.0726 

USA OIL & GAS 0.0485 0.0845 0.0844 0.0524 0.0901 0.0893 

USA TECHNOLOGY 0.1113 0.0984 0.0984 0.1012 0.0936 0.0934 

USA TELECOM 0.0297 0.0462 0.0463 0.0272 0.0476 0.0466 

USA UTILITIES 0.0241 0.0516 0.0517 0.0342 0.0549 0.0539 

JAPAN BASIC MATS 0.0190 0.0050 0.0050 0.0196 -0.0015 -0.0003 

JAPAN CONSUMER GDS 0.0352 0.0046 0.0046 0.0287 -0.0007 -0.0004 

JAPAN CONSUMER SVS 0.0251 0.0356 0.0356 0.0227 0.0341 0.0341 

JAPAN FINANCIALS 0.0403 0.0280 0.0280 0.0442 0.0319 0.0329 

JAPAN HEALTH CARE 0.0114 0.0258 0.0258 0.0171 0.0299 0.0298 

JAPAN INDUSTRIALS 0.0280 0.0152 0.0152 0.0210 0.0090 0.0101 

JAPAN OIL & GAS -0.0004 0.0127 0.0127 0.0074 0.0102 0.0111 

JAPAN TECHNOLOGY 0.0252 0.0053 0.0054 0.0118 0.0008 0.0023 

JAPAN TELECOM 0.0228 0.0229 0.0229 0.0146 0.0218 0.0226 

JAPAN UTILITIES 0.0057 0.0424 0.0423 0.0137 0.0439 0.0427 

Absolute Position Range 0.1211 0.1254 0.1254 0.1357 0.1355 0.1353 

Average Standard Deviation 0.0951 0.0620 0.0620 0.0964 0.0666 0.0658 
  

Appendix 6.1.5 Average Effect of Distribution Assumptions and Confidence 
Levels on out-of-sample unconstrained MVaR-BL Portfolio Weights 
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This table reports average value of weights allocated to each index in the out-of-sample 
unconstrained MCVaR-BL portfolio in the period from September 2003 to May 2010. The 
weight in the MCVaR-BL portfolio is the solution to the optimisation problem with the target 
of maximal expected excess return to CVaR ratio. CVaR is estimated by the parametric 
method with the assumption of normal distribution and t-distribution at the confidence level of 
99%. 
 

 
 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW110 DCC EWMA  RW110 

UK BASIC MATS  0.0065 0.0048 0.0020 0.0035 0.0048 0.0019 

UK CONSUMER GDS  0.0015 0.0121 0.0139 0.0014 0.0122 0.0139 

UK CONSUMER SVS  -0.0076 -0.0009 -0.0022 -0.0073 -0.0007 -0.0020 

UK FINANCIALS  0.0195 0.0228 0.0222 0.0183 0.0226 0.0222 

UK HEALTH CARE  0.0157 0.0161 0.0149 0.0180 0.0160 0.0149 

UK TECHNOLOGY  0.0011 0.0081 0.0066 -0.0006 0.0081 0.0065 

UK INDUSTRIALS  0.0197 0.0298 0.0296 0.0178 0.0299 0.0296 

UK OIL & GAS  0.0038 0.0112 0.0117 0.0047 0.0113 0.0117 

UK TELECOM  0.0146 0.0158 0.0186 0.0161 0.0158 0.0187 

UK UTILITIES  0.0207 0.0186 0.0183 0.0235 0.0189 0.0185 

USA BASIC MATS  0.0105 0.0142 0.0111 0.0100 0.0139 0.0111 

USA CONSUMER GDS  0.0394 0.0447 0.0455 0.0403 0.0447 0.0455 

USA CONSUMER SVS  0.0756 0.0779 0.0777 0.0759 0.0777 0.0777 

USA FINANCIALS  0.1289 0.1208 0.1205 0.1292 0.1213 0.1205 

USA HEALTH CARE  0.1127 0.1052 0.1030 0.1154 0.1053 0.1031 

USA INDUSTRIALS  0.0726 0.0629 0.0629 0.0719 0.0630 0.0630 

USA OIL & GAS  0.0904 0.0754 0.0787 0.0919 0.0754 0.0786 

USA TECHNOLOGY  0.0940 0.1030 0.1017 0.0936 0.1030 0.1015 

USA TELECOM  0.0478 0.0320 0.0352 0.0488 0.0319 0.0351 

USA UTILITIES  0.0549 0.0415 0.0468 0.0573 0.0412 0.0466 

JAPAN BASIC MATS  -0.0017 0.0100 0.0059 -0.0036 0.0100 0.0060 

JAPAN CONSUMER GDS  -0.0009 0.0190 0.0179 -0.0010 0.0189 0.0181 

JAPAN CONSUMER SVS  0.0340 0.0208 0.0207 0.0345 0.0206 0.0206 

JAPAN FINANCIALS  0.0318 0.0317 0.0343 0.0294 0.0315 0.0342 

JAPAN HEALTH CARE  0.0296 0.0207 0.0200 0.0308 0.0209 0.0199 

JAPAN INDUSTRIALS  0.0089 0.0172 0.0165 0.0072 0.0173 0.0165 

JAPAN OIL & GAS  0.0099 0.0122 0.0119 0.0080 0.0122 0.0119 

JAPAN TECHNOLOGY  0.0007 0.0101 0.0069 -0.0025 0.0102 0.0069 

JAPAN TELECOM  0.0217 0.0146 0.0169 0.0208 0.0145 0.0169 

JAPAN UTILITIES  0.0438 0.0274 0.0303 0.0464 0.0276 0.0304 

Absolute Position Range 0.1365 0.1216 0.1228 0.1364 0.1220 0.1225 
 

  

Appendix 6.1.6 Average Value of Weights in the Out-of-sample Unconstrained 
MCVaR-BL Portfolio (Sep 03 – May 10) 
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This table reports standard deviation of weights allocated to each index in the out-of-sample 
unconstrained MCVaR-BL portfolio in the period from September 2003 to May 2010. The 
weight in the MCVaR-BL portfolio is the solution to the optimisation problem with the target 
of maximal expected excess return to CVaR ratio. CVaR is estimated by the parametric 
method with the assumption of normal distribution and t-distribution at the confidence level of 
99%. 
 

 
 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW110 DCC EWMA  RW110 

UK BASIC MATS  0.0419 0.0266 0.0283 0.0462 0.0266 0.0285 

UK CONSUMER GDS  0.0620 0.0290 0.0327 0.0626 0.0290 0.0326 

UK CONSUMER SVS  0.0687 0.0345 0.0389 0.0683 0.0341 0.0385 

UK FINANCIALS  0.0484 0.0298 0.0327 0.0487 0.0298 0.0327 

UK HEALTH CARE  0.0854 0.0463 0.0534 0.0904 0.0461 0.0533 

UK TECHNOLOGY  0.0392 0.0175 0.0200 0.0429 0.0176 0.0199 

UK INDUSTRIALS  0.0603 0.0273 0.0313 0.0619 0.0275 0.0311 

UK OIL & GAS  0.0841 0.0333 0.0392 0.0841 0.0329 0.0393 

UK TELECOM  0.0602 0.0279 0.0311 0.0628 0.0280 0.0311 

UK UTILITIES  0.0886 0.0463 0.0513 0.0917 0.0460 0.0509 

USA BASIC MATS  0.0563 0.0320 0.0359 0.0577 0.0322 0.0359 

USA CONSUMER GDS  0.0792 0.0463 0.0502 0.0805 0.0465 0.0500 

USA CONSUMER SVS  0.0744 0.0376 0.0456 0.0735 0.0366 0.0456 

USA FINANCIALS  0.0564 0.0421 0.0448 0.0550 0.0421 0.0451 

USA HEALTH CARE  0.1013 0.0589 0.0673 0.1051 0.0584 0.0670 

USA INDUSTRIALS  0.0638 0.0361 0.0391 0.0633 0.0363 0.0392 

USA OIL & GAS  0.0700 0.0346 0.0402 0.0727 0.0346 0.0401 

USA TECHNOLOGY  0.0611 0.0246 0.0284 0.0616 0.0246 0.0283 

USA TELECOM  0.0660 0.0323 0.0365 0.0667 0.0322 0.0364 

USA UTILITIES  0.0683 0.0356 0.0393 0.0711 0.0357 0.0389 

JAPAN BASIC MATS  0.0618 0.0304 0.0347 0.0646 0.0306 0.0343 

JAPAN CONSUMER GDS  0.0782 0.0342 0.0408 0.0784 0.0341 0.0403 

JAPAN CONSUMER SVS  0.0939 0.0414 0.0477 0.0952 0.0406 0.0475 

JAPAN FINANCIALS  0.0537 0.0247 0.0275 0.0556 0.0248 0.0271 

JAPAN HEALTH CARE  0.0848 0.0405 0.0475 0.0869 0.0402 0.0469 

JAPAN INDUSTRIALS  0.0604 0.0311 0.0363 0.0630 0.0302 0.0361 

JAPAN OIL & GAS  0.0520 0.0219 0.0256 0.0541 0.0217 0.0254 

JAPAN TECHNOLOGY  0.0549 0.0232 0.0269 0.0588 0.0232 0.0269 

JAPAN TELECOM  0.0605 0.0252 0.0290 0.0611 0.0251 0.0291 

JAPAN UTILITIES  0.0725 0.0382 0.0440 0.0768 0.0382 0.0440 

Average Standard Deviation 0.0669 0.0336 0.0382 0.0687 0.0335 0.0381 
 
  

Appendix 6.1.7 Standard Deviation of Weights in the Out-of-sample 
Unconstrained MCVaR-BL Portfolio (Sep 03 – May 10) 



307 
 

 
This table shows average value of weights in each index and average standard deviation in 
the out-of-sample unconstrained MVaR-BL portfolio in the period from September 2003 to 
May 2010. Note that the covariance matrix applied to the MVaR-BL model is the DCC 
covariance matrix in this table. 
 

 
 Normal Distribution t-Distribution 

 
0.99 0.95 0.90 0.99 0.95 0.90 

UK BASIC MATS  0.0065 0.0070 0.0072 0.0035 0.0063 0.0067 

UK CONSUMER GDS  0.0015 0.0017 0.0017 0.0014 0.0015 0.0015 

UK CONSUMER SVS  -0.0076 -0.0071 -0.0071 -0.0073 -0.0073 -0.0075 

UK FINANCIALS  0.0195 0.0198 0.0198 0.0183 0.0198 0.0196 

UK HEALTH CARE  0.0157 0.0156 0.0156 0.0180 0.0159 0.0157 

UK TECHNOLOGY  0.0011 0.0014 0.0017 -0.0006 0.0011 0.0009 

UK INDUSTRIALS  0.0197 0.0199 0.0198 0.0178 0.0194 0.0196 

UK OIL & GAS  0.0038 0.0037 0.0034 0.0047 0.0039 0.0038 

UK TELECOM  0.0146 0.0146 0.0142 0.0161 0.0149 0.0145 

UK UTILITIES  0.0207 0.0207 0.0202 0.0235 0.0211 0.0208 

USA BASIC MATS  0.0105 0.0102 0.0101 0.0100 0.0106 0.0105 

USA CONSUMER GDS  0.0394 0.0388 0.0387 0.0403 0.0396 0.0393 

USA CONSUMER SVS  0.0756 0.0752 0.0750 0.0759 0.0758 0.0755 

USA FINANCIALS  0.1289 0.1282 0.1284 0.1292 0.1296 0.1288 

USA HEALTH CARE  0.1127 0.1119 0.1115 0.1154 0.1131 0.1126 

USA INDUSTRIALS  0.0726 0.0724 0.0726 0.0719 0.0728 0.0726 

USA OIL & GAS  0.0904 0.0899 0.0895 0.0919 0.0905 0.0904 

USA TECHNOLOGY  0.0940 0.0936 0.0936 0.0936 0.0940 0.0937 

USA TELECOM  0.0478 0.0475 0.0470 0.0488 0.0481 0.0477 

USA UTILITIES  0.0549 0.0546 0.0542 0.0573 0.0552 0.0549 

JAPAN BASIC MATS  -0.0017 -0.0013 -0.0008 -0.0036 -0.0022 -0.0015 

JAPAN CONSUMER GDS  -0.0009 -0.0006 -0.0004 -0.0010 -0.0011 -0.0008 

JAPAN CONSUMER SVS  0.0340 0.0342 0.0341 0.0345 0.0337 0.0340 

JAPAN FINANCIALS  0.0318 0.0321 0.0326 0.0294 0.0311 0.0319 

JAPAN HEALTH CARE  0.0296 0.0298 0.0297 0.0308 0.0296 0.0298 

JAPAN INDUSTRIALS  0.0089 0.0092 0.0096 0.0072 0.0085 0.0089 

JAPAN OIL & GAS  0.0099 0.0103 0.0106 0.0080 0.0092 0.0101 

JAPAN TECHNOLOGY  0.0007 0.0011 0.0019 -0.0025 0.0000 0.0006 

JAPAN TELECOM  0.0217 0.0218 0.0222 0.0208 0.0213 0.0217 

JAPAN UTILITIES  0.0438 0.0438 0.0432 0.0464 0.0439 0.0439 

Absolute Position Range 0.1365 0.1354 0.1355 0.1364 0.1370 0.1363 

Average Standard Deviation 0.0669 0.0665 0.0661 0.0687 0.0671 0.0669 
 

  

Appendix 6.1.8 Average Effect of Distribution Assumptions and Confidence Levels on 
out-of-sample unconstrained MCVaR-BL Portfolio Weights 
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This table reports average value of weights allocated to each index in the out-of-sample 
VaR-constrained BL portfolio in the period from September 2003 to May 2010. VaR is 
estimated by the parametric method in the optimisation model with assumption of normal 

distribution and t-distribution at a confidence level of 99%. The VaR constraint ( 0VaR ) is set 

to be equal to the scaling factor 0.99 multiplied by the estimated VaR of the implied BL 
portfolio in the corresponding period. 
 

 
 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW110 DCC EWMA  RW110 

UK BASIC MATS  0.0031 0.0006 -0.0026 -0.0115 -0.1063 -0.1113 

UK CONSUMER GDS  0.0045 0.0139 0.0158 0.0340 0.0744 0.0770 

UK CONSUMER SVS  -0.0009 0.0021 0.0007 0.0139 0.0658 0.0670 

UK FINANCIALS  0.0183 0.0228 0.0224 0.0132 0.0320 0.0329 

UK HEALTH CARE  0.0178 0.0170 0.0160 0.0512 0.0133 0.0105 

UK TECHNOLOGY  0.0026 0.0061 0.0044 -0.0002 -0.0263 -0.0286 

UK INDUSTRIALS  0.0203 0.0269 0.0264 -0.0088 -0.0328 -0.0339 

UK OIL & GAS  0.0039 0.0082 0.0082 -0.0147 -0.0802 -0.0826 

UK TELECOM  0.0140 0.0173 0.0202 0.0292 0.0600 0.0640 

UK UTILITIES  0.0250 0.0240 0.0234 0.0555 0.1245 0.1284 

USA BASIC MATS  0.0129 0.0139 0.0106 0.0097 0.0055 0.0025 

USA CONSUMER GDS  0.0368 0.0437 0.0448 0.0223 0.0358 0.0336 

USA CONSUMER SVS  0.0795 0.0800 0.0797 0.1195 0.1020 0.0998 

USA FINANCIALS  0.1149 0.1148 0.1145 -0.0371 -0.0465 -0.0484 

USA HEALTH CARE  0.1144 0.1129 0.1117 0.1664 0.2689 0.2743 

USA INDUSTRIALS  0.0646 0.0577 0.0581 0.0167 -0.0665 -0.0676 

USA OIL & GAS  0.0853 0.0798 0.0832 0.0728 0.2019 0.2124 

USA TECHNOLOGY  0.0925 0.0987 0.0972 0.0676 -0.0016 -0.0048 

USA TELECOM  0.0449 0.0307 0.0333 0.0357 -0.0100 -0.0107 

USA UTILITIES  0.0542 0.0409 0.0454 0.1300 0.0238 0.0214 

JAPAN BASIC MATS  0.0040 0.0084 0.0049 0.0141 0.0010 0.0015 

JAPAN CONSUMER GDS  0.0121 0.0251 0.0247 0.0662 0.1555 0.1593 

JAPAN CONSUMER SVS  0.0345 0.0253 0.0253 0.0721 0.1097 0.1089 

JAPAN FINANCIALS  0.0257 0.0284 0.0307 -0.0141 -0.0343 -0.0343 

JAPAN HEALTH CARE  0.0261 0.0173 0.0166 -0.0014 -0.0533 -0.0556 

JAPAN INDUSTRIALS  0.0134 0.0214 0.0210 0.0135 0.1246 0.1257 

JAPAN OIL & GAS  0.0090 0.0092 0.0084 -0.0161 -0.0578 -0.0601 

JAPAN TECHNOLOGY  0.0013 0.0068 0.0036 -0.0206 -0.0567 -0.0597 

JAPAN TELECOM  0.0196 0.0132 0.0153 0.0352 0.0116 0.0131 

JAPAN UTILITIES  0.0457 0.0328 0.0359 0.0855 0.1619 0.1652 

Absolute Position Range 0.1158 0.1143 0.1171 0.2035 0.3751 0.3856 
 
  

Appendix 6.2.1 Average Value of Weights in the Out-of-sample VaR-
Constrained BL Portfolio (Sep 03 – May 10) 
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This table reports standard deviation of weights allocated to each index in the out-of-sample 
VaR-constrained BL portfolio in the period from September 2003 to May 2010. VaR is 
estimated by the parametric method in the optimisation model with assumption of normal 

distribution and t-distribution at a confidence level of 99%. The VaR constraint ( 0VaR ) is set 

to be equal to the scaling factor 0.99 multiplied by the estimated VaR of the implied BL 
portfolio in the corresponding period. 
 

 
 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW110 DCC EWMA  RW110 

UK BASIC MATS  0.0379 0.0252 0.0273 0.0915 0.0412 0.0346 

UK CONSUMER GDS  0.0490 0.0284 0.0315 0.0495 0.0279 0.0273 

UK CONSUMER SVS  0.0553 0.0334 0.0376 0.1010 0.0637 0.0641 

UK FINANCIALS  0.0410 0.0303 0.0324 0.0436 0.0391 0.0390 

UK HEALTH CARE  0.0721 0.0443 0.0500 0.0622 0.0315 0.0297 

UK TECHNOLOGY  0.0323 0.0156 0.0175 0.0448 0.0159 0.0181 

UK INDUSTRIALS  0.0462 0.0254 0.0287 0.0523 0.0246 0.0239 

UK OIL & GAS  0.0650 0.0329 0.0380 0.0624 0.0703 0.0752 

UK TELECOM  0.0508 0.0270 0.0290 0.0556 0.0245 0.0206 

UK UTILITIES  0.0728 0.0401 0.0461 0.0550 0.0409 0.0362 

USA BASIC MATS  0.0485 0.0320 0.0351 0.0479 0.0436 0.0419 

USA CONSUMER GDS  0.0657 0.0447 0.0477 0.0758 0.0263 0.0224 

USA CONSUMER SVS  0.0571 0.0355 0.0419 0.1122 0.0612 0.0580 

USA FINANCIALS  0.0515 0.0417 0.0448 0.0743 0.0471 0.0466 

USA HEALTH CARE  0.0813 0.0529 0.0599 0.0791 0.0389 0.0375 

USA INDUSTRIALS  0.0567 0.0385 0.0405 0.1422 0.0701 0.0667 

USA OIL & GAS  0.0533 0.0329 0.0371 0.0659 0.0749 0.0736 

USA TECHNOLOGY  0.0524 0.0215 0.0255 0.0806 0.0358 0.0321 

USA TELECOM  0.0550 0.0319 0.0348 0.0684 0.0359 0.0360 

USA UTILITIES  0.0636 0.0341 0.0359 0.0974 0.0309 0.0264 

JAPAN BASIC MATS  0.0496 0.0284 0.0323 0.0653 0.0465 0.0467 

JAPAN CONSUMER GDS  0.0577 0.0333 0.0377 0.0735 0.0380 0.0347 

JAPAN CONSUMER SVS  0.0825 0.0448 0.0498 0.0867 0.0752 0.0786 

JAPAN FINANCIALS  0.0445 0.0227 0.0245 0.0403 0.0199 0.0171 

JAPAN HEALTH CARE  0.0739 0.0376 0.0436 0.1002 0.0491 0.0440 

JAPAN INDUSTRIALS  0.0485 0.0317 0.0355 0.0935 0.0375 0.0320 

JAPAN OIL & GAS  0.0386 0.0199 0.0228 0.0309 0.0259 0.0207 

JAPAN TECHNOLOGY  0.0417 0.0204 0.0245 0.0893 0.0309 0.0259 

JAPAN TELECOM  0.0503 0.0228 0.0258 0.0514 0.0294 0.0297 

JAPAN UTILITIES  0.0697 0.0383 0.0433 0.0590 0.0504 0.0468 

Average Standard Deviation 0.0555 0.0323 0.0360 0.0717 0.0416 0.0395 
 
 
  

Appendix 6.2.2 Standard Deviation of Weights in the Out-of-sample VaR-
Constrained BL Portfolio (Sep 03 – May 10) 
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This table reports average value of weights allocated to each index in the out-of-
sample CVaR-constrained BL portfolio in the period from September 2003 to May 
2010. CVaR is estimated by the parametric method in the optimisation model with 
assumption of normal distribution and t-distribution at a confidence level of 99%. The 

CVaR constraint ( 0CVaR ) is set to be equal to the scaling factor 0.99 multiplied by 

the estimated CVaR of the implied BL portfolio in the corresponding period. 
 
 
 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW110 DCC EWMA  RW110 

UK BASIC MATS  0.0032 0.0007 -0.0025 -0.0129 -0.1359 -0.1337 

UK CONSUMER GDS  0.0045 0.0140 0.0158 0.0468 0.0916 0.0953 

UK CONSUMER SVS  -0.0009 0.0021 0.0008 0.0147 0.0789 0.0792 

UK FINANCIALS  0.0183 0.0227 0.0222 0.0104 0.0282 0.0331 

UK HEALTH CARE  0.0177 0.0169 0.0159 0.0613 0.0133 0.0089 

UK TECHNOLOGY  0.0025 0.0061 0.0043 0.0015 -0.0368 -0.0364 

UK INDUSTRIALS  0.0203 0.0269 0.0264 -0.0172 -0.0516 -0.0542 

UK OIL & GAS  0.0038 0.0084 0.0084 -0.0250 -0.1017 -0.1064 

UK TELECOM  0.0140 0.0174 0.0203 0.0370 0.0739 0.0753 

UK UTILITIES  0.0251 0.0241 0.0235 0.0683 0.1555 0.1543 

USA BASIC MATS  0.0128 0.0138 0.0106 0.0093 0.0027 0.0007 

USA CONSUMER GDS  0.0367 0.0437 0.0448 0.0123 0.0292 0.0306 

USA CONSUMER SVS  0.0795 0.0799 0.0797 0.1413 0.1054 0.1022 

USA FINANCIALS  0.1151 0.1149 0.1146 -0.1009 -0.0926 -0.0952 

USA HEALTH CARE  0.1144 0.1130 0.1117 0.1950 0.3242 0.3289 

USA INDUSTRIALS  0.0646 0.0579 0.0583 -0.0107 -0.1103 -0.1134 

USA OIL & GAS  0.0854 0.0796 0.0829 0.0706 0.2346 0.2417 

USA TECHNOLOGY  0.0926 0.0988 0.0972 0.0529 -0.0293 -0.0323 

USA TELECOM  0.0448 0.0306 0.0332 0.0270 -0.0203 -0.0228 

USA UTILITIES  0.0541 0.0409 0.0455 0.1576 0.0182 0.0177 

JAPAN BASIC MATS  0.0040 0.0085 0.0049 0.0175 -0.0002 -0.0011 

JAPAN CONSUMER GDS  0.0121 0.0250 0.0246 0.0956 0.2042 0.2080 

JAPAN CONSUMER SVS  0.0346 0.0255 0.0254 0.0933 0.1493 0.1421 

JAPAN FINANCIALS  0.0257 0.0283 0.0306 -0.0325 -0.0549 -0.0555 

JAPAN HEALTH CARE  0.0260 0.0173 0.0167 -0.0142 -0.0831 -0.0805 

JAPAN INDUSTRIALS  0.0134 0.0213 0.0210 0.0178 0.1572 0.1570 

JAPAN OIL & GAS  0.0090 0.0092 0.0084 -0.0277 -0.0780 -0.0800 

JAPAN TECHNOLOGY  0.0012 0.0068 0.0036 -0.0321 -0.0814 -0.0784 

JAPAN TELECOM  0.0197 0.0132 0.0153 0.0428 0.0077 0.0083 

JAPAN UTILITIES  0.0457 0.0327 0.0358 0.1002 0.2020 0.2067 

Absolute Position Range 0.1159 0.1143 0.1171 0.2959 0.4600 0.4627 
  

Appendix 6.3.1 Average Value of Weights in the Out-of-sample CVaR-
Constrained BL Portfolio (Sep 03 – May 10) 
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This table reports standard deviation of weights allocated to each index in the out-of-sample 
CVaR-constrained BL portfolio in the period from September 2003 to May 2010. CVaR is 
estimated by the parametric method in the optimisation model with assumption of normal 

distribution and t-distribution at a confidence level of 99%. The CVaR constraint ( 0CVaR ) is 

set to be equal to the scaling factor 0.99 multiplied by the estimated CVaR of the implied BL 
portfolio in the corresponding period. 
 

 
 Normal Distribution t-Distribution 

99% Confidence Level: DCC EWMA RW110 DCC EWMA  RW110 

UK BASIC MATS  0.0380 0.0253 0.0274 0.1294 0.0511 0.0408 

UK CONSUMER GDS  0.0490 0.0285 0.0316 0.0443 0.0330 0.0325 

UK CONSUMER SVS  0.0554 0.0335 0.0375 0.1337 0.0820 0.0745 

UK FINANCIALS  0.0410 0.0302 0.0324 0.0549 0.0511 0.0484 

UK HEALTH CARE  0.0721 0.0443 0.0500 0.0639 0.0389 0.0319 

UK TECHNOLOGY  0.0323 0.0156 0.0175 0.0588 0.0220 0.0222 

UK INDUSTRIALS  0.0462 0.0254 0.0287 0.0699 0.0308 0.0302 

UK OIL & GAS  0.0652 0.0328 0.0380 0.0748 0.0956 0.0965 

UK TELECOM  0.0508 0.0270 0.0290 0.0686 0.0324 0.0274 

UK UTILITIES  0.0728 0.0402 0.0462 0.0573 0.0485 0.0444 

USA BASIC MATS  0.0486 0.0321 0.0350 0.0573 0.0591 0.0559 

USA CONSUMER GDS  0.0657 0.0447 0.0477 0.0871 0.0271 0.0262 

USA CONSUMER SVS  0.0571 0.0357 0.0421 0.1514 0.0974 0.0941 

USA FINANCIALS  0.0515 0.0418 0.0448 0.0813 0.0515 0.0525 

USA HEALTH CARE  0.0812 0.0530 0.0599 0.0913 0.0403 0.0385 

USA INDUSTRIALS  0.0568 0.0385 0.0405 0.1979 0.0860 0.0867 

USA OIL & GAS  0.0532 0.0329 0.0371 0.0885 0.0954 0.0909 

USA TECHNOLOGY  0.0525 0.0215 0.0255 0.1012 0.0347 0.0320 

USA TELECOM  0.0550 0.0320 0.0349 0.0738 0.0392 0.0391 

USA UTILITIES  0.0637 0.0341 0.0359 0.1257 0.0422 0.0410 

JAPAN BASIC MATS  0.0496 0.0282 0.0323 0.0827 0.0590 0.0607 

JAPAN CONSUMER GDS  0.0577 0.0333 0.0377 0.0842 0.0489 0.0415 

JAPAN CONSUMER SVS  0.0825 0.0449 0.0499 0.0984 0.1026 0.1066 

JAPAN FINANCIALS  0.0445 0.0227 0.0245 0.0416 0.0271 0.0223 

JAPAN HEALTH CARE  0.0739 0.0376 0.0435 0.1244 0.0652 0.0566 

JAPAN INDUSTRIALS  0.0486 0.0320 0.0357 0.1334 0.0438 0.0397 

JAPAN OIL & GAS  0.0386 0.0199 0.0227 0.0334 0.0255 0.0229 

JAPAN TECHNOLOGY  0.0418 0.0204 0.0245 0.1253 0.0483 0.0415 

JAPAN TELECOM  0.0502 0.0228 0.0258 0.0706 0.0453 0.0431 

JAPAN UTILITIES  0.0697 0.0383 0.0434 0.0664 0.0505 0.0520 

Average Standard Deviation 0.0555 0.0323 0.0361 0.0890 0.0525 0.0497 
  

Appendix 6.3.2 Standard Deviation of Weights in the Out-of-sample CVaR-
Constrained BL Portfolio (Sep 03 – May 10) 
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This table reports average value of weights assigned in each index in the period from 
September 2003 to May 2010, with assumptions of normal distribution (‘N’) and t-distribution 
(‘t’) at confidence levels of 99%, 95% and 90%. Note that weights in the unconstrained 

variance-adjusted implied BL portfolio are calculated by tBLt

t

tBL ,
1*

,

1
μVw 


, the variance-

adjusted SR-BL portfolio allocates asset to achieve the maximal Sharpe ratio in the 

optimisation problem, weights can be calculated by 
tBLt

tBLt
tBL

,
1

,
1

*
,

' μV1

μV
w





  , weights in the VaR-

adjusted and the CVaR-adjusted BL portfolio are allocated by solving maximal Sharpe ratio 
optimisation problem. 
 

  

Variance 

VaR 

  Normal Distribution t-Distribution 

Panel A: Implied BL SR-BL 99% 95% 90% 99% 95% 90% 

UK BASIC MATS  -0.0174 -0.0142 -0.0536 -0.0557 -0.0584 -0.0224 -0.0240 -0.0253 

UK CONSUMER GDS  0.0133 0.0168 0.0168 0.0174 0.0177 0.0213 0.0223 0.0235 

UK CONSUMER SVS  -0.0386 -0.0430 -0.0458 -0.0474 -0.0483 -0.0465 -0.0491 -0.0526 

UK FINANCIALS  -0.0057 -0.0109 -0.0303 -0.0328 -0.0357 -0.0145 -0.0168 -0.0197 

UK HEALTH CARE  0.0117 -0.0036 -0.0128 -0.0159 -0.0196 -0.0098 -0.0123 -0.0149 

UK TECHNOLOGY  0.0035 0.0107 0.0115 0.0115 0.0110 0.0097 0.0103 0.0111 

UK INDUSTRIALS  0.0283 0.0329 0.0494 0.0515 0.0537 0.0395 0.0405 0.0417 

UK OIL & GAS  0.0281 0.0321 0.0680 0.0682 0.0679 0.0303 0.0312 0.0325 

UK TELECOM  0.0249 0.0215 0.0210 0.0223 0.0236 0.0279 0.0290 0.0302 

UK UTILITIES  0.0411 0.0304 0.0295 0.0314 0.0333 0.0180 0.0161 0.0135 

USA BASIC MATS  -0.0038 -0.0017 -0.0093 -0.0122 -0.0152 -0.0136 -0.0153 -0.0177 

USA CONSUMER GDS  0.0437 0.0378 0.0490 0.0492 0.0498 0.0442 0.0446 0.0451 

USA CONSUMER SVS  0.0656 0.0638 0.0583 0.0578 0.0576 0.0680 0.0672 0.0667 

USA FINANCIALS  0.1018 0.0932 0.1035 0.1015 0.0992 0.0935 0.0917 0.0899 

USA HEALTH CARE  0.1154 0.0962 0.1011 0.0997 0.0988 0.1009 0.0999 0.0986 

USA INDUSTRIALS  0.0515 0.0412 0.0345 0.0315 0.0280 0.0391 0.0379 0.0363 

USA OIL & GAS  0.1065 0.1027 0.0964 0.0984 0.0999 0.0998 0.1004 0.1006 

USA TECHNOLOGY  0.1067 0.1122 0.1192 0.1192 0.1198 0.1110 0.1121 0.1137 

USA TELECOM  0.0507 0.0485 0.0468 0.0494 0.0526 0.0559 0.0571 0.0580 

USA UTILITIES  0.0873 0.0869 0.0667 0.0694 0.0725 0.0883 0.0896 0.0907 

JAPAN BASIC MATS  -0.0109 -0.0063 -0.0373 -0.0385 -0.0396 -0.0135 -0.0146 -0.0155 

JAPAN CONSUMER GDS  -0.0043 -0.0086 0.0122 0.0112 0.0104 -0.0110 -0.0132 -0.0157 

JAPAN CONSUMER SVS  0.0311 0.0387 0.0281 0.0287 0.0286 0.0395 0.0419 0.0448 

JAPAN FINANCIALS  0.0417 0.0464 0.0631 0.0645 0.0663 0.0475 0.0483 0.0491 

JAPAN HEALTH CARE  0.0361 0.0338 0.0533 0.0531 0.0523 0.0439 0.0463 0.0500 

JAPAN INDUSTRIALS  -0.0005 0.0083 -0.0213 -0.0229 -0.0244 0.0041 0.0042 0.0041 

JAPAN OIL & GAS  0.0232 0.0316 0.0363 0.0384 0.0409 0.0348 0.0365 0.0383 

JAPAN TECHNOLOGY  -0.0028 0.0040 0.0087 0.0075 0.0061 0.0022 0.0027 0.0037 

JAPAN TELECOM  0.0300 0.0349 0.0410 0.0433 0.0461 0.0380 0.0393 0.0408 

JAPAN UTILITIES  0.0691 0.0638 0.0962 0.1004 0.1050 0.0740 0.0762 0.0785 

Absolute Position Range 0.1540 0.1552 0.1728 0.1749 0.1782 0.1575 0.1612 0.1663 

Appendix 6.4.1 Average Value of Weights in the Out-of-sample Risk-Adjusted 
Unconstrained BL Portfolio (Sep 03 – May 10) 
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Appendix 6.4.1 (continued) 

  CVaR 

  Normal Distribution t-Distribution 

Panel B: 99% 95% 90% 99% 95% 90% 

UK BASIC MATS  -0.0231 -0.0241 -0.0240 -0.0219 -0.0227 -0.0233 

UK CONSUMER GDS  0.0218 0.0224 0.0227 0.0209 0.0215 0.0219 

UK CONSUMER SVS  -0.0480 -0.0489 -0.0516 -0.0456 -0.0471 -0.0484 

UK FINANCIALS  -0.0158 -0.0171 -0.0183 -0.0138 -0.0149 -0.0160 

UK HEALTH CARE  -0.0109 -0.0124 -0.0141 -0.0090 -0.0103 -0.0113 

UK TECHNOLOGY  0.0100 0.0103 0.0109 0.0095 0.0098 0.0101 

UK INDUSTRIALS  0.0401 0.0405 0.0409 0.0393 0.0397 0.0403 

UK OIL & GAS  0.0307 0.0314 0.0331 0.0299 0.0305 0.0309 

UK TELECOM  0.0284 0.0293 0.0295 0.0275 0.0281 0.0285 

UK UTILITIES  0.0170 0.0159 0.0146 0.0186 0.0176 0.0167 

USA BASIC MATS  -0.0146 -0.0156 -0.0171 -0.0131 -0.0141 -0.0148 

USA CONSUMER GDS  0.0445 0.0450 0.0446 0.0442 0.0444 0.0446 

USA CONSUMER SVS  0.0678 0.0662 0.0680 0.0681 0.0679 0.0679 

USA FINANCIALS  0.0928 0.0918 0.0907 0.0941 0.0932 0.0925 

USA HEALTH CARE  0.1006 0.0997 0.1000 0.1012 0.1008 0.1006 

USA INDUSTRIALS  0.0385 0.0379 0.0376 0.0396 0.0388 0.0384 

USA OIL & GAS  0.1002 0.1004 0.0995 0.0996 0.0999 0.1002 

USA TECHNOLOGY  0.1115 0.1121 0.1129 0.1107 0.1112 0.1116 

USA TELECOM  0.0563 0.0572 0.0571 0.0554 0.0561 0.0564 

USA UTILITIES  0.0889 0.0896 0.0905 0.0879 0.0886 0.0891 

JAPAN BASIC MATS  -0.0141 -0.0148 -0.0152 -0.0131 -0.0136 -0.0142 

JAPAN CONSUMER GDS  -0.0120 -0.0137 -0.0149 -0.0103 -0.0115 -0.0123 

JAPAN CONSUMER SVS  0.0406 0.0422 0.0441 0.0387 0.0398 0.0408 

JAPAN FINANCIALS  0.0479 0.0486 0.0489 0.0472 0.0477 0.0480 

JAPAN HEALTH CARE  0.0451 0.0463 0.0485 0.0430 0.0444 0.0455 

JAPAN INDUSTRIALS  0.0042 0.0044 0.0041 0.0043 0.0040 0.0041 

JAPAN OIL & GAS  0.0356 0.0366 0.0372 0.0342 0.0352 0.0358 

JAPAN TECHNOLOGY  0.0026 0.0026 0.0029 0.0022 0.0022 0.0027 

JAPAN TELECOM  0.0386 0.0396 0.0403 0.0375 0.0383 0.0388 

JAPAN UTILITIES  0.0749 0.0764 0.0768 0.0732 0.0744 0.0752 

Absolute Position Range 0.1595 0.1610 0.1644 0.1563 0.1583 0.1600 
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Appendix 6.4.2 Standard Deviation of Weights in the Out-of-sample Risk-
Adjusted Unconstrained BL Portfolio (Sep 03 – May 10) 

This table reports standard deviation of weights assigned in each index in the period from 
September 2003 to May 2010, with assumptions of normal distribution (‘N’) and t-distribution 
(‘t’) at confidence levels of 99%, 95% and 90%. Note that weights in the unconstrained 

variance-adjusted implied BL portfolio are calculated by tBLt

t

tBL ,
1*

,

1
μVw 


, the variance-

adjusted SR-BL portfolio allocates asset to achieve the maximal Sharpe ratio in the 

optimisation problem, weights can be calculated by 
tBLt

tBLt
tBL

,
1

,
1

*
,

' μV1

μV
w





  , weights in the VaR-

adjusted and the CVaR-adjusted BL portfolio are allocated by solving maximal Sharpe ratio 
optimisation problem. 

  

Variance 

VaR 

  Normal Distribution t-Distribution 

Panel A: Implied BL SR-BL 99% 95% 90% 99% 95% 90% 

UK BASIC MATS  0.0836 0.0926 0.1349 0.1396 0.1459 0.0941 0.0989 0.1041 

UK CONSUMER GDS  0.0864 0.0950 0.1052 0.1118 0.1196 0.1064 0.1117 0.1178 

UK CONSUMER SVS  0.1091 0.1174 0.1687 0.1775 0.1856 0.1303 0.1368 0.1449 

UK FINANCIALS  0.0935 0.0986 0.1364 0.1427 0.1500 0.1060 0.1110 0.1176 

UK HEALTH CARE  0.1512 0.1625 0.1789 0.1889 0.2012 0.1782 0.1867 0.1954 

UK TECHNOLOGY  0.0540 0.0613 0.0772 0.0816 0.0866 0.0682 0.0719 0.0763 

UK INDUSTRIALS  0.0843 0.0930 0.1359 0.1433 0.1508 0.1061 0.1119 0.1189 

UK OIL & GAS  0.1100 0.1205 0.1898 0.1973 0.2062 0.1336 0.1402 0.1476 

UK TELECOM  0.0891 0.0979 0.1273 0.1345 0.1421 0.1094 0.1151 0.1220 

UK UTILITIES  0.1470 0.1657 0.2090 0.2189 0.2306 0.1809 0.1906 0.2009 

USA BASIC MATS  0.1018 0.1147 0.1404 0.1468 0.1546 0.1205 0.1264 0.1341 

USA CONSUMER GDS  0.1212 0.1292 0.1638 0.1717 0.1834 0.1469 0.1537 0.1612 

USA CONSUMER SVS  0.1258 0.1332 0.1801 0.1899 0.2006 0.1516 0.1597 0.1677 

USA FINANCIALS  0.1137 0.1171 0.1770 0.1838 0.1918 0.1262 0.1315 0.1376 

USA HEALTH CARE  0.1769 0.1871 0.2532 0.2668 0.2812 0.2073 0.2174 0.2262 

USA INDUSTRIALS  0.1185 0.1199 0.1493 0.1563 0.1645 0.1339 0.1403 0.1481 

USA OIL & GAS  0.1128 0.1280 0.1830 0.1897 0.1985 0.1358 0.1425 0.1501 

USA TECHNOLOGY  0.0717 0.0899 0.1255 0.1307 0.1373 0.0981 0.1044 0.1122 

USA TELECOM  0.1031 0.1149 0.1559 0.1636 0.1729 0.1287 0.1354 0.1431 

USA UTILITIES  0.1117 0.1271 0.1645 0.1726 0.1833 0.1405 0.1484 0.1572 

JAPAN BASIC MATS  0.0960 0.1107 0.1414 0.1488 0.1562 0.1196 0.1262 0.1340 

JAPAN CONSUMER GDS  0.1147 0.1251 0.1412 0.1510 0.1628 0.1403 0.1471 0.1544 

JAPAN CONSUMER SVS  0.1337 0.1490 0.1808 0.1917 0.2035 0.1667 0.1754 0.1843 

JAPAN FINANCIALS  0.0763 0.0878 0.1253 0.1317 0.1388 0.0960 0.1010 0.1065 

JAPAN HEALTH CARE  0.1340 0.1502 0.1650 0.1750 0.1865 0.1647 0.1730 0.1822 

JAPAN INDUSTRIALS  0.1023 0.1154 0.1496 0.1566 0.1641 0.1250 0.1311 0.1385 

JAPAN OIL & GAS  0.0727 0.0794 0.0890 0.0945 0.1003 0.0874 0.0920 0.0972 

JAPAN TECHNOLOGY  0.0734 0.0835 0.1230 0.1295 0.1367 0.0943 0.0993 0.1044 

JAPAN TELECOM  0.0801 0.0891 0.1144 0.1209 0.1284 0.1018 0.1073 0.1131 

JAPAN UTILITIES  0.1215 0.1397 0.1951 0.2054 0.2170 0.1560 0.1647 0.1746 

Average Standard Deviation 0.1057 0.1165 0.1527 0.1604 0.1694 0.1285 0.1351 0.1424 
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Appendix 6.4.2 (continued) 

  CVaR 

  Normal Distribution t-Distribution 

Panel B: 99% 95% 90% 99% 95% 90% 

UK BASIC MATS  0.0962 0.0993 0.1010 0.0925 0.0950 0.0968 

UK CONSUMER GDS  0.1086 0.1123 0.1146 0.1043 0.1076 0.1093 

UK CONSUMER SVS  0.1338 0.1370 0.1412 0.1280 0.1316 0.1347 

UK FINANCIALS  0.1087 0.1116 0.1146 0.1045 0.1069 0.1093 

UK HEALTH CARE  0.1820 0.1875 0.1900 0.1750 0.1799 0.1830 

UK TECHNOLOGY  0.0698 0.0724 0.0738 0.0669 0.0689 0.0703 

UK INDUSTRIALS  0.1094 0.1125 0.1156 0.1045 0.1072 0.1101 

UK OIL & GAS  0.1368 0.1410 0.1447 0.1317 0.1349 0.1376 

UK TELECOM  0.1121 0.1160 0.1184 0.1074 0.1105 0.1128 

UK UTILITIES  0.1853 0.1915 0.1957 0.1778 0.1828 0.1865 

USA BASIC MATS  0.1236 0.1270 0.1299 0.1186 0.1217 0.1244 

USA CONSUMER GDS  0.1496 0.1549 0.1575 0.1445 0.1482 0.1504 

USA CONSUMER SVS  0.1554 0.1621 0.1626 0.1490 0.1532 0.1564 

USA FINANCIALS  0.1284 0.1323 0.1341 0.1244 0.1273 0.1292 

USA HEALTH CARE  0.2114 0.2186 0.2221 0.2037 0.2094 0.2126 

USA INDUSTRIALS  0.1371 0.1407 0.1437 0.1315 0.1352 0.1379 

USA OIL & GAS  0.1396 0.1430 0.1454 0.1336 0.1372 0.1404 

USA TECHNOLOGY  0.1013 0.1053 0.1086 0.0960 0.0993 0.1021 

USA TELECOM  0.1316 0.1361 0.1392 0.1261 0.1301 0.1325 

USA UTILITIES  0.1442 0.1491 0.1529 0.1378 0.1421 0.1451 

JAPAN BASIC MATS  0.1230 0.1269 0.1303 0.1176 0.1208 0.1237 

JAPAN CONSUMER GDS  0.1434 0.1481 0.1510 0.1380 0.1417 0.1443 

JAPAN CONSUMER SVS  0.1704 0.1762 0.1804 0.1637 0.1683 0.1714 

JAPAN FINANCIALS  0.0981 0.1017 0.1039 0.0943 0.0970 0.0988 

JAPAN HEALTH CARE  0.1688 0.1734 0.1776 0.1619 0.1664 0.1699 

JAPAN INDUSTRIALS  0.1278 0.1315 0.1351 0.1227 0.1264 0.1287 

JAPAN OIL & GAS  0.0891 0.0924 0.0946 0.0855 0.0883 0.0897 

JAPAN TECHNOLOGY  0.0959 0.0999 0.1018 0.0922 0.0952 0.0965 

JAPAN TELECOM  0.1044 0.1080 0.1105 0.0998 0.1030 0.1051 

JAPAN UTILITIES  0.1600 0.1655 0.1691 0.1531 0.1577 0.1610 

Average Standard Deviation 0.1315 0.1358 0.1387 0.1262 0.1298 0.1324 
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CHAPTER 7 CONCLUSIONS 
 

7.1 Conclusions 

Overall, based on the in-sample and out-of-sample analyses, the dynamic BL 

portfolios starting from a conditional estimation of the equilibrium returns combined 

with the view portfolios generated from dynamic momentum strategies based on 

three volatility models outperform the benchmark portfolio for multiple periods and for 

some single periods. In addition, the dynamic BL portfolios demonstrate the 

superiority of the models employed over the traditional mean-variance model through 

more balanced and reasonable weights solutions. Specifically, dynamic BL portfolios 

using the DCC model always give the best in-sample and out-of-sample 

performance, better than the EWMA and RW models for multiple periods. For a 

single period, some single-period performance indeed show which asset allocation 

model could generate better performance. However, the conclusion, that which 

volatility model should be selected to show best single-period performance, is not 

robust. Studying the multiple-period performance combined with the single period 

performance is important to get a thorough overlook of the dynamic BL portfolio 

performance and the effect of the choice of volatility models, distribution 

assumptions and confidence levels, and eventually get conclusions that are more 

reliable. 

In this thesis, the dynamic BL portfolio contains the implied BL portfolio formed by 

the implied reverse optimisation of the BL model, the SR-BL portfolio with maximal 

Sharpe ratio, the MVaR-BL portfolio with maximal reward to VaR ratio, the MCVaR-

BL portfolio with maximal reward to CVaR ratio, the VaR-constrained BL portfolio, 

and the CVaR-constrained BL portfolio. In each portfolio, three volatility models are 

used to estimate the variances and covariances. Following the method of 

Giamouridis and Vrontos (2007) for the out-of-sample analysis, four risk-adjusted BL 

portfolios, including implied the variance-adjusted BL portfolio, variance-adjusted 

SR-BL portfolio, VaR-adjusted SR-BL portfolio, and CVaR-adjusted SR-BL portfolio, 

form the dynamic BL portfolios. The single-period and multiple-period performances 

of these dynamic BL portfolios through in-sample and out-of-sample analyses are 

compared within this thesis. Different performance measures give different ranks to 

these dynamic BL portfolios. The thesis also discusses the effect of the choice of 
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volatility model, distribution assumptions, confidence levels, constraints on these 

dynamic portfolios on weights solutions, and portfolio performance.  

Implied BL Portfolio and SR-BL Portfolio 

In both the in-sample and out-of-sample analyses, the implied BL portfolio and the 

SR-BL portfolio alternate to give the best performance when evaluating the single 

period performance, while the performance of the implied BL portfolio is always 

better than that of the SR-BL portfolio for multiple periods. The SR-BL portfolio has a 

bigger empirical VaR and empirical CVaR for multiple periods, with tail risks also 

reflect in the negative skewness and high kurtosis. The ranking for the risk-adjusted 

portfolio performance and active portfolio performance is inconsistent following the 

use of different volatility models. For a single period, the implied BL portfolio and the 

SR-BL portfolio have different weight solutions but the same directions for long or 

short assets. Most of the average value of weight over the full sample and the out of 

sample are positive; the average absolute position range seems insensitive to the 

choice of volatility models and the choice of asset allocation model over the full 

sample. Over the out of sample, the implied DCC-BL portfolio has the widest 

average absolute position range and most volatile weight solutions.  

MVaR-BL Portfolio and MCVaR-BL Portfolio 

In the in-sample analysis, both the MVaR-BL and MCVaR-BL portfolios outperform 

the implied BL and the SR-BL portfolios for a single period and multiple periods at a 

moderate level of confidence; however, they only perform better than the SR-BL 

portfolio in the out-of-sample analysis. Although performance evaluation for some 

single periods is unable to demonstrate that the MCVaR-BL portfolio perform 

overwhelmingly better than the MVaR-BL portfolio, there is some evidence for 

multiple periods that the MCVaR-BL portfolio outperform the MVaR-BL portfolio, 

especially with a t-distribution and at a confidence level of 99%. Both the MVaR-BL 

portfolio and the MCVaR-BL portfolio perform better with a t-distribution than a 

normal distribution based on the DCC and EWMA models in the in-sample analysis, 

although this positive effect of a t-distribution is only significant in the out-of-sample 

analysis when employing the DCC model. The ranking of the risk-adjusted portfolio 

performance and the active portfolio performance is inconsistent and dependent 

upon the volatility model utilised. Over the full sample, changing from a normal 
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distribution to a t-distribution widen the average absolute position range and increase 

the volatility of weight solutions in the MVaR-BL and the MCVaR-BL portfolios based 

upon the DCC model. 

VaR-Constrained BL Portfolio  

In both the in-sample and out-of-sample analyses, the main finding is that adding a 

moderate level of the VaR constraint to the SR-BL portfolio improves the 

performance of the SR-BL portfolio for both a single period and multiple periods. The 

VaR-constrained BL portfolio even outperforms the implied BL, MVaR-BL and 

MCVaR-BL portfolios for a single period and multiple periods in the in-sample 

analysis and in the out-of-sample analysis. The risk-adjusted performance of the 

DCC-VaR-BL portfolio is better than that of the MVaR-BL and MCVaR-BL portfolios 

under some circumstances, but is not a better choice for active portfolio performance. 

Although the implied BL portfolio has the best performance for multiple periods, 

better than that of the  VaR-constrained BL portfolio based on the DCC model, the 

use of the EWMA and RW110 models in the VaR-constrained BL portfolio is better 

than the corresponding implied BL portfolio in the out-of-sample analysis. According 

to the study of the effect of distribution assumptions and confidence levels on the 

DCC-VaR-BL portfolio through in-sample analysis and out-of-sample analysis, it can 

be concluded that any element that gives rise to tighter VaR constraints could 

improve performance, until the diminishing effect happens. The ‘diminishing effect’ 

on improving the multiple-period performance indicates that at first it improves with 

tighter limits but then deteriorates as the limits begin to be too tight. In the out-of-

sample analysis, the performance of the RW110-VaR-BL with the t-distribution is 

impressive and much better than the performance of the RW50-VaR-BL with the t-

distribution. Over the full sample, changing from a normal distribution to a t-

distribution widens the average absolute position range and increases the volatility of 

weight solutions in the VaR-BL portfolio using three volatility models. 

CVaR-Constrained BL Portfolio 

In both the in-sample and out-of-sample analyses, the CVaR constrained BL portfolio 

also exhibites an attractive performance for a single period and multiple periods, 

thereby supporting the argument that imposing an intermediate level of the CVaR 

constraint could enhance the performance of the SR-BL portfolio. Similar to the VaR-
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constrained BL portfolio, most of findings for the CVaR-constrained BL portfolio are 

consistent. Furthermore, several CVaR-constrained BL portfolios demonstrate an 

even better performance than the VaR-constrained BL portfolio for a single period 

and multiple periods at an intermediate level of the CVaR constraint. Moreover, over 

the full sample, similar to the VaR-BL portfolio, changing from a normal distribution to 

a t-distribution could also widen the average absolute position range and increase 

the volatility of weight solutions in the CVaR-BL portfolio using three volatility models. 

For the t-distribution, the CVaR-BL portfolio has wider average absolute position 

range and more volatile weight solutions than the VaR-BL portfolio. 

Risk-Adjusted BL Portfolio 

The estimated expected returns in the risk-adjusted BL portfolio are smaller than the 

BL portfolio due to the much lower value of the risk aversion coefficients. The out-of-

sample analysis finds that the reverse optimisation used in the BL model is invalid 

when the VaR-adjusted and the CVaR-adjusted expected returns are used and the 

weights solutions are unrealistic. Use of the maximal Sharpe ratio optimiser 

addresses this problem when constructing the reasonable VaR-adjusted SR-BL and 

CVaR-adjusted SR-BL portfolios. 

The out-of-sample risk-adjusted BL portfolio shows a much superior single-period 

performance, significantly better than for any unconstrained BL portfolio and risk-

constrained BL portfolio. In addition, both the VaR-adjusted BL portfolio and the 

CVaR-adjusted BL portfolio perform better than the variance-adjusted BL portfolio. 

The CVaR-adjusted BL portfolio outperforms the VaR-adjusted BL portfolio under 

certain circumstances, but effects of the distribution assumption and confidence 

levels are inconsistent for the VaR-adjusted BL and the CVaR-adjusted BL portfolios.  

For multiple periods the implied variance-adjusted BL portfolio demonstrates the best 

risk-adjusted performance and active portfolio performance of the risk-adjusted BL 

portfolios. The implied variance-adjusted BL portfolio outperforms all of the 

unconstrained BL portfolios and the risk-constrained BL portfolios except for the 

implied DCC-BL portfolio. The risk-adjusted performances of both the VaR-adjusted 

BL portfolio and the CVaR-adjusted BL portfolio are better than most of the 

unconstrained BL portfolios, but the active performance is worse than that of the 

MVaR-BL and MCVaR-BL portfolios. In addition, the VaR-adjusted BL portfolio and 
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the CVaR-adjusted BL portfolio have only a limited ability to outperform the VaR-

constrained BL portfolio and CVaR-constrained BL portfolio for the t-distribution at an 

intermediate level of constraints.  

In the VaR-adjusted SR-BL portfolio and CVaR-adjusted SR-BL portfolio, the 

position range becomes wider as the confidence level decreased and the position 

range for the t-distribution is slightly narrower than for the normal distribution. In 

addition, the weight solutions become more volatile as the confidence level 

decreased. And the average standard deviation of weight solutions for the t-

distribution is smaller than for the normal distribution. Compared with the VaR-

adjusted SR-BL portfolio for the same distribution level of confidence, the average 

standard deviation of weight solutions of the CVaR-adjusted SR-BL portfolio is 

smaller. The variance-adjusted SR-BL portfolio allocates asset more volatile than the 

implied variance-adjusted BL portfolio does. 

7.2 Limitations  

There are several limitations to this research, and the first is that this thesis only 

choose three volatility models with which to conduct the dynamic asset allocation 

research. Although the dynamic BL portfolios based on the DCC model perform the 

best, this does not guarantee that the DCC model would be better than other 

volatility models in achieving the best performance. In addition, the window length in 

the rolling window estimator may have affected the estimation of the covariance 

matrix, and this thesis does not include a sensitivity test of window length on the 

dynamic BL portfolio performance. 

The parameters in the BL model, such as scale   and risk aversion coefficient  , 

may also affect the equilibrium returns as the starting point and further affect the 

performance of the dynamic BL portfolio, and this research does not investigate 

these possible effects. 

Next, this thesis does not impose trading restrictions on the dynamic BL portfolio, for 

example, some financial institutions might not allow short selling and long only 

constraints need to be added. In addition, Lejeune (2011b) deals with further trading 

restrictions in the VaR constrained BL model, including the cardinality constraint, 

round-lot constraints, and buy-in threshold constraints.  
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Moreover, the asset class in this thesis is limited to the industry indices. Other asset 

classes such as bonds, currencies are not within the scope of research. However, in 

the industry, some financial institutions need to invest in multiple asset classes to 

satisfy the investor’s requirement.   

 

Finally, this research estimates VaR and CVaR using the parametric method without 

including a forecast performance evaluation and estimation errors might affect the 

optimisation process for the dynamic BL portfolios.   

7.3 Future Research 

The methodology and findings of the thesis suggest some directions for future 

research. First, the multi-period performance of the MVaR-BL and MCVaR-BL 

portfolios are found to be superior at the cost of higher kurtosis and greater empirical 

VaR and CVaR in the in-sample analysis. Future research could address this 

problem by adding risk constraints to these portfolios.  

Another future research direction would be to change the maximal performance 

measures, for example, Biglova et al. (2004) suggest using new performance 

measures, including the Rachev ratio and Rachev generalised ratio to maximise the 

portfolio optimisation in order to give the best performance. In addition, Rachev et al. 

(2007) utilise the reward to CVaR ratio and Rachev ratio to form a momentum 

portfolio, and they determine that the Rachev ratio could result in the best risk-

adjusted performance, thereby confirming the advantage of using the Rachev ratio. 

Therefore, the future research could employ Rachev ratio to evaluate the dynamic 

BL portfolio performance. 

The BL model could be utilsed as a useful tool in tactical asset allocation with 

investors’ views inputted. This thesis has found some evidence of a better active 

performance by the dynamic BL portfolio; however, the tracking error variance needs 

to be minimised in the active portfolio management framework. Adding tracking error 

constraints to improve the active portfolio performance following the method of 

Palomba (2008) would be one direction for future research. 
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Additionally, by expanding the choice of volatility models, the future research could 

study the effect of the application of other complicated volatility models such as 

multivariate stochastic volatility models (Harvey et al., 1994) and long memory 

volatility models (Harris and Nguyen, 2013) on the dynamic BL portfolio performance.  

Finally, as discussed in previous section, the thesis focuses only on industry indices 

as assets; however, Black and Litterman (1992) have show the example that using 

the Black-Litterman model to construct the global portfolio with equities, bonds and 

currencies is feasible, even generate weights that are more reasonable. Therefore, 

future research could make attempt to apply the proposed dynamic BL model in 

global asset allocation with multiple asset classes such as bonds, currencies and 

options. It should be noted that, when imposing the VaR constraint on the asset 

allocation model, using the parametric method for the estimation of the VaR of the 

portfolio with options would be inappropriate because of its non-linear feature; non-

parametric method such as Monte Carlo simulation method could be used. 
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