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Abstract— Recent advances in “developmental” approach (combining experimental study with computational modelling) of 

neural networks produces increasingly large data sets, in both complexity and size. This poses a significant challenge in 

analyzing, visualizing and understanding not only the spatial structure but also the behavior of such networks. This paper 

describes a Virtual Reality application for visualization of two biologically accurate computational models that model the 

anatomical structure of a neural network comprised of 1,500 neurons and over 80,000 connections. The visualization enables 

a user to observe the complex spatio-temporal interplay between seven unique types of neurons culminating in an observable 

swimming pattern. We present a detailed description of the design approach for the virtual environment, based on a set of 

initial requirements, followed up by the implementation and optimization steps. Lastly, the results of a pilot usability study are 

being presented on how confident participants are in their ability to understand how the alternating firing pattern between the 

two sides of the tadpole’s body generate swimming motion.  
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1. INTRODUCTION 

 

At 2 days old, young tadpoles do not have their brain fully developed, yet they are sensitive to touch, pressure, 

light intensity and water currents. They can flex, swim away, change direction, speed up, slow down, and struggle 

when grasped. Research by (Roberts et al., 2010) attributed this behavior to seven types of neurons in the 

hatchling’s spinal cord. A simple touch on the side of the tadpole will initiate a firing sequence inside the spinal 

cord’s neural network that culminates in an alternate swimming pattern firing along the spinal cord. The spinal 

cord neural network arrangement and the interplay of its 7 unique neuron types enables the tadpole to generate an 

alternating swimming pattern, independent of its cognitive ability.  

Visualization of such spatio-temporal processes, e.g. simultaneous propagation of multiple spikes in 3D space 

is a challenging problem (Ferrario et al., 2018). A biological neural network is composed of individual neurons 

that fire at different times (Marder et al., 2015). The complex firing pattern (spiking) is a combination of individual 

neurons spiking (microscopic level) and complex visual structures generated by all the spiking neurons 

(macroscopic level). Therefore, individual position of the neurons and the neural network connectivity are crucial 

in observing and understanding the relationship between the spatio-temporal spiking pattern and behavior output. 

Using traditional graph visualization techniques is nearly impossible to observe this complex interplay.  

We believe that using an immersive Virtual Reality (VR) environment that places the user amongst the data, 

rather than looking at it, enables the user to gain a better overview of the spatio-temporal arrangement. (Bryson, 

1995), describes VR as “…the use of various computer graphics systems in combination with various display and 

interface devices to provide the effect of immersion in an interactive three-dimensional computer-generated 

environment in which the virtual objects have spatial presence.” Therefore, the main goal of this application is to 

enable users to gain an overview and understanding of a relatively complex neuronal interplay dynamic that 

presents a challenge even for seasoned neuroscientists due to its sheer volume and complexity (see Fig. 1).  

 

 

 

In this paper, we describe the approach and the development process for Tadpole VR.  Section 2 of the paper 

draws a parallel to existing approaches in visualising 3-dimensional complex neuronal structures in VR and we 

Fig. 1 Image capturing the complex structure of a simulated neural network with 1,500 neurons and over 80,000 

connections. Cubes represent neurons and the colored lines represent axons (connections between neurons). 



3 

 

 

describe the 2 biologically accurate computational models (anatomical model and physiological model) that 

generated the data and their mutual interdependence. 

 (Bryce S, 1996) suggests that a top-down approach (design the application through requirements) combined 

with a bottom-up approach (implementation based on the hardware and software capabilities), is the key to a 

successful VR application. Section 3 unpacks the design and implementation of the Tadpole VR application 

following Bryce’s model. Section 3 is divided in two parts, first part explains the themes/metaphors (Bryce S, 

1996) used for describing the virtual environment and its interaction metaphors. Second part depicts the bottom-

up approach; implementation and technical challenges encountered in rendering 1,500 neurons and over 80,000 

connections.  
     Section 4 is dedicated to a formative pilot usability study to examine participant’s ability to observe and 

understand the process of generating swimming activity (the alternating firing pattern between two sides of the 

tadpole body) from a simple touch on the side of a tadpole. Section 4 starts with the methodology employed, 

moves to analysis and culminates in the results section. The result section covers findings and gives details of 

various statistical tests carried out in order to understand their significance. 

Section 5 focuses on Discussion and unpacks the implication of the findings in the usability study. It is 

followed up by potential applications for this approach and finally concludes the manuscript with the Conclusion 

and Further Work section that covers future directions.  

2. BACKGROUND AND RELATED WORK 

 

2.1 Background on computational models 
 

The nervous systems of animals and humans can be considered as large and complex networks of 

interconnected cells (neurons). These neurons communicate with each other via short (~5ms) electrical pulses 

(“spikes”). Incoming spikes can either raise (excite) or lower (inhibit) the voltage of a neuron, if enough excitatory 

input is received then the neuron may itself generate a spike. One of the fundamental questions in neuroscience 

relates to the relationship between the structure of neuronal connectivity (how neurons connect to each other) and 

the functionality of the network (the spiking activity based on the neuronal connections). This question has proven 

to be quite challenging because of the difficulty in capturing electrophysiological recordings at such a small scale. 

The solution is to create computational models of biological neural networks that enable neuroscientists to 

measure and analyse firing neurons.  

 

Anatomical model 

 

 In their paper, (Borisyuk et al., 2014) describe a new computational method (“developmental approach”) that 

can generate complete biologically accurate neural networks (“connectomes”) that represent the spinal cord of a 

48-hour old and 5 mm long hatchling Xenopus tadpoles. The tadpole is simple enough for anatomical and 

electrophysiological studies yet neurologically complex enough to allow interesting discoveries that could be 

applicable to organisms that are more complex.  

The main idea behind the developmental approach is to simulate the process of neuron growth with 

connections appearing when growing axons intersect other neurons. Thus, the connections are not prescribed but 

appear as result of model simulation. The anatomical model includes approximately 1,500 neurons of seven 

different types, split across left and right body sides and over 80,000 connections between various neurons. 

Anatomical model generates information for neurons and their corresponding axons. Two of the generated files 

are being used in this VR application:  

 

First file contains information regarding neurons: 

 Neuron’s ID 

 Neuron’s side of the body (left or right) 

 Type of neuron: 7 different types of neurons (RB, dlc, dla, dIN, cIN, aIN, mn) (see details in Borisyuk et 

al., 2014) 

 Neuron’s position in the rostro-caudal (head-to-tail) direction measured in micrometers. The axon’s 

origin point.  

 

Second file contains information about the axons for each neuron:  

 Neuron’s ID and type (this gives us the link to the Neuron’s location). 

 A set of pairs of numbers, one for each point along the axon, in which the first number is the rostro-

caudal (head-to-tail) co-ordinate and the second is dorso-ventral (up-down). Both numbers represent 

values in micrometers. The dorso-ventral coordinates represent neuron’s location are always relative to 
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the side of the body (left or right), so a positive value means the same side of the body and a negative 

value means the opposite side of the body. 

 

Note: Most neurons have a primary and a secondary axon, but for this model only the primary axons are used as 

they provide enough information to observe the firing pattern while it avoids cluttering the view of the secondary 

axons. 

 

Physiological model 

 

Once the anatomical models have been generated, a different computational model, “physiological model” 

(Roberts et al., 2014) is used to simulate the electrical activity in the network. Physiological model generates a 

file that contains a list of spikes fired by the individual neurons during the simulation:  

 Time when the spike occurred, the value measurement is in milliseconds; the simulation starts at zero. 

 Neuron’s ID - neuron that generated the spike. 

 

Throughout this paper, the term “anatomical model” refers to the model developed by (Borisyuk et al., 2014) 

and “physiological model” refers to the computational model developed to generate the spiking activity. 
 

2.2 Related Work 
 

Visualization of biological neural networks for small creatures has been done before, (Bruckner et al., 2009) 

developed BrainGazer - visualization of a fruit fly brain, using a photorealistic rendering. Their main focus was 

on the spatial rendering of pathways as they reveal the spatial relationship between various neuronal clusters.  

A similar approach on cluster visualization was attempted on a more complex neuronal system, human 

connectome by (Lin et al., 2011), (Xia et al., 2013) and (Sherif et al., 2015). All these applications capture the 

functionality of human connectome clusters but with a strong focus on analysis, enabling the user to query, select 

and trace the neuronal clusters.  These approaches have one thing in common, the use of a two-dimensional screen 

to render a three-dimensional object. The interaction and navigation of these systems is achieved through mouse 

and keyboard, making it less intuitive than a three-dimensional interaction with an object, in a VR virtual 

environment.  

In their paper, (Arsiwalla et al., 2015) use a more intuitive interaction metaphor, by placing the user in an 

immersive environment (CAVE) and using hand recognition software that allows the user to interact without any 

additional peripherals. Their approach enables the visualization of a large-scale simulation of neuronal dynamics 

in the human brain with separate unique projections on each wall in order to enable the user to get a better 

understanding of the neural network.  

All the systems mentioned so far capture the structure of the neuronal layout, but the temporal aspect has 

been limited to interaction. The temporal aspect of the visualization is captured through querying the state of 

various neuronal clusters at different points in time. In their paper, (Kapri et al., 2011) approach was to capture 

the activity flow between various brain areas by using a CAVE system with a stereoscopic projection. Their focus 

was on the temporal aspect of a neuronal network firing. The intent was to capture neurons firing at both 

macroscopic and microscopic level. (Kapri et al., 2011) suggested that a neural network visualization “... should 

convey the influence of the macroscopic communication (between different brain areas) on the interaction at a 

microscopic level (between individual neurons).”. The result is an established example, where the relationship 

between the cells interacting at both microscopic and at macroscopic level is significant in understanding the 

neuronal interaction. Even though the neuronal activity is easily observable due to the stereoscopic effect and 

sense of depth in a VR environment, its impact is limited by the spatial arrangement of the neurons. Placement of 

neurons in a grid-like configuration removes the spatial aspect of a neural network, focusing only on the temporal 

aspect of it. Tadpole VR uses both, the spatial layout of the neurons and the temporal pattern generated by the 

spiking neurons. This approach enables the user to gain a better understanding of the complexities of a functioning 

neural network. 

 Although (Kapri et al., 2011) application was successful in capturing the temporal element of the firing neural 

network it was still focusing on small sections of the brain, not showing a full network connectivity. In NeuVis 

implementation, (Marks, 2017) approach was to use a spatio-temporal capture of an entire spiking neural network. 

NeuVis is a visualization extension to (Kasabov et al., 2016) - NeuCube learning environment. NeuVis enables 

the user to navigate the virtual environment and enables the user to control the playback of the spiking neurons. 

Tadpole VR and NeuVis are closely related from a VR implementation point of view. Tadpole VR also uses 

controls to trigger the neurons firing sequences and the user can explore the virtual environment. The difference 

is in the number of neurons and axon connections Tadpole VR is capable of rendering. NeuVis renders 1,500 

neurons and over 15,000 connections while Tadpole VR renders 1,500 and over 80,000 connections. This a 

significant increase in three-dimensional objects rendered inside the virtual environment while still maintaining a 
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consistent 75 frames per second.  

3. VR SYSTEM OF THE TADPOLE SPINAL CORD 

 

One of the main drivers for development of this application is the difficulty to gain an overview on how the 

anatomical and the physiological models work together, due to the sheer scale and complexity of the data. In Fig. 

2 an output in two-dimensional format of the resulting data from the anatomical model representing individual 

connections between various neurons, displayed. This approach clearly does not work, as connections between 

various types of neurons are not clear. Furthermore, overlaying the physiological data on top of the existing 

representation will clutter the view even further.  

 

 

 

       3.1 Requirements 
 

In his paper “Approaches to the Successful Design and Implementation of VR Applications”, (Bryson, 1995) 

defines a virtual environment as an interactive three-dimensional computer-generated environment.  He argues, a 

successful VR application needs a theme also known as a metaphor. A metaphor is a way the user is supposed to 

relate to the virtual environment. For this application, the scale of the user is reduced (shrank) in order to allow 

them to fly inside the neural network of the Xenopus tadpole. An audio recording conveys this metaphor to the 

user before they enter the neural network, which sets the expectations.  

From a design point of view, a “top-down” approach is employed focusing mainly on 3 areas: Overall 

environment, Information presentation and Interaction. As a result, we compiled a list of requirements that 

enables the user to gain and understanding and overview of the spatio-temporal dynamics of the neural network:  

 

Stages – The information visualized should be delivered in stages in order to enable the user to gain an 

understanding of the individual chunks of information and not to get overwhelmed by a huge wave of information 

delivered in one-step. Ideally, the user would trigger each stage, and would have full control of the application’s 

pace.  

Neuronal Spatial Placement – The individual placement of each neuron and the shape of the spinal cord 

should be observable. Shape of the firing pattern is crucial in understanding how the firing pattern propagates 

along the rostro-caudal (head to tail) direction on the tadpole’s body.  

Neurons type and roles – The user should be able to gain an understanding of each of the 7 different types of 

neurons. The focus should be on the neuron’s role, unique spatial positioning and the overall interplay, as a 

combination of these three elements results in the alternate swimming pattern.  

Microscopic and Macroscopic view – The user should be able to switch relatively seamlessly between the 

Fig. 2 The original graph generated from the growth model described in the (Borisyuk et al., 

2014). Seven distinct neurons but due to the high number of axon connections, it is very 

difficult to identify individual neurons and their connections. This image is reproduced with 

authors’ permission.  
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microscopic view of the network (looking at individual firing neurons) and macroscopic view (visual patterns 

created by the temporal spiking of multiple neurons).  

Visual swimming pattern – The user’s main goal in using this application is to observe the alternate 

swimming pattern generated by the spiking neurons.  

 

3.2 Top-down design 
 

Stages 

 

     Before revealing the spiking neural network to a user, we ensure the user is comfortable inside a virtual 

environment and familiar with the interaction metaphor. Therefore, the application has 3 distinct stages: 

First stage – familiarizes the user with the controls and the interaction method with buttons inside the virtual 

environment.  

Second stage - introduces the user to a visually rich virtual environment in order to minimize the novelty factor 

of using VR and to introduce the metaphor used for the visualization.  

Third stage –visualizes the neural network and the spiking neurons.  This stage divided further into sub-stages 

and the user triggers each sub-stage inside the virtual environment. 

 

     First stage - The user starts inside a virtual environment with one single button available, in order to familiarize 

the user with the interaction metaphor (pressing the button inside the virtual environment). User’s perspective 

inside the virtual environment is first person. Through this perspective a ray-casting selection technique (Lee et 

al., 2003) is used, combined with a trigger of a controller in order to interact with any buttons inside the virtual 

environment. The ray-cast is represented by a “reticle” (sprite) in the center of the screen, in a shape of a small 

red circle, which upon collision with an interactive element inside the virtual world it snaps at the collision point 

and highlights the interactable element.  

     For every interaction within the virtual environment, associated text provides details about the current 

interactive element (See Fig. 3).  In addition, a voice over system that conveys information to the user in order to 

guide them to the next stage or to provide additional information for a particular point of interest. The voice over 

system uses a pre-recorded set of messages allocated based on the location and the time of the visualization. This 

helps the user to understand the next stage in the visualization. The user has the option to re-play audio for more 

complicate topics related through the voice-over system.     

 

     Second stage – The second stage introduces the user the virtual environment, in order to acclimatize them to 

the novelty factor brought by the VR experience. Some users might have never experienced a VR environment 

and might find it difficult to focus on a task until the novelty of the VR experience wears off. The user is exposed 

to a realistically rendered environment, looking at a pond in the middle of a forest surrounded by vegetation and 

rocks (See Fig. 4). Photogrammetry technique (Esmaeili & Thwaites, 2016) is used; which is a process where 

Fig. 3 The initial interactive element (button) used in the visualization. This is part of the first stage where the user 

learns how to interact with the buttons and how to follow instructions coming from the voice over system.  
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multiple photos of a real object are taken in situ, mapping its entire surface. These photos are collated with a 

roughly 10 to 20 degrees angle apart. Through Agisoft Photoscan1, these images build a very high-resolution 3D 

model and its supporting textures. This model is optimized through 3D content creation packages such as 3ds 

Max2 in to reduce the number of polygons and improve the performance of the final scene. The detail from the 

high-resolution models is “baked” to form a series of texture maps that display these details onto optimized low-

resolution models. The final output is a realistic 3D asset that captures life-like detail found through photography 

and runs 75 FPS in the VR application.  
 

 

     In order to prepare the user for the next stage, a small tadpole is introduced, swimming in the middle of the 

pond. The tadpole is the interactive object and clicking on it loads the third stage. The interactive tadpole is 

accompanied by audio, which describe the metaphor for the stage 3. The metaphor is to reduce the size of the user 

to neuronal scale and placing it inside a tadpole’ spinal cord to observe the firing neural network. 

     Third stage – The third stage is the actual visualization of the neural network and we believe just like (Kapri, 

2011) that the user will build a better mental model of the network if the application enables exploration inside 

the virtual environment. At the beginning of the third stage, the user will familiarize with the locomotion inside 

the VR space by going through a set of training steps. The training is in the form of audio prompts supported by 

text floating in three-dimensional space that guide the user to move around the virtual environment. The training 

system is waiting for the user to execute the assigned task and on completion moves onto the next step, until the 

training is complete. 

 

 

     Locomotion 

 

     The flying model implements the locomotion inside the virtual environment as described by (Ware, 2012b). 

The user moves forward, backwards, and side-to-side and it can rotate the character. A better way to understand 

the controls is if we imagine the user is controlling the body of a virtual character with the controller, while the 

HMD controls the head of the character. The controls do not allow the user to move directly vertically, but in order 

to go up or down a combination of the rotation angle of the HMD on x-axis (the pitch) and the forward movement 

vector enables the user to move up or down. This allows the character to move forward and up if the user is 

looking up or forward and down if the user is looking down. Limited number of users reported simulator sickness 

                                                             

 
1 Agisoft Photoscan - http://www.agisoft.com 
2 3D Studio Max - http://www.autodesk.co.uk/products/3ds-max/overview 

Fig. 4 Screen shot of the second stage of the visualization. In the second stage, the user is going through an 

acclimatization process inside the VR environment, in order to experience the stereoscopic view without distractions. 

https://www.dropbox.com/referrer_cleansing_redirect?hmac=H3sd7Pr9%2FaU%2BOrgrfzthf4ZYBbXmfIWVWUSZFlxAb54%3D&url=http%3A%2F%2Fwww
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(Kolasinski, 1995) when they travelled forward while looking sideways. This situation can create issues due to 

the feedback imbalance between inner ear and the visual feedback perceived. Restricting the ability to travel only 

in the direction the user is looking should ameliorate the problem, implementation and testing is needed though. 

 

     Goals location 

 

     User positioning inside the virtual space is crucial as they might miss important firing sequences by exploring 

the virtual environment. In order to make sure the user is present at the point of interest, interactive objects 

(buttons) reside at that particular location. The role of the buttons is to trigger the next step in the visualization 

sequence. The buttons interactivity is limited to a small distance; therefore, the user needs to be close to the button 

to trigger the next step, ensuring proximity to points of interest.  

     In order to help the user with orientation and navigation two sets of arrows guide the user inside the virtual 

space. First set of arrows is a directional arrow forming a straight line from the user’s location to the location of 

the next important step in the visualization (See Fig. 5, aqua colored arrows). This allows the user to move from 

their current position to the next relevant location. The second set of arrows are semi-transparent curved arrows, 

which help the user with orientation (See Fig. 5, pink colored arrows). The circular arrows come into view when 

the user is not facing the next point of interest guiding the user to rotate left or right in order to face the point of 

interest. 

 

 

 

3.3 Building the neural network 
 

     The growth model generates the entire neural network with two-dimensional values (x and y). x corresponds 

to a position along the rostro-caudal direction and y corresponds to dorso-ventral direction. On the dorso-ventral 

(up-down) direction, positive values occupy the top part, value of zero reside in the middle and negative values 

cover the bottom part (see Fig.6 for details). (Borisyuk et al., 2014) considers the thickness of the neural wall as 

insignificant in comparison to rostro-caudal (head-to-tail) values and dorso-ventral (top to bottom) values, so the 

z value is not calculated.   

     The main requirement to render neurons in a three-dimensional environment is to transform the data from two-

dimensional to three-dimensional coordinates. The tadpole’s biological spinal cord has an approximately 

cylindrical shape; in order to match this shape, we turn the flat shape of the model in Fig. 6 into a cylinder. For 

that, we need to apply a small mental exercise in order to understand the approach.  Imagine the layout in Fig. 6 

as a sheet of paper. Joining the top and bottom sides (the yellow areas called RB column), the flat piece of paper 

becomes a cylindrical shape.  Fig. 7 shows the resulting shape with the dotted line (dorsal midline) representing 

Fig. 5 Image depicting two sets of arrows used for navigation. The blue arrows are the directional arrows that form a straight 

line from the virtual character position to the objective. The second set of arrows (pink arrows) are orientation arrows, they 

help the user turn towards the objective, even though the objective is not visible. 
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the two sides that have been joined together. “Folding” the 2D model environment in Fig.6 into a cylinder, keeps 

unchanged the value for x (rostro-caudal) coordinates but for y (dorso-ventral) coordinates a new set of values 

need to be generated for y and axis. 

 

 

 

 

      

Fig. 6 This diagram represents the spread of values inside the anatomical model. The green area is the 

relative center with a value of zero. Positive values are above it and negative values are below it. 

Turning this layout into a cylinder shape places the green area “floor plate” at the bottom of the 

cylinder and the two yellow areas “RB column”, will join together at the top of the cylinder 

Fig. 7 Diagram representing the layout of the values in the anatomical model after transformation of the layout 

into a cylindrical shape. The floor plate is at the bottom and the two RB columns connect along the dotted line 

(dorsal midline). Please check Fig. 6 for the initial shape of the layout. 
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Below, a set of steps present the transformation the y value of each neuron in the data set to a y and z value that 

maps in a three-dimensional environment: 

 
1. Identify the highest value for y (maxVal) out of the entire dataset and set maxVal as the diameter of the 

cylinder. From the diameter, deduct cylinder’s radius, which is half of the diameter.  

2. Calculate an angle (ang) in degrees for each y (position.y) value from the original data. The angle needs 

to go from 0 to 360 degrees so any positive values (from the original data set) go from 0 to 180. The 

pseudo code below explains the logic:  

 

ang = 180 - ((_position.y / _maxVal) * 180);                                (1) 

 

Any negative values (from the original data set) will go from 180 to 360 using this pseudo code:  

 

ang = 180 + ((_position.y / _maxVal) * 180);    (2) 

 

3. Using the angle, generate a new y value and a new z value. The x value for rendering is identical to x 

from the original data and for y is cosine of the angle and for z is sine of the angle: 

 

        pos.x = _position.x; 

         pos.y = radius * Cos(ang);               (3) 

         pos.z = radius * Sin(ang); 

 

 

     For this visualization, we assumed the thickness of the spinal cord wall at 10 microns, after a consultation with 

the authors of the anatomical model. In order to generate the thickness of the wall, a uniformly distributed random 

variable has been added for the z values of each neuron. This approach accurately represents the relative positions 

of neurons and axons side of 10-microns thick wall of the cylinder without having an impact in the functionality 

of the neural network.  

     The same approach has been applied to generate rendering data for the primary axon, which is the connecting 

element between various neurons. Each axon has a set of points that define its position in the virtual environment. 

Number of points for each axon varies based on the information received from the data file. Once the individual 

three-dimensional values for each point of each axon has been generated, the resulting data is being used to create 

a path to propagate a visual spike along the axon based on the timing generated by the physiological model.  

     The spiking data is measured in milliseconds but for visualization’s purposes that will be too fast, the users 

will not be able to spot the swimming pattern. Based on the feedback received during the development phase we 

transformed the times from milliseconds to seconds (slowing down the time in order to enable the user to follow 

the firing patterns).   

 

 

3.4 Bottom-up - Rendering and Optimization 
 

     Hardware  

      

     As (Bryson, 1995) has suggested, a top-down approach in designing a virtual environment, typically needs to 

be reconciled by a bottom-up designed imposed by the limitation of the hardware and the software used. Some of 

the design compromises made in this application were due to the balance needed between the two approaches.  

     In recent years, Unity3D3 (“Unity” for short) has become one of the most popular development tools for 3D 

interactive content. Its deployment versatility and scripting support has made it not only suitable for game 

development, but also for research driven applications (Moran et al., 2015), (Hubbell and Kepner, 2012). 

Additional support for stereoscopic headset displays is being provided through software development kits (SDKs) 

and consistent feature updates has made Unity3D 4.4.2 the preferred tool for developing this VR visualization.  

     For a VR headset, Oculus Rift Development Kit 2 (“DK2”) head mounted display (HMD) built by Oculus4, 

has been used. DK2 was released in July 2014 and at the time of development DK2 had considerable Unity support 

and integration (Yao et al., 2015) and was a significant improvement from its predecessor (“DK1”). DK2 uses a 

low persistence OLED display with a resolution of 1920 x 1080 (960 x 1080 per eye), with a 75Hz refresh rate, a 

100 degrees nominal field of view, 6 degrees of freedom and a latency of ~30ms. For rotational tracking DK2 

                                                             

 
3 Unity - Scripting API: Mesh - https://docs.unity3d.com/ScriptReference/Mesh.html 
4 Oculus - https://www.oculus.com/ 
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uses a Gyroscope, Accelerometer and Magnetometer. For positional tracking the HMD uses a separate camera 

“near infrared” sensor with a tracking volume of 72 degrees horizontal tracking and 52 degrees vertical tracking. 

     XBOX360 controller has been used for interaction or movement inside the virtual environment. Although the 

controller was dedicated to the XBOX 360 gaming console, it had extensive support for Windows environment 

and natively supported by Unity. For navigating in the virtual world, the directional joysticks have been used and 

for interacting with elements in the virtual world the “Right trigger” on the XBOX controller.  

 

      Rendering 

 

     Commonly, in VR visualizations, individual data elements are represented by shaded spheres (Marks, 2017), 

(Kapri et al., 2011) or stylized spheres (Marks et al., 2014). For this application, the neurons are represented as 

semi-transparent cubes. Cubes are an obvious choice from a rendering point of view as there are less vertices in a 

cube than in a sphere. The reason the cube is semi-transparent is to enable the user to see the neuronal firing 

pattern. The focus of the visualization is observing the swimming pattern; the user has the ability to inspect the 

neurons up close in order to observe firing position of the neurons and understand their role in a macro level 

perspective. The cube’s semi-transparency allows us to put the focus on the visual spikes rather than the neural 

network. An opaque visual spike will travel on a neural network of semi-transparent elements allowing us to 

observe the pattern created by the firing neurons.  

     One of the application requirements was for the user to see neural network at both Microscopic and 

Macroscopic level.  The challenge was to be able to display 1,500 neurons and over 80,000 axons in one view 

while maintaining a 75fps (frame per second). As recommended by (Kolasinski, 1995), matching the HMD’s 

refresh rate minimises the simulator sickness effect. 

     In order to have a steady frame rate of 75fps, the rendering of the axons is a set of lines. The lines use a custom 

mesh for each axon, in order to minimise the number of vertices in the scene. For every point declared in the 

original data a set of 2 vertices has been created with a distance between vertices equal to the width of the line - 

0.1 Unity units  (Results of the rendering tests suggested this value as it gives user the ability to see individual 

lines up close and at the same time to see the lines as part of the bigger neural network system). For every data 

point, two vertices are being generated that are connected to the next two vertices forming two triangles that in 

turn form a quadrilateral (quad) (Please see Fig.8.).  

 

     One of the issues with rendering lines in a three-dimensional environment is from certain points of view it is 

Fig. 8 The process used to generate the line that represents the 

axons. For every point on the axon, two vertices have been 

generated. Every set of two vertices are being joined to the next 

two vertices creating rendering triangles, which in turn form a 

quad. 
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difficult to see the shape of the line. In order to minimise this problem, each line is rotated to face the central axis 

of the cylinder. Non-coincidental, central axis of the cylinder is one of the best places to be in order to observe the 

swimming pattern. If the user places the virtual character inside the tadpole’s spinal cord, around the central axis, 

all the rendering lines are facing the user.  

     To optimize the axon rendering further a “chunking system” has been created which enables culling of parts 

of the rendered neural network that are not in the frustum view of the camera. A chunk is an optimal size sub-

mesh that will be culled by the rendering system if not in view. All the lines that have been generated for the 

axons, were combined into a mesh. Dividing the cylinder with the custom chunking systems, optimized it for 

Unity’s internal rendering system that culls any objects that are not inside the viewing frustum. 

     The spiking neurons are being represented by a sphere that appears at the location of the neuron. This sphere 

travels along the axon of that particular neuron until it reaches the final point on the axon. Reaching the end of 

the axon, after a short delay, the visual spiking object is disabled. Several academic writings (McIntire & Liggett, 

2014), (Fielder et al., 1996), (McIntire et al., 2014) suggest that stereoscopic effect used in VR is beneficial for 

understanding shape and structure inside a virtual space. Considering the poor resolution of the Oculus HMD and 

the fact that stereoscopic effect breaks down for elements in the distance, additional techniques to highlight the 

structure and its shape are needed. 

     (McIntire & Liggett, 2014), (Ware, 2012a) suggest “structure from motion”. Structure from motion allows the 

user to perceive both kinetic and parallax depth which in turn builds a better overall picture of the virtual 

environment around them. In order to enhance both kinetic and parallax depth in the visualization, a rendered trail 

to the spikes has been added. The spike will render a trail that will slowly fade out after 0.3 seconds in order to 

reveal a path that the spike took along the axon. The combination of spikes leaving a trail will build a visual 

“kinetic map” that allows the user to perceive a visual pattern of the firing neurons, leading to alternate swimming 

pattern becoming observable. Besides the structure from motion, a proximity luminance contrast covariance (also 

known as atmospheric depth) has been added as suggested by (Dosher et al., 1986). This commonly known as 

“fog” and has the effect of reducing the contrast of any objects in the distance (where the stereoscopic effect breaks 

down) enhancing user’s sense of depth. 

     For the visual representation of the neurons, axons and spikes, 7 different colors which have been used. These 

colors are picked based on the previous publications of experimental and modelling data. RGB codes are: RB - 

(255, 210, 50); dlc - (255, 0, 0); aIN (70, 70, 180); cIN - (0, 170, 220); dIN - (150, 80, 30); mn - (0, 150, 60); dla 

- (255, 170, 140).   

 

3.5 Virtual environment – immersion and orientation 
 

     Immersion 

 

     One of the Tadpole VR’s main challenges was to enable the user to see not only the individual neurons firing 

but also the overall firing pattern of the neural network. It was crucial to have an intuitive and non-jarring 

experience when the user moves from Microscopic view to Macroscopic view and vice versa. In order to achieve 

this, a balance needs to be struck between the size of the character and the size of the neural network. As a 

reference, if one unit in Unity3D environment is the equivalent to one meter in real world, the character is 2-meter 

tall and the tadpole’s neural network has a relative length of 1,600 meters. This difference in size allows the user 

to closely inspect individually firing neurons while at the same time, making it possible to see the overall shape 

of the firing pattern, when the user moves away from the neural network. This happens organically, and we have 

witnessed intuitive positioning by the users, without any external prompts.  

     The relatively big difference in size between the character and the neural network, especially in large open 

virtual environments makes perception of movement difficult sometimes. This typically happens when the user is 

exploring the Macroscopic view, away from the neural network. According to (Vishton & Cutting, 1995) relative 

displacement of objects over time is essential when perceiving movement in a virtual environment. A limit on the 

number of three-dimensional objects has to be imposed due to the huge number of neurons and their connection. 

As a result, a set of three-dimensional bones, that represent the tadpole’ spinal cord, has been placed around the 

neural network. These bones are semi-transparent and are relatively large in comparison to the neurons and allows 

the user to perceive movement when travelling through large open space, inside the virtual environment (See Fig. 

9, left side). For small changes in position and orientation, floating dust particles have been added that allows the 

user to perceive relative displacement over time, at very slow speeds. 

 

 

 

 

 

     All these elements contribute greatly to the user’s immersion in the virtual environment and while sound plays 
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a crucial role in immersing a user in any VR application, it is no different in this one. Every neuronal spike 

travelling along the axon path has a sound attached to it. The sound has a three-dimensional property for its volume 

intensity, the closer the user, the louder the sound. This created a unique audio effect where the user could hear 

the approaching spikes and once the spikes went past, the sound intensity diminished. The spiking sound makes 

the user feel part of the firing neural network, rather than observing it from a detached point of view. Majority of 

the users had complementary comments on how immersive the virtual environment feels. 

 

     Orientation in virtual environment 

 

     In any virtual environment, orientation is key in enabling the user to build a mental model of the surroundings 

from a self-centric point of view. This becomes increasingly difficult when the virtual environment does not have 

any significant unique visual features that can be used as visual anchors. In real world, gravity is used as way to 

give us a sense of up and down. Feeling the effect of gravity combined with having a sense of how objects are 

being affected by gravity, it is relatively easy to know where up or down is. In a virtual environment, the user 

cannot feel the effects of gravity. In the VR application, due to rendering constraints mentioned earlier there are 

no visual objects to simulate the effects of gravity. In their paper, (Nemire et al., 1994) suggest that linear 

perspective can provide a strong cue of the floor location. In the Tadpole VR, a plane with a linear grid texture 

(See Fig. 9, right side) is used in order to give the user cues for where the floor is and help the user identify the 

up and down direction of the world. Limiting the character’s rotation to the vertical axis (forcing the user to always 

be in an upright position), the user sense of up and down is enhanced further.   

     In Section 3.2 “Top down design” we discussed about Goals location and how the user is being guided with 

two different sets of arrows in order to move towards the goal or point of interest. This makes user’s navigation 

and orientation easier by enabling free exploration the virtual environment. Exploring the environment freely 

enables the user to build a self-centric mental map of the surroundings.  Due to lack of unique visual objects in 

virtual environment, two visual labels, with the words “head” and “tail”, have been added that represent the head 

and tail of the tadpole’s neural network. These labels act as cardinal points, so the user can use them to navigate 

the virtual environment. The labels are always visible regardless of how far the user is from the neural network 

and they are placed on a rostro-caudal direction at the head of the tadpole’ spine and tail, respectively.  

4. THE USABILITY STUDY 

 

     A usability pilot study has been conducted to examine participant’s confidence in understanding of how a 

neural network generates a spiking pattern, as a result of a simple touch on a side of a two-days old tadpole.  

 
4.1 Methodology 

 
     Participants 

      

     Twenty computing students from University of Plymouth were recruited as participants, they were not paid. 

The participants age range was between 19 and 24. 19 males and 1 female were randomly chosen in a two-group 

design. The VR group had 11 participants; the Control group had 9 participants. None of the participants had 

previous knowledge about how a tadpole generates a swimming pattern inside a neural network as a result of a 

touch. All the participants have previously experienced VR.  

Fig. 9 Image taken from under the neural network. The see-through “bones” are visible on the back background, they help the 

user with navigation and orientation. Right side: Wide angle shot of the neural network, linear perspective given by the floor 

helps user with the sense of depth and distance 
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     Questions 

 

     A total of 6 questions were used to capture the level of confidence the participants have in recognising the 

tadpole’ swimming pattern and their overall understanding of how the neural network is firing. The main question 

was referring to how confident the participants are in observing the swimming pattern. To design the questions, 

(Brooke, 1996) system usability scale survey has been used. The answer for the main question regarding 

participant’s confidence in observing the swimming pattern used the five-point Likert scale as a model. The design 

of the answers has four possible answers No Clue, Not Confident, Confident, Very Confident. The 

interpretation of the answers can be a positive or a negative sentiment. No Clue or Not Confident is considered 

as not confident in observing the swimming pattern (negative sentiment) while Confident and Very Confident 

is considered as confident in observing the swimming pattern (positive sentiment). 

     The design of the remaining questions was to test participant’s ability to observe the location of a set of neurons 

inside the neural network or to describe their role in the firing sequence. These were secondary questions and they 

give additional information on how much understanding the participants gain from using the VR application.  

 

 

     Approach 

 

     Both groups were presented with an information sheet that describes how the 2-day old tadpole generates a 

swimming pattern as a result of a simple touch. The information sheet was composed of a diagram and support 

text that explains the process in non-technical terms. The participants were given a minute to study the information 

sheet and a control question was asked to see how confident the participants were in observing the swimming 

pattern. This question was repeated at the end of the study for both the VR group and the control group. 

     The participants in the VR group were seated and asked to put on the VR headset and they were given 2 minutes 

to explore the virtual environment. The visualization started with building the neural network around the user 

(approximately 30 seconds) and continuing with the neuron’s firing pattern. After the allocated 2 minutes, five 

questions were asked including repeating the initial question - how confident the participants are in observing the 

swimming pattern. The participants kept the HMD on in order to refer to the visualization while answering 

questions.  

     The control group was seated and given a set of 6 information sheets about neural network firing patterns and 

the location inside the neural network of each neuron type. All sheets were composed of diagrams and descriptive 

text using non-technical terms. The participants had 2 minutes to study the information sheets given. At the end 

of the 2 minutes, they had to answer the same five questions as the VR participants while they still have access to 

the information sheets throughout the questioning. 

 

 

4.2 Results 
 

     I order to measure participants understanding of how a neural network generates a spiking pattern, we 

formulate the main question: “How confident are you in recognizing the alternating swimming pattern propagating 

along the tadpole’s neural network”? We use statistical tests to analyze the data collected from VR and Control 

groups. For all statistical tests we use 0.1 as the critical significance level for two-tailed hypothesis.  

 

The participants were assigned randomly for the experiment, with each participant allocated to either the VR or 

Control group before any data collection. As a result of the random allocation and the relatively small groups of 

participants we find that there is a difference between initial positive sentiments: positive sentiments of 45.5% for 

VR group and 11.1% for Control group (see Fig. 10, VR before and Control before). We use the Mann-Whitney 

U Test to find if the collected data are from populations with the same distribution. The p-value is 0.1031 and that 

is higher than the threshold (0.1), therefore it does not contradict the null hypothesis. In conclusion, the difference 

in the initial sentiments between two groups is not statistically different and the groups belong to populations with 

the same distribution (see Fig. 11 and Table 1: VR vs Control – Before).  
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Fig. 11 The distribution of data collected before the use of Tadpole VR application. On the left, in blue, is the VR Group data 

and on the right, in red, the Control Group data. 

     To test the null hypothesis that data in two samples are selected from populations with the same distribution 

for paired observations in a “before” and “after” scenario, the Wilcoxon paired Test was used. For the Control 

group, the p-value is 0.2188, therefore the data do not contradict to the null hypothesis and the distributions of 

positive sentiments in the Control group before and after experiment are the same. Therefore, the increase of 

positive sentiments in the Control group from 11.1% (before) to 33.3% (after) is not statistically significant. For 

the VR group the result of statistical test is different. The p-value is 0.0625 and the null hypothesis should be 

rejected. In the VR group the distributions of positive sentiments before and after VR application are different. 

Therefore, the increase of positive sentiments from 45.5% before to 81.8% after VR application is statistically 

significant.  

 

 

 

To compare results after VR application for VR and Control groups, we use the Mann-Whitney U Test. The null 

hypothesis is that the data are from two independent populations with the same distribution. The p-value is 0.03662 

that is under the critical significance level, therefore the null hypothesis is rejected and the distributions should be 

considered as different. In conclusion, the increase in confidence for the VR group is significantly higher (see Fig. 

12 and Table 2: VR vs Control – After). The results in the Mann-Whitney U-test are summarised in Table 1.  

 

Fig. 10 Results on the level of confidence the participants have in observing the swimming 

pattern. A higher level of confidence for VR group after using Tadpole VR compared to the 

Control group 
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Fig. 12 The distribution of data collected after the use of Tadpole VR application. On the left, in blue, is the VR Group data 

and on the right, in red, the Control Group data. 

 

 

 

Mann-Whitney U-Test VR vs Control - Before VR vs Control - After 

U-value 27.5 21.5 

U-threshold 23 23 

z-score 1.63343 2.08928 

p-value 0.1031 0.03662 

 

Table 1. Results of the Mann-Whitney U-test for VR group and Control group after the experiment. Question: How confident 

are you in recognizing the alternating swimming pattern propagating along the tadpole’s neural network? 

5. DISCUSSION   

 

5.1 Usability study other findings 
 

     In general, the neurons spatial position in the neural network was easier to spot by both groups but the spatial-

temporal complexity of firing neural network remains difficult to visualize by the Control Group, especially with 

the high number of neurons (1500) and over 80,000 axons. This approach seems to work really well for tasks 

where the user needs to identify spatial-temporal firing patterns. 

     An interesting find in the data was around one of the questions regarding the travelling direction of the spiking 

commissural neurons (cIN’s), blue neurons. The control group scored relatively low (11.1%) as opposed to VR 

group, which scored as high as 90.9%. Although the direction of travel is clearly explained, in the information 

sheet, a combination of text and diagrams is needed to be able to answer correctly. The increase mental load in 

trying to find the information affects user’s concentration and most of the participants gave up if they did not find 

the answer quick enough.  The travelling direction for the firing pattern is clearly observable in VR, with relative 

no mental load. The VR group has scored very high (over 80%) accuracy as opposed to relatively low scores for 

the control group. This confirms that this particular approach is suitable in observing spatio-temporal patterns 

created by a firing neural network.  

     Some of the questions relate to neuron’s role as part of the neural network or its spatial location in the virtual 

environment. For these questions, the average response accuracy is a lot closer. One question was referring to the 

type of neuron that has the main axon crossing from one side of the tadpole’s body to the other. The responses for 

the accuracy values (90.9%) were the same but there was a significant difference in the average response time 

(5.17 for VR group and 24.99 for Control group). The difference in response time could be explained by the ability 

of the participants in VR group to access the necessary information at a glance. Observing the various types of 

neurons and their axons is quite trivial inside the visualization, therefore the participants got the correct answer 

near instantly. The control group had to inspect carefully the information sheet and pick up the correct information. 

Even though the response time was longer, the control group gave the correct answers. 
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     Generally, the VR group did better than the Control group for all the questions with one exception. When the 

participants were asked to specify the location of the Rohon-Beard neurons (yellow neurons) inside the neural 

network, the control group did better in both Average response time and Accuracy percentage, see Fig. 13.   

 

 

 
Fig. 11 (Left side) Response accuracy for both groups. VR group has performed slightly worse with an 81.8% accuracy 

against the 100.0% accuracy for the Control group. (Right side) The average response time for both groups. The VR group 

has slower response time (10.36 seconds) than the control group (9.45 seconds).  

      

     The Control group had a faster response time due to the quick access to this information. One of the information 

sheet contain a printout of the side view on the neural network. There were colored bands showing in the image, 

so it was relatively easy to observe the location of the Rohon-Beard neurons. That explain both the accuracy of 

the responses for the control group and the relatively small average response time.  

     For VR group, we believe there are a few factors that contribute to the lower scores for both correct answers 

and response time. First major factor is the relative restricted field of view of the VR headset. Majority of the 

users were observing the neural network from inside around central axis of the cylinder shape of the neural 

network. With a restricted field of view (letter-box effect for HMD’s) and due to the location of the Rohon-Beard 

(yellow) neurons, at the top of the neural network, participants needed to tilt their head up to see them. Another 

factor that contributed to lower scores was the combination of colors in front of the user. In the midsection of the 

neural network, where most of the users were looking, there are a number of different neurons: blue (cIN’s), green 

(mn’s), purple (aIN’s) all cold colors. Amongst these neurons, the dIN’s neurons, which have an orange color, are 

a warm color. For a participant, with a restricted field of view (not being able to see the yellow neurons at the top), 

these orange neurons look yellow in comparison with the cold color neurons around it, therefore they though the 

yellow neurons are located in the midsection of the neural network. We checked the data for this particular 

question, and it confirms this hypothesis. 

 

 

5.2 Potential Applications 
 

     Education 

      

     Tadpole VR has great potential in a variety of fields, but mainly in knowledge dissemination (especially for 

non-experts), neuroscience and education. Deploying the VR application on mobile devices and using a 

stereoscopic viewing device similar to Google Cardboard5, hundreds of students can benefit sitting in a lecture 

theatre observing the complex structure of a neural network and the convoluted firing pattern of its neurons. The 

relative low cost of Google Cardboard makes this an attractive proposition. The intention is not to replace the 

teacher or the teaching material but to use it as an additional source of information, more accessible and more 

intuitive, minimizing the mental load.   

     Due to the high number of neurons and axons, an optimization process is required before the visualization is 

ready for mobile VR. This will be an opportunity to improve the visualization. Currently, lines represent the 

connection between neurons (axons). Line rendering delivers a high frame rate and works when viewed at short 

distances in VR. The disadvantage is lack of depth cues at long distances. According to (Ware & Mitchell, 2008) 

a combination of stereoscopic effect, kinetic depth and using three-dimensional shaded tubes will lead to a greater 

increase in observable complex node graphs. This visualization, at its core, is a complex set of node graphs and 

with the latest advances in hardware and rendering technology it is possible to render all the axons as shaded 

                                                             

 
5 Google Cardboard - https://vr.google.com/cardboard/ 
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tubes, improving the visual representation of the neural network. 

      

     Analytical tool  

 

     Another possible application for Tadpole VR is as an analytical tool for neuroscience experts. It has a direct 

application in the neuroscience field, where current progress leads to more complex mathematical and 

computational models. In a recent paper by (Davis et al., 2017), the axon growth model was adapted to include 

interaction between growing axons (fasciculation). How does such axon-axon interaction affect the resulting 

trajectories and produce fasciculation? A VR visualization like Tadpole VR can address these issues by enabling 

the experts to understand and visually study developmental processes in the nervous system while manipulating 

the growth parameters. 

6. CONCLUSION AND FUTURE DEVELOPMENT 

 

      In this paper, we presented a three-dimensional VR visualization of an observable swimming pattern. The 

swimming pattern is generated as a result of the neuronal activity in the spinal cord of a simulated two-day old 

tadpole. This visualization is based on a biologically realistic computational model containing approximately 

1,500 neurons and 80,000 axon connections. A detailed description of the original dataset was given, together with 

the steps taken for preparing the data for rendering in a VR environment. This includes a top-down approach to 

the design of the virtual environment, based on a set of requirements. Followed up by the restrictions imposed by 

the bottom-up design and the compromise achieved between the application requirements and the hardware and 

software limitations.  

     Although the relatively small number of participants for the usability study does not give us a definite answer, 

there is encouraging evidence that this approach allows participants to observe a complex firing pattern inside a 

virtual world. Overall, there is a clear increase in participant’s confidence in observing the swimming pattern, 

with participants doing especially well in spotting the spatio-temporal behavior of the firing neurons.  

     Although a formal study, on the effectiveness of the VR application, has not been run, informal discussion have 

been taking place with participants at a range of conferences and public events: Neuroinformatics 2016 

International conference6, UK Robotics Week7 and CogNovo8 research seminars.  In total, over 70 participants 

experienced the visualization and we received positive feedback regarding the immersive element of the 

application. In the future, we would like to run a usability study on the effectiveness of the VR application in order 

to assess its potential. 

     Future work could introduce a more intuitive set of controls, with 6 degrees of freedom, similar to Oculus 

Touch9 controller. The controllers will track user’s hands inside the virtual environment. This opens up a new set 

of possibilities with the users being able to interact with the three-dimensional objects in a more intuitive way. 

Interaction or selection of the individual neurons will be possible, including isolating types of neurons or watching 

the computational model responding to changes in growth parameters inside the virtual environment. This will 

pave the way for neuroscientists to use the application as an analytical tool.   

     The development of this application and the pilot study did answer some questions, but more questions remain. 

Is there a better way to differentiate between different types of neurons other than color? In Tadpole VR, the seven 

different types of neurons are being differentiate by color; shape, size or luminosity could play a role in 

differentiating between neurons. At this point in time the answer is not certain, more research is needed.  

     This paper demonstrated that spatial layout plays an important role in understanding the functionality of a 

neural network. What about the spatial layout for an abstract data set that does not have a specific location? What 

is the best approach to distribute an abstract, complex data set in an immersive virtual environment, for easy 

understanding?  

     These questions have not been fully answered yet and the field of information visualization can benefit from 

more research into immersive VR visualizations. To inform future development for this type of VR applications 

further investigation is needed. 

 

 

                                                             

 
6 Neuroinformatics - https://www.frontiersin.org/events/Neuroinformatics_2016/3552 
7 UK Robotics Week - https://www.plymouth.ac.uk/whats-on/uk-robotics-week-at-plymouth-university 
8 CogNovo Research Seminars - https://www.plymouth.ac.uk/whats-on/cognovo-research-seminars 
9 Oculus Touch - https://www.oculus.com/rift/accessories/?locale=en_GB 
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