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Abstract

1st Supervisor: Professor Tim Naylor 2nd Supervisor: Professor David Sing

This thesis will address the problem of measuring stellar radii, which is ubiquitous
across many fields of modern astrophysics. A technique is introduced which integrates
the area beneath the stellar spectral energy distribution (SED) of a star to measure its
luminosity, and the shape of the SED to measure its temperature - from which follows its
radius. This method addresses many of the problems facing of existing methods, which
are reviewed, as it provides accurate measurements of stellar radius using only multiband

photometry and precision parallaxes.

It is well known that the radii and temperatures of M-dwarf prescribed by models
are in disagreement with observations, both on the pre-main-sequence (pre-MS) and the
main-sequence (MS). This methodology is applied to pre-MS M-dwarfs in the Pleiades
and Praesepe clusters to perform a direct comparison to the radii predicted by stellar
interiors. Assessment of the physicality and accuracy of the stellar atmosphere models is
also performed by comparing synthetic spectra generated from them to flux—calibrated
spectroscopic observations. The parameters for the synthetic spectra are provided by the

SED fitting, allowing verification of the methodology itself to be performed.

The advent of Gaia DR2 means that reliable distances are now available for field
M-dwarfs, permitting the extension of this investigation to MS stars. Through this investi-
gation, the nature of radius inflation in MS M-dwarfs is studied as a function of mass. This
crucially allows insight into the physics behind the observed radius inflation, allowing
current theories underpinning radius inflation to be critically assessed. The conclusion of
this investigation is that magnetic models are currently unable to explain radius inflation

in M-dwarfs.

Given the successful application of the SED fitting methodology in measuring the

stellar radii of miscellaneous field stars, this work is built upon to address the problem of



ii

determining the stellar parameters of exoplanet host radii. In doing so, it is demonstrated
that the SED fitting technique extends well to the mass range of stars currently being
scrutinised to discover and characterise exoplanets. Given its wide applicability for exo-
planet host characterisation, the potential systematic errors that may prove problematic

are reviewed and methods for their mitigation are suggested.

Copyright 2015-2019 Samuel Arthur Frank Morrell.
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Chapter 1

Introduction

“We’re made of star stuff. We are a way for the cosmos to know itself.”

— Carl Sagan

1.1 The Ubiquitous Problem of Stellar Parameters

After formation, the evolution of any given star is dictated by the ongoing conflict between
two key processes: gravitation which acts to reduce potential energy within the system
by contracting it inwards, and nuclear reactions within the core of the star which provide
a counteracting pressure outwards. Once evolved onto the main sequence (MS) the star
halts quasi-static contraction and begins a fine balancing act between gravity and nuclear
burning which keeps it stable for Myr to many Gyr until core hydrogen is exhausted.
What still remains somewhat unclear are all of the physical processes that act within stars
throughout their evolution and their contribution towards expansion or contraction. Our
understanding of stellar evolution comes from observing, and attempting to reproduce,
the subtle interplay between these processes. This is done for billions of observable stars
in our Milky Way galaxy, and other nearby galaxies, such as the notable examples of the
Small and Large Magellanic Clouds. This necessitates a thorough understanding of the
fundamental stellar parameters, which both mediate and are influenced by the physics

within the star.

The most fundamental of these parameters are mass M and metallicity, i.e. the
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chemical composition of the star. Metallicity is generally represented observationally as
log,, of the ratio of iron abundance to hydrogen abundance [Fe/H] and theoretically as
the ratio of the abundance of all metals to hydrogen abundance [M/H]; both of which
are relative to the solar value, hence [Fe/H]o = [M/H]o = 0. In principle, without
considering the effect of rotation, this combination dictates the entire evolution of a single
star from the moment of its birth. However, determining both of these parameters has
proven somewhat problematic. In particular, a reliable technique for determining precise
stellar masses of single field stars in isolation would be the "holy grail" for practitioners

of stellar evolution.

Owing to the balance between gravitation and nuclear reactions, in theory even a
young, non-rotating star undergoing quasi-static contraction will approach hydrostatic
equilibrium. Under this condition it will exhibit a spherical gravitational isosurface at
the outer boundary of radius R, of surface area 47 R2. This defines two more parameters:
stellar radius R and gravitational acceleration towards the star at the stellar surface g,
defined as

_GM 4n

where G is the Newtonian constant of gravitation and p is the mean mass density of
the star. Although in reality, due to rotation, stars are oblate spheroids, most of their
flattening ratios are sufficiently small that a sphere serves as a good approximation. Less
inscrutable than mass, the stellar radius can be directly measured or inferred using a
large variety of techniques, which are reviewed in Section 1.7. Surface gravity, which is
measured in cm s~ and expressed as log,,(g), serves as the proxy for the bulk mass of the
star in observations. Because gravity influences the strength of spectral lines and opacity
of the photosphere, it can be constrained using spectra. Spectra also encode a wealth of
other information about the stellar photosphere. However, by ignoring absorption and
emission due to molecular and atomic species, stellar spectral energy distributions (SEDs)
can be approximated well by a blackbody of effective temperature Tes. By definition this

emits a flux of GT:H over the entire stellar surface, leading to the well-known relation

L =4nR*cTS, (1.2)
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where o is the Stefan-Boltzmann constant. This relation serves as a powerful tool that
couples bulk stellar properties to those of the photosphere through R and our final two
parameters: effective temperature Tt and bolometric luminosity L. From Equation 1.2
any of L, R or Teg can be found with knowledge of the other two, with all three defining

a star.

The effective temperature Teg characterises the temperature of the photosphere by
its blackbody emission; negating spectral features. Conversely, temperature-sensitive
spectral features can be employed to measure a spectroscopic temperature Tsp. Despite
multi-object spectrographs, such as WEAVE (Dalton et al. 2012), coming online, spec-
troscopic observations remain expensive and time consuming compared to photometric
measurements. Eclipsing binary measurements also employ the brightness temperature
Tbr, which determines temperatures of DEB components via Wien’s law. In this thesis, I
introduce a further measure of temperature which uses photometric data to sample the
true shape of the stellar spectral energy distribution (SED) — the so called SED tem-
perature Tsgp. Measurements of Tsgp implicitly sample both continuum emission from
the photosphere and strong spectral features which fall within the photometric system

responses of bands used for the measurement.

The constraints on the parameters presented throughout this section have fun-
damental importance in providing key insights into many facets of modern astronomy.
This thesis serves as an exploration of the ubiquitous problem of determining stellar
parameters, in particular stellar radii, and how the lack of robust constraints on them is
responsible for some of the most pressing open questions in low-mass stellar evolution
(see Chapter 3 and Chapter 4) and exoplanet characterisation (see Chapter 5). In this
chapter I will introduce the problems caused by poor constraints in radius for pre-MS
M-dwarfs, MS M-dwarfs and exoplanet host stars, and perform a critical review on the
techniques currently being employed by the astrophysical community to make radius

measurements.
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1.2 Forming Young Stellar Clusters

Any framework which hopes to understand stars, and by extension the planetary systems
which orbit them, must necessarily account for the environment from which they orig-
inate. Stars form from a mixture of dust and gas, processed and enriched by previous
stellar populations, which constitutes the interstellar medium (ISM). Most of the ISM is
relatively diffuse, making the Jeans Mass parcel of material required to achieve instability
and gravitationally collapse relatively scarce. Consequently, it is thought that most star
formation is confined to cold, dense molecular gas clouds, which naturally form and
dissipate through gravitation and turbulence in the ISM (e.g. Dobbs et al. 2006; Dobbs &
Bonnell 2007), and survive on the order of 107 years (Blitz & Shu 1980). Simulations of
Bonnell et al. (2011) show that indeed star formation efficiency in large stellar clusters is

around 40%, as opposed to < 1% in regions of distributed star formation.

Understanding of the environments, masses and dissipation timescales of these
regions is the foundation upon which modern star formation theory is built. Fortunately,
our Solar system is in the midst of a flurry of both ongoing star formation and the resulting
young stellar clusters. We have a front row seat to view the massive giant molecular clouds
(GMCs), star formation regions (SFRs) and young stellar clusters which constitute Gould’s
Belt; named for the American astronomer who performed the first detailed study of the
complex, Benjamin Gould (Gould 1879). This region remains somewhat puzzling due
to its apparent ring-like morphology. One theory for its formation suggests a collision
between a GMC of around 107 M, and a dark matter clump of around 10® M, at an oblique
angle of between 16° and 22° inclined from the galactic plane. Simulations of Comeron &
Torra (1994) and Bekki (2009) support this scenario. The ensuing shock wave is thought to
have lead to the abundance of active and efficient star formation which we observe today.
Importantly, the rich history of star formation in this region pre-dates this occurrence,
with many young stellar clusters, such as the well studied Pleiades open cluster, being
the result. Due to this there are comprehensive long-running surveys being carried out

using SCUBA-2 on the James Clark Maxwell Telescope (Ward-Thompson et al. 2007).

The most scrutinised region of Gould’s Belt is probably the Orion molecular cloud

complex. Situated about 400 pc from Earth (Menten et al. 2007), this 90 pc long filamentary
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structure (Grofsschedl et al. 2018) harbours at its centre the Trapezium cluster. At an
estimated 2 to 6 Myr in age (Mayne & Naylor 2008; Bell et al. 2012), the majority of the
stars in the cluster are pre-main sequence, and possess dusty circumstellar discs, within

which planets are likely to form (Lada et al. 2000; Haisch et al. 2001).

1.2.1 Forming Clusters from Clouds

In considering the evolution of young stars, and the open clusters which they comprise,
we must first consider the physical processes which drive their formation mechanisms.
There are many intricacies involved in the process of star formation, including thorough
treatments of hydrodynamic turbulence, magnetism and stellar feedback, which are be-
yond the scope of this thesis. However, it is advantageous to be aware of the broad picture
of the formation of stellar clusters, as the context in which to view the remainder of stellar

evolution.

To consider how open clusters form from GMCs, let us follow a spherical cloud of
nearly uniform gas, with radius R¢ouq and mass Mouq within a GMC; such as the Orion
Nebula. Whether the system us in equilibrium is established using the Virial theorem,
expressed as

Eg +2E; =0, (1.3)

where E, and Ej are the gravitational potential energy and the internal kinetic energy of

the cloud. For the cloud the internal energy is given by

E = gNkBT, (1.4)

and gravitational potential energy is given by

2
_3 G]\/Icloucl (1.5)

Eg = -—-—dud
g 5 Rcloud

where kp is the Boltzmann constant, T is the thermodynamic temperature of the cloud,
which contains N particles. The cloud will remain stable against collapse as long as the
internal pressure of the gas exceeds the combination of the pressure from the surround-

ing gas combined with self gravitation (2Ex > Eg). In the situation where gravitation
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overcomes internal energy (2Ex < Eg), the cloud will undergo collapse, and lead to the

formation of a stellar cluster.

The cloud is forced out of equilibrium by small perturbations moving through the
bulk cloud, amplified by a process known as gravitational instability. In his seminal work
in Jeans (1902), James Jeans considered how perturbations moved through an infinite,
uniform medium to estimate the minimum mass for a parcel to become unstable and

collapse. The so called Jeans Mass M is given by the expression

_ s |(5ksTV\( 3
v\ ()

where p is the uniform density of the medium, ¢ = kT /m is the isothermal speed

of sound in the medium, with m being the average particle mass. The characteristic
scale length introduced in this equation A is the Jeans Length, and describes the mini-
mum length scale at which perturbations propagate. Below this limit perturbations grow
exponentially due to being gravity dominated, leading to the gravitational collapse of
the parcel. Although widely used in literature, it is noted that Jeans” analysis neglects
the distant background density, making the analysis numerically inconsistent (Binney &
Tremaine 1987). Several authors have attempted to show a mathematically clean deriva-
tion for Jeans” work (e.g. Falco et al. 2013; Kiessling 2003), however there have also been
several reinterpretations of the problem. For example, by considering a self-gravitating,

isothermal layer of fixed sound speed c;, the critical wavelength of the turbulence is

2c2
Aait =21H = G_y' (1.7)

where i is the surface density of the layer and H = y/c? /Gy is the scale height (Spitzer

1942). If perturbations are assumed to by cylindrical, then Larson (1985) shows that the

minimum unstable mass within the contracting region becomes

cd

_ s
Merie = 4.67G2#. (1.8)

When the perturbations in the cloud compact the cloud sufficiently M; > Mgoud,
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such that the gravitational attraction can overwhelm the dispersive effects of the internal
pressure, the cloud becomes gravitationally bound and begins to collapse. In the absence
of any other effects which may invoke a pressure gradient, which is in reality rather

unphysical, the collapse of this uniform sphere of material occurs over a free-fall time

b = 4 /%471123, (1.9)

defined by Spitzer (1978) as the time required to collapse to infinite density from a state

of rest.

An interesting and important result of Equation 1.6 and Equation 1.7 is that the
mass required for some section of the bulk cloud to collapse is inversely proportional to
p; resulting in M decreasing during contraction. Although until now we have assumed
the cloud to be isotropic, it is intuitive to see that there will be regions of differing density
throughout the medium. When higher density regions reach M; they begin to contract
under their own self gravitation, somewhat decoupled from the bulk of the cloud; a
process known as fragmentation. It is thought this process through which large GMCs
collapse and fragment into young stellar clusters, and how these clusters fragment and
collapse further into many stellar mass protostars (Prialnik 2009). The smallest scale
of fragmentation is determined by the first "hydrostatic’ core. Further fragmentation
is prevented when hydrogen within the protostar is ionised, stifling the transport of

radiation through the collapsing envelope.

Throughout the remainder of pre-main sequence (pre-MS) evolution, the star
follows a well-defined mass-dependent path through effective temperature-luminosity
space. Stars with M < 0.5 My will follow the Hayashi track (Hayashi & Hoshi 1961;
Hayashi 1961) until core hydrogen burning initiates, and the star enters the zero-age main
sequence (ZAMS). Henyey et al. (1955) showed that stars with 2 Mo > M > 0.5 Mg can
remain in radiative equilibrium while contracting onto the ZAMS. So intermediate mass
stars will follow the Hayashi track until a radiative zone develops, at which point they
will slowly contract onto the ZAMS in near hydrostatic equilibrium via the Henyey track.

Figure 1.1 shows the evolution for the masses of star covered in this thesis, as prescribed
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Figure 1.1: The pre-MS evolution for stars of 1.4Mp > M > 0.15 Mg as given by the Baraffe et al. (2015)
evolution models. The isochrones shown in the plot are quadratically interpolated in mass (see Section 3.5.3).
The black lines trace lines of constant mass evolving through the red dashed lines of constant age (isochrones),
from the Class I YSO phase onto the MS at 108 to 10° yr, depending on mass. For M < 0.5 Mg, the collapse
is exclusively via the Hayashi track (vertically downward onto the ZAMS in this space). However, for
M > 0.5 Mg the collapse onto the ZAMS is performed via the Henyey track (which manifests as a collapse
toward increasing Te¢) when a radiative zone forms.

by the Baraffe et al. (2015) interiors.

Stars enter the main sequence when conditions are suitable for the onset of ther-
monuclear burning of hydrogen within the core. The radiation pressure resulting from
core hydrogen burning stabilises the star against gravitational contraction, bringing it into

equilibrium for the main sequence phase of its evolution.

1.3 The Stellar and Substellar Initial Mass Function

Hints of the complex multi-scale physics that govern pre-MS evolution are encoded
into the distribution of stellar mass as stars reach the ZAMS. This is represented by an

empirical function which essentially serves as a probability density function (PDF) for
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the initial stellar mass. This can then usefully be sampled, for example with Monte Carlo
methods, to produce synthetic stellar populations that are consistent with observations.
As the evolution of a star is largely determined by its mass, it has long been known that
constraining the initial mass function (IMF) is an important step in understanding stellar

physics.

The process of constraining an empirical IMF, as described in Offner et al. (2014),
can broadly be broken into 3 stages. Observations of a complete population of stars
that lie within a given volume, such as our local volume, allow observers to measure
a stellar luminosity function. A present day mass function is then produced from the
luminosity function using a mass-luminosity relationship. Finally, the present day mass
function is corrected for star-formation history, stellar evolution, galactic structure, cluster
dynamical evolution and multiplicity to obtain an IMF—a complex and involved process,
during which many biases and systematic uncertainties can be introduced. The first
attempt to quantify the IMF was performed by Salpeter (1955), who was able to show
that the occurrence rate of stars of each mass falls off rapidly with increasing mass.
Using observations, Salpeter (1955) showed that stars with masses greater than a few
solar masses adopt a power law distribution of the form dN o« M~*dM, with o = 2.35.
This remains the standard IMF for stars with M > Mg (Offner et al. 2014), however this
distribution diverges as M — 0. It was noted in Miller & Scalo (1979) that the IMF was
approximated by a log-normal distribution for 0.1 Mg < M < 30 M. A more modern
approach was adopted by Kroupa (2001) and Kroupa (2002) who presented an IMF which
retained the Salpeter (1955) IMF for M > Mg, but introduced further power law segments
of decreasing exponent for decreasing masses. The work of Chabrier (2003) and Chabrier
(2005) once again adopted a power law tail above 1 Mg, but represented the low mass
population with a lognormal distribution. All three IMFs are shown for comparison in
Figure 1.2. Regardless of the formulation, all three commonly utilised forms of the IMF
concur on the fact that M-dwarfs are the most abundant stars in the galaxy; making up

over 70% of the stars in the Milky Way (Bochanski et al. 2010).

Despite this, the exact form of the IMF at very low masses remains uncertain and

relatively unconstrained. Thies & Kroupa (2007) show a discontinuity in the multiplicity-
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Figure 1.2: A comparison of the stellar initial mass functions discussed in this thesis. The Salpeter (1955)
power-law IMF is shown in blue, the Kroupa (2001) segmented IMF is shown in green and the Chabrier (2003)
log-normal IMF is shown in red. Importantly, despite their clear differences, they all concur that M-dwarfs
are the most abundant stars in the galaxy by up to several orders of magnitude. Adapted from a figure by
Johannes Buchner.

corrected mass function in the very low mass star and brown dwarf (M < 0.07 Mo)
regime, which served as the impetus for an independent brown dwarf / very—low-mass
star IMF in Kroupa et al. (2013). Another ongoing debate is with regard to the universality
of the IMF, however studies of this are still hamstrung by robust constraints on stellar
populations, and uncertainties in the mass—-luminosity relation at very low masses and
young ages (Offner et al. 2014). This serves as a strong motivation for better understanding
the physics that drives these stars, and serves as the impetus for much that is to follow in

this thesis.

1.4 The Characteristics of M-dwarfs

M-dwarfs are a very diverse demographic of stars, spanning 3 orders of magnitude in

bolometric luminosity (Baraffe & Chabrier 1996). They also span a large range of masses,
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from the M-K transition at 0.6 My down to the hydrogen burning minimum mass at
0.07 Mg, below which is the domain of the sub-stellar population. The evolution of the
stars differ considerably across the mass range, with calculations of Chabrier et al. (1996)

finding that the age of the ZAMS varies from ~ 108 yr for 0.6 M, to ~ 5 x 10° yr.

1.4.1 Stellar Structure

The internal structure of M-dwarfs was first modelled in Osterbrock (1953), who claimed
that the observed properties of several early M-dwarfs could be understood in terms of an
outer convective zone extended inwards to about 30% of the stellar radius. Indeed, like all
main sequence stars, M-dwarfs contain regions of convective flows within their interior.
The structure of the star, determined by the method by which energy is transported
throughout its interior, is inextricably linked to its entropy structure (Stahler 1988). Much
of the material in this section is adapted from Lamers & Levesque (2017), which provides a
thorough review of stellar physics. Radiative zones are layers of the stellar interior where
radiative diffusion and thermal conduction are dominant means of energy transport.
Radiative energy transport through an optically thick medium is described by Eddington’s

equation of radiative equilibrium

= 1.1
dr 4ac T3 4nr? (1.10)

where ac = 40 is the radiation constant, k is the opacity and other symbols have their
usual thermodynamical meanings (e.g. Lamers & Levesque 2017). This describes the tem-
perature gradient throughout the star, so long as radiative equilibrium is maintained, i.e.
the total radiative flux in to a thin layer of the star of height dr is the same as the radiative
flux out of the layer. Thus intuitively radiative transfer is the main means of energy trans-
fer unless the temperature gradient is steep, in the case where large amount of energy
transport are required, or in the presence of high opacity, such as in the atmospheres of

M-dwazrfs.

In regions of the stellar interior where radiative diffusion is not efficient enough,
energy is also transported by the bulk convective motion of the gas in the star. In convective

energy transport, parcels of hot material rise through buoyancy to deposit heat to cooler
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layers, before descending again as much cooler parcels. This process was first formalised
in Schwarzschild (1906) who considered a parcel of material which rises from an initial
position at height r to the destination at  + Ar. Initially, the temperature T, pressure P
and density p in the parcel match the conditions of the ambient background. After rising
a distance of Ar the ambient conditions become T + AT, P + AP and p + Ap. We recall

from the ideal gas law that

P
p T (1.11)
and
Ap AP AT

Due to the high opacity within the rising parcel, we can assume that as it rises it adiabat-
ically expands to T + 0T, P + 6P and p + 6p; note that the conditions within the parcel
and in the ambient background now differ. Given that this process is adiabatic, i.e. the
energy exchanged between the parcel and the ambient background 6Q = 0, the pressure

for an adiabatically expanding ideal gas is governed by
P oc plad, (1.13)

where y,q = Cp/Cy is the adiabatic index, and Cp and Cy are the heat capacity at constant

pressure and volume respectively. By differentiating Equation 1.13 we find that

op 1.op

= —. 1.14
P Vad P .
Given that we know that this is a buoyant process, convection persists as long as 6p < Ap.
Thus, by substituting Equation 1.12 and Equation 1.14 into this expression, we find the
inequality

A of Al Al (1.15)

We recall that during adiabatic expansion, the pressure of the parcel remains consistent
with the ambient background, therefore 6P = AP, meaning that from Equation 1.15

AT _ (aa =1 AP

- o T (1.16)
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Thus it follows that the critical temperature gradient for convection is therefore

d_T < (Vad_l)zd_P

< oo T (1.17)

This is a condition for stability; as long as this inequality holds the parcel remains stable
against convection. If this condition is exceeded, one would expect convection to occur.
The parcel will remain convective as long as this inequality is not satisfied and the
conditions within the parcel do not match its surroundings. However, convection will
act to flatten the temperature gradient, bringing both sides of Equation 1.17 close to
equality. Hence, we expect stars whose structure is controlled by this equation to exhibit

a temperature gradient close to adiabatic, including the surrounding material.

A full treatment of convection requires a non-linear theory. Unfortunately, no such
theory currently exists. However, convection can be crudely considered in 1D stellar
models using mixing length theory (MLT) as prescribed in Bchm-Vitense (1958). MLT is
a simple ballistic theory which considers the characteristic scale length a hot parcel rises
or a cool parcel descends before it dissolves into and becomes indistinguishable from its

surroundings. The mixing length Iy is defined as
Imr = amirHp, (1.18)

where amrr is a dimensionless mixing length parameter (of roughly unity) and H, is the
pressure scale height, the height within the stellar interior in which P decreases as a factor

of ¢; defined as
7w GM,y g

(1.19)

Mixing length theories suffer some well-known limitations. A major limitation
of MLT is that the mixing length parameter amir is prescription dependent, and is not
internally consistently provided by the theory itself (Canuto 1990). Thus, the mixing
length used must be calibrated from other 2D /3D hydrodynamical simulations (see e.g.
Abbett et al. 1997; Trampedach et al. 2014), or measured empirically using observations

(see e.g. Ferraro et al. 2006; Bonaca et al. 2012). A further complication comes from the fact
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that traditional mixing length theories consider only a global value of anyT, rather than a
variable local value, which is physically counter intuitive. As noted in Renzini (1987), this
alone can cause considerable problems for convective overshooting, where a convective
flow overshoots the boundary with a region of stability. Furthermore, MLT makes the
tacit assumption of isotropy, i.e. all scale lengths entering the problem are equal to Imrr
(Canuto 1990). A more physically motivated treatment would recognise that large-scale
eddies that carry most of the flux are generally anisotropic; that their characteristic width
and height are not equal. Finally, typical prescriptions of MLT do not consider rotation
or magnetic fields, though work on prescriptions including these effects is ongoing (see
e.g. Chabrier et al. 2007; Feiden & Chaboyer 2014; MacDonald & Mullan 2014; Ireland &
Browning 2018). However, despite the many criticisms that can be levelled against MLT,

it remains in commonplace use within 1D stellar models to this day.

Near to the surface of a star, the temperature gradient becomes superadiabatic,
ie. (dT/dr) < (dT/dr)aq, due to the decreasing density and hence temperature of the
plasma. Ataround aradius of r = 0.995R, convective heat transport gives way to radiative
dissipation due to the decreasing opacity in the photosphere. It is within this outer region
that the radius of the star is largely determined (Stahler 1988, with more recent work by

Ireland & Browning 2018).

M-dwarfs are notable in that they straddle the mass threshold for a fully convective
interior at M > 0.35 Mg; first hypothesised by Limber (1958). Importantly, for stars close
to isentropy, such as fully convective M-dwarfs, knowledge of their specific entropy s.q
is sufficient to define the adiabat upon which the star sits, and hence its entire structure.
The nature of the adiabatic gas law can be shown by considering the first law of ther-
modynamics, which states that du + PdV = dQ, where u is the specific internal energy,
V, defined as 1/p, is the specific volume of the gas and Q is the specific heat content.
As I stated previously convection within the stellar interior is an adiabatic process, thus
dQ = 0 resulting in du = —PdV. For an ideal gas u = (3/2)NkpT where N is the number
of particles per unit mass, we find the ubiquitous PV = nkgT where n is the number of

particles per unit volume, thus u = (3/2)PV. So, for an adiabatic process performed on a
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rising or falling convective parcel, given that du = —PdV,

%PdV + %VdP = —PdvV, (1.20)

which can be rearranged and simplified to

P 54V
- =37 (1.21)

Hence P o« p°°3 is the equation of state for both the ambient background and parcels
in convective regions, indicating y,4 = 5/3 for those regions (e.g. Lamers & Levesque
2017). This is a polytropic equation of state, where the relationship between pressure and
density is given by

P =KpmV/n = Kp7, (1.22)

where K is a constant of proportionality, 7 is the polytropic index. This demonstrates
that the convective zones within stellar interiors can be approximated well by an n = 1.5

polytrope—a simple stellar model that serves as a solution to the Lane-Emden equation.

As a result of the structure of M-dwarfs, many open questions remain about the
morphologies and strengths of the global magnetic fields within M-dwarfs. The standard
model of the stellar dynamo mechanism suggest that magnetic fields are generated at the
interface between the inner radiative zone and outer convective zone (Parker 1955, 1979).
At this interface is a shear layer known as the tachocline. However, this mechanism
is unable to explain how fully convective stars, which by definition do not possess a
tachocline, generate and sustain strong magnetic fields. There is an alternative suggestion
of a stellar dynamo driven by rotation and turbulent convection (Durney et al. 1993;
Dobler et al. 2006; Chabrier & Kiiker 2006). Further discussion of magnetism is presented

in Section 1.8.1.

1.4.2 Observational Characteristics

Unlike intermediate mass stars, such as our Sun whose SED peaks at optical wavelengths,
the SEDs of M-dwarfs peak in the near-IR, due to their having much cooler effective

temperatures of between 1800 — 4000 K. Consequently, M-dwarfs can be found at the
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faint, red end of the MS in colour-magnitude diagrams (CMDs). Their cool photosphere
leads to one of their most notable spectral characteristics - the formation of diatomic and
triatomic molecules; such as SiH, CaH, TiO, VO, CrH, MgH, OH, CO, CaOH, H,O and
FeH (e.g. Rajpurohit et al. 2018; Rajpurohit et al. 2019). Hot dust grains have also been
observed in M-dwarf spectra by Tsuji et al. (1996), who identified that the condensation
temperatures of said grains occur in line-forming layers of their photospheres. It was
also noted in Rajpurohit et al. (2018) that the outer layers of M-dwarfs with spectral types
M5 or later are sufficiently cool to form dust and clouds. All of the molecular species
incident in the photospheres of M-dwarfs have the effect of adding opacity and forming

large absorption bands, which are ubiquitous in very low mass stars.

By virtue of their convective outer envelopes, it is probable that all M-dwarfs
possess cool starspots on their surfaces (Strassmeier 2009). Starspots are observational
manifestations of magnetic flux tubes—generated by the interior dynamo—intersecting
the photosphere and inhibiting convective heat transfer, resulting in areas of the stellar
surface with a lower temperature and brightness than that of the stellar photosphere.
Hence, not only do these dark spots attenuate the flux from the star, but they also con-
tribute towards a second, cooler blackbody component seen in the SED (Berdyugina
2005; Oshagh et al. 2014). This spotted photosphere has a temperature contrast with
the immaculate photosphere Tegfimac — Tett,spot and occupies some fraction of the surface
area of the star, its filling factor y. The degeneracies inherent in stellar activity make it
problematic both to measure the intrinsic properties of active stars, and to infer the char-
acteristics of the starspots themselves. However, much work has been done to develop
techniques for characterising starspots. Since the first unexpected observations of dark
spots in Kron (1947)—who found anomalous photometric variability while studying the
eclipsing binary, AR Lacertae—applying inversion models to observed light curves has
proven a fruitful method for spot characterisation. The rotation period Py, of the star
then follows from the inverted model; under the assumption that the starspots survive
on timescales longer than the rotation period of the star. Furthermore, careful analysis of
the light curve yields the spatial distribution of spots. However, as the time series data is
1-dimensional, under most circumstances only the longitudinal spot distribution can be

reliably constrained—the latitudinal distribution remains highly uncertain (Berdyugina
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2005). A novel method for avoiding this problem was presented in Morris et al. (2017),
who used the well known orientation and highly misaligned orbit of HAT-P-11 b to un-
ambiguously resolve spot latitudes on its K4 dwarf host from time-series data. Due to
the increasing ubiquity of short-cadence, all-sky surveys searching for stellar oscillations
and exoplanet transits, it is becoming possible for many active stars to be probed using

this family of techniques.

Spectra of active stars also encode much information about starspots. Given an
adequately hot photosphere molecular species cannot form—that of around mid-K or
earlier—meaning that detections of molecular bands result only from the much cooler
spotted regions. Since the first detection of TiO and VO on a K2 dwarf in Vogt (1979),
molecular band modelling (MBM) has proven effective for determining the temperatures
of starspots. As suggested in Huenemoerder & Ramsey (1987) and developed in Neff
et al. (1995) and O’Neal et al. (1996), MBM allows the determination of spot filling fac-
tors and temperatures from molecular features. Furthermore, first conceived in Deutsch
(1958), and developed into an inversion technique in Goncharskii et al. (1977), the Doppler
imaging technique aims to determine the the starspot distribution on the stellar surface
using information contained in the time varying line profiles of rotating stars (Berdyugina
2005). Hence through all three methods, measurements of the spot filling factors and tem-
perature contrast can be made. Berdyugina (2005) compiled many of these measurements
from the literature to show the overall correlation between immaculate photosphere tem-
perature Tef imac and temperature contrast for a variety of stellar demographics; shown

in Figure 1.3.

Additional markers of magnetic activity come in the form of plage and faculae,
which are signatures of particularly dense collections of small flux tubes (Solanki 1999).
Although only directly observed on the Sun, intuition and indirect evidence from photo-
metric variations (e.g. Wilson 1978; Lockwood et al. 2007) would suggest these are also
present on other active stars with convective envelopes. Solar faculae are bright, ex-
tended structures in the Sun’s photosphere that are seen in visible light around sunspots
(Berger et al. 2007). Interestingly, they appear brighter, and contrast with the background

granulation, more at the limb than they do at the disc centre. This lead Spruit (1976) to
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Figure 1.3: The temperature contrast of starspots as a function of the temperature of the immaculate pho-
tosphere for active giants (squares) and dwarfs (circles). Lines connect measurements of the same star.
The curve is a second-order polynomial fit to this data, excluding EK Dra. The circled points represent
measurements of the solar umbra (AT = 1700K) and penumbra (AT = 750K). Source: Berdyugina (2005)
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construct the so called "hot wall” model, which posits that thin tubes of magnetic flux
cause depressions in the photosphere. When observed from oblique angles, such as at
the limb, the decreased density of material, and hence longer optical depth, allow lines-
of-sight to intersect the deeper, hotter layers of the photosphere which form the walls of
these depressions. Faculae typically form hours before an active region, and can persist
weeks after the spot has disappeared. Conversely, although plage is also the result of
magnetic flux tubes, it does not result from depressions in the photosphere, and is instead
a chromospheric effect. In this region of stellar atmosphere, H, and Ca II K & H are
the dominant sources of strong emission, making these high-contrast features ideal for
studying plage (Walter 1996). Plage appears hotter than the immaculate photosphere,
with a temperature contrast of 300 — 500 K (Topka et al. 1997). Hence, as with spots, a
two-temperature photosphere can be used to model its effect on observations (e.g. Oshagh

et al. 2014).

It is by adopting the two temperature model that I will proceed with modelling the
effect stellar activity on SEDs throughout this remainder of this thesis. I detail the model
that I adopt for studying starspots in M-dwarfs in Section 4.3.2.3, and develop it further

to encompass plage in Section 5.4.1.3.

1.5 Open Clusters - Benchmarks for Stellar Evolution

The evolution of planets and their stellar hosts are inexorably linked, from their formation
to their inevitable demise. Determining the circumstellar environments within which
planets may be forming, and the characteristic timescales upon which these processes
are occurring, necessarily requires robust constraints on evolutionary stage, hence stellar
age, of the subject. Measuring the ages of miscellaneous, isolated field stars has proved
intractable, as no methods exist which are reliably capable of doing so. Because of this,
open galactic clusters, such as the Pleiades and Praesepe, have historically served as crucial
laboratories with which stellar evolution can be scrutinised. There are several important,
and well founded, assumptions that go into these studies. Open clusters and the stars they
contain form via fragmentation from the same common progenitor cloud. The intuitive

supposition is that the population of the cluster is spatially proximate, allowing both
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the extinction and distance to the cluster as a whole to be determined during the fitting
process. That all members have identical metallicities is another assumption that naturally
follows, permitting constraints on the tracks that the clusters will follow throughout their
evolution. The final expectation is that the entire sample is coeval, meaning that the
entire population can be fit with a single isochrone, or line of constant age. By improving
the constraints on these parameters with the whole ensemble of stars whose cluster

membership is confirmed, other important parameters can be determined.

As age and metallicity can be assumed to be homogeneous across the cluster, a large
number of members can be simultaneously fitted with isochrones to infer properties of
the population as a whole. The ability to constrain cluster parameters in this way, such as
distance and extinction, is one of the key advantage to working with them. Importantly,
one of the most crucial tasks for young stellar clusters is to test the veracity of stellar
evolution models, by providing a snapshot of stellar evolution for a homogeneous sample
of stars. The models that can be fitted to clusters include those by D’Antona & Mazzitelli
(1997), Baraffe et al. (1998), Siess et al. (2000), Yi et al. (2003), Demarque et al. (2004),
Dotter et al. (2008), and Tognelli et al. (2011). The models provide R, Tet and L for a
given mass at a given age, providing a single star sequence which can be fit trivially in the
theoretical Tegs — L plane of the Hertzprung-Russell (H-R) diagram. However, this poses
problems when fitting to observations, as the parameters required for such diagrams
are troublesome to infer from brightnesses and colours available from photometry. An
alternative is to transform models into the observational plane by generating bolometric
corrections from model stellar atmospheres. Bolometric corrections are calculated for a
given star observed through the photometric system response S, for a specific band, and
denote the correction required to convert the absolute magnitude in that band M; to the

bolometric magnitude My, of the star. This can be represented easily as

BC; = M; — My, (1.23)

with the useful property that observed colours can be derived from them using

mi—m]- =BC]'—BCZ‘, (1.24)
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however not without the unfortunate consequence of an inconvenient minus sign. These
provide the absolute magnitudes and colours required for fitting the single star sequence

of clusters in CMDs.

1.6 Radius Inflation in pre-MS M-dwarfs

Naylor (2009) used isochrone fitting to determine the pre-MS for a number of associations
and young clusters, finding that the ages were a factor of 1.5 - 2.0 longer than the commonly
accepted ages for the studied regions. Stauffer et al. (2007) also noted that there was a
problem with the theoretical pre-MS isochrones. Expanding on this, Bell et al. (2012)
firmly established that the discrepancy was not due to calibration issues and that models
were in fact unable to reproduce the observed single star sequence for Tes < 4000 K
for even the most well understood open clusters in the sky. Developing on this work
Bell et al. (2012) found that the isochrones generated by the interior models of Baraffe et
al. (1998), D’Antona & Mazzitelli (1997), Siess et al. (2000), and Dotter et al. (2008) all fail to
reproduce the Pleiades single star sequence for T < 4000 K at optical wavelengths. It was
shown that the flux is overestimated by a factor of 2 at 0.5 ym, decreasing with increasing
wavelength and becoming imperceptible in the K;-band at 2.2 ym. Problematically, Bell
et al. (2012) showed that this discrepancy could lead to underestimating the age of pre-
MS stars T < 10Myr by a factor of 2 — 3. From this it appears clear that some physics is
missing from stellar evolution models that attempt to adequately describe M-dwarfs up

to 100 Myr.

A complication with methods such as this is that, although they are able to fit the
single star sequence to infer much about the cluster, the colours and magnitudes used
in the fitting are far removed from the outputs of the models. This makes it difficult to
backtrack the root cause of the discrepancies in said models. The purpose of Chapter 3 of
this thesis is to present investigations designed to ascertain the key physics that is missing
from the models. Both the Pleiades and Praesepe clusters were chosen due to their robust
characterisation (e.g. in Bell et al. 2014), and for reasons detailed in Section 3.1.1 and

Section 3.1.2.
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Figure 1.4: This figure shows the model-dependent corrections to bolometric correction ABC as a function
of T for the optical (griz)wpc and NIR JH bands. These were calculated in Bell et al. (2012) by finding the
difference between the model colours and observed Pleiades colours as a function of Teg. The lines represent
the models of Baraffe et al. (1998) (red, continuous), Baraffe et al. (2015) (red, dashed), Siess et al. (2000)
(blue), D’Antona & Mazzitelli (1997) (green) and Dotter et al. (2008) (cyan). This shows that for Teg < 4000 K
all models fail to match the observations at optical wavelengths, with the discrepancy reducing towards the
H-band. Source: Bell et al. (2012).

1.6.1 The Cause of the Discrepancy

The discrepancy is demonstrated for the Pleiades in Figure 1.4, which plots the corrections
required for a variety of stellar interiors to bring their colours in line with those observed
for stars of an equivalent T in the Pleiades. The question remains: what key physics that
is absent from the models causes this discrepancy? The discrepant model isochrones are
the result of coupling two models—the stellar atmosphere that models the photosphere
of the star, and the interiors that describe the internal structure of the star. From the
manifestation demonstrated in Figure 1.4 the culprit could be either of them, or even a
combination of both. In solving this we need to disentangle both models and examine
them in isolation. In Chapter 3 I will show how new techniques described in Chapter 2
were applied to readily available public astrometric and multi-waveband photometric

data from a variety of all-sky surveys to perform SED fitting of members of Pleiades and
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Praesepe. By removing the constraint that the model needs to lie on the isochrone, more
accurate radii for each source can be determined. The stellar parameters determined
by this fitting are used as inputs to generate synthetic spectra of those stars. I will
then compare robustly flux calibrated spectra with these synthetic spectra to perform a

differential study of the effect that opacities have on the stellar atmospheres.

Although some problems have been resolved, there still remains one burning ques-
tion; is this discrepancy a result of poorly constrained stellar evolution, and hence disap-
pears in stars on the MS at sufficiently old ages, or does this discrepancy persist far onto

the MS?

1.7 Radius Inflation in Main-Sequence M-dwarfs

I have already established that pre-MS M-dwarf stars disagree with models. Now we
must address whether this disagreement persists onto the MS, and crucially determine
the missing physics that is the culprit. All of the open astrophysical problems that
are addressed throughout this thesis are unified by one commonality: greater insight
into them is gleaned by more robust measurements of fundamental stellar parameters.
Fortunately, there has been much work over the last century to develop methods to provide
observational constraints to the rapidly developing field of stellar evolution. In this section
I will review the current gold standard of techniques for measuring stellar parameters.
I will discuss their advantages, and some of their inherent deficiencies to converge on a
schematic for improving measurements of stellar parameters, and attempting to settle the
open questions we have discussed. In doing so, I will show that the radii predicted by

the models and those measured for MS M-dwarfs are also in disagreement.

1.7.1 Detached Eclipsing Binaries

Observations of binary stars date back to the discovery that  Persei (Algol) was variable
by Goodricke (1783), with Herschel (1802) terming them ’binary stars”. Since the first
observations of the mass of the components of  Aurigae in Stebbins (1911), eclipsing bi-
naries have been the most time honoured and tested means of determining fundamental

stellar parameters, and hold the distinction of being the only truly fundamental measure-
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Detached Semi-detached Contact

Figure 1.5: A schematic representation of the morphological classifications of binary stars. The dotted line
indicates the Roche lobe—the gravitational equipotential around the star within which material is bound
to the star. When a star overflows its Roche lobe, as is the case with semi-detached binaries, the material
becomes unbound and can fall onto the other star via the L1 Lagrange point of the system; known as the
gravitational capture equilibrium point. A contactbinary is the case when both stars overflow their respective
Roche lobes and touch, and may in fact share a common gaseous envelope. The detached case is of most
interest to practitioners of stellar evolution. In the detached state, neither star overflows their respective
Roche lobes, and they in fact evolve effectively independent, in the same way that single field stars do.

ment of stellar masses. Systems with two or more stellar components are thought to make
up around a third of the stellar systems in the galaxy, with the remaining being single
stars (Lada 2006). As such, these stars make up a considerable component of the galactic
population, and serve as an important tool for studying stellar evolution. Some binaries
are orientated such that their orbital plane is close to our line of sight, meaning that they
occult one another when observed from the Earth. Careful analysis of the light curves
resulting from occultations can provide a wealth of information about the stellar system.
Figure 1.5 shows a schematic view of different kinds of binary stars. In particular, for the
purposes of stellar evolution, it is important to distinguish between detached eclipsing
binaries (DEBs) and the other classifications. DEBs do not fill or overflow their Roche
lobe, meaning there is no mass transfer between the components, hence their evolution
is asserted to remain decoupled. Star formation also stipulates that both components
formed at the same time and are thus coeval. Although this is generally a safe assump-
tion, I note in passing that observations of G11.92-0.61 MM 1 published in Ilee et al. (2018)
appear to show a stellar companion forming via circumstellar disc fragmentation; poten-
tially challenging this supposition. Given how diverse DEB components are, this has the
powerful result that a differential study between types can be performed at the same age

within each binary.

As both components occult one another, the resulting light curve can be used to
infer radii and inclination. The light curve resulting from occultations, supplemented

with spectroscopic (radial velocity) measurements, permit the inference of a large array
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of fundamental stellar parameters for both components. Modelling the light curves is
an involved process, and as a result has many different approaches. Initial attempts to
determine stellar properties from EB light curves were set out in Russell (1912a). Impor-
tantly, this method was updated by Russell (1912b) to include eccentric orbits, and again
in Russell & Shapley (1912a) and Russell & Shapley (1912b) to introduce limb darken-
ing. Increasing computational power over the past century has permitted increasingly
complicated models that can correctly deal with the full intricacies of fitting EB light
curves. Analysis of light curves provides measures of the radius ratios of each of the
stellar components Ri/a and Rj/a, as well as the inclination i and eccentricity e, which
is usually expressed as e sinw or e cos w as they can be better determined for eccentric
orbits. Spectroscopic observations are responsible for measurements of radial velocity,
which themselves yield measurements of M; sin®i and M, sin®i and e sin w. Crucially,
radial velocities make accessible measurement of the semi-major axis a sin i of the system.
By modelling these observations, the radii, masses, and log(g) of individual components
can be determined. Thus DEBs provide most fundamental test of stellar models, as they

yield radii at a given mass.

Although binaries are relatively common, the sample size is limited by the prob-
ability of finding them in a configuration where they will eclipse one another. There
are at this point tens of thousands of known eclipsing binaries, with many more being
discovered as a result of Gaia, however their study still poses an ongoing challenge. Light
curves require fine enough sampling that both occultations are visible and the limb dark-
ening can be determined, with adequately long time baselines that the occultations can
be sampled. Consequently, characterising DEBs can take much time and many observa-
tions, hence only 239 well-studied examples are included in DEBCat at the time of writing
(Southworth 2015). To further complicate matters, there can be considerable disagree-
ments between the measured parameters for the same binary (see Han et al. 2017; Kraus

et al. 2017; Gillen et al. 2017).

A review of literature shows that it has long been known that M-dwarf DEB com-
ponents appear to be inflated for their mass (see Figure 2 of Chen et al. 2014; Kraus

et al. 2011a; Chaturvedi et al. 2018; Parsons et al. 2018, Mann et al. 2019), however it
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was pointed out by Torres (2013) that the effect was a subtle one. Parsons et al. (2018)
measured the radii of 23 M-dwarfs in eclipsing binaries with white dwarfs and found that
radii were inflated by an average of 6.2 + 4.8% from theoretical models. However, addi-
tional controversy stems from the concern that their binarity may affect their structure;
in particular that if they are tidally locked their high rotation rate may inflate them. This
eventuality would undermine the veracity of DEBs for stellar evolution studies, rendering
moot the most powerful tool for determining the elusive stellar mass-radius relationship.
However, as I shall show in Section 4.3.1, this does not appear to be the case, and the DEB
observations are in fact in the best agreement with our radius measurements of single

stars.

1.7.2 Interferometry

Adequately bright, nearby M-dwarfs can additionally have their radii probed by interfer-
ometric observations. The first interferometric measurements of stellar parameters date
back to Michelson & Pease (1921), who used an interferometer with the 100-inch Hooker
telescope to measure the diameter of @ Orionis. Since then interferometry has become
an indispensable tool for high angular resolution astronomy, being used to probe stellar
parameters and discs around young stars. In discussing this method, I consulted the

review of optical interferometry of Monnier (2003).

Interferometric observations find their origins in the classic Young’s double slit ex-
periment, in which monochromatic light from a distant point source impinges upon two
slits separated by a distance b. Due to the wave-like nature of light, the wavefronts prop-
agating from both slits take different path lengths to a plane, hence causing alternating
fringes of constructive and destructive interference. With this setup the fringe spacing
AQ is

A9=A

7 (1.25)

Stellar interferometry works on the same premise, but substitutes the idealised slits for

telescopes separated by a baseline B. We recall the Rayleigh criterion which states that
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the resolution of a telescope ABjescope is proportional to the diameter of its aperture D,

A
AGtelescope = 1-225/ (1.26)
where A is the wavelength of the light being observed. This places a fundamental con-
straint on the resolution limit of a given telescope, meaning that high angular resolution
studies (on sub-mas scales) are impossible with anything short of intractably large aper-
tures. However, if we wish to observe two features in an interferometer, they can be

thought of as resolved if one feature is centred in the first null of the diffraction pattern

of the other. Thus it follows that the resolution of the interferometer ABOinterferometer 1S

A
AQinterferome’ter = ﬁ (127)

This equation concisely states that the resolution of the interferometer array is equal to the
longest baseline, effectively performing as a telescope of aperture B, although the array
does not form an image in the same way as a single telescope. The measurements recorded
on an array are considered by the Van-Cittert - Zernicke theorem, which states that the
contrast of the fringes are related to a unique Fourier component of the observed bright-
ness distribution. Thus from this theorem, the interferometer response—the amplitude
and phase of the interference fringes—manifests as the frequency-dependent complex
visibility V. This is defined as the Fourier Transform of the brightness distribution I, (75)
using

A dedyQIv(rb)e_zm((5/A)'r5)
Jia dxadyal, (70)

'47) it = (1.28)

This equation makes the tacit assumption that the target only emits light over a small
enough portion of the sky that the spherical coordinates can be considered Cartesian
coordinates (xq and yq) around the centre of the source at (0p, ¢9). The notation that
follows is that 7o = (xq, yo), and that D /A is the baseline vector D projected onto the
plane of the sky in units of wavelength A. The conventional (1, v) notation for baseline

vectors on the sky then follows from this.

From the complex visibility amplitude and phase, the geometry of objects on the
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sky can be inferred by comparing to an intensity model. Interference in astronomical
interferometers manifests itself as intensity oscillations, called fringes. V is known as the
fringe visibility, and is given by the contrast between the minimum Iin and maximum

Imax intensity of these fringes using

Imax = Imi
V=T (1.29)

Imax + Imin ‘

Equation 1.28 is the way of mapping from the intensity distribution, given by a model, to

the visibility V, and can be simplified to
V(u,v) = FI(xa, ya)), (1.30)

where ¥ is a Fourier transform. By finding the intensity of the model that best reproduces
the contrast of the first lobe of the visibility, the angular diameter of the target can be
determined. However, model assumptions are necessary in order to do so. Seminal
attempts, such as that of Michelson & Pease (1921), assumed a disc of uniform brightness
as a model for the intensity distribution of the star, yielding an angular diameter Oyp. Of
course, when measuring diameters of stars to precision, a uniform disc is an inadequate
assumption. Thus, contemporary treatments adopt a limb darkened model with which
to fit the visibility, yielding Orp. Hanbury Brown et al. (1974) showed that assuming a
uniform disc model instead of a limb darkened one can cause overestimates in the angular
diameter of over 10%. Given well constrained parallaxes which yield a distance d, such as
those provided by Hipparcos (van Leeuwen 2007), measurements of the limb darkened

angular diameter 01 p can be converted into stellar radii R using

2R
6ip = . (1.31)

Applications of this technique to the study of M-dwarfs includes the crucial work
of Ségransan et al. (2003), Demory et al. (2009), Boyajian et al. (2012), and von Braun
et al. (2014). This technique has yielded some of the most precise measurements of stellar
radii, however it does not come without its downsides. Problematically, the stars that can

be studied with interferometric methods are limited by the complex optics required to
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perform interferometric observations, whose visible light transmission is only 1 — 10%.
This is due to the degradation of the coatings of mirrors over time, the requirement
of dichroics and filters with high losses, and diffractive losses during beam transport
(Monnier 2003). As a result of this, parallel study with multi waveband observations
from all-sky surveys proves problematic, as most targets accessible via interferometry are
bright, and will saturate or damage the detectors utilised by such surveys. An additional
result of the low transmission, and the requirements to fill the u — v plane with multiple
baselines, makes interferometric studies of stars a lengthy and expensive process; making
assembling a statistically significant sample of stars an intractable proposition. As a result
there are fewer than 20 M-dwarfs that have been studied interferometrically, with only
two of those being later then M3.5 (Kesseli et al. 2018). Finally, one issue that is particularly
pertinent to observations of low-mass stars are the hurdles presented by starspots. The
stellar diameters that are measured at visible wavelengths can often differ from those
measured in the infrared; an effect to which starspots may contribute for adequately close
stars. For example, by examining the uniform disc diameters from the JMMC Stellar
Diameters Catalogue of Bourgés et al. (2014), I found that the V-band angular diameter is
2—5% larger than that measured in the K-band, with the redder objects tending to exhibit
a larger difference. Boyajian et al. (2012) derived interferometric radii and luminosities,
through fitting broadband photometry, for low-mass stars. They concluded that MS

M-dwarf stars are inflated by 5% compared to models.

1.7.3 Infrared Flux Method (IRFM)

Fundamentally, the infrared flux method (IRFM) exploits the fact that infrared flux is
relatively insensitive to Teg in stars whose Tegs 2 4000K. This is the case for the test cases
of the Sun and Arcturus in Blackwell & Shallis (1977); where the method was introduced.
Elaborating in Blackwell et al. (1979), they describe that the first stage of the method
involves calculating the flux of the source using model atmosphere fsyn,1r and comparing

it to the observed flux at the Earth f,ps 1r to give the angular diameter O of the star using

o = 2, |LobsIR (1.32)
f syn,IR
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Figure 1.6: A schematic view of the infrared flux method (IRFM). Adapted from a figure in Dubaj & Monier
(2005).

Importantly, this leads to the formal definitions of the equations driving the method,
which relate the observed integrated flux Fyps and IR monochromatic flux fopsr, both

measured at Earth, in terms of the T.g and 0

Fops = /0 fobs,AdA = ZaTgﬁ/ (133)
62 62
fobs,IR = Zfsyn,IR = Z‘P(Teff/ 10g(g), /\0)/ (1.34)

where ¢(Tef,10g(g), Ao) corresponds to the flux provided by the model atmosphere at
the given IR wavelength A(. From this point on, the task of the method is to determine a
combination of (0, Teg) which simultaneously satisfies Equation 1.33 and Equation 1.34.

This process is represented schematically in Figure 1.6.

Although Blackwell & Shallis (1977) and Blackwell et al. (1979) employ the IRFM for
characterising M-dwarfs, Figure 1.7 demonstrates that for M-dwarf stars (Teg < 4000 K)
the condition that IR flux remain insensitive to Teg does not hold, meaning it may prove

unreliable for very low mass stars.
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Figure 1.7: The synthetic IR spectra for T = 6000 K, 5000 K, 4000 K, 3500 K and 3000 K plotted in yellow,
mustard, orange, red and maroon respectively. This demonstrates that for M-dwarf stars (Teg < 4000 K)

molecular features begin to dominate the NIR spectrum, making the IRFM difficult to apply in the presence
of molecules with poorly understood opacities.

1.7.4 Rsini Technique

One method that has shown some favour in recent years is the measurement of v sini.
Some prominent uses of this technique include Rhode et al. (2001) who studied pre-MS
stars in the Orion Nebula Cluster (ONC), Lanzafame et al. (2017) and Jackson et al. (2018)
who applied it to the Pleiades, and Kesseli et al. (2018) who applied it to field M-dwarfs.
The crux of the method involves measuring the rotation period P, and rotational velocity
v modulated by the inclination sini. Making the reasonable assumption that the star is
spherical, one can effectively integrate the angular velocity around the equator of the star

to yield its equatorial radius

1 day

Rsini =
sin i Roxan

Piotvsini = 0.0198P,:v sin i. (1.35)
One of the main disadvantages of this method is that it requires observations of both
vsini and Prot. Prot can be obtained by photometric monitoring of the stars within
a stellar sample. However, measurements of vsini are inferred spectroscopically by
measuring the rotational broadening of spectral features; generally by fitting a Gaussian

to the cross-correlation function resulting from a correlation between the spectra from
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the target and a standard star, and finding its width. Kesseli et al. (2018) obtain v sini
measurements through the rotational broadening of the CO bandhead at ~ 2.3 ym, which
remains relatively unaffected by magnetic fields and pressure broadening. Due to the
sini dependence, only the minimum radii of individual stars can be determined, so this
technique is only applicable for measuring statistical radii of homogeneous samples, and
under the assumption that spin axes are randomly spatially oriented (Jackson et al. 2018).
In addition, as Kesseli et al. (2018) state, adequately slow rotators Pt > 50 days show
no appreciable broadening, meaning their radii are not measurable through this method.
Jackson et al. (2018) applied this technique to pre-MS M-dwarfs in the Pleiades and found

that they were inflated by an average of 14 + 2% above the theoretical stellar models.

1.8 Why a New Technique?

The methods presented in Section 1.7 have traditionally been the means by which the
radii of MS M-dwarfs have been measured. However, as I have noted in their respective
sections, they all suffer deficiencies. Historically interferometry and DEBs have been the
most accurate methods, however they suffer from small-number statistics. The work of
Mann et al. (2013) and Mann et al. (2015) overcomes the small-number-statistics problem.
They measure L through broadband photometry and the temperature using spectroscopy
by matching spectral features in model atmospheres, hence I term this a spectroscopic
temperature Ts,. Unlike Teg which describes the temperature by invoking the blackbody
component of the stellar SED, Ty, describes the temperature through correlations with
the depths of carefully chosen spectral features. In contrast to the effective temperature,
measurements of spectroscopic temperature are typically performed on normalised spec-
tra, meaning that they discard the overall shape of the blackbody; thus Tt and Tsp probe
different observables. In addition, such measurements can be highly sensitive to the
wavelength range and species used in measurements which, given the molecular species
in their photospheres (see Section 1.4.2), can be especially problematic for M-dwarfs. For
example, temperatures determined from optical (Mann et al. 2015; Cortés-Contreras et
al. 2017) and near infrared (Newton et al. 2014) can differ by up to 1.5 spectral sub-types;

around 5 —10% in Tsp. However, by invoking the tacit assumption that Tsp = Tetf, one can
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determine a radius from Tsp and L using Equation 1.2. The work of Mann et al. (2015)
suggests that M-dwarfs are inflated by 4.4% from the theoretical models. Based on their
measurements of T, they also suggest that models systematically overestimate T by

2.2%.

Unlike DEBs, none of the other methods yield a mass. This presents the additional
complication that to compare radii to the models another parameter is required, so one
must adopt one of Teg or L to hold constant. Teg is dictated by the outer layers of the star,
down to optical depth 7 = 1, giving it a strong dependence on R; making it undesirable
for this purpose. An additional complication is that all methods implicitly rely on some
measurement of the temperature of the photosphere, however there are many different
measures of the photosphere temperature. DEBs predominantly utilise surface brightness
temperature Ty, interferometric measurements infer Tes and all methods can utilise
spectroscopic temperatures Tgp. In doing so, all methods make the assumption that Tegt =
Tsp = Tpr. Its strong correlation with radius and inconsistent measurement techniques
make temperature an undesirable abscissa with which to perform a comparison. However,
despite being loosely coupled to R, L is largely dictated by the energy budget provided
by thermodynamic properties of the core and energy transport in the envelope; meaning

it has a strong dependence on mass.

I have established that many methods appear to show some level of inflation in
M-dwarfs, however we have yet to settle on a satisfactory method with which to study the
nature of this effect in detail. It is clear that the approach of using broadband photometry
to determine fundamental stellar parameters is sound in principle, however the inherent
uncertainties and relative time expense of measuring Ty, still proves a limitation. In
Section 1.10 I will introduce a method which overcomes the deficiencies of the previously
reviewed methods, and introduce a new measure of temperature which is measured using
the entire SED. The SED temperature accounts for both the overall shape of the blackbody
and strong spectroscopic features that fall within the bands used for the fitting, and is so

called Tsgp.

While my methodology was in development, there were other recent attempts at

applying SED fitting to stellar characterisation which have seen some success; all of which
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have been enabled or improved by the Gaia mission. With the publication of Gaia DR1
came Stassun et al. (2017), who attempted an SED fitting technique by adopting extinction
Ay as the free parameter in their fitting; neglecting Tsgp in favour of their measured
Tsp. Due to the initial precision of parallaxes in Gaia DRI, the uncertainties in radius
of this sample were also comparatively large; even compared to the literature values.
More recently, studies such as Nielsen et al. (2019), Rodriguez et al. (2018), and Rodriguez
et al. (2019) have harnessed the Gaia DR2 parallax measurements to perform SED fitting
through the newly updated EXOFAST v2 code (Eastman et al. 2013; Eastman et al. 2019).
SED fitting is one of the methods that can drive its global characterisation routines;
however it still optionally draws upon stellar interior models to guide parts of its joint
modelling. Another example of recent work that employs SED fitting for exoplanet host
characterisation is the "Zodiacal Exoplanets in Time" series of papers, of which Rizzuto
et al. (2018) is the most recent, who use the method of Mann et al. (2015) to characterise
the host. This involves determining the bolometric flux from an SED fitting method, but
determining R using the empirical Mg, — R relation of Mann et al. (2015), which I show in
Chapter 4 is inconsistent with other methods. Most recently Ligi et al. (2019) performed
SED fitting on optical and near-IR photometry to determine the bolometric flux of the
source, however they use knowledge of an interferometrically measured angular diameter
Orp to drive the characterisation process. Historically, one of the tools that has proven
useful for SED fitting is the Virtual Observatory SED Analyser (VOSA, Bayo et al. 2008),
which was recently upgraded to support parallaxes from Gaia (Rodrigo et al. 2019). Of

all of the techniques presented, this method is the most reminiscent of mine.

The methodology presented in Chapter 2 is novel in that it offers a unique com-
bination, which none of the aforementioned have yet achieved. First, at no point in the
characterisation process are stellar interior models used, meaning that the technique I
am using is semi-fundamental. None of the other methods, aside from VOSA, use the
overall shape of the SED to measure the temperature of the photosphere; instead usually
favouring spectroscopic temperatures. In my framework, both the R and Tsgp are simul-
taneously determined, meaning that the technique is implicitly flux conserving, and all
measures are self consistent. Thanks to its being implemented using a simple grid search

paradigm, it is also much simpler than other methods, making it easier to interpret the
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output and track down issues. The simplicity of this technique, paired with high qual-
ity input data, mean that unprecedented precision can be achieved for measurements of
stellar temperature and radius. Unlike other methods, the best-fitting R is analytically
determined for each grid cell, meaning that the technique is applicable to large catalogues
of stars in a reasonable time frame; something more problematic for other methods which
probe large, multivariate parameter spaces. Despite this, a rigorous treatment of radius
uncertainties is still easily forthcoming by searching the x? space around the analytically

determined R.

1.8.1 The Causes of Radius Inflation

Given that convective flows are the dominant means of energy transport out of the star,
many have made the reasonable assertion that inhibiting convection would cause an
increase in the stellar radius, and hence explain the inflation of M-dwarfs. This inhibition
could be accomplished by strong magnetic fields (Mullan & MacDonald 2001; MacDonald
& Mullan 2017) that are thought to be the fundamental drivers of both magneto-convection
and the delay of convective onset (e.g. MacDonald & Mullan 2014). Hence there has been
much theoretical work over the last decade to develop consistent stellar evolution models
that correctly account for dynamo effects and stellar magnetism, including the resulting
starspots (Mullan & MacDonald 2001; Feiden & Chaboyer 2013; Somers & Pinsonneault
2016; MacDonald & Mullan 2017). Recently these effects have been modelled in 1D stellar
structure models by Ireland & Browning (2018), who adopt a depth dependent mixing
length theory parameter aymrr; emulating the effect of convective inhibition. In their
work they observe radii inflated by 10 to 15% when compared to models that do not treat
convection in this way, though they caution that such treatments of magnetic inhibition

are highly uncertain and may be difficult to calibrate.

Despite this success, the hypothesis that magnetic fields cause inflation has been
brought into question by Kesseli et al. (2018), who used a vsin(i) technique to show that
the radii of samples of rapidly-rotating stars are consistent (to within 5%) with those of
slowly-rotating stars, and the inflation in eclipsing binaries consistent with single stars.

In addition Kochukhov & Shulyak (2019) conclude that magnetic inflation models do not
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support their observations of the DEB YY Gem.

Theories which invoke magnetism to explain the radius inflation of M-dwarfs make
two predictions which will be tested in this thesis. The first is that unless M-dwarfs all
have very similar fields, at a given mass (or luminosity) they should have radii which
range between the predictions of the non-magnetic models and some maximum inflation.
The sample presented in Chapter 4 is sufficiently large to show that any spread in M-dwarf
radii is much less than 1 — 2% (Section 4.3.2), apparently ruling out the magnetic inflation
models. The second prediction is that the degree of radius inflation should correlate with
magnetic activity indicators (Lépez-Morales 2007). Again I find no such relationships
(Section 4.3.2.4), but for indicators such as X-ray activity this could be explained if the
surface field is unrelated to the magnetic field in the bulk of the star (see Brun & Browning
2017, for a discussion of how under-developed models of M-stars are). However this
criticism cannot be levelled at the absence of a correlation between rotation period (or
Rossby number) and inflation I find, which again suggests magnetic fields may not be
responsible for radius inflation. But to draw any solid conclusions, radius inflation needs

to be studied as a function of mass, which I will do in Chapter 4.

1.8.2 Revising Exoplanet Radii using Gaia DR2

It is becoming increasingly apparent that the formation of planets during star formation
is commonplace, with the probability of detecting hosted planets approaching unity for
well-studied stars (Winn & Fabrycky 2015). Since the first confirmed discovery of 51
Pegasi b, a hot-Jupiter exoplanet oribiting a Solar-like star, in Mayor & Queloz (1995), the
drive of the exoplanet community has been twofold. The number of known exoplanets
has traditionally been small, prohibiting statistical studies of exoplanet populations. This
has been the drive behind the Kepler mission, which has bolstered the number of known
exoplanets to over 4100 at the time of writing. This has also served as the impetus for the
next generation of exoplanet discovery missions, such as TESS (Ricker et al. 2014), which
is expected to yield thousands of planets smaller than Neptune, with tens of planets com-
parable in size to Earth. As shown in Figure 1.8, current methods of exoplanet discovery

have inherent biases, which favour massive planets whose orbits are close to their stellar
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Figure 1.8: The > 4000 confirmed exoplanets plotted in the Semi-major axis — radius plane. The measured
radius is indicated by the colour of each point. The detection method is also indicated by the marker, with
transits, radial velocity, direct imaging and all other methods being indicated by a triangle, plus sign, inverted
triagnel and cross respectively.

host. Thanks to the continued successes in building an increasingly statistically signifi-
cant sample, recent efforts within the community have been applied to characterising this
cornucopia of far away worlds. I will now briefly review the progress that is being made

in this endeavour, and the techniques which are being employed to do so.

1.8.3 Exoplanet Characterisation Techniques

Accurate stellar host parameters should serve as the solid foundation upon which any
attempts to characterise extrasolar planets are built. Inaccuracies in stellar properties can
quickly ripple on to larger inaccuracies in exoplanet host properties. For example, a 10%
discrepancy in Ry becomes a 30% discrepancy in mean planet density p,. This is to say
that the quality of measurements of exoplanet properties are inextricably linked to those

of the host, and care should be taken in their measurement.

This is of particular concern in the regime of low-mass stars, where I have already
established that there are disagreements between models and observations. Historical
discoveries have yielded larger planets around intermediate-mass stars, as the ubiquitous
transit method favours high signal to noise. However, at least 63% of the stars in the

Solar neighbourhood are classified as M-dwarf stars (Dieterich et al. 2012), a sample
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which until recently has been largely unprobed by large exoplanet discovery campaigns.
With improving technology, the exoplanet community has been driving further down
the stellar sequence towards the low-mass regime. As well as drastically increasing the
potential sample, the improved signal-to-noise increases the likelihood of discovering
super-Earths—terrestrial like planets on the order of several Earth-masses. There are
many ongoing surveys, such as MEarth (Nutzman & Charbonneau 2008), CARMENES
(Quirrenbach et al. 2014) and TESS (Ricker et al. 2014), and upcoming instruments, such as
JWST (Gardner et al. 2006), ESPRESSO (Pepe et al. 2010) and CHEOPS (Broeg et al. 2013),
making extensive observations of this population. This is to say that techniques used
for measuring the properties of exoplanet hosts should be applicable to a wide stellar

demographic.

1.9 Methods for Exoplanet Characterisation

The typical workflow for characterising transiting exoplanets can be regarded as two
tasks: measurement of observables to infer properties of the stellar host-exoplanet sys-
tem as a whole, and characterisation of the stellar host to disentangle the properties of the
two. The measurements involved in performing characterisations come predominantly
from two methods. Since the initial work of Mayor & Queloz (1995), stellar radial ve-
locity measurements—the Doppler shift induced as the star orbits the barycentre of its
planetary system—have been a steadfast method for measuring exoplanet masses. How-
ever, a thorough characterisation cannot be accomplished without the ubiquitous transit
method, with which the ratio of the planet radius to the star radius can be measured.
Problematically, measurements alone have not been able to fix the gauges of many of the
ratios; especially with regard to stellar properties. Hence, it has remained necessary for
exoplanet characterisation pipelines to also draw estimations of certain absolute proper-
ties from model stellar interiors. To gain insight into this process, I will briefly review the
exoplanet characterisation methods employed within the sample used in Chapter 5. The
material in this section draws from the chapters by Winn (2010) and Murray & Correia

(2010).

Since the first observation of a transiting exoplanet, that of HD 209458 b in Char-
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Figure 1.9: An illustration of the orbit of an exoplanet around the star, and the accompanying change in
combined flux of the system. The flux from the system is dominated by that of the star, plus a small
contribution from the day side of the exoplanet. During transit, when the night side of the planet is in the
line of sight, the exoplanet blocks some portion of the flux from the star. As the day side of the planet
comes into view, the stellar flux is supplemented by exoplanetary emission. As the star occults the planet, a
secondary, smaller dip is evident when this exoplanetary emission is blocked. Source: Winn (2010).

bonneau et al. (2000), the transit method has formed an integral part of both speculative
exoplanet hunting campaigns, and in-depth characterisation studies. Due to their rela-
tively inexpensive nature, transit observations have become the de facto method by which

exoplanets are now discovered; as evidenced by the imbalance of methods in Figure 1.8.

To understand the detailed workings of the transit method, it is useful to refer to a
schematic of the orbit of an exoplanet around its host, shown in Figure 1.9, along with an
intuitive illustration of the transit method in action. Furthermore, the observables that
can be measured from a transit are illustrated in Figure 1.10. By considering host star as
a disc of uniform brightness, and by assuming the transit is non-grazing, i.e. the transit

reaches fullness, the maximum loss of light in a transit is given by

(1.36)

5zk2[1_M],

I
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Figure 1.10: An illustration of a transit. Indicated are the parameters that influence and can be measured

directly from the transit. Source: Winn (2010).
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where [, (tra) and I, are the intensity of the planet during transit and the host star respec-
tively. By assuming the flux contribution from the planet nightside is negligible, one can
determine the ratio of the planet radius R, to the stellar host radius Ry, Vo ~ k ~ Ry/Ry;
so symbolised in deference to the literature on eclipsing binaries. By measuring the
duration between the successive brightness minima, the times of mid-transit can be deter-
mined, whose difference directly gives the orbital period of the exoplanet P. Scrutinising
the slope of the ingress and egress of the transit provides the total duration T and full

duration Ty of the transit which, assuming a circular exoplanet orbit, are given by

p Ry V(1 + k)% — b2

Tiot = tiv — fr = —sin” —*¥ , (1.37)
T a sini
P . ;| RV —k)?>—b?

Tean = tur — fp = —sin™' | = ——2—— |, (1.38)
e a sini

where i is the inclination between the orbital plane and the line of sight, a is the semi-major
axis of the orbit and b is the sky-projected distance between the planet and star centres at
conjunction; termed the impact parameter of the transit. Although both Equation 1.37 and
Equation 1.38 assume circular orbits, they can be augmented with a factor of V1 — 2/(1 +
e sin w) to serve as good approximations for eccentric orbits; where the "+’ solution refers
to transits and the ’-’ solution refers to occultations. In the limit where Ry < Ry <xa,a
rearrangement of Equation 1.37 and Equation 1.38 yields the impact parameter b and the

scaled stellar radius Ry /a through the approximate equations

y2 o (L= V02 = (T Tuo) (1 + V57

, (1.39)
1 — (Trun/Trot)?
2 2
& L Ttot_Tfull 1+esinw (1.40)
a 2514 P V=2 '

where e is the eccentricity of the orbit and w is the argument of periapsis.

Unlike the simplistic model I have adopted thus far, in reality the geometry and
opacity of the stellar photosphere lead to a radial brightness profile; an effect known as
limb darkening. Limb darkening is represented in models as a function of u = cosy,

where y is the angle between the line normal to the stellar surface and the line-of-sight to
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Figure 1.11: An illustration of a periodic radial velocity curve of a planetary orbit with P and K; annotated.
Adapted from Figure 1.1 in Pudritz et al. (2007).

the observer. There are a variety of prescriptions which quantify this, however the most
successful of these has been found in the four-parameter law, introduced in Claret (2000)
and expanded in Claret (2004), which is represented as

Iy 1 3 2
- T-c1(1=p2)—ca(1 = p) —ca(l = p2) —ca(1 = p?), (1.41)

where Iy is the specific intensity at the centre of the disc, I, the limb darkened specific
intensity and c1, ¢, c3 and ¢4 are the limb darkening coefficients. These coefficients are
derived numerically from stellar model atmospheres, and are provided in a tabulated

form as a function of Teg, [Fe/H] and log(g).

The parameter conspicuously missing from those that can be determined from
transits is the mass of the planet, which requires a radial velocity measurement of the
combined star-exoplanet system. As both components orbit their barycentre, the star

undergoes reflex motion with a radius a4, given by
MP
a,=al|l—|, (1.42)

where M, and M are the masses of the exoplanet and star respectively. As the star orbits

the barycentre of the system, its line-of-sight velocity is regularly Doppler shifted. By
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carefully measuring the Doppler shift of the stellar spectral lines over time, an illustration
of which is shown in Figure 1.11, a measurement of the semi-amplitude of the radial
velocity of the star Ky and validation of P can be achieved. By balancing the gravitational
force between the star (GM. M, /[a« + a]?) and the planet with the centripetal force on the

planet (M*K%/ a«), and using Equation 1.42, we find that K; is related to M, and M, by

1
2 3 M,sini 1
K :( ”G) P (1.43)

P ] (M +M,)5VI—e2
where e is the eccentricity of the orbit, and a, is the semi-major axis of the star’s orbit
around the systems combined barycentre. By balancing Newton’s law of gravitation with

centripetal force, we can state Kepler’s third law for an elliptical orbit as

a3 G(M* + MP)

Using Equation 1.44, Equation 1.43 can be rearranged to find the mass of the planet

_ 2ma? K3Vl —e?

My PG sin i

(1.45)

The radial velocity method has been instrumental in the discovery of exoplanets—it is
in fact the second most productive discovery method (see Figure 1.8). Despite this,
it does have some clear limitations. Measuring Doppler shifts requires spectroscopic
data, making observations inefficient when compared to the photometric measurements
required for the transit method. Furthermore, current observing technologies impose a
strong bias towards detections of massive exoplanets in orbital configurations which result
in a large radial velocity signal; further contributing to the already endemic selection bias
in known exoplanet populations. However, combining radial velocity measurements with
transit light curve analysis has proven a powerful pairing; as, with accurate measurements

of both, one can infer much about both components of the system.

Thorough characterisation of the system via transits and radial velocities is a com-
plex multivariate problem which, in practice, necessitates a model inversion technique.

This is accomplished by fitting appropriate models to time series spectroscopic and pho-
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tometric data, overwhelmingly through the use of Markov-Chain Monte Carlo (MCMC)
methods; which are used to sample the high dimensional parameter spaces inherent in
the problem. Most literature sources utilise the eclipse model of Mandel & Agol (2002),
and incorporate the limb darkening law of Claret (2000, 2004). The fitting process involves
exploring the parameter space by drawing samples from their multivariate posterior prob-
ability distribution. The parameters that comprise the space which is explored, the so
called jump parameters, serve as proxies for the underlying physical properties of the
system, with the exploration of the space yielding the distributions of said properties.
The first link in the chain is formed by guessing values for each of the jump parameters.
The chain is then evolved using the an algorithm, such as the Metropolis-Hastings al-
gorithm, where a new trial state is generated, and randomly transitioned to in favour of
the current state. After a sufficient number of links, the chain can be sampled to find
an approximation of the distributions of the jump parameters—the longer the chain, the

better the approximation of the underlying distribution.

Until now, I have mainly described parameters relative to the stellar host. Hence,
stellar host characterisation is an important part of the process of determining absolute
measurements of hosted exoplanets, in particular its radius which sets the gauge of many
other measurements, and is largely performed using a combination of spectroscopy and
stellar models. The determination of R, from the model prescription is a function of mea-
sures of luminosity, effective temperature and stellar composition (P4l 2009). The easier
to obtain of these are spectroscopic temperature Tsp, and composition—given by metal-
licity [Fe/H]—which can be determined from an intermediate resolution spectrum using
a spectral analysis package. Literature values in this sample typically use Spectroscopy
Made Easy (SME) (Valenti & Piskunov 1996) operating with the spectral line profiles of
Valenti & Fischer (2005). More problematic is the observational determination of lumi-
nosity, from which the stellar mass M, can be determined using an empirical relation.
Seminal attempts at exoplanet characterisation employed the spectroscopic determination
of log(g) as a luminosity indicator. However, it was shown in Sozzetti et al. (2007) that
log(g) has only a subtle effect on the shapes of spectral lines, thus for transits R /a and p«
are now widely used to impose a stronger constraint on interrogations of stellar models.

An empirical constraint on R, can also be achieved through the previously described
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infrared flux method (IRFM, see Section 1.7.3), which yields the angular diameter of the
star on the sky 0, and a distance measurement. From the sample of stars studied in
this thesis, both WASP-80 b (Triaud et al. 2013) and WASP-6 b (Gillon et al. 2009) have
additional IRFM measurements, with which observational constraints can be placed on

their radii.

An interface to the stellar interior models comes in the form the stellar density
p«, which Seager & Mallén-Ornelas (2003) showed can be directly determined from the

transit using

(1.46)

gz M ( 4 ) {(1 + V)2 - b2(1 —sinz(Ttotn/P))}

RS \PG sin?(To/P)

The measurements for the star can then be placed in the Tet — p« plane and mapped
onto stellar interior models to determine a theoretical M, and age for the host (e.g. Gillon
et al. 2009). The Yonsei-Yale (Y?) (Yi et al. 2001; Demarque et al. 2004) and Baraffe et
al. (1998) isochrones are routinely applied to this task for intermediate and low-mass stars
respectively. Determinations of M, can be combined with radial velocity measurements
through Equation 1.45 to infer the mass of the hosted exoplanet. Empirical constraints
can also be placed upon stellar mass using an empirical mass-radius relationship. The
seminal works of Hertzsprung (1923), Russell et al. (1923) and Eddington (1926) showed
that there were empirical relationships between a star’s mass and its observables. These
observables can be measured, and then mapped onto a given mass. In this dataset, for
example, the properties of WASP-52 b (Hébrard et al. 2013) were determined from the
empirical mass-radius relationships of Torres et al. (2010) and Enoch et al. (2010); some

of the most widely used for exoplanet characterisation.

Despite its successes, as I will show in Chapter 5, there are some serious deficiencies
with existing exoplanet characterisation methodology, which mean that the determina-
tions of luminosity are inconsistent with that observed in Gaia DR2. In said chapter, I
will draw upon the SED fitting methodology to provide a self-consistent revision to the
radii of exoplanet host stars to ensure that they are in-line with those suggested by Gaia

DR2. In doing so, I will show that the method presented in this thesis shows the potential
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for considerable improvement in both the accuracy and precision of exoplanet parameter

measurements compared to those presented in the literature.

1.9.1 The Effect of Stellar Host Parameters on Exoplanet Atmospheres

My suggested revisions to established stellar host parameters will have a ripple-on effect to
the observed exoplanet parameters, notably the inferred characteristics of their climates.
With the current focus on characterising the atmospheres and climates of distant worlds,
considering how revised stellar radii will affect them is advantageous. The transit method
makes the reasonable assumption that exoplanets are implicitly solid spheres; either by
summing up the flux across the transmission spectrum of the star and measuring the white
light-curve, or by ignoring wavelength dependence altogether and measuring the transit
in a single band. However, in reality the observed radius of the planet is a combination of
the bulk radius of the exoplanet R puik in addition to a wavelength dependent contribution
from the atmosphere z(A)

Rp(A) = z(A) + Ry puk, (1.47)

where z(A) depends on the properties and chemistry of the atmosphere (e.g. Goyal
et al. 2019). By making geometric arguments, an order of magnitude for the observed
transit signal from the atmosphere is provided by Winn (2010). Thus, the observable
transit signal for one scale-height Hp of the atmosphere (OTS), measured in parts per

million (ppm), is given by
2R, (AM)H
_ 2R DHp (1.48)

2 7
R*

OTS
where R, is the radius of the host star and Hp is the pressure scale height of the atmosphere

_ kgT

Hp = .
Hm&

(1.49)

Hp is itself a strong function of g, which is determined by the bulk density of the planet.
Thus, by revising the stellar host to larger or smaller radii, the density of the planet
inferred from the transits will decrease and increase proportionally. As well as potentially
drastically changing the inferred interior structure of the planet, the retrieved P —T profile

of the atmosphere can also see drastic changes.
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It is by measuring this variation in transit depth as a function of wavelength that
transmission spectroscopy can be fitted to models of the atmospheric transmission, such
as those of Goyal et al. (2018) and Goyal et al. (2019), to infer the P — T profile of the
atmosphere and atmospheric chemistry. Given the cross-section o.ps and abundance
of &aps Of the most dominant species causing absorption in a planetary atmosphere,

Lecavelier Des Etangs et al. (2008) provided an approximate analytical solution z(A),

P, 27R
2(A) = Hp In | SbPa=00abs(D) JTT0pbull) _ (1.50)

where P, is the pressure at the base of the atmosphere and 7.4 is the optical depth in

given by

the atmosphere.

The effect of the host star is also seen in the energy budget available to a given
exoplanetary climate. This can be naively estimated by considering the equilibrium

temperature Teq of the atmosphere, which is given by

[R
Teq = Te(1 — o)/ 2—; (1.51)

where « is the planetary albedo; the fraction of the incident radiation from the host star
that is reflected back into space. Although Teq is not itself dependent on the exoplanetary
radius, it is dependent on the luminosity of the stellar host. Hence, incorrect determina-
tions of either Teg or R4 will result in an errant estimation of exoplanet energy budget.
In this approximation, the planet is considered as a pure blackbody that is being heated
by its host star with all atmospheric effects, including the inherent greenhouse effect,
neglected. Thorough treatments of exoplanet climatology are currently at the cutting
edge of the field. Of note is the work of Boutle et al. (2017) who applied the Met Office
global circulation model, the Unified Model, to studying the climate of Proxima Centauri
b. With the complexity of such studies continuing to increase, improved constraints on

exoplanet host properties are becoming imperative.

In Chapter 5 I will apply the SED fitting technique detailed in Section 2.1, to

measuring accurately the temperature Tsgp and radius Ry of exoplanet hosts, including
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M-dwarfs. I will present revised stellar properties for a sample of exoplanet hosts from
the PanCET input catalogue (Sing 2016) in Section 5.3. I will also assess the veracity of
the method by performing a critical assessment of potential systematic uncertainties, and

suggest methods of mitigation in Section 4.3.

1.10 Spectral Energy Distribution Fitting

The stellar SED encodes important information about the stellar photosphere, including
its total flux, dictated by the total luminosity of the photosphere, and the effective temper-
ature of the star, which dictates the overall shape of the SED. Spectral energy distribution
fitting entails sampling the entire SED of the star to infer these properties. Unlike other
observational methods which can be stymied by wavelength dependent effects, such as
starspots and plage / faculae, given adequate wavelength coverage, SED fitting can ac-
count for and probe for these photospheric effects. In M-dwarfs in particular, the deep
TiO and VO absorption bands which fall within the sampled regions of the SED wield
some influence over the final solution for the temperature, making the method useful for
fitting the SEDs of low-mass stars. Importantly, given an accurate distance measurement
to the target the luminosity can be determined. This has proven problematic until very
recently, however the advent of Gaia DR2 brings with it a radical increase in the accuracy,
precision and abundance of astrometric solutions to nearby stars (see Section 1.10.1.2).
The input data for SED fitting is comprised of multi-waveband photometry, which can
be readily obtained from archival data of all-sky surveys; making this method readily
applicable across the entire sky. It is due to these considerations that I have adopted an
SED fitting method for determining the radii of stars in this thesis. The full method used

for this fitting is detailed in Section 2.1.

However, there are some caveats to using this method. Fitting is performed be-
tween observed photometry and synthetic photometry generated from stellar model at-
mospheres, meaning that the quality of the fit is largely determined by how well the
synthetic photometry can reproduce observed magnitudes. Thus missing physics, and
in particular poorly characterised spectral features, in the model atmospheres will cause

inconsistencies to the fit; as evidenced in Figure 4.4. However, I will show in Section 3.5.1



1.10. SPECTRAL ENERGY DISTRIBUTION FITTING 49

that current stellar atmosphere models are suitable for this task. Poorly characterised
system responses will also cause the fit to be incorrect. The model considerations are
further complicated by the requirement that observational data needs to be high quality,
and the inherent characteristics and systematics of the survey need to be well understood.
However, the abundance of multi waveband archival data mean that even with selective
constraints imposed on the input sample, a statistically significant sample of stars can still
easily be drawn. The primary consideration that has prevented widespread use of this
method for the determination of stellar radii is that this requires prior knowledge of the
distance to the target. However, I will show throughout this thesis that, thanks to the

advent of Gaia Data Release 2 (DR2), this is no longer the case.

1.10.1 Gaia: The Vanguard of an Astronomical Revolution

The ability to easily determine distances, and hence set the gauge on many other related
parameters, to clusters have made them the workhorses of studying stellar evolution until
atleast the end of the 20"-century. However, the advent of the Hipparcos spacecraft which
spawned the Hipparcos (Perryman etal. 1997), Tycho-2 (Heg et al. 2000) catalogues, as well
as the 2007 re-reduction presented in van Leeuwen (2007), provided positions, parallaxes
and annual proper motions for around 118000 stars to an unprecedented accuracy of
0.7 — 0.9 mas for stars brighter than 9" magnitude. This is a precision about a factor of
50 over previous ground-based attempts (Perryman et al. 1997). Hipparcos provided an
unprecedented view into the H-R diagram and stellar evolution. It cannot be denied the
impact that the mission had on modern astrophysics, some of the key outcomes of which
were reviewed in Perryman (2009). The successes that were achieved with Hipparcos led
to a whole slew of ambitious space-based astrometric missions being proposed, with the
only one that was approved being the Gaia mission. The Gaia mission was originally
proposed as an optical interferometer with a baseline of a few metres, operated in a
continuous scanning mode, however the optical design was later revised to resemble an
enhanced version of Hipparcos (Vallenari 2018). One of the main improvements over
Hipparcos was the addition of the Radial Velocity Spectrometer (RVS), which provides
radial velocity measurements in the 8470 — 8740 A band, and inclusion of continuous

spectral integration in the 3200 — 10000 A band. In particular the lack of radial velocity
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capabilities on Hipparcos was noted, e.g. by Blaauw in Torra et al. (1988), which provided

the motivation for inclusion on Gaia (Cropper et al. 2018).

1.10.1.1 Improved Constraints on Stellar Parameters

As well as providing crucial coverage of the time dimension in astronomy, the unprece-
dented accuracy of Gaia astrometry is also expediting studies of stellar evolution. There
exist a variety of methods for determining the fundamental properties of stars (see Sec-
tion 1.7 for a review of them), however they all have trade offs and caveats which make
them unsuitable for large, statistical samples of stellar populations. The ~ 10 stars ob-
served by Gaia serve as a strong tonic against the small number statistics problems of
other methods, as even a sample subject to very rigorous constraints yields 10* — 10 stars.
With trigonometric distances being readily available for such a large sample, techniques
used to study young stellar clusters can be used to study widely distributed populations
of field stars. For example, as we did with the colour magnitude diagram in Section 1.5,
Gaia data can be used to construct a CMD / H-R diagram of over four million field stars,
shown in Figure 1.12. This contains a factor of 10 more stars than was accessible from
the previous Hipparcos data, while also being much more accurate (30 — 50 pas; Luri &
Gaia DPAC 2019). Given the number of different methods for inferring stellar parameters,
which were reviewed in Section 1.7, there is a clear demand for inferences of robust stellar
parameters from this newly available dataset. Andrae et al. (2018) applied the extremely
randomised trees machine learning technique of Geurts et al. (2006) to attempt to infer
these parameters using only Gaia data products. The veracity of this regression is yet to
be determined, especially when applied to red stars such as M-dwarfs. However, given
adequate sampling of the stellar SED with multi-waveband photometric data, the paral-
laxes from Gaia DR2 can be used to derive stellar parameters for large populations of stars
using simple statistical inference. The method for this is presented in Chapter 2. T will
then show how this method can be used to answer key questions about the long standing
problem of radius inflation in M-dwarfs in Chapter 4 and to improve constraints on host

parameters used in exoplanet characterisations in Chapter 5.
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Figure 1.12: The H-R diagram of over four million stars within 1.5kpc of the Sun produced from the
second data release from the Gaia satellite. Unlike other H-R diagrams which are usually sampling single
populations, such as SFRs or open clusters, this one takes in isolated field stars. It also contains over a factor
of 10 more stars than previous attempts to make such a diagram with data from the Hipparcos mission.
Acknowledgement: Gaia Data Processing and Analysis Consortium (DPAC); Carine Babusiaux, IPAG -
Université Grenoble Alpes, GEPI — Observatoire de Paris, France.
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1.10.1.2 Deriving Distances from Gaia Parallaxes

Much of the work in this thesis relies heavily upon the distance measurements afforded by
Gaia DR2, which are presented as trigonometric parallaxes. The naive way of calculating
a distance r, measured in pc, from a given parallax ®, measured in mas, is through a

simple inversion using

7 = tan

(1000 mas) ~ 1000 mas' (152)

@

However, for the majority of stars in Gaia Data Release 2, the origin of the parallaxes used
in Chapter 4 and Chapter 5, a simple parallax inversion is not sufficient to produce reliable
distances. The main issues include the non-linearity of the transform, the constraint
that the derived distance must be positive, and very low signal-to-noise ratios on some
measurements (Bailer-Jones et al. 2018). Measurements are also susceptible to the Lutz &
Kelker (1973) bias where, due to the fact that the number density of stars increases towards
smaller parallaxes, more stars will be scattered into a parallax bin from larger distances
than will be scattered out; causing a systematic bias in distance measurements. The final of
these issues means that properly treated distance uncertainties are of vital importance. So,
Bailer-Jones et al. (2018) asserts that the only consistent and physically meaningful way of
deriving distances and accompanying uncertainties from parallaxes is through Bayesian
inference. Bayesian inference computes a posterior probability distribution p(r | @) given

an expected distance r and measured parallax @ using Bayes’ theorem

p@ ) p(r)

2] (1.53)

p(r| @)=

p(r) serves as the prior in this inference—the initial degree of belief a distance distribution
r with no knowledge of the measured parallax @. p(@ | r) is the probability distribution
of observing the measured @ at a distance r, and is known as the likelihood. Finally p(®)
is known as the marginal likelihood distribution, which serves as model evidence and is
independent of . This inference process requires the specification of both a likelihood

and prior.

Each star in Gaia DR2 lies at a true distance r from the observer, however the

measured parallax @ is a noisy measurement of this quantity. Hence, the likelihood, as
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specified in Bailer-Jones (2015), assumes the measurements are normally distributed with

standard deviation o,, giving

1
ex
V27o, P

p@|r,00)=

2
_é (@ _ %) } _ (1.54)

Lindegren et al. (2018) confirms empirically that adopting the Gaussian form for the
measurement model of Gaia DR2 parallaxes is a good approximation. Then the purpose
of the prior is to encode relevant aspects of the distance distribution that are not included
in the likelihood; such as the requirement of the resulting » > 0, properties of the source
survey and pertinent knowledge about the structure of the galaxy. Bailer-Jones (2015) and
Astraatmadja & Bailer-Jones (2016) explore the consequences of utilising different priors
before adopting the exponentially decreasing space density (EDSD) prior for inferring
distances for 1.33 billion stars in Gaia DR2 in Bailer-Jones et al. (2018). The EDSD prior

takes the form

zlﬁrze‘r/L if r>0
p(r|L)= (1.55)

0 otherwise.

The prior also ensures unbiased distances by adopting L > 0 as a length scale. For
Gaia DR2 this length scale is provided by fitting the EDSD prior to the median stellar
distances in each HEALpix cell of a catalogue of mock Gaia observations. The catalogue
uses a chemo-dynamical model of the galaxy, which includes extinction, samples all stars
with an apparent magnitude of G < 20.7 mag and is presented in Rybizki et al. (2018).
To avoid inherent discontinuities across HEALpix grid boundaries the length scales in
the resulting map are fitted with spherical harmonics, yielding Lsph(l ,b). The final map
from which values of Lsph(l, b) are drawn is shown in Figure 1.13. As a result of this
methodology, although distances are determined independently of one another, the EDSD
prior is correlated on small spatial scales. However, because the samples used in this thesis
are either all sky, or widely spatially distributed, this does not pose a problem during my

investigations.
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Figure 1.13: The values of Lgph(/, b) used for inference of distances from parallaxes in Gaia DR2. The left
pane shows the map in [ and b, presented in Mollweide (equal area) projection, from which Lgph(l, b) is
drawn. The histogram on the right shows a the distribution of length scales (over equal-area cells).

Source: Bailer-Jones et al. (2018).

The unnormalised posterior of the distance to a given source is then

2 A~ 12
Texp [ Lsph(l/h) 2(737 (CD CDZp 1‘) ] ifr > 0,

p(r|@,00,Lspn(l, b)) = (1.56)

0 otherwise,

where @,, = —0.029 mas is the global parallax zeropoint for Gaia, measured using
observations of quasars (Lindegren et al. 2018). The final estimation of distance 7 is

performed by taking the mode of the posterior, which can be done by solving
2y 2~y (1.57)

for r. By slightly rearranging Equation 1.57, one can intuit the purpose of each term

352

"0y 2 2
_— 2rco4, + or—1 =0. 1.58
Lepn(l, b) e T (1.58)
—— Asymmetry Transform

Lutz - Kelker Bias

The final two terms are responsible for performing the transformation between parallax
and distance. The first and second terms provide corrections to the parallax inversion to
account for Lutz & Kelker (1973) bias and the asymmetry of the transform respectively.

To assess the effect of these terms, I rearranged Equation 1.58 to find

1
r 2+(D

Loh(,0) = 62r 1252

=0, (1.59)
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For the samples presented in this thesis r remains comparable to the most common scale
lengths shown in Figure 1.13, indicating that accounting for the Lutz & Kelker (1973) bias
is important for this work. In the regime where r < Lgpn(/, b), and the first term can be

neglected, Equation 1.58 can be further re-arranged to find the distance r using

1+ 20272
- ;w' (1.60)

This shows that regardless of the uncertainty in the measured parallax, there is always
some correction required to account for the asymmetry of the transformation between
parallax and distance. Upon examining the sample used in Chapter 4, I found that the
correction due to both the Lutz & Kelker (1973) bias and asymmetry contributions peaked
at around 0.25%. So for this work, the correction provided by the Bayesian approach of
Bailer-Jones et al. (2018) is required; else the measured luminosity would be subject to a

systematic error of up to 0.5%.

The uncertainty in the inferred distance is measured from the highest density
interval (HDI) with probability p, bounded by values ry,; and r1,. Bailer-Jones et al. (2018)
adopts p = 0.6827, corresponding to +1o for a Gaussian distribution. The HDI has no
analytical solution, so is computed by taking small steps away from 7.s in both directions,
compute the area contained under the normalised posterior in this step, and iterate this
procedure until the desired p is achieved. It is worth noting that due to the r; and .
being iterated independently, the resulting bounds need not be symmetrical. In a small
part of the parameter space, the posterior is bimodal. In these cases 7 is estimated using
the median of the distribution. ry,; and ry, are estimated using the 16th and 84th percentiles
of the equal tailed interval, which has as much probability below the span as above, with

p in between (Bailer-Jones 2015).
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Chapter 2

Methods

“You know the greatest danger facing us is ourselves, and irrational fear of the
unknown. There is no such thing as the unknown. Only things temporarily hidden,

temporarily not understood.”
— James T. Kirk

2.1 Spectral Energy Distribution Fitting

In determining the fundamental properties of stars, the choice of technique is of critical
importance. Traditionally, when determining the properties of large numbers of stars,
particularly in young open clusters, photometric observations are fitted to isochrones
generated from a combination of stellar atmospheres and stellar interior models. The
combination whose synthetic photometry most closely resembles the observations sup-
plies the fundamental properties, such as mass, radius, luminosity and temperature.
However, as it was noted in Chapter 1, the accuracy of this approach is compromised due
to models being unable to describe the low-mass end of the stellar sequence. This served
as our motivation to devise an alternative technique, which can infer stellar properties
while being decoupled from the model interiors. Additionally, accurate determinations
of temperature are made by measuring the spectral indices of certain lines in the spec-
tra of the target stars. However, this has the reliance on spectroscopic data, which is
relatively difficult to obtain and comparatively expensive compared to the abundance of

pre-existing multicolour broadband photometry available from publicly accessible survey
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archives.

Until recently it has remained problematic to reliably constrain distances to field
stars. This is one of the main reasons that galactic open clusters have been crucial
benchmarks employed in studying stellar astrophysics - a homogeneous sample of stars
at constant distance allows fitting of CMDs to stellar models, hence determination of
distances are possible. However, the advent of Gaia DR2 allows us to extend this same
level of rigour to field stars, and allows us to improve the precision of constraints on open
clusters. The newly acquired wealth of both photometry and parallaxes for over 1.3 billion

stars makes the exploitation of them to determine stellar radii a tantalising possibility.

Photometry samples the stellar spectral energy distribution (SED), which itself
encodes some of the fundamental parameters of the stars. Given an accurate distance, one
can integrate beneath the SED to determine the stellar luminosity, while the shape of the
SED is a function of the temperature of the photosphere. Given the measurements of these
parameters, the radius of the star is then forthcoming. Importantly, both the luminosity
and effective temperature of the star are determined only by the stellar photosphere. This
allows determination of radius to be uncoupled from the stellar interior models, which

have been shown to be discrepant with observations.

The method I developed uses stellar SEDs, sampled by multicolour broadband
photometry, to determine these parameters using a grid search. The technique itself
is related to the infrared flux method (IRFM) (Blackwell & Shallis 1977; Blackwell et
al. 1979), reviewed in Casagrande (2008), in principle, however it differs in a number of
key ways. Unlike the IRFM, which relies on the smooth correlation between temperature
and flux in the Rayleigh-Jeans tail, the SED fitting methodology presented in this thesis
generalises to the entire SED of the star. Hence, a more robust measurement of luminosity
is made, from which the radius of the object can be derived. The IRFM implicitly assumes
that the SED of the star can be represented well by a pure blackbody. As Figure 1.7
demonstrates, stars later than mid-K exhibit strong molecular opacities, making this a
faulty assumption for low-mass targets. However, the stellar atmosphere models used as
inputs to synthetic photometry provide good estimates of these large molecular features.

Hence, the temperatures from my methodology are measured from the overall shape of
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the SED, which includes the bloackbody shape and opacity contributions from strong
spectral features, making this methodology broadly applicable to a wide range of spectral

types; including M-dwarfs.

2.1.1 Stellar Atmospheres

The synthetic photometry used in grids is computed by folding theoretical stellar at-
mosphere models through the system response of the appropriate photometric band.
The work in this thesis concentrates in particular on stars inhabiting the very-low-mass
regime, which in turn exhibit cool effective temperatures Teg > 4000 K. At temperatures
cooler than ~ 4500 K molecular species such as metal hydrides, TiO, CO and water vapour
have been observed to form in stellar atmospheres (Allard et al. 2012b). As most of the
work herein addresses M-dwarf stars, a competent treatment of molecular opacities is a
key consideration in the choice of atmosphere library. Additionally, this method should
be able to cover a large enough area of the Teg—log(g) parameter space that measurements
of Solar-like exoplanet host stars can also be made. Hence I used the BT-Settl CIFIST stel-
lar model atmosphere grid of Allard et al. (2012b), Allard et al. (2012a), and Rajpurohit

et al. (2013) to produce synthetic photometry.

The BT-Settl CIFIST atmosphere grid employs the 3D non local thermodynamic
equilibrium (non-LTE) radiative transfer code, PHOENIX (Hauschildt 1992, 1993), in tandem
with a radiative-magneto-hydrodynamical code, such as C0$A5$BOLD (Freytag et al. 2012).
The latter first performs a hydrodynamical simulation of the stellar atmosphere, using
a radiative transfer scheme is focused on accurately estimating the energy budget of
the atmosphere. In these simulations, a full treatment of the radiation in the model,
in particular atomic and molecular species, would be computationally prohibitive. The
PHOENIX code is then provided a pre-computed output from am MHD simulation to
generate synthetic observables using a full non-LTE treatment of radiative transfer. The
PHOENIX code performs a line-by-line opacity sampling in spherical symmetry, as opposed
to the plane parallel approach employed previously, computes stellar atmospheres using
full spherical radiative transfer and includes a sophisticated dust model that describes

condensation and sedimentation of grains below about 2600 K (Allard et al. 2003; Allard et
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al. 2012a); an important consideration for late M-dwarfs and brown dwarfs. Unlike older
codes, which largely use pre-computed opacity tables, PHOENIX uses a direct opacity
sampling method to dynamically calculate the opacity within an arbitrary wavelength
window by dynamically selecting and summing LTE background lines. This approach
is vital for non-LTE calculations upon a wavelength grid which is irregular and variable
between iterations (Hauschildt et al. 1999). The current version of the BT-Settl models
include updated line lists for water (Barber et al. 2006), metal hydrides such as CaH, FeH,
CrH and TiH (Bernath 2006), VO, CO, (Tashkun et al. 2004) and TiO (Plez 1998); all of
which are important when considering low-mass stars. The solar abundances for the
CIFIST grid are provided by Asplund et al. (2009) with revisions of elemental abundances
for C, N, O, Ne, P, S, K, Fe, Eu, Hf, Os and Th by Caffau et al. (2011), which results
in an increased total heavy element fraction. Convection within the models is treated
using the mixing length theory of Kippenhahn & Weigert (1990), which adopts an awmrr
dependent on pressure scale height Hp. Mixing length parameter aymrr also scales with

> 2.0Hp for the

~

spectral type, with aynr =~ 1.6Hp for the Sun, and increasing to amrr
coolest and densest models. However, this MLT prescription makes the assumption that
the atmosphere is non-rotating, and that magnetic fields are not present. In reality, both
of these physical effects are present in some way in all stars, and will act to reduce the
convective efficiency; making the photosphere appear cooler than models for active stars.
The CIFIST atmosphere grid provides the outer boundary conditions for calculations of
the Baraffe et al. (2015) interiors, providing another good reason to adopt them for this

project.

The BT-Settl CIFIST atmospheres are provided for solar metallicity. For situations
where grids were required to deviate away from solar metallicity, I instead adopted
the BT-Settl AGSS2009 models, which cover non-solar values of [M/H] by scaling the
abundances from solar. These models purely use Asplund et al. (2009) solar abundances,

ignoring the CIFIST revisions from Caffau et al. (2011).
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Figure 2.1: The correction factor 6 for the CIFIST (left) and the AGSS 2009 (right) stellar atmospheres as
a function of Teg. The different lines denote log(g) of 4.0 (blue square), 4.5 (amber triangle), 5.0 (green
down-pointing triangle) and 5.5 (red circle). For convergent solutions 6], should remain near unity, however
I found that that atmospheres can differ from their defined luminosity by up to 4% throughout the range of

log(g).

2.1.2 Correcting Luminosity Discrepancies in Model Stellar Atmospheres

As the methodology presented in this chapter effectively integrates the luminosity beneath
the SED to infer the radius, it was advantageous to perform simple validation upon the
provided model fluxes. From the definition of effective temperature, the total radiant flux

from a stellar atmospheres must satisfy

o~ 51, (2.1)

where I, is the specific intensity of a unit surface area of the synthetic atmosphere and
0r = 1 for a given solution. By numerically integrating the across all the flux bins of the
model atmospheres, and placing the result into Equation 2.1, I was able to show that the
atmosphere models do not satisfy this constraint, and as such do not properly conserve
energy. This discrepancy is demonstrated for both atmosphere grids used in this thesis
as a function of both T and log(g) in Figure 2.1. The discrepancy is much lower, and
systematic, in the CIFIST model grid than in the AGSS grids, with an RMS of 0.7% versus
1.7% respectively within the parameter space used for this thesis. To remedy this issue,
I multiplied each flux bin in the model atmospheres by 01, before further use. Although

potentially unphysical, simply scaling the flux of the atmosphere in this way ensures that
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total luminosity of the model is corrected, while leaving structure of the spectral features

unaffected.

2.1.3 Interpolation of Model Stellar Atmospheres

The density of stellar atmosphere models in Tef — log(g) space is sparse in comparison
to the density required for the fitting, so a bilinear interpolation is performed to sample
between the available models. The four bounding models are found for the required
Tefr and log(g) by first finding the closest Te in the nearest column of log(g). The
neighbouring model which properly bounds log(g) is then found. The grid is then
searched until the corresponding model is found at each log(g) which correctly bounds
Tegr. In the unlikely circumstances that the parameters cannot be bounded, such as at a
grid boundary, the offending iteration is reset to the starting model and a flag is raised

for that interpolation.

A bilinear interpolation produces the final I, from the four bounding models.
This interpolation process must satisfy two constraints - it must accurately interpolate
flux while maintaining the integrity of temperature-dependent spectral features. Thus
intensity is logged throughout this process to make the steep changes in flux between
models easier to interpolate. Each interpolation has the possibility of introducing small
numerical errors in spectral features, so I first chose to perform the dual interpolation in
log(g), where the differences between spectral features is small. The T interpolation
is then performed between these two spectra. Given the steep, linear or higher, depen-
dence of stellar flux, the interpolation is performed in the log,(Tef) space; to make this

interpolation linear and further reduce discrepancies.

2.1.4 Model Grid

The grid of synthetic photometry used in the fitting is produced by folding stellar at-
mospheres through photometric system responses. The choice of atmosphere grid is
determined by the physics of the grid, such the abundance and metallicity required for
the effect being investigated, as well as the spread of T that is covered. The stellar

atmosphere grids used in this thesis are summarised in Section 2.1.1. All atmospheres
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that are utilised are provided in units of mean disk intensity at the stellar surface I,,
meaning that the atmospheres are sampled in spherical mode at a variety of sightlines to
produce model spectra. This means that the synthetic photometry correctly accounts for

limb darkening—given the precision of the fits, ignoring this effect is noticeable.

Before producing synthetic photometry for the grid, the input stellar atmospheres
are pre-processed. The grid of model stellar atmospheres is interpolated, as described
in Section 2.1.3, to produce a theoretical prediction of I, for a star at the required T
and log(g). To improve performance, the interpolated synthetic spectra are binned into
a coarser resolution using a flux conserving algorithm such that there are a minimum of
N = 50 bins spanning the narrowest system response of the bands being used in the grid.

From this the flux at the surface of the Earth can be determined using

R%. 044
FAzlAﬁlo' a4 (2.2)
where R is the stellar radius, d is its distance from the Earth and A, is the interstellar
extinction along the sightline (e.g. Girardi et al. 2002). In the case where extinction is
negligible, which is the case in nearby stars, this equation can be simplified to
RZ

Fi=lios. (2.3)

To generate the synthetic photometry for each band, I folded the interpolated I,
through the system responses to yield the mean apparent synthetic magnitude of a unit

surface area of the model atmosphere at its surface within the i band Z; with

[ [[FASyidd ]
Mijsyn = -2.5 loglo m +m;
| JA A2 ]
251 | [iliSad2 | 51 RY e
= —2.010gy /— —2108o | 7| T
° .Sy dA d
| )\f)\,z Ai i
R
= Z; —5log,, [E] , (24)

where 5);, fy ; and m are the system response, zero point flux and zero point of the ith

band.
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2.1.5 Free-Temperature Radius Fitting

For the fitting, I adapted the spectral energy distribution fit (SEDF) method (e.g. Pecaut
& Mamajek 2013; Masana et al. 2006) with an addition to remove the dependence on a
priori knowledge of the angular radius of the star O (see Section 2.1.6). Essentially it uses

the shape of the SED to measure the temperature.

The synthetic photometry ; sy, is compared to the photometric data m; using

N m; — Mj syn 2 N mi—Zi+510 (R/d) 2
X2:Z(—'Y) :Z( 810 , 2.5)

; gi : gi
where 0; is the statistical uncertainty in the ith photometric band and i corresponds to
one of the bands employed in the fitting process. The measured o; in a given band can
be smaller than the systematic uncertainties inherent in the data; which can stem from
uncertainties in the system responses and data analysis. Hence, throughout this thesis
I have adopted a minimum floor value for o; that was used for fitting to remain clear
of these systematics. The free parameters for the fit are R/d, Teg and log(g), which was
explored using a simple grid search to generate a 3D cube of x2. The minimum value
of x? within the grid determines the best fitting solution. I constrained the log(g) axis

by applying a tophat prior of +0.5 dex around the prescribed model log(g), which was

found by matching M of each star with the Baraffe et al. (2015) 4 Gyr isochrone.

The grids were first transformed into probability space, using P(Tsgp, log(g), R/d) =
exp (—x?/2), and normalised. The 2D x? space necessary for producing confidence con-
tours was then calculated by marginalising the 3D cube over log(g). R/d is next converted
to R using the geometric distances of Bailer-Jones et al. (2018), and uncertainty in distance
is allowed for by convolving each row of constant Teg in the 2D x? space with a Gaussian
whose standard deviation is the mean uncertainty from the lower and upper distance
bounds; as these are nearly symmetrical. The confidence contours can be determined
from the resulting 2D PDF by identifying the set of highest probability pixels whose
integral is 0.68 and drawing a contour around them. Uncertainties in Tsgp and R can be
obtained from a 1D distribution of probability by marginalising along the remaining axis.

To illustrate the correlation between R and Teg, I include an example plot of the x? space
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Figure 2.2: The search space for one of the targets from Chapter 4 whose x? lies at the median value of
the randomly selected uncertainty sample. The red ellipsoid indicates the 68% confidence contour resulting
from the process. The inset at the upper right shows the zoomed-in detail around this contour.

resulting from a fit to one of the targets from Chapter 4 in Figure 2.2.

2.1.6 Analytical Determination of Stellar Radii

Performing a full 3D grid search on our entire input catalogue is intractable due to
computational time constraints. So for a particular T and log(g) the best fitting R
is determined by analytically minimising X2 effectively making the search space 2D. I
accomplished this by differentiating Equation 2.5 with respect to the 5log;(R/d) term

and finding the stationary point of the derivative to analytically minimise x?, yielding

2

10g,, (%) = log,, (6%) = 0.4 (i ZG;;”) / (i %) : (2.6)

i i i i

This provides the dilution factor R?/d? and hence, by applying the distances from Bailer-
Jones et al. (2018), the stellar radius R. For each log(g) and Teg I analytically minimised

X2 to find the radius in this way. This results in a 2D log(g) — Te space. An example of
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the resulting x? space is shown in Figure 2.2, and example fits shown in Figure 2.3.

2.1.7 Including Extinction

In cases where extinction cannot be neglected, such as for exoplanet host determinations in
Chapter 5, the magnitude of a unit surface area at the stellar surface Z; can be substituted

with
[ 1154,i107044241

[y fiSaidA

which is generalised to include extinction A,. A, is provided by an extinction law, which

Z;i = -2.5log,, [ +my, (2.7)

prescribes the extinction that should be applied to the model atmosphere at a given A.
For this thesis I adopt the extinction law of Fitzpatrick (1999), which provides an estimate
of the shape of the UV-through-IR extinction law for a value of R = A(V)/E(B-V) =3.1;
the mean value of R for the Milky Way. This extinction law provides A,/E(B — V), thus
the output must be multiplied by a value of E(B — V) before being applied to the stellar
models. Due to the weight of flux across the system responses, the measured E(B — V)
varies with the colour of the star. Hence, nominal E(B — V) is adopted to represent just
the intervening material between the observer and the star (Bell et al. 2013). In this thesis,

E(B - V) refers to nominal E(B — V).

2.1.8 Constraining to an Isochrone

To perform comparisons to isochrones, I constrained some of the fitting that was per-
formed to a given isochrone. As the underlying interiors dictate the radius, this need not
be determined by the fitting routine. In addition, as the distance to the cluster is known

a priori, m; syn can be computed analytically during the creation of the grid using

/A 1)S2, 107044 dA .
-~ 1 +m;, (2.8)
[ f2SadA  4nd?oT

eff,iso

Misyn = —2.5 log,,

where Lol iso and Tet iso are the stellar luminosity and effective temperature prescribed
by a given isochrone point. Thus, to constrain the fitting to the grid, I followed the same
methodology as in Section 2.1, with several important distinctions. Instead of iterating
over a 2D Teg —log(g) search space, I simply iterate over the parameters prescribed by the

isochrone, reducing the fitting to a 1D problem. As opposed to determining an analytical
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Figure 2.3: Fits from Chapter 4 resulting from the use of the method presented in Section 2.1.5 and Sec-
tion 2.1.6. The best fitting model spectrum for each target is shown in the top panel (red) with the observed
photometry from which it was derived overlaid (black). The appropriate bandpasses are plotted in light grey
for reference. In the bottom panel are the residuals and uncertainties in magnitudes for each photometric
band. The top panels correspond to the median x? (left) and just above the median (right) of our randomly
selected uncertainty sample, while the bottom left and right panels show the stars at the lower and upper

68% density bounds respectively.
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minimisation, or via a 3D grid search, the stellar radius can be trivially computed from

the parameters provided by the isochrone using

L .
R = ’ bolZso ‘ (29)
4m UTeff,iso
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Chapter 3

Characterising Discrepancies in
Models of Pre-Main Sequence
M-dwarfs

“The most elementary and valuable statement in science, the beginning of wisdom is:

I do not know.”
— Data

3.1 Motivation

Young open clusters and eclipsing binaries have thus far provided our greatest insights
into stellar evolution. In particular, clusters provide an unparalleled opportunity to
simultaneously study a complete population of hundreds to thousands of coeval single
stars in the wild. However, as discussed in Section 1.5, this powerful tool comes with
caveats. The age of any given cluster can be determined by fitting the stellar sequence
to an isochrone — a line of constant stellar age that spans the mass range of members.
To perform this fitting, one has to address the philosophical question of whether to work
in the theoretical Teg — —L plane, or the observational colour-magnitude plane. Both

methods bring along with them inherent trade offs.

Pre-MS stars are axiomatically still quasi-statically contracting, thus their measure-
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ments of log(g) will be inherently lower than their MS counterparts for a given mass. The
stellar flux can also suffer considerable contamination across the SED, including UV emis-
sion from accretion shocks in the photosphere, signs of youth in X-ray, and circumstellar
discs throughout the near and mid IR. These caveats make transforming observations into

the theoretical plane undesirable at best, and untenable at worst.

Alternatively, theoretical stellar evolution models can be transformed into the ob-
servational colour-magnitude plane through the use of bolometric corrections. This
method is preferable because fewer assumptions are required about the nature of the
stellar sample. However, this does come with its own slew of complications. Bolometric
corrections, and the resulting colours, are far removed from the model parameters from

which they are derived, making it difficult to pinpoint problems with said models.

As noted in Bell et al. (2012), the observed colours and magnitudes of the low-mass
population of the Pleiades are inconsistent with those provided by theoretical isochrones.
To remedy these inconsistencies, Bell et al. (2012, 2013) and Bell et al. (2014) assembled a
selection of well understood fiducial clusters to act as benchmarks in the production of
a consistent set of semi-empirical isochrones with which to perform fitting. Examples of
these semi-empirical isochrones for the Pleiades and Praesepe clusters are plotted with
observed members in Figure 3.5. You will note that the semi-empirical isochrone (Bell
et al. 2012) traces the sequence laid out by the observations of cluster members, whereas
the purely theoretical isochrone diverges from this sequence for a large portion of the

lower-MS and pre-MS.

Although this methodology does provide a panacea to the issues facing theoreti-
cal isochrones, it is a somewhat inelegant solution which does not address the missing
physics underpinning models of pre-MS M-dwarfs. A spline fit to an observed sequence in
colour-magnitude space does not glean any physical insight into the clusters themselves.
Instead of simply iterating on this semi-empirical method, this chapter proposes un-
derstanding the physical implications behind the discrepancy; and consequentially why
cutting edge stellar evolution models are unable to correctly reproduce the isochrones of

well understood populations.
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In this chapter, I will explore the fundamental parameters of the Pleiades and
Praesepe open clusters through photometric observations from surveys. I will apply
the method for SED fitting, introduced and detailed in Section 1.10 and Chapter 2, to
multi-waveband photometry, which spans the entire SED of each cluster member. From
this fitting the Tsgp, L, and R can be inferred—allowing the measured stellar parameters
to be uncoupled from the problematic model interiors. These parameters will then be
compared to isochrones to determine the degree of radius inflation, and to permit insight

into missing physics.

Although this method does not rely on stellar interiors, it does utilise synthetic
photometry from stellar atmospheres. To assess their veracity, I will compare to observed
low-dispersion spectra for a number of carefully selected stars within each cluster to syn-
thetic spectra generated from the properties determined by the SED fitting. By imposing
a flux calibration upon these spectra, they serve a two-fold purpose in this investigation.
The direct comparison between observations and models derived from orthogonal meth-
ods serves as a powerful consistency check for both. Agreement between them would
provide a strong indication that the SED fitting methodology is reliable, the input physics
to stellar models is accurate, and the flux calibration is robust. Once the reliability of the
observed spectra is established, their spectral features can be carefully compared to those
of the synthetic spectra to assess the physical accuracy of stellar atmospheres. First, I will

perform a review of the clusters upon which the work in this chapter is being performed.

3.1.1 The Pleiades

The Pleiades is one of the key clusters utilised in critical analyses of stellar evolution
models and adopted as a fiducial cluster for benchmarking in Bell et al. (2012, 2013)

and Bell et al. (2014). This is owing to several very important properties. The Pleiades

0

2
has an age of 13577}

Myr (Bell et al. 2014), meaning that the low-mass members are
still undergoing Pre-MS evolution, while there is still a well populated main-sequence,
by virtue of the intermediate mass members (Soderblom et al. 2014). This is crucial as

it means that the members in the upper-MS can be fitted with the model isochrones

to determine the age of and distance to the cluster. Once cluster properties are well
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constrained, the lower-MS and pre-MS members of the cluster can be plied to critically
examining discrepant models. The age was well determined in Barrado y Navascués
et al. (2004) to be 130 + 20 Myr, using the semi-fundamental lithium depletion boundary
method. It is subject to a modest extinction of E(B—V) = 0.04,based onan Ay = 0.12 from
Stauffer et al. (1998), and is solar metallicity; a requirement imposed by the stellar interior
models which are largely supplied with solar metallicity ([Fe/H] = 0). Until recently the
distance of the Pleiades has remained controversial, as distances determined using the
Hipparcos catalogue (Perryman et al. 1997; van Leeuwen 2007) remain inconsistent with
methods determined by any other method. This is demonstrated in Figure 3.1, which
shows how the distances determined using a variety of different methods is markedly
different from that provided by Hipparcos. However, Gaia DR2 has now more or less
confirmed that the Hipparcos measure is an underestimate, likely due to systematics
(Gaia Collaboration et al. 2018a). Bell et al. (2014), which pre-dates this measurement, as
well as the VLBI measurement of Melis et al. (2014), adopts the Soderblom et al. (2005)
trigonometric parallax measurement of 132 + 2 pc. I also adopt this distance to the
Pleiades to retain agreement with stellar models, while remaining consistent with the
distance estimate from Gaia DR2 (136 + 4 pc, Gaia Collaboration et al. 2018a; Abramson
2018). Finally, robust memberships were derived in Stauffer et al. (2007) and Lodieu
et al. (2012), eliminating potential contamination due to field stars erroneously being

included in the fitting.

3.1.2 Praesepe

Praesepe is the second cluster that was chosen as a fiducial cluster for benchmarking
in Bell et al. (2012, 2013) and Bell et al. (2014), as well as an additional cluster adopted
for this investigation. This cluster is as well characterised as the Pleiades, with robust
ages, metallicity and memberships (Kraus & Hillenbrand 2007) being readily available.
Praesepe was measured to be at a distance of 184 + 2 pc by Bell et al. (2014), a measure-
ment which I adopt to remain consistent with them and the 186 + 1 pc measured by Gaia
DR2 (Gaia Collaboration et al. 2018a). Despite being a longer distance away from Earth
than the Pleiades, observations still suffer smaller amounts of extinction. Taylor (2006a)

found E(B — V) = 0.027 for Praesepe using a combination of polarisation measurements,
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Figure 3.1: A summary of some of the distance measurements obtained through a variety of methods.
Of particular note is the Hipparcos distances of 120.2 pc; markedly lower than the 132 + 2 pc presented
in Soderblom et al. (2005), and adopted in Bell et al. (2014). The distances determined using isochrone
fitting (An et al. 2007; Percival et al. 2005; Stello & Nissen 2001; Pinsonneault et al. 1998; Giannuzzi 1995;
van Leeuwen 1983; Nicolet 1981), non-Hipparcos or VLBI trigonometric parallax (Soderblom et al. 2005;
Gatewood et al. 2000), modelling the orbits of eclipsing binaries (Groenewegen et al. 2007; Southworth et
al. 2005; Zwahlen et al. 2004; Munari et al. 2004; Pan et al. 2004) and based purely on radial velocities and
proper motions (Roser & Schilbach 2013; Narayanan & Gould 1999). The distance presented in the source
paper, shown in red, is determined using trigonometric parallax using radio interferometry, is consistent
with the other measurements; alleviating the concern over the inconsistent Hipparcos distance.

Source: Melis et al. (2014)
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comparison of Stromgren f and R — I¢ for F stars, and Stromgren f analysis of A stars.
However, unlike the Pleiades which is to within uncertainties solar metallicity, the litera-
ture values measure [Fe/H] = 0.07-0.09 for Praesepe; from An et al. (2007) and Boesgaard
et al. (2013) respectively. This led Bell et al. (2014) to adopt the mean value of [Fe/H] =
0.08 for Praesepe; making the metallicity of the cluster supersolar. Crucially, the age of
T = 66571 Myr for Praesepe determined by Bell et al. (2014) is considerably older than
that of the Pleiades. The overall consistency between both target clusters lends itself to a
differential study of the two. The span between cluster age and metallicity permits us to
ascertain how the discrepancy varies with composition, and more importantly if it varies

as a function of evolution.

3.2 Photometric Fitting

The SED fitting I performed in this chapter was the first application of the SED fitting
method detailed in Section 2.1. Thus, as stated in Section 3.1, the fitting process herein is
acting as a validation for the method itself, as well as providing measurements of stellar
parameters. Due to the relatively crowded fields presented by open clusters, the bands
and selection criteria, presented in Table 3.1, were carefully chosen to provide accurate
probes of the SED. The floor value of o; was also motivated by this consideration; chosen
tobe 0.05 for this fitting. This was also motivated by the caution inherent in the application

of an untested methodology.

3.2.1 Free Temperature Radius Fitting

One of the problems facing our understanding of the discrepancy in M-dwarf stars is the
coupling between the stellar interiors and the photospheres. Allowing the temperature
and radius to run free for the fitting, instead of being constrained to the isochrone, permits
a comparative study between observed and synthetic spectra in isolation. The angular
diameter for each case was analytically determined for every star using the method
detailed in Section 2.1.6. The determined distance to each cluster was used to determine
the radius. The stellar parameters determined from this fitting process were then used

as inputs to produce the synthetic spectra to compare to observations in Figure 3.17 and
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Figure 3.18.

3.2.2 Isochronal Model Fitting

A further fitting of each of the stars in the sample was performed by substituting the 2D
grid evenly spaced in T and log(g) with a grid generated from an isochrone; described
in Section 2.1.8. This effectively limits the allowable SEDs to those dictated by the stellar
interior models at the age of the cluster. By comparing the best fits and residuals of the fits
from both the free temperature radius fit case, and the isochrone constrained case, we can
glean powerful insight into the source of the discrepancy. Hence, the synthetic spectra
that best match the parameters determined from the isochrone fitting are compared to

observations in Figure 3.19 and Figure 3.20.
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3.2.3 The Pleiades and Praesepe Temperature - Radius Relation

When producing theoretical isochrones, stellar interiors are tasked with providing the
underlying luminosity-temperature-radius relationships used to sample bolometric cor-
rections. The SED fitting code is able to directly measure these quantities, the results
of which can be overlaid on the tracks of the interiors as a test of their accuracy. The
inflation in radius from the Baraffe et al. (2015) isochrones of the stars run through the
fitting process (see Section 3.2) are shown as a function of Tsgp in Figure 3.2. This figure
shows that the both the Pleiades and Praesepe single star sequences are inflated above
those predicted by stellar interiors. I wished to assess the nature of this inflation, so I
plotted the stars from each cluster in the Tsgp — R plane alongside a series of isochrones
decreasing in age from the current age of each cluster; shown in Figure 3.3. This figure
implies that were I trying to determine the age of both clusters using low-mass members
alone, I would likely place them to be 20 — 50 Myr—considerably younger than both
clusters. Furthermore, the age I would measure would be subject to extreme selection

bias, as the cluster would appear older as I traverse further down the stellar sequence.

3.24 Comparison to R sini Measurements

Lanzafame et al. (2017) used radius determinations of Pleiades members, measured using
the R sini technique, to show that low-mass members of the cluster were indeed inflated
above the isochrone. This sample was split into fast rotators (with Pt < 2 d), slow
rotators defined in Lanzafame & Spada (2015) and stars transitioning onto the slow rotator
sequence, termed gap rotators. They showed that gap rotators with 0.8 Mo > M > 0.6 Mo
were inflated above the Baraffe et al. (2015) isochrones, unlike the fast rotators which
remained in good agreement with the theoretical models. Were this corroborated, it
would provide a crucial insight into the physics underlying the discrepancy. So, I took
the sample of stars presented in Lanzafame et al. (2018) and performed the same fitting
process as detailed in Section 3.2.1. The results of this fitting are shown in the Tsgp — R
plane in Figure 3.4. Lanzafame et al. (2017) demonstrated that it was the stars who were
converging onto the slow-rotator sequence that exhibited radius inflation. As shown in
Figure 3.4, I found that the stellar sequences for all three samples remain remarkably

consistent, with the fast rotator sample also appearing to be inflated. That the mean
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Figure 3.2: The inflation of Pleiades (blue) and Praesepe (orange) members from the isochrone appropriate
for the age, metallicity, extinction and distance of the cluster, generated from the Baraffe et al. (2015) interiors.
To aid legibility of the plot, a small number of stars have been omitted from the plot, most of which are
on the high inflation wing, and thus are suspected binaries. This plot shows that the radius measured at a
given luminosity for both clusters is incorrect by about 20% in the M-dwarf regime; with the older Praesepe
exhibiting a few per cent more inflation than the Pleiades.
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Figure 3.3: The relationship between R and Tsgp resulting from the fitting in Section 3.2. Also plotted are
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the theoretical isochrones resulting from the interiors of Baraffe et al. (2015), with additional isochrones for
previous ages of each cluster. The data not only prove a poor match for the canonical isochrone for the cluster,
but none of the theoretical isochrones at any age are able to reproduce the observed sequence.
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Figure 3.4: The measurements of R and Tsgp resulting from SED fitting for the sample of Pleiades members
in Lanzafame et al. (2017). The stars are colour-coded by the rotation rate samples which contain them. The
blue and red points denote slow and fast rotators respectively, with the gap rotators being shown in black.

radius measurements from the Rsini technique does not also show this could indicate
some systematic error in the technique at fast rotation rates. Moreover, the fast rotators
appear to be slightly more inflated than those with longer rotation periods, indicating

magnetism may be responsible for this inflation.

The implication of the fitting performed in this section is that the measured radius
and temperature of cluster members is inconsistent with those predicted by theoretical
isochrones. A crucial test of this hypothesis, and the SED fitting methodology itself, lies
with spectroscopy. Along with the shape of the spectrum, spectroscopic data provides an
abundance of temperature sensitive spectral features with which to thoroughly compare
both the measured and theoretically predicted temperatures. To perform a direct com-
parison, spectroscopic observations of a number of pre-MS M-dwarfs were performed

and subjected to the rigorous reduction process detailed in the Section 3.3.
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3.3 Spectroscopic Data Reduction

3.3.1 Target Selection

I selected the observation targets by plotting the theoretical and semi-empirical isochrone
amongst the members of each cluster in CMDs, shown in Figure 3.5. In the observational
plane, the discrepant region in T is evident as the theoretical isochrone for a given cluster
diverges from the observed sequence. The observing target selection strategy I adopted
for this work aims to sample stars which lie above the divergence, to be used as a control
sample, stars straddling the transition, to probe changes in physics across the boundary
between discrepant and non-discrepant Tef, and finally a sample in the discrepant region.
The non-discrepant control sample serve double duty, in so much as they can provide
corroboration to the flux calibration by providing a comparison to models resulting from
the isochrone. The targets chosen for observation, along with the isochrones that were
employed in their selection, are shown in Figure 3.5. The final spectroscopic targets from
each cluster are tabulated in Table 3.2 and Table 3.3 with initial estimates of their stellar

parameters.
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Figure 3.5: The target selection for both clusters in the colour-magnitude plane. The lines through the plot
are the appropriate isochrone for each cluster, generated from the Baraffe et al. (2015) stellar interiors and the
BT-Settl CIFIST stellar atmospheres. They have had the correct extinction and the distance modulus applied
to them. The blue and red lines are the theoretical and semi-empirical isochrones respectively. The black
points are photometry of known cluster members, from Rees (2017), including uncertainties. The green
points denote a target upon which spectroscopy was undertaken for this work. Note that care has been taken
to sample the affected parameter space as thoroughly as possible, given the constraints of the instruments.
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I initially derived parameter estimates by naively matching the observed K band
magnitude to the closest model on the appropriate isochrone. This method is effective
due to the strong correlation between mass and K;-band luminosity at low masses, as
shown in Figure 3.6. However these parameters are far from a robust means of stellar
characterisation; as the entire knowledge of the star is none-the-less being drawn from
a single data point. Although, as demonstrated in Section 1.6.1, the differences between
the model and observed colours are negligible in the K;-band, we are also none-the-less
drawing our estimations from interiors with known issues. In addition, as you will note
from Table 3.2 and Table 3.3, drawing physically meaningful estimates of precision and
uncertainty for derived parameters is somewhat problematic. The uncertainties presented
in tables are driven solely by the K,-band photometric uncertainty, and do not account for
any systematic uncertainties inherent in the parameter estimation. It was the desire for
reliable and well conditioned stellar parameter estimations that initially drove attention
towards the spectral energy distribution fitting method used pervasively throughout the

remainder of this thesis.

3.3.2 Observing Methodology and Spectroscopic Data Reduction

These sections are combined because the requirements of the subsequent data processing
is stringent enough as to largely dictate observing methodology; thus it would be counter-
productive to discuss each in isolation. The data for this investigation were collected at
the William Herschel Telescope (WHT) on the nights of the 19" and 20" December 2015.
The low-resolution, broad coverage spectroscopy and photometry were collected using
the the Auxiliary Camera (ACAM; Benn et al. 2008) mounted at the folded Cassegrain
focus of the WHT. The data reduction pipeline used for this spectroscopic data reduction
consists of shell scripts, and Fortran and Python software written by me. The format for
the data during this reduction is the native format of the ARK software package, also
written in Fortran. Due to this compatibility, and its maturity, I adopted some of the ARK

software and libraries where appropriate to reduce development time.

To effectively compare to the models, an observing methodology was devised to

accurately reproduce the spectral flux density of the observed targets while maintaining
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Figure 3.6: The parameter matching performed on the J vs. J - K isochrones.

the integrity of spectral features. The entire reduction process thatI devised to accomplish
this is shown schematically in a reduction cascade in Figure 3.7. All of the spectroscopic
observations were performed using both a 2 and 10 ” slit, which henceforth I will term
narrow slit and wide slit respectively. Although the stars are point sources on the sky,
both the atmospheric seeing, and the finite radius of telescope aperture cause the light
to be spread in a circular distribution across the image plane. This is characterised by
measuring the atmospheric seeing with differential image motion monitor (DIMM), and
the intrinsic Airy disc of the telescope optics; the combination of which are represented
in the observed point spread function (PSF). For some portion of both nights upon which
these data were observed, the measured seeing alone exceeded 2.0 . Thus, the stars PSFs
were much larger than the width of the narrow slit. In these conditions, observing through
the narrow slitleads to considerable slit losses; resulting in an errant flux calibration. Thus,
to encompass the entire PSF of the spectroscopic targets and compensate for slit losses,
observations were also made through the wide slit. The 10 ” slit was chosen to maximise

slit transmission factor, and hence reproduce the actual flux from the star as accurately as



CHAPTER 3. CHARACTERISING DISCREPANCIES IN MODELS OF PRE-MAIN

86 SEQUENCE M-DWARFS
Calibrations Science

Bias Flat Field Arc Telluric Flux Standard Clelar GG|495
I I I I I

O O . o
Bias
Master . .
Flat Field

Wavelength .
Calibration . .
Instrument
Response
Function (IRF
. Product Match unction (IRF)
Atmospheric Telluric '
Raw Match Transmission Corrected IRF .
i Raw File (gri)
Bias Photorvr"\Fe?try ? ?
M;Iiztgr Calibration Product Flux Calibrated, Photometry
Corrected, Joined Spectrum

Figure 3.7: The reduction cascade for the data reduction presented in Section 3.3, shown as an association
diagram. The raw data files are shown at the top and map down to the resulting calibration products, which
match across to later stages of the reduction. The final result are the joined spectra shown in orange at the
bottom right.
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possible. However, as wider slits are deployed into the optical path the combined image
of the slit and stellar PSF becomes larger than the intrinsic resolution of the spectrograph
- leading to blending of spectral features. The solution to this trade-off was therefore to
derive a flux calibration with the wide slit spectra, and then apply the resulting calibration

to the narrow slit spectra; with a small addition correction to account for slit losses.

To make effective use of the entire 4000A - 9000A range of ACAM without any
contamination from second order diffraction, the entire sample were observed both with
and without the GG495 order sorting filter. This captures both the 4000 Ato 6500 A
and 4950 A to 9000 A ranges of the spectrum free of contamination from second order
diffraction. Before each spectroscopic science observations, g, r and i-band photometric
observations were performed with ACAM. These data are used to aid the flux calibration

in Section 3.3.2.6.

3.3.2.1 De-biasing and Flat Fielding

The first step of data reduction involves de-biasing and flat fielding our spectroscopic
observations. Electronics that readout CCDs induce a small bias current in the signal,
causing a nearly constant offset from zero across the image. To account for bias in the
observations, bias frames were observed at dawn and dusk and combined into a median
stacked bias frame for each night’s observing. I applied this by subtracting the pixel

values of the bias frame from the value of the corresponding pixel in each raw image.

Anideal flat field image is intended to compensate for imperfections in the response
of the CCD and telescope optics, and flatten the background of the image in both the
spatial and dispersion direction. However, the pixel-to-pixel variations in the dispersion
axis are negligible compared to the uncertainty in the spectra. Hence, I focussed on
flat fielding the spatial direction. The convention for flat fielding in the ARK software
involves multiplying each pixel in the source image by a coefficient, which is calculated

and supplied in images of the same dimensionality as the source image, such that

Fiiati,j = Fraw,i,j X Cflat,i,j, 3.1)
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Figure 3.8: A cut across the spatial direction of one of my spectra images. The blue line shows the shows the
spectral profile, around pixel 1000, complete with background. I have overlaid a scaled version of the same
crosscut from the flat field image in orange. By dividing this image by a normalised flat field, a crude flat
fielding can be performed.

where Fpat,i,j and Fraw,i,j are the values, in counts, contained in the pixel on the ith column
and j' row in the de-biased and flat fielded images respectively, and Cga,;,j is an arbitrary
dimensionless coefficient which flat fields the corresponding pixel. For this section, the
dispersion axis of the spectra is approximately aligned with the y-axis, such that lines of
constant j intersect the spectral profile nearly orthogonally. The operation is chosen to
be multiplicative as not only does this prevent divide-by-zero errors, which may result
from bad pixels on the CCD, but it also allows me to set unwanted areas of the frame to
zero. The challenging part of this process is deciding upon the process used to produce
the coefficients; which I resolved by experimenting with different methods. I initially
attempted generating coefficients by fitting a polynomial to the reciprocal of the flat field
pixel values along the dispersion axis of the CCD. An adequately high order polynomial
can capture the details of the background, an example of which is shown in Figure 3.8.

However, I found that even high order polynomials were unable to reproduce this over the
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Figure 3.9: An example of a typical flat field image (left), along side the coefficients produced from it (right).
Note how both the overscan region (black area around the border of the image) and bad pixels are zeroed in
the coefficients to prevent errors later in the reduction process.

full range of A, meaning that the flux at the blue end was lost. Thus I instead calculated
the coefficients using the mean normalised value of pixels along each row of the spatial

axis with

1 1
Cfiat,i,j = EN_H Z Fitij, (3.2)

where Fy ; ; is the value in counts of the corresponding pixel in the flat field image. An
example input flat field image and output coefficient image are shown in Figure 3.9.
This method does result in a small variation of the flat field between rows, however it
ensures that the integrity of blue flux is preserved. This method also does not remove
the gradient across the background, however this is addressed by the sky subtraction
performed during the extraction process. In addition, the coefficients outside of the
active area of the CCD, which are used for neither spectra nor reduction purposes, were
zeroed. This prevented edge effects of the detector and over-scan causing problems later
in the reduction process. At this stage, bad pixels were also dealt with, as pixels that
contained coefficients greater than the threshold value of 2.0 were zeroed and flagged in

a bad pixel mask.
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Figure 3.10: The track for flux standard star, GD 153, that served as the track for the extraction of spectra in
this thesis. A first order and second order polynomial fit to the profile at shown as the red and green dotted
lines respectively. The solution has converged well in both cases.

3.3.2.2 Extraction

The spectral flux is spread across a profile in the spatial dimension, which follows a line
through the x — y coordinates of the image plane. One may naively assume that this is a
straight line along the dispersion axis, however in reality the spectra are skewed across
the frame. Before extraction, I employed an algorithm which tracked the profile through
the image; outputting the track in the form of a polynomial which gives y coordinate as
a function of x. Initially, I wished to track the true curvature of the line across the CCD
using a high-order polynomial fit. However, as Figure 3.10 demonstrates, the true track
of the profile through the image plane can be well reproduced by low-order polynomials.
Consequently, I adopted a linear function for the track and compensated for the small
amount of curvature by using an adequately wide extraction window. As the tracking
routine can meet with problems when performed on a spectrum with lower SNR, it is most

effective when supervised and the outputs are manually checked. Thus the final track was



3.3. SPECTROSCOPIC DATA REDUCTION 91

generated using an observation of GD 153, as it exhibited a well defined spectral profile
across the entire dispersion axis. This single track was then used for all observations,
through both the Clear and GG495 filters; as the choice of filter does not have a strong

effect on the position of the profile.

When performing the extraction, the choice of algorithm is an important con-
sideration. Long exposures are required to obtain spectra with adequately high SNR.
Problematically, longer exposures inherently increase the likelihood of contamination
from cosmic ray hits to the detector. To mitigate against cosmic rays, the spectra were
extracted using the optimal extraction algorithm of Horne (1986). This algorithm masks
out pixels containing suspected cosmic ray hits while conserving photometric accuracy
when integrating over the spectral profile. The software for extraction and profile tracking

was provided by the ARK package.

3.3.2.3 Wavelength Calibration

Once successfully extracted, the spectra are contained in the pixel number—count plane. To
convert the counts into physically meaningful fluxes, one must first impose a wavelength
scale. Both the slits and filters in ACAM are mounted in filter wheels, which have a small
variance in their position when deployed into the optical path. This imposes the constraint
that an independent wavelength solution is required for observations after every slit /
filter deployment, even when returning to an identical configuration. A further issue
facing the wavelength calibration of the ACAM spectra is flexure of the instrument at low
elevation. For example, at an elevation of 15° the spectral lines can move on the ACAM
CCD by up to 5 px (+16 A) in the dispersion direction due to flexure'. The observations
performed for this thesis remained at an adequately high elevation such that they never
exceed an airmass of 1.5 (42°), aside from a single science exposure at an airmass of 1.65

(37°); ensuring the effect of flexure remained small.

To compensate for both effects, the observing strategy that was adopted ensured
that time on sky was maximised, while ensuring that arc lamp exposures were performed

after each slew and change of slit or grism. The arc exposures were performed using both

1. http:/ /www.ing.iac.es/ Astronomy/instruments/acam/ flexuretests.html
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Figure 3.11: An example of the second-order polynomial solution that maps pixels position along the
dispersion axis to physical wavelengths for this arc lamp exposure is shown in the top pane as a dotted line.
The arc lines used to fit this solution are shown as red circles; with their residual from the fit being shown in
the bottom pane.

CuAr and CuNe arc lamps, providing a wealth of spectral lines from which to draw a
calibration. The extraction of each of the arc spectra was performed along the same track
as those of the science observations in order to accurately reproduce the pixel scale. The
lines chosen for the calibration were drawn from the arc lamp maps of Hardy et al. (2013).
The positions of these well defined spectral lines were fit to provide a direct mapping
from the pixel space of the detector to physical wavelength space. I eventually settled on
a second order polynomial fit for the wavelength scale, as it was the least complex fit that
exhibited no systematic and whose residual RMS remained below 1 A. One of the final

solutions, along with the arc lines used to determine it, is shown in Figure 3.11.

Although the PSF of the star is guaranteed to fall within the slit during wide slit
observations, its position within the slit is not guaranteed to remain consistent between
slews. Thus despite a converged wavelength solution, there was a fluctuation on the

order of 20 A in the wavelength scales of individual wide-slit spectra. This proved a
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Target Name RA (J2000.0) Dec. (J2000.0) Spectral Type Source

BD +284211  21:51:11.1 +28:51:52 Op Oke (1990)
GJ 894.3 23:19:58 4 -05:09:56 DOp Oke (1990)
HZ 44 13:23:35.4 +36:08:00 sdO Oke (1990)
GJ 398.2 10:39:36.7 +43:06:10 DO Oke (1990)
GD 153 12:57:02.3 +22:01:53 DAw Moehler et al. (2014)

Table 3.4: This table shows all of the flux standards that were used to derive the instrument response for
reliable flux calibration of our observational data. Due to their being early-type, resulting in high SNR spectra
with few intrinsic lines, they also served double service as telluric calibrators (see Section 3.3.2.5)

considerable problem during telluric correction and flux calibration. To circumvent this
complication, the strong H, line in the early-type flux standards and telluric calibrators
was used to shift the wavelength scale such that the peak of feature corresponded to
6563 A. Due to lack of strong H, features which can be reliably fitted in late-type stars,
this method of correction was not applicable to the M-dwarf spectra. However, due to
being observed through a narrow slit, the final science observations remained unaffected.
The final wavelength solution was fitted and applied to observed spectra using software

from the ARK package.

3.3.2.4 Flux Calibration

The main concern of this project was the necessity of a robust fluxing solution for spectra.
Observations were carefully planned to make it possible for the spectra to be flux calibrated
to ~ 1%. Images from ACAM are output in the native counts space of the detector. To
draw valid comparisons between models and observations, these observational spectra
had to undergo a transformation to the flux space. To this end, throughout the night wide
slit observations were performed of spectrophotometric standards; stars whose flux as a
function of wavelength is empirically well determined. The stars that were adopted as
spectrophotometric standards are listed in Table 3.4, along with the source of the reference

spectra.

Before performing the final flux calibration, I corrected for telluric absorption us-
ing the process described in Section 3.3.2.5. An instrument response function (IRF) was
derived by first calculating F, /count within a number of wavelength bins. F, /count was

calculated for each wavelength bin by dividing the integrated flux of the spectrophoto-
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Figure 3.12: The measured ACAM instrument response functions for the clear (blue) and GG495 (red)
filters. The observations are denoted by semi-transparent black points, with each star being represented by
a different symbol. The observations have been offset to lie atop one another. The ryyrc system response has
been overlaid to illustrate the transition region between the two when joined.

metric standard in each bin by the counts from the observed spectrum. The mapping
between F, and counts for each spectrum as a function of wavelength was then derived
by fitting a third order polynomial to the data in the resulting F, /count — A plane. To
achieve a robust fit of this function all spectrophotometric standards were fit simultane-
ously. Their baseline F, /count was subtly different, hence a small multiplicative offset
was applied such that they lie atop the first reference spectrum. The resulting IRFs for
the Clear and GG495 observations in ACAM are shown along with the observations used
to derive them in Figure 3.12. Both the wide and narrow slit spectra were flux calibrated
with the final IRF resulting from this process. To correct for slit losses in the narrow
slit spectra, both spectra were binned into 100 bins and the wide slit flux in each bin was
divided by the narrow slit flux in each bin. The ratio of fluxes was then fit with a low-order
polynomial to yield a multiplicative slit correction as a function of wavelength. This slit
correction function was finally applied to the narrow slit spectra, bringing its flux close
to parity with the wide slit spectrum. The flux calibration was determined and applied

to counts space spectra using software from the ARK package.
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3.3.2.5 Telluric Correction

The spectroscopic observations are from a ground-based observatory, thus they are sub-
ject to considerable amounts of telluric absorption and emission. The telluric emission
lines were removed during the extraction process, as the optimal extraction algorithm
performs a sky subtraction (Horne 1986). However, extraction does not compensate for
telluric absorption, which I instead compensated for using the MOLECFIT code of Smette

et al. (2015) and Kausch et al. (2015).

The methodology employed by this code first involves determining abundances of
the required atmospheric chemical species. For fitting of the atmospheric absorption,
the telluric calibration stars 22 Tau and A Cancri were chosen for Pleiades and Praesepe
targets respectively. Early-type stars make ideal telluric calibrators, as their spectra are
relatively free of intrinsic spectral features. Additionally, their high luminosity means
that high SNR observations are achievable at much shorter exposure times than later-
type stars at an equivalent distance. Observations of the appropriate telluric calibrator
were made between science observations throughout the night, to ensure that the airmass

and changing atmospheric conditions were well sampled.

The MOLECFIT code first fitted the continuum with a polynomial, so the spectra
could be normalised. For the purposes of this experiment, I chose to use a third order
polynomial. Once normalised, the abundances were determined by fitting synthetic
transmission spectra to the normalised calibration spectrum. To achieve a convergent
fitting of the line profiles, I limited the selection of species that were fit to O, and H,O;
the two main contributors to atmospheric extinction at optical wavelengths. I initially
included O; in the molecules that were fit, however MOLECFIT found constraining the
Chappuis bands that occur between 4000 and 6500 A to be problematic, so it was neglected
during the final fitting process. Because these broad absorption features occur in the flux
standard observations, they are accounted for during the flux calibration process anyway.
To include line profiles for O, and H,O, as well as enough continuum to obtain a robust fit,
Iopted to use the region of spectrum ranging from 6700 to 8400 A, as this allows constraints
to be placed on all abundances without risking contamination from Ha absorption in the

A0 and B9 telluric standards. The transmission of the atmosphere was then calculated by
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performing a radiative transfer simulation of the atmosphere; which included absorption
appropriate to the abundances that had been fitted, as well as the state of the atmosphere.
The standard equatorial atmospheric profile derived by J. Remedios? was used for the
radiative transfer calculations, with refinements provided by the on-site meteorological
conditions during each exposure. The surface-level humidity, atmospheric pressure and
ambient temperature for this process were supplied by the National Schools Observatory,

who constantly monitor the conditions at the nearby Liverpool Telescope®.

You may have noted the feedback loop between telluric calibration and flux cali-
bration in Figure 3.7. This is because I wished to perform a telluric correction on flux
standards in their native counts space, before deriving an IRF. However, to determine
physically meaningful abundances from telluric calibrators, MOLECFIT fits spectral fea-
tures in the flux space. Hence, to remove the telluric contamination before deriving the
final IRF, I first fluxed the telluric calibration stars, then performed the MOLECFIT fitting
on them to determine abundances. The calculated transmission was then used to correct
the counts space spectra. Of course, the flux calibrators will have initially had telluric
absorption evident in their spectra, so they were once again fitted, this time with the

telluric absorption corrected, to determine the final IRF.

3.3.2.6 Ideal Fluxing

At this point, thanks to the initial flux calibration and wide slit correction, both ends of
the narrow slit spectra were flux calibrated and free of slit losses. However, by comparing
the folded photometry, produced from the flux corrected narrow slit spectra, with the
observed photometry, I found that there was still a small residual of about 3%. Hence,
to correct for this, I wrote software to perform an ideal fluxing on the narrow slit spectra
before joining. The ideal fluxing is simply derived by folding the fluxed, narrow-slit
spectrum through the system responses corresponding to the available photometry, in
this case (g7)wrc for the blue end and (ri)wrc for the blue end, and comparing it to said
photometry. This comparison allowed me to draw correction factors for the flux that fell

within each filter. A linear fit was performed to these correction factors, meaning that

2. http://eodg.atm.ox.ac.uk/RFM/atm/
3. https:/ /www.schoolsobservatory.org/obs/weather?tel=It


http://eodg.atm.ox.ac.uk/RFM/atm/
https://www.schoolsobservatory.org/obs/weather?tel=lt
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a small correction for colour and flux could be applied individually across the entirety
of both ends of each spectrum; effectively allowing the colour to slightly pivot around
the rwrc-band. This is termed the ideal flux calibration, as it acts to adjust the flux, and
colour, of the spectrum to directly match that of the photometry. The ACAM photometry
observed during the same run was calibrated from the INT-WFC photometry of Rees
(2017). This was then used to verify that the target stars had not significantly varied
in brightness between the epochs within which each catalogue was observed. As the
INT-WEC system responses were used for the folding in this process, the ideal fluxing
was performed relative to the WFC photometry; as opposed to that from ACAM. This
method provided the sole flux calibration for Melotte 22 PPL 2, for which no wide slit
spectrum was observed owing to time constraints. However, due to the poor quality of
the spectrum, this target was omitted from the proceeding analysis. To verify the quality
of the flux calibration, I performed the brutal test of folding the observed spectra through
the gwrc and iwgc system responses and comparing them directly to the photometry. The
residuals of this comparison are shown in Figure 3.13 as a function of (g — i)wrc colour.
This demonstrates that my flux calibration pipeline was able to reproduce both the overall
colour and flux within the individual bands well, showing an RMS in residual of 1.4%,

and a small systematic on the order of 1%

3.3.2.7 Joining Spectra

Throughout this process, there have been two pipelines working in parallel to treat the
clear filter and GG495 observations separately (see Figure 3.7 for a schematic represen-
tation). To produce a complete visible spectrum, they require joining together. To join
them, I initially attempted writing software to splice the spectra in an area of continuum
at 6940 A; however this resulted in an unphysical discontinuity if not performed carefully.
Hence, my final solution was to transition between them smoothly across the rwgc filter.
This represented a well defined region of spectrum for which the flux was known via
photometry, providing a means of flux normalisation. The fluxes from both input spectra
were combined across the filter by performing a smooth linear transition between both
spectra. The flux calibration was maintained while avoiding discontinuities by adjusting

the normalisation of the both spectra such that their fluxes when folded through the
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Figure 3.13: A comparison between the folded magnitudes derived from the flux calibrated spectra and the
observed photometry. The top pane shows the difference between the iyypc-band magnitudes and the bottom
plane shows the difference between the (g — i)wrc colours. The sample is shown with their accompanying
uncertainties, determined during folding from the uncertainty in the spectral flux density. The colour is in
good agreement with observations—a result of performing the ideal fluxing across (gri)wrc. The flux is
also in good agreement with photometry, with the accuracy potentially suffering towards dimmer, redder
stars. However, as the reddest star remains consistent within uncertainties, this could merely be the result of
an increasingly large scatter, as opposed to a systematic effect.
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system response matched that of the observed photometric magnitude in that band.

3.3.3 The Improved INT-WFC System Responses

An integral ingredient in reliable synthetic photometry is well characterised system re-
sponse functions. The filters mounted in the ACAM filter wheel are very similar to those
mounted in the Isaac Newton Telescope’s (INT) Wide Field Camera (WFC), which them-
selves closely resemble those of SDSS. The SDSS system responses are well constrained,
and presented in Doi et al. (2010). However, those available for the WFC only combine
filter throughput and CCD quantum efficiency. This led Bell et al. (2012) to calculate their
own INT-WEFC system responses, which included the reflectivity of the telescope mirror,
the transmission of the prime focus corrector optics, the quantum efficiency of the detector
and the filter response. Atmospheric transmission was accounted for by incorporating
a model of the La Palma atmosphere derived by King (1985). Unfortunately, the King
(1985) model does not incorporate telluric absorption bands, so Bell et al. (2012) estimated

atmospheric absorption using the spectrum of an F8 star.

During telluric correction, MOLECFIT performs a full radiative transfer calculation
of the transmission of the atmosphere from the fitting performed on each calibrator.
Consequently the atmospheric transmission as a function of wavelength, including the
molecular bands whose abundances were fitted, are available as a by-product of this
process. Hence, the aforementioned atmospheric transmission derived by Bell et al. (2012)
was substituted for the theoretical transmission function derived from 22 Tau, observed
through a narrow slit. The airmass of this observation was 1.33; close to the mean airmass
of our observations. The effect of this substitution can be seen in Figure 3.14. These are
the responses that have been adopted for synthetic photometry performed throughout

this chapter.

3.4 Generating Synthetic Spectra

To draw meaningful comparisons between models and observations, one must ensure
that their characteristics match as closely as possible. My spectroscopic observations

suffer the limitations of coarse spectral resolution, making it impossible to scale up to



CHAPTER 3. CHARACTERISING DISCREPANCIES IN MODELS OF PRE-MAIN
100 SEQUENCE M-DWARFS

1.0

0.8 1

0.6 1

Sx

M
0.4 1

0.2 1

0.0

0.8 1 Sol

Proxima Cen

0.6 Vega

Fy

0.4 1

0.2 1

0.0 T A T T T T T T T
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

A (A)

Figure 3.14: The improved INT-WEFC responses (solid lines) are plotted over the INT-WFC responses from
Bell etal. (2012). The crucial distinction between these two sets of responses is that the new ones use a fit of the
observed atmospheric transmission at an airmass of 1.33, whereas the dashed responses use an atmospheric
transmission model from King (1985) at an airmass of 1.4 combined with the atmospheric absorption bands
from the spectrum of an F8 star.
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compare with the models. Thus I wrote a piece of software which processed the syn-
thetic model atmospheres in such a way that they correspond closely to what would be
observed by ACAM. As with the grid from which synthetic photometry were produced
in Section 2.1.4, I first interpolated the model grid to match the required Teg and log(g)
(see Section 2.1.3 for details). Preserving the flux in models is important when produc-
ing synthetic photometry, however particular care must be taken to preserve both flux
and spectral features when producing synthetic spectra. Fortunately, the bilinear inter-
polation method devised in Section 2.1.4 was designed with this purpose in mind, and
endeavours to preserve temperature sensitive features. Unlike the grids, which I simply
downsample with a flux conserving algorithm, spectroscopic data require more attention
to detail. The shape of spectral features in models is determined by the intrinsic shape
of the lines, however for instruments such ACAM the line spread function of the optics
causes considerable spread away from the intrinsic profile. To correctly account for the
line spread function of ACAM and preserve the flux, I performed a Gaussian convolution
across the entire synthetic spectrum to emulate this line spread function. Thus, the in-

tensity for a given bin I, ; in the spectrum with the appropriate line spread for ACAM is

given by
j+k 2
1 _(Ai-19)
IA,]' = Z I/\,i e 202 AAZ', (3.3)
==k oV21

where Ay is the central wavelength of the jth bin of the destination wavelength scale, A;
is the central wavelength of the source model spectrum, k is the number of pixels in the

source model scale that lie within 100 of Ay and o is defined as

__EWHMxD

, 34
2V2In2 G4

where FWHM is the measured full width at half maximum (FWHM) of the line-spread
in the destination spectrum and D is the dispersion of the instrument. Intrinsically, the
spectral lines in arc lamps are narrow, thus the majority of their spread is caused by the
line spread function of the spectrograph. Thus, by measuring the width of spectral lines in
the combined arc lamp spectrum, I was able to determine the line spread function for the

instrument. I determined a FWHM = 2.0px to match well the spectroscopic observations
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Figure 3.15: The measured FWHM of the line spread function of ACAM, as measured from lines in arc
lamp exposures. I adopted the value of 2px, as this encompasses the mean line spread measured for the
instrument.

from ACAM (see Figure 3.15) and D = 3.3 A px_l.

Finally, the synthetic spectra must be transformed from their native space of mean
disc intensity at the stellar surface to the flux as observed from earth. Thus the flux
density F, of the final synthetic spectrum is given by Equation 2.2. The angular radius of
the source, which acts as the dilution factor, was set individually for each target using the
fitting performed in Section 3.2.1 and Section 3.2.2, depending on the comparison being
drawn. An extinction appropriate for the cluster which contains the target star was then

also applied to the synthetic spectrum (see Section 2.1.7 for details of this process).

To verify the accuracy of this process, I used the parameters determined from fitting
constrained to the isochrone (detailed in Section 3.2.2) to generate synthetic spectra for
each of the targets. I then folded the resulting synthetic spectra through the appropriate
bandpasses, using the same method as in Section 2.1.4 to produce synthetic photometry.
This was then compared back to the magnitude and colour prescribed by the isochrone,
which were shown to be in good agreement. It was by comparing this folded synthetic
photometry to the colours and magnitudes predicted by the theoretical isochrone, which
uses the same stellar atmosphere grid to generate bolometric corrections, that allowed me
to discover the problems caused by the default sampling of the stellar interiors addressed

in Section 3.5.3. Spectroscopic outputs of all synthetic spectra used in this experiment are
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Figure 3.16: An example output of all the synthetic spectra required for the comparison. The spectra
are coloured corresponding to Teg, given the radius for the star and placed at 10 pc for comparison. This
demonstrates that the interpolation and Gaussian convolution in tandem are able to emulate synthetic spectra
from ACAM.

shown in Figure 3.16, demonstrating the accuracy of the ACAM line spread function.

3.5 Results and Discussion

The culmination of all of the work in this chapter is a powerful test of both the methods
devised for this thesis and the physics of the input models for theoretical isochrones.
The SED fitting process yielded reliable stellar parameters for cluster members in the
Pleiades and Praesepe. This permitted me to perform an exploration of the luminosity—
temperature-radius relationships for pre-MS stars, and directly compare them to those
dictated by the theoretical stellar interiors. Meanwhile, these parameters were used as
the inputs to synthetic spectra, which can be directly compared to robustly flux calibrated
observed spectra. Thus, using the work laid out in this chapter, I have produced the
theoretically consistent spectra via two orthogonal methods. While acting as a test of
both the flux calibration and the parameter estimation, whose success is indicated by
broad agreement between continuum flux and temperature sensitive spectral features,

this comparison also serves as a diagnostic check for opacities of molecular species in
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M-dwarf photospheres; as inconsistencies should be readily apparent when compared.

3.5.1 Comparison Between Observed and Synthetic Spectra

I have established that the interior models do indeed suffer missing physics for pre-MS
stars, as exhibited by their inability to reproduce the stellar sequences of either of the
studied clusters (see Section 3.2.3). However, this does not address potential problems
with the stellar atmospheres. In performing the previous experiment, I have made a tacit
assumption that the atmospheres are accurate enough to produce synthetic photometry
to fit the SED. However, the SED probes the overall shape and continuum flux of the
photosphere, which has not so far shown inconsistencies. Though this does not allow me

to comment on the opacities of specific species within the atmospheres of low-mass stars.

Thus the aim for the flux calibrated spectra was twofold. First, it does indeed allow
me to verify how well the optical component of the SED agrees with the synthetic models.
The flux calibrated observations are entirely empirical, thus represent a completely or-
thogonal means of verification. Once the overall reliability of the atmosphere models has
been assessed, I can then progress to scrutinising the accuracy of individual features to

test the hypothesis that inconsistencies are due to incorrect opacities in molecular species.

The comparison of spectra can be performed trivially be simply overlaying them.
Deficiencies in any part of the process will result in a difference between the two. This is

precisely what I have done in Figure 3.17 and Figure 3.18.

By performing the same fitting with the constraint that the solution is bound to the
isochrone, the resulting comparisons between the models and observations are shown
in Figure 3.19 and Figure 3.20.  From these comparisons we can spot the important
differences between these two fits. Indeed, it does appear that the fluxes are incorrect
for the isochronal fits, a result of the incorrect temperature and radius being prescribed
by the interiors. As a result of this the isochronal temperature Tef iso does not reproduce
the overall shape of the spectra. The free temperature radius fitting on the other hand
provides models whose continuum is an excellent match to that of the observations. This

is unsurprising, given that the grids used for fitting and model spectra originate from
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of the lines denote the Tspp of the generated models, determined in the photometric fitting. The fluxes of
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Figure 3.19: A comparison between the observed, flux calibrated spectra (solid lines) and the model spectra
(dotted line) corresponding to the best fitting isochrone constrained fit for each of the Pleiades targets. The
colours again denote the Tsgp of the models. As previously, the fluxes of observations are adaptively binned
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Figure 3.20: As Figure 3.19, except for the targets in Praesepe.
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the same stellar atmosphere grid, and that their T is imposed as my Tsgp, especially
at wavelengths that fall within photometric bands. This also shows that indeed the
bands for a number of molecular species, including TiO and CaH, are inconsistent with
observations, indicating issues with their opacities. In addition, the width of the Na
feature at 5890 A is under-predicted by the models, and the K and Na features at 7665 A
and 8190 A respectively appear at much lower Te than is suggested by observations. Of
particular concern is the large disagreements between the observed and synthetic spectra
shortward of about 5500 A. Comparisons in this region indicate that more opacity is
required in the models to allow them to match the flux of observations across a wide

range in Teg; potentially implicating incomplete line lists.

3.5.2 Comparison between SED and Spectroscopic Temperatures

Along with a direct qualitative comparison of my observed spectra with the models, I also
quantitatively measured their spectroscopic temperature Ty, using spectral index fitting.
To do so, I implemented a Python code, based on the spectral index fitting methodology
of Covey et al. (2007), to draw measurements of Ty, by measuring the mean fluxes of a
selection of atomic and spectral features and fitting them to a grid of synthetic indices;
generated from BT-Settl CIFIST atmosphere models. This method was chosen as it does
not rely on normalised spectra, and instead measures the flux of spectral features relative
to the mean fluxes of nearby regions of continuum. The spectral indices that were used
for this work are the single numerator indices from Covey et al. (2007), and are listed in
Table 3.5. As all of the spectroscopic targets are late-type stars, I excluded those tuned for
early-type stars (Ca K, Hs, Ca 4227 A, Na D, H,,, Fe 14383 A, Fe 14405 A, Hy, Ca16162 A,
H,, Call 8662 A, Fe 18689 A), as well as the blue colour index. I note in passing that I have
also omitted the CaH III index at 6975A due to the continuum region being too narrow
for the resolution of my intermediate dispersion spectra. I also note that, although this
method is spectroscopic based, the final estimate draws heavily upon the red and G-band

colour indices; which mimic my SED fitting-based approach.

I performed spectral index fitting on all of the flux calibrated spectra, which are

shown alongside the equivalent Tsgp measurement in Table 3.6. The poorly localised
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Name N Start (A) N End (A) D Start (A) D End (A)
G-band 4285.0 4315.0 4260.0 4285.0
Mg 15172 A 5152.7 5192.7 5100.0 5150.0
VO 7434 A 7430.0 7470.0 7550.0 7570.0
VO 7912 A 7900.0 7980.0 8100.0 8150.0
Nal8189 A 8177.0 8201.0 8151.0 8175.0
TiO B 8400.0 8415.0 8455.0 8470.0
TiO 8440 A 8440.0 8470.0 8400.0 8420.0
CrH-a 8580.0 8600.0 8621.0 8641.0
Red Colour 8900.0 9100.0 7350.0 7550.0

Table 3.5: The spectral indices, from Covey et al. (2007), used to measure the the spectroscopic temperature
from my intermediate dispersion spectra. For this fitting, the spectral indices tuned to early-type stars were
omitted.

uncertainty bounds for the R and Tsgp values is the result of both the large (0.05 mag)
floor value imposed for the photometric uncertainty, and the poor constraint on log(g).
These were solved in the proceeding chapters by reducing the floor value of photometric
uncertainties and imposing a wide tophat prior on log(g) using stellar models. Covey
et al. (2007) state that the combination of their algorithm and the indices derived from
spectral template libraries yields spectral types to £2 subtypes for late-type (K and M)
stars. Taking the measured Tsgp as the ground truth for the purposes of this comparison,
this does indeed seem to be borne out. However, the formal uncertainty estimates of T,
appear to be underestimated; presumably due to the spectral indices not being a smoothly

varying function of Teg.

3.5.3 Sampling of the Stellar Interiors

The isochrones used in this work are produced by multivariate interpolations of the un-
derlying stellar models. To provide the isochrone, the underlying stellar interiors are first
interpolated in age to produce a single star sequence appropriate for the cluster. The
spacing of points in the output isochrone is directly taken from the spacing of initial mass
Mipni points in the input interiors. To complicate the process, the interiors need not be
spaced regularly in My, and the resulting spacing in T and log(g) will not necessar-
ily correspond with the models in the atmosphere grid. Hence, the transformation to

the observational plane is performed by interpolating the model bolometric corrections
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Name R (Ro) Tsep (K) Tsp (K)
Melotte 22 DH 293 0.588%0-03 4100*;0° 4290*70
Melotte 22 SK 378 0.549%0-0% 407050 3760,
Melotte 22 SK 709 0.581 70042 3780+20° 3600,
V392 Tau 0.54270:005 3580170° 3370*1
LM Tau 0.598~0:02 3350745 3290*1
V849 Tau 0.476-0:012 33007150 3170*1
V368 Tau 0.41970:098 3290179 300019
Melotte 22 DH 345 16 0.39870-0% 31807150 3050™9,
V442 Tau 0.378 000 32307155° 3080,
V734 Tau 0.31470053 309071;% 3040,
Melotte 22 DH 365 0.241700% 307075 280077
Melotte 22 HH]J 16 0.19570:0%0 301077, 278010
Melotte 22 PPL 2 0.155%0-003 282050 2710*3
NGC 2632 JC 180 0.698™0:0%0 4100*3 3800,
EO Cnc 0.66270:09 4130*)2° 3870*30
NGC 2632 ]C 167 0.62470:012 3790+21° 3570+
NGC 2632 JC 165 0.627-0:5% 38201279 4090*+°
2MASS J08391453+2001191  0.590~0-0% 3560721° 34801
NGC 2632 JC 250 0.555_0007 365072)° 3550710
2MASS J08402657+2015132  0.500-) 7 34401550 3310}
NGC 2632 HSHJ 284 0.4347000° 31807, 3200,

Table 3.6: A comparison between the temperatures derived from both SED fitting, and spectral index fitting.
I'have also provided the radii corresponding to the Tsgp measurement for reference. They are shown along
with their uncertainties, which are generated using the upper and lower bound values found from their x

grids (see Section 2.1.5 for details).
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Figure 3.21: The Pleiades isochrone generated from the Baraffe et al. (2015) interiors at default sampling
is shown in green, with the mass points of the underlying interiors indicated with square markers, in the
(gwrc — Kukipss) — Teff plane. The isochrone generated from the quadratically interpolated interiors is
shown in red, with triangles indicating the interpolated mass points. The underlying bolometric corrections
for log(g) = 4.5 and log(g) = 5 are interpolated in this Tef range by the interiors, and are shown as black
circles on the plot. At the original mass spacing the interiors are improperly sampling these bolometric
corrections. The interpolated interiors are much better able to reproduce this sequence.

for each point on the interpolated single star sequence. This chain of interpolations is
predicated on the understanding that the underlying stellar interiors provide adequate
sampling in mass points to reflect changes in the photosphere encoded into bolometric
corrections. Our exploration of the Pleiades single star sequence with the folded stellar
atmospheres shows that the Baraffe et al. (2015) isochrones suffer from a paucity of Min;
samples. As shown in Figure 3.21, this can cause the interiors to poorly sample the bolo-
metric corrections, leading to discrepancies in magnitudes and colours. Our solution to
this was to quadratically interpolate the interiors to a factor of 10 more points in mass.
Figure 3.21 shows how the models with finer sampling are better able to reproduce the
colours of the bolometric corrections. Figure 3.22 shows the difference that increased
sampling offers as a function of Tg. This suggests that we could expect discrepancies of

up to gwrc — Ks,ukipss = 0.1 —0.5 in the colours of the model isochrones for the Pleiades.

What remains for debate is how physical rapid changes in colour actually are. As
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Figure 3.22: The discrepancy between the quadratically interpolated and non-interpolated Baraffe et al. (2015)
Pleiades isochrone in the (gwrc — —Kukipss) — —Teft plane. This suggests that colour discrepancies of up
to gwrc — Ks ukipss = 0.1 — 0.5 can be expected, depending on temperature, at Teg < 6000 K. When the
isochrone becomes more finely sampled at Tegr > 6000 K the discrepancy largely disappears.

is demonstrated in Section 4.2, the CIFIST atmospheres, and therefore bolometric correc-
tions, exhibit a discontinuity at 4000 K—indicating that the discrepancy is unphysical.
Regardless, this demonstrates that one should carefully consider the sampling of inter-

polations when producing isochrones.

3.6 Chapter Summary

I have used photometric and robustly flux calibrated spectroscopic data to perform an
exploration of the temperature-radius relations of the single star sequence in the Pleiades
and Praesepe cluster. Colours and magnitudes in both clusters indicate inconsistencies
between observations and theoretical models. Indeed, by measuring the radii and tem-
peratures by employing my SED fitting technique to cluster members, this assertion is
corroborated. This SED fitting methodology allows the decoupling of the stellar interiors
from the atmospheres, permitting both to be studied in isolation. By using the tempera-

ture and radius measurements as inputs, I was able to produce a set of synthetic spectral
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observations, which could be directly compared to spectroscopic observations. A direct
comparison was drawn between them by plotting one atop the other. This study shows
that the continuum fluxes of both are in excellent agreement, with many spectral features
being replicated between the two. However, it was also clear that some opacities still
need refining. The interiors were tested by plotting the isochrones alongside the Tsgp — R
measurements themselves. The SED fitting yields an empirical single star sequence for
each cluster, which was found to be inflated by between 8 — 20% for Teg < 4000 K. Thus
I conclude that the stellar interiors are missing key physics that is required to properly
describe the interiors of pre-MS stars. Furthermore, I have been able to confirm that
isochrone fitting performed in the theoretical plane only on low-mass pre-MS cluster

members will yield ages that are a factor of 2-3 too short for both studied clusters.
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Chapter 4

Exploring the M-dwarf
Luminosity—-Temperature—Radius

Relations using Gaia DR2

“There is a way out of every box, a solution to every puzzle; it's just a matter of
finding it.”

— Jean - Luc Picard
I established in Chapter 3 that pre-MS, low-mass stars are inflated above theoretical
models. The work in this chapter demonstrates that their MS counterparts are also

inflated. Importantly, I will assess how this inflation varies as a function of stellar mass

and whether all stars at a given mass are equally inflated.

4.1 Method

Given a precise parallax one can integrate the area beneath the SED to find the luminosity
of the star, while the shape of the SED is a function of temperature. With these, the
radius of the star can be calculated. Importantly, both are a function of only the stellar
photosphere; allowing the fitting process to be uncoupled from the model interiors. Hence

using just synthetic photometry from model atmospheres I have developed a method that
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Figure 4.1: The system responses used to generate the synthetic photometry. The photometry is comprised
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uses broadband photometry, readily available from public surveys, to sample the SED

and infer these properties.

The bands that were used, which comprised broadband photometry from optical,
near-infrared and mid-infrared surveys, are detailed in Table 4.1. The system responses
used to generate the synthetic photometry are plotted in Figure 4.1, along with a model
spectrum of an M-dwarf star. This helps justify my motivation for the choice of data and
photometric systems. First, all photometric systems correspond to all sky surveys whose
system responses are well understood. This means that not only can I draw a sample of
stars from the entire sky, but the characterisation of the system responses means that the
folded photometry will closely replicate the original photometry. Using these surveys, I
also have excellent coverage of the stellar SED, with the optical Gaia prism photometry

(Gaia Collaboration et al. 2016; Gaia Collaboration et al. 2018b) sampling blue-ward of the
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blackbody peak, 2MASS NIR photometry (Skrutskie et al. 2006) sampling the peak itself
and AIIWISE photometry (Wright et al. 2010) constraining the Rayleigh-Jeans tail down
to fluxes 3 orders of magnitude lower than the peak. This combination means that I have
the ability to accurately constrain the colour of the objects, and thus the Tsgp, and make

a robust estimate of the luminosity of a star from its entire SED.
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4.1.1 Target Selection

Each catalogue used is shown in Table 4.1 along with the relevant publications. I began
by selecting all stars from Gaia DR2 with ret < 100pc from Bailer-Jones et al. (2018). I
chose this distance cut because the systematic uncertainties in the Gaia DR2 parallaxes
generally remain below 0.1mas (Lindegren et al. 2018). This constraint guarantees that
my distances are not affected by Gaia’s astrometric systematics while remaining good to
2% uncertainty in luminosity. Interestingly, by considering Equation 1.58, one can see
that at the short distances (< 0.1kpc) and small distance uncertainty (< 1%) used in this
catalogue, the terms that provide the correction for both the Lutz & Kelker (1973) bias
and the asymmetry in the transform between parallax and distance become negligible;
meaning that there is only a small benefit in using the full Bayesian treatment over simply
inverting the parallax for this input sample. This preliminary sample comprised 138279
sources. Each photometric catalogue was then cross matched with this preliminary
sample and the quality cuts shown in Table 4.1 applied. I omitted the Wy band from the
fitting process due to its poor signal-to-noise, and because W3 does an adequate job of
characterising the Rayleigh-Jeans tail of even the coolest stars in the sample. The final
input catalogue was then constructed by combining the photometry for only the stars
common to all source catalogues. The number of sources remaining in the final input

catalogue is 15765.

4.1.2 Flagging

In addition to the initial cuts that were performed on the source catalogues, which already
produced a stringently constrained sample, I also performed additional post processing
to produce flags to be included with the fitted parameters. As the Ggp and Ggp fluxes are
integrated over a 3.5 X 2.5 arcsec? field they are susceptible to contamination from both
bright, nearby sources and sky background. Following the method of Evans et al. (2018),
I applied the bad_phot photometric contamination flag by o-clipping sources in the flux

excess ratio vs. colour plane. See Figure 4.2 for the resulting classification after 8 iterations.

The Gaia astrometric data can similarly suffer contamination from crowding and
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Figure 4.2: This figure illustrates the sigma clipping performed on the final catalogue. The black dashed
line shows the final linear fit to the clipped sample after 8 iterations. The red points in this plot are those
lying more than 50 away from this line, and are thus flagged as bad_phot. Those points remaining in blue
lie within 50 of the fit, and are considered to have uncontaminated Gaia photometry.
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binaries, causing both exaggerated and errant parallaxes (Lindegren et al. 2018). For a

similar sample in Lindegren et al. (2018), the criterion
I < 1.2 X max (1, e—0~2(GG—19-5>) @.1)

was used to clean the sample of poor astrometry. Thus, any source that does not satisfy

this expression is flagged with the bad_astr flag in the final catalogue.

There are also those sources for which the fitting could not converge on a reasonable
solution, probably because their true Tsgp lies outside the bounds of my sample space.
Thus sources lying on either Teg bound are flagged as bad_teff in the final catalogue.
Finally, those sources which remained unflagged were assigned the good flag, meaning
their input data should be free of both photometric and astrometric contamination, and

they should have a well constrained Tsgp.

4.1.3 Photometric Fitting

I performed the fitting on the input catalogue using the methodology described in Sec-
tion 2.1. For o; I adopted a floor value of 0.01 mag, which corresponds to roughly 1%, for
all photometric uncertainties in the entire sample. Due to computational time constraints,
performing a full 3D grid search on the full sample was intractible. Thus, the stellar radii
were determined using the analytical minimisation method detailed in Section 2.1.6. I
randomly picked 158 stars from my input catalogue, 1% of the sample, upon which the full
grid search was performed. I used this subset to determine uncertainties characteristic of
the full sample. The 68% confidence contours from which those uncertainties are derived

are shown in Figure 4.3.

4.2 Results

Of the 15765 targets in the input catalogue, 15279 of them are flagged as good. The
sample have been plotted in R — Tsgp space in Figure 4.5, along with a selection of solar
metallicity isochrones at 1 Gyr and 4 Gyr. The 68% confidence contours in the R — Tsgp

space from the subset described in Section 2.1 are shown in Figure 4.3. These show that
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Figure 4.3: The 68% confidence contours resulting from the full 3D grid search I performed on 1% of my
sample (158 stars) in Section 2.1.

I am able to determine the radius to a median statistical uncertainty of 0.009 R¢ (1.6%),
ranging to a maximum uncertainty of 0.025 Rg (2.6%). I found the mean uncertainty in

temperature Tsgp was 35 K (1.0%), ranging to a maximum of 100 K (2.7%).

The gap in the stellar sequence at 4000 K in Figure 4.5 is caused by a discontinuity
in the CIFIST BT-Settl model grid where the monotonic relationship between bolometric
correction, defined as My, —M; where M; is the absolute magnitude of the jth photometric
band, and Teg breaks down (Figure 4.4). I found that comparisons between observations
and the SED resulting from the atmosphere at 4000 K produce a higher x? than those from
the neighbouring atmospheres, causing my fitting to favour the SEDs produced from the
atmospheres adjacent to that at 4000 K. That this is a property of the model, as opposed to
the fitting process, is supported by the fact that when the fitting is performed with grids
derived from different atmospheres, as with the sub and super-solar metallicity grids in

Section 4.3.2.5, the discontinuity disappears.
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Figure 4.4: The gap in the stellar sequence at 4000 K evident in Figure 4.5 is due to a discontinuity in the
CIFIST BT-Settl model grid. By plotting the bolometric corrections from the Gaia DR2 bands this effect
is clearly seen. The plot shows log(g) = 4.0,4.5,5.0 and 5.5 (black, blue, green and red respectively) to
demonstrate that this discontinuity affects the entire span of log(g) sampled by my grid.
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4.2.1 Radius Inflation

In Figure 4.5 the purely theoretical models undershoot the median of the radius distri-
bution for all M-dwarf stars within my sample. However the PARSEC 1.2S model, which
is calibrated by adopting an empirical T — 7 relation derived from DEBs as the bound-
ary condition for the stellar interiors, traces the median radius well for the whole sample.
When inferring the radius inflation of a sample of stars, the choice of parameters is of vital
importance. As Figure 4.3 shows, the uncertainties in Tsgp and R are strongly correlated;
one cannot simply trace upwards from the theoretical sequence to infer the inflation. As
mass is most closely related to luminosity, the radius inflation should in fact be measured
in the more fundamental Lsgp — R plane, shown in Figure 4.6. I measured the radius in-
flation for each of the models used in this work by picking a point of identical luminosity
from the models and finding the difference between the prescribed model radius and my

inferred radius.
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4.2.2 Temperature - Radius Relation

The fits can be used to derive a relation between temperature Tsgp and radius R. I split the
sample into 10 K bins and took the median value from each bin. I required a minimum
of 11 sources per bin, otherwise the entire bin was ignored. I fitted the medians with
a 2"_order polynomial, which is shown in Figure 4.7 as the blue line, with the black
points being the median values. The error bars are the standard deviation of the radius

distribution within each bin. The relation that was fitted from this sample is

Rit(Tsep) = — 3.842 +2.046 x 107 Tepp — 2.328 X 1077 Tepp,

3000 K < Tep < 4400 K. (4.2)

Using the same bins as before, I also drew the points that lie at the 16" and 84"
percentiles to find the value of 1o for each bin. These points were used to fit further
2nd_grder polynomials to yield upper Rpigh and lower Rjoy confidence radii for each bin.

The upper and lower bound radii are given by

Rhigh (Tsep) = — 3.336 + 1.835 x 107> Tspp — 2.090 x 1077 T2y,
3000 K < Tspp < 4400 K, (4.3)
Riow (Tsep) = — 3.258 + 1.674 X 107 Tspp — 1.792 X 1077 &y,

3000 K < Tspp < 4400 K. (4.4)

These functions are also shown in Figure 4.7. These bounds are separated by 4% at 4400
K, increasing to 12% at 3500 K and reaching a maximum separation of 30% at the lower

temperature limit of 3000 K. This scatter is further discussed in Section 4.3.

4.2.3 Luminosity—-Radius Relation

Temperature-radius relations are useful for the purposes of exoplanet host characterisa-
tion, however the stellar modelling community relies on more fundamental parameters
when testing models. I have therefore transformed the temperature-radius data into the
arguably more fundamental luminosity—radius plane, and used it to fit a relationship us-

ing a similar methodology. However, deriving a relation between luminosity L and radius
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Figure 4.7: The Tsgp — R relationship derived for the sample. The final relationship, given by Equation 4.2,
is the solid blue line along with its 68% confidence intervals shown in red. The black dots show the stars
used to perform the fit of the relationship. The red points bordering the upper and lower bound lines also
show the stars used to fit them. The points in bins flagged as not good, and thus not used during fitting, are
shown with semi-transparent markers.

R is more problematic, as high order polynomials are required to capture the detail in
the relation. Despite falling below the majority of the radius distribution, the isochrones
do a good job of predicting the shape of this dataset; suggesting the models capture the
physical changes involved. Hence I created the Lsgp — R relationship as corrections to the
Dotter et al. (2008) 4Gyr solar metallicity isochrone. I subtracted the radius given by the
isochrone from the median, upper and lower bound radius in each bin, leaving the dif-
ference between theoretical and observed radii. Then, to get the relation, I simply added
the correction to the radius prescribed by the isochrone. This relation holds for values
between Lggp = 0.003 Lo and Lsgp = 0.1 Lg. The correction to the Dotter et al. (2008)

isochrone is given by

Rﬁt(LSED) = RDOS(LSED) +0.0136 + 0.7087Lsgp — 7.6924LéED,

0.003 Lo < Lsgp £ 0.1 Lo (4.5)

where Lggp is the luminosity derived from my SED fitting and Rpos(Lsgp) is the theoretical

radius of the star predicted by the Dotter et al. (2008) isochrone at the given luminosity.
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Figure 4.8: The luminosity - radius relationship plotted atop the stars from the sample. As with Figure 4.7,
the relation (blue) and upper and lower bound lines (red) are shown, with the points from which each of the
lines were fit in the corresponding colour.

The upper and lower bounds for the relation are given by

Rhigh (LSED) = RDOS(LSED) +0.0288 + 0.7662L5ED - 5.4204L§ED,
0.003 Lo < Lsgp < 0.1 Lo (4.6)
Riow (LSED) = RDO8(LSED) +0.0026 + 0.2696Lsgp — 4'2515]“%ED’

0.003 Lo < Lsgp < 0.1 Lo. 4.7)

The correction and final relation are shown atop the data in Figure 4.9 and Figure 4.8

respectively.

4.3 Discussion

4.3.1 Comparison with Literature Radii

To compare my measure of radius inflation with that from DEBs, interferometry and
Lsgp + Tsp (Mann et al. 2015) I limited the data to the range 3400 K to 4400 K, where all
methods are well sampled. The mode of all methods coincides at 3—7% inflated compared

to the models. In Figure 4.10 I plotted the distribution of relative radius residual from
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Figure 4.9: The radius inflation of my data from the 4 Gyr Dotter et al. (2008) solar metallicity isochrone
[R — Rpos(L)]/R. The median radius inflation within each luminosity bin is shown as a black point. The
luminosity—radius correction to this same isochrone is overlaid as a dashed red line.
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Equation 4.5 (see Section 4.2.3). The DEB and interferometric samples show medians at
around 3% lower than mine. The Lggp + Tsp median corresponds well with mine, however
it does exhibit a second peak at 7% under inflation, though it is difficult to be sure whether
this is a genuine feature of the population. There is also a long tail of outliers on the high
inflation wing of my distribution; I suggest that these are a small number of binaries that

have leaked into the sample.

In Figure 4.11 I compare the interferometric, eclipsing binary and Lsgp —Tsp datasets
with mine as a function of luminosity, as I require that the datasets have another physical
quantity in common in addition to the radius. For the reasons outlined in Section 4.3.2
luminosity is the best abscissa to use. Although the eclipsing binaries are normally
viewed as a mass-radius dataset, the eclipsing binaries to which I am comparing also
have temperatures derived from the spectra or photometric surface brightness, which
in combination with the radius allows me to calculate a luminosity. The natural plane
for the interferometric data is the luminosity0-radius plane. The Lsgp + Tsp dataset can
again be converted into Lsgp-radius. The data presented in this paper are derived in the
Tsep—radius plane, and so can be converted into the Lsgp — R plane. I emphasize that all
of these comparisons can only be made assuming Tsgp = Tsp = Tef = Tor, where Ty, is
the brightness temperature measured for some eclipsing binaries. As Figure 4.11 shows,

all datasets show a radius inflation with respect to the models.



CHAPTER 4. EXPLORING THE M-DWARF LUMINOSITY-TEMPERATURE-RADIUS
132 RELATIONS USING GAIA DR2

Detached Eclipsing Binaries

.:

—_

Ut
L

0.101

0.051

Normalised Density

0.00 - - e 1
—20 —10 0 10 20

Interferometric

e
—
Ut

0.101

0.051 jj

0.00 : -
-10 0 10
Lsgp + Tsp

Normalised Density

e
—_
ot

0.101

e

)

at
|

Normalised Density

0.00 - : .
—20 —10 0 10 20

[R — Rst(Lsep)]/R (%)

Figure 4.10: A comparison between the distributions of the relative residual of my measured radius R with
respect to my Lggp — R relation R (Lsgp); defined in Equation 4.5. My sample is shown in black, with each
of the others overplotted. Both the interferometric and DEB sample have median values about 3% below
mine. The Mann et al. (2015) sample exhibits a bimodal structure, with the more pronounced peak occurring

close to my median.
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For the luminosity range for which my Lsgp — R relation is valid, there are a total
of 29 DEBs, 16 interferometric stars and 154 Lsgp + Tsp stars. I determined which side of
my median radius these samples fall. I found 62% of the DEBs, 88% of the interferometric
stars and 79% of the Lsgp + Tsp sample to lie below my median; meaning that all 3 other
methods yield a lower median radius than mine. This skew to lower radii across this

range supports the distributions shown in Figure 4.10.

This difference between the methods might be due to starspots. First, any method
which measures a spectroscopic temperature, especially in the optical, will not be sensitive
to spots, because the immaculate photosphere spectrum will dominate the spot spectrum,
leading to an over-prediction of the T and under-prediction of radius. This affects both
the eclipsing binary and Lsgp + Tsp sample and would result in radii smaller than those
measured by my method. Although the Lsgp + T, and interferometric methods integrate
under the SED of the star to find the luminosity, as SED fitting does, many of their objects
saturate in WISE and so lack mid-IR coverage. Not sampling the region of the SED
where the spotted photosphere has its strongest contribution relative to the immaculate
photosphere, and may make a non-negligible contribution to the overall stellar flux, may
cause the measured luminosity to be too low, again resulting in radii that are too small. In
summary, I found the radii measured by all methods to be inflated above the theoretical

sequence, albeit I measure radii that are larger than the other methods.

4.3.2 Contributions to the Radius Scatter

Figure 4.11 demonstrates that for a given luminosity there is a 3 —7% spread in measured
radius. It is important to determine whether this radius spread is real, and if so what

effects contribute to it.

4.3.2.1 Could observational uncertainties contribute to the scatter?

I first wished to establish whether the uncertainties in my radius determination could
explain the spread before searching for a physical origin. Figure 4.3 shows 68% confidence
contours for the uncertainty in R and Tsgp for an unbiased sub-sample of my catalogue,

which was discussed in Section 4.1.3. The mean uncertainty in this selection of stars is
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1.6%; much less than the 3 — 7% spread that is observed. Furthermore I find a similar (but
slightly larger) spread in the literature radii, with 62% of the DEBs, 56% of interferometric
stars and 63% of the Lsgp + Tsp sample lying within my relation’s 68% confidence bounds.

Thus I conclude that the spread is not the result of observational uncertainties.

4.3.2.2 Does flux contamination from faint counterparts contribute to the scatter?

Wilson & Naylor (2017) show that the AIIWISE bands can suffer contamination due to faint,
hidden sources falling within the large PSFs of brighter stars. As well as making accurate
catalogue matching problematic in crowded fields, this can also cause contamination to
ANIWISE photometry. Even a modest flux contamination from a stray faint source within
the WISE PSF has the potential to cause a large discrepancy in both the retrieved Tsgp and
R. Fortunately, Wilson & Naylor (2018) provide a catalogue of Gaia DR2-WISE matches
in the galactic plane, which allows me to assess the effect of contamination on my sample.
According to their work, of the 2334 sources that match between the catalogues, fewer
than 4% were likely to be contaminated by 10% or more. The rest of the sky is less prone
to crowding, so I suggest that 4% of sources suffering contamination is the upper limit for
my entire sample. Were the AIIWISE photometry affected by contamination due to the
presence of an unseen counterpart, I would expect the contaminated sources to exhibit
more inflated radii than clean sources. However, I found no correlation between radius
inflation and the predicted flux contamination or probability found by Wilson & Naylor
(2018); indicating that contamination in the WISE bands is unlikely to contribute towards

the spread.

4.3.2.3 Do starspots contribute towards the radius spread?

Starspots introduce a second, cooler component to the SED; effectively diverting some
of the luminosity of the star away from the immaculate photosphere. Jackson & Jeffries
(2014) used a polytropic model including starspots to reproduce the radii of pre-main
sequence (PMS) stars in the Pleiades and NGC 2516, which required spot coverages of
between 35 and 51%. Using these models, they were able to find an 8% inflation in the
stars when compared to the Baraffe et al. (2015) stellar models. Higl & Weiss (2017) were

also able to explain observed radii with starspots by covering large percentages (up to
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44%) of the surface of their models with spots.

My fitting assumed that the entire surface of the star is a single temperature. To
examine the effect of starspots on my measured radii I wrote software which produced
a catalogue of simulated magnitudes of stars with spots and ran this catalogue through
the same fitting process used for the observed sample. I simulated the input catalogue
by sampling from a grid with log(g) = 5.0 and varying spot filling factor y between
y = 0.0 — 1.0; whereas in all grids used for fitting data I have assumed y = 0.0 (no
spots). The composite photosphere consists of an immaculate and a spotted photosphere
with temperatures Timac and Tspot Tespectively. In determining the temperature of the
spotted photosphere,  make the reasonable assumption (see Berdyugina 2005) that Tspot =

0.8 Timac for 5000 K < Timac < 3000 K. The synthetic magnitudes Z; in this grid are given

by
//\ ((1 - y)IAimac + yIAspot) SA,idA

jA frSa,idA

where Ijimac and Ijspot are the intensity of the immaculate and spotted photosphere

Z/\,syn =-25 10g10 |: + m;, (48)

respectively. The effective temperature Teg of these spotted models becomes

W=

Teff,spotted = ((1 - 7/) Ti%nac +Yy T;Lpot) . (49)

To produce the simulated input catalogue I iterated through immaculate photo-
sphere temperature, adopting the effective temperature of the combined photosphere as
given in Equation 4.9. Each Tef spotted Was mapped onto the corresponding stellar radius
given by Equation 4.2. T utilised a Monte Carlo method to account for the uncertainties,
which could potentially add to the spread. For each band I generated a CDF for the
uncertainties in the observed catalogue and Monte Carlo sampled it for each simulated

star. With this catalogue I then performed a fitting using the unspotted grid.

The fits resulting from this process are shown in Figure 4.12. What this makes clear
is that spot coverage can contribute towards the perceived spread in radius. Aty = 0.0and
y = 1.0, Irecover the original Tsgp — R relation as would be expected. For 0.0 < y < 0.8 the

stars scatter to lower radii at increased Tsgp, conserving the overall luminosity. However,
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Figure 4.12: The points show the radius and temperature retrieved by fitting a catalogue of simulated
synthetic photometry with varying spot filling factor y. I show 0% (y = 0.0) and 100% (y = 1.0) spot
coverage, which lie along the relation, along with y = 0.8 which lies at the extremity of the spread. I show
the 68% density bounds of my Tsgp — R relation as grey dotted lines.

for 0.8 < y < 1.0 the fitting see the effects of the spotted photosphere in the SED and
the begins retrieving temperatures closer to those of the spots, making measured radii
become closer to the relation. This has the effect of producing a scatter in my relation
which closely corresponds to the 68% confidence lines resulting from my Tsgp — R relation

presented in Section 4.2.2.

4.3.2.4 Correlations with activity

Although I have shown that the effect of starspots on my measurement technique is able
to explain the observed scatter, this hypothesis would necessitate a correlation between
measured radius and magnetic activity. To probe magnetic field strength I checked for
correlations between radius inflation and markers of magnetic activity, the most reliable
of which is rotation period Pry. I investigated a correlation with rotation period by
assembling a sample of periods from McQuillan et al. (2013) and McQuillan et al. (2014)
observed using Kepler. Unfortunately, there are only 21 targets in common with my

sample, so I chose to supplement these catalogues with rotation periods determined from
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Figure 4.13: The correlation between my measured relative radius residual [R — R(L)]/R and rotation period
Prot (left) and Rossby number Ro (right). The sample is divided between saturated (triangles) and unsaturated
(circles) activity samples. The transition is marked by a grey dashed line and determined to be Ro = 0.1, both
observationally (Newton et al. 2017) and theoretically (Reiners et al. 2009). I removed spurious correlations
with spectral type from the right pane by performing a linear fit, shown as a black dotted line, in the
accompanying left pane. Several stars at extreme inflations are not visible in the plot. The colour map
denotes [R — Rg;4(Lsgp)]/R.

Gaia DR2 lightcurves in Lanzafame et al. (2018) which are based on sparser lightcurves,
but add an appreciable number of stars; resulting in a final sample of 189 stars which
have rotation periods. I used a theoretical expression for convective turnover time 7.,
provided by Cranmer & Saar (2011), to determine the equivalent Rossby number Ro =
Prot/ T for each star. To avoid spurious correlations with spectral type, I first performed
a linear fit on both Pt and Ro vs Tsgp and corrected for it in my final correlations,
which are shown alongside the fits in Figure 4.13. Rotation alone is adequate to show
that my sample lacks appreciable correlations between magnetism and radius inflation,
and is the most fundamental because more rapid rotation rates presumably promote

a stronger dynamo action within the stellar interior. However, Wright et al. (2011) and
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Newton et al. (2017) show that X-ray luminosity and H, excess correlate well with rotation
period in their unsaturated regimes. When unsaturated both can be used as additional
markers of magnetic fields emergent at the stellar surface. It has been shown both
observationally (Wright et al. 2011; Newton et al. 2017) and theoretically (Reiners et
al. 2009) that activity saturates at around Ro ~ 0.1, meaning that 31% of my rotation
sample would be in the unsaturated regime. Although rotation itself does not saturate,
I have split the rotation periods into saturated and unsaturated sub-samples around this

threshold to aid comparison with the following samples, which do.

I investigated the correlation with X-ray luminosity by crossmatching with DR6 of
the XMM-Newton Serendipitous Source Catalog (3XMM DR6; Rosen et al. 2016), yielding
95 stars. This sample was divided into saturated and unsaturated sub-samples using the
threshold Lx/Lpe = 3 x 107#, defined from the lower limit of the spread around the
saturated sample of Wright et al. (2018); meaning 53% of my stars are unsaturated. The
X-ray luminosities are plotted as a function of relative radius residual in Figure 4.14. To
avoid a spurious correlation with spectral type, and ensure that I only probe excess X-ray
emission due to activity, as before I performed a linear fit to the data in the Tsgp — Lx /Lpol
plane and used it to correct the values of Lx/Lpo. Both the fit and final correlation with
relative radius residual are shown in Figure 4.15. Both with and without the correlation
with Tsgp removed, the sample shows no strong correlation between X-ray luminosity and
radius inflation. I note that there are a number of highly inflated stars that only appear
in the saturated regime, suggesting these occurrences may be causally linked. However,
as shown by Figure 4.10, these stars are sitting on the high inflation wing of the residual

radius distribution, hence I conclude they are likely to be binaries.

Finally, I investigated the correlation with H, by matching my catalogue with both
DR2 of the INT Photometric Ha Survey of the Northern Galactic Plane (IPHAS2; Drew
et al. 2005; Barentsen et al. 2014) and the VST Photometric Ha Survey of the Southern
Galactic Plane and Bulge (VPHAS+; Drew et al. 2014). This results in a total of 573 stars

which have H, magnitudes. I have presented this sample in terms of L, /Lo using

Ly,
Lol

= Wg,x, (4.10)
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Figure 4.14: My sample of stars with X-ray luminosity Lx /Ly, against relative radius residual [R —
Rgt(Lsgp)]/R. The sample is divided into stars that lie in the saturated (triangles) and unsaturated (circles)
regimes. This transition is marked by a grey dashed line drawn at Ly /Ly = 3 x 1074, which corresponds to
the lower limit from Wright et al. (2018). Several stars are omitted from the high inflation wing of this plot.
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Figure 4.15: As Figure 4.14, but accounting for a potential spurious correlation in temperature. The left pane
shows a correlation in my sample between Ly /Ly, and Tsgp, which is corrected for in the right plot using a
linear fit (black dotted line).
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where y, introduced in Walkowicz et al. (2004), is the ratio of the continuum flux near
H, to the bolometric flux of the star; the values of which were interpolated from Table
8 of Douglas et al. (2014). The equivalent width of the H, line Wy, due to activity was

determined by measuring the excess flux across the H, band, of width AAy,, using
WHa — A/\H(l [1004 (mr_mHU() - (BCHU(_BCV) — 1] , (411)

where m, and mp, are the observed magnitudes, and BC, and BCp,, the inactive model
bolometric corrections. This sample is shown in Figure 4.16, along with the saturation
threshold of Ly, /Lpol = 10~* (Newton et al. 2017; Douglas et al. 2014). I note that some 53
of my Wg, measurements are mildly negative, which indicates quiescence, thus I count
these among the unsaturated sample. However due to resulting in negative Ly, /Lpol
they do not appear on Figure 4.16. This demonstrates that my H, sample spans both the

saturated and unsaturated regimes, with around 25% of the sample being unsaturated.

To summarise, I have found that markers of both interior field strength (Pro) and
surface field strength (Lx/Lyo and Ly, /Lpo1) show no appreciable correlation with ra-
dius inflation for M-dwarfs. All three markers are sampled in both the saturated and

unsaturated activity regime, with between a quarter and a half of each being unsaturated.

4.3.2.5 How does metallicity affect the radius spread?

Differences in stellar metallicity could also cause a scatter in radii (Berger et al. 2006).
A reduction in metallicity, and thus opacity, would allow the star to more efficiently
radiatively dissipate internal energy, resulting in a smaller radius at the same luminosity
(Berger et al. 2006). Stars within the solar neighbourhood show a metallicity spread
with 0 = 0.2 dex (Boone et al. 2006) with the lower extremity at [M/H] ~ —0.6 (Neves
et al. 2013). Comparing the Dotter et al. (2008) solar metallicity isochrones with those of
[M/H] = +0.25 in luminosity - radius space, gives a difference in radius of about +4%. So,
theory suggests the contribution to the spread is minimal. However, Mann et al. (2015)
and Rabus et al. (2019) show a correspondence between metallicity and relative residual

in radius for a number of M-dwarf stars.
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Figure 4.16: The sample of stars for which I have H, luminosity Ly, /Ly against relative radius residual
[R — Rgit(Lsgp)]/R. The sample is divided into stars that lie in the saturated (triangles) and unsaturated
(circles) regime, delimited by the dashed line drawn at Ly, /Lpo = 1074, corresponding to the value from
Douglas et al. (2014) and Newton et al. (2017)
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Figure 4.17: The correlation between radius residual and [Fe/H] for stars within the sample. The metallicities
are from Terrien et al. (2015) (orange) and Gaidos et al. (2014) (blue). The radii and uncertainties are from
my sample and fit using only solar metallicity atmospheres.

To investigate this in my data, I assembled a sample of stars from my catalogue
with measurements of [Fe/H] from Terrien et al. (2015) and Gaidos et al. (2014). The
sample which matched ranges between -0.5 < [Fe/H] < 0.5, indicating that my catalogue
is relatively free of M-subdwarfs ([Fe/ H] < -0.5). I verified this using the Besancon
population synthesis model (Robin et al. 2003), which yielded population sizes consistent
with my sample and indicated = 6% of my sample has [M/H] < —0.5 and = 0.5% having
[M/H] < -1.0, as well as reproducing my distribution of metallicities well for [M/H] >
-0.5. I ensured that these targets lie within the valid range of of the Lsgp — R relation
from Section 4.2.3 and I avoid the high inflation wing of the sample by choosing inflations
[R—Rpos(L)]/R < 12%. I established in Section 4.3.1 that the radii from Mann et al. (2015)
are inconsistent with my own, so I chose not to use them. The radius residuals resulting
from the luminosity correction are shown as a function of [Fe/H] in Figure 4.17. The

sample spans a residual of £6%, which appears to correlate strongly with metallicity, and
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corresponds well to the spread of metallicity in the solar neighbourhood.

This initially suggested that the spread was physical, and caused by metallicity,
however the correlation is steeper than predicted by theory. Furthermore, Ihad measured
all radii using only solar metallicity atmospheres. To determine the the error induced
by this I produced grids for [M/H] = +0.25 by interpolating synthetic photometry from
[M/H] = 0.5 and [M/H] = 0.0 grids ' 2. I fitted each star in the input catalogue with
all three metallicities, allowing me to produce a Lsgp — R relation for each metallicity
following the procedure from Section 4.2.3. I found that SED fitting is able to determine
luminosity consistently to within about 1%, regardless of which metallicity atmospheres
are used. Thus, using the median radius from each luminosity bin, which I interpolated
between bin midpoints, I calculated the difference between the radii measured at each
metallicity and the radii measured at solar metallicity as a function of luminosity. Hence, I
was able to measure the theoretical luminosity-dependent relationship between measured
radius and [M/H] in the form of a linear relationship, with gradient F(Lsgp); values for
which are tabulated in Table 4.2. This allowed me to determine the correct radius residual
for each star, which are shown in Figure 4.18, using

OR 1

& = g (R~ Re(Lsep) + F(Lsep) [Fe/H]), (4.12)
where Rgi(Lsgp) is the Lsgp — R relation given in Equation 4.5. The resulting corrected
radii were fit with to yield another Lsgp — R relation, which remains consistent to within
1% with the relation presented in Section 4.2.3 for 0.015 Lo < Lsgp < 0.09 L. When
corrected for metallicity, I found that the correlation between relative radius residual and

metallicity was no longer significant (see Figure 4.18).

Therefore, the correlation of radius with metallicity in Figure 4.17 is the result of
titting stars with a spread of metallicities with only solar metallicity atmospheres, which
determines Tsgp hence R incorrectly. Thus the observed correlation between metallicity

and radius spread in my sample is not physical and can be corrected for with accurate

1. To ensure solar abundance for all metallicities I used the BT-Settl AGSS2009 models, which adopts the
Asplund et al. (2009) solar abundances, as opposed CIFIST which uses those of Caffau et al. (2011).

2. The BT-Settl AGSS2009 model atmospheres are available from https://phoenix.ens-lyon.fr/Grids/BT-
Settl/ AGSS2009/SPECTRA /


https://phoenix.ens-lyon.fr/Grids/BT-Settl/AGSS2009/SPECTRA/
https://phoenix.ens-lyon.fr/Grids/BT-Settl/AGSS2009/SPECTRA/
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Lsgp (Lo) F(Lsgp) Lsep (Lo) F(Lsgp) Lsgp (Lo) F(Lsep)
0.0035 -0.0151 0.0365 -0.0668 0.0695 -0.0758
0.0045 -0.0188 0.0375 -0.0874 0.0705 -0.0436
0.0055 -0.0280 0.0385 -0.0857 0.0715 -0.0573
0.0065 -0.0342 0.0395 -0.0539 0.0725 -0.0480
0.0075 -0.0339 0.0405 -0.0811 0.0735 -0.0652
0.0085 -0.0411 0.0415 -0.0810 0.0745 -0.0584
0.0095 -0.0434 0.0425 -0.0641 0.0755 -0.0388
0.0105 -0.0436 0.0435 -0.0843 0.0765 -0.0432
0.0115 -0.0508 0.0445 -0.0675 0.0775 -0.0589
0.0125 -0.0553 0.0455 -0.0805 0.0785 -0.0278
0.0135 -0.0527 0.0465 -0.0602 0.0795 -0.0639
0.0145 -0.0563 0.0475 -0.0763 0.0805 -0.0604
0.0155 -0.0584 0.0485 -0.0742 0.0815 -0.0287
0.0165 -0.0630 0.0495 -0.0740 0.0825 -0.0409
0.0175 -0.0622 0.0505 -0.0643 0.0835 -0.0397
0.0185 -0.0676 0.0515 -0.0682 0.0845 -0.0606
0.0195 -0.0653 0.0525 -0.0601 0.0855 -0.0440
0.0205 -0.0695 0.0535 -0.0881 0.0865 -0.0219
0.0215 -0.0728 0.0545 -0.0593 0.0875 -0.0525
0.0225 -0.0751 0.0555 -0.0549 0.0885 -0.0344
0.0235 -0.0696 0.0565 -0.0607 0.0895 -0.0328
0.0245 -0.0756 0.0575 -0.0656 0.0905 -0.0501
0.0255 -0.0791 0.0585 -0.0598 0.0915 -0.0416
0.0265 -0.0769 0.0595 -0.0645 0.0925 -0.0185
0.0275 -0.0691 0.0605 -0.0702 0.0935 -0.0584
0.0285 -0.0767 0.0615 -0.0600 0.0945 -0.0371
0.0295 -0.0812 0.0625 -0.0543 0.0955 -0.0448
0.0305 -0.0665 0.0635 -0.0485 0.0965 -0.0211
0.0315 -0.0838 0.0645 -0.0396 0.0975 -0.0375
0.0325 -0.0881 0.0655 -0.0468 0.0985 -0.0257
0.0335 -0.0736 0.0665 -0.0671 0.0995 -0.0238
0.0345 -0.0812 0.0675 -0.0702

0.0355 -0.0697 0.0685 -0.0175

Table 4.2: The tabulated values for F(Lggp) in Equation 4.12. In between Lggp points we linearly interpolate
neighbouring values.
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Figure 4.18: As Figure 4.17 but with the correction from Section 4.3.2.5 applied. This correction accounts for
using only solar metallicity atmospheres to fit a range of metallicities.
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measurements of the stellar luminosity and metallicity. Mann et al. (2015) also found a
correlation between metallicity and radius within their sample, however it only appears
as a function of Tsp, not as a function of Mg,—a proxy for luminosity. Interestingly,
the interferometric and DEB sample show a very similar scatter to my uncorrected radii,
however I attribute this to observational uncertainty. The mean uncertainty in metallicity
from Gaidos et al. (2014) and Terrien et al. (2012) will result in a 1.7% spread in my
measured radius in Figure 4.18. Given that my median radius uncertainty from the fitting
process is 1.6% (see Section 4.2), this would be consistent with the 2.4% scatter seen in
Figure 4.18. There could also be an intrinsic scatter of the stars in my sample, but to
remain consistent with the spread it would have to be at most 1 to 2%. This leads me to
conclude that our knowledge of M-dwarf radii is currently limited by the accuracy and

precision of the metallicity measurement of the star.

4.3.2.6 The cause of the scatter - a summary

I have showed that faint contaminants in AIWISE photometry were not the cause of
the scatter (see Section 4.3.2.2). I have also established that the uncertainties in my
measurements were not able to explain the spread (see Section 4.3.2.1). I found that
extremely high starspot coverage in most of the population could explain the scatter. But
since stars with small spot coverages would have lower measured radii, and stars with
larger coverages, larger radii, this would imply a measured radius-activity correlation,
which I was unable to find (see Section 4.3.2.3 and Section 4.3.2.4). However, I found
that there is a strong correlation between [Fe/H] and the radius measured by SED fitting.
Although this could be misconstrued as a physical spread in radius caused by metallicity,
I found that in fact this correlation resulted from using solar metallicity atmospheres to
fit the SED of non-solar metallicity stars. When this is corrected for I found that the
correlation disappeared, resulting in a scatter of about 2.4% in the subset for which I
could find metallicities. This spread is consistent with the 2 to 3% found by Schweitzer
et al. (2019). Uncertainty in [M/H] measurements accounts for about 1.7% of this spread,
with my uncertainties in radius explaining the remainder. The accuracy of the measured
metallicities also makes determinations of effective temperature problematic, imposing

another limit on the accuracy of my radii. Therefore I suggest that the spread of this
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corrected radius distribution is currently dominated by the accuracy and precision of
current metallicity measurements (see Section 4.3.2.5) and the intrinsic spread in M-
dwarf radii is less than 1 to 2%. This well characterised radius residual distribution also
places an upper limit on the typical variability of spot filling factors of stars within the

sample of < 10%.

4.3.3 Explaining the Radius Inflation

I now address the question as to why the M-dwarf main sequence is inflated from theo-
retical predictions, and note in passing the problem also appears to apply to the pre-main
sequence (Jackson et al. 2018). Section 1.8.1 summarises our current understanding of
inflation—it is clear that the mechanism behind radius inflation in M-dwarfs remains a
contentious point. So far the most compelling hypothesis has been dynamo driven mag-
netic fields, which would inhibit convection and probably modify the specific entropy
in the convective region, and hence the internal structure of the star (see Section 1.4.1).
Stars below a mass of approximately 0.35 Mg are thought to have interiors that are fully
convective (Limber 1958), making this a satisfying explanation. If this were to be the
case, I might expect to see a spread in radius, from the theoretical non-magnetic models
to some level of maximum inflation, provided I sampled a large range of rotation rates.
However, I established in Section 4.3.2.5 that there is a tight (with perhaps a 1 to 2% intrin-
sic scatter) main sequence for M-dwarf stars, refuting this scenario. One could argue that
I have not adequately considered the case that radius inflation has saturated, much like
the activity does, for all of the stars in my sample. Figure 4.13 shows that I sample a large
range of rotation periods, including at least a quarter of the sample for which activity is
unsaturated. For saturation of radius inflation to be consistent with such tight a sequence,
it would have to occur at rotation rates much slower than both saturation of photospheric

activity indicators (at Ro = 0.1) and the slowest rotators in my sample Ro =~ 1.0.

A further argument against stellar magnetism being responsible for radius inflation
comes from the fact that that all of the indicators of magnetic activity I studied show no
appreciable correlation with measured radius residual (see Section 4.3.2.4). Iwould expect

to see correlations between the activity and radius inflation were magnetism responsible.
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Given these two arguments, I reluctantly conclude that stellar magnetism is currently

unable to explain radius inflation in main sequence M-dwarf stars.

4.3.3.1 Alternate explanations for radius inflation

It is unlikely that magnetic fields are the cause of radius inflation in main sequence M-
dwarf stars, so an alternate explanation must be sought. Metallicity is the main driving
force behind the measured radius scatter, however in Section 4.3.2.5 it was shown to be
caused by my measurement technique. This renders me unable to explain the inflated radii
of main sequence M-dwarfs. However, one avenue of inquiry comes from the PARSEC
1.25 models (Chen et al. 2014; Marigo et al. 2017) which adopts an empirical T — 7 relation
as the boundary condition to their interiors. Given the temperature of the outer boundary
of the stellar model interior, the T — 7 relation determines the optical depth at the outer
edge of this boundary, hence the efficiency of radiative dissipation through the stellar
atmosphere. A higher opacity at the boundary would reduce the efficiency with which
the star can dissipate energy, inherently reducing its measured effective temperature and
effectively blanketing the star. As Figure 4.5 and Figure 4.6 show, this modification does
a remarkably good job of characterising the degree of inflation and the intrinsic sequence

for early to mid M-dwarf stars.

4.3.4 Determining Accurate M-dwarf Radii

I showed in Section 4.3.2.5 that metallicity can cause problems when determining M-
dwarf radii. Using atmospheres of a different metallicity from the star being fitted causes
the retrieved temperature, and thus the radius, to be incorrect. However, I have devised

strategies for obtaining accurate M-dwarf radii in the face of these issues.

4.3.4.1 Without a metallicity measurement

If there is not a measured metallicity for a star, there are two strategies available. Firstly,
disregarding the metallicity of the star and fitting indiscriminately with solar metallicity
models yields radii accurate to better than 5%; in my case about 3.6%. For statistical
samples and less precise applications, this may be adequate. However, my method can

measure the luminosity of the star correctly to within a couple percent regardless of
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metallicity (see Section 4.3.2.5). Thus, one can use the measured luminosity along with
an empirical Lsgp — R relation, such as that in Section 4.2.3, to obtain correct radii. The

scatter about this relation ranges between 3.6% — 4.5%.

4.3.4.2 With a metallicity measurement

If the star has an accurate measurement of the metallicity, there are two more avenues
open. The simplest option is to perform the fitting with an atmosphere of the appropriate
metallicity. However for large samples it can be impractical to generate large grids of
synthetic photometry at a number of differing metallicities. So my other suggestion is
to follow the method presented in Section 4.3.2.5. This entails fitting the entire sample
with solar metallicity models and correcting for the metallicity. Both strategies are highly
dependent upon the accuracy and precision of the metallicity measurement. A metallicity
constrained to about 10% induces a scatter of about 1.7% in measured radius. However,
for cooler stars, with well constrained photometry and sufficiently accurate metallicities
(better than about 3%), radius measurements of better than 1% can be achieved with this

method.

4.4 Chapter Summary

I have measured the temperature, radius and luminosity of a sample of 15279 late K and
early M-dwarf stars using a modified spectral energy distribution fitting method. This
method requires only accurate photometry and precision astrometry and thus adds a
fourth method to those used to evaluate the veracity of stellar models. Importantly, this
method works natively in the Tef — R space which is crucial for the characterisation of
exoplanets. I have derived empirical Tsgp — R and Lsgp — R relations, which can be used
to characterise exoplanet host stars and validate stellar evolution models (Section 4.2.2

and Section 4.2.3).
The key conclusions of this chapter are as follows.

i. Currently, none of the purely theoretical stellar models can describe the mean radius

inflation of the main sequence at temperatures lower than about 4000 K. The measured
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radii are inflated by 3 — 7% compared to those predicted by models (Section 4.2.1).

ii. I have shown that M-dwarfs lie on a tight sequence (with a scatter smaller than
1 - 2%) (see Section 4.3.2.5). This is in conflict with magnetic models, which would
suggest a spread in radius, from the theoretical sequence for non-magnetic models to a
maximum inflation. I have also shown that there is no appreciable correlation between all
observational markers of magnetic activity and radius inflation (see Section 4.3.2.4). This
leads me to conclude that stellar magnetism is currently unable to explain radius inflation
in main sequence M-dwarf stars (see Section 4.3.2). Furthermore, this would explain the
unexpected result that detached eclipsing binaries are not inflated with respect to their

single star counterparts (see Figure 4.10).

iii. Idiscovered that fitting a distribution of metallicities with only solar metallicity models

introduces an apparent correlation between [Fe/H] and R (Section 4.3.2.5).

iv. However, I found that the SED fitting technique correctly measures the luminosity
regardless of metallicity, meaning that I can correct the measured radii. Without a mea-
sured metallicity I achieved a precision of 3.6%. However, this was improved to 2.4%
when corrected for metallicity. Given that the uncertainty in [M/H] accounts for 1.7%
of this spread, it is clear that the precision of metallicity measurements is currently the

limiting factor for this method (Section 4.3.4).

v. In the absence of metallicity measurements I present an empirical Lsgp — R relation

which can be used to measure correct radii to a precision of 3.6 — 4.5% (see Section 4.3.4).
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Chapter 5

Revising Exoplanet Host Radii using

Gaia DR2

“For me, it is far better to grasp the Universe as it really is than to persist in delusion,

however satisfying and reassuring”
— Carl Sagan

The ability to make accurate determinations of stellar radii and temperatures is of vital
concern for exoplanet characterisation, as measurements of an exoplanet’s properties are
inextricably tied to those of its host star. Throughout Chapter 3 and Chapter 4 I have
demonstrated the effectiveness of the fitting method detailed in Section 2.1 when applied
to long standing problems in stellar physics. Drawing upon the experience gleaned from
this previous work, in this chapter I will apply this fitting methodology to characterising
a small sample of exoplanet host stars. In doing so, constraints on the properties of the
hosts and exoplanets will be revised and improved. The outcomes of this will be critically
compared to the existing characterisation methods; which were reviewed in Section 1.9.
In line with exoplanet literature, throughout this chapter I adopt R« and R, as the radius

of the stellar host and exoplanet respectively.
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5.1 Input Catalogue and Motivation

The input sample for the fitting consists of 20 stars from the Panchromatic Exoplanet Treasury
Programme (PanCET, Sing 2016). This sample was chosen as they are stars for which
there are characterisations in literature, allowing for comparison with previously used
methods, and importantly their atmospheres have been well studied. Thus revising the
host parameters for these stars will allow the community to rapidly assess how their
climates will be impacted. Based on measurements from the literature, this sample spans
Tegr values of 3000 - 7000 K; which samples the domain occupied by around 90% of the
hosts of currently discovered exoplanets. This wide Teg range necessitates the use of UV
to mid IR photometry to thoroughly sample the SED for all targets. Due to the extremely
limited sample size, I did not require that the star was observed in all bands. However, I
did require that each star was sampled by at least 5 bands, causing GJ 436 to be omitted
from the final catalogue; owing to only having acceptable photometric data in the Ggp
and Ggrp bands. The surveys from which I drew photometry, along with the selection

criteria for the data, are detailed in Table 5.1. Thus the final sample contains 19 stars.

I detailed in Section 1.8.3 the process by which discovery and characterisation is
currently performed on exoplanet systems. This involves determining properties for
the combined stellar host-exoplanet system by fitting transit and radial velocity mea-
surements to models, and then deriving absolute properties for the hosted exoplanet by
setting the host star properties from stellar models and empirical relations. To validate
the veracity of the existing literature values for the stellar host parameters in my input
catalogue, I produced synthetic Gg-band photometry—using the same method as in Sec-
tion 2.1.4—at the distance prescribed by Gaia DR2 (Bailer-Jones et al. 2018) using the Tj,
and R, presented in the literature, and compared it directly to the observed Gg-band pho-
tometry from Gaia DR2. The lower uncertainty bound in Gg was produced by adopting
the lower uncertainty bound on R4 and Tsp, and the upper uncertainty bound on distance
7hi, and vice versa for the upper bound uncertainty. I note that the synthetic uncertainties
here likely represent an over-estimate of the true luminosity uncertainty. This is due to
the temperature and radius being correlated, and the joint distribution likely following

lines of constant luminosity. Hence, the combined bounds imposed by the marginal dis-
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Figure 5.1: The residual between the synthetic and observed Gg photometry of exoplanet hosts as a function
of temperature. The synthetic photometry were generated using stellar atmospheres from the Teg and Tx
presented in the literature and placed at the distance indicated by Gaia DR2 data. Note that the uncertainty
bounds in this figure are likely over-estimates, as I did not have access to the underlying luminosity posterior
distribution, and so were estimated from the uncertainty bounds in T;,¢ s f and Ry.

tributions of both Ts, and R« sample the extreme possible values of L. A more rigorous
treatment of these uncertainties would necessitate access to the underlying estimation of
the luminosity posterior distribution. The residual of the synthetic and observed G-
band magnitude is shown as a function of temperature in Figure 5.1. It is clear from this
figure that there are some issues with this sample of stars. A third of the stars in the
sample are further than 1o away from their observed Gg-band magnitude; which in itself
should not come as surprising, given that the presented uncertainties should encompass
two thirds of the probability in the luminosity posterior. However, the issue stems from
the RMS residual, which is on the order of 20% in luminosity. In previous chapters, my
technique provided luminosities to an uncertainty of ~ 1 — 2%, showing the potential for
an order of magnitude improvement over the literature. This is particularly evident in
the M-dwarf regime, where my methodology was shown in Section 4.3.4 to be effective

at achieving a mean uncertainty of 1% in Tsgp and 2.6% in R. when the metallicity of
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Figure 5.2: The coverage of all of the system responses used in the fitting process. The chosen systems
sample the UV (GALEX, dotted), optical (Gaia DR2, dashed), near-IR (2MASS, solid) and mid-IR (WISE,
dot-dashed). The model spectra correspond to the best fitting models for GJ 3470 (red) and WASP 79 (blue),
which lie at the Tggp extremities of the sample. This illustrates that the bands used in the fit are more than
adequate to sample the entire SED of all stars within the sample.

the target is known. Thanks to the advent of Gaia DR2, and the methodology presented
in this thesis, we now have the potential to improve the accuracy and precision of the

measured luminosities for exoplanet hosts, and the radius measurement of their hosted

exoplanets, by an order of magnitude.

5.2 Method

The observed SEDs upon which the fitting procedure is performed are compiled from
near-ultraviolet to mid-infrared archival survey data. The system responses of the bands
used are shown in Figure 5.2 with stars at both Tsgp extremities of the sample tojustify their
selection. I was careful to choose surveys whose characteristics and system responses were
well understood, so the synthetic photometry in the grids closely replicate the observed

photometry. Details of the input catalogue are presented in Section 5.1. Unreddened grids
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were once again generated following the methodology in Section 2.1.4. As previously, the
synthetic photometry for the grids was generated by folding the BT-Settl CIFIST stellar
atmosphere grid (Allard et al. 2012b) through the system responses corresponding to the
bands used for the fitting. As previously, I better constrained the 3D grid by applying a
tophat prior to log(g). This was accomplished by matching the Mg magnitude to the best
fitting point in the 4 Gyr Baraffe et al. (2015) isochrone and constraining the grid domain
to +0.5 dex either side of this central value; allowing for a change of up to nearly 60%
in radius. A Teg tophat prior was also determined by first performing an unconstrained
fit and by-eye selecting the temperature bounds that encompass all probability above
the constant background. As well as improving constraints upon Tsgp and R, bounds,
this process aids in verifying models. If the fitting converged on a boundary of this
grid subset, one could surmise that log(g) prescribed by the interiors is inconsistent with

observations; of which none did.

5.2.1 Photometric Fitting

Owing to a much smaller sample size than in Chapter 3 and Chapter 4, for each of the
stars in the sample I performed a full 3D grid search around the analytically determined
radius. This produced a cube of x? in Tes — log(g) — R4, from which uncertainties for
determined properties were drawn. As with Chapter 4, I adopted a floor on ¢; = 0.01 for

the fitting, to remain clear of systematics.

I demonstrated in Section 4.3.2.5 that for M-dwarfs fitting only non-Solar metallicity
targets with only solar metallicity atmosphere models induces an error in the measured
radii. Fortunately, I proposed a strategy for obtaining corrected radii for non-Solar metal-
licity M-dwarfs in Section 4.3.4. These exploit the fact that the SED fitting technique is
able to measure luminosity correctly regardless of disparity in metallicity between the
target and grid. As Figure 5.9 shows, only M-dwarfs and late K-dwarfs are susceptible
to this problem, meaning that only GJ 3470 and WASP-80 required correction; decreasing

their final measured radii by 1.4% and 0.6% respectively.
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Figure 5.3: Fits of exoplanet hosts resulting from the use of the method presented in Section 4.1.3 and
Section 2.1.6. They fits correspond to the WASP-121 (left) and WASP-80 (right); demonstrating fits to a bluer
and redder host respectively. The best fitting model for each target is shown in the top panel (red) along
with the photometry from which it was determined (black). The bottom panel shows the residuals of the
observed photometry from the best fitting synthetic photometry.

5.3 Results

The exoplanet host properties resulting from the fitting, with the M-dwarf radius cor-
rections applied, are shown with their associated uncertainties in Table 5.2. The entire
sample is shown in the Tsgp — R« plane in Figure 5.4, with the contours that denote the
68% confidence area in this space. With the revised stellar host properties comes revi-
sions in the exoplanet properties. To derive the revised Ry, I adopted the fundamental
measurement of R,/Ry, which can be found from the depth of the transit. Although
this is measured by fitting the light curve to a transit model, the model itself—as well
as good approximations to it—follow from simple geometric arguments; thus it remains
effectively model independent. The revised planet masses were derived by combining my
revised R, and the p, from the literature, determined via radial velocity. These revised

exoplanet properties are tabulated in Table 5.3.

5.4 Discussion

The PanCET programme has until now been using literature data for exoplanet hosts,

which are determined via the methods detailed in Section 1.9. Along with the newly
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Name Test (PC) log(g) Tsep (K) R. (Ro)
GJ 3470 29.421+0.931 5.5400 346920 0.553~001
WASP-80 49.788+0-116 4.8+02 397150 0.633~0-9%
HAT-P-11  37.765+0.03% 5.5+0 4720%% 0.772*0006
WASP-29 87.595+0312 5.5+0 4750*19 0.790*0007
WASP-69 49.961*)132 5.5+00 48901 0.80470-0%0
HD 189733  19.76470013 5.50° 5040+10 0.759%0-052
WASP52  174.818+13%3 5.5+00 5050*39 0.829*00%0
HAT-P-26 141.837711%2 5.5790 5060740 0.83970-0%2
HD 97658 21.562+00% 4.019¢ 5150*40 0.750%0 015
WASP-6 197.11971-632 4.5%01 5440+3 0.781%0-0
WASP-74 149.216*114 55100 5790+ 1.541490°8
HAT-P-41  348.185745% 4.0706 5900+ 1.85370 0%
HAT-P-32  289.20533% 40106 614074 1.2941 0%
WASP-76  194.45976206 43107 6170+4, 1.906*0 0%
WASP-62  175.63105% 4,070 6200770 1.24870033
WASP-101  201.224*1122 50190 637040, 1319470
WASP-121  269.898+1-2%9 4.0%02 6380+2 1.557+0:0%
WASP-79  246.690*1520 43706 6680750 1.58605
KELT-7 136.681+0937 5.3102 6700750 1.763"00%

Table 5.2: The final revised properties for each star. The geometric distance Rest is from Bailer-Jones et
al. (2018). The log(g), Tsgp and R« are inferred by the SED fitting. For the stars that require correction to the
measured radius due to [Fe/H], both the R, and Tsgp have been corrected in this table. For information on
how this is done, see Section 4.3.4.
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Figure 5.4: The host star properties are shown in Tsgp — R« space, along with their associated 68% confidence
contours. The M-dwarf temperature radius relationship derived in Section 4.2.2 and its bounds are plotted
for comparison as a red dashed line and blue shaded region respectively.

measured stellar host parameters presented in this chapter comes a revision of the exo-

planet parameters themselves; many of which differ considerably from those presented

in literature. I show the revised radii in the M, - R, plane in Figure 5.5, along with the

residuals from the literature radii.
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The median residual for my measurements falls at 4%, with the mean residual
occurring at 6%, indicating a small possible systematic; however this would need con-
straining with larger sample. The precision of the exoplanet measurements presented
is drastically improved compared to the literature, showing a mean of a factor of two
reduction in the size of the uncertainty of the exoplanet radii. Several of the sample are
in good agreement with the previous literature determinations, with the measured radii
for WASP-29 b, WASP-69 b and WASP-62 b agreeing within 10. However, only a third of
exoplanet radii agree to within their uncertainty bounds. The disparity between this and
the two thirds agreement in host star luminosities further supports my previous assertion
in Section 5.1 that the synthetic Gg-band uncertainties for host stars are over-estimates.
Given that the transit measurements provide a relatively direct route to the exoplanet
radius given a measurement of the host radius, the natural conclusion to explain such
a large departure from the literature would be that my measured host properties are

incorrect.

An acid test of how well my newly derived host parameters reflect reality can
be sought by generating synthetic Gg band photometry using the same method as in
Section 2.1.4, with revised R, and Tsgp values presented in this chapter, and Gaia DR2
distance measurements (Bailer-Jones et al. 2018). I present a version of Figure 5.1 with
the revised synthetic photometry overlaid for comparison in Figure 5.6. There are some
crucial things to note about this comparison. My parameter measurements show a factor
of 10 reduction in RMS residual in luminosity over those in the literature; a marked
improvement in accuracy. Furthermore, compared to previous measurements, my dataset
shows nearly a factor of 2 improvement to the mean luminosity uncertainty of the sample.
Interestingly, comparing the literature values of Ts, with my values of Tsgp shows that they
are overall in good agreement, with 17 of the 19 Tsgp measurements being within 2o of
literature Tsp values. Given all of these considerations, it seems that the work presented in
this thesis chapter poses a considerable improvement to both the precision and accuracy
of exoplanet host measurements over existing literature values. For this not to be the
case, one of the following arguments I have made has to be shown as untenable. First,
throughout this work I have assumed that the distances from Bailer-Jones et al. (2018) are a

good representation of their true distance measurement. Owing to the large uncertainties
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Figure 5.5: The revised exoplanet radii shown in the My — R, plane (top) and the residual in per cent between
the literature radii and the revised radii in this thesis. Several revised radii agree well with the literature
determinations. However, many are in disagreement, with the residual exhibiting an RMS difference of 13%.
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on the existing literature values for distance, all but 4 are within 1o of the much better
constrained distance values I have adopted for this fitting. Furthermore, I have assumed
that any systematic in distance is much smaller than the prescribed uncertainty. Due to
the level of agreement shown with the radius residual of the DEB sample in Figure 4.10,
large systematic or statistical errors of this nature seem unlikely. An argument could be
levelled that the stellar atmosphere models that I have been using to produce the grids
of synthetic photometry on which fitting is performed are in disagreement with reality.
However, I showed in Section 3.5.1 that the fluxes provided by stellar atmospheres are
in overall agreement with my observed, flux-calibrated spectra. Given this work was
carried out in the M-dwarf regime, where there are noted problems with models, it seems
unlikely that earlier types would succumb to serious problems. One could also argue that
my fitting methodology is not sound, however the Tsgp determined by my fitting are in
overall agreement with the T, presented in the exoplanet literature and the luminosity
is in firm agreement with that observed in Gaia DR2; once again supporting my radius
measurements and making a counter-argument moot. I also note that at no point in this
thesis has the Gaia Gg band magnitude been used for the purposes of fitting; which, if I
had done so, may have forced agreement. Its wide response, with an effective width AAeg
in excess of 4000A, make it an imprecise lens through which to constrain the colour of
the stellar SED in the optical; however it does represent a robust measurement of visible
luminosity. Hence, Gg provides one of the best indications we currently have of the true
luminosity of the source, and the agreement seen between it and my synthetic photometry
shows that I am able to reproduce both the overall flux and colour in the visible part of

the SED.

I also performed a comparison between my values and the literature values in the
Tsep/Tsp—R« planein Figure 5.7. This figure demonstrates that there is no clear systematic
difference between the radii and temperatures presented in the literature and measured
from SED fitting. Validation of the radius determinations for two systems can be found
in the IRFM measurements found in the literature. By combining the Oirpym measured for
WASP-6 (Gillon et al. 2009) and WASP-80 (Triaud et al. 2013) with the distance estimates
of Bailer-Jones et al. (2018), I find that R, = 0.784 + 0.042 R and R, = 0.637002° Ro

respectively. Both agree with my measured radii to within 1o, and represent radii 10%
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Figure 5.7: The arrows show the vector that maps the literature value from the PanCET primary target list
onto the value measured in this thesis from the SED fitting process. The green denotes HD 189733, for which
the literature radius was determined using interferometry. Those remaining, shown in orange, are derived
from the light curves and stellar models.

smaller and 5% larger than their respective literature measurements.

Curiously, given that this sample of stars straddles the well understood solar regime,
I am driven to critically question why the revisions are so sizeable. The stellar parameters
adopted for the hosts are largely determined from models, however the models are in
overall agreement with observations at earlier than late-K. As I addressed in Section 1.8.3,
the key interface between observations and models comes from mapping the stellar
density p4, which is measured from the transit, onto stellar interior models in the R/ M 1/3_
Tett plane. I have already established that the T, observations are mostly consistent with
my measured Tsgp, thus I am drawn to conclude that there may be some issues with the

measurements of stellar density that are used to perform the mapping.

5.4.1 Sources of Systematic Error

I have shown that none of the fundamental assumptions about my underlying method-
ology could be responsible for explaining the large discrepancy between my stellar host
parameters, and those described in the literature. However, there remain some important
observational considerations that should be correctly treated in order to avoid large sys-

tematic errors in these measurements. In this section, I will enumerate several of them,
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discuss their impact on measurements of exoplanet hosts, and where appropriate suggest

strategies for their mitigation.

In each case I followed I similar methodology to Section 4.3.2.3, where I modified
the input grid to emulate the physical effect being investigated, simulated a catalogue with
this modified grid, and then fitted it using the same grid of CIFIST models used in the
main fit. Where appropriate, I have also fitted the stars in the input catalogue with these
modified grids to perform the inverse experiment, and compare model output with real
data. For the Teg — R relation used in making the simulated catalogues I adopted the 4 Gyr
Baraffe etal. (2015) isochrone. AlthoughIhave previously corrected the Dotter et al. (2008)
isochrone for M-dwarfs, the isochrone does not remain monotonic and well-defined for

the Teg between 3000 K and 6000 K; leading to problems with the interpolation.

5.4.1.1 Extinction

Interstellar dust poses a considerable hindrance for stellar characterisation. In Chapter 4
an upper limit of d < 100pc was placed on distance. At such close proximity interstellar
extinction is negligible. However in this chapter the distance constraint is removed,
necessitating a more rigorous approach towards the effects of extinction. The only star
in the catalogue with a well measured extinction is HAT-P-41b with E(B — V) = 0.11
(Hartman et al. 2012), which is fortunately also the most distant. Given that all stars in
the sample are on the MS or beyond, hence clear of the envelope from which they formed,
I have made the reasonable assumption that extinction is a function only of distance.
Thus I adopted an upper limit of E(B — V) = 0.1 for this sample. To assess the effect of
dust on observations, extinction was introduced into the simulated catalogue using the
method described in Section 2.1.7. I generated grids with E(B — V) = 0.0,0.01 and 0.1.
The difference between the reddened and unreddened fits is presented in Figure 5.8. It
is clear that any extinction in the sightline to a planet host star will attenuate and redden
the stellar SED, hence these fits moving to warmer Tsgp at lower R,. However it is also
clear that extinction affects low- and intermediate-mass star fits differently. Due to the
prevalence of strong molecular bands in cooler stellar atmospheres, their SEDs are more
distinctive than those above 4000 K. For sightlines through modest extinction, this allows

the fitting technique to remain fairly fault tolerant for Tsgp determinations. Whereas
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hotter stars which are dominated by continuum emission have nearly double the residual
in temperature. However, because the temperature is determined correctly for cool stars,
the attenuation of brightness causes an underestimate of luminosity, hence radius. This
fitting suggests that for nearby exoplanet hosts with E(B—V') < 0.01, neglecting extinction
is a safe assumption, as the effect remains well below 1%. However, this investigation also
suggests that grids should be reddened with an appropriate extinction before fitting if
they are subject to an E(B — V) much greater than 0.01, depending on Teg, to avoid errors
of up to 4% in R4 and 8% in Tsgp at E(B — V) = 0.1. Although, in principle, reddening
could be introduced as a free-parameter in the SED fitting process itself, the constraints
I have achieved so far are only weak due to degeneracies of extinction with both L and
Tsep; so alternate methods should currently be employed for measuring the extinction of

targets.

5.4.1.2 Metallicity

In Section 4.3.2.5 I found that the scatter in the measured radius for M-dwarf stars exhib-
ited a correlation with [Fe/H]. I showed that this was caused by fitting the distribution
of metallicities in the solar neighbourhood using only solar metallicity models. Thus, I
suggest that when performing SED fits of exoplanet host M-stars, one should be mindful
of their metallicity and how treatments of metallicity will change the resulting temper-
ature and radius. To test this for hotter stars, I have synthesised catalogues at [M/H] =
-0.5, 0.0 and +0.5 at solar abundances. The atmospheres for this grid are provided by the
AGSS52009 stellar atmospheres, which substitute the Caffau et al. (2011) solar abundances
for those of Asplund et al. (2009). These grids are limited to a range of log(g) = 4.0 — 4.5,
due to this being the range of surface gravity covered by the AGS52009 atmosphere grids
at the required temperatures for all metallicities. The result of this fitting is shown in Fig-
ure 5.9. As one would intuitively expect, the metallicity-induced discrepancy has a much
stronger effect in stars whose Tsgp < 4000 K, where the temperature in the photosphere
is cool enough that strong molecular features in the atmosphere become commonplace.
However, the discrepancy for stars with Tsgp > 4000 K remains systematically below
the 1% level, presumably due to the lack of these molecular features. This means that

metallicity should not pose a problem for measurements of solar-type exoplanet hosts.
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Figure 5.9: I fitted each of the targets with [Fe/H] = 0.0, -0.5 and +0.5 atmospheres. The residual of the
retrieved radii and temperatures are shown in the top and bottom pane respectively. To assess the effect
of metallicity on the technique, we have also taken those atmospheres and simulated catalogues with these
grids, which are then fit with the CIFIST grids. Both the observed retrievals and the forward models are
consistent, show that stars cooler than 4500 K suffer up to a 10% perturbation in radius if uncorrected.
However, stars hotter than 4000 K retrieve the correct radii to within about 1%.
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However, discrepancies of 10% in R. and 5% in Tsgp can be incurred by not properly

accounting for metallicity for low-mass hosts.

5.4.1.3 Activity

It is particularly difficult to mitigate against the dynamic and unpredictable behaviour of
starspots and plages on stellar surfaces. I demonstrated in Section 4.3.2.4 that starspots are
able to perturb the temperature and radius measured by SED fitting techniques. However,
I also established in Section 4.3.2.6 that to be consistent with the tight M-dwarf MS, filling

factors for main sequence M-dwarfs should typically remain < 10%.

Both starspots and plages can be modelled by adding a second temperature compo-
nent into the model stellar photosphere (see Section 4.3.2.3). The temperature of the spot-
ted component is reasonably assumed to be Tspot = 0.8 Timac for 3000 K < Timac < 7000 K
(see Berdyugina 2005). However, determinations of Tplage have thus far only been con-
strained by observations of the solar surface to have a temperature contrast of 100 — 300 K
(Oshagh et al. 2014; Worden et al. 1998; Unruh et al. 1999; Meunier et al. 2010). Given
this I adopt the upper end of this limit and reasonable estimate that Tpjage = 1.05 Timac
for 3000 K < Timac < 7000 K. The result of fits to the grids with activity included are
shown in Figure 5.10. The scatter of points within this plot suggests that not correctly
treating plages within the grids when characterising any star should not affect the mea-
sured parameters. However, I do note that the constraints on the temperature contrast
and filling factors on stars other than the Sun make this an initial estimate. This inves-
tigation does however indicate that for sufficiently precise measurements of radius, one
should take care to correctly treat starspots in the grids used for fitting. For stars with
Tsep < 5000 K, measured radii inflated by 1 — 3% with Tsgp up to 1.5% cooler should be

expected; depending on error in Tsgp and .

5.5 Chapter Summary

In this chapter I have shown that the SED fitting methodology that I applied to studies
of stellar evolution can also be readily applied to measuring the parameters of arbitrary

exoplanet host stars. In doing so, I have demonstrated that the method generalises well to
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Figure 5.10: The scatter of the measured Ry (top) and Tsgp (bottom) caused by starspots (left) and plage
(right) as a function of input Tg. This shows that for reasonable filling factors of up to ~ 10%, a scatter of 3%
should be expected in Ry and about 2% in Tsgp. This scatter reduces to < 1% for temperatures hotter than
5000 K. The plage models truncate at 6600 K due to the plage photosphere exceeding the upper T limit of
the CIFIST model grid.

stars earlier than M-dwarfs as long as the stellar atmospheres cover the required region
of the Tefr — log(g) plane and well characterised multi-waveband photometry exists for
the target. I revised the radii of 19 exoplanet hosts, improving both the precision and
accuracy of the measurement in the process. As a result, I have been able to revise the
radii and masses of 19 well-studied studied exoplanets. The sample shows a mean of a
factor of two reduction in the sizes of exoplanet radius uncertainties, presenting a con-
siderable improvement over the literature. This chapter acts as a proof-of-concept that
this method can serve as an independent, orthogonal means for determining exoplanet
host parameters, separate from the methods usually employed by the exoplanet com-
munity. Given that the method relies only on readily available archival photometry and
Gaia parallaxes, it serves as a promising means of characterising the abundant number
of exoplanets currently being discovered by large surveys. With this application in mind,
I performed a parameter space exploration to probe the effect of unconstrained obser-

vational uncertainties on measurements of R, and Tsgp, both of which are vital for the

rapidly evolving field of exoclimatology (see Section 5.4.1).
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Chapter 6

Conclusions and Future Work

“When you eliminate the impossible, whatever remains, however improbable, must be

the truth. ”
— Spock

6.1 Conclusions

This thesis has addressed the ubiquitous problem of measuring accurate stellar radii.
Stellar spectral energy distributions encode properties of the stellar photosphere; with
the integrated flux yielding the luminosity and the shape providing an indication of the
temperature. I have introduced a method which measures these properties using only
multi-waveband photometry and precise distances, in turn providing a new method for

determining stellar radii.

This technique was first applied to understanding the well known discrepancy
between the theoretical isochrones and observed stellar sequence for low-mass members
of the Pleiades and Praesepe clusters. The measured inflation of 8 — 20% for Pleiades
members and 10 — 20% for Praesepe members indicates that the stellar interior models
are responsible for the disagreement. Not only does the isochrone at the measured age
of either cluster not reproduce the stellar sequence at T.x < 4000K, but the observed
sequence straddles a number of different ages. Were one to perform an isochrone fitting

with only these low-mass members, one would measure both clusters to be 20—-50Myr old,
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with both appearing older as the sample is extended toward lower masses. A powerful
test of both the stellar atmospheres and the SED fitting methodology was performed by
observing and robustly flux calibrating 20 low-mass stars from across both clusters. These
spectra were directly compared to the synthetic spectra corresponding to the parameters
determined from the stellar SED. Both show excellent agreement, however it is clear that
a number of spectral features are still discrepant; especially towards the blue end of the

spectra.

After establishing the nature of the discrepancy in pre-MS M-dwarfs, the same
SED fitting methodology was applied to 15279 main sequence M-dwarfs distributed
across the sky. Lacking the well constrained distances of open clusters, this investigation
harnessed the unprecedented number of distance measurements made available by Gaia
DR2. This further built on the finding that, even for main sequence M-dwarfs, none
of the purely theoretical stellar models can describe mean radius inflation on the main
sequence at temperatures lower than about 4000K; with the measured stellar sequence
being inflated by 3 — 7% from the models. Magnetic models would suggest a spread
in radius from the theoretical sequence for non-magnetic models up to a maximum
inflation, and that this spread would be correlated with key observational indicators
of magnetic activity. However, careful analysis showed that M-dwarfs follow a tight
sequence (with a scatter smaller than 1 to 2%), and that none of the key indicators correlate
with inflation - suggesting that stellar magnetism is currently unable to explain inflation
in main-sequence M-dwarfs. It was shown that using only solar metallicity models for
fitting a distribution of metallicities results in a spurious correlation with radius inflation.
Given that SED fitting captures the luminosity accurately regardless of this disparity,

accurate measurements of [Fe/H] permitted this perceived spread to be corrected.

Building on this work, the SED fitting methodology was extended to measuring
the parameters of 19 near main-sequence exoplanet hosts. In doing so, the technique was
demonstrated to generalise well to intermediate masses and longer distances. Using the
measurement of the transit depth, the exoplanet radii were revised to be consistent with
the measured stellar radii. The revised exoplanet radii range from about 14% smaller

to 23% larger than their previously measured literature values. By generating synthetic
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catalogues of observations, the effects of different uncertainties on measured parameters
were assessed. At the extremity of measured extinction (E(B — V) = 0.1) the radii can
appear deflated by up to 4%. Adopting the maximum reasonable starspot filling factor
for M-dwarfs of 10%, it was shown that starspots could at most contribute an inflation
of around 3% to the measured radius. It was also shown that when measuring via SED
fitting, a poorly constrained uncertainty in [Fe/H] could cause the measured radius to be

discrepant by +10%, depending on the difference in metallicity.

More broadly, the work presented in this thesis proves the veracity of the SED
fitting methodology that was introduced to address these long standing problems. Given
its proven accuracy and ease of use, it shows promise as an orthogonal method that can
be more widely applied to determining exoplanet host properties; independent of the
transit fitting. In particular, for applications to large exoplanet surveys, such as TESS,
the method could prove an indispensable tool with which to achieve a large number of

exoplanet characterisations.

6.2 Future Work

There are a number of progressions from this work, either developing on ideas presented
in this thesis, or addressing questions and deficiencies that this work has brought to light.
First, the sample of studies could be expanded to constrain M-dwarf radius contraction
over the pre-MS. Second, I have demonstrated that the SED fitting method already shows
an improved precision over other methods for measuring stellar radii. However, despite
this there are still a number of challenges posed by stellar activity and extinction that may

prove problematic for widespread adoption for exoplanet host characterisation.

6.2.1 Constraining Radius Contraction in Pre-MS M-dwarfs

This thesis has established that the radii predicted by pre-MS models are discrepant from
those measured for M-dwarfs at the ages of 132 and 665Myr. A natural progression of
this work is to extend the SED fitting to encompass a larger number of open clusters
which span a range of ages and metallicities. In doing so, the evolution of the discrepancy

between theoretical models and observed radii can be examined in much more detail
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throughout the pre-MS. By examining this effect more thoroughly over age, the exact
timescale of pre-MS M-dwarf contraction can be determined, and the physics from which
it results assessed. Another product of this investigation would be valuable empirical

Tsep — R relationships with which to calibrate stellar interiors.

6.2.2 Large Scale Exoplanet Characterisation Campaigns

Another natural follow on from this work would be to extend the exoplanet characteri-
sation methodology to a statistically significant sample of exoplanet hosts. The bountiful
nature of the multi-waveband photometric data, afforded by archival data in all-sky sur-
veys, combined with distances provided by Gaia DR2, means this technique is readily
applicable where others may not be. Because no new observations are required, proactive
campaigns can be performed speculatively with little risk of wasting valuable resources.
For example, the technique could be performed on the TESS candidate target list (Stassun
et al. 2018), which encompasses about 9.5 million stars; an insurmountable volume and
complexity for other stellar characterisation techniques. Worthy of note is that the selec-
tion process for TESS targets favours bright, cool dwarfs, to maximise the transit signal
of small planets; a population which this SED fitting technique was initially developed
to study. The characterisation of these cool dwarfs is performed in Muirhead et al. (2018)
using the colour-Teg and Mg, — R. relations of Mann et al. (2015); which have been shown

to be less precise than this work and inconsistent with our observations.

A complication to address involves the relative scarcity of UV and MIR data, which
pin the blue and red end of the SED respectively. An initial estimate shows that neglecting
the WISE or Galex bands from fitting of the PanCET sample results in difference of 1 2%
in stellar radius. In principle meaning that using only Gaia DR2 and 2MASS photometry
is sufficient to determine exoplanet host radii accurate to within current uncertainties.
Additionally, reliable stellar characterisations for single stars at this precision necessitates

improvements to methodology and the constraints to other stellar parameters.
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6.2.3 Improving Measurements of [Fe/H]

It was established that one of the limiting factors currently facing attempts to measure
M-dwarf radii are the imprecise measurements of metallicity for M-dwarfs. Uncertainty
in metallicity contributes considerably to mean measured uncertainty of 2.4% in the M-
dwarf sample; with the average uncertainty in [Fe/H] of around 10% contributing 1.7% to
this figure. If methods for metallicity determination could constrain the measured values
of [Fe/H] to ~ 2% or better, radius uncertainties of around 1% could be achieved for
M-dwarfs. Given the need of accurate radii in both stellar physics and exoplanet science,
especially with the push towards observing super-Earth planets around low-mass stars,

this added precision would prove an important development.

6.2.4 Deeper Understanding of Time-Varying Stellar Activity

It was demonstrated in this thesis that stellar activity has the potential of causing large
errors in measurements of both Tsgp and R. In particular Section 4.3.2.3 demonstrated
that the SED fitting should measure an apparent spread due to small variations in spot
filling factor. However, the tight measured sequence (see Section 4.3.2.5) implies that
coverage of starspots in main-sequence M-dwarfs is remarkably consistent at y < 0.1.
This seems counter-intuitive considering the diverse levels of activity demonstrated in
Section 4.3.2.4. Even at less than 10% surface coverage, starspots alone can cause up to
3% error in cool dwarfs, with the true effect of plages being poorly constrained for stars

other than the Sun.

With this in mind, studying stellar activity, in particular the time-varying aspect,
is important for future studies of both stars and exoplanets. The time varying aspect
of activity is both an advantage and a disadvantage in applying archival data to radius
measurement of stellar targets. It is probable that artefacts on the stellar surface will vary
between the different epochs of observations employed in the fitting, which may average
out to a smaller discrepancy in measured parameters, however it will make determining

the true effect a more challenging process.
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6.2.5 Disentangling Extinction

One further complicating factor in many measurements of stellar parameters is the pre-
viously mentioned problem of interstellar extinction. Problems due to metallicity were
resolved by realising that the luminosity is conserved, allowing a fixed point around
which to pivot other parameters. However, extinction attenuates stellar flux, removing
this constraint. The reddening effect also means that measured Tsgp for a star subject to

even moderate extinction will be too cool.

Initial work on resolving this issue involved fixing log(g) and substituting E(B — V)
as a free parameter within the grids used for the fitting. Although some extinctions were
preferred over others, the results obtained from the current methodology are not consis-
tently conclusive; mainly due to the degeneracy in SED shape caused by the reddening.
So, alternate methodologies must be adopted to yield solid constraints on extinction. This
endeavour relies on accurate extinction laws, which can reproduce the observed extinc-
tion for all the required sightlines in the Galactic plane. The mean Galactic extinction
has been well constrained, however the formation and re-processing of grains poses a
number of problems in dense regions; including anomalous extinction laws caused by

poorly understood grain size distributions.

To summarise, I have introduced a SED fitting technique that can be used to deter-
mine stellar radius and temperature, and has already been applied throughout this thesis
to resolve a number of open questions in stellar physics and exoplanet science. Although I
have suggested a number of improvements, the measurements resulting from this method
are already more precise than are available from previous methods of determining stellar

radii.
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