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Abstract

In this thesis, we provide the Uncertainty Quantification (UQ) tools to assist auto-

matic and robust calibration of complex computer models. Our tools allow users to

construct a cheap (statistical) surrogate, a Gaussian process (GP) emulator, based

on a small number of climate model runs. History matching (HM), the calibration

process of removing parameter space for which computer model outputs are incon-

sistent with the observations, is combined with an emulator. The remaining subset

of parameter space is termed the Not Ruled Out Yet (NROY).

A weakly stationary GP with a covariance function that depends on the distance

between two input points is the principal tool in UQ. However, the stationarity

assumption is inadequate when we operate with a heterogeneous model response.

In this thesis, we develop diagnostic-led nonstationary GP emulators with a kernel

mixture. We employ diagnostics from a stationary GP fit to identify input regions

with distinct model behaviour and obtain mixing functions for a kernel mixture.

The result is a continuous emulator in parameter space that adapts to changes in

model response behaviour.

History matching has proven to be more effective when performed in waves. At

each wave of HM, a new ensemble is obtained to update an emulator before finding

an NROY space. In this thesis, we propose a Bayesian experimental design with a

loss function that compares the volume of the NROY space obtained with an up-

dated emulator to the volume of the “true” NROY space obtained using a “perfect”

emulator. We combine Bayesian Design Criterion with our proposed nonstationary

GP emulator to perform calibration of climate model.
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are completely ruled out. Minimum implausibilities, for each pixel on

any panel on the lower triangle of the picture, represent the smallest

implausibility found in Xp. These plots are oriented the same way as

those on the upper triangle, for the ease of visual comparison. . . . . 106

3.11 Left : theta500 response from BOMEX/REF case against four inputs

on the original scale. Right : qv500 response from SANDU/REF case

against four inputs on the original scale. The blue dashed lines corre-

spond to z plus and minus 2(V ar[e] +V ar[η])1/2, where V ar[e] is the

variance of the observation error and V ar[η] is the model discrepancy

error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.12 NROY density plots (upper triangle) and minimum implausibility

plots (lower triangle) of the wave 3 NROY space for all four pa-

rameters. Each panel plots either NROY density or minimum im-

plausibility for a pair of parameters. NROY densities, for each pixel

on any panel in the upper triangle, represent the proportion of points

in Xp behind that pixel that are NROY and are indicated by the

colour whose scale is indicated on the right. Grey coloured regions

are completely ruled out. Minimum implausibilities, for each pixel on

any panel on the lower triangle of the picture, represent the smallest

implausibility found in Xp. These plots are oriented the same way as

those on the upper triangle, for the ease of visual comparison. . . . . 109
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3.13 LOO diagnostics plot against each of the parameters. The predictions

and two standard deviation prediction intervals are in black. The true

function values are in green if they lie within two standard deviation

prediction intervals, or red otherwise. The blue dashed lines corre-

spond to z plus and minus 2(V ar[e] +V ar[η])1/2, where V ar[e] is the

variance of the observation error and V ar[η] is the model discrepancy

variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.14 Individual standardized errors obtained for the design against each of

the parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.1 True function for the two-dimensional numerical example and 24-run

maximin distance LHD red points used as design. . . . . . . . . . . . 113

4.2 Failure of stationary GP emulator. Top left : Posterior mean pre-

dictive surface produced by stationary GP emulator with 24 design

points in red. Top right : Emulator performance for the cross section

x1 = x2. The dashed line is the true function value, the solid black

line is the posterior mean predictive curve, and the grey areas denote

two standard deviation prediction intervals. Bottom left : Leave One

Out diagnostic plot against x1. The predictions and two standard

deviation prediction intervals are in black. The true function values

are in green if they lie within two standard deviation prediction inter-

vals, or red otherwise. Bottom right : Individual standardized errors

of emulator predictions against x1. . . . . . . . . . . . . . . . . . . . 114

4.3 Lognormal(-1, 1) (left) and Normal(0, 5) (right) priors for parameters.127

4.4 Top row : ei against x1 and x2. Bottom row : coloured ei: the deep

blue colour corresponds to the higher probability of a point being

allocated to region 2, while the deep red colour corresponds to the

higher probability of a point being allocated to region 1. . . . . . . . 131

17



4.5 Comparison between stationary GP (st-GP), our nonstationary GP

(nst-GP), TGP, and CGP. First row : posterior predictive mean sur-

face and root mean squared error (rmse). Second row : posterior pre-

dictive standard deviation and maximum posterior predictive stan-

dard deviation (max psd). Third row : cross-section performance at

x1 = x2. The dashed line is the true function, the solid black line is

the posterior mean predictive curve, and the grey areas denote two

standard deviation prediction intervals. . . . . . . . . . . . . . . . . . 132

4.6 A MAP tree, T̂ , with one split, resulting in two regions, shown in

a diagram (left) and pictorially (right). The split occurs at x1 =

−0.37931. The ensemble, {X,F}, is divided into subsets D1 and

D2, that contain 11 and 13 elements of ensemble respectively. The

numerical value at each leave corresponds to σ̂2. . . . . . . . . . . . . 133

4.7 Performance of DGP for “wavy” function. Left panel : posterior pre-

dictive mean surface. Central panel : posterior predictive standard

deviation and maximum posterior predictive standard deviation (max

psd). Right panel : cross-section performance x1 = x2. The dashed

line is the true function, the solid black line is the posterior mean

predictive curve, and the grey area denotes two standard deviation

prediction intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.8 Our 5D function f(x) plotted against x5. All the other inputs, i.e.

x1, . . . , x4, are fixed at 0.7. . . . . . . . . . . . . . . . . . . . . . . . . 136

4.9 ei against x5 for four ensembles (sub-designs). The deep blue colour

corresponds to the higher probability of a point being allocated to

region 1 (high response variability region), while the deep red colour

corresponds to the higher probability of a point being allocated to

region 2 (low response variability region). . . . . . . . . . . . . . . . . 137
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4.10 Comparison between stationary GP (st-GP), nonstationary GP (nst-

GP), TGP, and CGP for 5D toy example. Blue dashed lines corre-

spond to the partitions produced by TGP. Each row is constructed

by leaving one LHC out. The posterior mean and two standard de-

viation prediction intervals produced by emulators are in black. The

green and red points are the model values, coloured “green” if they lie

within two standard deviation prediction intervals and “red” if they

lie outside. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.11 Plot of (true) function f(x) = sin(10πx)/(2x) + (x − 1)4. The red

dots represent observed data at 20 unequally spaced locations. . . . . 140

4.12 Left panel : Leave-One-Out diagnostic plot produced for stationary

GP emulator. The posterior mean and two standard deviation pre-

diction intervals produced by emulator are in black. The true function

values are in green if they lie within two standard deviation predic-

tion intervals, or red otherwise. Right panel : ei (standardized errors)

against x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.13 ei against x. The deep blue color corresponds to the higher proba-

bility of a point being allocated to region 2, while the deep red color

corresponds to the higher probability of a point being allocated to

region 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.14 Density plot of IG(3, 0.1) (left), posterior samples of τ 2
1 (center) and

posterior samples of τ 2
2 (right). . . . . . . . . . . . . . . . . . . . . . . 142

4.15 Posterior samples of region specific parameters. . . . . . . . . . . . . 143

4.16 Comparison between stationary GP (first panel), nonstationary GP

(second panel), TGP (third panel), CGP (fourth panel). The dashed

line corresponds to the true function, the solid black line is the pos-

terior mean predictive curve, and the grey areas denote two standard

deviation prediction intervals. Black points correspond to the design

points used to train our GP models. Estimates are obtained at 100

equally spaced test points. . . . . . . . . . . . . . . . . . . . . . . . . 144
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4.17 The response of 5D function f(x) against all five inputs. . . . . . . . 148

4.18 Density plots of N(0, 10) (first panel), IG(2, 1) (second panel), Gamma(4,

4) (third panel) and Gamma(42, 9) (fourth panel) priors specified for

GP hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.19 Visualizing the prior predictive distribution. Left panel and central

panel show realizations from the prior predictive distribution using

prior specification 1 and 2 respectively, defined in Table 4.9. The

simulated data is plotted on y-axis and observed data on the x-axis.

Right panel demonstrates the difference in the simulations by showing

the red points from left panel and the green points from central panel. 149

4.20 Probability densities produced by prior predictive distributions for a

selection of function outputs for the first prior choice (black) and the

second prior choice (blue). The true function output is given by the

dashed red line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.21 ei against the x5 for four sub-designs (ensembles). The deep blue

colour corresponds to the higher probability of a point being allo-

cated to region 1 (high response variability region), while the deep

red colour corresponds to the higher probability of a point being al-

located to region 2 (low response variability region). . . . . . . . . . 150

4.22 Leave One Latin Hypercube Out (LOLHO) plots for stationary GP

(st-GP), our non-stationary GP (nst-GP), TGP and CGP for 5D toy

example. Blue dashed lines correspond to the partitions produced by

TGP. Each row is constructed by leaving one LHC out. The posterior

mean and two standard deviation prediction intervals produced by

emulators are in black. The true function values are in green if they

lie within two standard deviation prediction intervals, or red otherwise.151

4.23 Average potential temperature against nine standardized inputs to

SCM (Single Column Model). . . . . . . . . . . . . . . . . . . . . . . 153
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4.24 Coloured ei against ALFX for four sub-designs. The deep blue colour

corresponds to the higher probability of a point being allocated to re-

gion 1, while the deep red colour corresponds to the higher probability

of a point being allocated to region 2. . . . . . . . . . . . . . . . . . . 155

4.25 Comparison between stationary GP (st-GP), nonstationary GP (nst-

GP), TGP, and CGP on modelling average potential temperature on

four validation designs. Blue dashed lines correspond to partitions

produced by TGP. Each row is constructed by leaving one LHC out.

The posterior mean and two standard deviation prediction intervals

produced by emulators are in black. The green and red points are the

model values, coloured green if they lie within two standard deviation

prediction intervals and red if they lie outside. . . . . . . . . . . . . 155

4.26 Left : Predictions and two standard deviation prediction intervals for

stationary (green) and nonstationary (red) GP emulators for a line

between two design points x1 and x2 in 2D space, with this line given

by λx2+(1−λ)x1. The blue line shows the toy function, red line shows

the predictions together with the two standard deviation prediction

intervals produced by nonstationary emulator and green lines shows

the stationary emulator performance. The observation is in black,

observed with an observation error given by the dotted black lines.

Right : The implausibility I(x) for the two emulators. The black line

is the threshold set at 3 for ruling out points. Grey shaded region

correspond to the part of region that is ruled out by nonstationary

GP emulator and is not ruled out by stationary GP emulator. . . . . 158

4.27 The weighted densities for the function output at points in NROY

space after Wave 1 for the first case for stationary GP emulator

(green) and nonstationary GP emulator (red). The observation is

given by the blue dashed line. . . . . . . . . . . . . . . . . . . . . . . 159
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4.28 Parameter plots showing the “true” NROY space (green) and points

classified as being NROY space obtained with stationary and nonsta-

tionary GP emulators after a single wave of history matching (grey)

for case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.29 Parameter plots showing points classified as being NROY space ob-

tained with stationary and nonstationary GP emulators after a single

wave of history matching (grey) for case 2. . . . . . . . . . . . . . . . 160

5.1 The plots of standard normal cumulative distribution function (CDF)

against the varying values of a random variable x. The blue dashed

lines correspond to CDF values computed at two values of a random

variable x. The blue solid lines correspond to the differences between

the CDF values at these two values of a random variable. Left panel :

demonstrates the difference between the CDF evaluated at two neg-

ative values of a random variable. Central panel : demonstrates the

difference between the CDF evaluated at positive and negative val-

ues of a random variable. Right panel : demonstrates the difference

between the CDF evaluated at two positive values of a random variable.181

5.2 The plots of standard normal cumulative distribution function (CDF)

against the varying values of a random variable x. The blue dashed

lines correspond to CDF values computed at two values of a random

variable x. The blue solid lines correspond to the differences between

the CDF values at these two values of a random variable. Left panel :

demonstrates the difference in the CDF evaluated at x = 1 and x =

−1 Right panel : demonstrates the difference in the CDF evaluated at

x = 0.5 and x = −0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 182
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5.3 Left : True semi-sphere function for the two-dimensional numerical

example and 10-run maximin distance LHD red points used as a de-

sign for wave 1 in subsection 5.5.2. Right : The cross-section plot

of true semi-sphere function in black, which is represented by a line

λx2 + (1− λ)x1 against λ. The observed value is 1.25 (red line) with

plus and minus two times observation error (dotted lines). . . . . . . 189

5.4 Each panel plot depicts the input space that demonstrates the “true”

NROY space (dark grey) together with the candidate designs to per-

form wave 1 of history matching (bright green). The input point that

correspond to the observation z is represented by a blue triangle. . . 190

5.5 Plots of computed Bayesian Design Criterion (BDC), Ψ(ξ), together

with two Monte Carlo (MC) standard error bars for three candidate

designs to perform wave 1 of history matching. . . . . . . . . . . . . . 191

5.6 Predictive variance, V ar
[
f(x)|f(ξ)

]
, computed over the input space,

X , as part of BDC computation for a range of design options. The

colour corresponds to the mean value of the predictive variance behind

each pixel. Different design options are depicted as black points. . . . 192

5.7 The integrand of Term 1, Ψ1(ξ), computed over the input space, X .

Each pixel of plots represents the mean value of the integrand of Term

1, Ψ1(ξ), computed at input settings behind each pixel. Different

design options are depicted as black points. . . . . . . . . . . . . . . . 193

5.8 Each panel demonstrates a parameter plot showing points classified

as being in NROY space after the first wave of history matching in

grey when we use the design candidate (black dots) for constructing

GP emulators. Points in green represents the input region identified

as part of “true” NROY space. . . . . . . . . . . . . . . . . . . . . . 194

5.9 The input space plot demonstrates the “true” NROY space (dark

grey) and those input points classified as part of NROY space after a

single wave of HM (light grey) together with the design points used

to construct a GP emulator for wave 1 of HM (brown squares) . . . . 195
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5.10 Plots of computed Bayesian Design Criterion (BDC), Ψ(ξ), together

with two Monte Carlo (MC) standard error bars for seven differ-

ent candidate designs for wave 2 of history matching. Left panel :

demonstrates BDC scores with N = 2, 500 MC samples. Right panel :

demonstrates BDC scores with N = 10, 000 MC samples. . . . . . . . 196

5.11 Each panel plot depicts the input space that demonstrates the “true”

NROY space (dark grey) and those input points classified as part of

NROY space after a single wave of HM (light grey) together with

the design points used to construct a GP emulator for wave 1 of HM

(brown squares). The panel plots labelled as Design 1, Design 2 and

Design 3 demonstrate the positioning of the obtained designs (bright

green) found by optimizing BDC with starting points specified for

optimization (dark green). The panel plots labelled as Naive design

demonstrates the positioning of “naive”, space-filling design (bright

green). The input point that correspond to the observation z is rep-

resented by a blue triangle. . . . . . . . . . . . . . . . . . . . . . . . 198

5.12 Predictive variance, V ar{F[1],f(ξ)}[f(x)], computed over wave 1 NROY

space, X 1, as part of BDC computation for a range of design options.

The colour corresponds to the mean value of the predictive variance

behind each pixel. Different design options are depicted as the green

square points. Design for wave 1 are black points. The parameter

setting for the observation z is the blue triangle. The ruled out input

space is in grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.13 Predictive variance, V ar{F[1],f(ξ)}[f(x)], computed over wave 1 NROY

space, X 1, as part of BDC computation for a range of design options.

The colour corresponds to the mean value of the predictive variance

behind each pixel on the same scale. Different design options are de-

picted as the green square points. Design for wave 1 are black points.

The parameter setting for the observation z is the blue triangle. The

ruled out input space is in grey. . . . . . . . . . . . . . . . . . . . . . 201
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5.14 The integrand of Term 1, Ψ1(ξ), computed over wave 1 NROY space.

Each pixel of plots represents the mean value of the integrand of Term

1, Ψ1(ξ), computed at input settings behind each pixel. For each

panel plot we fix and consider the effect of different design options

for wave 2 design, ξ, on the integrand value. Design candidates for

wave 2 are green squares. Design for wave 1 are black points. The

input parameter setting corresponding to the observation z is the blue

triangle. The ruled out input space after wave 1 HM is in grey. . . . . 202

5.15 The integrand of Term 2, Ψ2(ξ), computed over wave 1 NROY space.

Each pixel of plots represents the mean value of the integrand of Term

2, Ψ2(ξ) computed at input settings behind each pixel. For each panel

plot we fix and consider the effect of different design options for wave

2 design, ξ, on the integrand value across the NROY space X 1. Design

options for wave 2 are depicted as green squares. Design for wave 1

are black points. The input parameter setting corresponding to the

observation z is the blue triangle. The ruled out input space after

wave 1 HM is in grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.16 The integrand of Term 3, Ψ3(ξ), computed over wave 1 NROY space.

Each pixel of plots represents the mean value of the integrand of Term

3, Ψ3(ξ), computed at input settings behind each pixel. For each

panel plot we fix and consider the effect of different design options

for wave 2 design, ξ, on the integrand value. Design options for wave

2 are depicted as green squares. Design for wave 1 are black points.

The input parameter setting corresponding to the observation z is the

blue triangle. The ruled out input space after wave 1 HM is in grey. . 205
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5.17 Each panel demonstrates a parameter plot showing points classified

as being in NROY space after two waves of history matching in grey

when we use the design in green for constructing Gaussian process

emulators. Points in purple represents the portion of “true” NROY

space that has been ruled out. The design used for wave 1 of HM are

brown squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.1 qv500 response against five input parameters on the standardized

scale. The blue dashed lines correspond to z plus and minus 2
(
V ar[e]+

V ar[η]
)1/2

. The values of z, V ar[e] and V ar[η] are provided in Table

6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.2 ei (LOO standardized errors) against the input parameters. . . . . . . 235

6.3 Mixture model performance: coloured ei (LOO standardized errors)

against input parameters, where the deep red colour corresponds to a

higher probability of a point being allocated to region 1 (low variabil-

ity region), the deep blue colour corresponds to the higher probability

of a point being allocated to region 2, while the green colour corre-

sponds to a higher probability of a point being allocated to region 3

(high variability region). . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.4 NROY density plots (upper triangle) and minimum implausibility

plots (lower triangle) for Xp of NROY space produced by a stationary

GP emulator (on the left) and a nonstationary GP emulator (on the

right). Each panel plots either NROY density or minimum implau-

sibility for a pair of parameters. NROY densities, for each pixel on

any panel in the upper triangle, represent the proportion of points in

Xp behind that pixel that are NROY and are indicated by the colour

whose scale is indicated on the right. Minimum implausibilities, for

each pixel on any panel on the lower triangle of the picture, repre-

sent the smallest implausibility found in Xp. These plots are oriented

the same way as those on the upper triangle, for the ease of visual

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
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6.5 Comparison between “naive” design (Naive Design), Bayesian Optimal

Design (BOD) and arbitrary design (Arbitrary Design). On each row

a parameter plot shows points classified as being NROY after wave 1

of HM in grey together with design candidates for wave 2 (blue) and

space-filling design for wave 1 (green). . . . . . . . . . . . . . . . . . 240

6.6 Plots of computed Bayesian Design Criterion (BDC) together with

two Monte Carlo (MC) standard error bars for three design choices.

We specified N = 5000 Monte Carlo samples in the Bayesian Design

Criterion computation. . . . . . . . . . . . . . . . . . . . . . . . . . 241

6.7 Comparison between “naive” design (Naive Design), Bayesian Optimal

Design (BOD) and arbitrary design (Arbitrary Design) in the Appli-

cation Study 1 for 2D projections over the NROY space. Each panel

plots the predictive variance for a pair of parameters thermals ed dz

and thermals fact epsilon. The value behind each pixel on any

panel represents the mean value of predictive variance found by fix-

ing the two parameters at the plotted location and varying the other

3 dimensions of parameter space. . . . . . . . . . . . . . . . . . . . . 242
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6.8 Comparison of contributions towards Term 1, Ψ1(ξ), between “naive”

design (Naive Design), Bayesian Optimal Design (BOD) and arbitrary

design (Arbitrary Design) in the Application Study 1 for 2D projections

over the NROY space for a pair of parameters thermals ed dz and

thermals fact epsilon. First column: the value behind each pixel

represents the proportion of points behind that pixel in the remaining

3 dimensions that are expected to remain in wave 2 NROY space. The

ruled out input space is in grey. Second column: the value behind

each pixel corresponds to the proportion of points in input region X 1
1

that are expected to remain in wave 2 NROY space. The ruled out

input space and X 1
3 are in grey.Third column: the value behind each

pixel corresponds to the proportion of points in input region X 1
3 that

are expected to remain in wave 2 NROY space. The ruled out input

space and X 1
1 are in grey. . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.9 Difference in contributions towards terms of BDC between Bayesian

Optimal Design (BOD) and arbitrary design (Arbitrary Design) in the

Application Study 1 for 2D projections over the NROY space for

a pair of parameters thermals ed dz and thermals fact epsilon.

Top row : the value behind each pixel represents the difference in

mean contribution towards terms of BDC. The ruled out input space

is in grey. Bottom row : the value behind each pixel represents the

mean contribution towards terms of BDC computed over X 1
3 . The

ruled out input space and X 1
1 are in grey. . . . . . . . . . . . . . . . . 246

6.10 Comparison between “naive” design (Naive Design), Bayesian Optimal

Design (BOD) and arbitrary design (Arbitrary Design). Each param-

eter plot shows points classified as being NROY after wave 1 of HM

(grey) together with points classified as being NROY after wave 2 of

HM (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
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6.11 Input space plot showing X 1, wave 1 NROY space, in Application

Study 1. Points with a higher probability of being allocated to region

1 (red) and points with a higher probability of being allocated to

region 3 (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

6.12 qv500 response against five input parameters on the standardized

scale. The blue dashed lines correspond to z plus and minus 2
(
V ar[e]+

V ar[η]
)1/2

. The values of z, V ar[e] and V ar[η] are provided in Table

6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

6.13 NROY density plots (upper triangle) and minimum implausibility

plots (lower triangle) for Xp of NROY space produced by stationary

GP emulator (on the left) and nonstationary GP emulator (on the

right). Each panel plots either NROY density or minimum implausi-

bility for a pair of parameters. NROY densities, for each pixel on any

panel in the upper triangle of the picture, represent the proportion

of points in Xp behind that pixel that are NROY and are indicated

by the colour whose scale is indicated on the right. Minimum im-

plausibilities, for each pixel on any panel on the lower triangle of the

picture, represent the smallest implausibility found in Xp. These plots

are oriented the same way as those on the upper triangle, for the ease

of visual comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

6.14 Input space plot showing X 1, wave 1 NROY space, in Application

Study 2. Points with a higher probability of being allocated to region

1 (red) and points with a higher probability of being allocated to

region 3 (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

6.15 Comparison between “naive” design (Naive Design), candidate de-

sign (Design 1) and arbitrary design (Arbitrary Design). Each panel

plot shows points classified as being NROY after wave 1 HM in grey

together with design candidates for wave 2 (blue) and space-filling

design for wave 1 (green). . . . . . . . . . . . . . . . . . . . . . . . . 253
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6.16 Plots of computed Bayesian Design Criterion (BDC) together with

two Monte Carlo (MC) standard error bars for three design options

for wave 2 of HM. We specified N = 7500 Monte Carlo samples in

the Bayesian Design Criterion computation. . . . . . . . . . . . . . . 254

6.17 Comparison between “naive” design (Naive Design), candidate design

(Design 1) and arbitrary design (Arbitrary Design) in the Application

Study 2 for 2D projections over the NROY space. Each panel plots

the predictive variance for a pair of parameters thermals ed dz and
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represents the mean value of predictive variance found by fixing two
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6.18 Comparison of contributions towards Term 1, Ψ1(ξ), between “naive”

design (Naive Design), candidate design (Design 1) and arbitrary de-

sign (Arbitrary Design) in the Application Study 2 for 2D projections

over the NROY space for a pair of parameters thermals ed dz and

thermals fact epsilon. First column: the value behind each pixel

represents the proportion of points behind that pixel in the remain-

ing 3 dimensions that are expected to remain in wave 2 NROY space.

The ruled out input space is in grey. Second column: the value behind

each pixel corresponds to the proportion of points in input region X 1
1
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Chapter 1

Introduction

Computer models are used across a wide range of fields to study physical (real-

life) systems. Based on these models, we perform inference about the past, current

and future states of the system. For example, Galform, the state-of-the-art model

in cosmology, is used to study the creation and evolution of one million galaxies

from the beginning of the Universe until the current day (Vernon et al., 2010). In

the climate community, large-scale models such as the General circulation model

(GCM) are employed to generate predictions about the state of the climate. Due

to the complexity of this type of model; it is computationally expensive to run a

simulation.

A possible solution to this problem is to construct a surrogate based on a limited

number of computer model runs. Gaussian Process (GP) emulator is a type of sur-

rogate that generates a prediction for a computer model together with uncertainty

on the prediction. A standard class of GP emulators, i.e. with stationary kernels,

fails to provide accurate predictions and a fair assessment of uncertainty to the

nonstationary (heterogeneous) model response. In this thesis, we present a nonsta-

tionary GP emulator with kernel mixtures. We use diagnostics from stationary GP

fits to partition the input space into different regions with distinct model response

behaviour. We then proceed to fit a single GP emulator based on diagnostics results

by varying the correlated residual behaviour across the input space, which allows

users to operate within the original input space and retain interpretability of model

response behaviour across the input space.

36



After assessing the adequacy of a proposed GP emulator to represent a model

response, it is mainly used to carry out computer model related tasks, such as

calibration, sensitivity analysis and uncertainty analysis.

One of the important types of calibration that we consider in detail in this thesis

is history matching. History matching is performed by ruling out regions of input

parameter space that are considered unlikely to give a model output consistent

with real-world observation. On the contrary, the retained regions of input space,

the not ruled out yet (NROY) space, correspond to acceptable matches between

observations and computer model outputs. History matching is most effective when

it is performed in waves, i.e. refocussing steps. At each step, a new design is required

within the current NROY space to update an emulator and perform the cutting down

of the input space. In this thesis, we present a Bayesian Design Criterion with a

loss function that compares the volumes of the NROY space obtained at the next

iteration of history matching and the ‘true’ NROY space. The ‘true’ NROY space

is obtained by assuming the existence of ‘perfect’ emulator. The Bayesian Optimal

Design is found by minimizing the Bayesian Design Criterion. The uniqueness of the

proposed approach is that the Bayesian Design Criterion takes into account not only

the knowledge about the size and shape of the NROY space but also incorporates

the measures of uncertainty provided by our GP emulator. The last feature is

particularly useful in situations when the computer model response behaviour is

nonstationary and therefore we might be interested to improve our knowledge about

model behaviour in a more complex, high-variability input region.

The final contribution of this thesis is the ExeterUQ library for modelling and

quantifying uncertainties in complex computer simulators. In particular, the core

components of ExeterUQ are GP emulation and history matching. Prior specification

for GP hyperparameters allows modellers, non-experts in statistics, to obtain stable

and robust predictions produced by a GP emulator. We demonstrate the function-

ality of ExeterUQ in application to a Single Column Model (SCM) of a GCM and

Large Eddies simulations (LES).
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1.1 Thesis Outline

In Chapter 2, we provide a review of the current approaches adopted in Uncertainty

Quantification (UQ). We mainly focus on emulation, the diagnostics used to validate

the adequacy of proposed GP emulator to model simulator output, nonstationary

GP models and history matching.

Chapter 3 presents ExeterUQ software for modelling and quantifying uncertain-

ties in complex computer simulators. We discuss the characteristic features of our

developed software, such as GP emulation and history matching, and how it is

different from other available and open source software and packages.

In Chapter 4, we present our nonstationary GP emulator with kernel mixtures.

At the beginning of this Chapter, we carefully review the partitioning approaches

such as Treed Gaussian Process (TGP) (Gramacy and Lee, 2008) and Voronoi Tes-

sellation GP (Pope et al., 2018) as well as Composite Gaussian Process (CGP) (Ba

and Joseph, 2012). We present a diagnostic-led approach to fitting nonstationary

GP emulators by specifying finite mixtures of region-specific covariance kernels. Our

method first fits a stationary GP and, if traditional diagnostics exhibit nonstation-

arity, those diagnostics are used to fit appropriate mixing functions for a covariance

kernel mixture designed to capture the nonstationarity, ensuring an emulator that

is continuous in parameter space and readily interpretable. We compare our ap-

proach to the principal nonstationary GP models, i.e. TGP and CGP, on a number

of idealised test cases as well as the nonstationary response produced by a climate

model. We finish off this Chapter by demonstrating the importance of nonstationary

GP emulators for history matching when we are dealing with nonstationary model

response.

In Chapter 5, we present the Bayesian Design Criterion (BDC) for history match-

ing. We start this chapter by discussing the challenges encountered in the process

of generating an ensemble in the not ruled out space, and the current approaches

adopted. We proceed to introduce our Bayesian Design Criterion, as well as each

individual component of the proposed criterion. We conduct a simulation study on

a simple 2D toy model to compare the effect of a space-filling design over the current
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not ruled out space to a Bayesian Optimal Design on Wave 2 NROY space size and

shape.

In Chapter 6, we adapt our proposed Bayesian Design Criterion to the situation

of attempting to perform history matching with a nonstationary computer model

output. We state a number of assumptions for our proposed nonstationary GP model

to ensure that we achieve an optimal design by fixing a number of input regions and

the form of mixing functions throughout the whole process of history matching. We

derive that the BDC employed with our proposed nonstationary GP model takes

into account the decomposition of the current NROY input space, in particular the

relative volume of regions of input space with distinct model behaviour. We perform

two simulation studies using climate model output.

Chapter 7 offers concluding remarks and highlights a number of potential areas

for further work.
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Chapter 2

Literature Review

2.1 Computer simulators

A computer model (simulator) is a coded representation of a true process, and is

usually treated as a mathematical function f , that takes varying values of input

parameters denoted by a vector x = (x1, . . . , xp) ∈ Rp, and returns output f(x).

Computer simulations have been used in oil reservoir modelling (Tavassoli et al.,

2004), analysis of Galaxy formation (Vernon et al., 2010), climate and environmental

sciences (Challenor, 2004; Lynch, 2008; Edwards, 2010; Lee et al., 2011), industrial

design and engineering (Ankenman et al., 2010; Rogers et al., 2003), as well as in

medical applications such as HIV transmission modelling (Andrianakis et al., 2017)

and neural mass models (Ferrat et al., 2018).

Computer models are widely used for prediction and forecasting. For instance

in weather forecasting, a General circulation model (GCM) of the atmosphere is

used to predict density, pressure and air velocity (wind) in the near future, usually

15 days (Gettelman and Rood, 2016). Computer models can be used to study the

process of interest under different scenarios. For instance, climate modellers use four

representative concentration pathways (RCPs) scenarios, that represent radiative

forcing values from 2.6 to 8.5 W/m2 in 2100. These scenarios contain a range of

variables (parameters) that reflects the socio-economic change, technological change,

energy use, and emissions of greenhouse gases and air pollutants (van Vuuren et al.,

2011). These variables are used as inputs to a climate model and their impact on
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the climate through the year 2100 is considered to understand climate change.

Computer models can produce many forms of output such as a single scalar, a

vector of scalars, time series, a spatial field or a combination of the output variables

mentioned above. For example, the output of the IC fault oil reservoir model is

a time series of the oil production rate, the water injection rate, and the water

cut rate (Tavassoli et al., 2004, 2005). General circulation models (GCMs), or

global climate models, such as LMDZ (Laboratoire de Météorologie Dynamique)

(Hourdin et al., 2006), use discretised Navier-Stokes dynamical equations on the

sphere and produce different output fields e.g. potential temperature, pressure and

precipitation over a horizontal and vertical grid. The output of a computer model

can be deterministic or stochastic. Deterministic models produce the same output

under the same model conditions, whilst stochastic models output possess inherent

randomness. For instance, the Susceptible-Infected-Recovered (SIR) epidemic model

has a stochastic version to predict number of infected from communicable diseases,

such as influenza or dengue (Binois et al., 2018). The inherent randomness in model

output comes from the process of solving stochastic differential equations as part of

the model.

The input parameters of a computer model could be observable and directly

linked to the process of interest, or could be used to account for inadequate physics

in the simulator (Higdon et al., 2008).

The process that we are trying to describe could be very complex, leading to a

large and expensive computer model, in terms of a single run time, that suffers from

a number of uncertainty sources (Kennedy and O’Hagan, 2001). Prior to using a

computer simulator to make informed decisions or studies about the true process of

interest, we should attempt to quantify and take into account different sources of

uncertainty.

2.2 Uncertainty quantification

Uncertainty quantification (UQ) is a field that focuses around quantifying and taking

account of uncertainties for mathematical and computer models that attempt to
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describe real-world processes.

Kennedy and O’Hagan (2001) classify various sources of uncertainty in computer

models. We encounter parameter uncertainty when we are dealing with a computer

model that contains a number of unknown input parameters. In particular, the

inverse problem is a vast area of UQ that attempts to learn about model input

parameters from observations of the process that the model describes. Calibration

is the process of finding the input parameter values that allow the computer model

to be a trustworthy representation of the physical process; and is commonly used

to solve the inverse problem (Kennedy and O’Hagan, 2001; Higdon et al., 2008;

Chang and Guillas, 2018). For example, the input parameters space of a Canadian

Atmospheric Global Climate Model (CanAM4) has been explored by comparing

vertical air temperature produced by the model to observed temperature (Salter

et al., 2018). For a calibration exercise, we usually use actual observations of the

physical process of interest. The accuracy of observations is usually affected by

human error and/or limitations of instruments and this effect can be expressed via

the observation error term.

Another source of uncertainty arises from the notion that the model is not a

perfect representation of the true process due to the process complexity and the

lack of computational resources. For instance, climate models solve coupled PDEs

discretized over the vertical and horizontal grids over the sphere numerically to study

the effect of input variables of interest on the climate (Hourdin et al., 2017). For

GCMs, grids with cell sizes of the order of 100 to 300 km horizontally are typically

used, which leads to the inability to explicitly calculate the effect of cloud processes

(Diallo et al., 2017). These processes which are too small are considered as “sub-grid

scale processes”, and the effect of these processes is approximated inside the model.

As a result, model discrepancy, the difference between the process and the model

representation, will appear.

Computer models are computationally expensive to run at as many input param-

eter settings as we usually require. We treat them as “black box” models since we

only manage to learn their outputs if we run them for given inputs’ values (Kennedy
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and O’Hagan, 2001). Cheap surrogates (emulators) such as neural networks, splines

and polynomial chaos could be used to approximate computer model behaviour

across the input space (Jin et al., 2000; Chen et al., 2006; Owen et al., 2017; Mo-

hammadi et al., 2018). Gaussian Process (GP) emulators, a non-parametric class

of surrogate models, have become increasingly popular due to their flexibility, as no

assumptions about the form of the simulator response are required (Mohammadi

et al., 2018). Unlike other surrogate models, GP emulators provide a measure of

uncertainty about the predicted model output.

Apart from calibration, there are other techniques in UQ used to deal with

different sources of uncertainty in detail, such as uncertainty analysis and sensitivity

analysis. Uncertainty analysis deals with the parameter uncertainty by looking at

the distribution of the computer model output induced by a probability distribution

on input parameters (Oakley and O’Hagan, 2002).

Sensitivity analysis looks at identifying how model input parameters affect the

model outputs (Oakley and O’Hagan, 2004). There are two commonly used measures

of sensitivity of computer model output to an individual parameter xi, the main

effect index and the total effect index. The main effect index is based on considering

the expected reduction in the uncertainty in the computer model output after we

learn the true value of xi (Saltelli et al., 2000). The total effect index is based on

quantifying the remaining uncertainty in the computer model output after we have

learnt everything except xi (Homma and Saltelli, 1996).

2.3 Emulation

An emulator is a cheap statistical representation of a computer model (Currin et al.,

1988, 1991; Sacks et al., 1989; Santner et al., 2003). Emulators are used to produce

various inferences about a computer model for uncertainty quantification. For ex-

ample, model calibration, prediction, sensitivity and uncertainty analyses (discussed

in subsection 2.2) use emulators to avoid generating more expensive computer model

runs.

We start by defining a statistical model for a scalar output f(x). An emulator
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is typically considered as a sum of two processes (Williamson, 2015)

f(x) = h(x)Tβ + ε(x), (2.1)

where h(x)Tβ represents a global response surface behaviour, ε(x) is a correlated

residual process capturing local input dependent deviation from the global response

surface.

Gaussian processes are the principal tools for both building emulators and rep-

resenting our uncertainty about the simulator output (Santner et al., 2003; Bastos

and O’Hagan, 2009).

2.3.1 Gaussian processes

A Gaussian process is a stochastic process defined for a collection of random variables

such that every finite collection of those random variables has a multivariate normal

distribution (Rasmussen and Williams, 2004; Santner et al., 2003). We specify that

f(x) is Gaussian process if, for any n ≥ 1, n ∈ N and x1, . . . ,xn ∈ X , the vector

(f(x1), . . . , f(xn)) has a multivariate normal distribution (Santner et al., 2003).

We model the residual term, ε(x), introduced in equation (2.1), as a zero-mean

Gaussian Process with covariance function k(x,x′;σ2, δ) = σ2r(x,x′; δ). The co-

variance function depends on the vector of correlation length parameters, δ, defined

inside the correlation function, r(x,x′; δ), and variance parameter, σ2. A careful

and detailed review of covariance function structure is presented in subsection 2.3.2.

The first term of equation (2.1) consists of h(x), a vector of regression functions

evaluated at x, such as linear terms, powers of inputs, and interactions between

inputs, whilst β is a vector of regression parameters.

We derive a Gaussian process distribution for f(x) determined by the mean

function

E[f(x)] = h(x)Tβ =

p∑
i=1

βihi(x) (2.2)
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and the covariance function

Cov[f(x), f(x
′
)] = k(x,x′;σ2, δ) = σ2r(x,x′, δ), (2.3)

where r(x,x′; δ) is a user-specified correlation function. Using probabilistic notation,

the probability distribution for f(x) conditioned on the statistical model parameters{
β, σ2, δ

}
is

f(x)|β, σ2, δ ∼ GP
(
h(x)Tβ, k(·, ·;σ2, δ)

)
(2.4)

(Currin et al., 1991). Suppose we observe n computer model realisations F =(
f(x1), . . . , f(xn)

)
at design points X =

(
x1, . . . ,xn

)
. According to equation (2.4),

the distribution of outputs is multivariate normal,

F|β, σ2, δ ∼MVN
(
Hβ, K

)
,

where H =
[
h(x1), . . . , h(xn)

]T
and K is an n × n covariance matrix with entries

Kij = k(xi,xj). Using standard techniques for conditioning in multivariate normal

distributions, the distribution for f at a new input x given ensemble {X,F} and

parameters β, σ2, δ is

f(x)|{X,F},β, σ2, δ ∼ GP (m∗(x), C∗(x,x′)) (2.5)

with mean

m∗(x) = E[f(x)|{X,F},β, σ2, δ] = h(x)Tβ + k(x,X)K−1
(
F −Hβ

)
(2.6)

and variance

C∗(x,x′) = Cov[f(x), f(x′)|{X,F},β, σ2, δ] = k(x,x′)−k(x,X)K−1k(X,x) (2.7)

where k(x,X) is n-vector whose ith component is k(x,xi), i = 1, · · · , n, the covari-

ance between the point of interest x and the design point xi.
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2.3.2 Covariance functions

The covariance function, or kernel, is a crucial part of a Gaussian process emula-

tor, and represents the similarity between the model output evaluated at two points

x and x′ in the input space X . It also depends on the definition of the correla-

tion function. There are several commonly used families of correlation functions in

the computer experiments literature (Rasmussen and Williams, 2004). The power

exponential correlation function is defined as

r(x,x′) = exp

{
−

p∑
j=1

(xj − x′j
δj

)φj}
(2.8)

where δj > 0 and 0 < φj ≤ 2. In this thesis we mainly use a squared exponential

correlation function with φj = 2, j = 1, . . . , p, which is an infinitely differentiable

function. Gaussian Processes with this covariance function have mean square deriva-

tives of all orders, and thus produce smooth sample paths (Rasmussen and Williams,

2004). The notion of mean squared differentiability of the process is directly con-

nected to the differentiability of the correlation function. A Gaussian Process, f(·),

has mean square partial derivative at x∗, if and only if ∂2r(x,x′)
∂xj ,x′j

exists and is finite

at (x∗,x∗) (Adler, 1981, p. 27). If the derivative exists, the correlation function of

the mean square partial derivative process is the partial derivative of the original

correlation function (Paciorek, 2003). Stein (2012) advocates against using squared

exponential correlation functions to model physical processes, and proves his point

with a numerical study: the predictions from a GP model with a squared exponential

correlation function were generated for a sample path from a GP with once mean

square differentiable correlation function, for which 1 ≤ φj < 2. The performance

measures used for this study demonstrated the unsatisfactory performance of the

GP model with a squared exponential correlation function. One possible solution to

this problem could be to specify φ = 1.9 which leads to a “rougher” Gaussian pro-

cess representation (Bayarri et al., 2007). Williamson and Blaker (2014) adopted

this form of the correlation function for their GP emulator to model the AMOC

time series. However, we didn’t find any practical issues with employing a squared
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exponential correlation function for our GP specification.

Another set of important parameters of power exponential correlation functions

are the correlation length parameters, δ. In each input dimension i, the distance

between two input points is in the φith power and rescaled by the corresponding

entry of the correlation length vector in the φith power. Larger values of δi leads

to a stronger correlation for a pair of input points in the ith direction, while the

complete opposite is true for small values of δi.

The Matérn correlation function (Paciorek and Schervish, 2006; Golchi et al.,

2015) is defined as

r(x,x′) =
21−α

Γ(α)

(√
2α|x− x′|

δ

)α

Kα

(√
2α|x− x′|

δ

)

where α, δ are positive parameters, |x− x′| is a distance between two points in the

input space, Γ(·) is a gamma function, Kα is a modified Bessel function of the second

kind. Matérn correlation functions produce Gaussian process sample paths that are

α−1 differentiable and, as α→∞, the Matérn correlation converges to the squared

exponential (Rasmussen and Williams, 2004; Santner et al., 2003). Rasmussen and

Williams (2004) stated that two choices, α = 3/2 and α = 5/2, are commonly used

within the computer science community. These two choices are in between α = 1/2,

which leads to GP paths with a large number of local peaks, and α = 7/2, which

leads to overly smooth GP paths.

Let us return to the specification of the covariance function. In general, an

arbitrary function of two inputs x and x′ will not be a valid covariance function

for Gaussian Process, unless it is a positive semidefinite (Rasmussen and Williams,

2004). A covariance function is said to be a positive semidefinite if it gives rise to

a positive semidefinite (PSD) n × n matrix K with entries Kij = k(xi,xj;σ
2, δ),

where xi, xj, i, j ∈ 1, · · · , n are two design points in X. This condition is crucial as

it allows us to compute the inverse of the covariance matrix K, which is necessary

for fitting a Gaussian process emulator.

There are properties that we could adopt for the covariance function to reduce

the computational costs related to a covariance matrix and its inverse. A stationary

47



covariance function depends only on the distance between two input points, |x−x′|,

and thus is invariant to the translation in the input space (Bastos and O’Hagan,

2009; Santner et al., 2003; Rasmussen and Williams, 2004). An isotropic covariance

function models the correlation between the pair of the input points the same way

in each ith direction (Rasmussen and Williams, 2004). The isotropic property is

achieved by deriving a single value of δ for each i = 1, . . . , p, and therefore allowing

users to estimate a single correlation length parameter. However, the stationarity

and isotropy assumptions could be too strong for many models whose response varies

across the input space, i.e. nonstationary response (see subsection 2.5). In this case,

applying GP models with stationary and isotropic covariance functions could lead

to unsatisfactory performance (see subsection 2.4).

A new form of covariance function could be generated from the combination

and/or modification of existing covariance functions (Rasmussen and Williams,

2004). For example, the sum of two kernels is a kernel

k(x,x′;σ2, δ) = k1(x,x′;σ2, δ1) + k2(x,x′;σ2, δ2).

In spatial statistics, the weighted sum of locally defined kernels is widely used to

model nonstationarity in the spatial process and will be discussed in detail in Section

2.5 and Chapter 4 (Fuentes, 2001; Fuentes and Smith, 2001; Banerjee et al., 2004).

A nonstationary covariance function could be obtained by convolving the spatially-

varying kernel functions (kernel density estimators) Kx(u) centred on x (Higdon

et al., 1999; Paciorek and Schervish, 2006)

k(x,x′) =

∫
X
Kx(u)Kx′(u)du

where x,x′ and u are locations (inputs) in X . Higdon et al. (1999) used the Gaussian

kernel density estimator

Kx(u) =
1

(2π)p/2|Σ1/2|
exp

[
− 1

2
(x− u)TΣ−1(x− u)

]

where Σ is the covariance matrix centred at x. Integration over the input space (do-
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main) allows us to evolve the covariance function spatially (Paciorek and Schervish,

2006) and this covariance function could be used to target a nonstationary model

response (see section 2.5).

The product of kernels and the tensor product of kernels both produce valid

kernels (Rasmussen and Williams, 2004)

k(x,x′;σ2, δ) = σ2 × Πp
i=1r(xi, x

′
i; δi).

In this thesis we use separable squared exponential kernel and define

r(xi, x
′
i, δi) = exp

{
−

(
xi − x′i
δi

)2}
.

2.3.3 The nugget parameter

During the process of fitting an emulator via equations (2.6) and (2.7), or the vari-

ants of these equations demonstrated in section 2.3.4, we could encounter numerical

problems with the inversion of a covariance matrix, K (Neal, 1997). A nugget pa-

rameter is added to an emulator to alleviate the singularity of the covariance matrix

(Ranjan et al., 2011; Andrianakis and Challenor, 2012).

The emulator definition in equation (2.1) from section 2.3 is modified by including

an independent nugget term, ν(x),

f(x) = h(x)Tβ + ε(x) + ν(x). (2.9)

A nugget term is a zero mean normally distributed random quantity with variance

τ 2 at all x, and it is assumed to be uncorrelated with itself at different inputs

(Andrianakis and Challenor, 2012; Gramacy and Lee, 2012; Neal, 1997; Ranjan

et al., 2011), precisely

Cov[ν(x), ν(x′)] =


τ 2, x = x′,

0, otherwise.
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The inclusion of a nugget term modifies our probabilistic specification for f(x) in

the equation (2.4)

f(x)|β, σ2, δ, τ 2 ∼ GP
(
h(x)Tβ, k(·, ·;σ2, δ, τ 2)

)
(2.10)

with a newly defined covariance function

Cov[f(x), f(x′)] = k(x,x′;σ2, δ, τ 2) = σ2r(x,x′; δ) + τ 21
{
x = x′

}
,

where the indicator function is defined as

1
{
x = x′

}
=


1, x = x′,

0, otherwise.

However, this parameterization of the covariance function leads to an analytically

intractable marginalisation of σ2, implying that σ2 would have to be estimated

jointly with δ or even marginalised numerically (Andrianakis and Challenor, 2012).

An alternative way of adding a nugget parameter to a covariance function, adopted

by Andrianakis and Challenor (2012); Gramacy and Lee (2012); Montagna and

Tokdar (2016), is

Cov[f(x), f(x′)] = k(x,x′;σ2, δ, τ 2) = σ2 ×
[
r(x,x′; δ) + τ 21

{
x = x′

}]
,

where σ2τ 2 represents the variability that is not captured by the correlated part of

the process.

The presence of a nugget results in GP models that do not interpolate the design

points, X, and instead attaching a non-zero uncertainty band around them. In cases

when we are aiming to obtain a numerical stability, the nugget process term is set

to as small as possible value, so that its effect on the Gaussian process is negligible

(Ranjan et al., 2011).

There are other possible reasons to include a nugget term in an emulator. The

variation in response could be driven by a small number of inputs, known as active
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inputs, xA, (Goldstein and Rougier, 2009; Craig et al., 2001). The global response

surface and the residual process terms are modelled in terms of xA, whilst the nugget

process term is used to account for any remaining variation in the model (Cumming

and Goldstein, 2009). An emulator representation for f(x) becomes

f(x) = h(xA)Tβ + ε(xA) + ν(x).

This model could provide significant computational savings by reducing dimensions

of the residual process term. In spatial statistics, it is common to account for the

measurement error or noise in spatial data through a nugget term (Cressie, 1993;

Banerjee et al., 2004).

Gramacy and Lee (2012) demonstrated that the inclusion of a nugget allows a

GP model to smooth the simulator output, acting like an extrapolator, and perform

better than a GP model with zero nugget for a number of situations. For instance,

in situations where we are unable to explore the simulator behaviour across the

input space, the inclusion of a nugget term in the emulator could be useful. The

interpolating emulator tends to produce predictions and confidence bands outside of

the actual simulator response range. On the other hand, the emulator with a nugget

manages to capture the global behaviour of the model and produces reasonable

confidence bands by increasing variance at the points of interest.

2.3.4 Fitting a Gaussian process emulator

The simulator output, f(x), is modelled as a Gaussian Process, as defined in equa-

tion (2.4). We observe the computer model runs, F =
(
f(x1), · · · , f(xn)

)
, at design

points, X =
(
x1, · · · ,xn

)
, and using the identities for multivariate Gaussian dis-

tributions, the distribution of f(x) conditioned on GP parameters and ensemble,

{X,F}, takes the form of equation (2.5).

In general, the GP parameters are unknown and have to be estimated or marginalised.

Currin et al. (1991) proposed to fix the unknown hyperparameters at the values

found by maximum likelihood. The expression for log-likelihood is derived, and the

maximisation over σ2 and β yields formulas dependent on δ. The δ̂ is usually found
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by a constrained iterative search, which gets increasingly computationally expensive

as the number of input dimensions increases (Currin et al., 1991). There is a possi-

ble danger to get stuck in a local optima using numerical optimisation (Warnes and

Ripley, 1987; Ripley, 1991).

Haylock and O’Hagan (1996) suggest specifying the non-informative prior for β

and σ2 in the form

π(β, σ2) ∝ 1/σ2. (2.11)

The benefit of this prior is that the posterior analysis is tractable: it is possible to

write down the posterior distribution conditioned on the correlation length param-

eter.

We start by integrating β out and obtaining the distribution of f conditioned on

ensemble, {X,F}, and parameters σ2 and δ. This is Gaussian as before with mean

m∗∗(x) = E[f(x)|{X,F}, σ2, δ] = h(x)T β̂ + kT (x,X)K−1
(

F−Hβ̂
)

(2.12)

and variance

C∗∗(x,x′) = Cov[f(x), f(x′)|{X,F}, σ2, δ] = k(x,x′)− kT (x,X)K−1k(x′,X)

+ (h(x)− kT (x,X)K−1H)(HTK−1H)−1

× (h(x′)− kT (x′,X)K−1H)T , (2.13)

where β̂ = (HTK−1H)−1HTK−1F. The next step is to integrate σ2 and we derive

that f conditional on {X,F} and δ is Student Process with n−p degrees of freedom,

with the same form of mean, m∗∗(x), and the covariance defined as

C∗∗∗(x,x′) = Cov[f(x), f(x′)|{X,F}, δ] = σ̂2C∗∗(x,x′), (2.14)

where σ̂2 = FT (K−1−K−1H(HTK−1H)−1HTK−1)F
n−p−2

. The final step is to derive estimates

of δ, and then use these estimates as if they were the true values of δ (Kennedy

and O’Hagan, 2001). Integrating out the hyperparameter δ leads to an intractable

posterior distribution for f(x).
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The addition of a nugget term to the covariance function in the following way

σ2 ×
[
r(x,x′; δ) + τ 21

{
x = x′

}]
does not affect the posterior predictive equations for f(x) with the non-informative

prior specification for β and σ2 (De Oliveira, 2007).

For mathematical tractability, Oakley and O’Hagan (2002) suggest using the

conjugate prior for β and σ2 in place of (2.11)

π(β, σ2) ∝ σ−(p+r+2)/2 exp
[
−
{

(β − z)TV −1(β − z) + a
}
/2σ2

]
, (2.15)

where r,z, V and a are the parameters of this distribution and have to be user-

specified. This allows users to incorporate prior knowledge about f into the model,

which could be done via the elicitation of priors (Oakley, 2002). The inclusion of

these parameters changes the form of the posterior distribution for f to

f(x)−m∗∗(x)

σ̂
√
C∗∗(x,x)

∼ tp+n, (2.16)

where m∗∗(x) and C∗∗(x,x′) were previously defined in equations (2.12) and (2.13)

respectively with

V ∗ = (V −1 +HTK−1H)−1,

β̂ = V ∗(V −1z +HTK−1F),

σ2 =
a+ zTV −1z + FTK−1F− β̂

T
(V ∗)−1β̂

n+ p− 2
.

Full Bayesian MCMC methods have been used (Higdon et al., 2008; Kaufman and

Sain, 2010; Williamson and Blaker, 2014). For these methods, priors for model

parameters are specified, and MCMC is used to obtain samples from the posterior

distribution for these parameters. The samples from the posterior are drawn and

substituted into (2.6) and (2.7) to derive the posterior predictive distribution for f

conditional on {X,F}. Despite the method being more computationally expensive
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than previously considered approaches to constructing GP emulators, it allows users

to incorporate prior knowledge about f into their statistical models.

A number of modifications have been used to reduce the computational costs as-

sociated with fitting GP emulators. For instance, approaches such as Local Gaussian

Process approximation (LAGP) (Gramacy and Apley, 2015) and Nearest Neighbour

Gaussian Process (NNGP) (Datta et al., 2016) generate predictive equations for f

locally by deriving smaller design set, X̃ ⊂ X, around a point of interest, x, (see

section 2.5 for more details), which leads to the reduction in costs of computing

covariance matrices of design points. Snelson and Ghahramani (2006) proposed a

method for generating a reduced pseudo-input set, X̄ = (x̄1, . . . , x̄M)T , where M is

smaller than the size of original design set X.

2.3.5 Priors for parameters

We demonstrated in subsection 2.3.4 that prior specification of GP parameters is

crucial since it affects the form of the posterior distribution for f(x). Berger et al.

(2001) and Paulo et al. (2005) reviewed different types of objective priors such

as Jeffreys-rule, independence Jeffreys and reference priors for Gaussian Process

models that lead to a proper posterior distribution for parameters under a number

of assumptions. In particular, they specify a general form of prior on parameters

Θ =
{
β, σ2, δ

}
π(Θ) ∝ π(δ)

(σ2)a

for different a and π(δ). By specifying different values of a and π(δ), they derive

Jeffreys-rule, independence Jeffreys and reference priors for Θ. Objective priors are

mainly used as default priors, in situations when we are dealing with little or no

prior information about the model parameters (Paulo et al., 2005).

However, objective priors should be used in the GP model with caution. Gelman

et al. (2017) demonstrated how default priors (uniform priors, Jeffreys priors, refer-

ence priors) could produce a poor predictive posterior performance for a number of

examples. They encourage users to specify prior distributions for model parameters

in the context of the problem and data. In Chapter 4, we will demonstrate the ef-
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fect of prior distributions on the inference and predictions generated by a statistical

model.

One of the approaches in specifying subjective priors is via elicitation. Elicita-

tion of expert knowledge is the process of constructing a distribution from the finite

number of expert statements about the process of interest (O’Hagan, 1998; Oakley

and O’Hagan, 2007; Gosling et al., 2007). The expert knowledge elicitation involves

two agents, i.e. an expert/experts, and a facilitator (decision maker) who attempts

to extract relevant knowledge from experts about the quantity of interest. In partic-

ular, Gaussian Process models are used for nonparametric elicitation. The central

assumption is that the analyst’s prior belief about the process under consideration,

f(x), is represented by a Gaussian Process, and the elicitation process is viewed

as an inference problem (Oakley and O’Hagan, 2007; Gosling et al., 2007). In this

case, the process of elicitation is to ask experts for probability statements about the

observed quantity f(x) at x and then update the facilitator’s prior beliefs about the

form of expert’s probability distribution in the light of these expert’s judgements.

The prior specification for f(·) depends on the smoothness parameter δ, variance

parameter σ2 and the form of underlying density g(·). It is important to note that

the facilitator is required to specify GP model hyperparameters before anything is

elicited from the expert. For instance, the facilitator’s prior beliefs about both the

smoothness of f(·) and how far f(·) is expected to deviate from g(·) could guide the

prior specification for δ and σ2 (Gosling et al., 2007).

Gosling et al. (2007) have performed thorough studies to derive the proper priors

for δ and σ2 by considering the effect of different values for σ2 and δ on the facili-

tator’s distribution f(·). In particular, for each pair selected from (δ, σ2)-plane five

hundred functions are simulated from the prior distribution for f(·) with parame-

ters of g(·) fixed at arbitrary values. These simulated functions are effectively used

to discover the values of σ2 and δ that generate the simulated functions consistent

with the facilitator’s prior beliefs about f(·). Such beliefs could be, for instance,

about the sign of f(·) and/or about the similarity of f(·) to an underlying density

g(·). This approach has resemblance to the studies of generative priors considered
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by Gelman et al. (2017); Gabry et al. (2019) and performed in Chapter 4.

Subjective priors on correlation function parameters have been used in UQ (Hig-

don et al., 2008; Williamson and Blaker, 2014; Kaufman and Sain, 2010). The pa-

rameters of the correlation function, such as correlation length parameters, δ, affect

the amount of information being learned from the neighbouring points in the input

space by varying the smoothness properties of GP paths being produced (Santner

et al., 2003). Higdon et al. (2008) specified a correlation function for a GP model

r(x,x′;ρ) =

p∏
i=1

ρ
4(xi−x′i)
i ,

where parameter ρi is the correlation between outputs evaluated at inputs that vary

in only the ith dimension by their half domain. They proceed with specifying inde-

pendent Beta(ai, bi) priors for ρi. In particular, only a subset of inputs is expected

to influence the simulator response, and the prior specification for ρi is used to re-

flect this expectation. Under the model definition, input i is inactive if ρi = 1 and

as a result, it is advised to choose beta prior with ai = 1 and 0 < bi < 1, which

will produce a density with substantial mass near 1. Williamson and Blaker (2014)

also considered the separation of input parameters into active and less active. Less

active input parameters are parameters for which only linear terms were included

in the mean function, h(x)Tβ.

The separable exponential correlation function for the Gaussian Process was

chosen

r(x,x′;κ) =

p∏
i=1

exp
{
− κi|xi − x′i|1.9

}
,

where instead of correlation length parameter vector, δ, the roughness parameter

vector, κ, is used. A half length correlation, defined as sj = exp
{
−κj/21.9

}
, is used

to specify the prior distribution over the roughness parameter. This transforma-

tion allowed Williamson and Blaker (2014) to operate within a reduced range [0, 1].

Williamson and Blaker (2014) proposed to use two forms of prior for sj. In particu-

lar, Beta(1, 1.9) is chosen for half length correlation that corresponds to active input

parameter, leading to more weight being placed towards shorter roughness param-
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eters and increasing the correlation between points in the input space. For input

variables that were considered to be relatively inactive in the model, Beta(1, 4.5)

prior was chosen, leading to a negatively skewed distribution, concentrated on small

values. As a result, more weight was given to longer roughness parameters. Figure

2.1 demonstrates the prior distributions on the half length correlations as well as

roughness length parameters as histograms.

Figure 2.1: Histograms for the half length distributions and the corresponding rough-
ness length distributions specified by Beta(1, 1.9) (top) and Beta(1, 4.5) (bottom).

The subjective prior specification for correlation function parameters described

above are mainly used to express our beliefs about the role of input parameters in

the model. As a result, we are required to identify which input parameters are active

and less active before specifying our priors. Also, the prior specification is largely

dependent on the form of parameters that we are using in our correlation function.

However, we are dealing with complex statistical models, for which priors will have

a significant effect on inference, and it is worth the extra effort to carefully consider

our priors’ specification for parameters (Gelman et al., 2017).
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2.4 Diagnostics for Gaussian process emulator

Before using a Gaussian process emulator for inferential tasks such as prediction,

calibration, uncertainty analysis or sensitivity analysis, the emulator performance

should be validated in terms of its accuracy of representing the computer model

response of interest. Model validation methods such as cross-validation (CV) are

primarily used to check the predictive performance of a statistical model by dividing

the original sample into a design set, used to train (fit) a statistical model, and a

validation set used to evaluate the statistical model’s performance. For K-fold CV,

the original sample is divided into K equal size subsamples. A single subsample is

retained as a validation set to evaluate the performance of the statistical model, and

the remaining K-1 subsamples together make up the design set. The Leave-One-Out

cross-validation (LOO-CV) is a special case of K-fold CV, where K equals to the

size of the sample.

We define a validation data set, X∗ = (x∗1, · · · ,x∗m), which is not used when

training the GP model, and produce runs of the computer model for the validation

data set, F∗ = (f(x∗1), · · · , f(x∗m)). We also define X−i = (x1, · · · ,xi−1,xi+1, · · · ,xn)

and F−i = (f(x1), · · · , f(xi−1), f(xi+1), · · · , f(xn)) for LOO-CV.

Residuals and standardized residuals are commonly used in diagnostic calcula-

tions, as well as graphical displays, to investigate the validity of adopted assump-

tions and the accuracy of emulator predictions (Bastos and O’Hagan, 2009). At

the diagnostic stage we assume that we have constructed a GP emulator and de-

rived posterior predictive distribution for f(·) conditioned on ensemble, {X,F} with

mean function, E[f(·)|{X,F}], and variance function, V ar[f(·)|{X,F}]. We proceed

to compute the individual prediction errors (residuals) for the validation data set as,(
f(x∗

i ) − E[f(x∗i )|{X,F}]
)

for i = 1, . . . ,m, as well as the standardized prediction

errors (standardized residuals), i.e.

f(x∗i )− E[f(x∗i )|{X,F}]√
V ar[f(x∗i )|{X,F}]

. (2.17)

We perform similar computations for X−i with i = 1, . . . , n using virtual LOO
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formulas (Ripley, 2005; Bachoc, 2013) for expectation and variance, i.e.

E[f(xi)|{X−i,F−i}] = f(xi)−
[
K−1

(
F−Hβ

)]
i

(K−1)i,i
(2.18)

V ar[f(xi)|{X−1,F−i}] =
1(

K−1
)
i,i

. (2.19)

Bachoc (2013) explicitly used these formulae to compare the performance of zero-

mean GP models, with parameters σ2 and δ being estimated via maximum like-

lihood and cross-validation approaches. However, we do not find any arguments

against using posterior samples for GP hyperparameters Θ = {β, σ2, δ} drawn from

π
(
Θ|{X,F}

)
to compute equations (2.18) and (2.19). Throughout this thesis we

used RStan to perform Bayesian emulation (Stan Development Team, 2017) (see

Chapter 3 for more information). We propose to sample from the obtained set of

posterior simulations of GP hyperparameters, Θj = {βj, σ2
j , δj, τ

2
j }, j = 1, . . . ,M

and compute at point xi, the expectation E[f(xi)|{X−i,F−i},Θj] and variance

V ar[f(xi)|{X−i,F−i},Θj]. We proceed to simulate f (j)(xi), j = 1, . . . ,M from a

normal distribution with computed above expectation and variance to obtain the

distribution of simulated values and compute the sample mean and sample stan-

dard deviation. In particular, we use a sample mean and sample variance in place

of E[f(xi)|{X−i,F−i}] and V ar[f(xi)|{X−i,F−i}].

Similar to residuals from validation set, we could derive individual prediction er-

rors (residuals) for X−i as
(
f(xi)−E[f(xi)|{X−i,F−i}]

)
and standardized prediction

errors (standardized residuals) for X−i,

f(xi)− E[f(xi)|{X−i,F−i}]√
V ar[f(xi)|{X−i,F−i}]

. (2.20)

Bastos and O’Hagan (2009) described a number of possible problems encoun-

tered with Gaussian Process emulators, such as poor estimates of statistical model

parameters and inappropriate choices of mean and covariance structures. Gaussian

Process models could be considered as a special case of a linear model with de-

pendent errors imposed by a correlated residual term ε(x). Bastos and O’Hagan

(2009) employed diagnostics used for linear models, such as quantile-quantile plots,
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to validate the performance of GP models. The Mahalanobis distance given by

DMD(F∗) =
(
F∗ − E[f(X∗)|{X,F}]

)T
(2.21)

× V ar[f(X∗)|{X,F}]−1
(
F∗ − E[f(X∗)|{X,F}]

)
is used to validate an emulator’s performance, allowing users to include the correla-

tion between outputs by using the predictive covariance matrix V ar[f(X∗)|{X,F}],

where V ar[f(X∗)|{X,F}]ij = Cov[f(x∗i ), f(x∗j)|{X,F}] with 1 ≤ i, j ≤ n, instead of

a diagonal matrix of predictive variance for f(X∗) (Bastos and O’Hagan, 2009).

Extremely large or small values of this diagnostic indicate a conflict between the

emulator and simulator. The distribution of DMD(F∗) is a chi-squared distribution

with m degrees of freedom, where m is a number of points in the validation data

set. Therefore the observed Mahalanobis distance value could be compared to values

from its theoretical distribution (Bastos and O’Hagan, 2009).

Particular attention should be paid to covariance function misspecification for

GP models, which in practice could occur because of bad estimates of the covariance

function hyperparameters, or because of strong assumptions imposed by the covari-

ance function choice such as stationarity or isotropcy (see subsection 2.3.2 for more

details) (Stein, 1988, 1990b,a). An example of a misspecified covariance function is

the stationary covariance function, described in subsection 2.3.2, defined for a GP

emulator to model a nonstationary or discontinuous response. We consider a non-

stationary response as the one for which its behaviour changes significantly across

the input space and cannot be depicted by GP emulator with constant or linear

mean and stationary covariance structure such as in the example demonstrated in

Figure 2.2.

Cressie (1993) introduced a criterion to validate covariance function specification

for a GP model

CLOO =
1

n

n∑
i=1

(f(xi)− E[f(xi)|{X−i,F−i}])2

V ar[f(xi)|{X−i,F−i}]
, (2.22)

which should be close to 1. To derive CLOO we effectively compute the sum of squares

60



of n standardized residuals (errors), that are independent and normally distributed

with mean 0 and standard deviation 1. As a result, the CLOO statistic is chi-squared

distributed with n degrees of freedom. Scaling the chi-squared distribution by its

degrees of freedom results in a modified chi-squared distribution with the expected

value 1, which is why we favour CLOO close to 1.

Graphical methods are commonly used to evaluate the performance of emulators.

Plots such as those showing residuals against the emulator’s predictions, quantile-

quantile plots and plots of residuals against the inputs are typically used (Bastos

and O’Hagan, 2009; Montagna and Tokdar, 2016). In particular, plots of the predic-

tive posterior mean together with prediction intervals, e.g. two standard deviation

prediction intervals, for both the validation data set, X∗, and the design data set,

X, could be produced together with standardized residual plots against the inputs

to validate the covariance structure specified for a GP model.

Figure 2.2 demonstrates the failure of a GP emulator with a stationary covariance

structure to model f(x) with a sharp localised feature at x = 0, as considered by

Montagna and Tokdar (2016). From the left panel of Figure 2.2, we observe narrow

prediction intervals being produced by the emulator around the peak (the emulator

is over-confident). On the contrary, prediction intervals are large in the region far

from the peak and where f is well-behaved (the emulator is under-confident). The

information from the right panel of Figure 2.2 is used to produce a plot of individual

standardized errors of emulator predictions against x using equation (2.20). To pass

the validation check, we would expect to observe a horizontal band between -2 and

2, due to the standard normality of individual standardized errors. However, the

right panel of Figure 2.2 demonstrates an increase in the error variability around

the region when f has a tall peak. Therefore, we conclude that a GP model with

linear mean and stationary covariance should not be used to analyse and perform

inference on model in this example.

We proceed to discuss in detail in Section 2.5 a range of methods for constructing

GPs if stationary GPs fail some of the diagnostics mentioned above.
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Figure 2.2: Left panel : plot of function f(x) = sin(x) + 2 exp(−30x2), x ∈ [−2, 2]
(dashed line). The black points, 15 equally spaced values of x, are the design points
used to train the GP model. The solid line is the posterior predictive mean of f
obtained from a GP emulator with stationary covariance function. The shaded area
denotes two standard deviation prediction intervals. Central panel : Leave One Out
diagnostic plot against x. The predictions and two standard deviation prediction
intervals are in black. The true function values are in green if they lie within two
standard deviation prediction intervals, or red otherwise. Right panel : Individual
standardized errors of emulator predictions against x.

2.5 Nonstationary Gaussian Process Models

It is common to encounter heterogeneous and discontinuous responses in spatial

model outputs and computer model experiments. For example, Paciorek and Schervish

(2006) attempted to model climatological data, in particular the annual precipitation

for the state of Colorado in the United States, for which Figure 2.3 is directly adapted

from Paciorek and Schervish (2006). The left panel plot in Figure 2.3 demonstrates

the topography of the state of Colorado, with a mountainous western region and

flat eastern region. The right panel plot shows the values of log-transformed annual

precipitation observations over the state in 1981. The blue (red) coloured points

correspond to the lower (larger) values of observed precipitation on a log scale.

From the right panel plot in Figure 2.3, we observe that the variability in the log-

transformed annual precipitation increases in the mountainous region in comparison

with the flat plain region.

Another famous example in the computer experiments literature is a computa-

tional fluid dynamics simulator of the Langley glide-back booster (LGBB), a pro-

posed rocket booster at NASA (Gramacy and Lee, 2008; Montagna and Tokdar,

2016; Marmin et al., 2018). In particular, there is an interest to examine the lift
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Figure 2.3: Reprinted from Paciorek and Schervish (2006)[p.489]. Copyright (2006)
John Wiley & Sons, Ltd. Left panel : Topography of Colorado, with thicker line
indicating state boundary, and right panel : image plot of log-transformed annual
precipitation observations in 1981, with the color of the box indicating the magnitude
of the observation.

force modelled as a function of the speed of the vehicle at reentry (measured by

Mach number), the angle of attack (the alpha angle) and the sideslip angle (the

beta angle). The beta angle is quantized and run only at 6 particular levels. Mon-

tagna and Tokdar (2016) were interested in examining the lift response as a function

of Mach and alpha with the beta angle fixed at zero. Figure 2.4, directly adopted

from Montagna and Tokdar (2016), demonstrates that the lift variable is relatively

constant for large values of Mach. However, we observe heterogeneity in response

near the Mach=1. Interestingly, the ridge in response at Mach=1 has a physical

meaning, separating subsonic flows and supersonic flows (Montagna and Tokdar,

2016).

GP models with simple, i.e. constant or linear mean functions, and stationary

covariance functions fail to capture the unusual behaviour in the model response

for these two examples (see subsection 2.4). There are a number of approaches that

adapt GPs to model nonstationary responses both in spatial statistics and computer

experiments.

Spatial deformation approaches include Sampson and Guttorp (1992), Schmidt

and O’Hagan (2003), Montagna and Tokdar (2016) and Marmin et al. (2018). The

first approaches to model nonstationarity via spatial deformation appeared in geo-

statistics. The main idea is to apply a non-linear transformation from the original,

“geographic” space, denoted by G, into a “transformed” space, denoted by D, where
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Figure 2.4: Reprinted from Montagna and Tokdar (2016)[Appendix]. Copyright by
SIAM and ASA. Interpolated lift surface plotted as a function of Mach (speed) and
Alpha (angle of attack) with Beta (side-slip angle) fixed at zero.

the spatial structure is stationary and isotropic. Sampson and Guttorp (1992) pro-

posed to combine a GP model with warping function. In particular, a warping

function T (·) is a function from G to D applied to x ∈ G. The covariance of f at

two input points x,x′ ∈ G is defined as

Cov[f(x), f(x′)] = k
(
T (x), T (x′)

)
,

where k(·, ·) is a stationary covariance function. Sampson and Guttorp (1992) pro-

posed to use a non-linear T (·) such as multidimensional scaling (MDS) to accom-

modate the nonstationary structure in the model. A number of issues have been

identified with this approach, such as the fact that the mapping T (·) does not guar-

antee the prediction of points of interest to be bijective, i.e. the mapping could

produce a surface that folds back on itself (Schmidt and O’Hagan, 2003). Schmidt

and O’Hagan (2003) adopted a Bayesian approach by specifying a Gaussian process

prior distribution for the mapping. This approach handles the mapping of both the

measured and unmeasured sites in a single step and takes into account uncertainty

in the mapping during the predictive inference. However, it is computationally more

expensive, as a prior specification is required at each location, and Markov chain
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Monte Carlo (MCMC) methods are used to obtain samples from the posterior dis-

tributions. The spatial deformation approach to model nonstationarity has been

recently used in the computer experiment literature. Montagna and Tokdar (2016)

proposed to include a latent input Z into the residual term ε([x, Z]) in equation

(2.1), which is a zero-mean GP with covariance function:

k[(x, Z), (x′, Z ′);σ2,φ] = σ2 exp
{
−

p∑
i=1

φi(xi − x′i)2 − φp+1(Z − Z ′)2
}
.

Interestingly, though the extended process f(x, Z) is modelled to be stationary, the

marginal process f(x) is nonstationary. Similar to the Schmidt and O’Hagan (2003)

approach, the latent input, Z, is modelled as a continuous function of the inputs,

Z = g(x), using a stationary GP:

g|φ̃ ∼ GP (0, K̃),

where K̃ij = exp
{
−
∑p

i=1 φ̃i(xi − xj)
2
}

, and the scale parameter of covariance

function, σ2, is fixed at 1. Montagna and Tokdar (2016) demonstrated satisfactory

performance of a modified GP emulator of this type for computer models that are

characterized by sharp local features. The latent input Z is used to stretch the

distance between two points at and about the localized feature, and as a result

weakens the correlation between these two points. Marmin et al. (2018) presented

Warped Gaussian Processes with a WaMI kernel (Warped Multiple Index) of the

form:

k(x,x′) = k(T (Ax), T (Ax′);θ),

where A is a q × p matrix, with q < p and k(·, ·;θ) is a covariance kernel on Rq

parameterized by θ. The multiplication by A leads to dimension reduction, and

the warping functions T (u) =
(
Ti(ui;φi))

)
1≤i≤q

are applied to the points in the

modified space. The warping function allows users to capture the nonstationarity in

the response along the noncanonical directions. Despite the satisfactory performance

of the method on a number of examples, it is not precisely clear how to choose

A and the form of T (u). Also, the parameters of the covariance function have
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been estimated by maximum likelihood. Marmin et al. (2018) pointed out that the

Bayesian approach or more efficient algorithms could be used instead.

Several approaches aim to model large computer experiments and provide the

flexibility to model nonstationarity in response as well. For instance, Snelson and

Ghahramani (2006) introduced Sparse Pseudo-input Gaussian Processes (SPGPs) by

defining pseudo-inputs (pseudo-design), denoted by X̄ = (x̄1, . . . , x̄M)T with M < n,

where n is the size of the original design set, X. Snelson and Ghahramani (2006) were

interested in obtaining a reduced set of pseudo-inputs, X̄, and then redefining the

predictive distribution for f(x) parameterized by X̄. They started by specifying a

model for the pseudo targets, f̄ = (f̄1, . . . , f̄M), as zero-mean Gaussian with M×M

covariance matrix, KM = k(X̄, X̄). They obtained a modified predictive distribution

for f(x) given the original ensemble {X,F}, pseudo-inputs X̄ and parameters σ2, δ,

which is Normal with mean

E[f(x)|{X,F}, X̄, σ2, δ] = k(x, X̄)
[
KM + k(X̄,X)K̃−1k(X, X̄)

]−1

k(X̄,X)K̃−1F

and variance

V ar[f(x)|{X,F}, X̄, σ2, δ] = k(x,x)− k(x, X̄)
[
K−1
M −

(
KM + k(X̄,X)K̃−1k(X, X̄)

)−1
]−1

× k(X̄,x).

In the expressions for both the mean and variance, K̃ is n×n diagonal matrix with

ith entry obtained as

K̃i = k(xi,xi)− k(xi, X̄)K−1
M k(X̄,xi), i = 1, . . . , n.

Snelson and Ghahramani (2006) demonstrated that the mean could be computed in

O(M), and variance calculated in O(M2) from the transformed predictive distribu-

tion for f(x). The pseudo-inputs are treated the same way as GP model parame-

ters, and are estimated by maximising the marginal likelihood, p(F|X, X̄, σ2, δ), with

respect to
{

X̄, σ2, δ
}

by gradient descent. SPGP could be used to model nonsta-
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tionarity by moving pseudo-inputs to the parts of input space where the computer

model response exhibits localized features.

Another approach, Local Gaussian Process Approximation (LAGP) (Gramacy

and Apley, 2015) considers a subdesign for predicting a particular point of interest,

when the original design is too big for efficient inversion of a covariance matrix K, via

greedy search algorithm by minimizing mean-squared predictive error. In particular,

given x and Dj =
{

Xj = (x1,x2, . . . ,xj),Fj = (f(x1), f(x2), . . . , f(xj))
}

, where

j = n0, . . . , n, the current sub-ensemble at step j, a new point xj+1 is added to the

sub-design by considering its impact on the variance of f(x) through mean-square

prediction error (MSPE) criterion, i.e.

J(xj+1,x) = E
{

[f(x)− µj+1(x)]2
}
,

which should be minimized. The posterior predictive mean at step j + 1 has the

following form: µj+1(x) = E[f(x)|Dj ∪ (xj+1, f(xj+1)),β[j+1], (σ2)[j+1], δ[j+1]] and

parameters β[j+1], (σ2)[j+1], δ[j+1] are found via MLE after (xj+1, f(xj+1)) have been

added to the sub-ensemble. The final design ensemble size n is chosen to be as large

as computational constraints allow. Interestingly, operating with design locally,

relative to x, allows users to deal with nonstationarity in the model response by

focusing on local model behaviour.

A common approach in mitigating nonstationarity is to fit a complicated response

surface, h(x)Tβ, that captures global nonstationarity, leaving a stationary process

residual (Rougier et al., 2009; Vernon et al., 2010; Williamson et al., 2013). If the

right functions can be found and added to h(x), they should be used, but, in practice,

this can be extremely difficult and can require too much manual fitting in choosing

the terms in the regression model.

Ba and Joseph (2012) provided an alternative to fitting a complex mean func-

tion with the Composite Gaussian Process (CGP). CGP consists of two processes,

precisely

f(x) = Zglobal(x) + σ(x)Zlocal(x). (2.23)
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They proposed to specify Zglobal(x) as a GP with a constant mean µ and covariance

τ 2r(x,x′;φg), and Zlocal(x) as a zero mean GP with covariance r(x,x′;φl). The first

process is used to model the global trend, whilst the second process captures the

local variability around this trend by including a variance model, σ2(x) = σ2v(x),

where σ2 is a variance term, and v(x) is a standardized volatility function, which

fluctuates around 1. Both the form and the importance of standardized volatility

function is discussed in subsection 4.2. Both r(x,x′;φg) and r(x,x′;φl) are Gaussian

correlation functions:

r(x,x′;φg) = exp
(
−

p∑
i=1

φgi(xi − x′i)2
)
, r(x,x′;φl) = exp

(
−

p∑
i=1

φli(xi − x′i)2
)

with their own vectors of correlation parameters, φg = (φg1, . . . , φgp), and, φl =

(φl1, . . . , φlp), that satisfy 0 ≤ φg ≤ α and α ≤ φl. The bounds, αl = (αl1, . . . , αlp),

are set to be moderately large to ensure that the global component of the model is

smoother than the local one. The final model specification is

f(x) ∼ GP
(
µ, τ 2r(·, ·;φg) + σ2v(x)r(·, ·;φl)

)
,

which also could be considered as a GP model with a flexible covariance structure.

Another approach to modelling nonstationarity is through modifications in co-

variance function, which are common in spatial statistics (Higdon et al., 1998;

Fuentes, 2001; Fuentes and Smith, 2001; Banerjee et al., 2004; Paciorek and Schervish,

2006). In subsection 2.3.2, we discussed nonstationary covariance functions that can

be obtained by convolving spatially-varying kernel functions. Higdon et al. (1998)

derived a nonstationary version of the squared exponential stationary covariance

function,

k(x,x′) = σ2|Σ(x)|
1
4 |Σ(x′)|

1
4

∣∣∣∣Σ(x) + Σ(x′)

2

∣∣∣∣− 1
2

exp(−Q(x,x′))

with

Q(x,x′) = (x− x′)T
(Σ(x) + Σ(x′)

2

)−1

(x− x′)
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where Σ(x) is a covariance matrix of a Gaussian kernel centred at x, and | · | denotes

the determinant of a matrix. We observe that instead of using a spatially invariant

matrix Σ, the kernel matrices for x and x′ are averaged, which generates a spatially

varying covariance function (Paciorek and Schervish, 2006). The extensions to other

families of covariance functions were derived by Paciorek and Schervish (2006). For

example, a nonstationary version of a Matérn covariance function is defined as

k(x,x′) = σ2 21−α

Γ(α)
|Σ(x)|

1
4 |Σ(x′)|

1
4

∣∣∣∣Σ(x) + Σ(x′)

2

∣∣∣∣− 1
2(

2
√
αQ(x,x′)

)α
Kα
(

2
√
αQ(x,x′)

)
,

and it is easy to derive an exponential covariance function by setting α = 0.5.

Fuentes (2001), Fuentes and Smith (2001) and Banerjee et al. (2004) developed a

kernel mixture approach. They assumed the existence of L stationary processes in

different regions of a 2D spatial field. They specified L centroids, i.e. xl, l = 1, · · · , L,

in that field by applying a rectangle-partitioning method (Banerjee et al., 2004).

Together with a weight function determined by the distance between the point of

interest, x, and the centroids, w(x,xl), they specify a nonstationary kernel for the

whole input space as the weighted sum of L stationary region-specific covariance

kernels. The nonstationary kernel has the following form

k(x,x′;σ2, δ) =
L∑
l=1

w(x,xl)w(x′,xl)σ
2
l rl(x,x

′; δl), (2.24)

where δl is a vector of length 2, as only spatial variability is included, and σ2
l

corresponds to parameters of the region specific covariance kernel. This specification

fits a single process with a covariance kernel that varies spatially. These methods

rely on the response variability with respect to the location in two-dimensional space,

and have not yet been implemented for computer experiments where we deal with

p > 2 parameter inputs. For example, it is challenging to adapt the distance-based

weight function, as the definition of distance changes as we increase the number of

inputs, i.e. some inputs are less active than others and could be omitted from the

calculation of the weight function.

Alternatively, several works in UQ literature use piecewise GPs to model non-
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stationarity, and these methods are discussed in detail in Chapter 3. The basic

idea behind piecewise GPs is to partition the input space into a number of dif-

ferent input regions and then fit individual and independent base models such as

GPs to partitioned design. Gramacy and Lee (2008) developed a treed partition

model, using a decision tree, to divide the input space, X , by making binary splits

on the value of single variables recursively. The Bayesian approach is applied to

the partitioning process by specifying a prior through a tree-generating process, and

the tree is averaged out by integrating over possible trees using Reversible Jump

MCMC (RJ-MCMC). In each leaf of the tree, a stationary Gaussian Process is fit-

ted. Partitioning does not guarantee continuity of the fitted function, because the

posterior predictive surface conditional on a particular tree is discontinuous across

the partition boundaries, which translates into higher posterior predictive uncer-

tainty near region boundaries. However, Bayesian model averaging provides mean

fitted functions that are relatively smooth in practice. Pope et al. (2018) provided an

extension to classification trees for modelling discontinuities in the model response.

In particular, Voronoi tessellation is applied to partition the input space and pro-

vides users with a flexibility to obtain non-convex and disconnected regions. These

regions consist of a number of cells, and Pope et al. (2018) removed the requirement

for the Voronoi cells to share a vertex to be in the same region and centres of cells

to be part of design set X. These assumptions were adopted in spatial statistics by

Kim et al. (2005). Similar to TGP, RJ-MCMC is used for implementation, which

requires a larger number of MCMC chains and iterations per chain to ensure the

convergence.

We have observed an increasing trend to employ “deep” approaches to model

nonstationarity, that we are going to discuss briefly in this Section. Damianou and

Lawrence (2013) proposed to specify a Gaussian process prior over inputs to another

Gaussian process. They considered a sequence of conditionally Gaussian functions

{fq} defined as

fq+1|fq ∼ GP
(
m(x; fq), k(x,x′; fq)

)
.

The number of Gaussian functions in a sequence {fq} determines the number of
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layers and Damianou and Lawrence (2013) demonstrated a flexibility of Deep GPs

with 5 layers in modelling complex digit images. However, as the number of layers

increases, this leads to an increase in the computational complexity of a model.

Dunlop et al. (2018) derived that fewer layers of deep GPs are sufficient to model

response with discontinuity and inhomogeneity in one- and two-dimensions. Roini-

nen et al. (2018) presented a shallow-layer GPs, where a GP prior is specified for a

precision parameter, the inverse of a correlation length parameter. An explicit link

between GPs and Stochastic Partial Differential equations (SPDE) is also used to

obtain computational efficiency. In particular, this connection allows users to employ

numerical algorithms for sparse matrices, and as a result leads to the simplification

of matrices inversion (Lindgren et al., 2011). However, these approaches require a

large number of points in the design; for instance Roininen et al. (2018) used 81

design points to construct a shallow-layer deep GPs model for a one-dimensional

example. In this thesis, we mainly operate with complex computer models such as

climate models, for which a large training (design) set is unattainable. These models

are typically high-dimensional, which means that training data will still be sparse

in the input space.

2.6 Calibration

Previously, we have discussed the process of building a GP emulator for f(x). GP

emulators for computer model output can be used to perform inference about f(x).

In particular, we have discussed the importance of computer models in representing

physical processes of interest in subsection 2.1. In some cases, a small number of

physical observations could be available to ensure the consistency between the sim-

ulator output and the physical process of interest. In particular, input parameters

of the computer model are adjusted to achieve consistency between the computer

model and observations of the system represented by f(x) (Kennedy and O’Hagan,

2001; Rougier, 2007; Jackson et al., 2008). The process of finding input parameter

values for which the computer model is consistent with observations is called the

inverse problem (calibration). It is crucial if we are planning on using a computer
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model for predictions or any other inferential tasks. For example, hydrological mod-

els can be used to predict the level of discharge from streams after rainfall, and

measurements of discharge of actual streams can be used to learn about the values

of input parameters such as average effective transmissivity of the soil and the level

of subsurface drainage (Romanowicz et al., 1994; Kennedy and O’Hagan, 2001).

Calibration has been widely used in a range of fields such as hydrology (Borsuk

et al., 2004; Wagener and Gupta, 2005; Renard et al., 2010; Razavi et al., 2012),

biology (Van Oijen et al., 2005; Hartig et al.) and climate sciences (Rougier, 2007;

Edwards et al., 2011; Sexton et al., 2012; Bellprat et al., 2012; Salter et al., 2018;

Chang and Guillas, 2018).

The statistical approach to calibration specifies a mathematical model that links

together observations and the computer model response, and attempts to take ac-

count explicitly of all the sources of uncertainty arising in calibration and subsequent

use of computer models, considered in subsection 2.2 (Kennedy and O’Hagan, 2001;

Goldstein and Rougier, 2009).

Kennedy and O’Hagan (2001) distinguished between two groups of inputs, x =

(xcal,xcon), to the computer model. The calibration inputs, xcal, are supposed to

take fixed but unknown values for all observations used for calibration and are the

inputs that we are interested to learn about. The variable (control) inputs, xcon, are

assumed to be known for the calibrated model. The output of the computer model is

denoted by f(xcon,xcal). Calibration adopts the “best input” approach by assuming

the existence of a “best input” setting x∗ for xcal that represents observations, z =

(z1, . . . , zm), faithfully within a specified statistical model (Kennedy and O’Hagan,

2001; Rougier, 2007; Murphy et al., 2009). The calibration data is comprised of m

observations z = (z1, . . . , zm) at Xz = (xcon1 , . . . ,xconm ), where zi is the observation

of y(xconi ) for the known variable input xconi , and the aim of calibration task is to

learn x∗ for xcal.

A statistical model that describes the relationship between the computer model

f(·, ·) and the true process y(·) is given by Kennedy and O’Hagan (2001) as

y(xcon) = ρf(xcon,x∗)⊕ η(xcon), (2.25)
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where ρ is an unknown regression parameter, ⊕ indicates the addition of independent

terms, and η(·) is a discrepancy term that accounts for the discrepancy between the

computer model representation and the physical process of interest. For instance,

if f(·, ·) is a climate model, then the discrepancy term η(·) could account for errors

generated due to missing or poorly understood physics, or parameterization schemes

in the model (Williamson et al., 2013).

Kennedy and O’Hagan (2001) model the relationship between observation, zi,

true process, y(·), and computer model output, f(·, ·), as

zi = y(xconi )⊕ ei = ρf(xconi ,x∗)⊕ η(xconi )⊕ ei, (2.26)

where ei is the observation error term with ei ∼ N(0, λ).

In addition, there is an assumption that n runs of the computer model, f(·, ·),

could be generated at XF =
(
(x
′con
1 ,xcal1 ), . . . , (x

′con
n ,xcaln )

)
in order to obtain F =

(f(x
′con
1 ,xcal1 ), · · · , f(x

′con
n ,xcaln ))T with known values of variable and calibration in-

puts for each run. A set dT = (FT , zT ) is used to perform calibration. Kennedy and

O’Hagan (2001) proposed to specify Gaussian prior distributions for f(·, ·) and η(·),

i.e.

f(·, ·) ∼ N
(
m1(·, ·), C1

{
(·, ·), (·, ·)

})
η(·) ∼ N

(
m2(·), C2(·, ·)

)
.

They proceed to derive the posterior distribution for the calibration parameters, i.e.

π(x∗|d), which takes into account of all major sources of uncertainty. The posterior

distribution for π(x∗|d) is derived by firstly obtaining the posterior for π(x∗, η|d),

and marginalising for x∗. This posterior distribution is used in deriving the posterior

distribution for z(xcon) conditional on x∗ and d, which is used to perform inferences

about the value of the system (Salter, 2017).

Rougier (2007) performed calibration for climate models, where only one set of

historical observations of the climate were available. As there was only one possible

setting of xcon, the dependence of equation (2.26) on xcon could be removed to derive

the following equation

zi = ρf(x∗)⊕ ηi ⊕ ei, i = 1, . . . ,m. (2.27)
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Special attention should be paid to the model discrepancy term η(·). Bryn-

jarsdóttir and O’Hagan (2014) demonstrated the importance of the model discrep-

ancy term. In particular, disregarding the model discrepancy term could lead to

biased and over-confident calibration parameter estimates and predictions. How-

ever, strong and meaningful prior information is required in specifying distributions

for x∗ and η to avoid the identifiability issues for x∗ and η, which is a challeng-

ing task (Kennedy and O’Hagan, 2001; Rougier, 2007; Brynjarsdóttir and O’Hagan,

2014; Salter et al., 2018).

Alternatively, Wong et al. (2017) presented a frequentist approach to computer

model calibration with a non-parametric discrepancy function η(·). Contrary to

the Bayesian approach, prior distributions on the surrogate model and discrepancy

term are replaced with “smoothness” assumptions, and an emphasis is intuitively

placed on the ability to predict the observation via cross-validation. Under the

frequentist regime, (x∗, η) are treated as unknown quantities to be estimated, and

x∗ is chosen as the value that makes the computer model representation, f(·, ·),

close to the physical process of interest, y(·), and the model discrepancy term, η, is

used to account for the remainder. To quantify the major sources of uncertainty in

calibration problem, a bootstrap sample of estimates for x∗ and η is used to obtain

a bootstrap confidence region for quantities of interest, such as a confidence interval

for a prediction of physical process, y(·), at new input, xcon.

2.6.1 History matching

History matching is a type of calibration that attempts to find input parameters

values to achieve the consistency between observations and computer model repre-

sentation. History matching was initially presented by Craig et al. (1996) to derive

parameter settings for expensive oil well model output to match the observed history

of an oil well. Contrary to calibration that tries to identify a probability density

function (pdf) for the best input x∗, the goal of history matching is to identify the

regions of input space corresponding to acceptable matches, and this is performed by

ruling out the implausible regions iteratively in waves. In particular, we are trying to
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rule out regions in X that could not contain x∗ given the uncertainty specification.

History matching has been successfully applied across a range of fields including

galaxy formation (Bower et al., 2010; Vernon et al., 2010), oil reservoirs (Craig

et al., 1996; Cumming and Goldstein, 2010), HIV transmission (Andrianakis et al.,

2015, 2017) and climate (Edwards et al., 2011; McNeall et al., 2013; Williamson and

Blaker, 2014; Williamson, 2015; Williamson et al., 2017; Salter et al., 2018)

As previously, the statistical model is specified to represent the relationship

between the observation (empirical data) zi and computer model output fi(·) as

zi = fi(x
∗)⊕ ηi ⊕ ei,

where each term has a subscript i as it is possible to simultaneously history match

using multiple model outputs (see subsection 2.6.2). Because we usually operate

with computer models that are computationally expensive to run, history matching

requires an emulator for fi(x) to be fitted so that, for any setting of the parameter

x, an expectation, E[fi(x)], and variance, V ar[fi(x)], can be computed from the

emulator. However, if a computer model is computationally fast to run, we do not

require the emulator, and we could use fi(x) directly instead of E[fi(x)] and as a

result specify V ar[fi(x)] = 0 (Gladstone et al., 2012). The implausibility function

is defined as a measure of the distance between the output of a model at x and

observation, zi, and is used to rule out regions of input space, X , that lead to model

output values that are inconsistent with observations (Craig et al., 1996; Vernon

et al., 2010; Williamson, 2015). The implausibility function has the following form

Ii(x) =
|zi − E[fi(x)]|√
V ar[zi − E[fi(x)]]

. (2.28)

For model output fi(·) and observation zi, large values of Ii(x) at any x imply

that, relative to our uncertainty, the predicted output of computer model at x is

very far from where we would expect is to be if fi(x) were consistent with zi. A

threshold, a, is chosen so that any value of Ii(x) > a is deemed implausible. The

remaining parameter space is termed as Not Ruled Out Yet (NROY) and defined
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as (Williamson, 2015)

XNROY =
{
x ∈ X : Ii(x) ≤ a

}
. (2.29)

The value of a is often taken to be 3 following the 3 sigma rule (Pukelsheim, 1994),

which states that for any unimodal continuous probability distribution, at least 95%

of the probability mass is within 3 standard deviations of the mean.

Based on our statistical model, the form of V ar[zi−E[fi(x)]] could be rewritten

as

V ar[zi − E[fi(x)]] = V ar[zi − yi + yi − E[fi(x)]] (2.30)

= V ar[ei + yi − fi(x) + fi(x)− E[fi(x)]]

= V ar[ei + ηi + fi(x)− E[fi(x)]]

= V ar[ei] + V ar[ηi] + V ar[fi(x)− E[fi(x)]]

= V ar[ei] + V ar[ηi] + V ar[fi(x)],

where V ar[ei] is the variance of the observation error and V ar[ηi] is the model

discrepancy variance.

If Ii(x) is large for some x, we are confident that the model output is too far from

the observations given all the uncertainties. However, small values of implausibility

function can occur either if the model is close to our observations for x or when our

emulator is extremely uncertain about the model, i.e. V ar[fi(x)] is large.

2.6.2 Multi-dimensional implausibility

There may be more than one output of interest produced by a computer model. In

the case of a multivariate simulator with l outputs, we could use a multivariate form

of the implausibility function (Craig et al. 1997)

I(x) = (z − E[f(x)])T (V ar[z − E[f(x)]])−1(z − E[f(x)]), (2.31)
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and expand the denominator of the function

V ar[z − E[f(x)]] = V ar[f(x)] + V ar[e] + V ar[η],

where z and E[f(x)] are vectors of length l, and V ar[f(x)], V ar[e] and V ar[η] are

covariance matrices of dimension l × l. The multivariate form of the implausibility

function is constructed by emulating different components of f(x) jointly to obtain

E[f(x)] and V ar[f(x)]. Covariance matrices for the model discrepancy, V ar[η],

and observation error, V ar[e], also must be specified. This new measure takes ac-

count of covariance structures for the quantities in the denominator (Craig et al.,

1997; Vernon et al., 2010), and could be particularly useful when z is a spatial field

(Williamson et al., 2017). In this case, I(x) is compared to a Chi-squared distri-

bution with l degrees of freedom as a cut-off value. For instance, a high percentile

such as 95% or 99% of Chi-squared distribution with l degrees of freedom could be

used as a cut-off value, a (Vernon and Goldstein, 2009; Vernon et al., 2010). The

NROY space using this measure is defined as

XNROY =
{

x ∈ X : I(x) < χ2
l,0.995

}
. (2.32)

The intuition to compare I(x) to a Chi-square distribution with l degrees of free-

dom comes from the definition of discrepancy calculation in Bayes linear methods

(Goldstein and Wooff, 2007):

DMD(d) = (d− E[D])TV ar[D]−1(d− E[D]),

where d is an observed value of D, an l-dimensional random variable, with prior

expectation E[D] and prior variance V ar[D]. The random quantity D is ap-

proximately multivariate normal, implying that DMD(d) has approximately a Chi-

squared distribution with l degrees of freedom. This measure is the same as the

Mahalanobis distance used to validate the performance of an emulator against the

computer model output, and is discussed in more detail in section 2.4.

The use of a multivariate form of the implausibility function I(x) in equation
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(2.31) has a number of limitations. Firstly, this form of implausibility function does

not allow for different cut-off values when assessing a match between the observations

and computer model responses. Secondly, this measure also assumes that it is

important to match all the outputs of f(x), and as a result a single poorly matching

component of f(x) could have a large influence on implausibility measure (Craig

et al., 1997).

A simplification to the multivariate form of implausibility function, I(x), was

proposed by Craig et al. (1997) to construct implausibility per each output, Ij(x), j =

1, . . . , l, separately, by assuming that outputs are uncorrelated. Removing the co-

variance structure from the implausibility function calculation significantly reduces

the computational costs (Craig et al., 1997). This approach also provides with the

flexibility to perform history matching using either all model outputs or a collection

of them (Williamson et al., 2017). For instance, Andrianakis et al. (2015) performed

history matching in 9 waves (see subsection 2.6.3) for the study on HIV transmission

in Uganda. During the study, 18 outputs such as HIV prevalence and population

male size were considered. For the first wave, emulators for two outputs did not

validate well, and these two outputs were left out of the first wave analysis and were

added later when their behaviour became more regular.

The maximum implausibility is defined as

IM(x) = arg max
j
Ij(x) (2.33)

and it could be used to rule out input parameter settings. This measure is considered

to be conservative since it imposes the requirement that all outputs of a computer

model to be consistent with the observation to be part of NROY space (Craig et al.,

1997). A less sensitive measure, jth maximum implausibility, could be used to rule

out input parameter space (Craig et al., 1997) and defined as

IjM(x) = max
i

({
Ii(x)\IM(x), I2M(x), · · · , I(j−1)M(x)

})
. (2.34)

By specifying j > 1 for the measure defined above, we would rule out x for which at
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least j computer model outputs of f(x) are not consistent with the observation z. It

is common to consider the second I2M(x) and the third I3M(x) highest implausibility

for each x (Vernon and Goldstein, 2009; Vernon et al., 2010; Andrianakis et al., 2015,

2017; Williamson et al., 2017). The NROY space using this measure is defined as

XNROY =
{
x ∈ X : IjM(x) ≤ a

}
. (2.35)

For instance, Williamson et al. (2017) used the I3M measure to rule out the implau-

sible input space for temperature and salinity profiles in the NEMO ocean model.

In particular, the implausibility function for each of the thirty depth levels of ocean

mean temperature was computed and the third largest Ij(x), for j = 1 . . . , 30, was

defined as a measure for deriving NROY space. Effectively, if 3 or more model

outputs are greater than the threshold for input point x, this point is ruled out.

2.6.3 Refocussing

Calibration has proven to be challenging in situations where we are dealing with

simulators with a large number of inputs and outputs, as we are required to simul-

taneously match a large number of inputs. For instance, for the HIV transmission

model considered by Andrianakis et al. (2015) and Andrianakis et al. (2017) with

96 inputs and 50 outputs, it is computationally infeasible to perform calibration.

Instead, we could perform history matching iteratively, i.e. use history matching

to identify regions of input space where metrics of interest from the model output,

predicted by an emulator, are not consistent with observations, and discard them

in iterations known as waves (refocussing). Refocussing has been used previously to

analyse the hydrocarbon model (Craig et al., 1996), Galaxy formation model (Ver-

non et al., 2010), HIV transmission model (Andrianakis et al., 2015), and climate

models (Edwards et al., 2011; Williamson et al., 2017; Salter et al., 2018).

We describe the process of refocussing below. First we are required to choose an

initial ensemble design X[1] ∈ X , defined as

X[1] = (x1,1, · · · ,x1,n1)
T ,
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and produce the computer model runs at the initial design F[1]

F[1] = (f(x1,1), · · · , f(x1,n1))
T .

Based on the generated ensemble, we construct an emulator to predict key metrics

(outputs) from the computer model and use the implausibility function to define a

subset of X that is not ruled out yet (NROY) to be the subset for which I(x; F[1])

is less than or equal a pre-specified threshold value a, i.e.

X 1 =
{

x ∈ X : I(x; F[1]) ≤ a
}
.

The whole process of deriving NROY space X 1 is called wave 1. Refocussing is the

process of repeating this multiple times, each time, in wave k, beginning with the

parameter space X k−1. Mathematically, NROY space in wave k is defined as

X k =
{

x ∈ X k−1 : I(x; F[k]) ≤ a
}
,

where I(x; F[k]) can be evaluated by using an emulator for f(x) defined inside X k−1

and constructed based on the design

X[k] = (xk,1, · · · ,xk,nk
)T ∈ X k−1

and running the computer model at the design to generate

F[k] = (f(xk,1), · · · , f(xk,nk
))T .

It is important to note that x is nonimplausible at wave k only if it is nonimplausible

for all the waves that precede it.

The process of refocussing provides a number of benefits (Williamson et al.,

2017). Firstly, we have a freedom to use a different form of implausibility function,

I(x), at every wave, i.e. a different set of metrics could be used such as we could

include complex metrics, spatial fields or time series, after the very non-physical re-
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gions of parameter space have been removed in earlier waves. For instance, Vernon

et al. (2010) and Salter et al. (2018) demonstrated the use of both multidimen-

sional implausibility metrics, as described in subsection 2.6.2. In particular, for the

first few waves, the second highest implausibility, I2M(x), and the third highest

implausibility, I3M(x), were used to derive the NROY space. For later waves, the

multivariate implausibility was used, because it is easier to specify the covariance

structure in the reduced input space for V ar[e] and V ar[η]. In contrast, calibration

requires all model outputs to be considered at once.

Secondly, as later waves are reached, we manage to run the computer model

at the reduced parameter space, and, as a result, we increase the density of our

ensemble (Williamson et al., 2017). The emulator for f(·) needs to be accurate

only over the NROY space at the current wave, which allows us to produce a better

proxy for f(·) than at wave 1. After reducing the size of parameter space and having

an accurate emulator, calibration may be used to find a more accurate probability

distribution for x∗ than a calibration performed over X (Edwards et al., 2011).

Thirdly, the result of Bayesian calibration is always the probability distribution

for x∗ over the input space X . If f(·) cannot represent the system, then this result

is meaningless, and the calibration distribution is unfit to be used in any further

applications, e.g. forecasting. In contrast, history matching would rule out the entire

parameter space, which indicates that the computer model is not representative of

the true physical process.

The stopping rule, i.e. how many iterations (waves) to perform during iterative

refocussing, is determined by a number of factors addressed by Williamson et al.

(2015). Firstly, the computational budget and time could limit the number of waves

of refocussing (Williamson et al., 2017). For instance, history matching has been

used for GCM (General circulation model) class models by Williamson et al. (2013)

and Williamson et al. (2015) and only one wave of history matching was performed

due to the inability to generate ensembles in NROY space to perform the next wave.

Another stopping criterion is the emulator variance, V ar[f(x)]: once it is smaller

than the denominator in the implausibility calculation, then it is unlikely that further
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ensembles for history matching will significantly change the implausibility, and as a

result the shape of NROY space (Williamson et al., 2015). Finally, we have to stop

the iterative refocussing process in the extreme case when the whole input space

is ruled out using a certain metric, and as a result, structural error, determined

by discrepancy variance, V ar[η], has been located (Williamson et al., 2017). For

instance, during climate model tuning, the model discrepancy variance, V ar[η],

could be considered as the tolerance to structural error (model error), i.e. missing

an accurate representation of certain metrics. History matching allows users to

explore different regions of NROY space by varying tolerances to the structural

error through model discrepancy variance (Williamson et al., 2015).

In this thesis, we are interested in using uncertainty quantification methods to

calibrate (history match) complex computer models (climate models) with nonsta-

tionary response across the parameter space.
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Chapter 3

Automatic and robust uncertainty

quantification (UQ) software

ExeterUQ

3.1 Introduction

The increasing importance of the Uncertainty Quantification (UQ) field, discussed

in section 2.2, has led to the development of libraries for modelling and quantifying

uncertainties in complex computer simulators. In particular, there are a number of

open-source software platforms for engineering and commercial applications written

in MATLAB, Python and C++ such as OpenTURNS (Baudin et al., 2017), UQLab

(Marelli and Sudret, 2014), DAKOTA (Adams et al., 2009) and COSSAN (Patelli,

2017). These tools follow a general-purpose framework, which means that a reason-

ably wide range of engineering and scientific problems can be treated by a single

software (Patelli, 2017). As a result, special attention is paid to the interaction of

the software with external code, i.e. producing simulations (runs) of a complex com-

puter model to assist Uncertainty Quantification tasks. Also, due to commercial and

engineering applications, some of these tools have powerful and interactive interfaces

to assist inexperienced users in modelling and quantifying uncertainties. The core

components, methodological components, allow users to undertake such tasks as

sensitivity analysis, uncertainty propagation and meta-modelling (emulation). The
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emulation tools available in the majority of software libraries are polynomial chaos,

artificial neural networks and kriging.

Interestingly, we have not found any comprehensive packages for uncertainty

quantification in the R programming language. Most of the R packages are fo-

cused around a specific aspect of uncertainty quantification. For instance, there

are packages that could be used for emulation, in particular GP emulation, such

as DiceKriging (Roustant et al., 2012b), tgp (Gramacy et al., 2007), CGP (Ba and

Joseph, 2018), GPfit (MacDonald et al., 2015), mlegp (Dancik and Dorman, 2008)

(maximum likelihood estimates of Gaussian Processes) and RobustGaSP (Gu et al.,

2018b). The sensitivity package (Iooss et al., 2018) could be used to perform the

sensitivity analysis.

In this chapter, we present our own, in-house developed R and Stan-based soft-

ware for UQ (Stan Development Team, 2017), namely ExeterUQ. ExeterUQ possesses

a number of key and unique features. In particular, Bayesian emulation is performed

using RStan (Stan Development Team, 2017), the Stan interface for R. Our software

also allows our users to employ the constructed GP emulators for multi-wave calibra-

tion, history matching. We demonstrate the performance of ExeterUQ on a climate

model application in the tuning process of internal parameters of boundary-layer

clouds parameterization scheme. The tuning targeting the boundary-layer clouds

parameterization scheme is crucial for the climate community for a number of rea-

sons. Firstly, Hourdin et al. (2015) found that deficiencies in clouds parameterization

contributed to persistent and systematic biases in sea surface temperature observed

in the global climate model. Secondly, boundary-layer clouds have been shown to

largely account for the spread in climate change predictions, limiting the accuracy

of forecasts produced by climate models (Bony and Dufresne, 2005; Randall et al.,

1996; Williams and Webb, 2009; Vial et al., 2013).

The chapter has the following structure. In section 3.2, we introduce the applica-

tion for ExeterUQ, i.e. tuning the boundary layer clouds. In section 3.3, we consider

in detail a number of R packages used to construct a GP emulator as alternatives

to our approach implemented in ExeterUQ software. Section 3.5 demonstrates how
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to build a GP emulator using our tools on one of the scenarios in HIGH-TUNE. In

section 3.6, we describe the approaches we use to validate the performance of our

surrogate models, and in section 3.7, we perform tuning using our tools. Section 3.8

contains the discussion and the future planned development of ExeterUQ software

as well as some methodological questions in UQ raised by discussions with climate

modellers.

3.2 Climate model application

ExeterUQ software has been developed as part of the HIGH-TUNE project in col-

laboration with climate modellers and scientists from Laboratoire de Météorologie

Dynamique (LMD), Centre National de Recherches Météorologiques (CNRM) and

Laboratoire Plasma et Conversion d’Energie (LAPLACE). The main objective of

this project was to improve the representation of the boundary-layer clouds in the

global climate models. These types of clouds play a crucial role in the water and

energy cycles of the atmosphere and impact surface temperatures at various scales

(Bony and Dufresne, 2005). However, the boundary layer clouds are much smaller

than a grid cell of a climate model, and therefore the collective behaviour and the

effect on the large scale model outputs of an ensemble of boundary-layer clouds is

parameterized. The parameterization schemes depend on a variety of “free” pa-

rameters and calibrating (tuning) these parameters is crucial to avoid biases in the

global climate model (Hourdin et al., 2017).

The tuning of cloud parameters could be addressed in two ways, namely a tradi-

tional global model tuning and a process-based tuning. Global model tuning is based

on the process of tuning of climate model by considering a specific climate perfor-

mance metric such as statistics on surface precipitation and temperature (Hourdin

et al., 2017). However, Hourdin et al. (2017) stated that this type of tuning could

lead to over-fitting or over-tuning because a good performance in those metrics could

be achieved due to compensating errors.

An alternative approach adopted in HIGH-TUNE project is process-based tun-

ing. Process-based tuning is centred around the idea of using process-oriented met-
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rics for tuning, such as compositing cloud or precipitation characteristics by dynam-

ical regimes (Bony and Dufresne, 2005). Process-oriented metrics could be helpful

in relating large-scale biases observed in a global climate model to the deficiencies

in the parameterization scheme (Hourdin et al., 2017).

We rarely have process-based data, since it is extremely challenging to collect

data for the process-oriented metrics. Therefore, the process-based tuning in HIGH-

TUNE project is based on the comparison of single-column versions of the global

models (SCM) with explicit 3D high-resolution Large Eddy simulations (LES) of the

same boundary layer clouds. LES are the numerical simulations of clouds produced

with a resolution of a few tens of meters that are able to resolve the turbulent eddies,

which constitute the root of the cumulus and the cloud dynamics. In fact, LES

have been extensively used up until now to study different cloud properties within

different clouds regimes (Couvreux et al., 2005; Heus and Jonker, 2008; Wang and

Feingold, 2009).

During HIGH-TUNE project, the metrics that correspond to the radiative effect

of clouds as well as the key characteristics of clouds were computed on a series of

LES simulations and treated as observations. Our collaborators were interested in

finding a subset of input parameter values of boundary-layer clouds parameterization

scheme, at which SCM’s output closely matches LES on a number of cases. To find

these acceptable matches the UQ tools such as GP emulators and history matching

(iterative refocussing) were of interest to employ.

Climate modellers studied different cloud regimes that correspond to twelve cases

that sample various conditions over the globe. As part of demonstration of ExeterUQ

functionality, we consider a selection of cases, in particular

• ARMCU/REF is the case of boundary layer cumulus cloud, continental shallow

over land (USA), which is based on Large-Eddy simulations performed by

Brown et al. (2002). In general, cumulus clouds have flat bases and appear to

be puffy in appearance. Cumulus clouds are low-level clouds and indicators of

a fair weather.

• BOMEX/REF is the case of boundary layer cumulus cloud, oceanic shallow
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over the Caribbean region, which is based on Large-Eddy simulations per-

formed by Siebesma et al. (2003). The cumulus clouds produced over the

ocean has different characteristics than the cumulus clouds produced over the

land. In particular, shallow cumulus convection over land have cloud forcing

that is both stronger and time-varying than over the ocean.

• SANDU/REF is the case that considers the transition from cumulus to stra-

tocumulus. Stratocumulus clouds are low-level patches of clouds and present

in all types of the weather.

For each case of clouds’ behaviour, a selection of metrics provided in Table 3.1

were considered.

Metric Description Units of measure

theta500 the potential temperature at 500 metres K
qv500 water vapour at 500 metres grams per kilogram
zhneb effective height of clouds km
nebmax maximum nebulosity
nebzmin base of clouds (metres/feet/hectopascal)
nebzmax top of clouds (metres/feet/hectopascal)

Table 3.1: Model metrics (outputs of interest) description considered in HIGH-
TUNE project.

3.3 Review of Uncertainty Quantification (UQ)

software

In this section, we provide a short review of available Uncertainty Quantification

(UQ) software, which is a natural motivation for developing ExeterUQ. In particular,

we are interested in considering software, which allows users to construct an emulator

and perform calibration.

Open-source UQ software such as OpenTURNS (Baudin et al., 2017), UQLab

(Marelli and Sudret, 2014), DAKOTA (Adams et al., 2009) and COSSAN (Patelli,

2017) enable users to construct a wide range of emulators such as neural networks,

polynomial chaos, polynomial approximations and kriging. However, unlike other
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surrogates, GP emulators (kriging) provide uncertainty about the prediction, code

uncertainty, and taking into account code uncertainty when performing calibration

is crucial (Kennedy and O’Hagan, 2001). Based on this reasoning, we had to employ

one of the available software or packages or develop our own code for constructing a

GP emulator. A range of packages that are available for building GP emulators varies

based on different methods used to estimate GP emulator hyperparameters, precisely

β, σ2, δ, τ 2. The estimation of GP emulator hyperparameters is crucial since it

largely affects the predictive power of GP emulator and any statistical inference.

The values of regression coefficients, β, and scale parameter, σ2, could be easily

obtained by performing marginalisation, described in subsection 2.3.4. However,

the estimation of correlation length parameters, δ, has proven to be challenging

(Kennedy and O’Hagan, 2001)

One approach to the estimation of correlation length parameters, δ, is via max-

imum likelihood estimation, i.e. fixing at the MLE δ̂MLE. For instance, Roustant

et al. (2012a) provides an overview of packages and libraries available for kriging,

and in particular, DiceKriging is widely used to construct a kriging model. It is

suitable for applications in higher dimensions and provides a wide range of covari-

ance functions such as Gaussian, Matérn with ν = 5
2

and ν = 3
2
, exponential and

power-exponential, discussed in subsection 2.3.2. DiceKriging uses equations (2.12)

and (2.13) to produce predictions and derives the values of δ by likelihood maxi-

mization. A quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

(function optim) and the hybrid algorithm genoud from package rgenoud (Mebane

and Sekhon, 2011) are implemented in DiceKriging package to derive the MLEs,

δ̂MLE.

However, a number of problems such as numerical issues and poor predictive

performance of GP emulator arise by employing maximum likelihood estimation for

correlation length parameters. In particular, Gu et al. (2018b) identified two main

cases. The first case is when the estimated correlation length parameters leads to

the generation of covariance matrix evaluated at design points, K, close to singular.

However, this numerical issue could be easily resolved by adding a nugget described
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in detail in subsection 2.3.3. It is crucial to note that the behaviour of GP emulator

would significantly change with the addition of a nugget parameter (Andrianakis

and Challenor, 2012). Rasmussen and Williams (2004) demonstrated on a simple

numerical example that the marginal likelihood defined as a function of δ and τ 2

exhibits two local modes. At the first local mode, we observe a nugget value, τ 2,

close to 1 and the independence of marginal likelihood function from δ. In this

case, the GP emulator models everything as part of the noise. At the second mode,

we observe a small value of a nugget parameter, τ 2, and a short correlation length

scale. In this case, the marginal likelihood is close to being independent of the

nugget process, and GP emulator behaves like an interpolator.

The second major case considered by Gu et al. (2018b) is when a covariance

matrix of design points, K, is near-diagonal. It is common to employ a separable

covariance function in the GP emulator specification such as we could redefine the

covariance function k(x,x′) as

k(x,x′) = σ2

p∏
i=1

r(xi, x
′
i; δi),

with r(·, ·; δi) being a one-dimensional correlation function for the ith coordinate

of the input vector. In fact, such pre-defined covariance structure leads to the

decomposition of the covariance matrix into a product of the correlation matrix of

these inputs, i.e.

K = σ2 ×R1 ◦R2 ◦ · · · ◦Rp,

where each Ri is the correlation matrix for the ith input and ◦ is the Hadamard

product. If one of Ri for i = 1, . . . , p is being near I, an n × n diagonal matrix,

which is caused by δ̂i being close to zero, then K has a form close to diagonal. δ̂i

close to zero is obtained in the situations when the marginal likelihood is very flat

in the tails. As a result, the predictive mean function m∗∗(x), given in equation

(2.12), behaves as an impulse function at the design points, X (Gu et al., 2018b).

To avoid the unstable results described above, DiceKriging and DiceOptim

employ expected improvement criterion as well as bounds for correlation length

89



parameters (Roustant et al., 2012a). However, the trade-off with numerical stability

is larger predictive errors (Gu et al., 2018b).

Recently, a new and more robust method for estimating GP emulator hyper-

parameters, a marginal posterior mode estimator, has been implemented inside

RobustGaSP package (Gu et al., 2018a). In particular, one of the objective priors

(reference prior), π(δ), discussed in subsection 2.3.5, is employed inside the package,

and the values of the correlation length parameters are estimated by the modes of

the marginal posterior distribution defined as

(δ̂1, . . . , δ̂p) = arg max
δ1,...,δp

p
(
F|δ1, . . . , δp

)
π(δ1, . . . , δp).

These new estimates are demonstrated to provide stable results for GP emulator

with lower predictive errors.

As an alternative to the approaches to hyperparameter estimation adopted above,

tgp constructs Treed Gaussian process (TGP) models and offers a Bayesian treat-

ment of covariance parameters, relying on Markov chain Monte Carlo techniques

(Gramacy et al., 2007). Despite being calculation intensive, tgp is a highly efficient

and fast package. The main drawback for users is that they could not explore prior

options for GP model hyperparameters other than the ones provided by Gramacy

and Lee (2008).

The simulator could be calibrated to the observation by performing Bayesian

calibration or history matching. The R package BACCO (Hankin, 2005) is developed

to perform Bayesian calibration, and this package has been used to calibrate C-

GOLDSTEIN’s yearly global mean air temperature to the observational data taken

from SGEN dataset (Marsh et al., 2002). C-GOLDSTEIN is an efficient, interme-

diate complexity climate model with highly simplified physics, but with 3-D ocean

dynamics. However, we were interested in performing calibration via history match-

ing to consider a wide range of metrics (model outputs) at the same time which

is computationally challenging to achieve by employing the Bayesian calibration

presented by Kennedy and O’Hagan (2001).

To address all the confounding with GP hyperparameters and calibration, we
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decided to develop our own ExeterUQ software, which allows users to construct GP

emulators that provide robust predictions and fully acknowledge hyperparameters’

uncertainty as well as to perform multi-wave calibration (history matching) for a

range of metrics simultaneously. We were interested in constructing GP emulators

with flexible priors for GP hyperparameters. For this purpose we use Stan (Carpen-

ter et al., 2017), in particular, RStan, the Stan interface to R. Stan allows its users

to perform full Bayesian statistical inference by adopting the Hamiltonian Monte

Carlo (HMC) and no-U-turn samplers (NUTS) (Carpenter et al., 2017), which is

more efficient and robust than Gibbs sampling used by BUGS (Bayesian inference

Using Gibbs Sampling) (Spiegelhalter et al., 1996) and JAGS (Just Another Gibbs

Sampler) (Plummer et al., 2003).

3.4 Priors for model hyperparameters

We stated in section 3.3 that we are interested in constructing GP emulators with

a flexible prior specification for model hyperparameters that allows users to obtain

robust predictions. Stan provides users with an option to specify priors using the

probability functions implemented in Stan or defined by users (Stan Development

Team, 2017). ExeterUQ software is primarily targeting non-experts in statistics and,

as a result, we had to propose “out of the box” choices for priors for the GP model

hyperparameters, that provide users with stable and robust results.

We start by employing a statistical model for a scalar output (metric of interest),

f(x), defined in equation (2.4). We have to pre-specify the form of the regression

function, h(x), (more details on how we derive the form of regression functions in

Appendix B.3.1) and correlation function, r(·, ·). We choose the squared exponential

as our correlation function, i.e.

r(x,x′, δ) = exp

{
−

p∑
i=1

(xj − x′j
δj

)2
}
.

We adopt the squared exponential correlation function as r(x,x′, δ) as it is the

only correlation function option provided by Stan math library (Stan Development
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Team, 2017). In particular, we used the cov exp quad and its variants to compute

covariance matrices in a fast way, avoiding usage of expensive for loops and other

inefficient programming practices (Stan Development Team, 2017). We acknowledge

the fact that it would be useful to provide users of our tools with a broader choice of

correlation functions described in subsection 2.3.2 and implemented, for instance, in

R package DiceKriging (Roustant et al., 2012a). These correlation functions could be

specified in a special function-definition block in Stan file (Stan Development Team,

2017).

Prior specification for GP emulator hyperparameters, Θ =
{
β, σ2, δ, τ 2

}
, re-

quires special attention. We specify a weakly informative prior, i.e. β2:m ∼ N(0, 10),

for the regression coefficients of the mean function. We employ a weakly informa-

tive prior so that it rules out unreasonable parameter values but is not so strong to

rule out values that might make sense. Operating with weakly informative prior,

we effectively allow the likelihood to dominate the posterior influence. For the in-

tercept parameter β1, we do not explicitly specify prior distribution, which in Stan

corresponds to default prior (−∞,+∞). Instead, we use information from the linear

model to define the initial values for each chain.
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Figure 3.1: Density plots of Normal(0, 10) (left) and Gamma(4, 4) (right) priors
specified for GP hyperparameters.

The weakly informative prior, δk ∼ Gamma(4, 4), k = 1, . . . , p, is used for cor-

relation length parameters to avoid the issues with correlation length parameter

estimation discussed in detail in section 3.3. From Figure 3.1, we observe that this

form of prior restricts extremely small correlation length values as well as constrains
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large correlation length values. Small correlation length values would lead to insta-

bility issues with the GP emulator (see section 3.3 for more details). On the contrary,

a large correlation length value obtained for one of the inputs, say i, would lead to

off-diagonal entries of Ri close to 1, i.e. r(xi, x
′
i; δi) → 1. As a result, we expect to

observe no major contribution of Ri to the overall covariance matrix, and we could

deduce that the likelihood and, hence, the posterior becomes independent from this

particular input. Therefore there is no effect from this input on the final estimated

GP model (Stan Development Team, 2017). To explain these effects of correlation

length parameters estimates on the GP model, we consider the log-likelihood for F,

defined as

log
(
p(F|X,β, σ2, δ)

)
= −1

2

(
F−Hβ

)T
K−1

(
F−Hβ

)
− 1

2
log(det(K))− n

2
log 2π.

The three terms have interpretable roles: −1
2

(
F−Hβ

)T
K−1

(
F−Hβ

)
is the data-

fit term, as it is the only term that involves full ensemble
{

X,F
}

; log(det(K))/2 is

a complexity penalty and n log(2π)/2 is a normalization constant (Rasmussen and

Williams, 2004).

We attempt to perform numerical studies similar to Rasmussen and Williams

(2004). In particular, we consider the effect of the correlation length parameter on

the likelihood function by setting (β0, β1, σ
2, τ) = (0, 0, 1, 0.1) and varying values

of the correlation length parameter, δ. Figure 3.2 (left panel) shows an F of size

thirty, drawn from a zero-mean Gaussian process with squared exponential correla-

tion function and parameters (δ, σ2, τ) = (1, 1, 0.1). From Figure 3.2 (central panel),

we observe that the negative complexity penalty (red dashed line) increases with the

correlation length parameter value since the GP model becomes less complex. The

data-fit term (green dashed line) rapidly decreases with the increase in correlation

length parameter values since the GP model becomes less flexible. We also observe

an increase in the value of the complexity penalty term together with no change in

the data-fit term for smaller values of the correlation length parameter. We encoun-

tered overfitting, i.e. the model complexity has increased, but at the same time, the

model representation of F has not improved.
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Figure 3.2: Left panel : F is generated from a zero-mean GP with hyperparameters
(δ, σ, τ) = (1, 1, 0.1), as shown by the + symbols. Central panel : decomposition of
log likelihood (blue line) into data-fit term (green dashed line) and minus complex-
ity penalty (ref dashed line), as a function of correlation length parameter. Right
panel : Likelihood for ensemble

{
X,F

}
is derived as a function of correlation length

parameter.

For parameter σ, we use a lower truncated normal prior distribution, i.e. trun-

cated from 0, with location ασ as the residual standard error from the Ordinary Least

Squared (OLS) fit with the mean function specified in h(x). The OLS is employed

in the process of obtaining the mean function (for more details see Williamson et al.

(2015)). The squared scale βσ is the squared difference of the standard deviation of

the ensemble runs F and ασ. Effectively, this form of prior represents our attempt

to model the variability in the response unexplained by the mean function. In re-

gards to the nugget parameter τ 2, we fix it at an arbitrarily small value, 0.0001, to

facilitate stable matrix inversion as suggested by Andrianakis and Challenor (2012).

3.5 Example: constructing an emulator with

ExeterUQ

In this section, we demonstrate how to implement a GP emulator with ExeterUQ

tools to introduce plots and ideas that will be seen throughout the thesis. We start

with showing how to construct a GP emulator for a single output (single metric of

interest). We then proceed to construct q independent univariate GP emulators for

q metrics of interest based on the emulation of a single output.

To demonstrate the functionality of ExeterUQ, we have chosen the ARMCU/REF
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case of HIGH-TUNE, described in section 3.2. We start by generating a 3-extended

LHC of size 90 following the methodology presented by Williamson (2015). The

90 member LHC is composed of three, 30 member LHCs, each added sequentially,

ensuring that the composite design is orthogonal and space-filling at each extension.

Secondly, we evaluate the simulator (SCM) at the generated design. We start by

considering a single metric of interest theta500. The first two LHCs, a 60 member

LHC, are used as a design for our GP emulator, while the last extension is needed

to validate the performance of GP emulator. The process of defining an ensemble

as well as the validation set is described in the Appendix B.3.

Figure 3.3 demonstrates the scatter plots of response variable theta500 against

five input parameters. We observe that there is a strong negative signal in the input

variable thermals fact epsilon with a slightly weaker signal in thermals ed dz.

Judging from scatter plots, we do not observe any obvious effect from input variables

cld lc lsc, rad chaud1 and z0min on the response variable, theta500.

Figure 3.3: theta500 response against five input parameters on the standardized
scale. The blue dashed lines correspond to z plus and minus 2(V ar[e] + V ar[η])1/2,
where V ar[e] is the variance of the observation error and V ar[η] is the model dis-
crepancy error.

We proceed further to derive a form of regression function, h(x), for a GP model.

In particular, we are interested in fitting a complex and sophisticated form of prior

mean function, which could include linear, quadratic and cubic terms in each of the

parameters with Fourier transformations and interactions between all input param-

eters. In subsection 2.5, we mentioned that fitting a complicated response surface
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could be used in mitigating nonstationarity (Rougier et al., 2009; Vernon et al.,

2010; Williamson et al., 2013). Introducing a highly structured mean function into

the model could also lead to significant computational savings, since it allows users

to use a less complex form for the residual term (Craig et al., 1996; Cumming and

Goldstein, 2009). The approach to obtaining a mean function for GP emulator is

described in detail in the Appendix B.3.1.

After obtaining the form of a regression function, h(x), we use it in our prior

mean function specification for a full GP model and proceed to construct a full GP

emulator (for more details on the use of R and Stan in obtaining a full GP emulator

see Appendix B.3.2).

By following the steps described above, we obtain an object StanEmulator,

which is further used for validation, prediction and inference in ExeterUQ software

presented later in this Chapter. A detailed description of the content of an object

is provided in the Appendix B.3.3.

3.5.1 Emulating multivariate output of computer model

Our collaborators from HIGH-TUNE are interested in emulating a collection of inde-

pendent and uncorrelated metrics of interest generated by the SCM. As a result,

we construct emulators for these metrics independently. This approach is useful for

history matching, as discussed in subsection 3.7.2. In particular, we can evaluate

implausibilities for each metric separately and then rule out any parameter settings

that fail to meet either all of these targets or most.

We use the same 90 member LHC described in section 3.5 to obtain the metrics

of interest. The responses in two variables, i.e. nebzmin and nebzmax, are not

continuous, and both variables act as factor variables so that we cannot use GPs. As

a result, we proceed to emulate only the first four metrics of interest (see Appendix

B.3.4 for more details). Figure 3.4 contains the scatter plots for all four metrics by

column, and we observe that two input parameters, i.e. thermals fact epsilon

and thermals ed dz, mainly affect the responses in all four metrics of interest.
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Figure 3.4: Scatter plots for theta500, qv500, zhneb, nebmax, by column against
five input parameters on the standardized scale. The blue dashed lines correspond
to zi plus and minus 2(V ar[ei] + V ar[ηi])

1/2, where V ar[ei] is the variance of the
observation error and V ar[ηi] is the model discrepancy error.

3.6 Diagnostics for GP emulators

In the previous section, we described how to construct a GP emulator inside ExeterUQ

software. In this section, we demonstrate how to perform diagnostics to assess the

performance of a generated GP emulator before employing it for inferences such as

prediction or history matching.

3.6.1 Leave-One-Out (LOO) diagnostics for GP emulators

The users of our software could be interested in producing a Leave-One-Out (LOO)

diagnostics plot presented in Figure 3.5. The black dots and error bars show predic-

tions together with ±2 standard deviation from the leave-one-out emulators, while

the green/red points are the true model output coloured by whether or not the

truth lies within the error bars. From the LOO diagnostics plot in Figure 3.5, we
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can deduce that the obtained GP emulator is a good representation of the metric of

interest, theta500, as the emulator predictions are close to the actual model values

with small error bars.

Figure 3.5: LOO diagnostics plot against each of the parameters. The predictions
and two standard deviation prediction intervals are in black. The true function
values are in green if they lie within two standard deviation prediction intervals, or
red otherwise.

To obtain leave-one-out predictions, we perform the following steps. To produce

predictions for input point xj, j = 1, . . . , n from design matrix, X, we have to com-

pute equation (2.18) and (2.19) introduced in subsection 2.4. In practice the samples

from the set of posterior simulations of the parameters, (βi, σi, δi, τ
2
i ), i = 1, . . . , 2000

are used to compute

E
[
f(xj)|

{
X−j,F−j

}
,βi, σi, δi, τ

2
i

]
and V ar

[
f(xj)|

{
X−j,F−j

}
,βi, σi, δi, τ

2
i

]
.

We simulate f (i)(xj) from a Normal distribution with the previously computed ex-

pectation and variance with i = 1, . . . ,M to obtain the distribution of points and

compute the E
[
f(xj)|

{
X−j,F−j

}]
and V ar

[
f(xj)|

{
X−j,F−j

}]
. The function used

to obtain the LOO diagnostics is provided in the Appendix B.4.1.

We could also compute standardized prediction errors (standardized residuals)
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based on LOO diagnostics (see Appendix B.4.1 for more details)

f(xj)− E
[
f(xj)|

{
X−j,F−j

}]√
V ar

[
f(xj)|

{
X−j,F−j

}] , j = 1, . . . , n.

In particular, plots of residuals against inputs are commonly used to evaluate

the performance of emulators. We discussed different diagnostics used to validate

GP emulator performance in subsection 2.4. We expect to see a horizontal band

containing the errors.

Figure 3.6: Individual standardized errors obtained for the design against each of
the parameter.

From Figure 3.6, we do not observe any strong relationship between the standard-

ized error values and the model inputs. The majority of errors are within horizontal

band between -2 and 2. There is one large individual error, with an absolute value

greater than 3. However, an isolated error of this kind might be ignored (Bastos

and O’Hagan, 2009). Based on LOO diagnostics, we can conclude that there is no

conflict between emulator and climate model representation.

3.6.2 Validation plots for GP emulators

It is a useful practice to validate the adequacy of a GP emulator in representing

model response by comparing the model outputs with the GP emulator predictions
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based on an unseen validation set (Bastos and O’Hagan, 2009).

Figure 3.7 demonstrates the diagnostics plot similar to the ones obtained in

subsection 3.6.1 for a validation set (see Appendix B.4.2 for more details). As before,

black dots and error bars show predictions together with ±2 standard deviation

prediction interval, while green/red dots are the true model output coloured by

whether or not the true value lies within the error bar. From Figure 3.7, we could

observe one failure (red dot) which is consistent with our uncertainty specification.

In general, the emulator’s predictions are close to true values with small error bars.

Figure 3.7: Validation plot against each of the parameters. The predictions and two
standard deviation prediction intervals are in black. The true function values are in
green if they lie within two standard deviation prediction intervals, or red otherwise.

3.6.3 Validation Summary Statistics

Summary statistics are commonly used to assess the performance of a GP emulator,

in particular, if we are interested in performing a comparative study (see Chapter

4) (Gramacy and Lee, 2008; Ba and Joseph, 2012; Montagna and Tokdar, 2016).

The performance of GP emulators could be assessed by considering the Root

Mean Squared Error (RMSE) and the Interval Score for (1− α)× 100% prediction

interval (Gneiting and Raftery, 2007). The interval score with lower l and upper u
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endpoints at level α
2

and 1− α
2

quantiles generated by GP emulator is found via

Sintα (l, u; f(x)) = (u−l)+
2

α
(l−f(x))1

{
f(x) < l

}
+

2

α
(f(x)−u)1

{
f(x) > u

}
. (3.1)

We are interested in low values of the Interval Score by being rewarded for the

narrow prediction interval and being penalized by the distance between f(x) (true

model value) and u or l if the true value is outside the prediction interval generated

by the emulator. The size of the penalty depends on α. We specify α = 0.05, as

two standard deviation prediction intervals are approximately 95%.

We obtained RMSE and IS as 0.0262 and 0.162 respectively (see Appendix B.4.3

for more details on how to compute these values). Both of these values are very low

and close to zero and based on these summary diagnostics together with the diagnos-

tics plots, we conclude that the GP emulator performs satisfactorily in representing

theta500.

3.7 Calibration with ExeterUQ software

As part of ExeterUQ software, we introduced a set of tools to perform history

matching. We start by considering history matching for a single metric of inter-

est, theta500. Then we proceed to present the form of multi-dimensional implau-

sibility adopted in ExeterUQ and consider four metrics such as theta500, qv500,

zhneb and nebmax. The method is most powerful when refocussing steps are taken

(Williamson et al., 2017), and we will describe how to perform multi-wave history

matching employing ExeterUQ tools.

3.7.1 History Matching

We have presented history matching in section 2.6.1. The general workflow of the

process of history matching is based on obtaining ensemble, {X,F}, using them to

train statistical emulator that predicts the key metric of interest with uncertainty on

the prediction, and then using the emulator to rule out regions of parameter space

that are “too far” from observation guided by implausibility function, I(x).
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In section 3.5, we demonstrated how to construct a GP emulator, we can now use

it to search for values of the model parameters that lead to “close enough” models

(as defined by our uncertainties). In order to rule out regions of parameter space,

we adopt the implausibility function presented in subsection 2.6.1:

I(x) =
|z − E[f(x)]|√

V ar[e] + V ar[η] + V ar[f(x)]
,

where z corresponds to observation, an expectation E[f(x)] and variance V ar[f(x)],

could be computed from the emulator, V ar[e] and V ar[η] are the variance of the

observation error and the model discrepancy respectively.

We proceed to obtaining the Not Ruled Out Yet (NROY) space, which is the sub-

set of parameter space, X , for which I(x) ≤ a, where a is a pre-specified threshold.

Mathematically, NROY space is

X 1 =
{
x ∈ X : I(x) ≤ a

}
.

To obtain an NROY space, X 1, in practice, we start by generating a 10,000 random

LHC to represent the parameter space X , at which we compute the implausibility

function specified above. For this demonstration, our collaborators from HIGH-

TUNE provided the observation value z set at 305.82, the observation error V ar[e]

and model discrepancy error V ar[η] are 0.0218 and 0 respectively. We managed to

produce the NROY density and minimum implausibility plots for 2D projections

of the parameters, shown in Figure 3.8. These plots are similar to the ones pre-

sented by Williamson et al. (2015, 2017); Salter et al. (2018). Each panel on the

upper triangle shows the proportion of parameter settings behind each pixel that are

NROY. Grey regions are completely ruled out. From NROY density plots, we could

observe a strong relationship between two parameters thermals fact epsilon and

thermals ed dz.

The lower triangle shows minimum implausibility plots. We plot the value of the

smallest implausibility found in each pixel. For comparative purposes, the plots have

the same orientation as those on the upper triangle. Green and yellow areas of this
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Figure 3.8: NROY density plots (upper triangle) and minimum implausibility plots
(lower triangle) for Xp of NROY space. Each panel plots either NROY density or
minimum implausibility for a pair of parameters. NROY densities, for each pixel on
any panel in the upper triangle, represent the proportion of points in Xp behind that
pixel that are NROY and are indicated by the colour whose scale is indicated on the
right. Grey coloured regions are completely ruled out. Minimum implausibilities, for
each pixel on any panel on the lower triangle of the picture, represent the smallest
implausibility found in Xp. These plots are oriented the same way as those on the
upper triangle, for the ease of visual comparison.

plot would indicate the location of potentially “good” settings of model parameters.

We would look to further explore the green and yellow areas of these plots as these

areas correspond to NROY space after wave1. By performing a single wave, we have

managed to cut out parameter space and achieve an NROY space of size 64.01%

of original input space, X . The relationship between input parameters depicted in

the parameter plots were expected and in line with modellers’ knowledge and beliefs

about the model behaviour.
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3.7.2 Multi-dimensional implausibility

It is common for modellers to consider a collection of metrics for tuning a model or

a model sub-component (Williamson et al., 2017). In subsection 2.6.1, we discussed

different forms of multivariate implausibility function. In this section, we adopt a

simplified form of the multivariate implausibility function proposed by Craig et al.

(1997) to construct implausibility per each output, i.e. Ij(x), j = 1, . . . , l, sepa-

rately. We use this simplified form of multivariate implausibility function since we

are unable to specify the correlation structure between a collection of metrics. This

approach provides our users with the flexibility to rule out any parameter settings

that fail to meet either all of the targets or most. We start by generating a 10,000

random LHC in the parameter space X , at which we evaluate the implausibility

function per output. In particular, we return to a collection of metrics that we emu-

lated in subsection 3.5.1, i.e. theta500, qv500, zhneb and nebmax. The information

on the values of observation, observation and model errors are provided in Table 3.2.

metric z V ar[e] V ar[η]

theta500 305.82 0.00218 0
qv500 16.18 0.0492 0
zhneb 1522 1729 0
nebmax 0.0930 0.00019 0

Table 3.2: HIGH-TUNE model information necessary for history matching.

Modellers have the flexibility to decide which form of implausibility measure they

want to choose to obtain the NROY space. For instance, our users could employ

the maximum implausibility defined as

IM = arg max
j
Ij(x), j = 1, . . . , 4

This measure is considered to be conservative since it requires all outputs of the

computer model to be consistent with the observation to be part of NROY space

(Craig et al., 1997).

We could obtain the NROY space using IM measure, which is defined as

XNROY =
{
x ∈ X : IM(x) ≤ a

}
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Figure 3.9: NROY density plots (upper triangle) and minimum implausibility plots
(lower triangle) for Xp of NROY space with maximum implausibility, IM . Each
panel plots either NROY density or minimum implausibility for a pair of parameters.
NROY densities, for each pixel on any panel in the upper triangle, represent the
proportion of points in Xp behind that pixel that are NROY and are indicated
by the colour whose scale is indicated on the right. Grey coloured regions are
completely ruled out. Minimum implausibilities, for each pixel on any panel on
the lower triangle of the picture, represent the smallest implausibility found in Xp.
These plots are oriented the same way as those on the upper triangle, for the ease
of visual comparison.

The NROY density and minimum implausibility plots for 2D projections of the

parameters, shown in Figure 3.9, are produced in a similar way to the one that we

discussed in subsection 3.7.1. We observe a strong linear relationship between two

input parameters thermals fact epsilon and thermals ed dz, which also indi-

cates the importance of these two parameters for the tuning. By performing a single

wave with IM measure, we have managed to cut out parameter space and achieve

an NROY space of size 19.5% of the original input space. The details of computing

maximum implausibility measure and obtaining NROY density plots and minimum

implausibility plots in Figure 3.9 using ExeterUQ are provided in the Appendix
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B.5.2.
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Figure 3.10: NROY density plots (upper triangle) and minimum implausibility plots
(lower triangle) for Xp of NROY space with second-highest implausibility, I2M . Each
panel plots either NROY density or minimum implausibility for a pair of parameters.
NROY densities, for each pixel on any panel in the upper triangle, represent the
proportion of points in Xp behind that pixel that are NROY and are indicated
by the colour whose scale is indicated on the right. Grey coloured regions are
completely ruled out. Minimum implausibilities, for each pixel on any panel on
the lower triangle of the picture, represent the smallest implausibility found in Xp.
These plots are oriented the same way as those on the upper triangle, for the ease
of visual comparison.

A less sensitive measure, the jth maximum implausibility, could be used to rule

out input parameter space, that was presented and discussed in detail in subsection

2.6.2. We consider the second-highest implausibility for each x, I2M(x), so that if

two or more metrics are more than a standard deviations away from the observations

for some parameter choice x, the choice is ruled out. In this case, we define an NROY

space as

XNROY =
{
x ∈ X : I2M ≤ a

}
.
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We observe from Figure 3.10 that less input space has been cut off using the I2M

implausibility measure.

We could deduct from NROY density plots from Figure 3.10 that we have re-

tained the positive right-hand corner of parameter settings for thermals fact epsilon

and thermals ed dz contrary to NROY density plots from Figure 3.9. The NROY

space using second maximum implausibility measure is 63.25% of original input

space.

3.7.3 Refocussing

We have described the process of deriving NROY space X 1, i.e. performing wave

1, with ExeterUQ tools in subsection 3.7.1. However, the method is most powerful

when refocussing steps are taken, within NROY space, a new ensemble is run, and

the procedure is repeated (Williamson et al., 2017). In subsection 2.6.3, we provided

a number of reasons why refocusing is powerful such as an increase in the density

of ensemble at later waves leading to the improvement in the performance of our

statistical emulators and narrowing the search for potentially good models.

0.0005 0.0015 0.0035

29
8.
8

29
9.
4

30
0.
0

thermals_fact_epsilon

th
et
a5
00

0.00 0.10 0.20

29
8.
8

29
9.
4

30
0.
0

thermals_ed_dz

th
et
a5
00

2e-04 6e-04 1e-03

29
8.
8

29
9.
4

30
0.
0

cld_lc_lsc

th
et
a5
00

0 2000 4000

29
8.
8

29
9.
4

30
0.
0

cld_tau_lsc

th
et
a5
00

0.0005 0.0015 0.0035

12
.0

13
.0

thermals_fact_epsilon

0.00 0.05 0.10 0.15 0.20

12
.0

13
.0

thermals_ed_dz

2e-04 6e-04 1e-03

12
.0

13
.0

cld_lc_lsc

0 2000 4000

12
.0

13
.0

cld_tau_lsc

Figure 3.11: Left : theta500 response from BOMEX/REF case against four inputs
on the original scale. Right : qv500 response from SANDU/REF case against four
inputs on the original scale. The blue dashed lines correspond to z plus and minus
2(V ar[e] + V ar[η])1/2, where V ar[e] is the variance of the observation error and
V ar[η] is the model discrepancy error.

The process of performing iterative refocusing using ExeterUQ software is explic-

itly described in the Appendix B.5.3. An important remark is that at the moment
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the design points for wave k of history matching are selected randomly from X k−1.

Obtaining the design for iterative refocusing is an open research question, and we

present our design approach in Chapter 5 and Chapter 6.

As well as considering multi-metrics for a single case at a time, our collabora-

tors from HIGH-TUNE are interested in exploring a combination of metrics from

different cases together. For a pedagogical purpose, we consider theta500 from

BOMEX/REF case and qv500 from SANDU/REF for refocussing. Both cases,

BOMEX/REF and SANDU/REF are part of 12 selected 1D cases that cover the

main boundary layer clouds regimes in real-time and described in section 3.2.

We have performed three waves of history matching, and at each iteration of

refocusing, we specified cutoff value, a, at three and used maximum implausibility

measure, IM , to derive the NROY space. We have also set the model discrepancy

value for both metrics of interest at 0.05.

After performing wave 1 of history matching, we have managed to cut down

space to 4.12% of original input space, X . The NROY space after wave 2 is 2.72%

of the original input space. Performing wave 3 does not provide us with a significant

reduction in NROY space, i.e. the NROY space after wave 3 is 2.53%. We could

have decreased the value of model discrepancy to observe a further reduction in the

NROY space.

From Figure 3.12 we observe that after performing three consecutive waves of his-

tory matching we have managed to cut the original input space, X , down to a positive

corner of values of parameters thermals fact epsilon and thermals ed dz. This

result is supported by scatter plots from Figure 3.11, i.e. most of the variability in

theta500 is explained by parameters thermals fact epsilon and thermals ed dz,

while the variability in response qv500 is explained by thermals ed dz.

It is important to mention that we had some difficulties in constructing a GP

emulator to represent qv500 using our ExeterUQ software tools. In particular, we

have performed LOO diagnostics to check the performance of emulator for qv500.

The LOO diagnostics plot in Figure 3.13 demonstrates that our “out of the box”

GP emulator fails to model the variability of the response against inputs, especially
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against thermals ed dz. Our GP emulator is under-confident for thermals ed dz <

−0.5 and thermals ed dz > 0.25, while it is overconfident in the input region

−0.5 < thermals ed dz < 0.25.

Figure 3.12: NROY density plots (upper triangle) and minimum implausibility plots
(lower triangle) of the wave 3 NROY space for all four parameters. Each panel plots
either NROY density or minimum implausibility for a pair of parameters. NROY
densities, for each pixel on any panel in the upper triangle, represent the proportion
of points in Xp behind that pixel that are NROY and are indicated by the colour
whose scale is indicated on the right. Grey coloured regions are completely ruled out.
Minimum implausibilities, for each pixel on any panel on the lower triangle of the
picture, represent the smallest implausibility found in Xp. These plots are oriented
the same way as those on the upper triangle, for the ease of visual comparison.

Based on LOO diagnostics, we generated the standardized errors plots. Figure

3.14 demonstrates the unusual behaviour of standardized errors, i.e. heteroscedastic-

ity of residuals against thermals ed dz. Such unusual behaviour is often observed

with SCM outputs.
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Figure 3.13: LOO diagnostics plot against each of the parameters. The predictions
and two standard deviation prediction intervals are in black. The true function
values are in green if they lie within two standard deviation prediction intervals, or
red otherwise. The blue dashed lines correspond to z plus and minus 2(V ar[e] +
V ar[η])1/2, where V ar[e] is the variance of the observation error and V ar[η] is the
model discrepancy variance.

3.8 Future planned development. Conclusion

We have presented the application and use of ExeterUQ in the context of climate

modelling. Currently, ExeterUQ is actively used as part of HIGH-TUNE project to

assist the development of new parameterization schemes for global climate model.

However, our developed software is not limited to this single application and could be

employed by a broader modelling community. The focus of this Chapter was mainly

to present the functionality of ExeterUQ. It is easily noticeable that the variance of

model discrepancy was set at zero in all of the examples considered. However, since

the process of history matching is very fast and automatic thanks to the ExeterUQ

software, modellers have a power and flexibility to experiment scientifically with

their model discrepancy specification.

There is a wide range of improvements planned by the UQ research group.

Firstly, a number of UQ tools such as sensitivity analysis and uncertainty analy-

sis are still under development. Secondly, it might be interesting to define a new

class, for instance, gpsurrogate or gpemulator, that corresponds to an obtained GP

emulator. This will ensure that we are dealing with objects of a certain structure.

We also could adapt generic functions such as plot to our new class type. Class

definition is commonly used in many base and stats packages available in CRAN. For
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Figure 3.14: Individual standardized errors obtained for the design against each of
the parameter.

instance, bgp, the R function used to construct a GP model in tgp package, returns

an object of class “tgp” (Gramacy et al., 2007).

Two very important methodological questions have been raised during our collab-

oration with climate modellers. Firstly, we have observed that response generated

by some of the metrics of interest exhibit nonstationary behaviour across the in-

put space, as demonstrated in subsection 3.7.3. Interestingly, the LOO diagnostics

plots indicated the failure of stationary GP emulator as well as pictured the un-

usual relationship between standardized errors based on LOO diagnostics and the

input parameters. In Chapter 4, we propose a new diagnostic-led approach to fit-

ting nonstationary GP emulators to model nonstationary model response. Secondly,

we recognise that generating a design for wave k based on the random sampling in

NROY space is not efficient. In Chapter 5, we present a Bayesian Design Criterion

for obtaining a new ensemble for refocusing.
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Chapter 4

Nonstationary Gaussian Process

Emulators with Kernel Mixtures

4.1 Introduction

In Chapter 3, we finished with an example of how a standard GP emulator con-

structed with our software failed to capture the nonstationary behaviour of a climate

model. This observation has led to the development of a new method for incorpo-

rating nonstationary features in Gaussian Process (GP) emulators that could be

applied to a large class of complex computer models, including climate models.

We start by defining a nonstationary complex computer model, f(·), as one for

which the model response varies significantly across the input space. For example,

when the variability in the model response changes with the changes in input values,

or the model response exhibits sharp localized features, e.g. a discontinuity or tall

peaks (Montagna and Tokdar, 2016). Examples of such models were mentioned in

subsection 2.5. In this Chapter, as part of our comparative study, we are going to

consider a nonstationary function, the “wavy” function, presented by Ba and Joseph

(2012). The “wavy” function is defined as

f(x1, x2) = sin
(
1/(0.7x1 + 0.3)(0.7x2 + 0.3)

)
with x1, x2 ∈ [0, 1]. It fluctuates rapidly when x1 and x2 is small, but gradually
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becomes smooth as x1 and x2 increases towards 1 (see Figure 4.1).

Figure 4.1: True function for the two-dimensional numerical example and 24-run
maximin distance LHD red points used as design.

Research on computer emulation has largely focused on stationary GP models,

where the distance between x and x′ mainly determines the similarity between f(x)

and f(x′). Applying this class of GP emulators to model nonstationary responses

leads to the poor inference. When the nonstationarity is not adequately captured,

prediction intervals produced by emulators can be too narrow in the region of a high

variability of f (the emulator is over-confident). On the contrary, the emulator is

under-confident in the input space where f is “well-behaved” by producing too large

prediction intervals (Bastos and O’Hagan, 2009; Oughton and Craig, 2016).

Figure 4.2 demonstrates the performance of a stationary GP emulator for the

“wavy” function described above. The top left panel displays the predictions gen-

erated by our ExeterUQ software (see Appendix B.4.2) onto a 30 × 30 grid over x1

and x2 (x1 ∈ [0, 1] and x2 ∈ [0, 1]). From the top left panel, we observe that the

mean surface is too rough in the highly smooth area for x1 and x2 large. The top

right panel shows predictions and two standard deviation prediction intervals for

the line x1 = x2. From this plot, we observe overconfidence in the region where f

fluctuates rapidly, for small values of x1 and x2, and underconfidence in the region

where the function is relatively smooth, for large values of x1 and x2. The diagnostic

plots, presented in section 2.4 and shown in the lower left and right panels of Figure

4.2, are indicative of problems we commonly encounter when building emulators
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in practice, in particular we observe heteroskedasticity in the plot of standardized

errors (bottom right). The lower left panel demonstrates the Leave One Out (LOO)

diagnostics plot against input x1.

Figure 4.2: Failure of stationary GP emulator. Top left : Posterior mean predictive
surface produced by stationary GP emulator with 24 design points in red. Top right :
Emulator performance for the cross section x1 = x2. The dashed line is the true
function value, the solid black line is the posterior mean predictive curve, and the
grey areas denote two standard deviation prediction intervals. Bottom left : Leave
One Out diagnostic plot against x1. The predictions and two standard deviation
prediction intervals are in black. The true function values are in green if they lie
within two standard deviation prediction intervals, or red otherwise. Bottom right :
Individual standardized errors of emulator predictions against x1.

Figure 4.2 demonstrates that the stationary GP emulator fails to provide a fair

assessment of uncertainty for a nonstationary response. Interestingly, we could also

observe from the lower right panel of Figure 4.2 that there are two distinct, identifi-

able regions of standardized errors’ behaviour. For x1, x2 < −0.5, the standardized

errors exhibit large variability, i.e. ranging from −1.5 to 2, while for input values

greater than −0.5 the standardized errors’ variability significantly decreases. We

observed that standardized Leave One Out (LOO) diagnostics for a stationary GP

emulator fitted to the training data could be informative of the distinct regions
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of model response behaviour in the input space in the case where the model re-

sponse is nonstationary. This finding has led to the development of a new method

of modelling nonstationarity in response that will be presented in this Chapter. We

partition the input space using diagnostics from initial stationary GP fits to develop

a single nonstationary GP emulator with a flexible mixture kernel obtained via the

partition. Firstly, we perform standardized Leave One Out (LOO) diagnostics for

a stationary GP emulator fitted to our training data. We specify a finite mixture

model for the standardized LOO errors to identify L distinct regions of behaviour in

the input space. We then assign a Gaussian process for f whose covariance kernel

is a mixture of L stationary covariance kernels, each belonging to the L previously

identified regions. This approach allows us to fit a single Gaussian process and

operate within the original input space.

A number of methods that aim to model a nonstationary response with modified

GP models have appeared in the UQ literature. One approach is to partition the

input space and fit separate GPs for each partition. For instance, Treed Gaussian

Process (TGP) (Gramacy and Lee, 2008) employs treed partitioning and makes

splits on the value of a single variable. Several works aim to deal with the non-

stationarity through separating the model response in terms of a global, large-scale

behaviour, and a locally stationary process. The composite Gaussian Process (CGP)

(Ba and Joseph, 2012) uses GP with longer length scale to capture the global trend

throughout the input space. A flexible variance model is introduced to capture vary-

ing volatility across the input space. We compare the performance of our proposed

nonstationary GP emulator against TGP and CGP as we consider these two models

to be the representations of these two approaches adopted in UQ literature to deal

with nonstationarity in response.

The Chapter has the following structure. Section 4.2 demonstrates in detail the

approaches to model nonstationarity that explicitly attempt to identify separate

regions of response behaviour in input space using partition model (meta-model)

or diagnostics. Section 4.3 introduces our nonstationary GP emulator. Section

4.4 examines the performance of our nonstationary GP emulator for a number of
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idealised numerical examples designed to demonstrate performance in different types

of scenarios. In section 4.5, we discuss prior choices for GP hyperparameters. In

section 4.6, we apply our methodology to the boundary layer of the single column

ARPEGE-Climat model as part of HIGH-TUNE. ARPEGE-Climat is developed at

the Centre National de Recherches Météorologuques (CNRM) and is the atmospheric

component of the CNRM climate model. This is an updated version compared to the

one described in Voldoire et al. (2013) (see also Abdel-Lathif et al. (2018) for further

details). Section 4.7 demonstrates the importance of nonstationary GP emulators

for history matching performed on one of the idealised numerical examples. Section

4.8 contains a conclusion.

4.2 Approaches in modelling nonstationarity in

the literature

An explicit review of nonstationary GP models is provided in section 2.5. In this

Chapter, we consider in detail methods that explicitly attempt to identify and model

the nonstationarity in a model response by either using a partition model (meta-

model) or a diagnostic measure. We view our proposed GP model as a hybrid

of these approaches. In particular, our model borrows the strength of input space

partitioning similar to TGP and Voronoi tessellation GP and kernel choice to provide

a single GP model that adapts to different behaviour similar to CGP.

Gramacy and Lee (2008) used treed partitioning to divide the input space prior

to fitting different base models, such as linear or GP models, to data, independently

in each region. In simple terms, treed partitioning divides up the input space by

making binary splits on the value of a single input variable. Gramacy and Lee

(2008) define T as a decision tree and η ∈ T as a leaf node, representing the

region of the input space with characteristic response behaviour. A split occurs

with probability a(1 + qη)
−b where qη is the depth of η ∈ T , the path from tree root

to the leaf η, a and b are user-defined parameters to control the size and spread of

the distribution of trees. As the depth of the leaf node increases, the probability of
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splitting decreases, penalizing large decision trees for modelling data. The splitting

dimension, u, is sampled from a discrete uniform distribution and the split location,

s, is chosen uniformly in the uth dimension. The decision tree is constructed with

the following traditional operations: grow, prune, change and swap (Chipman et al.,

1998). Gramacy and Lee (2008) added a rotate operation to encourage better mixing

of MCMC methods and escape local minima in the marginal posterior of T . Treed

partitioning is a computationally fast approach and works well for modelling certain

discontinuities in model responses. However, it is restricted to axis-aligned partitions

and introduces discontinuities across the partition boundaries of T .

As an alternative to treed partitioning, Voronoi tessellation could be used to par-

tition the input space. A Voronoi tessellation Gaussian process uses the Euclidean

distance from a set of centres to create Voronoi cells and construct an individual

Gaussian process model within each cell (Kim et al., 2005). Pope et al. (2018) ex-

tended the method by allowing non-convex and disconnected input regions to be con-

sidered. In this case, Voronoi cells are not required to share a vertex to be in the same

region, implying that the same GP model could be specified for disconnected cells.

The input space X is partitioned into r disjoint regions R =
{
R1, . . . ,Rr

}
with

Ri ⊆ X for ∀i ∈
{

1, . . . , r
}

and ∪ri=1Ri = X . A set of centres x∗T =
{
x∗T1 , . . . ,x

∗
Tk

}
is defined for k cells of a Voronoi tessellation. A point x ∈ X is contained in the cell

of the ith centre x∗Ti if

||x− x∗Ti || < ||x− x∗Tj || ∀j ∈
{

1, . . . , k
}
\i,

where ||x − x∗Tj || is the Euclidean distance between x and x∗Tj . Pope et al. (2018)

denote ci as the indices of all cell centres in Ri. The collection of tessellation

parameters is defined as t =
{
x∗T , k, r, c

}
with the prior specification. A proper prior

specification is crucial to resolve the potential identifiability issues since a region in

one model which consists of multiple cells joined together can be equivalent to a

region in another model consisting of a single cell. The Voronoi tessellation is derived

with the birth, death and move operations to update the set of centres and change

operation to update the relationship between centres. The acceptance ratio is used
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to proceed with one of the moves. Voronoi tessellation provides users with significant

flexibility by producing input space partitions of complex shapes. However, it also

introduces the extra complexity due to the use of RJ-MCMC, which requires a larger

number of MCMC chains and iterations per chain to ensure convergence.

Partitioning approaches can be very effective as, when fitting diagnostics, we

often “see” regions of different behaviour, as we could observe from the standardized

error plot in Figure 4.2, and it can be intuitive for the modellers to think of the model

having different characteristics in different input regions. However, we do not believe

the implied boundary discontinuities that these models specify.

The Composite Gaussian Process (CGP) model was introduced in section 2.5.

CGP consists of two processes, in particular

f(x) = Zglobal(x) + σ2(x)Zlocal(x), (4.1)

with Zglobal(x) ∼ GP
(
µ, τ 2r(·, ·;φg)

)
, Zlocal(x) ∼ GP

(
0, r(·, ·;φl)

)
and variance

model σ2(x) = σ2v(x). Both r(x,x;φg) and r(x,x′;φl) are Gaussian correlation

functions described in detail in section 2.5.

Interestingly, Ba and Joseph (2012) advocate the use of squared residuals to

model the volatility in response, i.e. σ2(x). Firstly, the expectation of the condi-

tional distribution of f at a new input point, x, given the ensemble, {X,F}, and

model parameters is separated into global and local components, i.e.

E[f(x)|{X,F}, λ,φg,φl, b] = m∗global(x) +m∗local(x)

m∗global(x) = µ̂+ r(x,X;φg)
(
G+ λΣ1/2LΣ1/2

)−1

(F− µ̂1)

m∗local(x) = λv1/2(x)r(x,X;φl)Σ
1/2
(
G+ λΣ1/2LΣ1/2

)−1

(F− µ̂1),

where λ = σ2/τ 2 is the ratio of global and local variances respectively, 1 denotes a

n× 1 vector where each entry is equal to one, r(x,X;φg) is 1× n vector whose ith

entry is r(x,xi;φg), and G is n × n matrix with entries Gij = r(xi,xj;φg). These

components correspond to the global part of the statistical model. The components

118



that correspond to the local adjustment part of the model are r(x,X;φl), a 1 × n

vector whose ith entry is r(x,xi;φl), and L, a n × n matrix with entries Lij =

r(xi,xj;φl). The remaining terms µ̂ and Σ are defined as

µ̂ =
(
1T (G+ λΣ1/2LΣ1/2)−11

)−1

1T (G+ λΣ1/2LΣ1/2)−1F,

Σ = diag
{
v(x1), . . . , v(xn)

}
.

The volatility in the response is primarily modelled through a standardized

volatility function v(x). To model a standardized volatility function, v(x), for a

given global trend, the squared residuals are obtained, s2
i = (f(xi) −m∗global(xi))2.

Based on squared residuals, the volatility function is defined as

v(x) =

∑n
i=1 r(x,xi;φg, b)× s2

i∑n
i=1 r(x,xi;φg, b)

where r(x,x′;φg, b) = exp
{
− b

∑p
i=1 φgi(xi − x′i)

2
}

. The correlation parameters,

φg, were used in the global trend specification, and b ∈ [0, 1] is an extra bandwidth

parameter. By increasing b we strengthen the global trend correlation between the

points used in the specification of r(·, ·;φg, b) and as a result place more weight on

the local part, m∗local(x), in the model. Also greater effect of the local adjustment

part is achieved in the input space where the global trend model fails, which is

identified through the increase in the computed squared residuals for design points

X.

We do view approaches to fit complex “global” mean functions to be appropri-

ate as they offer interpretability, but still, often find more complex nonstationarity

in the residual so that methods like CGP are not as effective. In particular, the

local adjustment part of the CGP fails to capture variability in the response, as

demonstrated in section 4.4.
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4.3 Nonstationary GP through mixtures of sta-

tionary processes

When fitting an emulator in practice, we would typically begin by fitting a stationary

Gaussian Process and examining diagnostics to assess whether the emulator was

sufficient. Possible failure of the stationary assumption can then be checked from

the plots of standardized errors against the model inputs (Bastos and O’Hagan,

2009). We may notice, as we do in the plot of standardized errors in Figure 4.2,

that the model is “well-behaved” in some regions of the input space but not in the

others. For example, the standardized errors are close to zero when x1 and x2 close

to 1, yet the model changes rapidly, and the standardized errors are large for small

values of x1 and x2. Approaches such as TGP explicitly model these as regions of

distinct behaviour by axis-partitioning of the input space and fitting distinct GP

models to each region. Our approach captures the distinct regional behaviours we

see in stationary diagnostics, yet uses input-dependent mixing functions to ensure

a continuous covariance kernel. We proceed to develop this approach below.

4.3.1 Model definition

Suppose, upon examining the diagnostics of a stationary GP emulator, we identify

L input regions of distinct model behaviour, Xl, l = 1, . . . , L (see subsection 4.3.2

for our method for identifying these regions and the optimal number of these regions

L) such that ∪Ll=1Xl = X . We define f(x) as:

f(x) = h(x)Tβ +
L∑
l=1

λl(x)εl(x) +
L∑
l=1

zl(x)νl(x), (4.2)

where λ1(x), . . . , λL(x) are input-dependent mixture components on the unit sim-

plex, i.e.
∑L

l=1 λl(x) = 1. Here εl(x) are independent, mean zero, Gaussian pro-

cesses with covariance kernel, kl(·, ·;σ2
l , δl), and region-specific parameters σ2

l and

δl = (δ1l, . . . , δpl), so that

εl(x)|σ2
l , δl ∼ GP

(
0, kl(·, ·;σ2

l , δl)
)
.
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The final term of equation (4.2) is a nugget process term. We define a region

specific nugget process term for each Xl, l = 1, . . . , L

νl(x) ∼ N(0, τ 2
l ), zl(x) = 1

(
λl(x) = max

k

{
λk(x)

})
.

We define zl(x) as an indicator function of the form

zl(x) =


1, λl(x) = maxk

{
λk(x)

}
,

0, otherwise.

In particular, we adopt a single nugget process term from one of the regions l =

1, . . . , L in equation (4.2) by finding l that corresponds to the maximum value of

the mixture components evaluated at the point of interest, x. This specification

allows the nugget process to be region specific, but it does not vary in the same

way as the residual process. In subsection 2.3.3, we mentioned that the nugget

term could account for noise in the simulator output or the effect of inactive inputs

in the residual term, and we consider it as an unstructured term in our model.

Given β, λ(x) = (λ1(x), · · · , λl(x)), ∆ = (δ1, . . . , δL)T , σ2 = (σ2
1, . . . , σ

2
L) and

τ 2 = (τ 2
1 , . . . , τ

2
L), our nonstationary GP is

f(x)|β,λ(x),σ2,∆, τ 2 ∼ GP
(
h(x)Tβ, k(·, ·;σ2,∆, τ 2)

)
(4.3)

with covariance

k(x,x′;σ2,∆, τ 2) =
L∑
l=1

λl(x)λl(x
′)kl(x,x

′;σ2
l , δl) + 1

{
x = x′

} L∑
l=1

zl(x)zl(x
′)τ 2

l ,

so that the covariance kernel for our nonstationary GP is a mixture of stationary

covariance kernels. This formulation allows us to specify a different type of process

behaviour in L regions similar to TGP and the Voronoi Gaussian Process model;

however, we avoid introducing boundary discontinuities between regions. Therefore

by mixing GPs in this way we can have a non-zero covariance between the points

from different regions. This type of GP aims to model a response, whose behaviour
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changes continuously across the input space. We observed this type of response

behaviour multiple times from working with climate modellers.

It is important to mention that our approach has similarities to the method

from spatial statistics literature. Fuentes (2001) and Banerjee et al. (2004) assumed

the existence of L stationary processes in different regions of a 2D spatial field and

specified L centroids (centres of mass, knots), t1, . . . , tL, in that field by applying

rectangle-partitioning. In this approach, the input space, X , is enclosed in a rectan-

gle and t1 is obtained as the centroid of L = 1. For L = 2, the rectangle is divided

from right to left, and the centroids for the resulting two rectangles are defined as

t1 and t2. The process is continued in a similar way with defining more centroids,

and BIC (Schwarz, 1978) is used to select the optimal L. The f(x) is defined in

the same way as in equation (4.2) and with the mixture component definition, i.e.

λl(x) = α(x, tl), that depends on the centroids via a distance function.

Banerjee et al. (2004) specified one of the possible forms for α(x, tl) as

α(x, tl) =
γ(x, tl)√∑L
l′=1 γ

2(x, tl′)
,

where γ(x, t) is a decreasing function of the distance between x and t. The indicator

function, zl(x), in the last term of equation (4.2) also depends on the distance

between x and tl and is defined as

zl(x) =


1, ||tl − x|| = mink ||tk − x||,

0, otherwise,

where ||t−x|| is the Euclidean distance between x and t. This proposed model has

been applied to a 2D spatial field, and in an illustrative study of modelling house

prices in Stockton, California, 632 data points (design points) were used to fit a

nonstationary GP model and up to L = 16 centroids were considered for fitting

(Banerjee et al., 2004). In the field of computer experiments, such large data sets

are rare, and the rectangular partitioning and Euclidean distance-dependent weight

functions are unlikely to work for problems with p > 2. Our approach is more
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scalable to larger dimensions and, as we argue below, more natural for modellers to

implement.

4.3.2 Mixture components definition based on diagnostics

We propose to partition the input space using diagnostics from the initial stationary

GP fits. The diagnostics, both numerical summaries as well as graphical methods,

based on prediction errors are commonly used to check the validity of a GP model

to represent a response of interest (see section 2.4 for more details). We consider

the LOO standardized errors, ei, defined as

ei =
f(xi)− E[f(xi)|

{
X−i,F−i

}
]√

V ar[f(xi)|
{

X−i,F−i
}

]
.

In spatial statistics, Cressie (1993) used diagnostics based on LOO standardized

errors to evaluate the validity of a fitted variogram, covariance function, of a GP

model. In particular, he proposed to check the assumptions adopted for covariance

function, such as stationarity, of GP model by considering CLOO = 1
n

∑n
i=1 e

2
i . This

criterion should be close to 1 to confirm that there is no conflict between the GP

model representation and the response (Bachoc, 2013). Samper and Neuman (1989)

proposed the assumption for their model that the LOO standardized errors, ei, are

standard normal N(0, 1) if a specified GP model is an appropriate representation of a

response. They realised that the independence of residual is a strong hypothesis and

performed a number of statistical tests to verify this hypothesis and to show that in

many cases the correlation between these errors is weak. In computer experiments

literature, Bastos and O’Hagan (2009) suggested to use the plots of residuals against

inputs to check the validity of the stationarity assumption of the covariance function.

In particular, we should expect to see a horizontal band containing the errors and

centred around zero.

Based on the diagnostics methods considered above, we concluded that the LOO

standardized residuals, ei, obtained from stationary GP fits could be informative in

partitioning the input space and modelling the mixture components. We propose
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to consider the λ(x) = (λ1(x), . . . , λL(x)) as a vector of probabilities indicating the

dominant local behaviour around x as described by εl(x) and νl(x).

We define a latent indicator process s(x)

s(x) ∼ Multinomial(λ1(x), . . . , λL(x)),

and model the LOO standardized cross-validation residuals, ei, via

ei|s(xi) = l ∼ Normal(0, ζl),

where ζl is the standard deviation for the distribution of standardized errors in

region l. The patterns of small and large errors in different input regions indicate

the failure of the stationarity assumption used for emulator construction. Then,

we can fit the λl(x) via, for example, a categorical regression by specifying a linear

function, g(x) = (x1, . . . , xp), i.e.

λl(x) =
exp(g(x)Tαl)∑L
l′=1 exp(g(x)Tαl′ )

, (4.4)

with parameters A = (α1, . . . ,αL)T and ζ = (ζ1, . . . , ζL) and a suitable prior

π(A, ζ).

The λ(x) are computed for M posterior samples (after warm-up) and fixed at

the mean value over the posterior samples denoted by λ̂(x) = (λ̂1(x), · · · , λ̂L(x)):

λ̂(x) =
1

M

M∑
m=1

λ(x;Am).

We modify the nonstationary GP model specification introduced in subsection 4.3.1

by removing the conditioning on λ(x) by fixing λ(x) = λ̂(x). Given region-specific

parameters ∆ = (δ1, . . . , δL)T ,σ2 = (σ2
1, . . . , σ

2
L) and τ 2 = (τ 2

1 , . . . , τ
2
L), our nonsta-

tionary GP is therefore

f(x)|β,σ2,∆, τ 2 ∼ GP
(
h(x)Tβ, k(·, ·;σ2,∆, τ 2)

)
(4.5)
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with covariance function:

k(x,x′;σ2,∆, τ 2) =
L∑
l=1

λ̂l(x)λ̂l(x
′)kl(x,x

′;σ2
l , δl) + 1

{
x = x′

} L∑
l=1

zl(x)zl(x
′)τ 2

l ,

where

zl(x) =


1, λ̂l(x) = maxk

{
λ̂k(x)

}
,

0, otherwise.

We fix λ(x) at λ̂(x) to avoid double counting. Fixing λ(x) at λ̂(x) in this way

resembles the common and effective Cross-Validation (CV) approach to estimate the

parameters of the statistical model, i.e. the model parameter values that provide

the user with the smallest LOO error are chosen. For example, Bachoc (2013) uses

the LOO-CV to estimate σ2 and δ for a GP model and numerically proves that

the Cross-Validation (CV) estimation is more robust than the Maximum Likelihood

estimation (ML) of parameters to the model misspecification, the case when the true

underlying covariance function does not belong to the family of covariance functions

that is considered. Our approach resembles Cross-Validation (CV) as we attempt

to fix λ(x) at values that are consistent with the ensemble, {X,F}.

We propose to choose the number of regions, L, by fitting separate mixture

models for L = 1, . . . , 4 and comparing the fit of the models using a penalized

measure of model fit. It is common to believe that the optimal value of L is small

since we usually operate with small n, number of design points (Almond, 2014). For

our mixture model, we adapted the Akaike information criterion (AIC) with mixture

model parameters fixed at the posterior mean, Ā = (ᾱ1, . . . , ᾱL) and ζ̄ = (ζ̄1, . . . , ζ̄l).

In particular, we define the modified AIC criterion, AICmod, as

AICmod = −D(Ā, ζ̄) + 2× L(p+ 1) + L(p+ 2).

The first term of the modified AIC criterion corresponds to the deviance, which is

twice the negative log-likelihood, where our mixture model likelihood with parame-
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ters fixed at the posterior mean takes the form:

π
(
e|X, Ā, ζ̄

)
=

n∏
i=1

L∑
l=1

exp(g(xi)
T ᾱl)∑L

l′=1 exp(g(xi)T ᾱl′)
φ
(ei
ζ̄l

)
,

where φ(·) is the unit normal density. The second term of AICmod is equal to twice

the number of parameters in the mixture model. We also propose to add the penalty

that corresponds to the number of region-specific parameters of full nonstationary

GP model, i.e. σ2,∆ and τ 2, as the number of regions, L, will directly affect the

complexity of full nonstationary GP model. We choose L with the lowest AICmod

score.

As a result, we propose a two-stage approach for constructing our nonstationary

GP model. The first step is to derive the number of input regions, L, and mixture

components, λ̂(x), by considering the LOO standardized residuals from stationary

fit. The second step is to construct a nonstationary GP model with fixed mixture

components and conditioned on region-specific parameters.

We can draw similarities between our proposed nonstationary GP model and

CGP reviewed in section 4.2. In particular, we could consider a two-stage volatility

approach in CGP as a mixture of two covariance kernels from global and local com-

ponents of the model. The added effect of a local component inside the covariance

kernel of the overall model is controlled by the volatility function, v(x), which de-

pends on standardized residuals. We believe that our proposed nonstationary GP

model provides users with greater flexibility since it attempts to model the response

behaviour across L > 2 input regions of distinct model behaviour. In numerical

studies in section 4.4 as well as in section 4.6, we observe that the added effect from

a local component in CGP is not strong enough to capture the high-variability in

model response.

4.3.3 Priors for nonstationary GP model hyperparameters

For the mixture model we specify priors for parameters, ζl ∼ logN(−1, 1) and

αl ∼ Normal(0, 5), with l = 1, . . . , L and αl = (α1l, . . . , αpl), probability dis-
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tributions with wide support representing weak prior information (Almond, 2014;

Stan Development Team, 2017), which allows us to rely on the standardized errors,

e = (e1, . . . , en), in obtaining λ̂l(x), l = 1, . . . , L. The two prior distributions on

parameters are shown as density plots in Figure 4.3. We also constrain the prior

standard deviation parameter to follow the ordering, ζ1 ≤ ζ2 ≤ · · · ≤ ζL, solving the

problem of having multiple modes in the posterior distribution for mixture models,

and ensuring good mixing of our Markov chains (Almond, 2014).

Figure 4.3: Lognormal(-1, 1) (left) and Normal(0, 5) (right) priors for parameters.

We use Stan (Stan Development Team, 2017) for our inference, introduced in

Chapter 3. However, Stan does not provide sampling for discrete parameters (Stan

Development Team, 2017), therefore, the posterior of the discrete group allocation

indices, s = (s(x1), . . . , s(xn)), cannot be sampled directly and so we integrate s out

in the likelihood. Mixture components are computed a posteriori. The regression

coefficient parameters are sampled from the joint posterior, integrating over s,

p(A|e, ζ) ∝
∫
p(e|s, ζ)p(s|A)p(A)p(ζ)ds.

Sinse s is discrete, this is equivalent to

p(A|e, ζ) ∝
n∏
i=1

(
L∑
l=1

Pr(s(xi) = l|A)p(ei|ζl)

)
p(A)p(ζ),

where A =
{
α1, . . . ,αL

}
and ζ = (ζ1, . . . , ζL).
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As a result, we obtain posterior simulations of the parameters, (Ai, ζi), i =

1, . . . ,M , that are used to compute λ̂l(x), l = 1, . . . , L.

The ordering in the prior specification of the standard deviation parameter for

residuals persist in nonstationary GP model. In particular, l = 1 region corresponds

to the region with the smallest variability in residuals from stationary GP fit, ζ1.

Therefore we should expect to observe comparatively smaller values of σ1 and longer

correlation length values, δ1, produced by our proposed nonstationary GP emulator,

as we are in the “well-behaved” region of input space. The complete opposite is true

for l = L.

The workflow of our proposed nonstationary GP model consists of the following

steps:

1. Construct a GP emulator with a stationary covariance function to approximate

the computer model output (metric of interest).

2. Use LOO diagnostics to validate the performance of stationary GP emula-

tor. In particular, we are interested in examining the individual standardized

residuals plots against inputs. If the emulator can adequately represent the

simulator, we should expect to observe a horizontal band between -2 and 2

containing the errors. An isolated outlier, a residual with an absolute value

greater than 2, could be ignored (Bastos and O’Hagan, 2009). However, if we

identify any relationship between residuals and inputs such as heteroscedas-

ticity, we could use our proposed method.

3. Consider the mixture model for LOO standardized residuals, e = (e1, . . . , en),

presented in section 4.3.2 with L = 1, . . . , 4. Since we generally operate with

far fewer design points, considering L > 4 would potentially introduce issues

with the convergence and mixing of Markov chains for mixture parameters

(Almond, 2014). Choose the mixture model that provides the lowest AICmod

score. Compute λ̂(xi) for design set, X = (x1, . . . ,xn), by using a set of pos-

terior samples generated for mixture model parameters (Aj, ζj), j = 1, . . . ,M .

4. Specify the same form of linear model and priors for nonstationary GP hy-
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perparameters as for the stationary GP model and use fixed λ̂(x) in place of

λ(x) for the design set. Construct nonstationary GP emulator.

4.4 Numerical studies

We consider the performance of stationary and our proposed nonstationary GP em-

ulators on a set of test functions and also demonstrate the performance of Bayesian

TGP (Gramacy et al., 2007) and composite GP (CGP) (Ba and Joseph, 2012).

To perform a fair comparative study, we modified the prior specification used in

ExeterUQ software presented in Chapter 3.

Prior to fitting our emulators, we perform a transformation on ensemble, {X,F},

i.e. we transform X on [−1, 1] scale and centre response around zero by subtracting

mean of response and scaling by the standard deviation of response. This step allows

us to specify the same form of proper prior for regression coefficients, β1:(p+1) ∼

N(0, 10), and perform prior studies in section 4.5.

We specify a linear structure for the prior mean, h(x) = (1, x1, . . . , xp)
T . We

adopt the standard choice regarding the regressors with h(·) that includes a constant

and linear terms in each component of x (Kennedy and O’Hagan, 2001), contrary to

approaches that attempt to use a complex mean function (see subsection 2.5). An

important remark is that ExeterUQ software allows users to use a complex form of

h(·) and we were concerned that adopting a complex form of the regression function,

h(·) will provide us with an unfair advantage over TGP and CGP in our comparative

study.

We have also modified the form of prior for scale parameter, σ. In particular,

we define a weakly informative prior, i.e. σ2 ∼ IG(2, 1), commonly used in UQ

literature (Gramacy and Lee, 2008; Montagna and Tokdar, 2016). We specify the

same forms of the prior distribution for model parameters, β and
{
σ2
l , δl

}
l=1:L

, for

our nonstationary GP emulator. In practice, different priors could be employed for

region-specific parameters. However, as we are aiming to assess and compare the

performance of our proposed nonstationary GP emulator against other GP models,

we stick to the prior specification used for stationary GP. In the rest of the Chap-
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ter, we refer to our stationary and nonstationary emulators with prior specification

introduced above as “out of the box”.

To implement TGP for comparative study, we used R package TGP with default

settings; in particular, we used linear mean function specification and separable

power exponential correlation function. The form of covariance function used in the

package TGP is written as

k(x,x′) = σ2

(
exp

{
−

p∑
i=1

|xi − x′i|φ

δi

}
+ 1
{
x = x′

}
τ 2

)

where τ 2 is a nugget term. We fixed the nugget parameter at 0.01 since the nugget

term in TGP (Gramacy et al., 2007) has a different interpretation of our definition

of a nugget term. We used CGP with default settings (Ba and Joseph, 2018). Both

R packages are available from CRAN.

We assess the performance of the mentioned above GP emulators by considering

the Root Mean Squared Error (RMSE) and the Interval Score for (1 − α) × 100%

with α = 0.05 prediction interval (Gneiting and Raftery, 2007). Both scores were

introduced and described in subsection 3.6.3.

4.4.1 The 2D “wavy” function

We propose to consider and compare our nonstationary GP model on a toy func-

tion, the 2D “wavy” function, introduced in section 4.1. We use a 24-run maximin

distance Latin Hypercube (LHC) (Morris and Mitchell, 1995) to train our emula-

tors (provided in CGP manual by Ba and Joseph (2012)). Firstly, we construct a

stationary GP emulator and consider the standardized errors by fitting the mixture

model with L = 1, . . . , 4.

Models Deviance AICmod

L = 1 58.51 67.51
L = 2 48.83 66.83
L = 3 48.43 75.43
L = 4 48.87 84.87

Table 4.1: Mixture Model Comparison for L = 1, 2, 3, 4.
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Figure 4.4: Top row : ei against x1 and x2. Bottom row : coloured ei: the deep blue
colour corresponds to the higher probability of a point being allocated to region 2,
while the deep red colour corresponds to the higher probability of a point being
allocated to region 1.

Table 4.1 demonstrates that the mixture model with L = 2 has the lowestAICmod

measure and based on this measure we conclude that L = 2 is the optimal number

of the input regions for our nonstationary GP model.

Figure 4.4 demonstrates the behaviour of standardized errors against input pa-

rameters. The colour scale shows the probability of allocation of design point to one

of the regions, i.e. the deep blue colour corresponds to the probability of a point

being allocated to the high variability in response region close to 1. In contrast, the

deep red colour corresponds to the probability of a point being allocated to the low

variability in response region close to 1. Figure 4.4 confirms that L = 2 is a good

choice for the mixture model, i.e. the variability of the errors depends on both in-

puts, and there are two distinct, identifiable regions of standardized error behaviour.

For x1, x2 < −0.5, the standardized errors exhibit large variability, i.e. standardized

errors ranging from -1.5 to 2, while for input values greater than -0.5 the variability

of standardized errors significantly decreases. We use the model described in section

4.3.2 to derive mixing functions.

Figure 4.5 demonstrates the performance of all four emulators for the wavy
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Figure 4.5: Comparison between stationary GP (st-GP), our nonstationary GP
(nst-GP), TGP, and CGP. First row : posterior predictive mean surface and root
mean squared error (rmse). Second row : posterior predictive standard deviation
and maximum posterior predictive standard deviation (max psd). Third row : cross-
section performance at x1 = x2. The dashed line is the true function, the solid black
line is the posterior mean predictive curve, and the grey areas denote two standard
deviation prediction intervals.

function. The predictive mean surface, m∗(x), (top row) produced by our “out

of the box” nonstationary emulator and by CGP resemble the image of the true

function surface, while the stationary GP emulator and TGP emulator produce a

number of ridges across the input space.

From the second row of Figure 4.5, we observe that the stationary GP emulator

produces the lowest values of predictive standard deviation around the design points,

but due to the small values of the correlation length parameters, the information

is quickly “dying” away from the design points. Our nonstationary GP emulator

and CGP manage to learn and explore the function behaviour for high values of x1

and x2 based on a few design points due to the stronger correlation structure in this

region. TGP partitions the input space at x1 = −0.38 (blue dashed line) and we
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observe the highest predictive standard deviation around the partition.

We consider in detail the tree structure obtained for this particular example

with TGP package (Gramacy et al., 2007). In the process of fitting a TGP, we

automatically store the MAP tree T̂ , a tree with the maximum log-posterior value.

The left plot in Figure 4.6 demonstrates that the MAP tree, T̂ , produces a split at

x1 = −0.37931. As a result, we expect to observe a greater variability in response

in the input region for x1 < −0.37931 according to the value of estimated scale

parameter, σ̂2 = 0.0884, than in the region for x1 > −0.37931 with σ̂2 = 0.0449.

Separate GP models are fitted to each input partition based on a subset of original

ensemble, {X,F}, i.e. D1 and D2, which contain 11 and 13 elements respectively.

Figure 4.6: A MAP tree, T̂ , with one split, resulting in two regions, shown in
a diagram (left) and pictorially (right). The split occurs at x1 = −0.37931. The
ensemble, {X,F}, is divided into subsets D1 and D2, that contain 11 and 13 elements
of ensemble respectively. The numerical value at each leave corresponds to σ̂2.

The behaviour of the wavy function changes along the line where x1 = x2.

Figure 4.5 demonstrates the cross-section plot for the stationary model and shows

the limitations of the stationary emulator, i.e. it is overconfident in the region where

the function behaviour changes rapidly. Both the TGP and CGP models are under-

confident across the cross-section, while our nonstationary GP emulator produces

the lowest prediction intervals among all of the methods, through is perhaps under-

confident during the transition to smoother behaviour x1, x2 ≥ −0.5.

Table 4.2 demonstrates that our “out of the box” nonstationary GP emulator

produces the lowest Interval Score for the validation ensemble followed by CGP.

However, CGP and TGP demonstrate lower RMSE than our proposed nonstationary
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Models Interval Score RMSE

st-GP 2.76 0.298
nst-GP 1.52 0.278
TGP 2.67 0.267
CGP 1.61 0.233

Table 4.2: Interval Score and RMSE for the 2D “wavy” function

GP emulator.

In section 2.5, we briefly mentioned that “deep ” approaches, in particular deep

GP (DGP), could be used to model nonstationarity. We are interested in studying

the performance of DGP for 2D “wavy” function.

Figure 4.7: Performance of DGP for “wavy” function. Left panel : posterior pre-
dictive mean surface. Central panel : posterior predictive standard deviation and
maximum posterior predictive standard deviation (max psd). Right panel : cross-
section performance x1 = x2. The dashed line is the true function, the solid black
line is the posterior mean predictive curve, and the grey area denotes two standard
deviation prediction intervals.

To construct DGP and produce results presented in Figure 4.7, we utilize the

readily available GPyTorch library (GPyTorch, 2019). GPyTorch library allows users

to build a GP model for large data sets by employing variational techniques. The

training and predictions in GPyTorch are performed by using sparse variational in-

ference to simplify the correlation within layers, but at the same time maintain the

correlation between layers (Salimbeni and Deisenroth, 2017). The parameters of the

Gaussian process and the parameters of the neural network are learnt using empirical

Bayes, i.e. by optimizing the variational evidence lower bound stochastically.

For our specific example, we used a simple “out of the box” two-layer deep GP.

We specified linear and constant mean functions for the first (hidden) and second

layers respectively, while we specified RBF kernel for both layers.
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From the left panel plot in Figure 4.7, we observe that DGP underestimates

the values of model response in high and low variability region. The highest values

of predictive uncertainty are obtained in these two regions. The cross-section plot

shows that the width of two standard deviation prediction interval does not change.

We conclude that DGP attempts to capture a general model behaviour, i.e. how

the model behaves on average across the input space. We have also computed

the Interval Score and RMSE, which are 3.81 and 0.423 respectively. A possible

explanation of the poor performance of DGP is that a training ensemble is too

small for a complex DGP framework.

4.4.2 Nonstationarity in 5 dimensions

We now examine the performance of our method in higher dimensions, using the 5D

test function

f(x) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5 sin(β6x5),

with β5, β6 changing in each of 5 different intervals in x5, as shown in Figure 4.8.

Intervals in white correspond to five separate function behaviours, while the intervals

in blue are a mixture of functions from two neighbouring regions to ensure continuity.

Our choices of β5, β6 impose significant variability in smoothness with changes in x5.

We choose to vary the stationarity properties along one axis to favour TGP, which

partitions the input space along one input.

We generate a 4-extended LHC of size 100 following the methodology presented

by Williamson (2015). The 100 member LHC is composed of four, 25 member

LHCs, each added sequentially, ensuring that the composite design is orthogonal

and space-filling at each stage of extension. We will compare the performance of

all methods using Leave One Latin Hypercube Out (LOLHO) diagnostics, i.e. each

row in Figure 4.10 represents the predictions generated for a left out from the design

LHC by refitted emulators. LOLHO diagnostics offer a sterner test for an emulator

than LOO diagnostics and allow us to assess which areas of the input space do not

validate well (Williamson, 2015).
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Figure 4.8: Our 5D function f(x) plotted against x5. All the other inputs, i.e.
x1, . . . , x4, are fixed at 0.7.

We consider four ensembles separately and proceed by constructing a stationary

GP emulator and considering the standardized errors by fitting the mixture model

with L = 1, . . . , 4.

Models Ens 1 Ens 2 Ens 3 Ens 4

L = 1 205.07 214.02 203.80 188.46
L = 2 165.65 213.35 198.09 180.41
L = 3 181.69 225.39 215.89 191.99
L = 4 199.48 242.85 233.46 213.47

Table 4.3: Mixture Model Comparison for L = 1, 2, 3, 4 for Ensembles using AICmod
score. The best AICmod score for each ensemble is in bold.

Table 4.3 demonstrates that the mixture model with L = 2 obtains the lowest

AICmod score for all ensembles, although the true function has L = 5 in practice.

Considering L = 5 would lead to issues with the convergence and mixing of Markov

chains for mixture model parameters (see subsection 4.3.2 for more details). Figure

4.9 demonstrates the performance of the mixture model with L = 2 for all four

ensembles.
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Figure 4.9: ei against x5 for four ensembles (sub-designs). The deep blue colour
corresponds to the higher probability of a point being allocated to region 1 (high
response variability region), while the deep red colour corresponds to the higher
probability of a point being allocated to region 2 (low response variability region).

Models Ens 1 Ens 2 Ens 3 Ens 4

st-GP 13.68 26.09 22.69 30.51
nst-GP 9.94 21.72 16.57 23.83
TGP 8.99 9.62 23.84 58.66
CGP 9.92 22.91 21.69 35.80

Table 4.4: Interval Score for 5D example. The best score is in bold for each ensemble.

Models Ens 1 Ens 2 Ens 3 Ens 4

st-GP 2.315 3.725 3.557 3.550
nst-GP 2.085 3.531 3.296 3.709
TGP 2.068 3.229 4.574 6.511
CGP 2.606 3.728 3.307 4.227

Table 4.5: RMSE for 5D example. The best score is in bold for each ensemble.
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Figure 4.10: Comparison between stationary GP (st-GP), nonstationary GP (nst-
GP), TGP, and CGP for 5D toy example. Blue dashed lines correspond to the
partitions produced by TGP. Each row is constructed by leaving one LHC out.
The posterior mean and two standard deviation prediction intervals produced by
emulators are in black. The green and red points are the model values, coloured
“green” if they lie within two standard deviation prediction intervals and “red” if
they lie outside.
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Figure 4.10 demonstrates the main issue with the stationary GP emulator, i.e.

the same length of prediction intervals across the whole range of x5 values, which

indicates that it fails to recognise the changes in the function response variability.

Similarly to our mixture model approach TGP partitions the input space into two

regions for ensembles 1, 2, 3 and performs well in the region where the function

is “well-behaved”. However, due to hard partitioning and the fact that TGP fits

GP models to each partition independently, we observe a significant increase in the

length of prediction intervals in the high variability region. CGP does recognise

the variability of the function response. However, it is overconfident for all four

ensembles. Our nonstationary GP emulator performs relatively well and produces

the second-lowest RMSE score (see Table 4.5) for all four ensembles and the lowest

Interval Score for ensemble 3 and 4 (see Table 4.4). It performs relatively well

across ensembles by recognising the change in function variability. Interestingly, all

four GP approaches fails to model function response in the high variability region,

x5 < −0.715, for ensemble 4, which could be due to design used to fit GP models

being not representative of the function behaviour. In subsection 4.5.2, we will show

how informative priors help us produce much better nonstationary emulators for this

function.

4.4.3 Nugget predictor example

In this subsection, we analyse the nugget predictor example considered by Gramacy

and Lee (2012) to demonstrate the superior performance of adding a nugget process

term into the GP model in the situations when the model assumptions are violated,

or data points are sparse. In particular, we consider a simulated example that

appeared in Gramacy and Lee (2012) and Ba and Joseph (2012), where test function

f(x) = sin(10πx)/(2x) + (x − 1)4 is evaluated at 20 unequally spaced locations as

shown in Figure 4.11. With this example, we are interested in demonstrating how

does the varying nugget process affect the inference of our proposed nonstationary

GP emulator.
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Figure 4.11: Plot of (true) function f(x) = sin(10πx)/(2x) + (x− 1)4. The red dots
represent observed data at 20 unequally spaced locations.

As in all of the previous simulation examples, we firstly construct a stationary GP

emulator and consider the LOO diagnostics together with the standardized errors.

Figure 4.12: Left panel : Leave-One-Out diagnostic plot produced for stationary
GP emulator. The posterior mean and two standard deviation prediction intervals
produced by emulator are in black. The true function values are in green if they lie
within two standard deviation prediction intervals, or red otherwise. Right panel :
ei (standardized errors) against x.

From Figure 4.12, we observe the heteroscedasticity in standardized errors against

x. In particular, we could derive an increase in standardized error values in the re-

gion where design points are sparse. We proceed to fit the mixture model with

L = 1, . . . , 4 to identify the number of input regions with characteristic model be-

haviour. Table 4.6 demonstrates that the mixture model with L = 1 has the lowest
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AICmod. However, based on the conclusions drawn from LOO diagnostics plot from

Figure 4.12 and the fact that the mixture model with L = 2 has the second-lowest

AICmod score, we have decided to fit a nonstationary GP model with L = 2. Figure

4.13 confirms that L = 2 is a good choice for a mixture model.

Models Deviance AICmod

L = 1 41.23 48.23
L = 2 37.02 51.02
L = 3 36.24 57.24
L = 4 36.69 64.69

Table 4.6: Mixture Model Comparison for L = 1, 2, 3, 4 for a nugget predictor
example using AICmod score. The best score value is in bold.

Figure 4.13: ei against x. The deep blue color corresponds to the higher probability
of a point being allocated to region 2, while the deep red color corresponds to the
higher probability of a point being allocated to region 1.

In subsection 4.3.1, we defined the nugget process dependence in region l on the

hyperparameter τ 2
l , and we could model the varying effect of the nugget process

through the prior specification for τ 2
l for l = 1, . . . , L. We have specified a non-

informative prior, τ 2
l ∼ IG(3, 0.1) for l = 1, · · · , L. This distribution is negatively

skewed with a long positive tail. Obtaining large values for τ 2
l would lead the

emulator to act as a smoother in the input region l, the region where we observe

sparsity in the design points allocation.

From Figure 4.14 and Table 4.7, we conclude that we have managed to derive dif-

ferent nugget process parameter behaviour in two regions. In particular, we observe

that the mean of posterior samples for τ 2
2 (Region 2) is twice as big as the mean of

posterior samples for τ 2
1 (Region 1). For the l = 1 region, where we observe that

most of the design points are spaced close to each other, we tend to obtain small
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values for τ 2
1 from the MCMC sample, and in this case, the emulator will act more

like an interpolator. For the l = 2 region, where we observe the sparse allocation of

design points, we obtained relatively large values for τ 2
2 from the MCMC samples,

and in this case, the emulator will act as a smoother.

0.00 0.10 0.20 0.30

0
10

20
30

40
50

Nugget

Pr
io

r d
en

si
ty

0.00 0.10 0.20 0.30

0
10

20
30

40
50

Region 1

Nugget

Po
st

er
io

r s
am

pl
es

0.00 0.10 0.20 0.30

0
10

20
30

40
50

Region 2

Nugget

Po
st

er
io

r s
am

pl
es

Figure 4.14: Density plot of IG(3, 0.1) (left), posterior samples of τ 2
1 (center) and

posterior samples of τ 2
2 (right).

Parameter Min 1st Qu. Median Mean 3rd Qu. Max.

Region 1 τ 2 0.0090 0.0176 0.0229 0.0254 0.0300 0.1453
Region 2 τ 2 0.0091 0.0445 0.0622 0.0718 0.0860 0.5420
Region 1 σ2 0.1208 0.6182 0.8172 0.8439 1.0611 2.0163
Region 2 σ2 0.01537 0.5162 0.7374 0.7673 0.9885 2.0570
Region 1 δ 0.2234 0.5839 0.7067 0.7479 0.8703 2.8466
Region 2 δ 0.0719 0.4357 0.5815 0.6762 0.8406 2.8200

Table 4.7: Summary statistics of posterior samples of region specific parameters of
nonstationary GP model for a nugget predictor example.

Interestingly, we also observe from Table 4.7 and Figure 4.15 that region-specific

parameters σ2
l and δl, l = 1, 2 do not vary between regions and effectively we could

conclude that σ2
1 = σ2

2 and δ1 = δ2. As a result, the nonstationarity in the response

of the function is modelled via varying the nugget process representation. Since we

have an indicator function in front of a nugget process term instead of a smoothly

varying mixing function, this could explain the abrupt change in the prediction

intervals produced by our nonstationary GP emulator between two regions in Figure

4.16.
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Figure 4.15: Posterior samples of region specific parameters.

Figure 4.16 demonstrates the performance of all four emulators for the nugget

predictor example. For this particular example, we do not fix a nugget process term

for TGP. We observe that the stationary GP emulator produces predictions outside

of the range of the test function, which leads to an unfavourably high Interval Score

(1.366). CGP uses a nugget term in regions away from design points and acts as an

interpolator at design points. Hence CGP obtains the lowest Interval Score (0.679).

Both our nonstationary GP emulator and TGP produce noninterpolating predic-

tions, capturing the general behaviour of the test function. The size of prediction

intervals produced by our nonstationary GP emulator is significantly smaller for the

region where the design points are dense. This is due to the varying nature of the

nugget process, and such a model feature could be useful for real data applications,

where model assumptions and design density varies across the input space.

We note that an interpolator predictor is not appropriate for many real data

applications. For instance, a nugget term in an emulator could be used to model

the internal variability in climate models, for which slight perturbations to the in-

put parameter settings, x, and initial conditions may lead to a large difference in

model output (Hawkins and Sutton, 2009; Williamson and Blaker, 2014). Table 4.8
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demonstrates that our nonstationary GP emulator manages to achieve the second

lowest Interval Score (1.039) and RMSE (0.246) after the CGP.
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Figure 4.16: Comparison between stationary GP (first panel), nonstationary GP
(second panel), TGP (third panel), CGP (fourth panel). The dashed line corresponds
to the true function, the solid black line is the posterior mean predictive curve,
and the grey areas denote two standard deviation prediction intervals. Black points
correspond to the design points used to train our GP models. Estimates are obtained
at 100 equally spaced test points.

Models Interval Score RMSE

st-GP 1.366 0.361
nst-GP 1.039 0.246
TGP 1.259 0.264
CGP 0.679 0.197

Table 4.8: Interval Score and RMSE for nugget predictor example. The best score
value is in bold.

4.5 Generative priors

At the beginning of section 4.4, we defined the default “out of the box” choice

of priors for our GP model hyperparameters, and our stationary and nonstationary

emulators were constructed using the default prior specification for hyperparameters

in the simulation studies in section 4.4 to offer a fair comparison. However, in

general, we build statistical models to represent complex simulator responses, and

a good prior for hyperparameters used to model one simulator response, might

not serve as a good prior to model another simulator response (Gelman et al.,

2017). Every effort should be made to specify priors for GP hyperparameters that

would facilitate inference about simulator response that produce good and accurate

predictions. We are aware of the notion that for problems with a large number of

144



data generated, the posterior distribution is going to be dominated by likelihood,

and we expect to observe less effect from the prior distribution. However, this

point was disproved (Gelman et al., 2017; Gabry et al., 2019) for cases when we

are operating with complex statistical models with many parameters. For instance,

Gabry et al. (2019) considered the statistical model for predicting PM2.5, particulate

matter measuring less than 2.5 microns in diameter, from the estimates of PM2.5

produced by a high-resolution satellite data, defined as

yij ∼ N(β0 + β0j + (β1 + β1j)xij, σ
2),

β0j ∼ N(0, τ 2
0 ), β1j ∼ N(0, τ 2

1 ),

where yij is the logarithm of the observed PM2.5, xij is the logarithm of the esti-

mate from the satellite model, i corresponds to observations in each pre-specified

region, j ranges over the pre-specified regions. The prior distributions for model

hyperparameters, σ, τ0, τ1, β0 and β1, are required. Two prior choices for param-

eters were considered. Firstly, vague priors have been used, i.e. β0 ∼ N(0, 100),

β1 ∼ N(0, 100) and τ 2 ∼ IG(1, 100). The prior predictive distribution using these

priors produced predictions well outside the range of observed PM2.5 data. As an

alternative, a tighter prior specification was introduced, i.e. β0 ∼ N(0, 1), β1 ∼ (1, 1)

and τ 2 ∼ N+(0, 1), where N+ is the half-normal distribution. In this case, the pre-

dictive prior distribution produced a range of values that covers the observed values,

completely avoiding implausible values generated by the previous model.

We are interested in investigating the properties of prior predictive distributions

(prior marginal distributions for the data) such as mean and variance for two com-

peting prior specifications applied to a specific problem. In particular, we would

like to know if our prior could generate the model response that we expect to see

(Gelman et al., 2017). Considering generative priors is an elegant way to investi-

gate how parameters jointly affect inference about a model response (Gelman et al.,

2017) instead of considering the parameter by parameter effect on a model.

To derive a generative prior distribution, we have to specify proper priors for

our parameters, priors whose probability distribution integrates to 1 (Gabry et al.,
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2019). In our case, we specify π(β, σ2, δ) = π(β)π(σ2)π(δ), as we do not assume

any dependence between hyperparameters in our prior specification. We also have

to specify the data-generating distribution, or in our case sampling distribution for

f(x), which was defined in subsection 2.3.1 as

f(x)|β, σ2, δ ∼ GP
(
h(x)Tβ, k(·, ·;σ2, δ)

)
.

These two components are used to derive the prior predictive distribution for f(x),

which effectively attempts to predict f(x) at x before any data, ensemble {X,F}, is

obtained. The prior predictive distribution is defined as

π(f(x)) =

∫
π(f(x)|β, σ2, δ)π(β, σ2, δ)dβdσ2dδ (4.6)

=

∫
π(f(x),β, σ2, δ)dβdσ2dδ.

Gabry et al. (2019) proposed to use generative priors to investigate prior choices for a

specific problem; in particular, there is an attempt to include diagnostics of priors in

the Bayesian workflow. The prior predictive distribution for F = (f(x1), . . . , f(xn))

is obtained and samples from π(f(x1), . . . , f(xn)) are compared to the observed

values of F using scatter plots. The prior predictive distribution with mass on com-

pletely implausible values for F is considered to indicate that the prior specification

for parameters leads to a statistical model that is inconsistent with the process that

we are trying to address (Gelman et al., 2017; Gabry et al., 2019). For instance,

climate modellers typically know response ranges for models as they correspond to

the real-world quantities and models tend to prohibit certain extreme values.

In practice the samples from prior predictive distribution for F is obtained by

firstly simulating hyperparameters values, (βi, σ
2
i , δi), i = 1, . . . ,M , from prior dis-

tribution, π(β, σ2, δ) = π(β)π(σ2)π(δ), in a naive way, i.e. we randomly simulate

values of the hyperparameters from the corresponding distributions with acceptance

ratio fixed at 1. We proceed to using these generated values to obtain samples,

Fi, i = 1, . . . ,M , from π(F|βi, σ2
i , δi).
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4.5.1 Prior specification for 5D toy model

Let us return to the toy model from subsection 4.4.2. Prior to constructing our

emulators, we decided to produce a scatter plot of the function response against

the inputs. In Figure 4.17, we observe that the variability in the function response,

f(x), is mainly driven by x5. The input x5 could be considered as an “active input”,

and the global trend together with the residual term are modelled in terms of the

“active inputs” with the nugget term to account for the remaining variation (Craig

et al. 2001, Goldstein and Rougier 2009, Cumming and Goldstein 2009). However,

operating within a Bayesian framework and with flexible priors, we could specify a

stronger prior information for δ5 (Higdon et al., 2008; Williamson and Blaker, 2014)

for our stationary and nonstationary GP emulators. We achieve this by keeping

the same Gamma(4, 4) prior for δ5, but specifying a smoother prior in the other

four dimensions via δ1, . . . , δ4 ∼ Gamma(42, 9) (this distribution was chosen by

using the MATCH elicitation tool (Morris et al., 2014) to capture a reasonable

distribution giving more weight to longer correlation lengths). In subsection ??,

we discussed that a large correlation length value would lead to a flat posterior

with respect to a particular input corresponding to the correlation length parameter

under consideration, i.e. limited effect from this input on the final estimated GP

model.

Prior Specification 1 Prior Specification 2

βi ∼ N(0, 10), i = 1 . . . , 6 βi ∼ N(0, 10), i = 1, . . . , 6
σ2 ∼ IG(2, 1) σ2 ∼ IG(2, 1)

δi ∼ Gamma(4, 4), i = 1, . . . , 5 δi ∼ Gamma(42, 9), i = 1, . . . , 4, δ5 ∼ Gamma(4, 4).

Table 4.9: The details of two prior specifications for 5D toy model.

Before constructing our stationary GP emulator, we would like to test our new

prior specification against the old one by considering scatter plots of samples from

the prior predictive distribution for F against F (Gabry et al., 2019).

The prior distribution on parameters are shown as density plots in Figure 4.18.
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Figure 4.17: The response of 5D function f(x) against all five inputs.

Figure 4.18: Density plots of N(0, 10) (first panel), IG(2, 1) (second panel),
Gamma(4, 4) (third panel) and Gamma(42, 9) (fourth panel) priors specified for
GP hyperparameters.

We produce samples from the prior predictive distribution, π(F), described in

subsection 4.5 for two prior specifications and visualize them against F in Figure

4.19. From Figure 4.19, we observe that the second prior choice leads to a data

generating distribution that could represent the full range of the function response.

Figure 4.20 demonstrates that the prior predictive distribution corresponding to

the second prior choice is a weakly informative joint prior data generating process

since we still observe some mass around extreme but plausible values of the function
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response (Gabry et al., 2019). On the contrary, the prior predictive distribution

with the first prior choice generates a range of values that are much wider than the

function response that we expect to observe. From Figure 4.20, we observe that

there is some mass generated by the prior predictive distribution around extreme

and implausible values of the function response. We proceed with repeating our

analysis in subsection 4.4.2 with the second prior choice as our prior specification

for our stationary and nonstationary GP emulators.

-1.0 -0.5 0.0 0.5 1.0

-5
0

0
50

Observed data

S
im

ul
at

ed
 d

at
a

-1.0 -0.5 0.0 0.5 1.0

-5
0

0
50

Observed data

S
im

ul
at

ed
 d

at
a

-1.0 -0.5 0.0 0.5 1.0

-5
0

0
50

Observed data
S

im
ul

at
ed

 d
at

a

Figure 4.19: Visualizing the prior predictive distribution. Left panel and central
panel show realizations from the prior predictive distribution using prior specifica-
tion 1 and 2 respectively, defined in Table 4.9. The simulated data is plotted on
y-axis and observed data on the x-axis. Right panel demonstrates the difference in
the simulations by showing the red points from left panel and the green points from
central panel.
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Figure 4.20: Probability densities produced by prior predictive distributions for a
selection of function outputs for the first prior choice (black) and the second prior
choice (blue). The true function output is given by the dashed red line
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4.5.2 Results for 5D toy model

As in subsection 4.4.2, to construct our nonstationary GP emulator, we consider the

mixture model for standardized errors for each LOLHO derived from a stationary fit

with L = 1, . . . , 4. We observe from Table 4.10 that the mixture model with L = 2

offers the lowest AICmod score for all four ensembles, even though the true function

has L = 5 in practice. Figure 4.21 demonstrates the performance of the mixture

model with L = 2 for all four ensembles.

Models Ens 1 Ens 2 Ens 3 Ens 4

L = 1 173.18 175.11 157.97 178.57
L = 2 105.95 145.79 126.20 119.21
L = 3 120.48 162.29 142.87 125.96
L = 4 137.31 181.11 158.79 144.28

Table 4.10: Mixture Model Comparison for L = 1, 2, 3, 4 for Ensembles using AICmod
score. The best score is in bold for all ensembles.
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Figure 4.21: ei against the x5 for four sub-designs (ensembles). The deep blue colour
corresponds to the higher probability of a point being allocated to region 1 (high
response variability region), while the deep red colour corresponds to the higher
probability of a point being allocated to region 2 (low response variability region).

Figure 4.22 shows the LOLHO diagnostic plots for each of our four emulators

(columns) for each of the sub-designs considered (rows). We do observe a significant

improvement in the performance of stationary and our proposed nonstationary GP

emulators for all four ensembles. Low values of Interval Score and RMSE in Table

4.11 and Table 4.12 also confirm this conclusion. However, we still do observe

the failure of the stationary GP emulator to recognise the changes in the function

response variability by producing the same length of prediction intervals across the

whole range of x5. Our nonstationary GP emulator with L = 2 performs well
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and produces smaller prediction intervals in the region where the function is “well-

behaved”, i.e. for x5 close to 1. Interestingly, in subsection 4.4.2 we observed that

all four GP approaches fail to model function response in the high variability region,

x5 < −0.715, for ensemble 4, which led to the conclusion that there might be an

issue with the design, i.e. the design used to fit GP models being unrepresentative of

the function response. However, we observe from Figure 4.22 that special treatment

of “active input” x5 resolved the issue.
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Figure 4.22: Leave One Latin Hypercube Out (LOLHO) plots for stationary GP (st-
GP), our non-stationary GP (nst-GP), TGP and CGP for 5D toy example. Blue
dashed lines correspond to the partitions produced by TGP. Each row is constructed
by leaving one LHC out. The posterior mean and two standard deviation prediction
intervals produced by emulators are in black. The true function values are in green
if they lie within two standard deviation prediction intervals, or red otherwise.
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Models Ens 1 Ens 2 Ens 3 Ens 4

st-GP 6.10 6.63 7.25 6.22
nst-GP 4.40 4.16 3.92 6.64
TGP 8.99 9.62 23.84 58.66
CGP 9.92 22.91 21.69 35.80

Table 4.11: Interval Score for 5D example. The best score is in bold for all ensembles.

Models Ens 1 Ens 2 Ens 3 Ens 4

st-GP 0.580 1.028 1.152 0.993
nst-GP 0.619 1.042 1.117 1.312
TGP 2.068 3.229 4.574 6.511
CGP 2.606 3.728 3.307 4.227

Table 4.12: RMSE for 5D example.The best score is in bold for all ensembles.

4.6 Experiments with ARPEGE-Climat model

In Chapter 3 we discussed that emulators for the SCM’s would be required whenever

new parameterizations are developed and tested as part of HIGH-TUNE project. In

our work with the HIGH-TUNE team, we have found using routine stationary GP’s

insufficient to model the nonstationary response of metric of interest, and so we

present the performance of our nonstationary method within this application. We

will consider the average potential temperature generated by the SCM by varying

nine input parameters of interest, all associated with the parameterization of con-

vection. In the present study, we use ARPEGE-Climate, developed at the Centre

National de Recherches Météorologiques (CNRM) and is the atmospheric component

of the CNRM climate model. The simulations with the version 6.3 of ARPEGE-

Climat are used. This is an updated version compared to the one described in

Voldoire et al. (2013) (see also Abdel-Lathif et al. (2018) for further details).

Firstly we identified the physically plausible ranges of the input model parame-

ters with the HIGH-TUNE team and standardized these to the range [-1, 1], which

is the usual practice in constructing emulators for computer experiments. We gen-

erated a 160 member LHC composed of four, 40 member LHCs (Williamson, 2015),

similar to the design for the 5D example in subsection 4.4.2. This type of design will

also allow us to validate the performance of our emulators using LOLHO diagnostics
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Figure 4.23: Average potential temperature against nine standardized inputs to
SCM (Single Column Model).

(Williamson, 2015).

Figure 4.23 plots the average potential temperature against each input. We

observe that the average potential temperature varies most with the input ALFX,

i.e. the variability in the response of the average potential temperature increases

as ALFX increases. From Table 4.13, we observe that the lowest AICmod score is

obtained by the mixture model for standardized errors with L = 2. We compare

the performance of our nonstationary GP emulator to the stationary GP emulator,

TGP and CGP.

From Figure 4.25 we observe that the stationary GP emulator fails to recog-

nise the variability of the model response in relation to ALFX, i.e. the length

of two standard deviation prediction intervals is the same across the whole range

of ALFX. TGP demonstrates satisfactory performance for all four validation en-
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Models Ens 1 Ens 2 Ens 3 Ens 4

L = 1 318.60 328.76 323.71 331.95
L = 2 300.93 320.78 291.50 309.20
L = 3 320.98 347.31 325.40 336.96
L = 4 350.55 377.52 351.21 362.07

Table 4.13: Mixture Model Comparison for L = 1, 2, 3, 4 for ensembles using AICmod
score. The best score is in bold for all ensembles.

sembles; however, due to the hard partitioning mentioned in section 2.5, the two

standard deviation prediction intervals increase significantly. CGP performs well in

the input region where the model is well-behaved, however, is over-confident in the

region where the model response varies the most, especially for sub-designs 2 and

4. Our nonstationary GP emulator demonstrates a gradual increase in the length

of prediction intervals with increasing ALFX. From Table 4.14 we observe that our

nonstationary GP model obtains the lowest Interval Score for ensembles 2 and 4

indicating good coverage, while Table 4.15 demonstrates that our nonstationary GP

emulator achieves the lowest RMSE for ensembles 1, 3 and 4.

Models Ens 1 Ens 2 Ens 3 Ens 4

st-GP 2.52 3.23 2.79 3.13
nst-GP 1.99 2.09 2.57 1.97
TGP 2.03 2.91 2.11 2.30
CGP 1.91 2.38 2.32 3.73

Table 4.14: Interval Score for ARPEGE-Climat model. The best score is in bold for
all ensembles.

Models Ens 1 Ens 2 Ens 3 Ens 4

st-GP 1.30 1.70 1.30 0.56
nst-GP 1.28 1.66 1.26 0.54
TGP 1.36 1.76 1.30 0.65
CGP 1.38 1.65 1.26 0.60

Table 4.15: RMSE for ARPEGE-Climat model. The best score is in bold for all
ensembles.
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Figure 4.24: Coloured ei against ALFX for four sub-designs. The deep blue colour
corresponds to the higher probability of a point being allocated to region 1, while
the deep red colour corresponds to the higher probability of a point being allocated
to region 2.

-1.0 0.0 0.5 1.0

-3
0

2
4

st-GP: Ens 1

ALFX

Y

-1.0 0.0 0.5 1.0

-3
0

2
4

nst-GP: Ens 1

ALFX

Y

-1.0 0.0 0.5 1.0

-3
0

2
4

TGP: Ens 1

ALFX

Y

-1.0 0.0 0.5 1.0

-3
0

2
4

CGP: Ens 1

ALFX

Y

-1.0 0.0 0.5 1.0

-4
0

4

st-GP: Ens 2

ALFX

Y

-1.0 0.0 0.5 1.0

-4
0

4

nst-GP: Ens 2

ALFX

Y

-1.0 0.0 0.5 1.0

-4
0

4

TGP: Ens 2

ALFX

Y

-1.0 0.0 0.5 1.0

-4
0

4

CGP: Ens 2

ALFX

Y

-1.0 0.0 0.5 1.0

-4
0
2
4

st-GP: Ens 3

ALFX

Y

-1.0 0.0 0.5 1.0

-4
0
2
4

nst-GP: Ens 3

ALFX

Y

-1.0 0.0 0.5 1.0

-4
0
2
4

TGP: Ens 3

ALFX

Y

-1.0 0.0 0.5 1.0

-4
0
2
4

CGP: Ens 3

ALFX

Y

-1.0 0.0 0.5 1.0

-2
0

2
4

st-GP: Ens 4

ALFX

Y

-1.0 0.0 0.5 1.0

-2
0

2
4

nst-GP: Ens 4

ALFX

Y

-1.0 0.0 0.5 1.0

-2
0

2
4

TGP: Ens 4

ALFX

Y

-1.0 0.0 0.5 1.0

-2
0

2
4

CGP: Ens 4

ALFX

Y

Figure 4.25: Comparison between stationary GP (st-GP), nonstationary GP (nst-
GP), TGP, and CGP on modelling average potential temperature on four validation
designs. Blue dashed lines correspond to partitions produced by TGP. Each row is
constructed by leaving one LHC out. The posterior mean and two standard deviation
prediction intervals produced by emulators are in black. The green and red points are
the model values, coloured green if they lie within two standard deviation prediction
intervals and red if they lie outside.
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4.7 History Matching with nonstationary GP em-

ulator

Previously, we have introduced and compared our nonstationary GP model against

other approaches in modelling nonstationary simulator response. In this section, we

are interested in investigating the effect of using nonstationary GP emulators on

history matching results, described in subsection 2.6.1, for nonstationary simulator

output. To illustrate the potential impact of fitting a nonstationary GP emulator

instead of a stationary GP emulator on history matching, we refer back to the 2D

“wavy” function considered in subsection 4.4.1. We compare the history matching

performance of two GP models by considering the diagnostics described by Salter

and Williamson (2016).

Figure 4.26 demonstrates the prediction from each of these emulators, with the

associated two standard deviation prediction intervals, along a line in 2D space

defined between design points x1 and x2. We have chosen x1 = (−0.56,−0.84),

the point allocated in the input space where the toy function behaviour is “hectic”,

and x2 = (0.68, 0), the point allocated in the input space where the toy function

is “well-behaved”. The solid black line represents an assumed observed or “true”

value for the function, and the dotted lines around this value depicts the observation

error. We are interested in understanding how the results from history matching

depend on the type of emulator that we are using as well as the location of the

observed or “true” value in the input space. Therefore, apart from comparing our

stationary and nonstationary GP emulators, we consider the following two cases:

in the first case we specify z = −0.6 in the region where the toy function is highly

nonstationary, while in the second case we assign z = 1.7 in the region where the

toy function is relatively stable and “well-behaved”.

Range z V ar[e] V ar[η] NROY size a

[−1, 1] -0.6 0.052 0 0.078% 3
[−1, 1] 1.7 0.052 0 0% 3

Table 4.16: Information about the toy function for history matching. Range de-
notes the spread of possible outputs for the function, and NROY size denotes the
theoretical size of NROY space, given the error structure.
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In Table 4.16, we denote “NROY size” as the percentage of X , the volume of the

input space, that cannot be ruled out given this setting for the observation and these

variances. In particular, we assume that the function is known perfectly, and the

emulator is not required (Salter and Williamson, 2016). We estimate this volume by

generating a 10,000 member Latin Hypercube sample from X and calculating the

percentage of the points that are not ruled out, which is effectively “true” NROY

space.

The left panel plots in Figure 4.26 show the predictions from stationary and

nonstationary GP emulators, along with two standard deviation prediction inter-

vals, on a line through 2D space between two design points. We observe that the

stationary GP emulator is underconfident in the region for λ > 0.7, producing larger

uncertainty bands. Furthermore, we specify -0.6 and 1.7 as our observations (with

dashed black lines representing the observation uncertainty and discrepancy). The

right panel plots in Figure 4.26 demonstrate how implausibility changes when we use

a = 3. We observe that the nonstationary GP emulator managed to rule out more

space than the stationary GP emulator, shown in grey shaded region. In particular,

for λ > 0.7 the implausibility function with nonstationary GP emulator produces

larger values than the implausibility function with stationary GP emulator, which

is due to stationary emulator being underconfident in this particular input region

(more detailed explanation in subsection 4.4.1).

For both cases, we decided to perform a single wave of history matching and

compare the results. For technical details regarding history matching, refer to sub-

section 2.6.1. For the first case, using the stationary GP emulator, we reduced the

input space down to 83.8% of the original space. In contrast, with nonstationary GP

emulator, we have managed to reduce the input space down to 46.6% of the orig-

inal space, which is twice as much reduction. For the second case, employing the

stationary GP emulator, we reduced the input space down to 64.5% of the original

space, whereas with the nonstationary GP emulator, we have managed to reduce the

input space down to 20.5%. We conclude that applying nonstationary GP emulator

could allow us to perform fewer waves of iterative refocussing (history matching)
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and produce simulator runs required for each step of iterative refocussing, leading

to significant computational savings.
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Figure 4.26: Left : Predictions and two standard deviation prediction intervals for
stationary (green) and nonstationary (red) GP emulators for a line between two
design points x1 and x2 in 2D space, with this line given by λx2 + (1 − λ)x1. The
blue line shows the toy function, red line shows the predictions together with the
two standard deviation prediction intervals produced by nonstationary emulator and
green lines shows the stationary emulator performance. The observation is in black,
observed with an observation error given by the dotted black lines. Right : The
implausibility I(x) for the two emulators. The black line is the threshold set at
3 for ruling out points. Grey shaded region correspond to the part of region that
is ruled out by nonstationary GP emulator and is not ruled out by stationary GP
emulator.

For case 1, we could consider the composition of NROY space after Wave 1 since

we could reproduce the observation value with our simulator. This allows us to

check if our emulators are not incorrectly ruling out points close to z or are leaving

regions of space that give output far from z (Salter and Williamson, 2016). We

produce density plots of the function outputs weighted by e−I(x) at samples from

NROY space. Salter and Williamson (2016) pointed out that for a uniform prior on

the best input, x∗, and with normality assumptions given in Kennedy and O’Hagan

(2001), the likelihood of the observation z is proportional to e−I(x) in NROY space.
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As a result, we could consider our sample from NROY space weighted by e−I(x) to

be a sample from the posterior distribution p(x∗|F[1]), assuming zero likelihood at

points ruled out at Wave 1.
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Figure 4.27: The weighted densities for the function output at points in NROY space
after Wave 1 for the first case for stationary GP emulator (green) and nonstationary
GP emulator (red). The observation is given by the blue dashed line.

Figure 4.27 shows the weighted densities for the NROY space defined after Wave

1. We observe that the stationary GP density is bimodal with the second mode

centred around 1, which is far from the observation. Both densities exhibit bias;

however, we notice that nonstationary GP assigns more weight closer to z.

The parameter plots for points in the Wave 1 NROY space where stationary and

nonstationary GP emulators have been used for case 1 are shown in Figure 4.28.

The size of the resulting NROY space is not the only important result, and we add

the runs in the “true” NROY space overlaid in green. The “true” NROY space was

found by computing implausibility function with function value in place of emulator

expectation and setting emulator variance at 0. We observe from the parameter plots

for case 1 in Figure 4.28 that we have managed to rule out only the input space

close to the design points for high values of x1 and x2 due to the weak correlation

structure in this region discussed in 4.4.1. On the contrary, using the nonstationary

GP emulator, we have managed to rule out this region of input space successfully.

Figure 4.29 shows the equivalent plots for case 2. We do not have “true” NROY

this time, as the observation is too far from the function values. Regarding case
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2, we observe that using the stationary GP emulator we are struggling to rule out

the region of input space with x1, x2 > 0 due to higher uncertainty of the emulator

about this region.
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Figure 4.28: Parameter plots showing the “true” NROY space (green) and points
classified as being NROY space obtained with stationary and nonstationary GP
emulators after a single wave of history matching (grey) for case 1.
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Figure 4.29: Parameter plots showing points classified as being NROY space ob-
tained with stationary and nonstationary GP emulators after a single wave of history
matching (grey) for case 2.

4.8 Conclusion

In this Chapter, we present our nonstationary GP emulation approach via kernel

mixture. Working closely with climate modellers, we were interested in developing
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an emulation strategy that is easy to understand and use, i.e. a practical tool that

could be incorporated as part of ExeterUQ software presented in Chapter 3. We pro-

pose to employ standard emulator diagnostics (cross-validation) to fit nonstationary

GP emulator, in particular to identify input regions of distinct model behaviour

as well as estimate mixing functions, in the absence of expert knowledge regard-

ing potential model input space regions and different properties within them. The

process of constructing our nonstationary GP emulator consists of two major steps.

Firstly, we check if the stationary GP emulator performs well by considering plots

of individual standardized errors against inputs to identify any signs of nonstation-

arity/heteroskedasticity (Bastos and O’Hagan, 2009). We then fit a mixture model

to the standardized errors to produce a mixture function prescribing the covariance

kernel mixture for a nonstationary GP. We specify region-specific stationary covari-

ance kernels, then establish the covariance kernel for our nonstationary GP as a

mixture of these. The numerical examples, together with the real-data application,

demonstrated the competitive performance of our method compared to the main

nonstationary methods implemented in software, TGP and CGP. We have also con-

sidered the importance of using nonstationary GP emulators for history matching

when we are dealing with nonstationary computer model response.

There is a number of possible extensions to our developed methodology. Firstly,

we may remove the two-stage approach altogether by operating with the joint prior

distribution, π(β,σ2
L, τ

2
L, δL,λ(x)L, L), using reversible jump MCMC (Green, 1995;

Kim et al., 2005) to attempt full Bayesian inference in a similar manner to Voronoi

tessellation GP model (Pope et al., 2018). However, this approach will not be

diagnostic-driven as well as it could become more time-consuming and operationally

expensive due to implementing reversible jump MCMC Green (1995); Pope et al.

(2018). We are also cautious that this model specification could raise identifiability

issues for x, in particular to which input region x should be allocated, affecting the

robustness and stability of the inferences produced by nonstationary GP model.

In Chapter 6, we employ our nonstationary GP emulator in refocusing as part

of a climate model application. In particular, we are interested in exploring how the
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Bayesian Design Criterion, introduced in Chapter 5, modifies when it is combined

with our proposed nonstationary GP model.
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Chapter 5

Bayesian Optimal Design for

multi-wave computer experiments

5.1 Introduction

History matching is a type of calibration that rules out input parameter settings that

are inconsistent between observations and computer model output according to a

distance-based implausibility function and uncertainty specifications (Craig et al.,

1996; Williamson and Vernon, 2013; Williamson et al., 2013). History matching

has proven to be more effective when it is performed in several waves by iteratively

cutting down the input space of a computer model (Vernon et al., 2010; Salter

and Williamson, 2016). Performing history matching in waves, termed iterative

refocusing, leads to emulator performance improvement since the density of the

ensemble increases in the reduced space (Williamson et al., 2017).

We provide a short summary of the process of iterative refocusing: for more

details, see subsection 2.6.3. During each step, m, of iterative refocussing, we are

required to obtain a design, X[m] ∈ Xm−1, and generate computer model runs cor-

responding to the design F[m]. A new ensemble,
{

X[m],F[m]

}
, is used to update an

emulator for f(x), and to derive the NROY space denoted as Xm ⊆ Xm−1 at wave

m.

To generate a design for wave 1, one of many approaches of space-filling designs

such as Uniform designs, Sobol sequences (Fang et al., 2005; Challenor, 2011) and
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Latin Hypercubes (LHCs) (McKay et al., 1979), could be adopted since we are

operating within an original input space X . However, generating good designs for

wave m > 1 is still an open research question, since we are required to obtain a

design over the NROY space of varying geometric shapes and sizes, and the usual

space-filling designs mentioned above are not applicable (Williamson et al., 2013;

Gong et al., 2016; Williamson et al., 2017).

In general, the proposed design approaches for iterative refocusing are focused on

generating space-filling designs over NROY space. For instance, Andrianakis et al.

(2017) proposed to generate a maximin design over NROY space, whist Williamson

et al. (2013) and Gong et al. (2016) employed the partitioning of input space to

obtain a uniform design over NROY space.

In this Chapter, we propose a new approach to obtaining a design, X[m], at

step m of iterative refocusing, based on a decision-theoretic approach (Chaloner

and Verdinelli, 1995). We employ Bayesian experimental design where the Bayesian

optimal design is found by minimizing the expected loss function over the design

space with respect to future computer model runs and the “truth”, a state of nature

that we attempt to learn. We specify a loss function that compares the volume of the

NROY space, Xm, obtained using the updated emulator for f(x) with a candidate

design, to the volume of the “true” NROY space obtained using a “perfect” emulator.

In a decision-theoretic context, we treat the volume of “true” NROY space as the

“truth”. The intuition behind the proposed loss function corresponds to the aim

of history matching. In particular, by performing history matching, we want to

ensure that we are not going to incorrectly rule out points that are in fact close to

observations ,or leave regions of space that give output far from the observations

(Salter and Williamson, 2016).

The Chapter has the following structure. In section 5.2, we discuss various ap-

proaches adopted in the literature for generating designs for multi-wave computer

experiments as well as follow-up designs. We introduce our Bayesian Design Crite-

rion for multi-wave history matching and consider each term of the design criterion

in detail in section 5.3. In section 5.4, we describe the process of computing our
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Bayesian Design Criterion. The performance of our proposed approach is demon-

strated on a simple 2D toy model in section 5.5. We finish off with a discussion, and

propose some future developments and extensions in section 5.6.

5.2 Follow-up designs for computer models

In this section, we review some of the approaches used to generate a follow-up design

for computer models in the context of calibration and history matching. We consider

the design for wave m, X[m], as a follow-up design, since we do have some sort of pre-

liminary information. This preliminary information includes a collection of designs

generated at previous iterations of history matching, 〈X〉[m−1] =
{

X[1], . . . ,X[m−1]

}
,

and the corresponding computer model runs, 〈F〉[m−1] =
{

F[1], . . . ,F[m−1]

}
, as well

as the not ruled out space (NROY) obtained at the previous iterations of history

matching, Xm−1. We start by considering sampling approaches over the NROY

space that are used to obtain a design for wave m (Vernon et al., 2010; Williamson

and Vernon, 2013; Gong et al., 2016; Andrianakis et al., 2017). These approaches

are mainly focused on obtaining a design that is well-spaced across the NROY space

from a previous iteration of history matching. This is particularly problematic to

achieve if the NROY space has a very small size in relation to the original input

space. Another issue arises if the NROY space is characterized by a non-regular

geometric shape, making it challenging to ensure the specific space-filling property

of design is satisfied. We then move on to sequential design approaches used for cal-

ibration and history matching (Craig et al., 1996; Ranjan et al., 2008, 2011). This

type of design is obtained by optimizing a pre-defined design criterion. This design

criterion could take into account both exploration, i.e. sampling areas of high un-

certainty about computer model output, and exploitation, i.e. sampling areas likely

to obtain computer model outputs close to observations (Brochu et al., 2010).

5.2.1 Non-Implausible Sampling

A number of approaches for generating a design, X[m], for wave m are focused around

the idea of exploring the NROY space, Xm−1, obtained at the previous iteration of
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history matching.

Vernon et al. (2010) propose to use a rejection sampling to generate a design

X[m]. Firstly, a Latin Hypercube over the original input space, X , is produced and

only those points, not ruled out by history matching, are retained. The process

is repeated until a desired number of design points is obtained. This approach is

very easy to implement and follow; however, it is not clear what the properties of

the obtained design over the NROY space are, i.e. this type of design might not

offer a good coverage of the NROY space. For example, this type of design is not

suitable when we are dealing with the NROY space of a small volume relative to the

original input space, since it could be difficult to retain any points in NROY space

generated from a Latin Hypercube defined over the whole input space. For instance,

Williamson and Vernon (2013) considered an NROY of a galaxy simulation model

called GALFORM, following four previous waves of history matching, which was

0.001% the size of the volume of the original input space.

Andrianakis et al. (2017) are interested in obtaining a space-filling design, X[m],

over the NROY space, Xm−1, as this type of design is expected to be informed

about computer model output behaviour across the NROY space. Firstly, a large

number of points distributed uniformly across the NROY, Xm−1, is produced. The

first design point is chosen at random, and the second one is chosen as the point

which is furthest away from the first, by considering Euclidean distances. The rest of

the points are obtained iteratively by maximizing the minimum Euclidean distance

between design points. This fast approach is believed to generate a well-spread

design, X[m], with good coverage over the NROY space. However, it is arguable that

by employing this method, i.e. considering Euclidean distance, we could actually be

able to produce a maximin design over the NROY space since we are not operating

in Euclidean space, as Xm−1 usually possesses unusual geometric shapes, or could

consist of disjoint regions.

More sophisticated approaches have been employed in order to obtain uniform

designs for multi-wave computer experiments. Williamson and Vernon (2013) pre-

sented the Implausibility Driven Evolutionary Monte Carlo algorithm (IDEMC) to
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obtain a uniform design for history matching. To obtain a design for step m of his-

tory matching, they propose to start by generating an initial set of starting points,

X(0) =
{
x

(0)
0 ,x

(0)
1 , . . . ,x

(0)
n

}
, in the current NROY space, Xm−1, with x

(0)
i ∈ Xm−1

i

and Xm−1
i =

{
x ∈ Xm−1 : I(xi) ≤ bi

}
for i > 0 and b1, . . . , bn, where Xm−1

i

with i = 1, . . . , n is a well-chosen implausibility ladder. Points xi, i = 1, . . . , n

are defined as choromosomes. Each individual level of the implausibility ladder,

Xm−1
i , i = 1, . . . , n, is further partitioned, i.e. Xm−1

i1 , . . . ,Xm−1
iri

, and an appropri-

ate variance matrix, Vij, for sampling xi from Xm−1
ij is specified. This approach

is employed to generate candidate points for the Evolutionary Monte Carlo algo-

rithm. The t iterations of Evolutionary Monte Carlo are performed with three types

of update move to obtain a uniform design: mutation, crossover, and exchange.

Williamson and Vernon (2013) demonstrated that employing this algorithm leads

to a uniform design with good coverage over the current NROY space, in particular

when the volume of NROY space is small in relation to the original input space,

X . However, the efficiency of the proposed IDEMC algorithm is determined by

a number of factors, such as the number and setting of the implausibility ladder.

In particular, by increasing the number of levels for the implausibility ladder, bet-

ter spaced chromosomes sample spaces could be achieved, which leads to mixing

improvement. However, the trade-off is an increase in the computational cost of

the algorithm. Further, defining an initial set of starting points, X(0), could be

challenging when we are dealing with an NROY space of a very small size.

Another method for obtaining a uniform design over the NROY space has been

developed by Gong et al. (2016). They propose to use Subset Simulation (SuS), a

widely used technique in engineering reliability computations, to sample from NROY

space. They propose to generate a sequence of subsets, where the current NROY

space Xm−1 is defined as F =
{
x : I(x) ≤ a

}
= Fd ⊂ Fd1 ⊂ · · · ⊂ F1. The subset F

is treated as a rare event and the probability of a rare event F can be represented

as a product of larger probabilities, i.e.

P (F ) = P (Fd) = P (F1)× P (F2|F1)× · · · × P (Fd|Fd−1).
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The algorithm begins by sampling n design points in the whole input space, (x
(0)
1 , . . . ,x

(0)
n )

and computing the implausibility function at these points. The values of the cor-

responding implausibilities are ordered, (I(0)
1 , . . . , I(0)

n ). Let p ∈ (0, 1) represent a

user-specified probability parameter. The first intermediate failure domain is defined

as

F1 =

{
x : I(x) <

I(0)
np + I(0)

np+1

2

}
,

and the next step is to generate samples from F1, on which the subsequent levels are

conditioned. More intermediate events are added following the described procedure.

This process is easy to follow, however the user should be careful in specifying n,

the number of samples for each level, as it could affect the computational speed of

the MCMC algorithm. It is also not clear how to specify the probability parame-

ter, p, for the proposed algorithm. After obtaining samples from the NROY space

by employing SUS, a small subset of points is chosen by maximizing a minimum

Euclidean distance between points in order to generate a space-filling design, which

is similar to the approach adopted by Andrianakis et al. (2017). The partitioning

of the input space has some similarities to the Implausibility Driven Evolutionary

Monte Carlo algorithm proposed by Williamson and Vernon (2013).

5.2.2 Sequential Experiment Design

Instead of sampling uniformly over the NROY space by employing one of the meth-

ods discussed in subsection 5.2.1, analysts might be interested in obtaining additional

design points that could help them to capture and reduce prediction uncertainty. In

this case, sequential design approaches can be adopted, i.e. additional design points

are chosen by optimizing a criterion based on prediction errors (Sacks et al., 1989)

or entropy (Shewry and Wynn, 1987; Currin et al., 1991). In this subsection, we

are interested in reviewing sequential design approaches used for inverse problems,

where the objective is to determine the input parameter settings that produce a

specific value of computer model output. We consider calibration and in particular

history matching as different solutions to an inverse problem.

Sequential approaches are widely used to guide users as to where in the input
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space to evaluate a complex computer model (Santner et al., 2003; Lam, 2008; Beck

and Guillas, 2016). Ranjan et al. (2008) present a sequential design approach for

estimating a contour of a complex computer model, where a contour identifies a

boundary that distinguishes “good” and “bad” performance. The contour problem

is defined as

S(a) =
{
x ∈ X : f(x) = a

}
,

where a is a value of response surface for which the contour is estimated. The

strategy is to perform a relatively small experimental design, and sequentially choose

design points that are on or near the estimate of the contour. In particular, they

are interested in choosing new design points to evaluate the computer model at the

points where E[f(x)] belongs to a neighbourhood, (a−ε, a+ε), of the current contour

estimate with ε(x) = α
√
V ar[f(x)] for some constant α. A new design point, x,

is chosen for which the expected improvement function is maximized, where the

improvement function is defined as

I(x) = ε2(x)−min
{

(f(x)− a)2, ε2(x)
}
.

The term ε(x) is used to define a neighbourhood around the contour and is a function

of
√
V ar[f(x)]. As a result, we expect to see an increase in the improvement

function value where V ar[f(x)] is high. The attractive feature of the proposed design

criterion, E[I(x)], is that it has easily interpretable terms that ensure sampling in

the input region close to the contour, as well as in the regions where the uncertainty

of the prediction is high. We conclude that this design criterion encourages both

exploitation and exploration. Choosing design points sequentially, one at a time,

works well for network queuing problems such as those considered by Ranjan et al.

(2008). However, due to the associated cost constraints and experimental settings,

it is often preferred to choose a follow-up design in a batch of a pre-specified number

of trials (Loeppky et al., 2010).

Ranjan et al. (2011) adopt an approach to obtaining sequential batch designs

for the calibration problem discussed in detail in section 2.6. Given the existing
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responses dT = (FT , zT ) and designs XF and Xz, the mean squared error (MSE) for

predicting the true physical process at an unobserved location, x, is given by

MSE[z(x)|Ω] = E
[(
E(z(x)|d,Ω)− z(x)

)2|Ω
]
,

where Ω =
{
x∗, δf , δη, σ

2
f , σ

2
η, λ,βf ,βη

}
with

{
δf , σ

2
f ,βf

}
being the parameters

used in Gaussian Process specification for f(·, ·) and
{
δη, σ

2
η,βη

}
being the param-

eters used in Gaussian Process specification for the model discrepancy term η(·),

and x∗ is a vector of calibration parameters given in equation (2.26). The plug-in

estimate (the posterior mean) of Ω is used to evaluate MSE[z(x)|Ω] in order to

reduce the computational cost. Ranjan et al. (2011) are interested in improving

predictions throughout the entire input space, X . Therefore, a batch of designs ξ of

size mz +mf , where mz and mf are the number of new observations and computer

simulations respectively, is chosen according to the integrated mean squared error

(IMSE) criterion,

IMSE(ξ) =

∫
X
MSE[z(x)|ξ]dx,

with an optimal design ξ∗ found by minimizing IMSE criterion, i.e.

ξ∗ = arg min IMSE(ξ).

The input space X (assumed to be a [0, 1]q for the observations and [0, 1]p+q for

the computer model) leads to a mzq+mf (p+ q)-dimensional optimization problem,

which is computationally expensive. Interestingly, the cost of the proposed method-

ology could be reduced by aligning the proportion of candidate design points at

which we obtain new observations with the existing computer model simulations

and/or observations, i.e. reducing the dimensionality of the optimization problem,

since mz is decreased. The alignment of new observations with computer model sim-

ulations could be useful in updating our beliefs about the model discrepancy term,

while replication of observations could be informative about the observation error

term. The simulation study presented by Ranjan et al. (2011) demonstrates a sig-

nificant effect on IMSE reduction when a combination of observation and computer
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simulations (either aligned or IMSE optimal) is considered. However, there is no

theoretical guidance on how many runs should be retained for alignment/replication

when using IMSE design criteria.

Craig et al. (1996) proposed a sequential design for history matching, and applied

this method for matching hydrocarbon reservoir history. We note that Craig et al.

(1996) employed Bayes linear methods to model their beliefs about computer model

response behaviour. At step m of history matching the prior knowledge about f is

specified via a Gaussian process distribution with mean function E〈F〉[m−1]
[f(x)] and

variance function V ar〈F〉[m−1]
[f(x)]. Using probabilistic notation, the probability

distribution for f(x) conditioned on the statistical parameters
{
β, σ2, δ, τ 2

}
is

f(x)|β, σ2, δ, τ 2 ∼ GP
(
E〈F〉[m−1]

[f(x)], V ar〈F〉[m−1]
[f(x)]

)
. (5.1)

At step m of history matching, a new ensemble, {X[m],F[m]}, is obtained to update

the distribution for f at a new input x given a new ensemble,
{

X[m],F[m]

}
, and

parameters β, σ2, δ, τ 2, which is defined as

f(x)|
{

X[m],F[m]

}
,β, σ2, δ, τ 2 ∼ GP

(
E〈F〉[m]

[f(x)], V ar〈F〉[m]
[f(x)]

)
, (5.2)

with mean function

E〈F〉[m]
[f(x)] = E{〈F〉[m−1],F[m]}[f(x)] (5.3)

= E〈F〉[m−1]
[f(x)] + Cov〈F〉[m−1]

[f(x),F[m]]
(
V ar〈F〉[m−1]

[F[m]]
)−1(

F[m] − E〈F〉[m−1]
[F[m]]

)
and variance function

V ar〈F〉[m]
[f(x)] = V ar{〈F〉[m−1],F[m]}[f(x)] (5.4)

= V ar〈F〉[m−1]
[f(x)]− Cov〈F〉[m−1]

[f(x),F[m]]
(
V ar〈F〉[m−1]

[F[m]]
)−1

Cov〈F〉[m−1]
[F[m], f(x)].

Craig et al. (1996) are interested in choosing the design at step m, ξ = X[m], at which

to obtain computer model runs, f(ξ) = F[m], that leads to the reduction of uncer-

tainty over the input space. They propose to define a collection of computer runs,
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〈F〉[m] =
{

F[1], . . . ,F[m]

}
, corresponding to input designs, 〈X〉[m] =

{
X[1], . . . ,X[m]

}
,

obtained up to step m. The expected reduction in variance of f(x) at x by evaluating

the computer model at X[m] is measured by

(
V ar〈F〉[m−1]

[f(x)]
)−1

RV arF[m]/〈F〉[m−1]
(f(x)), (5.5)

where V ar〈F〉[m−1]
[f(x)] corresponds to the variance function of the GP distribution

for f at new input x, given in equation (5.4).

The second term is a partial resolved variance of f(x) by a new ensemble F[m]

given 〈F〉[m−1], defined as

RV arF[m]/〈F〉[m−1]
(f(x)) = Cov〈F〉[m−1]

(f(x),F[m])[V ar〈F〉[m−1]
(F[m])]

−1

× Cov〈F〉[m−1]
(F[m], f(x)).

In Bayes Linear theory this term is used to measure the effect on beliefs about f(x)

by observing F[m], given a collection of previously obtained computer model runs

〈F〉[m−1] (Goldstein and Wooff, 2007).

Finally, the overall weighted reduction in variance of f(x) by obtaining simula-

tion runs at the candidate design ξ is given by

U(ξ) =

∫
w(x)

(
V ar〈F〉[m−1]

[f(x)]
)−1

RV arF[m]/〈F〉[m−1]
(f(x))dx, (5.6)

where the weight w(x) is a function of the current plausibility evaluation of x based

on the values for the adjusted expectation and variance. Craig et al. (1996) propose

to define w(·) as a decreasing function of c(·), where

c(x) =

(
E〈F〉[m−1]

[f(x)]
)2

V ar〈F〉[m−1]
[f(x)]

.

The proposed function for plausibility calculations does not contain any information

about observation z, the variance of the observation error V ar[e], nor the model

discrepancy variance V ar[η].
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Craig et al. (1996) propose to choose ξ∗ by maximizing U(·), i.e.

ξ∗ = arg maxU(ξ),

where the next design points are chosen as the ones that lead to the overall reduction

in uncertainty about the surface.

Interestingly, Craig et al. (1996) extended the proposed design to refocusing

when considering q outputs of simulator, the multi-dimensional implausibility, i.e.

U(ξ) =

q∑
i=1

liUi(ξ),

where the weights li reflect the relative importance of matching the various outputs

fi(x), and Ui(X[m]) is defined as

Ui(X[m]) =

∫
w(x)

(
V ar〈F〉[m−1]

[fi(x)]
)−1

RV arF[m]/〈F〉[m−1]
(fi(x))dx i = 1, . . . , q.

The function c(·) is transformed to

c(x) = max
i

(
E〈F〉[m−1]

[fi(x)]
)2

V ar〈F〉[m−1]
[fi(x)]

.

The values of weights li are suggested to be elicited from experts, however the

method (framework) of deriving these weights is not provided. Craig et al. (1996)

recognises that using this design criterion could be computationally challenging,

especially when operating within a high-dimensional input space. Significant com-

putational savings are achieved by obtaining a collection of active inputs, and mod-

elling the global and the residual components of f(x) in terms of active inputs,

effectively adopting a dimensional reduction approach. As a result, a p × nm opti-

misation problem is reduced down to pA × nm, with pA < p, where p is the number

of input parameters and pA is the number of active input parameters. Although the

design criterion definition provided by equation (5.6) implies that we are consider-

ing the whole input space X , Craig et al. (1996) demonstrated the application of

design criteria on a smaller region for which the plausibility weights fulfil w(x) > 2,
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mimicking the idea of refocusing in which the computer model response behaviour

is analysed only over the NROY space.

5.3 Bayesian Optimal Design for iterative refo-

cussing

Bayesian methodologies for obtaining optimal experimental design allow users to

incorporate prior information and uncertainties regarding the statistical model to-

gether with a utility/loss function that explicitly describes the inferential aim (Ryan

et al., 2016). We are interested in adopting Bayesian Optimal design for refocussing

with a loss function that incorporates our goal to obtain the NROY space that con-

tains all the points close to observations with fewer iterations of history matching.

We start by defining a candidate design for wave m of history matching as

ξ = X[m] at which to obtain computer model runs, f(ξ) = F[m], using a Bayesian

Design Criterion (BDC), where the Bayesian Optimal design (BOD), ξ∗, is found

by minimizing the BDC (expected loss).

We define the expected loss as

Ψ(ξ) =

∫ ∫
L(VXm , VXT

; ξ)π(VXm , VXT
; ξ)dVXmdVXT

, (5.7)

and follow the formulation of the Bayesian design problem as a decision problem

introduced by Chaloner and Verdinelli (1995) with the following basic elements:

• the “truth” (the true nature of the state), the volume of the “true” NROY

space, denoted by VXT
and defined as

VXT
=

∫
X

1
{
x ∈ XT

}
dx =

∫
X

1

{
|z − f(x)|√

V ar[e] + V ar[η]
≤ a

}
dx, (5.8)

where we adopt the assumption of a “perfect” emulator, i.e. we use a complex

computer model directly instead of an emulator, and as a result, we have no

uncertainty about computer model outputs.
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• a decision, the volume of the NROY space at wave m, denoted by VXm and

determined by a candidate design, ξ. We define VXm mathematically as

VXm =

∫
Xm−1

1
{
x ∈ Xm

}
dx (5.9)

=

∫
Xm−1

1

{ |z − E{〈F〉[m−1],f(ξ)}[f(x)]|√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)]

≤ a

}
dx,

where values of E{〈F〉[m−1],f(ξ)}[f(x)] and V ar{〈F〉[m−1],f(ξ)}[f(x)] are obtained by

computing equations (5.3) and (5.4) respectively.

• a loss function, L(VXm , VXT
, ξ), that quantifies our loss from choosing a candi-

date design, ξ ∈ Xm−1, to obtain the volume of the NROY space, VXm , when

the volume of the “true” NROY space is VXT
. We define our loss function as

L(VXm , VXT
; ξ) =

∫
X

(
1
{
x ∈ Xm

}
− 1
{
x ∈ XT

})2

dx (5.10)

=

∫
X

1
{
x ∈ Xm

}
dx− 2

∫
X

1
{
x ∈ Xm

}
× 1
{
x ∈ XT

}
dx +

∫
X

1
{
x ∈ XT

}
dx.

The first and the last terms of our loss function correspond to equation (5.9)

and equation (5.8) respectively, while the second term,
∫
X 1
{
x ∈ Xm

}
×1
{
x ∈

XT
}
dx, is used to measure the volume of the input region that is in both the

NROY obtained at wave m and the “true” NROY.

Finally, the BOD, ξ∗, is obtained by minimizing the expected loss function, Ψ(ξ),

i.e.

ξ∗ = arg min Ψ(ξ).

5.3.1 Expected Loss Function

We proceed to consider in detail our proposed loss function, given in equation (5.10).

Since we do not know the volume of the “true” NROY space, we have to operate

with the expected loss, and we require a joint density function, π(VXm , VXT
|ξ), to

compute it.

Based on equations (5.9) and (5.8), we derive the following form of the expected
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loss

Ψ(ξ) =

∫ ∫ [ ∫
X

(
1
{
x ∈ Xm

}
− 1
{
x ∈ XT

})2

dx

]
π(VXm , VXT

; ξ)dVXmdVXT

=

∫ ∫ [ ∫
X

(
1
{
x ∈ Xm

}
− 1
{
x ∈ XT

})2

dx

]
π(VXT

|VXm ; ξ)π(VXm ; ξ)dVXmdVXT
.

Since the variability in VXT
is determined by f(x) and the variability in VXm is

determined by f(ξ), we could re-write the above equation as

Ψ(ξ) =

∫ ∫
X

∫ [
1
{
x ∈ Xm

}
− 1
{
x ∈ XT

}]2

π(f(x)|f(ξ), 〈F〉[m−1])

× π(f(ξ)|〈F〉[m−1])df(x)dxdf(ξ)

=

∫ ∫
X

∫
1
{
x ∈ Xm

}
π(f(x)|f(ξ), 〈F〉[m−1])π(f(ξ)|〈F〉[m−1])df(x)dxdf(ξ)

− 2

∫ ∫
X

∫
1
{
x ∈ Xm

}
1
{
x ∈ XT

}
π(f(x)|f(ξ), 〈F〉[m−1])

× π(f(ξ)|〈F〉[m−1])df(x)dxdf(ξ)

+

∫ ∫
X

∫
1
{
x ∈ XT

}
π(f(x)|f(ξ), 〈F〉[m−1])π(f(ξ)|〈F〉[m−1])df(x)dxdf(ξ)

= Ψ1(ξ)− 2Ψ2(ξ) + Ψ3(ξ) (5.11)

where individual terms have their own interpretation and we proceed further to

consider these terms in detail. Note that the probability distributions for f(x)

and f(ξ) are both conditioned on the collection of ensembles obtained at previous

iterations of history matching, i.e.
{
〈X〉[m−1], 〈F〉[m−1]

}
, which corresponds to the

process of updating the posterior distribution for f(x) from the previous wave of

HM. We briefly mentioned the process of updating the posterior distribution for f(x)

in our discussion of design approach proposed by Craig et al. (1996) in subsection

5.2.2.

A full Bayesian approach could be implemented by integrating Ψ(ξ) over the

posterior distribution of GP hyperparameters, Θ = {β, σ2, δ, τ 2}, i.e.

Ψ(ξ) =

∫ ∫ ∫
X

∫ [
1
{
x ∈ Xm

}
− 1
{
x ∈ XT

}]2

π(f(x)|f(ξ), 〈F〉[m−1],Θ)

× π(Θ|f(ξ), 〈F〉[m−1])π(f(ξ)|〈F〉[m−1])df(x)dxdΘdf(ξ), (5.12)
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where π(Θ|f(ξ), 〈F〉[m−1]) is the posterior distribution of Θ and π(f(ξ)|〈F〉[m−1]) =∫
π(f(ξ)|Θ, 〈F〉[m−1])π(Θ|〈F〉[m−1])dΘ is the marginal distribution of data over the

prior distribution of Θ for wave m. A full Bayesian approach allows us to take into

account the effect of candidate design on the GP hyperparameters’ values, as well as

the uncertainty about these values. However, it is computationally expensive since

for a single realisation of f(ξ) we are required to obtain a posterior distribution

π(Θ|f(ξ), 〈F〉[m−1]) (Ryan et al., 2016).

To reduce computational costs, we propose fix the values of the GP hyperparam-

eters at maximum a posteriori (MAP) estimates obtained during the first wave of

history matching. In cases where we are interested in employing BDC to generate

the initial design, we have to perform a full Bayesian analysis since we do not have

these values.

To analyse individual terms of BDC, we return to the definition of expected loss

provided in equation (5.11).

5.3.2 Derivation and interpretation of Ψ1(ξ)

The first term of the expected loss function, Ψ1(ξ), corresponds to the expected

volume of NROY space at wave m. We are interested in minimizing Ψ1(ξ) as part of

the proposed Bayesian Design Criterion. This corresponds to our aim to minimize

the NROY space volume to achieve a tighter calibration.

To derive the volume of NROY space at wave m, we do not need to compute

integration over the whole input space, X , since x is nonimplausible at wave m only

if it is nonimplausible for all waves that precede it. We propose to compute the

integration over Xm−1, the NROY space obtained during the m − 1th iteration of

history matching for computational ease. We expand the expressions in the equation

(5.9) as
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Ψ1(ξ) =

∫ ∫
Xm−1

∫
1
{
x ∈ Xm

}
π(f(x)|f(ξ), 〈F〉[m−1])

× π(f(ξ)|〈F〉[m−1])df(x)dxdf(ξ)

=

∫ ∫
Xm−1

∫
1

{ |z − E{〈F〉[m−1],f(ξ)}[f(x)]|√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)]

≤ a

}

× π(f(x)|f(ξ), 〈F〉[m−1])π(f(ξ)|〈F〉[m−1])df(x)dxdf(ξ)

=

∫ ∫
Xm−1

1

{ |z − E{〈F〉[m−1],f(ξ)}[f(x)]|√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)]

≤ a

}

×

[∫
π(f(x)|f(ξ), 〈F〉[m−1])df(x)

]
π(f(ξ)|〈F〉[m−1])dxdf(ξ)

=

∫ ∫
Xm−1

1

{ |z − E{〈F〉[m−1],f(ξ)}[f(x)]|√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)]

≤ a

}

× π(f(ξ)|〈F〉[m−1])dxdf(ξ), (5.13)

since
∫
π(f(x)|f(ξ), 〈F〉[m−1])df(x) = 1 (integrating over the full support of a prob-

ability density function). The integrand of Ψ1(ξ) is mainly affected by the values of

expectation, E{〈F〉[m−1],f(ξ)}[f(x)], and variance, V ar{〈F〉[m−1],f(ξ)}[f(x)] at input point

x from the distribution for f . In particular, if we expect the model output to be

close to z at x ∈ Xm−1, this will affect the value of an integrand of Ψ1(x). This

argument is discussed in detail in subsection 5.3.4. More interesting is the inclusion

of the variance of f(x) in our computation of Ψ1(ξ), since this term encourages the

exploration of design criterion, i.e. we are interested in obtaining computer model

simulations f(ξ) that would allow us to reduce the predictive uncertainty of f(x)

over the NROY space Xm−1 expressed through V ar{〈F〉[m−1],f(ξ)}[f(x)].

We could further simplify equation (5.13) (see Appendix A.1) to derive the fol-

lowing expression for Ψ1(ξ),

Ψ1(ξ) =

∫
Xm−1

[
Φ
(
s2

)
− Φ

(
s1

)]
dx (5.14)
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where

s1 =
z − a

√
V ar[e] + V ar[η] + V ar〈F〉[m−1]

[f(x)]− E〈F〉[m−1]
[f(x)]√

Cov〈F〉[m−1]
[f(x), f(ξ)]

(
V ar〈F〉[m−1]

[f(x)]
)−1

Cov〈F〉[m−1]
[f(ξ), f(x)]

s2 =
z + a

√
V ar[e] + V ar[η] + V ar〈F〉[m−1]

[f(x)]− E〈F〉[m−1]
[f(x)]√

Cov〈F〉[m−1]
[f(x), f(ξ)]

(
V ar〈F〉[m−1]

[f(x)]
)−1

Cov〈F〉[m−1]
[f(ξ), f(x)]

,

and Φ(·) is the standard normal cumulative distribution function (cdf).

5.3.3 Derivation and interpretation of Ψ3(ξ)

The third term of the expected loss function, Ψ3(ξ), corresponds to the expected

volume of the “true” NROY space. We are interested in expressing this term as an

integral over Xm−1, so that we could combine it together with Ψ1(ξ) in our proposed

Bayesian Design Criterion computation. We specify Ψ3(ξ) as

Ψ3(ξ) =

∫ ∫
X

∫
1
{
x ∈ XT

}
π(f(x)|f(ξ), 〈F〉[m−1])π(f(ξ)|〈F〉[m−1])df(x)dxdf(ξ)

=

∫ ∫
Xm−1

∫
1
{
x ∈ XT

}
π(f(x)|f(ξ), 〈F〉[m−1])π(f(ξ)|〈F〉[m−1])df(x)dxdf(ξ)

+
m−2∑
i=0

(∫
X i/X i+1

∫
1
{
x ∈ XT

}
π(f(x)|〈F〉[i+1])df(x)dx

)
=

∫ ∫
Xm−1

∫
1
{
x ∈ XT

}
π(f(x)|f(ξ), 〈F〉[m−1])π(f(ξ)|〈F〉[m−1])df(x)dxdf(ξ)

+ constant, (5.15)

where input space notation X i/X i+1 corresponds to the NROY space at step i, which

has been ruled out at step i+ 1 starting with the original input space X 0 = X . We

treat the second term of equation (5.15) as a constant since it doesn’t depend on

ξ and f(ξ). We can draw a connection between the decomposition of Ψ3(ξ) and

the iterative refocussing process. At wave i we obtain a design, X[i] ∈ X i−1, and a

collection of computer model runs, F[i], to update a GP emulator for f(x) generated

at the previous waves of history matching using an ensemble,
{
〈X〉[i−1], 〈F〉[i−1]

}
. As

a result, an updated GP emulator for f(x) is used to obtain an NROY space X i.
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We further reduce a number of integrals (see Appendix A.2) to obtain the following

expression for Ψ3(ξ)

Ψ3(ξ) =

∫ ∫
Xm−1

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)}[f(x)]√

V ar{〈F〉[m−1],f(ξ)}[f(x)]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)}[f(x)]√

V ar{〈F〉[m−1],f(ξ)}[f(x)]

)]

× π(f(ξ)|〈F〉[m−1])dxdf(ξ). (5.16)

We consider in detail the effect of expectation, E{〈F〉[m−1],f(ξ)}[f(x)], on the inte-

grand function conditioned on variance term, V ar{〈F〉[m−1],f(ξ)}[f(x)], with a short

demonstration in Figure 5.1. Each panel plot in Figure 5.1 depicts the standard

normal cumulative distribution function (CDF) against values of a random variable

between -4 and 4. The blue dashed lines correspond to the CDF values obtained

at two random variable realizations s1 and s2, with s2 > s1. The blue solid line

represents the difference in CDF computed at s2 and s1, i.e. Φ(s2) − Φ(s1). From

Figure 5.1 we deduct that in case where s2 > 0 and s1 < 0 we obtain a higher value

of Ψ(s2) − Ψ(s1) (central panel plot) than in two other cases, i.e. s2, s1 < 0 (left

panel plot) and s2, s1 > 0 (right panel plot).

For simplification, we define the arguments of two CDF functions in equation

(5.16) as

s1 =
z + a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)}[f(x)]√

V ar{〈F〉[m−1],f(ξ)}[f(x)]
,

s2 =
z − a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)}[f(x)]√

V ar{〈F〉[m−1],f(ξ)}[f(x)]
.

For x ∈ Xm−1, if E{〈F〉[m−1],f(ξ)}[f(x)] lies inside the interval

[
z − a

√
V ar[e] + V ar[η], z + a

√
V ar[e] + V ar[η]

]
, (5.17)

we deduce that s2 > 0 and s1 < 0 and we operate in a steep region of the stan-

dard normal cumulative distribution function, demonstrated in the central panel
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plot in Figure 5.1, leading to the larger value of an integrand function and there-

fore greater contribution towards Ψ3(ξ). On the contrary, if the expectation term,

E{〈F〉[m−1],f(ξ)}[f(x)], lies outside the interval given in equation (5.17), for instance

E{〈F〉[m−1],f(ξ)}[f(x)] < z− a
√
V ar[e] + V ar[η], which corresponds to both s1 and s2

being positive, we observe lower values of Φ(s2)− Φ(s1), demonstrated in the right

panel plot in Figure 5.1. Similar observations are drawn for E{〈F〉[m−1],f(ξ)}[f(x)] >

z + a
√
V ar[e] + V ar[η], which corresponds to both s1 and s2 being negative, con-

firmed by the left panel plot in Figure 5.1.

Figure 5.1: The plots of standard normal cumulative distribution function (CDF)
against the varying values of a random variable x. The blue dashed lines correspond
to CDF values computed at two values of a random variable x. The blue solid
lines correspond to the differences between the CDF values at these two values of a
random variable. Left panel : demonstrates the difference between the CDF evalu-
ated at two negative values of a random variable. Central panel : demonstrates the
difference between the CDF evaluated at positive and negative values of a random
variable. Right panel : demonstrates the difference between the CDF evaluated at
two positive values of a random variable.

We are interested to demonstrate the effect of the variance term, V ar{〈F〉[m−1],f(ξ)}[f(x)],

conditioned on the expectation term, E{〈F〉[m−1],f(ξ)}[f(x)], being inside the inter-

val in equation (5.17), on the integrand function of Ψ3(ξ). If the expectation,

E{〈F〉[m−1],f(ξ)}[f(x)], lies inside the interval, then we observe s2 > 0 and s1 < 0. Fig-

ure 5.2 demonstrates the plots of standard normal cumulative distribution function

(CDF) against a range of values of a random variable. Similarly to Figure 5.1, the

blue dashed lines correspond to the CDF values obtained at s2 and s1, while the blue

solid line represents the difference in CDF computed at s2 and s1, i.e. Φ(s2)−Φ(s1).

If we experience high uncertainty, expressed via V ar{〈F〉[m−1],f(ξ)}[f(x)], about the

model behaviour at an arbitrary input point x ∈ Xm−1, this will lead to the

downscaling of the CDF arguments s2 and s1, and as a result to a lower value
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of Φ(s2) − Φ(s1), demonstrated in the right panel plot of Figure 5.2. Therefore,

we would expect to observe lower contribution from this input point in the calcu-

lation of Ψ3(ξ). On the contrary, if we observe the lower value of variance term

V ar{〈F〉[m−1],f(ξ)}[f(x)] at an arbitrary input point x ∈ Xm−1, we will obtain a larger

difference between the CDF computed at s2 and s1, and therefore expect a larger

contribution from this input point in the calculation of Ψ3(ξ). This argument is

confirmed by the left panel plot in Figure 5.2.

Figure 5.2: The plots of standard normal cumulative distribution function (CDF)
against the varying values of a random variable x. The blue dashed lines correspond
to CDF values computed at two values of a random variable x. The blue solid
lines correspond to the differences between the CDF values at these two values of a
random variable. Left panel : demonstrates the difference in the CDF evaluated at
x = 1 and x = −1 Right panel : demonstrates the difference in the CDF evaluated
at x = 0.5 and x = −0.5.

Based on the analysis above, we conclude that the largest contribution from x ∈

Xm−1 to the value of Ψ3(ξ) is obtained from points with expectation, E{〈F〉[m−1],f(ξ)}[f(x)],

inside the interval in equation (5.17) and low values of variance, V ar{〈F〉[m−1],f(ξ)}[f(x)].

5.3.4 Derivation and interpretation of Ψ2(ξ)

Finally, we proceed to consider in detail the second term of the expected loss func-

tion, Ψ2(ξ), that corresponds to the expected volume of the input region that is in

both the NROY obtained at wave m and the “true” NROY. A simplification (see
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Appendix A.3) leads to the following form for Ψ2(ξ),

Ψ2(ξ) =

∫ ∫
Xm−1

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)}[f(x)]√

V ar{〈F〉[m−1],f(ξ)}[f(x)]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)}[f(x)]√

V ar{〈F〉[m−1],f(ξ)}[f(x)]

)]

× 1

{ |z − E{〈F〉[m−1],f(ξ)}[f(x)]|√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)]

≤ a

}

× π(f(ξ)|〈F〉[m−1])dxdf(ξ). (5.18)

The indicator function inside Ψ2(ξ) corresponds to the membership function from

equation (5.13) that accounts for the points in the NROY space Xm−1 that are

expected to constitute the NROY space Xm after performing wave m of history

matching with a candidate design, ξ, and the corresponding runs of the computer

model, f(ξ). As part of Ψ2(ξ), this membership function is now weighted by the

difference of two standard normal CDFs from equation (5.16).

The membership function from equation (5.13) contains the implausibility func-

tion described in subsection 2.6.1. Low values of implausibility function can be ob-

tained at an arbitrary input point x ∈ Xm−1 with a large value of V ar{〈F〉[m−1],f(ξ)}[f(x)],

which will lead to the membership function being equal to 1. However, in subsection

5.3.3 we demonstrated that large values of V ar{F[m−1],f(ξ)}[f(x)] leads to the lower

values of a difference between two CDFs. Therefore, x ∈ Xm−1 at which we ob-

tain a high predictive variance, V ar{〈F〉[m−1],f(ξ)}[f(x)], will have a small contribution

towards the final value of Ψ2(ξ). By contrast, we expect to observe a larger con-

tribution from input points x ∈ Xm−1 with predictions, E{〈F〉[m−1],f(ξ)}[f(x)], that

are close to observation z within the pre-specified error structure, i.e. V ar[e] and

V ar[η], and low uncertainty on the predictions, V ar{〈F〉[m−1],f(ξ)}[f(x)].

5.4 Implementation details

In this section, we discuss a number of computational details that are necessary for

the computation of the BDC. We describe the process of performing m waves of
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history matching.

1. Start with m = 1 and generate X[1], employing one of the space-filling ap-

proaches such as uniform design, Sobol sequences (Fang et al., 2005; Challenor,

2011) or Latin Hypercubes (LHCs) (McKay et al., 1979) and obtain computer

model runs F[1]. We start by defining a prior distribution on f(x), denoted by

π
(
f(x)

)
, which is a Gaussian process distribution with mean function

E[f(x)] = h(x)Tβ

and covariance function

Cov[f(x), f(x′)] = k(x,x′;σ2, δ, τ 2).

We proceed to fit a GP emulator using ensemble,
{

X[1],F[1]

}
, and obtain the

maximum a posteriori (MAP) values of the GP’s hyperparameters, in par-

ticular ΘMAP =
{
βMAP , σ

2
MAP , δMAP , τ

2
MAP

}
. We are planning to fix the

GP hyperparameters at MAP values throughout the whole Bayesian updating

process to reduce the amount of computational effort. We update our prior

distribution of f(x) to its posterior, i.e. π1

(
f(x)

)
= π

(
f(x)|F[1]

)
, which is a

GP with expectation, EF[1]
[f(x)], and covariance,V arF[1]

[f(x)].

We use EF[1]
[f(x)] and V arF[1]

[f(x)] to obtain the NROY space at wave 1, X 1,

which is defined as

X 1 =

{
x ∈ X :

|z − EF[1]
[f(x)]|√

V ar[e] + V ar[η] + V arF[1]
[f(x)]

≤ a

}
.

2. At wave m > 1, we start with a prior distribution πm−1

(
f(x)

)
for f(x) as

f(x)|ΘMAP ∼ GP
(
E〈F〉[m−1]

[f(x)], V ar〈F〉[m−1]
[f(x)]

)
and proceed to obtain a BOD by minimizing Ψ(ξ) using an optimization al-

gorithm, where the size of ξ is pre-specified. We denote the derived BOD as
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X[m] = ξ.

3. We generate computer model runs, F[m], at the design, X[m], and update the

probability distribution for f(x) to derive πm(f(x)), which is given as

f(x)|
{

X[m],F[m]

}
,ΘMAP ∼ GP

(
E{〈F〉[m−1],F[m]}[f(x)], V ar{〈F〉[m−1],F[m]}[f(x)]

)

4. We employ E{〈F〉[m−1],F[m]}[f(x)] and V ar{〈F〉[m−1],F[m]}[f(x)] to obtain the NROY

space at wave m, Xm, which is defined as

Xm =

{
x ∈ Xm−1 :

|z − E{〈F〉[m−1],F[m]}[f(x)]|√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],F[m]}[f(x)]

≤ a

}
.

Repeat Steps 2-4 until, for instance, the experimental budget has been ex-

hausted or no change in the NROY space size is observed.

To use the optimization algorithm, we are required to evaluate an objective

function, Ψ(ξ), that contains two intractable integrals. We employ Monte Carlo

integration to derive the numerical approximation to the integrals in Ψ(ξ). In par-

ticular, we simulate a sample of x(1), . . . ,x(N) from the NROY space Xm−1 and

f(ξ)(1), . . . , f(ξ)(N) from the distribution MVN
(
E〈F〉[m−1]

[f(ξ)], V ar〈F〉[m−1]
[f(ξ)]

)
.

Then we approximate Ψ(ξ) as

Ψ̂(ξ) =
1

N

N∑
i=1

Ψ
(
ξ; x(i), f(ξ)(i)

)
=

1

N

N∑
i=1

[
Ψ1(ξ; x(i), f(ξ)(i))− 2×Ψ2(ξ; x(i), f(ξ)(i)) + Ψ3(ξ; x(i), f(ξ)(i))

]
,

where

Ψ1(ξ; x(i), f(ξ)(i)) = 1
{ |z − E{〈F〉[m−1],f(ξ)(i)}[f(x(i))]|√

V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)(i)}[f(x(i))]
≤ a
}
,

(5.19)
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Ψ2(ξ; x(i), f(ξ)(i)) =

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)(i)}[f(x(i))]√

V ar{〈F〉[m−1],f(ξ)(i)}[f(x(i))]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)(i)}[f(x(i))]√

V ar{〈F〉[m−1],f(ξ)(i)}[f(x(i))]

)]

× 1
{ |z − E{〈F〉[m−1],f(ξ)(i)}[f(x(i))]|√

V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)(i)}[f(x(i))]
≤ a
}
(5.20)

and

Ψ3(ξ; x(i), f(ξ)(i)) =

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)(i)}[f(x(i))]√

V ar{〈F〉[m−1],f(ξ)(i)}[f(x(i))]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)(i)}[f(x(i))]√

V ar{〈F〉[m−1],f(ξ)(i)}[f(x(i))]

)]
.

(5.21)

Since we still have two intractable integrals inside Ψ2(ξ) and Ψ3(ξ), we do not use

the reduced form of the expression with one integral derived for Ψ1(ξ) presented in

subsection 5.3.2, as it does not provide us with any computational savings.

To evaluate the accuracy of Ψ̂(ξ), we calculate the standard error of the obtained

approximation. We compute the unbiased estimate of σ2
Ψ, which is defined as

s2
Ψ =

1

N − 1

N∑
i=1

(
Ψ(ξ,x(i), f(ξ)(i))− Ψ̂(ξ)

)2

,

and use this unbiased estimate in standard error computation, i.e.

sΨ√
N
.

5.4.1 Implementation details to obtain the initial design

To obtain the initial design, i.e. a design to perform wave 1 of history matching,

we are required to perform a full Bayesian analysis, described in subsection 5.3.1.

Similar to the computation of BOD for wave m of history matching, we employ
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Monte Carlo integration to derive the numerical approximation to integrals in Ψ(ξ)

in equation (5.12). Before describing the process of obtaining BOD at the first

iteration of refocusing, we redefine the approximation Ψ̂(ξ) as

Ψ̂(ξ) =
1

N1

N1∑
i=1

Ψ
(
ξ; x, f(ξ)(i),ΘMAP

i

)
=

1

N1

N1∑
i=1

[
Ψ1

(
ξ; x, f(ξ)(i),ΘMAP

i

)
− 2Ψ2

(
ξ; x, f(ξ)(i),ΘMAP

i

)
+ Ψ3

(
ξ; x, f(ξ)(i),ΘMAP

i

)]
,

(5.22)

where

Ψ1

(
ξ; x, f(ξ)(i),ΘMAP

i

)
=

1

N2

N2∑
k=1

1

{
|z − E[f(x(k))|f(ξ)(i),ΘMAP

i ]|√
V ar[e] + V ar[η] + V ar[f(x(k))|f(ξ)(i),ΘMAP

i ]
≤ a

}
,

Ψ2

(
ξ; x, f(ξ)(i),ΘMAP

i

)
=

1

N2

N2∑
k=1

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E[f(x(k))|f(ξ)(i),ΘMAP

i ]√
V ar[f(x(k))|f(ξ)(i),ΘMAP

i ]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E[f(x(k))|f(ξ)(i),ΘMAP

i ]√
V ar[f(x(k))|f(ξ)(i),ΘMAP

i ]

)]

× 1

{
|z − E[f(x(k))|f(ξ)(i),ΘMAP

i ]|√
V ar[e] + V ar[η] + V ar[f(x(k))|f(ξ)(i),ΘMAP

i ]
≤ a

}
,

Ψ3

(
ξ; x, f(ξ)(i)ΘMAP

i

)
=

1

N2

N2∑
k=1

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E[f(x(k))|f(ξ)(i),ΘMAP

i ]√
V ar[f(x(k))|f(ξ)(i),ΘMAP

i ]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E[f(x(k))|f(ξ)(i),ΘMAP

i ]√
V ar[f(x(k))|f(ξ)(i),ΘMAP

i ]

)]

We proceed to describe the process of computing BDC for a fixed design setting,

denoted as ξ:

1. Start by specifying a prior distribution on f(x), denoted as π
(
f(x)|Θ

)
, and

prior beliefs about GP hyperparameters, Θ = {σ2, δ, τ 2,β}, via π
(
Θ
)
.

2. Generate N1 samples of f(ξ), i.e.
{
f(ξ)(i)

}N1

i=1
, from the marginal distribution
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of the data π
(
f(ξ)|ξ

)
.

3. For each f(ξ)(i), i = 1, . . . , N1, obtain maximum a posteriori (MAP) values of

the GP hyperparameters, ΘMAP
i .

4. Generate a uniform/space-filling sample of size N2 of input points across the

input space X , i.e. {x(k)}N2
k=1

5. Compute Ψ̂(ξ) in equation (5.22).

In step 3 of the described algorithm we employ mogp emulator, a Python package

for fitting GP emulators and developed by the Research Engineering Group at the

Alan Turing Institute (ATI). This package allows users to obtain MAP estimates

in a fast way by optimizing the posterior distribution function with proper priors.

Similar to BDC computation for wave m of history matching, we are interested in

computing the standard error of obtained approximation. In this case the unbiased

estimate of σ2
Ψ is defined as

s2
Ψ =

1

N1 − 1

N1∑
i=1

(
Ψ
(
ξ; x, f(ξ)(i),ΘMAP

i

)
− Ψ̂(ξ)

)2

.

and we use this unbiased estimate in standard error computation, i.e.

sΨ√
N1

.

5.5 Simulation study

In our simulation study we consider a simple 2D toy function, a semi-sphere centred

at 0 with radius 1. The toy function is defined as

f(x) = f(x1, x2) =
√(

1− x2
1 − x2

2

)
.

Figure 5.3 demonstrates the behaviour of the toy function response against x1 and

x2. We assumed that we observe z = 1.25 with a measurement error variance of

V ar[e] = 0.12 and discrepancy error variance set at zero, i.e. V ar[η] = 0. We also
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specified the threshold value for history matching to be a = 3. Table 5.1 provides

the values of the observation, together with the measurement error variance and the

discrepancy error variance for the simulation study.

Range z V ar[e] V ar[η] Sample size NROY size

[-2, 1] 1.25 0.12 0 10 5%

Table 5.1: 2D toy model information for history matching. Range denotes the
spread of possible outputs for the function, and Not Ruled Out Yet (NROY) size
denotes the theoretical size of NROY space, given this error structure, and assuming
a “perfect” emulator.

To calculate the theoretical size of the NROY space in Table 5.1, we obtain

function values onto a 150 × 150 grid over x1 and x2 and use these values in place

of E[f(x)]. We also specify V ar[f(x)] = 0 in our implausibility calculations with a

“perfect” emulator.

Figure 5.3: Left : True semi-sphere function for the two-dimensional numerical ex-
ample and 10-run maximin distance LHD red points used as a design for wave 1
in subsection 5.5.2. Right : The cross-section plot of true semi-sphere function in
black, which is represented by a line λx2 + (1− λ)x1 against λ. The observed value
is 1.25 (red line) with plus and minus two times observation error (dotted lines).

In order to produce the left panel plot in Figure 5.3, we generate values of the

2D toy function onto a 50× 50 grid over x1 and x2 (x1 ∈ [−1, 1] and x2 ∈ [−1, 1]).

To produce the right panel plot in Figure 5.3, we generate a line, λx2 + (1 − λ)x1,

between two design points x1 and x2 in two-dimensional space. The parameter λ

describes how far along this line we are, and we observe how the function changes

along this line as well as the actual function values in relation to the observation.
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5.5.1 BOD for Wave 1 of history matching

In this subsection, we are interested in employing the proposed BDC to obtain a

design for wave 1 of history matching, i.e. X[1] = (x11, . . . ,x1n1) with n1 = 10.

We also consider the effect of the space-filling design, maximin LHC (Morris and

Mitchell, 1995), on the history matching result.

To obtain a BOD for wave 1, we use the computational approach described in

subsection 5.4.1. In particular, we use the optimization function genoud from R

package rgenoud (Mebane and Sekhon, 2011). This function combines an evolu-

tionary search algorithm and a genetic algorithm with derivative-based (Newton

or quasi-Newton) methods to solve difficult optimization problems. We fixed the

number of Monte Carlo samples at N1 = 250 and generated a uniform sample of

size N2 = 10, 000 to represent the input space, X . At each iteration, we define 30

individuals (population size) with a hard limit on the maximum number of itera-

tions equal to 30. The described set-up allows us to perform the high-dimensional

optimization in a computationally cheap way.

Figure 5.4: Each panel plot depicts the input space that demonstrates the “true”
NROY space (dark grey) together with the candidate designs to perform wave 1 of
history matching (bright green). The input point that correspond to the observation
z is represented by a blue triangle.

Figure 5.4 demonstrates the allocation of three design candidates (bright green

squares) across the input space in relation to the “true” NROY (dark grey points).

Start for Design and BOD correspond to the starting points for the optimization

algorithm and the optimal design choice respectively. We observe from the right

panel plot in Figure 5.4 that the starting points are located in the region with
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positive values of x1, and the position of points in BOD is different to the starting

design and is closer to Space-filling design representation.

Table 5.2 and Figure 5.5 show the BDC scores together with their MC errors

for three candidate designs. We deduct that the lowest BDC scores are obtained

for Space-filling design (0.0319) and BOD (0.0328); these two scores are very close to

each other. Start for Design has the highest BDC score (0.117) as we expected, and

we conclude that it is an unfavourable design choice to perform wave 1 of history

matching.

Type BDC std. error BDC-2×std.error BDC+2×std.error

Space-filling design 0.0319 0.0026 0.0267 0.0370
BOD 0.0328 0.0031 0.0266 0.0390

Start for Design 0.117 0.0069 0.103 0.131

Table 5.2: Bayesian Design Criterion (BDC) computed at three design candidates.
The second column corresponds to the BDC score, the third column is the Monte
Carlo (MC) standard error on the BDC, the fourth and the fifth columns correspond
to the BDC value plus and minus two standard errors.

Figure 5.5: Plots of computed Bayesian Design Criterion (BDC), Ψ(ξ), together with
two Monte Carlo (MC) standard error bars for three candidate designs to perform
wave 1 of history matching.

We proceed to consider the individual terms of BDC to understand the inter-

pretation of scores better. Figure 5.6 shows the predictive variance computed over

the whole input space, X . To produce these plots we start by specifying a number

of equally spaced intervals for x1 and x2, i.e. nres, which determines the resolution,

given by the number of pixels of obtained images. The value behind each pixel

191



represents the mean value of the predictive variance, i.e.

1

N1

N1∑
i=1

1

Nres

Nres∑
k=1

V ar
[
f(x(k))|f(ξ)(i),ΘMAP

i

]
, xl1 ≤ x

(k)
1 ≤ xl+1

1 , l = 1, . . . , nres − 1,

xr2 ≤ x
(k)
2 ≤ xr+1

2 , r = 1, . . . , nres − 1,

where Nres corresponds to the number of points allocated to a pixel. Red and or-

ange coloured regions correspond to the regions of input space with high predictive

variance. On the contrary, regions in white correspond to low values of predictive

variance. From Figure 5.6, we observe that both Space-filling design and BOD gen-

erate the lowest predictive variance values across the whole input space. These two

design candidates are spaced out, allowing us to capture as much information as

possible about the model response behaviour across X . For Start for Design, we

obtain the highest values of predictive variance in the region where the values of x1

input are negative since we do not have any design points in this region.

Figure 5.6: Predictive variance, V ar
[
f(x)|f(ξ)

]
, computed over the input space, X ,

as part of BDC computation for a range of design options. The colour corresponds
to the mean value of the predictive variance behind each pixel. Different design
options are depicted as black points.

We proceed to consider the effect of candidate designs on the Term 1, Ψ1(ξ),

representation across the input space. Each panel plot demonstrates the proportion

of points that are expected to be part of wave 1 NROY space behind each pixel and
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computed as

1

N1

N1∑
i=1

1

Nres

Nres∑
k=1

1

{
|z − E[f(x(k))|f(ξ)(i),ΘMAP

i ]|√
V ar[e] + V ar[η] + V ar[f(x(k))|f(ξ)(i),ΘMAP

i ]
≤ a

}
,

xl1 ≤ x
(k)
1 ≤ xl+1

1 , l = 1, . . . , nres − 1,

xr2 ≤ x
(k)
2 ≤ xr+1

2 , r = 1, . . . , nres − 1.

In Figure 5.7, red coloured regions correspond to the input regions with a high

proportion of points expected to be part of wave 1 NROY space. The complete

opposite is true for the yellow coloured regions. We observe the resembles of the

plots in Figure 5.6 and Figure 5.7 and conclude that the predictive variance is

important in the computation of Ψ1(ξ). In particular, we expect to rule out the

input space close to the design points, since at x we obtain predictions far from

the observation, z, together with low values of predictive variance. Therefore the

implausibility function value computed at this arbitrary point is greater than the

threshold value a. It is hard to draw meaningful conclusions about the effect of

candidate designs on Ψ2(ξ) and Ψ3(ξ), and we provide comparative plots of these

terms in the Appendix C.1.

Figure 5.7: The integrand of Term 1, Ψ1(ξ), computed over the input space, X .
Each pixel of plots represents the mean value of the integrand of Term 1, Ψ1(ξ),
computed at input settings behind each pixel. Different design options are depicted
as black points.

We proceed to perform wave 1 history matching for three candidate designs.

We start by obtaining the model runs, F[1], at each design, X[1], and construct GP

emulators for f(x). Figure 5.8 shows the results of wave 1 history matching for each
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candidate design. The points in grey are retained as part of the NROY space, while

points in green represent the “true” NROY space. Table 5.3 provides the summary

results of history matching. The NROY space obtained with BOD is 6.43% of the

original input space and is close in size to the “true” NROY space. However, this

design choice has led to a small percentage of the “true” NROY space being ruled

out. We deduce that Space-filling design is more conservative, with the size of the

NROY being 9.60% of the original input space. Finally, by employing Start for

Design, we generate an NROY space which is 45.02% of the original input space,

which primarily contains the input region with negative values of x1 due to the lack

of design points in this region.

The history matching performance with Space-filling design and BOD are very

similar, and we could conclude that running a highly complicated optimizer when we

have no initial information about the function behaviour is not worthwhile. Instead,

we suggest using one of the available space-filling initial designs mentioned in section

5.4 as an initial design.

Figure 5.8: Each panel demonstrates a parameter plot showing points classified as
being in NROY space after the first wave of history matching in grey when we use
the design candidate (black dots) for constructing GP emulators. Points in green
represents the input region identified as part of “true” NROY space.
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Type NROY size Percentage of missing point

Space-filling design 9.60% 0%
BOD 6.43% 6.67%

Start for Design 45.02% 9.63%

Table 5.3: Summary of history matching results after wave 1 for candidate designs
used to construct a GP emulator. Percentage of missing points corresponds to the
percentage of points ruled out by performing wave 1 HM but that are part of “true”
NROY space.

5.5.2 BOD for Wave 2 of history matching

In this subsection, we start by obtaining a 10-run maximin design to construct a GP

emulator, π1

(
f(x)

)
, and perform history matching. We compute the implausibility

function over a 150x150 grid in two-dimensional space to obtain a wave 1 NROY

space which is 15.56% the size of the original input space, depicted in Figure 5.9.

Figure 5.9: The input space plot demonstrates the “true” NROY space (dark grey)
and those input points classified as part of NROY space after a single wave of HM
(light grey) together with the design points used to construct a GP emulator for
wave 1 of HM (brown squares)

To perform wave 2 of history matching, we need to obtain an ensemble,
{

X[2],F[2]

}
,

and update our GP emulator (see Step 3 in section 5.4). We demonstrate the appli-

cation of employing a BDC in deriving a design for wave 2, X[2] = (x21, . . . ,x2n2),

with n2 = 5. We also consider the performance of BOD against a design with good

coverage over the current NROY space, X 1, termed the “naive” design for history

195



matching.

The “naive” design is obtained by employing a simulated annealing algorithm.

We consider the maximization of the minimum Euclidean distance between the

design points, which is similar to a design approach proposed by Andrianakis et al.

(2017) (see subsection 5.2.1 for more details). We consider all points that are not

ruled out after performing wave 1 of history matching as candidate design points.

To obtain a BOD, we are interested in minimizing Ψ(ξ) in equation (5.7). We

obtain the values of Ψ(ξ) using the computational method described in Section 5.4.

We are required to specify N , the number of samples for Monte Carlo integration,

and we have chosen N = 2500 based on empirical evidence, since this number

provides us with a satisfactory Monte Carlo standard error and computational time.

0.
00

0.
05

0.
10

0.
15

BD
C

 v
al

ue
s

D
es

ig
n 

1

D
es

ig
n 

2

D
es

ig
n 

3

N
ai

ve
 D

es
ig

n

St
ar

t f
or

 D
es

ig
n 

1

St
ar

t f
or

 D
es

ig
n 

2

St
ar

t f
or

 D
es

ig
n 

3

0.
00

0.
05

0.
10

0.
15

BD
C

 v
al

ue
s

D
es

ig
n 

1

D
es

ig
n 

2

D
es

ig
n 

3

N
ai

ve
 D

es
ig

n

St
ar

t f
or

 D
es

ig
n 

1

St
ar

t f
or

 D
es

ig
n 

2

St
ar

t f
or

 D
es

ig
n 

3

Figure 5.10: Plots of computed Bayesian Design Criterion (BDC), Ψ(ξ), together
with two Monte Carlo (MC) standard error bars for seven different candidate designs
for wave 2 of history matching. Left panel : demonstrates BDC scores with N =
2, 500 MC samples. Right panel : demonstrates BDC scores with N = 10, 000 MC
samples.

From Figure 5.10 we observe that the two standard error bars are smaller when

we use N = 10, 000 Monte Carlo samples for computing the BDC; however it leads to

an increase in computational time for obtaining an optimal design. The ordering of

designs according to the proposed BDC is the same for N = 2, 500 and N = 10, 000

and we conclude that N = 2, 500 is a reasonable choice for the number of Monte

Carlo samples.

Similarly to subsection 5.5.1, we use the optimization function genoud to obtain
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the BOD. At each iteration, we define 100 individuals (population size) with a hard

limit on the maximum number of iterations equal to 30. The genoud function allows

users to specify the lower and upper bounds of the input space. However, in our case,

it is challenging to derive upper and lower bounds of the input space since we are

most unlikely to operate within a Euclidean space, i.e. the NROY space is defined by

a membership rule based on implausibility function (see subsection 2.6.1). Therefore

we propose to add a penalty term set to an arbitrarily large positive value inside the

objective function so that if the optimization algorithm picks an individual (design

candidate) in the ruled out space, we automatically encounter a penalty. We run

the optimization algorithm in parallel from different starting points to investigate

the effect of starting points on the final optimal design.

In Figure 5.11, each panel plot depicts the “true” NROY space and the points

retained inside NROY space after wave 1 of history matching together with design

X[1] (please see the description of Figure 5.9). The panel plots for Design 1, Design

2 and Design 3 demonstrate the allocation of starting points (dark green) used for

the optimization of BDC to obtain the final designs (bright green). The panel plot

for Naive Design in Figure 5.11 shows the generated “naive” space-filling design in

bright green. We were interested in studying the effect of positioning the starting

points on the final designs. In particular, we specified starting points for Design 1

clustered in the corner of X 1 and away from the “true” NROY space. For Design 2,

the starting points are spaced over the “true” NROY space, while for Design 3 the

starting points are clustered around the observation z (blue triangle). From Figure

5.11, we conclude that the positioning of starting points specified for optimization

algorithm across the reduced input space, X 1, has a very limited effect on the final

positioning of design points. In particular, we observe that a number of obtained

design points are placed on the border of the “true” NROY space after employing

the optimization algorithm.

We obtain BDC scores for the starting points as well their MC errors and in-

clude their values in Table 5.4, which provides a summary of BDC computations at

different design candidates for wave 2 of HM.
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Figure 5.11: Each panel plot depicts the input space that demonstrates the “true”
NROY space (dark grey) and those input points classified as part of NROY space
after a single wave of HM (light grey) together with the design points used to
construct a GP emulator for wave 1 of HM (brown squares). The panel plots labelled
as Design 1, Design 2 and Design 3 demonstrate the positioning of the obtained
designs (bright green) found by optimizing BDC with starting points specified for
optimization (dark green). The panel plots labelled as Naive design demonstrates
the positioning of “naive”, space-filling design (bright green). The input point that
correspond to the observation z is represented by a blue triangle.
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Type BDC std. error BDC-2×std.error BDC+2×std.error

Design 1 0.0134 0.0013 0.0108 0.0159
Design 2 0.0138 0.0013 0.0113 0.0164
Design 3 0.0159 0.0014 0.0130 0.0188

Naive Design 0.0187 0.0015 0.0156 0.0218
Start for Design 1 0.0348 0.0023 0.0302 0.0394
Start for Design 2 0.1278 0.0061 0.1156 0.1401
Start for Design 3 0.1383 0.0063 0.1257 0.1509

Table 5.4: Bayesian Design Criterion (BDC) computed at seven design candidates.
The second column corresponds to the BDC score, the third column is the Monte
Carlo (MC) standard error on the BDC, the fourth and the fifth columns correspond
to the BDC value plus and minus two standard errors.

From Table 5.4 we conclude that the lowest BDC scores are obtained for Design

1 (0.0134) and Design 2 (0.0138), which are both lower than the BDC score obtained

for Naive Design (0.0187). However, we consider Naive Design as competitive given

its Monte Carlo (MC) error. Interestingly, we observe that Start for Design 1 has

the lowest BDC score (0.0348) amongst the other starting design options.

We proceed to consider in detail the composition of Bayesian Design Criterion

for Design 2, that we refer to as BOD, Naive Design as well as Start for Design 1 and

Start for Design 2.

Figure 5.12 and Figure 5.13 show the predictive variance computed over X 1. The

value behind each pixel corresponds to the mean value of the predictive variance,

computed as

1

Nres

Nres∑
i=1

V ar{F[1],f(ξ)(i)}[f(x(i))] xl1 ≤ x
(i)
1 ≤ xl+1

1 , l = 1, . . . , nres − 1,

xr2 ≤ x
(i)
2 ≤ xr+1

2 , r = 1, . . . , nres − 1,

where Nres corresponds to the number of input points allocated to the pixel. Red

and orange colour indicates the regions with high predictive uncertainty produced

as part of BDC. On the contrary, the white colour corresponds to the region of

low predictive variance produced as part of BDC. Grey regions correspond to the

input regions that have been completely ruled out after performing wave 1 of history

matching.
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Figure 5.12 shows the predictive variance, V ar{F[1],f(ξ)}[f(x)], computed as part

of BDC on a different scale to investigate in detail the effect of the proposed designs

on the predictive variance over the X 1. For instance, for Start for Design 1, we are

most uncertain about the model response in the region close to the observation, since

the points in this candidate design are clustered in the corner of X 1 away from the

observation. For Naive Design, we observe the largest values of predictive variance

in the region around x1 = 1 with the second highest values of predictive variance

generated in the region close to the observation.

However, from Figure 5.13, we observe that these two design options produce

the lowest predictive variance values over the X 1 amongst a range of considered

design options. This finding is anticipated since Start for Design 1 places all points

in X 1, where we do not have any points from X[1], and Naive Design is considered

as a space-filling design over X 1 that aims to learn as much as possible about the

model response across X 1.
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Figure 5.12: Predictive variance, V ar{F[1],f(ξ)}[f(x)], computed over wave 1 NROY

space, X 1, as part of BDC computation for a range of design options. The colour
corresponds to the mean value of the predictive variance behind each pixel. Different
design options are depicted as the green square points. Design for wave 1 are black
points. The parameter setting for the observation z is the blue triangle. The ruled
out input space is in grey.
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Figure 5.13: Predictive variance, V ar{F[1],f(ξ)}[f(x)], computed over wave 1 NROY

space, X 1, as part of BDC computation for a range of design options. The colour
corresponds to the mean value of the predictive variance behind each pixel on the
same scale. Different design options are depicted as the green square points. Design
for wave 1 are black points. The parameter setting for the observation z is the blue
triangle. The ruled out input space is in grey.

We observe the highest values of predictive variance in the region around x1 = 1

for Start for Design 2 as the majority of design points are clustered around x1 = 0

away from a high uncertainty region. The predictive variance obtained with BOD

also exhibits high values in this region.

We are interested in considering the effect of different candidate designs on the

final value of Term 1, Ψ1(ξ), given in equation (5.13). In particular, we are interested

in decomposing the contributions to the final value of Ψ1(ξ) over the NROY space,

for which we generate the plots shown in Figure 5.14. Each panel plot shows the

proportions of the points that are expected to be part of wave 2 NROY space behind

each pixel computed as

1

Nres

Nres∑
i=1

Ψ1

(
ξ; x(i), f(ξ)(i)

)
xl1 ≤ x

(i)
1 ≤ xl+1

1 , l = 1, . . . , nres − 1

xr2 ≤ x
(i)
2 ≤ xr+1

2 , r = 1, . . . , nres − 1,

where Ψ1

(
ξ; x(i), f(ξ)(i)

)
is given in equation (5.19). In this case, red areas of these

plots correspond to the input regions with a higher proportion of points expected to
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be retained as part of the NROY space after wave 2 as part of BDC computation,

i.e. the largest contributions towards the value of Ψ1(ξ) are obtained at these input

regions. On the contrary, white areas correspond to the input regions with a very

low proportion of points expected to be retained as part of wave 2 NROY space, i.e.

contributions towards Ψ1(ξ) are close to zero at these regions.
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Figure 5.14: The integrand of Term 1, Ψ1(ξ), computed over wave 1 NROY space.
Each pixel of plots represents the mean value of the integrand of Term 1, Ψ1(ξ),
computed at input settings behind each pixel. For each panel plot we fix and consider
the effect of different design options for wave 2 design, ξ, on the integrand value.
Design candidates for wave 2 are green squares. Design for wave 1 are black points.
The input parameter setting corresponding to the observation z is the blue triangle.
The ruled out input space after wave 1 HM is in grey.

From Figure 5.14 we observe a large red region around x1 = 1 for Start for

Design 2, which corresponds to the region of high predictive variance depicted in

Figure 5.13, i.e. a region of high uncertainty about the model response behaviour.

We conclude that the updated GP emulator with this design is expected to be

extremely uncertain about the model behaviour in this region. We observe orange

shading on the borders of the “true” NROY space produced for Start for Design

1 as well as for Naive Design, which indicates that we are unsure if these regions

are expected to be retained as part of the NROY space after wave 2, resulting in

a higher value of Ψ1(ξ) in the overall BDC score. On the contrary, we observe a

202



distinct difference between the expected NROY space after wave 2 and the ruled

out space for BOD, since the design points are mainly on the border of the “true”

NROY space.

We proceed to analyse in detail Term 2 of BDC, Ψ2(ξ), given in equation (5.18).

Similar to the analysis of Term 1 of BDC in Figure 5.14, we produce input space

plots for each candidate design showing the contributions towards Ψ2(ξ) over the

NROY space in Figure 5.15. The value behind each pixel is computed as

1

Nres

Nres∑
i=1

Ψ2(ξ; x(i), f(ξ)(i)) xl1 ≤ x
(i)
1 ≤ xl+1

1 , l = 1, . . . , nres − 1

xr2 ≤ x
(i)
2 ≤ xr+1

2 , r = 1, . . . , nres − 1,

where Ψ2

(
ξ; x(i), f(ξ)(i)

)
is given in equation (5.20). The value behind each pixel

is the mean contribution towards the value of Ψ2(ξ) computed at the input points

allocated to this pixel. Red coloured regions correspond to the input space where we

have a high expectation that input points in this region are part of wave 2 NROY as

well as the “true” NROY space. The complete opposite is true for the input points

in white coloured regions of the input space.

Similarly to the plots in Figure 5.14, we observe orange shading on the borders

of the “true” NROY space produced for Naive Design and Start for Design 1, which

lead to the larger values of the integrand of Ψ2(ξ). This indicates that we are unsure

whether this input region is contained in both the NROY space after wave 2 HM

and the “true” NROY space as part of BDC computation. Interestingly, for both

BOD and Start for Design 2 we observe a clearer representation of the overlap region,

which could be due to the fact that a number of points in these two candidate designs

are located close to the observation z, and on borders of the “true” NROY space.
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Figure 5.15: The integrand of Term 2, Ψ2(ξ), computed over wave 1 NROY space.
Each pixel of plots represents the mean value of the integrand of Term 2, Ψ2(ξ)
computed at input settings behind each pixel. For each panel plot we fix and consider
the effect of different design options for wave 2 design, ξ, on the integrand value
across the NROY space X 1. Design options for wave 2 are depicted as green squares.
Design for wave 1 are black points. The input parameter setting corresponding to
the observation z is the blue triangle. The ruled out input space after wave 1 HM
is in grey.

Finally, we proceed to analyse Term 3 of BDC, Ψ3(ξ), given in equation (5.16).

We generate input space plots for each candidate design in Figure 5.16, similarly to

those produced previously for predictive variance, Term 1 and Term 2. Each panel

plot in Figure 5.16 gives the contributions towards Ψ3(ξ) over the NROY space for

a candidate design. The value behind each pixel is computed as

1

Nres

Nres∑
i=1

Ψ3(ξ; x(i), f(ξ)(i)) xl1 ≤ x
(i)
1 ≤ xl+1

1 , l = 1, . . . , nres − 1

xr2 ≤ x
(i)
2 ≤ xr+1

2 , r = 1, . . . , nres − 1,

where Ψ3

(
ξ; x(i), f(ξ)(i)

)
is given in equation (5.21). The value behind each pixel

represents the mean contribution towards the value of Ψ3(ξ) obtained at the input

points allocated to this pixel.
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Figure 5.16: The integrand of Term 3, Ψ3(ξ), computed over wave 1 NROY space.
Each pixel of plots represents the mean value of the integrand of Term 3, Ψ3(ξ),
computed at input settings behind each pixel. For each panel plot we fix and consider
the effect of different design options for wave 2 design, ξ, on the integrand value.
Design options for wave 2 are depicted as green squares. Design for wave 1 are black
points. The input parameter setting corresponding to the observation z is the blue
triangle. The ruled out input space after wave 1 HM is in grey.

In Figure 5.16, red coloured regions correspond to the input regions where we

have a higher expectation that input points in these regions are part of the “true”

NROY space. The complete opposite conclusion is drawn about the white coloured

input regions. We observe that the input space plots in Figure 5.16 resemble the

input space plots in Figure 5.15, which could be explained by the fact that the

difference of two standard normal CDFs (see subsection 5.3.3 for more details) is

inside the integrand functions of Ψ2(ξ) and Ψ3(ξ).

We are interested in comparing wave 2 HM results for all four design candidates.

We start by producing the model runs, F[2], at each design, X[2] and proceed to

updating the probability distribution for f(x) to derive π
(
f(x)

)
.
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Figure 5.17: Each panel demonstrates a parameter plot showing points classified
as being in NROY space after two waves of history matching in grey when we use
the design in green for constructing Gaussian process emulators. Points in purple
represents the portion of “true” NROY space that has been ruled out. The design
used for wave 1 of HM are brown squares.

Figure 5.17 gives the results of wave 2 HM for each design candidate. In each

input space plot in Figure 5.17, input points retained after a second iteration of

history matching are shown in grey and the input points ruled out after two waves

of HM, but that are part of the “true” NROY space, are in purple. We also add

the candidate designs used to perform wave 2 HM represented by green squares

together with the design X[1], which are represented by brown squares. Table 5.5

provides the summary results of history matching for each design candidate. Based

on Figure 5.17 and Table 5.5, we derive that we obtain an NROY space for BOD and

Naive Design which are of similar sizes, i.e. 6.10% and 6.15% of the original input

space respectively. Both design options lead to the ruling out of a small percentage
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of input space that is considered as part of the “true” NROY space. Interestingly,

Start for Design 1 performs comparatively well, generating an NROY space which

is 6.51% of the original input space. This finding could be explained by the fact

that the design generated for wave 1 is sufficient to learn about the model response

behaviour close to the observation, while Start for Design 1 is used to learn about the

model response in high uncertainty regions. Start for Design 2 generates the NROY

space of size 7.92%, and the shape of the wave 2 NROY space is very similar to the

Term 1 decomposition over X 1 depicted in Figure 5.14.

Type NROY size Percentage of missing point

BOD 6.10% 4.44%
Naive Design 6.15% 5.67%

Start for Design 1 6.51% 5.10%
Start for Design 2 7.92% 3.29%

Table 5.5: Summary of history matching results after wave 2 for candidate designs
used to update Gaussian Process emulator to perform wave 2 HM. Percentage of
missing points corresponds to the percentage of points ruled out by performing wave
2 HM but that are part of “true” NROY space.

Based on this simple simulation study we could conclude that our proposed

Bayesian Design Criterion encourages the sampling of design points close to the

observation z within the pre-specified error structure in order to improve the pre-

dictions, E{F[1],f(ξ)}[f(x)], generated by an updated emulator for f(x). Also, our

proposed design criterion encourages exploration, since the predictive variance term,

V ar{F[1],f(ξ)}[f(x)], plays an important part in the computation of each individual

term of BDC. In particular, we observe the driving effect of high values of the pre-

dictive variance term on the Term 1 for Start for Design 1, which led to a higher BDC

score for this design candidate. Our proposed criterion indicates that this particular

design is an unfavourable choice to perform wave 2 of history matching among the

discussed design candidates. On the contrary, BOD contained a number of points

close to the observation z. As well as this, we observed a number of points placed

further away from z and the design points in X[1], which reduces our uncertainty

about the model behaviour in the previously unexplored parameter space.

207



5.6 Conclusion

In this Chapter, we have presented a new method for generating an ensemble to

perform the next iteration of history matching by employing a Bayesian experimental

design, that has not been previously used for iterative refocussing. We specify

a squared difference between the volume of the NROY space produced at the next

wave and the volume of the “true” NROY space as our loss function that corresponds

to our inferential aim to obtain an NROY space that contains all the points in the

input space that are close to the observations. The optimal design is found by

minimizing the expected loss. Our proposed design is easily decomposed into three

individual and interpretable terms.

A full Bayesian approach has been implemented by integrating Ψ(ξ) over the

posterior distribution of GP hyperparameters to obtain an optimal design for wave

1 of history matching in subsection 5.5.1. In the process of obtaining BOD for

wave 2 of history matching in subsection 5.5.2, we fixed the GP hyperparameters

at their MAP estimates, turning our proposed criterion into pseudo-Bayesian. We

recognise the importance of the full Bayesian design since it allows us to take into

account the effect of candidate design on the GP hyperparameter values, as well as

the uncertainty about these values, and we plan to adopt this approach for wave

m > 1 design.

In our simulation study, we have chosen a 2D toy model to provide a simple and

easy way to understand graphical representations of all of the major components of

the proposed BDC. We employed the BDC to obtain optimal designs for two waves

of history matching. We conclude that employing a computationally expensive BDC

to generate the initial design is not worthwhile, since a space-filling design works

well and is easy to obtain. On the contrary, employing BDC for wave m > 1 of

history matching could be useful. In particular, by analysing the terms of BDC for

wave 2 design individually, we conclude that our design criterion encourages both

exploration, i.e. reduction of the predictive uncertainty, as well as exploitation, i.e.

improving our knowledge about the model behaviour close to the observation.

In Chapter 6, we are interested in applying our nonstationary GP emulator via
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kernel mixture from Chapter 4 to a proposed BDC. This type of design could be

crucial when we are performing iterative refocussing by considering nonstationary

simulator response. Contrary to the “naive” design approach, our proposed BDC

contains the covariance structure from the GP emulator for f(x), which will be

informative during the iterative refocussing with a nonstationary computer model

response. We have observed nonstationary model responses many times in our joint

work with climate modellers, and we are interested in investigating the performance

of our proposed BDC in these cases.
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Chapter 6

Bayesian Optimal Design and the

Nonstationary GP model

6.1 Introduction

We introduced our Bayesian Design Criterion (BDC) for multi-wave history match-

ing in Chapter 5. In this Chapter, we are interested in providing an extension to

our BDC by finding a Bayesian Optimal Design (BOD) for history matching when

operating with a nonstationary model response.

In general, employing stationary design strategies such as uniform and space-

filling designs are believed to be ill-suited when we are dealing with a nonstationary

response, since we are interested in exploring more complicated regions of the input

space, for instance, a region of the input space with high variability in response

(Gramacy and Lee, 2009).

The majority of the nonstationary GP models, described in section 2.5, are

adapted to the sequential design of computer experiments. Sequential design of

computer experiments proceeds as follows: a new design point, xn+1, is chosen

by optimizing a pre-specified design criterion, Jn, with respect to a current design

set Xn = (x1, . . . ,xn); the GP emulator is refitted conditional on the new pair

(xn+1, f(xn+1)). Mathematically, xn+1 is added to a current design set as a point

210



that optimizes a design criterion Jn (Marmin et al., 2018)

xn+1 = argmin
x∈X

Jn(x), or

xn+1 = argmax
x∈X

Jn(x).

Similar to standard GP models, to obtain a sequential design by using a nonstation-

ary GP model, we are required to make the following two decisions: what design

criterion, Jn(·), to specify and how to update the GP model conditioned on a new

pair (xn+1, f(xn+1)). In general, the follow-up runs are produced to improve the

modellers’ knowledge, i.e. reduce uncertainty about the model behaviour. There-

fore the design criteria that are commonly used are variance-based.

The process of updating emulator after each subsequent design iteration is an-

other crucial decision. For instance, the Bayesian updating is not appropriate

for partition models such as TGP (Gramacy and Lee, 2008, 2009) and Voronoi-

tessellation GP (Kim et al., 2005; Pope et al., 2018), since the number and location

of partitions in the input space could change with the addition of follow-up runs.

Sequential Bayesian updating requires that the form of the model for f(x) is known

in advance.

After reviewing the application of nonstationary GP models to sequential design

in section 6.2, the main focus of this Chapter is the adaptation of our proposed

nonstationary GP emulator with kernel mixtures, introduced in Chapter 4, to the

BDC for iterative refocusing. In section 6.3, we investigate how the values of predic-

tive variance, V ar{F[1],f(ξ)}[f(x)], change in response to the varying model behaviour

across wave 1 NROY space, X 1, and how it affects individual components as well

as the overall score of the BDC. We proceed to compare the effect of BOD found by

employing a nonstationary GP model to a “naive”, space-filling design over the wave

1 NROY space, on the size and shape of the wave 2 NROY space. The water vapour

at 500 metres generated by a model described in section 3.2 is considered in our

application studies. In particular, we decided to perform two application studies.

In the first study in section 6.5, we use the values of observation and measurement
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error variance provided by climate modellers. For the second study in section 6.6,

we use synthetic values to study the effect on BDC. In section 6.7, we finish off with

a discussion and future developments to the BDC with our proposed nonstationary

GP emulator.

6.2 Sequential and adaptive designs for nonsta-

tionary computer models

Nonstationary GP emulators are employed to provide a trustworthy assessment of

uncertainty via predictive variance when operating with a nonstationary model re-

sponse. Predictive variance is considered as a measure of uncertainty about the

model behaviour and therefore, is widely used as part of the design criterion. In

subsection 6.2.1, we start by discussing a range of design criteria, Jn, employed for

sequential design with a nonstationary GP emulator in UQ literature. In subsection

6.2.2, we proceed to consider different approaches adopted to updating nonstation-

ary GP models for f(x) conditioned on the new pair (xn+1, f(xn+1)).

6.2.1 Design Criteria

We start by considering two design criteria. We define the mean square error crite-

rion as

JMSE
n (x) = C∗n(x,x) = Cov[f(x,x)|

{
Xn,F n

}
]. (6.1)

A new design point, xn+1, is added to a current design set as a point that maximizes

the design criterion, i.e.

xn+1 = argmax
x∈X

JMSE
n (x).

In a similar way we specify the integrated mean square error criterion, i.e.

J IMSE
n (x) =

∫
u

C∗n,x(u,u)du =

∫
u

Cov[f(u), f(u)|
{

Xn,Fn
}
∪
{
x,m∗n(x)

}
]du,

xn+1 = argmin
x∈X

J IMSE
n (x) (6.2)
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where C∗n(·, ·) and C∗n,x(·, ·) take the form of equation (2.7), and posterior mean

m∗n(·) takes the form of equation (2.6) introduced in subsection 2.3.1. In particular,

these two criteria focus on sampling around areas in X with the highest predictive

variance (Marmin et al., 2018). In these areas, we are most uncertain about the

behaviour of a simulator. These two design criteria are very similar to two active

learning approaches using the GP model (Gramacy and Lee, 2009). ALM (active

learning-MacKay) has exactly the same form as the mean square error criterion

given in equation (6.1), i.e. it selects an input point xn+1 from a set of candidates

that has the greatest predictive standard deviation (MacKay, 1992).

ALC (active learning-Cohn) is similar to the integrated mean square error cri-

terion given in equation (6.2) by considering a reduction in the predictive variance

over the input space X and defined as

JALCn (x) =

∫
u

(
C∗n(u,u)− C∗n,x(u,u)

)
du

=

∫
u

(
Cov[f(u), f(u)|

{
Xn,Fn

}
]− Cov[f(u), f(u)|

{
Xn,Fn

}
∪
{
x,m∗n(x)

}
]
)
du,

and the ALC approach selects xn+1 that maximize the expected reduction in squared

error over the input space X (Cohn, 1996), i.e.

xn+1 = argmax
x∈X

JALCn (x).

ALC criterion is computationally more intensive than ALM since it contains an

integral. However, ALM tends to select xn+1 along the boundary of the input

space since we tend to observe the highest values of predictive variance in these

input regions (Montagna and Tokdar, 2016). Despite this argument, Montagna

and Tokdar (2016) employed ALM approach with their proposed nonstationary GP

model to obtain follow-up runs for their computer experiments, while Gramacy and

Lee (2009) considered both criteria with TGP.

Pope et al. (2018) propose an adaptive sampling to estimate and better under-

stand the discontinuities between regions of Voronoi tessellation (for more details

about the proposed nonstationary GP model see section 4.2). They start by ob-
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taining a MAP model, tessellation that corresponds to the posterior sample of tes-

sellation parameters with the largest likelihood value. The sampling locations are

chosen iteratively on the boundary of the region of interest and furthest away from

the design points, Xn. This adaptive sampling is straightforward to understand and

perform in practice. However, more intuition is required to choose from which region

to sample.

Marmin et al. (2018) demonstrate the performance of variance-based criteria,

precisely MSE in equation (6.1) and IMSE in equation (6.2), with warped multiple

index GP model (WaMI-GP), described in detail in subsection 2.5. However, they

conclude that variance-based design criteria depend on the geometry, i.e. location

of design points across the input space X and not on the response values. They are

interested in sampling additional design points in the region with high-variability in

response. We will fail to identify these regions if we operate with a stationary GP

model. Instead, Marmin et al. (2018) propose a new design criterion for detecting

high variability in the model response based on the gradient of the GP.

Marmin et al. (2018) start by defining a vector valued GP5f(x) =
(
∂f
∂x1
, . . . ∂f

∂xp

)
,

whose distribution conditional on ensemble,
{

X,F
}

, depends on the derivatives of

m∗(·) and C∗(·, ·) defined in equation (2.6) and equation (2.7) respectively

E[5f(x)|
{

X,F
}

] = 5m∗(x)

Cov[5f(x),5f(x′)|
{

X,F
}

] =

(
∂2

∂ti∂t′j
C∗(t, t′)

∣∣∣
t=x,t′=x′

)
1≤i,j≤p

.

The squared gradient norm process Q(x) is defined by

Q(x) = 5f(x)T 5 f(x)

and is used to identify the direction of the largest change in response variability.

Deriving a full probability distribution for Q(x) is challenging and instead moments

of Q(x) are used in sampling criteria definition. In particular, the gradient norm

214



variance (GNV) criterion is defined as

JGNV,ηn (x) = V ar[Qη/2(x)|
{

Xn,Fn
}
, η > 0],

and the integrated gradient norm variance criterion (IGNV) as

J IGNV,ηn (x) =

∫
u

E
[
V ar[Qη/2(u)|

{
Xn,Fn

}
, f(x)]|

{
Xn,Fn

}]
du.

Marmin et al. (2018) are interested in sampling the next design point, xn+1, with

a high gradient-based criterion value, since it indicates that this point is located in

the high-variability region. To summarize they are interested in maximizing these

gradient-based criteria in the process of obtaining sequential design, i.e.

xn+1 = argmax
x∈X

JGNV,ηn (x), xn+1 = argmax
x∈X

J IGNV,ηn (x).

These new design criteria could be considered as improved alternatives to MSE and

IMSE by including the gradient of the GP explicitly so that users are able to locate

input regions where the model response variability increases (input regions with high

slopes). In this case, the prior kernel of GP is arbitrarily defined. Marmin et al.

(2018) demonstrated that the proposed design with stationary GP outperforms the

variance-based designs on a number of examples. However, the forms of the proposed

criteria are very sensitive to the choice of the η parameter, and it is not clear what

are the guidelines for specifying the value of η parameter.

6.2.2 Approaches to updating a nonstationary GP emulator

We proceed to consider different approaches adopted to updating, or refitting nonsta-

tionary GP model after obtaining the follow-up computer runs found by optimizing

one of the criterion introduced in subsection 6.2.1. The choice of the approach to

updating largely depends on a number of factors such as

• the knowledge and assumption about the parametric form of f(x)

• how we treat and estimate parameters of GP model
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• the computational costs of obtaining the follow-up computer model runs.

Montagna and Tokdar (2016) propose the following parametric form for f(x), defined

as

f(x) = h(x)Tβ + ε(x, Z),

where a residual term, ε(x, Z), is a zero-mean GP whose covariance is a function of

input x and a latent input Z. Since the parametric form of f(x) is known a priori,

the design points xn+1 could be chosen and sampled sequentially and the nonstation-

ary GP emulator updated conditioned on a new pair (xn+1, f(xn+1)). The updating

of nonstationary GP model is performed by employing particle learning (PL) (Lopes

and Tsay, 2011). The idea behind PL is to identify N particles
{
S

(i)
t

}N
i=1

, which

contain all the information about the uncertainties up to time t and used to approx-

imate the posterior distribution,
{
S

(i)
t

}N
i=1
∼ π(St|Xt,Ft), where Xt = (x1, . . . ,xt)

and Ft = (f(x1), . . . , f(xt)). In the case of nonstationary GP emulator approach,

the particles,
{
S

(i)
t

}N
i=1

=
{

(Zt, Kt, K̃t)
(i)
}

, are introduced, with latent input vec-

tor, Zt = (z1, . . . , zt), and at each stage the parameters of models, i.e. correlation

function parameters and latent input vector are updated to avoid particle depletion.

Particle depletion is defined as a poor approximation of particles to posterior distri-

bution due to lack of update of unknown quantities and model hyperparameters (see

Gilks and Berzuini (2001) for more details). Particle learning could be efficiently

used due to the conjugate prior specification for GP hyperparameters that allowed

Montagna and Tokdar (2016) to derive the predictive posterior distribution for f

conditioned on ensemble,
{

Xt,Ft
}

, a vector of latent input parameters, Zt, and ma-

trices of correlations Kt and K̃t. Since hyperparameters β and σ2 are marginalised,

only correlation function parameters, φ = (φ1, . . . , φp) and φ̃ = (φ̃1, . . . , φ̃p), have

to be updated. We think that it is possible to apply the proposed nonstationary GP

model to a classical design criterion. However, it is not clear how the complexity

of the updating changes with a different, more flexible GP hyperparameter prior

specification for β and σ2. Another question is whether PL could be used to choose

a batch of design points.

Contrary to Montagna and Tokdar (2016), Gramacy and Lee (2009) do not

216



assume that the model for f(x) is known a priori. Therefore to employ ALC together

with TGP, Bayesian MCMC posterior inference on
{
T ,Θ

}
is performed described

in Gramacy and Lee (2008), where T is a decision tree, and Θ is a collection of

region-specific hyperparameters, and then samples from ALC are taken conditional

on samples from
{
T ,Θ

}
.

Gramacy and Lee (2009) argue that many complex computer experiment runs

are produced in asynchronous distributed computer environment such as computing

agents, or processors, which tend to start and finish simulations at different times.

Sequential design is ill-suited for this type of computing environment since it requires

the computing agents to operate in parallel and at each step refit, or update, the

model, conditioned on newly obtained computer model runs. Instead, Gramacy

and Lee (2009) propose a Bayesian Adaptive Sampling (BAS) which incorporates

flexible design criterion (ALC and ALM) as well as copes with an asynchronous,

agent-based computing environment.

Bayesian adaptive sampling (BAS) proceeds in trials. As before we assume that

n design points and the corresponding responses have been gathered in previous

trials, i.e.
{

Xn,Fn
}

. We proceed to describe the steps involved in performing a

single trial of Bayesian adaptive sampling:

1. TGP model is estimated for
{

Xn,Fn
}

(for more details see Gramacy and Lee

(2008)).

2. Generate a space-filling candidate set of input points X̃ ∈ X of sizem. Proceed

to obtaining samples of ALM or ALC conditional on
{
T ,Θ

}
at X̃.

3. A queue of ordered candidates according to ALM and ALC score is formed.

4. BAS gathers the finished and running input configurations and adds them to

the design, Xn+m. Predictive expectation is used for running configurations

until the computer model run is available.

Before proceeding to a next trial of Bayesian adaptive sampling, TGP model has

to be updated. Instead of refitting TGP model for
{

Xn+m,Fn+m

}
, Gramacy and

Lee (2009) propose to randomly prune back the tree T which is claimed to allow
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short burn-in of the MCMC at the beginning of each trial and therefore provides

computational savings.

Contrary to two different fully Bayesian approaches described above, Marmin

et al. (2018) estimate nonstationary GP model parameters by likelihood maximiza-

tion. In particular, after obtaining a pair
(
xn+1, f(xn+1)

)
a likelihood function is

specified p
(
Fn+1|f(x)

)
, and the nonstationary GP model hyperparameters are fixed

at the maximum likelihood estimates.

6.3 Bayesian Design Criterion with nonstationary

GP emulator with kernel mixtures

Since we are interested in obtaining an optimal design, it is crucial to keep in mind

that the optimality is found with respect to the assumed parametric form for f(x)

(Gramacy and Lee, 2009). Therefore, when employing our proposed nonstationary

GP model inside BDC, we have to fix the number of input regions L to ensure that

the obtained design is optimal. The fixed L is also necessary for performing an

update on posterior distribution for f(x) after observing
{
ξ, f(ξ)

}
.

We employ the nonstationary GP model defined in equation (4.3) in subsection

4.3.1. We obtain a distribution π1

(
f(x)

)
that represents a posterior distribution for

f at a new input point x given L and is used to perform wave 1 of history matching.

In this Chapter, we only attempt to find Bayesian Optimal Design (BOD) to perform

wave 2 of history matching.

We demonstrated in subsection 5.3.1 that the proposed design criterion is decom-

posed into three interpretable terms, precisely Ψ1(ξ),Ψ2(ξ) and Ψ3(ξ). By employing

our proposed nonstationary GP model, we act under the assumption that there exist

L input regions of distinct model behaviour l = 1, . . . , L, such that ∪Ll=1Xl = X ,

which will have a direct impact on the BDC and its individual terms. In subsection

4.3.3 we proposed to impose an ordering on standard deviation parameter for the

distribution of standardized errors from stationary GP fit inside the mixture model,

i.e. ζ1 ≤ ζ2 ≤ · · · ≤ ζL. This condition is employed in to ensure a good mixing
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of Markov chains for mixture model parameters. However, this condition also leads

to the restrictions on our proposed nonstationary GP model, in particular, XL cor-

responds to the input space with high variability in response since we expect to

observe an increase in the range of standardized error’ values expressed via ζL. On

the contrary, X1 corresponds to the input space where the model response is “well-

behaved” since we expect to obtain lower absolute values of standardized errors from

stationary fit. We discussed in section 4.8 that a possible extension to the proposed

nonstationary GP model is to remove a two-stage approach and dependence on the

standardized errors from stationary fit and operate with a joint prior distribution

π
(
β, {σ2

l , δl, τ
2
l , λl(x)}Ll=1

)
. However, to aid our presentation of a method, we still

refer to XL and X1 as input regions with high variability and low variability in model

response respectively.

We assume that after performing wave 1 of history matching, we obtained an

NROY space X 1, defined as

X 1 = ∪Ll=1X 1
l

X 1
l ⊂ X 1, l = 1, . . . , L,

s.t. x ∈ X 1
l ⇔ λl(x) > λj(x), j =

{
1, . . . , L

}
/l.

Based on the decomposition of BDC, given in equation (5.11), together with the

NROY space X 1 decomposition, we rewrite the expression for the BDC. The first

term of the expected loss function, Ψ1(ξ), corresponds to the expected volume of

NROY space at wave 2 and is defined as

Ψ1(ξ) =
L∑
l=1

(∫ ∫
X 1

l

1

{ |z − E{F[1],f(ξ)}[f(x)]|√
V ar[e] + V ar[η] + V ar{F[1],f(ξ)}[f(x)]

≤ a

}

× π(f(ξ)|F[1])dxdf(ξ)

)
=

L∑
l=1

Ψ1l(ξ). (6.3)

Similarly, we redefine Ψ2(ξ) and Ψ3(ξ) terms of BDC. We specify Ψ2(ξ) that

corresponds to the expected volume of the input region that is in both NROY at
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wave 2 and “true” NROY, as

Ψ2(ξ) =
L∑
l=1

(∫ ∫
X 1

l

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E{F[1],f(ξ)}[f(x)]√

V ar{F[1],f(ξ)}[f(x)]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E{F[1],f(ξ)}[f(x)]√

V ar{F[1],f(ξ)}[f(x)]

)]

× 1

{ |z − E{F[1],f(ξ)}[f(x)]|√
V ar[e] + V ar[η] + V ar{F[1],f(ξ)}[f(x)]

≤ a

}
π(f(ξ)|F[1])dxdf(ξ)

)

=
L∑
l=1

Ψ2l(ξ). (6.4)

Finally, we re-define Ψ3(ξ), that corresponds to the expected volume of “true” NROY

space, as

Ψ3(ξ) =
L∑
l=1

(∫ ∫
X 1

l

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E{F[1],f(ξ)}[f(x)]√

V ar{F[1],f(ξ)}[f(x)]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E{F[1],f(ξ)}[f(x)]√

V ar{F[1],f(ξ)}[f(x)]

)]
π(f(ξ)|F[1])dxdf(ξ)

)

=
L∑
l=1

Ψ3l(ξ). (6.5)

In section 5.3, we discussed the effect of expectation, E{F[1],f(ξ)}[f(x)], on the in-

tegrand functions of the expected loss terms. In particular, we tend to observe

greater contributions towards the values of Ψ1(ξ) and Ψ2(ξ) from the input points

x ∈ X 1, at which we expect the model output to be close to z. We also tend to

observe greater contribution towards the final value of Ψ3(ξ) and Ψ2(ξ) from the

input points x ∈ X 1 at which E{F[1],f(ξ)}[f(x)] lies inside the interval

[
z − a

√
V ar[e] + V ar[η], z + a

√
V ar[e] + V ar[η]

]
.

We propose to employ our nonstationary GP to model heterogeneous response. The

modifications to the “out of the box”, stationary GP emulator are implemented in a

way that users obtain a fair assessment of uncertainty about the model response. In

particular, we express our uncertainty about model behaviour f at input point x via
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predictive variance, V ar{F[1],f(ξ)}[f(x)]. By employing our proposed nonstationary

GP emulator, we obtain larger values of predictive variance at x ∈ X 1
L. On the

contrary, we obtain lower values of predictive variance at x ∈ X 1
1 . Therefore we

expect to observe a variability in V ar{F[1],f(ξ)}[f(x)] across X 1, which would lead to

the variability in the integrand function values of expected loss terms.

In Chapter 5, we mainly considered the effect of predictions, E{F[1],f(ξ)}[f(x)], and

predictive variance, V ar{F[1],f(ξ)}[f(x)], obtained at an arbitrary input point x on the

integrand functions of individual terms of BDC. However, by employing our proposed

nonstationary GP model as part of BDC, we are required to take into account the

relative volumes of input space regions with characteristic model behaviour, i.e.

X 1
l , l = 1, . . . , L. For instance, if the volume of X 1

L is significantly smaller than

the volumes of X 1
l , l =

{
1, . . . , L − 1

}
, we would observe smaller contributions

from Ψ1L(ξ), Ψ2L(ξ) and Ψ3L(ξ) towards the final values of Ψ1(ξ), Ψ2(ξ) and Ψ3(ξ)

respectively.

In subsection 6.3.1, we consider in detail the behaviour of V arF[1]
[f(x)], ob-

tained as part of our proposed nonstationary GP model, across the input space

X . The predictive variance is considered for two main reasons. Firstly, this term

is crucial in obtaining the reduced input space X 1. Secondly, this term is part of

V ar{F[1],f(ξ)}[f(x)]. In subsection 6.3.2, we consider the effect of placing ξ in different

regions of input space on V ar{F[1],f(ξ)}[f(x)] values. In subsection 6.3.3, we draw con-

clusions about terms of expected loss function of BDC employed with nonstationary

GP model.

6.3.1 Covariance structure of a nonstationary GP model

employed at Wave 1

We define the predictive variance, V arF[1]
[f(x)], of distribution π1

(
f(x)

)
as

L∑
l=1

[
λl(x)kl(x,x)λl(x)− λl(x)kl(x,X[1])Λl(X[1])

[
K[1]

]−1
Λl(X[1])kl(X[1],x)λl(x)

]
−

L∑
l=1

λl(x)kl(x,X[1])Λl(X[1])
[
K[1]

]−1
( L∑

j 6=l

Λj(X[1])kj(X[1],x)λj(x)
)
, (6.6)
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where Λl(X[1]) is n1 × n1 diagonal matrix with ith diagonal entry λl(xi1). We also

specify n1 × n1 covariance matrix K[1], i.e.

K[1] =
L∑
l=1

Λl(X[1])kl(X[1],X[1])Λl(X[1]).

We observe that the first part of the predictive variance in equation (6.6) corresponds

to the sum of predictive variances computed using an individual region-specific ker-

nel and weighted by the corresponding mixture component. We define a weighted

precision term as Λl(X[1])
[
K[1]

]−1
Λl(X[1]) and investigate it in detail with the help

of a simple example.

Assume that we obtain X[1] = (x11,x21,x31) and therefore K[1] is 3×3 covariance

matrix computed at X[1]. We define a precision matrix Q =
[
K[1]

]−1
with Qim = qim

and i,m = 1, 2, 3 and proceed to compute a weighted precision, i.e.

Λl(X[1])QΛl(X[1]) =


λl(x11)2q11 λl(x11)λl(x21)q12 λl(x11)λl(x31)q13

λl(x21)λl(x11)q21 λl(x21)2q22 λl(x21)λl(x31)q23

λl(x31)λl(x11)q31 λl(x31)λl(x21)q32 λl(x31)2q33

 .

For instance, if we observe λl(x31)→ 0, which corresponds to the low probability of

point x31 being allocated to input region Xl, this, in turn, will lead to entries on the

third row and the third column to be close to zero, i.e.

λl(x31)λl(xi1)q3i = λl(xi1)λl(x31)qi3 → 0 i = 1, 2, 3.

Based on this simple example, we conclude that in the process of computing predic-

tive variance using a region-specific kernel and mixture component, say from region

l, we reduce the effect from design points in X[1] with a low probability of being

allocated to Xl since we observe close to zero entries in weighted precision matrix

at these points.

We draw a connection between our weighted precision matrix and a precision

matrix computed as part of the Gaussian Markov random field (GMRF). GMRF is

a discretely indexed Gaussian field, defined as X = (x1,x2, . . . ,xn), with Markov
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properties (Rue et al., 2009; Lindgren et al., 2011). In particular, the conditional

distribution for xi, π
(
xi|X−i

)
, where X−i =

(
x1, . . . ,xi−1,xi+1, . . . ,xn

)
, depends

only on a set of neighbours, Ni, to a point xi (Rue and Held, 2005). These Markov

properties are embedded inside the precision matrix Q, for which the non-zero entries

only correspond to the neighbours and diagonal elements, i.e.

Qim = 0 m /∈
{
i,Ni

}
.

In our case by employing our proposed nonstationary GP model, in the first term

of equation (6.6) we observe entries of weighted precision, Λl(X[1])QΛl(X[1]), close

to zero for points in X[1] with a low probability of being allocated to input region l,

i.e.

λl(xi1)λl(xm1)qim → 0 if λl(xi1)→ 0 or λl(xm1)→ 0,

which indicates that we are mainly interested to include information about f locally

from design points within Xl.

The second component of equation (6.6) represents our beliefs that the variability

in model response is continuous across the input space and we are interested in using

information across boundaries of input regions with distinct model behaviour in our

predictive variance computation. As part of the second component, we are required

to compute weighted precisions of the form

Λl(X[1])
[
K[1]

]−1
Λj(X[1]) = Λl(X[1])QΛj(X[1]).

We tend to observe the entries of a weighted precision matrix close to zero for input

points with low probabilities of being allocated to Xl and Xj, i.e.

λl(xi1)qimλj(xm1)→ 0 if λl(xi1)→ 0 or λj(xm1)→ 0,

which indicates that we are mainly interested in including information from design

points within input regions Xl and Xj.

We also propose to consider the extreme case, at input point x ∈ Xl with λl(x)�
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λj(x), j =
{

1, . . . , L
}
/l and since

∑L
l=1 λl(x) = 1, we observe that λl(x) → 1

and λj(x) → 0, j =
{

1, . . . , L
}
/l. For this particular extreme case, we obtain the

following approximation to the predictive variance

V arF[1]
[f(x)] ≈ kl(x,x)− kl(x,X[1])Λl(X[1])

[
K[1]

]−1
Λl(X[1])kl(X[1],x). (6.7)

We discussed in detail the effect of weighted precision, Λl(X[1])
[
K[1]

]−1
Λl(X[1]), in

particular the reduced effect, or even the discard of information, from the design

points in X[1] with a low probability of being allocated to Xl and strengthening

of the effect of information from the design points with a higher probability of

being allocated to Xl. We can draw the similarities between the predictive variance

behaviour in this extreme case and the predictive variance obtained with partition-

based nonstationary GP models such as TGP (Gramacy and Lee, 2008) and Voronoi

tessellation GP model (Kim et al., 2005; Pope et al., 2018).

In general, we expect to obtain larger values of V arF[1]
[f(x)] computed at x ∈ XL,

in particular at x ∈ XL with λL(x) � λl(x), l =
{

1, . . . , L − 1
}

, than predictive

variance values computed at x ∈ X1. This argument is important for two reasons.

Firstly, V arF[1]
[f(x)] is employed in our computations of the implausibility mea-

sure, I(x), across the original input space, x ∈ X , and, therefore, has a direct effect

on the shape and composition of wave 1 NROY space, X 1. In particular in section

2.6.1, we mentioned that low values of implausibility function, I(x), could occur

when our emulator is uncertain about the model behaviour, which is expressed via

large values of V arF[1]
[f(x)]. In case when we are operating with a nonstationary

GP emulator, this means that we could potentially retain input regions with high

variability in model response as part of wave 1 NROY space.

Secondly, V arF[1]
[f(x)] is the first part of the updated variance term that we

employ in BDC computation for wave 2. We consider in detail the effect of placing

candidate design points ξ in X 1 on V ar{F[1],f(ξ)}[f(x)], and as a result their potential

effect on BDC, which is explicitly discussed in subsection 6.3.3.
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6.3.2 Covariance structure of a nonstationary GP model

employed in Wave 2

In this subsection, we operate under the assumption that the NROY space after

performing wave 1 of history matching is defined as

X 1 = ∪Ll=1X 1
l , X 1

l = ∅, l = 1, . . . , L.

To perform wave 2 of history matching, we update our knowledge about f(x),

π1

(
f(x)

)
, and obtain a distribution π2

(
f(x)

)
for f at a new input point x given

a candidate ensemble,
{
ξ, f(ξ)

}
, mixture components, λ(x) =

{
λl(x)

}L
l=1

, and pa-

rameters β,∆,σ2, τ 2, defined as

f(x)|
{
ξ, f(ξ)

}
,λ(x),β,σ2,∆, τ 2 ∼ GP

(
E{F[1],f(ξ)}[f(x)], V ar{F[1],f(ξ)}[f(x)]

)
,

where expectation, E{F[1],f(ξ)}[f(x)], and variance, V ar{F[1],f(ξ)}[f(x)], computed via

equation (5.3) and equation (5.4) respectively. At wave 1 of history matching, we

employed V arF[1]
[f(x)] as a measure of our uncertainty about the model response

behaviour across the original input space X . Therefore, we consider the effect of

adding candidate design ξ on the values of V ar{F[1],f(ξ)}[f(x)], in particular, the

reduction in uncertainty provided by evaluating computer model at the candidate

design, ξ, to obtain f(ξ) and expressed via

CovF[1]
[f(x), f(ξ)]

[
V arF[1]

[f(ξ)]
]−1

CovF[1]
[f(ξ), f(x)].

This term is considered to play an important role in the process of Bayesian updating

since it contains a candidate design ξ. In Bayes Linear, this term corresponds to

(partial) resolved variance of f(x) by f(ξ) given F[1] (Goldstein and Wooff, 2007).

The partial resolved variance is considered to be useful in evaluating the effect of

adding f(ξ) to F[1] on V ar{F[1],f(ξ)}[f(x)] and therefore is crucial in guiding the

data collection process. By employing our nonstationary GP model, we express
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CovF[1]
[f(x), f(ξ)] as

L∑
l=1

[
λl(x)kl(x, ξ)Λl(ξ)− λl(x)kl(x,X[1])Λl(X[1])

[
K[1]

]−1
Λl(X[1])kl(X[1], ξ)Λl(ξ)

]
−

L∑
l=1

λl(x)kl(x,X[1])Λl(X[1])
[
K[1]

]−1
( L∑

j 6=l

Λj(X[1])kj(X[1], ξ)Λj(ξ)
)
. (6.8)

In particular, the adjusted covariance between f(x) and f(ξ) given F[1] in equation

(6.8) builds a connection between f(x) with x ∈ X 1 and f(ξ). Conclusions about

the adjusted covariance are very similar to the findings of V arF[1]
[f(x)] described

in subsection 6.3.1. At an arbitrary input point x ∈ X 1 in our calculations of the

adjusted covariance between f(x) and f(ξ) given F[1], we attempt to include the

information about the geometry of the design, X[1], across the input space together

with our nonstationary GP model definition to guide the decision wherein input

space to place a candidate design ξ.

We are interested to consider an extreme case for x ∈ X 1
l with λl(x)� λj(x), j ={

1, . . . , L
}
/l. In particular, we obtain the following approximation to the adjusted

covariance between f(x) and f(ξ) given F[1],

CovF[1]
[f(x), f(ξ)] ≈ kl(x, ξ)Λl(ξ)− kl(x,X[1])Λl(X[1])

[
K[1]

]−1
Λl(X[1])kl(X[1], ξ)Λl(ξ)

− kl(x,X[1])Λl(X[1])
[
K[1]

]−1
(∑

j 6=l

Λj(X[1])kj(X[1], ξ)Λj(ξ)
)
. (6.9)

The first line of equation (6.9) corresponds to the computation of adjusted covariance

between f(x) and f(ξ) given F[1] by employing a region-specific kernel together

with a region-specific mixture component at ξ. Since we include weighted precision,

Λl(X[1])
[
K[1]

]−1
Λl(X[1]), as part of this expression, for which we expect to observe

entries of a matrix close to zero that relate to points in X[1] with low probabilities

of being allocated to Xl. This, as a result, will lead to less effect or discard of

information about the model behaviour from input points in ξ with low probabilities

of being allocated to Xl. The terms of the second line of equation (6.9) are used to

update our prior covariance between f(x) and f(ξ) by employing the information

from the input points in ξ placed in input regions l and j, j =
{

1, . . . , L
}
/l. This
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term highlights that we do not believe in boundary discontinuities between two input

regions imposed by partition-based nonstationary GP models. Based on equations

(6.8) and (6.9), we conclude that at an arbitrary input point x ∈ X 1
l , l = 1, . . . , L

we mainly use in our predictions the information about the model behaviour from

input points in candidate design, ξ, placed in and around the same input region X 1
l .

Since we stated in subsection 6.3.1 that the predictive variance term values

V arF[1]
[f(x)] varies across the input space, in particular we observe larger values

of predictive variance at x ∈ X 1
L, than the same term being computed at x ∈ X 1

1 .

Based solely on one of the variance-based criteria, we prefer to choose candidate

design, ξ, with a majority of design point being placed in the high-variability re-

gion, as we expect to obtain a greater reduction in the uncertainty expressed via

CovF[1]
[f(x), f(ξ)]

[
V arF[1]

[f(ξ)]
]−1

CovF[1]
[F[1], f(x)], leading to the lower values of

V ar{F[1],f(ξ)}[f(x)] at an arbitrary input point in X 1.

6.3.3 Linking BDC to nonstationary GP model

We return to consider each term of the proposed BDC. The primary purpose of this

subsection is to link our findings about V ar{F[1],f(ξ)}[f(x)] behaviour across X 1 with

a modified form of BDC employed with nonstationary GP emulator.

In subsection 5.3.2, we demonstrated that Ψ1(ξ) contains an integrand function

with a membership rule, that depends on the implausibility function I(x) and we

express Ψ1(ξ) in equation (6.3) as a sum of L distinct terms Ψ1l(ξ), l = 1, . . . , L,

defined as

Ψ1l(ξ) =

∫ ∫
X 1

l

1

{ |z − E{F[1],f(ξ)}[f(x)]|√
V ar[e] + V ar[η] + V ar{F[1],f(ξ)}[f(x)]

≤ a

}
π(f(ξ)|F[1])dxdf(ξ).

(6.10)

The first term of the expected loss function expresses our aim to choose candidate

design points, ξ, that would lead us to a tighter calibration. One way to achieve

a tighter calibration is to obtain computer model runs, f(ξ), that would reduce

the values of predictive variance, V ar{F[1],f(ξ)}[f(x)], across X 1. In particular, by

reducing our uncertainty about model behaviour, we mainly expect to retain input
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points with conditional mean close to observation z inside wave 2 NROY space.

Since we operate with a nonstationary response, which is explicitly modelled by

our proposed nonstationary GP emulator, one option is to place the majority of

candidate design points in the high-variability region X 1
L. As a result, we expect to

observe a greater reduction in the predictive variance term V ar{F[1],f(ξ)}[f(x)] at the

input points x ∈ X 1
L. However, equation (6.10) demonstrates that the contribution

from Ψ1l towards the final value of Ψ1(ξ) also depends on the size of X 1
l , since we

are computing an integrand function over the input region X 1
l , l = 1, . . . , L. For

instance, if after performing Wave 1 of history matching the volume of X 1
L is small

relative to X 1, we will observe smaller contribution from Ψ1L(ξ) towards the final

value of Ψ1(ξ).

Similar to Ψ1(ξ), we express the third term of BDC in equation (6.5) as a sum

of L distinct terms Ψ3l(ξ), l = 1, . . . , L, defined as

Ψ3l(ξ) =

∫ ∫
X 1

l

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E{F[1],f(ξ)}[f(x)]√

V ar{F[1],f(ξ)}[f(x)]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E{F[1],f(ξ)}[f(x)]√

V ar{F[1],f(ξ)}[f(x)]

)]
(6.11)

× π(f(ξ)|F[1])dxdf(ξ).

In subsection 5.3.3, we demonstrated that lower value of V ar{F[1],f(ξ)}[f(x)] obtained

at x ∈ X 1 lead to larger absolute values of the two CDF functions conditioned on

the expected value, E{F[1],f(ξ)}[f(x)], being close to observation z within pre-specified

tolerance to model error and observation error. By reducing our uncertainty about

model behaviour, we mainly retain input points x ∈ X 1 inside the expected “true”

NROY space with conditional mean close to observation z. Since we operate with

a nonstationary model response, placing a large proportion of points in ξ in X 1
L will

lead to the reduction in uncertainty about model behaviour in this particular region

and result into greater change in Ψ3L(ξ) term value. However, similar to the analysis

of the first term of BDC, the contribution from Ψ3L(ξ) towards the final value of

the third term of BDC, Ψ3(ξ), is largely determined by the relative volume of X 1
L.
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Finally, we consider Ψ2(ξ) of the BDC, which in equation (6.4) is expressed as a

sum of L separate terms Ψ2l(ξ), l = 1, . . . , L, defined as

Ψ2l(ξ) =

∫ ∫
X 1

l

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E{F[1],f(ξ)}[f(x)]√

V ar{F[1],f(ξ)}[f(x)]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E{F[1],f(ξ)}[f(x)]√

V ar{F[1],f(ξ)}[f(x)]

)]
(6.12)

× 1

{ |z − E{F[1],f(ξ)}[f(x)]|√
V ar[e] + V ar[η] + V ar{F[1],f(ξ)}[f(x)]

≤ a

}
π(f(ξ)|F[1])dxdf(ξ).

The integrand in equation (6.12) contains the product of integrands from equation

(6.10) and equation (6.11), i.e. the membership of an arbitrary input point x ∈ X 1 at

the next iteration of history matching is now weighted by the difference of two CDFs.

Similar arguments about the effect of reducing our uncertainty about the model

behaviour on the value of integrand of Ψ2l(ξ) conditioned on the expetcted value

being close to observation z are derived. As before we observe that the contribution,

effect, from Ψ2l(ξ) towards the final term Ψ2(ξ) largely depends on the relative

volume of X 1
l .

The variance-based design criteria commonly employed as part of the sequential

design with nonstationary GP models tend to encourage a selection of candidate

design in the high-variability input region since obtaining computer model runs is

expected to reduce our uncertainty about the model behaviour in this region. On

the contrary, the BDC employed with our proposed nonstationary GP model has a

number of unique and important features. Firstly, by employing our nonstationary

GP model, we could explicitly include inside our BDC computation the variability in

uncertainty about the model behaviour across X 1 and how our uncertainty changes

with the addition of candidate design. Secondly, the composition of reduced input

space is considered inside BDC computation by expressing each individual term of

BDC as a sum of L region-specific contributions towards these terms. For instance,

by placing a significant amount of points ξ in X 1
L would change region-specific BDC

terms, i.e. Ψ1L(ξ),Ψ2L(ξ) and Ψ3L(ξ), due to the reduction in uncertainty about

model behaviour in this region. However, the effect from these terms towards the
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final terms of BDC, i.e. Ψ1(ξ),Ψ2(ξ) and Ψ3(ξ) are limited if the relative volume of

X 1
L is small. In this case, our BDC would indicate that the candidate design ξ with

the majority of input points placed in the high-variability region is unfavourable

choice to perform wave 2 of history matching.

In this Chapter, we consider the process of obtaining BOD for wave 2 of history

matching and behaviour of individual components of BDC. The motivation behind

this focus is that it is more convenient to draw a connection between the BDC

individual terms and the proposed nonstationary GP model. In particular in our

expressions of V arF[1]
[f(x)] and CovF[1]

[f(x), f(ξ)] we explicitly used our kernel mix-

ture formulation. However, we would like to point out that BDC employed with our

proposed nonstationary GP model is not limited to m = 2 Wave of history match-

ing, since for m > 2 the kernel mixture is contained inside V ar{〈F〉[m−1],f(ξ)}[f(x)]

and E{〈F〉[m−1],f(ξ)}[f(x)].

6.4 Implementation details

In this section, we discuss a number of practical details that we implement to com-

pute BDC with a nonstationary GP emulator. We start by describing the process

of performing m waves of history matching.

1. Start with m = 1 and generate X[1] by employing one of the available space-

filling approaches and obtain computer model runs F[1]. Follow the procedure

described in section 4.3 for fitting a nonstationary GP emulator by defining a

prior distribution on f(x), denoted π
(
f(x)

)
, a Gaussian process distribution

with mean function

E
[
f(x)

]
= h(x)Tβ

and covariance function

Cov
[
f(x), f(x′)

]
= k(x,x′;σ2,∆, τ 2)

=
L∑
l=1

λ̂l(x)λ̂l(x
′)kl(x,x

′;σ2
l , δl) + 1

{
x = x′

} L∑
l=1

zl(x)zl(x
′)τ 2

l .
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Fix the number of input regions L and fix GP hyperparameters at MAP,

ΘMAP =
{
βMAP ,σ

2
MAP ,∆MAP , τ

2
}

, throughout the whole Bayesian updating

process in order to reduce computational efforts. The form of the mixture

model is fixed, i.e. for x ∈ X the values of a vector of mixture components

λ(x) =
(
λ1(x), . . . , λL(x)

)
are computed for M posterior samples (after warm-

up) and fixed at the mean value over the posterior samples denoted by λ̂(x) =(
λ̂1(x), . . . , λ̂L(x)

)
:

λ̂(x) =
1

M

M∑
m=1

λ(x, Am).

We use EF[1]
[f(x)] and V arF[1]

[f(x)] to obtain wave 1 NROY space, X 1, which

is defined as

X 1 =

{
x ∈ X :

|z − EF[1]
[f(x)]|√

V ar[e] + V ar[η] + V arF[1]
[f(x)]

≤ a

}

2. At wave m > 1, we start with a prior distribution πm−1

(
f(x)

)
for f(x) as

f(x)|ΘMAP , λ̂(x) ∼ GP
(
E〈F〉[m−1]

[f(x)], V ar〈F〉[m−1]
[f(x)]

)

and proceed to obtain an optimal Bayesian Design by minimizing Ψ(ξ) using

an optimization algorithm, where the size of ξ is pre-specified and fixed. We

denote the derived Bayesian Optimal Design as X[m] = arg minξ Ψ(ξ).

3. We generate computer model runs F[m] at the design X[m] and update the

probability distribution for f(x) to derive πm
(
f(x)

)
, which is

f(x)|{X[m],F[m]},ΘMAP , λ̂(x) ∼ GP
(
E{〈F〉[m−1],F[m]}[f(x)], V ar{〈F〉[m−1],F[m]}[f(x)]

)
.

4. We employ E{〈F〉[m−1],F[m]}[f(x)] and V ar{〈F〉[m−1],F[m]}[f(x)] to obtain wave m

NROY space, which is defined as

Xm =
{

x ∈ Xm−1 :
|z − E{〈F〉[m−1],F[m]}[f(x)]|√

V ar[e] + V ar[η] + V ar{〈F〉[m−1],F[m]}[f(x)]
≤ a
}
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Repeat Steps 2-4 until, for instance, experimental budget has been exhausted

or no change in the NROY space size is observed.

We remark on the process of computing BDC and searching for an optimal

design for wave m of history matching in practice. In section 6.3, we decomposed

the individual terms of BDC into L terms computed over an input region with

characteristic model behaviour. We redefined Ψ(ξ) such as

Ψ(ξ) =
L∑
l=1

Ψ1l(ξ)− 2
L∑
l=1

Ψ2l(ξ) +
L∑
l=1

Ψ3l(ξ) =
L∑
l=1

(
Ψ1l(ξ)− 2Ψ2l(ξ) + Ψ3l(ξ)

)
,

where the integrand function of individual terms Ψ1l(ξ), Ψ2l(ξ) and Ψ3l(ξ) are com-

puted over the input region Xm−1
l ⊂ Xm−1. We define Xm−1

l and Xm−1 as

Xm−1 = ∪Ll=1Xm−1
l

Xm−1
l ⊂ Xm−1

s.t. x ∈ Xm−1
l ⇔ λl(x) > λj(x), j =

{
1, . . . , L

}
/l.

However, in practice, we do not disaggregate the computation of individual terms

of BDC with respect to Xm−1
l , l = 1, . . . , L since this does not provide us with any

computational gains. The main reason of employing this input space fragmentation

in our description of proposed approach in section 6.3 is to demonstrate that our

proposed BDC does not only take into account the variability in model response

behaviour across the reduced input space via nonstationary GP model defined for

f(x), but it also includes the information about the decomposition of Xm−1. In

practice, we perform BDC computation in a similar way described in section 5.4.

Similar to Chapter 5, we face the following numerical problem in searching for

optimal design: for fixed sample size nm and Bayesian Design Criterion Ψ(ξ), find

ξ = (x1m, . . . ,xnmm) that minimizes Ψ(ξ), i.e. ξ∗ = arg min Ψ(ξ). We are faced with

nm × p-dimensional optimization problem, which is more challenging since we are

operating with a larger number of design points nm and input parameters p.

In subsection 5.5.2, in our simulation study, we considered the NROY space

obtained at wave 1, X 1, as a continuous region. In this Chapter, we adopt the
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sampling design on a discrete region since it is much easier to implement in input

space with higher dimensions (Zhu and Stein, 2005). For our simulation studies in

section 6.5 and section 6.6, to obtain design for wave m, we will assume that Xm−1

is a finite set of input points of size Nm−1, and ξ to be any subset of Xm−1 with

fixed size nm.

To obtain an optimal (or locally optimal) design for wave m, we adapt the sim-

ulated annealing algorithm (SAA), which has been widely used in design problems

(Lark, 2002; Zimmerman, 2006; Woods, 2010; Williamson, 2015).

6.5 Application Study 1

We consider the SANDU/REF case in the SCM that was presented in Chapter 3.

As part of history matching, we encounter a nonstationary response, qv500, water

vapour at 500 metres, against five input parameters from one of the parameterization

schemes developed by climate modellers from the HIGH-TUNE project. Table 6.1

provides all the necessary information such as the observation value on LES, z,

together with the variance of observation error, V ar[e], and the variance of model

discrepancy, V ar[η], in order to perform history matching (HM).

We perform two waves of HM. At wave 1 of HM, described in subsection 6.5.1,

we compare the effect of employing stationary and nonstationary GP emulators in

HM on the shape and size of the NROY space. However, this comparison is not

the main focus of this Chapter. In subsection 6.5.2, we proceed to employ BDC

in obtaining BOD to perform wave 2 of HM. We are interested in comparing the

size and shape of wave 2 NROY space produced by an updated nonstationary GP

emulator with BOD, “naive” design and an arbitrary design. An arbitrary design is

generated by choosing points in wave 1 NROY space with implausibility values close

to 3. Effectively, the majority of points from the arbitrary design are located on

the borders of wave 1 NROY space. We could draw similarities between this design

approach and uniform sampling in NROY space for a high-dimensional problem.

In particular, it is extremely challenging to obtain input points with implausibility

less than 1.5, 2 and 3 when operating with a model with a large number of input
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parameters and a small size of NROY space relative to the original input space

(Williamson and Vernon, 2013).

z V ar[e] V ar[η] a

13.41 0.0078 0.005 3

Table 6.1: Information to perform history matching in application study 1.

6.5.1 Wave 1

We generate a maximin LHC of size 90 as our design for wave 1 HM, denoted as

X[1], and we obtain a vector of climate model runs, F[1], computed at this design.

We chose a space-filling design since we are interested to learn as much as possible

about the model response behaviour across the whole input space X .

Figure 6.1: qv500 response against five input parameters on the standardized scale.

The blue dashed lines correspond to z plus and minus 2
(
V ar[e] + V ar[η]

)1/2
. The

values of z, V ar[e] and V ar[η] are provided in Table 6.1.

From Figure 6.1, we observe the change in the response variability against the

input parameter thermals ed dz. In particular, we identify three different regions

of characteristic response behaviour. For thermals ed dz < −0.5, values of qv500

are nearly constant; for −0.5 < thermals ed dz < 0.5, there is an increase in

the variability of response; and, for thermals ed dz > 0.5, we again observe a

stabilisation in the model response. In regards to the other input parameters, we
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find two levels of response behaviour, i.e. a nearly constant behaviour of qv500 at

13.0 and more complex behaviour in the range between 12.1 and 12.8.

We use ExeterUQ software, presented in Chapter 3, to construct an “out of

the box”, stationary GP emulator. First, we obtain a form of regression function,

h(x), by employing a stepwise regression and following the procedure presented by

Williamson et al. (2013). However, contrary to the approach adopted in Chapter 3

to specifying only parameters selected into h(x) inside the GP covariance function,

k(·, ·;σ2, δ, τ 2), we define all input parameters, since this form of covariance function

is used for the consecutive iterations of HM. The main reason for this modification

is that the input parameter that is “less active” at wave 1 could become “active”

at the next iteration of HM (for details about “active” and “less active” parameters

see subsection 2.3.5).

Figure 6.2: ei (LOO standardized errors) against the input parameters.

Before performing any inference with the stationary GP emulator described

above, we perform diagnostic checks such as Leave-One -Out (LOO) Cross-Validation.

We obtain the LOO standardized residuals, ei, and produce scatter plots of LOO

standardized residuals against input parameters in Figure 6.2. In particular, we

observe a clear relationship between the obtained errors and the input parameter

thermals ed dz. Similar to the scatter plots in Figure 6.1, we could identify three

distinct regions of standardized errors’ behaviour. For thermals ed dz < −0.5, the
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standardized errors’ values are centred around zero with very low variability; while,

for −0.5 < thermals ed dz < 0.5, the standardized errors’ variability increases, i.e.

ranging from -2.5 to 2.5. In the region of input space where thermals ed dz > 0.5,

the variability of the standardized errors decreases with the range of values being

between -1 and 1.

Contrary to the approach presented in Chapter 4, where we specified a linear

function g(x) as part of a categorical regression in equation (4.4) and obtained

the number of input regions L by considering AICmod score, we decided to define

g(x) = (1, x2), where x2 corresponds to the input parameter thermals ed dz, and

L = 3, based on our expert opinion and the standardized errors scatter plots in

Figure 6.2. Figure 6.3 presents the performance of our mixture model, and we

conclude that the selected form of g(x) and L = 3 are good choices for a mixture

model.

Figure 6.3: Mixture model performance: coloured ei (LOO standardized errors)
against input parameters, where the deep red colour corresponds to a higher prob-
ability of a point being allocated to region 1 (low variability region), the deep blue
colour corresponds to the higher probability of a point being allocated to region 2,
while the green colour corresponds to a higher probability of a point being allocated
to region 3 (high variability region).

In this subsection, we perform a comparison between history matching results

obtained for stationary and nonstationary GP emulators. To perform history match-

ing we start by generating a random Latin Hypercube sample of 100,000 points in

parameter space. Using a stationary GP emulator at wave 1 gives an NROY space

of size of 16.22% of the original parameter space X . By employing a nonstationary

GP emulator; instead, we are able to rule out approximately 7% more of the original

parameter space X , leaving 9.19% of X as an NROY.
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We produce the NROY density and minimum implausibility plots for 2D pro-

jections for the following parameters thermals fact epsilon, thermals ed dz and

cld lc lsc in Figure 6.4. Each panel on the upper triangle shows the proportion of

parameter settings behind each pixel that are NROY. Grey regions are completely

ruled out. The lower triangle shows minimum implausibility plots. We plot the

value of the smallest implausibility found in each pixel. For comparative purposes,

the plots have the same orientation as those on the upper triangle. From NROY

density plots and minimum implausibility plots in Figure 6.4, we observe that by

employing a stationary GP emulator the region of the input space with small val-

ues of thermals ed dz is retained in the NROY space, due to underconfidence of

the stationary GP emulator in this region. In contrast, this input region has been

ruled out by our proposed nonstationary GP emulator. From NROY density plots

obtained for the nonstationary GP emulator in Figure 6.4, we discover a close to

linear relationship between thermals fact epsilon and cld lc lsc, and rule out

the input space with high values of both of these parameters.
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Figure 6.4: NROY density plots (upper triangle) and minimum implausibility plots
(lower triangle) for Xp of NROY space produced by a stationary GP emulator (on
the left) and a nonstationary GP emulator (on the right). Each panel plots either
NROY density or minimum implausibility for a pair of parameters. NROY densities,
for each pixel on any panel in the upper triangle, represent the proportion of points
in Xp behind that pixel that are NROY and are indicated by the colour whose scale
is indicated on the right. Minimum implausibilities, for each pixel on any panel on
the lower triangle of the picture, represent the smallest implausibility found in Xp.
These plots are oriented the same way as those on the upper triangle, for the ease
of visual comparison.

We proceed to perform wave 2 HM by considering the nonstationary GP emulator

only and the NROY space obtained with this emulator.

6.5.2 Wave 2

To perform wave 2 HM, we start by obtaining X[2] in X 1. We specify n2 = 82

since only 8 design points from X[1] are retained in X 1, and we are interested in

a high-density ensemble in X 1 to improve the performance of the GP emulator in

this reduced region. We study the effect of different design choices for wave 2 HM

on the X 2 obtained with an updated nonstationary GP emulator. In particular,

we consider three design choices. “Naive” design or space-filling design (Naive De-

sign) is generated by maximizing the minimum Euclidean distance between design

points similar to the approach presented in subsection 5.5.2. The second design

choice is an arbitrary design (Arbitrary Design), which is obtained by randomly
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sampling n2 points in X 1 with implausibility values close to 3. Finally, we also

obtained a Bayesian Optimal Design (BOD) by employing a simulated annealing

algorithm. We specified N = 5000 as the number of Monte Carlo (MC) samples for

x(1), . . . ,x(N) from the NROY space X 1 and f(ξ)(1), . . . , f(ξ)(N) from the distribution

MVN
(
EF[1]

[f(ξ)], V arF[1]
[f(ξ)]

)
. We defined Arbitrary Design as a starting design for

our optimization algorithm. We attempted to use Naive Design as a starting design

for our optimization algorithm; however we failed to obtain any improvement in the

BDC score given MC error.

Figure 6.5 shows the input space plots for a selection of input parameters with

points classified as being in NROY after a single wave of HM in grey together

with design candidates for wave 2 in blue and space-filling design for wave 1 in

green. Each row in Figure 6.5 corresponds to the input space plots produced for

a design candidate for wave 2 HM described above. From the input plots between

thermals ed dz and thermals fact epsilon for BOD and Naive Design, we ob-

serve a number of points are placed in the corner of X 1, i.e. in the region where the

value of thermals ed dz is close to −0.5 and the value of thermals fact epsilon is

close to 1. It is hard to conclude that Naive Design is space-filling across X 1 since we

observe a number of clusters of points in the input plot between thermals ed dz and

thermals fact epsilon and the input plot between cld lc lsc and thermals ed dz.

This could be caused by limitations in the optimization approach as well as a large

number of candidate design points n2. The allocation of points of BOD across the

X 1 vaguely resembles the allocation of points of Naive Design. In regards to Arbitrary

Design, the majority of points are placed on the borders of the X 1, in particular close

to the lower bound of thermals ed dz, i.e. thermals ed dz close to -1.
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Figure 6.5: Comparison between “naive” design (Naive Design), Bayesian Optimal
Design (BOD) and arbitrary design (Arbitrary Design). On each row a parameter
plot shows points classified as being NROY after wave 1 of HM in grey together
with design candidates for wave 2 (blue) and space-filling design for wave 1 (green).

We proceed to compute BDC at each of the design choices. From Table 6.2 and

Figure 6.6, we observe that the lowest BDC score 0.162 corresponds to BOD. In

general, BOD is better than Naive Design with BDC score 0.168; however, we still

consider Naive Design as competitive given Monte Carlo (MC) error. The BDC at

Arbitrary Design generated the largest value of the score, i.e. 0.186, which indicates

that we consider Arbitrary Design as an unfavourable choice for wave 2 HM design

guided by the proposed BDC.
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Type BDC std. error BDC-2×std.error BDC+2×std.error

BOD 0.162 0.0024 0.157 0.167
Naive Design 0.168 0.0024 0.163 0.173

Arbitrary Design 0.186 0.0025 0.181 0.191

Table 6.2: Bayesian Design Criterion (BDC) computed at BOD, Naive Design and
Arbitrary Design. The second column corresponds to the BDC score, the third column
is the Monte Carlo (MC) standard error on the BDC score, the fourth and the fifth
columns correspond to the BDC value plus and minus two MC standard errors.

Figure 6.6: Plots of computed Bayesian Design Criterion (BDC) together with two
Monte Carlo (MC) standard error bars for three design choices. We specified N =
5000 Monte Carlo samples in the Bayesian Design Criterion computation.

We proceed to compare the individual components of BDC for all three de-

sign choices. We start by considering the predictive variance, V ar{F[1],f(ξ)}[f(x)],

computed over X 1, where ξ corresponds to each of the design choice. Figure

6.7 demonstrates the predictive variance plots for 2D projections of parameters,

thermals ed dz and thermals fact epsilon. We start by specifying the number

of pixels, nres, for plots. The map is shown by fixing the two parameters labelled

for each pixel at the value of a pixel and exploring a 100-point Latin Hypercube in

the other three dimensions of a climate model similar to the way Williamson et al.

(2013) produced NROY density and implausibility plots. The value behind each
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pixel is the mean value of the predictive variance obtained as

1

Nres

Nres∑
i=1

V arF[1],f(ξ)(i) [f(x(i))] x
(i)
1 = xl1, l = 1, . . . , nres

x
(i)
2 = xm2 ,m = 1, . . . , nres,

where Nres is a number of input points inside the pixel, Nres = 100, and x1 and x2

correspond to the input parameters thermals ed dz and thermals fact epsilon.

Red and orange coloured areas indicate higher uncertainty about model behaviour

in this particular region, while white coloured areas correspond to input regions with

lower predictive uncertainty. Grey regions are completely ruled out after a single

wave of history matching.

Figure 6.7: Comparison between “naive” design (Naive Design), Bayesian Optimal
Design (BOD) and arbitrary design (Arbitrary Design) in the Application Study 1 for
2D projections over the NROY space. Each panel plots the predictive variance for a
pair of parameters thermals ed dz and thermals fact epsilon. The value behind
each pixel on any panel represents the mean value of predictive variance found by
fixing the two parameters at the plotted location and varying the other 3 dimensions
of parameter space.

We observe similarities in the predictive variance representation produced for

BOD and Naive Design in Figure 6.7. The largest value of predictive variance is

obtained for Arbitrary Design in the corner of X 1, where thermals ed dz is close to

−0.5, and thermals fact epsilon is close to 1.0. The parameter plots for BOD and

Naive Design in Figure 6.5 demonstrate that a number of points in these candidate

designs are placed in this region, which, as a result, led to lower values of predictive

variance.

Since we observe the difference in the predictive variance between our design op-

tions only locally, we decided to concentrate our analysis in the reduced input region,
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i.e. in the range −1 < thermals ed dz < 0 and 0 < thermals fact epsilon < 1.

Similar to a comparative study performed in section 5.5, we are interested in

considering the contributions towards Term 1, Ψ1(ξ), in equation (5.13), over X 1

for each candidate. The first column plots in Figure 6.8 demonstrate the maps

produced by fixing the two parameters labelled for each pixel at the value of a pixel

and exploring a 100-point Latin Hypercube in the other three dimensions. The value

behind each pixel is the proportion of points that are expected to constitute wave 2

NROY space as part of BDC computation and obtained as

1

Nres

Nres∑
i=1

Ψ1

(
ξ; x(i), f(ξ)(i)

)
, x

(i)
1 = xl1, l = 1, . . . , nres,

x
(i)
2 = xm2 ,m = 1, . . . , nres, (6.13)

where Ψ1

(
ξ; x(i), f(ξ)(i)

)
is given in equation (5.19). We consider the value behind

each pixel as the contribution towards Term 1, Ψ1(ξ).

Since we employed a nonstationary GP in our BDC computation, we investigate

the variability in the contributions towards Ψ1(ξ) over X 1 determined by Ψ1l(ξ)

with l = 1, 2, 3, given in equation (6.10). We consider Ψ1l(ξ) as the expected volume

of retained input points from input space Xl with characteristic model response

behaviour after performing two waves of history matching. In practice, the map of

contributions to Ψ1l(ξ) for each design candidate is obtained in the same way as

Ψ1(ξ), i.e. by employing the equation (6.13) with an extra condition that λl(x
(i)) >

λj(x
(i)), j = {1, . . . , L}/l. In the second and third column plots, the values behind

each pixel correspond to the mean contributions to the values of Ψ11(ξ) and Ψ13(ξ),

respectively. We do not produce plots of contributions towards Ψ12(ξ), since we

failed to obtain any input points x ∈ X 1 with λ2(x) > λl(x), l = 1, 3. This finding

indicates that the input space X2 has been completely ruled out after a single wave

of history matching.

In the plots in Figure 6.8, red and orange areas correspond to input regions with

the highest proportion of input points that we expect to retain in wave 2 NROY

space, and therefore the largest contributions towards Ψ1(ξ) or its region-specific
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components, precisely Ψ11(ξ) and Ψ13(ξ). On the contrary, white areas correspond

to input regions with the proportion of input points that we expect to retain in wave

2 NROY space close to zero. In the first column plots in Figure 6.8, grey regions

correspond to regions that are completely ruled out after a single wave of history

matching. In the second and third column plots, grey regions also correspond to

input regions not considered inside the computation of region-specific components

of Term 1.

Figure 6.8: Comparison of contributions towards Term 1, Ψ1(ξ), between “naive” de-
sign (Naive Design), Bayesian Optimal Design (BOD) and arbitrary design (Arbitrary
Design) in the Application Study 1 for 2D projections over the NROY space for
a pair of parameters thermals ed dz and thermals fact epsilon. First column:
the value behind each pixel represents the proportion of points behind that pixel
in the remaining 3 dimensions that are expected to remain in wave 2 NROY space.
The ruled out input space is in grey. Second column: the value behind each pixel
corresponds to the proportion of points in input region X 1

1 that are expected to
remain in wave 2 NROY space. The ruled out input space and X 1

3 are in grey.Third
column: the value behind each pixel corresponds to the proportion of points in input
region X 1

3 that are expected to remain in wave 2 NROY space. The ruled out input
space and X 1

1 are in grey.

From the second column plots in Figure 6.8, we observe no difference in represen-
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tation of Ψ11(ξ) over X 1
1 (low-variability input region) for all three design candidates.

We conclude that by employing any design candidate, we expect to retain this part

of the reduced input space inside wave 2 NROY since the expected values obtained

at x ∈ X 1
1 are close to the observation z and our uncertainty about the model

behaviour in this region is low, which is confirmed by plots of predictive variance

in Figure 6.7. Also, from these plots, we conclude that X 1
1 dominates the reduced

input space, X 1, and the volume of X 1
1 is large relative to X 1.

On the contrary, from the third column plots in Figure 6.8 we observe that

the representation of Ψ13(ξ) over X 1
3 (high-variability input region) obtained for

Arbitrary Design is distinct. In particular, from the panel plot for Arbitrary Design,

we observe orange shading in the corner of X 1
3 , with thermals ed dz close to −0.5

and thermals fact epsilon close to 1. We have a higher expectation that this part

of input space will be retained inside wave 2 NROY space due to higher values of

predictive variance. We also conclude that the volume of X 1
3 is small relative to X 1.

Similar to Term 1 plots in Figure 6.8, we produced comparative plots for Term 2

and Term 3, together with their region-specific components. However, it is hard to

detect a major difference between these plots for design candidates (see Appendix

C.3). Instead, we decided to compare individual terms of BDC for BOD and Arbitrary

Design, since summary results provided by Table 6.2 and Figure 6.6 indicate that

BOD is a better design choice than Arbitrary Design to perform wave 2 of HM for

this particular example.

The top row plots in Figure 6.9 show the difference in contributions towards the

individual terms of BDC over X 1 between BOD and Arbitrary Design. The value

behind each pixel corresponds to the difference in the mean contributions towards

each term of BDC obtained for BOD and Arbitrary Design following the procedure in

equation (6.13), and in Appendix C. The bottom row plots in Figure 6.9 demonstrate

the difference in contributions to the terms of BDC between BOD and Arbitrary

Design computed over the high-variability input region X 1
3 . From Figure 6.9, we

conclude that the differences in contributions towards each term of BDC are mainly

observed over the high-variability input region since Arbitrary Design does not contain
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enough points in this region, and an updated GP emulator is uncertain about the

model behaviour in this region.

Figure 6.9: Difference in contributions towards terms of BDC between Bayesian Op-
timal Design (BOD) and arbitrary design (Arbitrary Design) in the Application Study
1 for 2D projections over the NROY space for a pair of parameters thermals ed dz

and thermals fact epsilon. Top row : the value behind each pixel represents the
difference in mean contribution towards terms of BDC. The ruled out input space is
in grey. Bottom row : the value behind each pixel represents the mean contribution
towards terms of BDC computed over X 1

3 . The ruled out input space and X 1
1 are in

grey.

From the top row panel plots in Figure 6.9, we observe similarities in difference

of contributions values towards Term 1 and Term 2. From the bottom row panel

plots for Term 1 and Term 2, we observe a yellow ridge in the corner of X 1
3 with

thermals ed dz close to -0.5 and thermals fact epsilon close to 1. In the context

of Term 2, the interpretation is that the nonstationary GP model with Arbitrary

Design provides us with higher expectation that there is an overlap between NROY

space at wave 2 and “true” NROY space than the nonstationary GP model with

BOD. However, the scale of difference observed for Term 2 is smaller than for Term

1, which is due to the weighting determined by a difference of two CDF functions.

The plot for Term 3 in Figure 6.9 demonstrates that in input region with −0.6 <
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thermals ed dz < −0.4 and 0.3 < thermals fact epsilon < 1.0 we obtain lower values

of contribution towards Term 3 with BOD than with Arbitrary Design. This finding

indicates that we have a lower expectation that this region of input space is part

of “true” NROY space with BOD than with Arbitrary Design. Therefore we obtain

lower values of BDC for BOD, which indicates that it is a favourable design choice

for the second iteration of history matching.

We are interested in comparing wave 2 HM results for all three design options.

We start by producing the model runs, F[2], at each design, X[2]. Similarly to the

approach described in subsection 5.5.2, we update the probability distribution for

f(x) to derive π2

(
f(x)

)
and obtain the NROY space after wave 2 HM.

Table 6.3 provides the summary results of history matching for each design can-

didate. We obtain an NROY space for Naive Design and BOD of similar sizes. From

Figure 6.10, we observe that shape of wave 2 NROY space produced with BOD re-

sembles the one produced with Naive Design. The region of X 1
3 previously discussed

during the detailed analysis of the BDC components has been ruled out for both

designs since a number of design points have been placed in this region. In contrast,

this region has been retained inside wave 2 NROY space obtained with Arbitrary

Design.

Figure 6.10: Comparison between “naive” design (Naive Design), Bayesian Optimal
Design (BOD) and arbitrary design (Arbitrary Design). Each parameter plot shows
points classified as being NROY after wave 1 of HM (grey) together with points
classified as being NROY after wave 2 of HM (blue).

247



Type NROY size

Naive Design 7.08%
BOD 7.09%

Arbitrary Design 7.49%

Table 6.3: Summary of history matching results after wave 2 for candidate designs
used to update a nonstationary GP emulator.

Based on Figure 6.10 and Table 6.3, we observe similarities between wave 2 HM

results obtained with BOD and Naive Design, and we conclude that for this particular

application study BOD provided us with small gains compared to Naive Design.

Figure 6.11: Input space plot showing X 1, wave 1 NROY space, in Application
Study 1. Points with a higher probability of being allocated to region 1 (red) and
points with a higher probability of being allocated to region 3 (green).

In Figure 6.11, we produce a parameter plot of X 1 against thermals ed dz and

thermals fact epsilon. The points in green correspond to the input points with

a higher probability of being in X 1
3 , while the points in red correspond to the input

points with a higher probability of being in X 1
1 . We deduce that the number of

retained points in X 1 that are part of a high-variability region is considerably smaller

than the number of input points allocated to a low-variability region. Therefore

we expect to observe that contributions from Ψi3(ξ) are smaller than Ψi1(ξ) with

i = 1, 2, 3 towards the individual terms of BDC. As a result sampling design points in

the high-variability region, X 1
3 , which would be encouraged by variance-based design

criteria employed with nonstationary GP models, would affect Ψi3(ξ), i = 1, 2, 3

terms, but because of the relatively small volume of X 1
3 , we would observe very

subtle changes in the values of BDC terms. In this case, a space-filling design over

X 1 is considered to be a good choice as a design for wave 2 of history matching,
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which is confirmed by BDC score.

6.6 Application Study 2

We perform a second application study with two modifications to history matching

settings from Application Study 1. The first modification is that we specified an ob-

servation, z, closer to the model response. Figure 6.12 demonstrates that the model

values produced by SCM are now within the error intervals around the modified

value of the observation z. We note that these values are synthetic and have no

connection to the LES values generated for the SANDU/REF case by climate mod-

ellers. The motivation for specifying this particular value of an observation is that

we are interested in obtaining a wave 1 NROY space that contains both input points

from the region with low variability in model response, X 1
1 , as well as input points

from the region with high variability in model response, X 1
3 . However, contrary to

Application Study 1 in section 6.5, we are interested in retaining X 1
3 with a larger

volume as part of X 1. This particular application study is intended to investigate

how the BDC values change when the size of volume X 1
1 is close to the size of volume

X 1
3 , which means that we are mainly interested in the effect of candidate design ξ on

the values of E{F[1],f(ξ)}[f(x)] and V ar{F[1],f(ξ)}[f(x)] inside the integrand functions

of individual BDC terms.

If we are not computationally or financially constrained and we could obtain a

large number of computer model runs, the space-filling design could be considered

as an acceptable choice for sampling design points for next iteration of refocusing

which we demonstrated in section 6.5. However, in this simulation study, we decided

to lower the number of design points for wave 2 of history matching by specifying

n2 = 40 to emulate a situation when the computer model runs are expensive to

obtain. We are interested in observing if these two modifications could provide us

with any different results than the ones from Application Study 1 in section 6.5.

Table 6.4 provides the summary information for history matching for Application

Study 2.
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z V ar[e] V ar[η] a

13.17 0.0078 0 3

Table 6.4: Information to perform history matching in application study 2.

Figure 6.12: qv500 response against five input parameters on the standardized scale.

The blue dashed lines correspond to z plus and minus 2
(
V ar[e] + V ar[η]

)1/2
. The

values of z, V ar[e] and V ar[η] are provided in Table 6.4.

6.6.1 Wave 1

We use precisely the same stationary and nonstationary GP emulators constructed

during Application Study 1 in subsection 6.5.1. To perform history matching, we

start by generating a random Latin Hypercube sample of 100,000 points in the

parameter space. Using a stationary GP emulator at wave 1 gives an NROY space

that is 34.24% of the original parameter space X . By employing a nonstationary

GP emulator; instead, we are able to rule out nearly 10% more of the original space,

leaving 24.98% of X as NROY.

We produce the NROY density and minimum implausibility plots for 2D projec-

tions of the parameters, thermals fact epsilon, thermals ed dz and cld lc lsc.

The left history matching plot of Figure 6.13 demonstrates that employing a sta-

tionary GP emulator we obtain an NROY space split into two disjoint regions of the

parameter space, which is mainly caused by the emulator being underconfident in
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the input region with thermals ed dz close to 1. To continue with history match-

ing, this model response by running more waves, we would need to build separate

emulators for two disjoint regions (Salter and Williamson, 2016).

Figure 6.13: NROY density plots (upper triangle) and minimum implausibility plots
(lower triangle) for Xp of NROY space produced by stationary GP emulator (on the
left) and nonstationary GP emulator (on the right). Each panel plots either NROY
density or minimum implausibility for a pair of parameters. NROY densities, for
each pixel on any panel in the upper triangle of the picture, represent the proportion
of points in Xp behind that pixel that are NROY and are indicated by the colour
whose scale is indicated on the right. Minimum implausibilities, for each pixel on
any panel on the lower triangle of the picture, represent the smallest implausibility
found in Xp. These plots are oriented the same way as those on the upper triangle,
for the ease of visual comparison.

The right history matching plot of Figure 6.13 demonstrates a single NROY re-

gion obtained with a nonstationary GP emulator. Before performing wave 2 of his-

tory matching we decided to consider wave 1 NROY space decomposition. We pro-

duced a parameter plot of X 1 against thermals ed dz and thermals fact epsilon.

The points in green are classified as points with a higher probability of being allo-

cated to X 1
3 , whereas points in red are classified as points with a higher probability

of being allocated to X 1
1 . We observe from Figure 6.14 that we managed to retain in

wave 1 NROY space a larger number of input points that are considered as part of

an input space with high variability in model response, X 1
3 , by modifying the value

of observation, z.
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Figure 6.14: Input space plot showing X 1, wave 1 NROY space, in Application
Study 2. Points with a higher probability of being allocated to region 1 (red) and
points with a higher probability of being allocated to region 3 (green).

We proceed to perform wave 2 of history matching by employing a nonstationary

GP emulator and the NROY space obtained with this emulator.

6.6.2 Wave 2

To perform wave 2 HM, we need to design an ensemble in wave 1 NROY space, X 1,

of size n2 = 40. Similar to Application Study 1, we are interested in studying the

effect of different design choices for wave 2 of history matching on the X 2 obtained

with an updated nonstationary GP emulator with each design choice. “Naive” de-

sign or space-filling design (Naive Design) and an arbitrary design (Arbitrary Design)

with randomly sampled points in X 1 with implausibility close to 3 are generated in

the same way as described in subsection 6.5.2. We attempted to obtain the BOD

by employing the simulated annealing algorithm. We specified N = 7500 as the

number of Monte Carlo samples for x(1), . . . ,x(N) from the NROY space X 1 and

f(ξ)(1), . . . , f(ξ)(N) from the distribution MVN
(
EF[1]

[f(ξ)], V arF[1]
[f(ξ)]

)
since we

are operating with a larger NROY space than in section 6.5. We also used Naive

Design as a starting design for our optimization algorithm. However, we failed to

generate the design candidate with BDC score lower than the BDC score of Arbitrary

Design due to the inefficiency of employed optimization algorithm. We refer to the

obtained design after optimization as Design 1.
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Figure 6.15: Comparison between “naive” design (Naive Design), candidate design
(Design 1) and arbitrary design (Arbitrary Design). Each panel plot shows points
classified as being NROY after wave 1 HM in grey together with design candidates
for wave 2 (blue) and space-filling design for wave 1 (green).

Figure 6.15 demonstrates the allocation of three design choices over wave 1

NROY space and in relation to the wave 1 design. For each design choice, we pro-

duced an image of input points retained as part of NROY space after wave 1 of his-

tory matching against input parameters thermals ed dz and thermals fact epsilon

in grey. Green and blue points correspond to the design used to perform wave 1

HM, X[1], and candidate design to perform wave 2, respectively. We observe from

the left panel plot in Figure 6.15 that a number of points from Naive Design are

placed along the borders of the NROY space with thermals ed dz close to -1. We

refer to the image of wave 1 NROY space decomposition in Figure 6.14 to deduce

that the majority of input points in Naive Design are placed in the input space re-

gion with low variability in model response. The right panel plot in Figure 6.15

demonstrates the allocation of points from Arbitrary Design. We observe that the

majority of these points are placed on the border of X 1 with thermals ed dz close

to −0.5. The central panel demonstrates the allocation of points from Design 1, and

we observe that in general the design points are spread across X 1, with a number

of points being placed in the region with thermals ed dz close to −0.5. As before

we refer back to the image in Figure 6.14 to conclude that points in BOD are placed

mainly in the input region with high-variability in model response, X 1
3 , as well as

in the input region where the model response behaviour changes. Meanwhile, all of

the points in Arbitrary Design are in the input region with high variability in model
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response.

Similar to Application Study 1, we proceed to compute the BDC at each of the

design choices. From Table 6.5 and Figure 6.16, we conclude that the lowest BDC

score (0.0484) is obtained for Arbitrary Design. The second best BDC score (0.0530)

corresponds to Design 1, which we consider to be competitive, given MC error. The

largest BDC score is obtained for Naive Design (0.0716), which indicates that this

type of design is unfavourable to perform wave 2 HM for this application study.

Interestingly, in this application study, Arbitrary Design is considered to be a good

choice among three candidate designs to perform wave 2 HM by our proposed BDC.

This result contradicts the general notion that sampling points with implausibility

close to 3 is not a favourable design choice.

Figure 6.16: Plots of computed Bayesian Design Criterion (BDC) together with
two Monte Carlo (MC) standard error bars for three design options for wave 2 of
HM. We specified N = 7500 Monte Carlo samples in the Bayesian Design Criterion
computation.

Type BDC std. error BDC-2×std.error BDC+2×std.error

Design 1 0.0530 0.0015 0.0501 0.0559
Naive Design 0.0716 0.0018 0.0680 0.0752

Arbitrary Design 0.0484 0.0014 0.0456 0.0511

Table 6.5: Bayesian Design Criterion (BDC) computed at Design 1, Naive Design and
Arbitrary Design. The second column corresponds to BDC score, the third column
is the Monte Carlo (MC) standard error on the BDC score, the fourth and fifth
columns correspond to the BDC value plus and minus two MC standard errors.

We proceed to consider different components of BDC for all three design can-
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didates. We start by generating plots of predictive variance for 2D projections of

parameters thermals ed dz and thermals fact epsilon for each design choice in

Figure 6.17 (see subsection 6.5.2 for more details on how to produce these plots).

Red and orange coloured areas indicate of the regions of input space with high pre-

dictive uncertainty, while white coloured areas correspond to regions of input space

with low predictive uncertainty. Grey regions are completely ruled out at wave 1

HM.

Figure 6.17: Comparison between “naive” design (Naive Design), candidate design
(Design 1) and arbitrary design (Arbitrary Design) in the Application Study 2 for 2D
projections over the NROY space. Each panel plots the predictive variance for a
pair of parameters thermals ed dz and thermals fact epsilon. The value behind
each pixel on any panel represents the mean value of predictive variance found by
fixing two parameters at the plotted location and varying the other 3 dimensions of
parameter space.

From the left panel plot of Figure 6.17, we observe that the largest values of

predictive variance are obtained for Naive Design on the border of the X 1 near

thermals ed dz = −0.5, which corresponds to the input region with high variability

in model response. On the contrary, the predictive variance values obtained for

Design 1 and Arbitrary Design are relatively low in this region due to a number of

points in these two candidate designs being placed in this input region. Therefore

we conclude that both Design 1 and Arbitrary Design provides us with the reduction

in uncertainty about the model behaviour in this particular region.
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Figure 6.18: Comparison of contributions towards Term 1, Ψ1(ξ), between “naive”
design (Naive Design), candidate design (Design 1) and arbitrary design (Arbitrary
Design) in the Application Study 2 for 2D projections over the NROY space for
a pair of parameters thermals ed dz and thermals fact epsilon. First column:
the value behind each pixel represents the proportion of points behind that pixel
in the remaining 3 dimensions that are expected to remain in wave 2 NROY space.
The ruled out input space is in grey. Second column: the value behind each pixel
corresponds to the proportion of points in input region X 1

1 that are expected to
remain in wave 2 NROY space. The ruled out input space and X 1

3 are in grey.
Third column: the value behind each pixel corresponds to the proportion of points
in input region X 1

3 that are expected to remain in wave 2 NROY space. The ruled
out input space and X 1

1 are in grey.

256



Similar to the analysis in subsection 6.5.2, we proceed to consider the composition

of contributions towards Term 1, Ψ1(ξ), over the reduced input space. The first

column plot for each design candidate in Figure 6.18 shows the maps produced

by fixing the two parameters labelled for each pixel at the value of a pixel and

exploring 100 point Latin Hypercube in the other three dimensions. As before the

value behind each pixel is the proportion of points that are expected to constitute

wave 2 NROY space as part of BDC computation. Another interpretation of the

value behind each pixel is the contribution towards the final value of Term 1, Ψ1(ξ).

The second column plot for each design candidate in Figure 6.18 demonstrates the

contributions towards Ψ1(ξ) over an input region with low variability in response,

X 1
1 , determined by Ψ11(ξ). Meanwhile, the third column plot for each candidate

design demonstrates the contributions towards Ψ1(ξ) over an input region with high

variability in response, X 1
3 , determined by Ψ13(ξ).

In the panel plots in Figure 6.18, red and orange coloured areas correspond to

input regions with the largest proportion of input points that we expect to retain as

part of wave 2 NROY space, and therefore the largest contributions towards Ψ1(ξ)

or its region-specific components, i.e. Ψ11(ξ) and Ψ13(ξ). White coloured areas

correspond to input regions with the proportion of input points that we expect to

retain as part of wave 2 NROY space close to zero. In the first column panel plots

of Figure 6.18, grey regions correspond to regions that are completely ruled out

after a single wave of history matching. In the second and third column panel plots

of Figure 6.18, grey regions correspond to completely ruled out regions as well as

the input regions in X 1 not considered inside the computation of region-specific

components of Term 1.

The second column plots in Figure 6.18 demonstrate no difference in contribu-

tions towards Ψ1(ξ) over X 1
1 for each design candidate. We conclude that we expect

to retain this part of reduced input space after the second iteration of history match-

ing. More interesting observations appear in the third column plots in Figure 6.18.

The representation of Ψ13(ξ) over X 1
3 obtained for Naive Design is different from the

ones obtained for Candidate 1 and Arbitrary Design. In particular, the red coloured
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region at the border of X 1
3 with thermals ed dz close to -0.5 obtained for Naive

Design indicates that we have a higher expectation of retaining this input region

after the second wave of history matching. We can easily draw a connection be-

tween Ψ13(ξ) and predictive variance values for Naive Design since we observe large

values of predictive variance obtained in this region for Naive Design in Figure 6.17.

Therefore, we conclude that this part of Wave 1 NROY space is expected to be

retained due to persisting uncertainty about the model behaviour that is part of

Term 1 calculation. In this case, our updated nonstationary GP model produces

large values of predictive variance, V ar{F[1],f(ξ)}[f(x)], at x ∈ X 1
3 , which leads to

the increasing contribution from these points towards the term Ψ13(ξ) in equation

(6.10). Since in this simulation study we are operating with a larger volume of X 1
3 ,

we, therefore, observe a greater contribution from Ψ13(ξ) towards the final term

Ψ1(ξ), which leads to the greater effect on the BDC score for Naive Design. On the

contrary, we have a low expectation of retaining this part of the input space in wave

2 NROY space with Design 1 and Arbitrary Design. By sampling design points in

this region, we obtain lower values of predictive variance, which leads to the lower

contribution from x ∈ X 1
3 towards Ψ13(ξ) values and therefore towards the final

value of Ψ1(ξ).

We provided the comparative plots for Term 2 and Term 3, together with their

region-specific components in Appendix C.4. In this section, we compare the in-

dividual terms of BDC obtained for Arbitrary Design and Naive Design, since the

lowest score of BDC is obtained for Arbitrary Design, and we treat it as our BOD.

The top row plots in Figure 6.19 demonstrate the difference in contributions towards

individual terms of BDC over X 1 between Arbitrary Design and Naive Design. The

value behind each pixel corresponds to the difference in mean contributions towards

each term of BDC obtained for Arbitrary Design and Naive Design. The bottom

row plots in Figure 6.19 demonstrate the difference in contributions to the terms of

BDC between Arbitrary Design and Naive Design computed over the high-variability

input region, X 1
3 , since we mainly observe the variability in the representation of

individual terms of BDC computed over X 1
3 .
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Figure 6.19: Difference in contributions towards terms of BDC between Bayesian
Optimal Design (Arbitrary Design) and “naive”, space-filling design (Naive Design)
in the Application Study 2 for 2D projections over the NROY space for a pair
of parameters thermals ed dz and thermals fact epsilon. Top row : the value
behind each pixel represents the difference in mean contribution towards terms of
BDC. The ruled out input space is in grey. Bottom row : the value behind each pixel
represents the mean contribution towards terms of BDC computed over X 1

3 . The
ruled out input space and X 1

1 are in grey.

From Figure 6.19, we observe similarities in the image of the difference between

contributions for all three terms and their region-specific component over X 1
3 . In par-

ticular, updated nonstationary GP emulator with Naive Design produces larger val-

ues of contributions towards terms of BDC on the border of X 1
3 with thermals ed dz

close to −0.4. This is mainly caused by the prevailing uncertainty of updated non-

stationary GP emulator with Naive Design about model behaviour in this region. As

in subsection 6.5.2, the scale of difference observed for Term 3 and Term 2 is smaller

than for Term 1.

We conclude that sampling design points in the high-variability region leads

to the reduction in predictive variance, V ar{F[1],f(ξ)}[f(x)], and affects the values of

individual components of BDC. Since we are operating with a high-variability region

of input space of a larger volume relative to X 1 than in subsection 6.5.2, we observe

an increasing effect from terms Ψ13(ξ),Ψ23(ξ) and Ψ33(ξ) towards the final values of
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Ψ1(ξ),Ψ2(ξ) and Ψ3(ξ) respectively.

Similar to Application Study 1 in subsection 6.5.2, we are interested in comparing

the wave 2 HM results for all three design options. Table 6.6 provides the summary

results of history matching for each design candidate. We obtain the smallest size

of wave 2 NROY space with Arbitrary Design (22.6%), followed by Design 1 (23%).

From Figure 6.20, we observe that the shape and size of X 2 obtained with Design

1 is similar to the one obtained with Arbitrary Design. We managed to rule out the

input space close to the border of X 1 with the thermals ed dz near −0.5, which

we pointed out during our description of plots in Figure 6.18 and Figure 6.19. In

contrast, this input region is retained as part of X 2 with Naive Design, since the

updated GP emulator is still very uncertain about the model behaviour in this

region confirmed by predictive variance representation in Figure 6.17.

Type NROY size

Naive Design 23.85%
Design 1 23%

Arbitrary Design 22.6%

Table 6.6: Summary of history matching results after wave 2 for candidate designs
used to update a nonstationary GP emulator.

Figure 6.20: Comparison between “naive” design (Naive Design) (left panel plot),
candidate design (Design 1) (central panel plot) and arbitrary design (Arbitrary De-
sign) (right panel plot). Each parameter plot shows points classified as being NROY
after wave 1 of HM (grey) together with points classified as being NROY after wave
2 of HM (blue).
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6.7 Conclusion

We presented an application of our Bayesian Design Criterion (BDC) in obtaining

a design for iterative refocussing with a nonstationary model response. For the

first time, to our knowledge, a nonstationary GP model has been adapted and

combined with a classical model-based design algorithm. To employ our proposed

nonstationary GP model, we had to fix the number of input regions L. In Chapter 5,

we managed to obtain three independent and interpretable terms of BDC. Employed

with our proposed nonstationary GP model, we decomposed these terms further into

contributions from L input regions towards these terms. This discovered feature

is useful since it allowed us to incorporate the information about varying model

response behaviour across the reduced input space as well as the composition of

reduced input space, X 1 = ∪Ll=1X 1
l .

We performed two simulation studies with a climate model output that provided

us with different results. In particular, based on Application Study 1, we conclude

that if after performing iterative refocusing we obtain an NROY space with a single

dominant response behaviour, a “naive”, space-filling design for the next iteration

of history matching is considered to be a competitive design. This statement is

supported by a low BDC score among the other candidate designs. However, in

situations when an NROY space contains two or more input regions with distinct

model behaviour, “naive”, space-filling design may not be a good candidate for the

next iteration of history matching. This particular type of design concentrates on the

geometry of NROY space and does not contain any information about the variability

of response. On the contrary, for both cases, our proposed BDC attempts to take

into account this feature. We recognise the computational costs encountered in the

process of obtaining BOD, especially when we are dealing with a large number of nm

and p, therefore we encourage our users at least to use BDC to rank their candidate

designs. Our proposed criterion could provide our users with the mathematical

justification for choosing a particular design for their problem under consideration,

such as in Application Study 2 in Section 6.6, since we failed to obtain BOD.

A number of possible extensions could be introduced to the presented approach.
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In section 6.4, we mentioned that we had fixed the values of nonstationary GP

hyperparameters together with the form of the mixture model for computational

reasons. However, it would be useful to consider in the future to perform an up-

date for nonstationary GP hyperparameters that were explicitly considered by other

nonstationary approaches, e.g. Montagna and Tokdar (2016).

We realise that we managed to obtain only a marginal change in the size and

shape of the NROY space by employing our Bayesian Optimal Design strategy. In

the future, we are planning to perform a more detailed simulation study with toy

models to investigate the effect of the model behaviour together with the number

of design points on the value of the BDC. We also plan to perform more waves of

HM. However, we recognise that in order to perform this type of simulation study,

we do require a more efficient optimization algorithm.
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Chapter 7

Conclusion

In this thesis, we aimed to provide an interactive tool in Uncertainty Quantification

(UQ) for modellers. We observed the failure of stationary GPs to capture non-

stationary model response behaviour, which led to the development of a new type

of nonstationary GP emulator. Operating with computationally complex computer

models, we recognise the importance of the choosing of design points for calibration-

history matching, for both stationary and nonstationary model responses.

In Chapter 3, we presented an application of ExeterUQ, in-house developed R

and Stan-based software for modelling and quantifying uncertainties in complex

computer models. We recognise that modellers, in general, require fast and robust

statistical tools to assist with computer related tasks. Our tools, ExeterUQ, allow

users to construct a range of GP emulators for a single or multiple metrics, validate

the performance of obtained emulators, and perform history matching individually

and independent from “experts” in statistics and uncertainty quantification. To en-

sure the robust performance of our developed tools, we specified prior distributions

for GP emulators’ hyperparameters employing Stan. The novelty of ExeterUQ is

that it is an interactive tool for modellers to learn about the structural error term,

η. As part of history matching, modellers are interested in investigating whether the

limitations of a model’s performance is caused by a poor parameterization scheme,

structural error term, or a poor choice of free parameters. In particular, by em-

ploying our tools, modellers could specify the variance of model error, V ar[η], and

perform history matching to observe patterns between model parameters in the
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NROY space. For instance, if all space is ruled out, the model discrepancy speci-

fication has to be modified, whereas if there is a non-empty NROY space a better

choice of free parameters could improve the model’s performance. The importance

of ExeterUQ is that these statistical tools coded inside ExeterUQ are used to assist

the process-based tuning of cloud parameterization schemes. This modification is

expected to improve the representation of the boundary-layer clouds in the global

climate model, which affects climate model performance.

There are several possible extensions to our developed tools. We could add

a number of functionalities to ExeterUQ: for instance, modellers are interested in

performing uncertainty analysis and sensitivity analysis. Also, there is a possibility

to adapt ExeterUQ into an R package and present it to a broader community of

modellers.

During our close collaboration with climate modellers, we have observed a non-

stationary (nonstandard) behaviour of model response across the input space. Our

standard “out of the box” GP emulator, provided inside ExeterUQ, failed the di-

agnostic test, in particular Leave One Out cross-validation, i.e. we observed the

heteroscedasticity in the standardised errors’ behaviour against model inputs. In

Chapter 4, we proposed a kernel mixture approach to the GP residual, offering a

flexible and interpretable model for nonstationary response. Our method borrows

the strength of input space partitioning and kernel choice to provide a single GP

model that adapts to different behaviours that can lead to a continuous nonstation-

ary GP. In section 4.3, we started by specifying a kernel mixture for our nonstation-

ary GP emulator. We developed a mixture model for standardized residuals from a

stationary GP fit to obtain mixture components inside a kernel mixture. The num-

ber of input regions, L, is found by comparing the fit of the mixture model using

the modified AIC criterion, AICmod, and considering L = 1, . . . , 4. The key novelty

of our proposed nonstationary GP model with kernel mixture is that we employ the

standard emulator diagnostics (cross-validation) to fit a nonstationary GP emulator,

making it a practical tool for modellers, analysts and statisticians who are required

to construct emulators quickly and efficiently.
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There are several possible extensions to our developed methodology. Firstly, we

mainly operate with a small number of design points, and therefore specifying the

maximum number of input regions, L, to be 4 is important to ensure the convergence

of posterior samples of mixture model parameters. A possible extension is to adapt

the maximum number of input regions, L, to the number of design points. Another

possible extension is to remove the 2 stage approach altogether by operating with

joint prior distribution π
(
β,σ2

L, τ
2
L, δL,λ(x)L, L

)
to attempt full Bayesian infer-

ence. In Chapter 4, we employed a squared exponential correlation function in our

prior kernel specification for the individual regions l = 1, . . . , L, since it is the only

form of correlation function provided by Stan. A possible extension is that we could

specify different correlation functions for individual regions of input space. This

modification could allow us to adapt our proposed GP emulator to model response

with both inhomogeneities and discontinuities. For instance, a squared exponen-

tial correlation function could still be used as part of the kernel mixture to model

inhomogeneities in response. In contrast, a neural network kernel could be used

to model a jump in response (Mohammadi et al., 2019). In this case, there is the

potential that a nonstationary GP model with kernel mixture could become a com-

petitive alternative to deep GPs (Damianou and Lawrence, 2013; Roininen et al.,

2018) in modelling response that exhibits both discontinuities and inhomogeneities,

since deep GPs require a larger number of training points for fitting.

As part of multi-wave history matching, it is crucial to choose where in the

current NROY space to sample design points to perform the next iteration of history

matching, in particular if computer model runs are expensive to obtain. In Chapter

5, we propose to employ a Bayesian experimental design, where the Bayesian optimal

design is found by minimizing the expected loss function. Our loss function compares

the volume of NROY space obtained at the next iteration of history matching using

an updated emulator for f(x) with ensemble
{
ξ, f(ξ)

}
to the volume of “true”

NROY space obtained using a “perfect” emulator. This form of loss function is

unique since it reflects our aim to cut out the implausible parameter space with

fewer iteration of history matching. In section 5.3, we derived three independent and
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interpretable terms of the proposed Bayesian Design Criterion (BDC). Our proposed

BDC was compared to a design with good coverage over the current NROY space

on a simple 2D demonstration. We recognise that Bayesian experimental design

involves an expensive p×nm dimensional optimisation problem. In practice, instead

of searching for an optimal design, our proposed criterion could be used to consider

and rank a range of candidate designs. Therefore, a mathematical justification could

be provided for choosing a particular design for history matching based on BDC.

In Chapter 5, we fixed the values of GP hyperparameters at maximum a poste-

riori values (MAP) in the process of computing BDC to reduce the computational

cost. This simplification effectively led our proposed approach to become pseudo-

Bayesian. A possible extension is to integrate Ψ(ξ) over the posterior distribution of

GP hyperparameters. Another interesting question is the specification of the num-

ber of design points, nm, to perform Wave m of history matching, as well as the

division of runs across waves. In particular, in the future, we could consider how

sensitive the BDC is to the number of candidate design points, as well as the inclu-

sion of nm inside Ψ(ξ). We have only demonstrated BDC for an f(x) with a single

output (metric); therefore, a possible extension could be to adapt BDC to a vector

of independent metrics, since model developers might be interested in considering a

range of metrics at the same time.

In Chapter 6, we provided an extension to BDC by employing our nonstation-

ary GP model with kernel mixture for history matching with nonstationary model

response. The novelty of our proposed approach is that, for the first time, to our

knowledge, a nonstationary GP model has been adapted with a classical model-

based design criterion. To ensure the optimality of the obtained design, we had to

fix the number of input regions L. We managed to derive that our proposed non-

stationary GP model introduces an input space partition, i.e. Xm−1 = ∪Ll=1Xm−1
l ,

and therefore we could rewrite BDC as

Ψ(ξ) =
L∑
l=1

Ψl(ξ),

where the Ψl(ξ) corresponds to the integrand function of Ψ(ξ) computed over Xm−1
l .
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We conclude that the modified BDC does not only take into account the effect

of candidate design, ξ, on E{〈F〉[m−1],f(ξ)}[f(x)] and V ar{〈F〉[m−1],f(ξ)}[f(x)], but also

the composition of NROY space Xm−1. In general, variance-based design criteria,

commonly used together with nonstationary GP models, encourages the sampling of

design points in the input space with high variability in model response, Xm−1
L . In

contrast, our design criterion considers the size of the volume of this region relative

to the current NROY space, Xm−1. Two application studies with climate model

output were performed to demonstrate the use of BDC in obtaining a design for

Wave 2 of history matching. In section 6.5, the first application study indicated

that in the case where the NROY space mostly consisted of a single input region

with distinct model behaviour, a space-filling candidate design was a competitive

choice to perform Wave 2 history matching. On the contrary, in section 6.6, we

demonstrated that if an NROY space contained two or more input regions with

distinct model behaviour, a space-filling candidate design was not a good choice to

perform Wave 2 history matching indicated by our modified BDC.

Similar to Chapter 5, we fixed the nonstationary GP hyperparameters at maxi-

mum a posteriori values (MAP), and an obvious extension to BDC employed with

our proposed nonstationary GP model is to include uncertainty in GP hyperparam-

eters, i.e. Θ =
{
β,∆,σ2, τ 2

}
. However, applying a mixture model for standardized

errors from a stationary fit as part of nonstationary GP model leads to strong as-

sumptions about the model behaviour within the NROY space. In particular, model

response behaviour across the input space in Wave m of history matching is the same

as in Wave 1 of history matching. A possible solution to this problem is to remove

a two-stage approach and specify a joint distribution π
(
β,∆,σ2, τ 2,λ(x)

)
. To en-

sure the optimality of the obtained design, we have to fix L throughout the whole

process of multi-wave history matching, and an open research question is how BDC

will behave if more than L regions of input space constitute NROY space.
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Appendix A

Mathematical proofs

A.1 Simplification of Ψ1(ξ)

We consider the argument of indicator function from equation (5.13) in detail,

− a ≤
z − E{〈F〉[m−1],f(ξ)}[f(x)]√

V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)]
≤ a

z − a
√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)] ≤ E{〈F〉[m−1],f(ξ)}[f(x)]

≤ z + a
√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)].

We proceed with expanding the expression for E{〈F〉[m−1],f(ξ)}[f(x)] to derive an in-

equality for f(ξ),

b1 ≤ cf(ξ) ≤ b2

where

b1 = z − a
√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)]− E〈F〉[m−1]

[f(x)]

+ Cov〈F〉[m−1]
[f(x), f(ξ)](V ar〈F〉[m−1]

[f(ξ)])−1E〈F〉[m−1]
[f(ξ)]

b2 = z + a
√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)]− E〈F〉[m−1]

[f(x)]

+ Cov〈F〉[m−1]
[f(x), f(ξ)](V ar〈F〉[m−1]

[f(ξ)])−1E〈F〉[m−1]
[f(ξ)]
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and c is a 1× nm vector, where nm is a number of points in the candidate design ξ,

and

c = Cov〈F〉[m−1]
[f(x), f(ξ)](V ar〈F〉[m−1]

[f(ξ)])−1.

We treat f(ξ) as a random variable and the distribution of f(ξ) is multivariate

normal:

f(ξ) ∼MVN
(
E〈F〉[m−1]

[f(ξ)], V ar〈F〉[m−1]
[f(ξ)]

)
.

Based on the above, we derive a normal distribution for cf(ξ) (Mardia et al., 1979,

Theorem 3.1.1)

cf(ξ) ∼ N
(
cE〈F〉[m−1]

[f(ξ)], cV ar〈F〉[m−1]
[f(ξ)]cT

)
.

We implement the above modifications to Ψ1(ξ), i.e.

Ψ1(ξ) =

∫
Xm−1

∫
1
{
b1 ≤ cf(ξ) ≤ b2

}
π(f(ξ)|〈F〉[m−1])df(ξ)dx

=

∫
Xm−1

E
[
1{b1 ≤ cf(ξ) ≤ b2}

]
dx

=

∫
Xm−1

P
(
b1 ≤ cf(ξ) ≤ b2

)
dx.

Since we are operating with normal density function, we could use standard normal

density function in our expansion to obtain

Ψ1(ξ) =

∫
Xm−1

[
Φ(s2)− Φ(s1)

]
dx

where

s1 =
z − a

√
V ar[e] + V ar[η] + V ar〈F〉[m−1]

[f(x)]− E〈F〉[m−1]
[f(x)]√

Cov〈F〉[m−1]
[f(x), f(ξ)]

(
V ar〈F〉[m−1]

[f(x)]
)−1

Cov〈F〉[m−1]
[f(ξ), f(x)]

s2 =
z + a

√
V ar[e] + V ar[η] + V ar〈F〉[m−1]

[f(x)]− E〈F〉[m−1]
[f(x)]√

Cov〈F〉[m−1]
[f(x), f(ξ)]

(
V ar〈F〉[m−1]

[f(x)]
)−1

Cov〈F〉[m−1]
[f(ξ), f(x)]

,

and Φ(·) is the standard normal cumulative distribution function (cdf).
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A.2 Simplification of Ψ3(ξ)

Ψ3(ξ) =

=

∫ ∫
Xm−1

∫
1
{
x ∈ XT

}
π(f(x)|f(ξ), 〈F〉[m−1])π(f(ξ)|〈F〉[m−1])df(x)dxdf(ξ)

=

∫ ∫
Xm−1

∫
1
{
− a ≤ z − f(x)√

V ar[e] + V ar[η]
≤ a
}
π(f(x)|f(ξ), 〈F〉[m−1])

× π(f(ξ)|〈F〉[m−1])df(x)dxdf(ξ)

=

∫ ∫
Xm−1

∫
1
{
z − a

√
V ar[e] + V ar[η] ≤ f(x) ≤ z + a

√
V ar[e] + V ar[η]

}
× π(f(x)|f(ξ), 〈F〉[m−1])π(f(ξ)|〈F〉[m−1])df(x)dxdf(ξ)

=

∫ ∫
Xm−1

[ ∫ z+a
√
V ar[e]+V ar[η]

z−a
√
V ar[e]+V ar[η]

π(f(x)|f(ξ), 〈F〉[m−1])df(x)

]
π(f(ξ)|〈F〉[m−1])dxdf(ξ)

Since f(x) ∼ N
(
E{〈F〉[m−1],f(ξ)}[f(x)], V ar{〈F〉[m−1],f(ξ)}[f(x)]

)
we use the standard

normal density function in our expansion to obtain

Ψ3(ξ) =

∫ ∫
Xm−1

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)}[f(x)]√

V ar{〈F〉[m−1],f(ξ)}[f(x)]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)}[f(x)]√

V ar{〈F〉[m−1],f(ξ)}[f(x)]

)]
π(f(ξ)|〈F〉[m−1])dxdf(ξ).
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A.3 Simplification of Ψ2(ξ)

Ψ2(ξ) =

∫ ∫
Xm−1

∫
1
{
x ∈ Xm

}
1
{
x ∈ XT

}
π
(
f(x)|f(ξ), 〈F〉[m−1]

)
× π

(
f(ξ)|〈F〉[m−1]

)
df(x)dxdf(ξ)

=

∫ ∫
Xm−1

∫
1

{ |z − E{〈F〉[m−1],f(ξ)}[f(x)]|√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)]

≤ a

}

× 1

{
|z − f(x)|√

V ar[e] + V ar[η]
≤ a

}
π
(
f(x)|f(ξ)〈F〉[m−1]

)
π
(
f(ξ)|〈F〉[m−1]

)
df(x)dxdf(ξ)

=

∫ ∫
Xm−1

1

{ |z − E{〈F〉[m−1],f(ξ)}[f(x)]|√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)]

≤ a

}

×

[∫
1

{
|z − f(x)|√

V ar[e] + V ar[η]
≤ a

}
π
(
f(x)|f(ξ), 〈F〉[m−1]

)
df(x)

]

× π
(
f(ξ)|〈F〉[m−1]

)
dxdf(ξ).

We use the simplification introduced in Appendix A.2 to derive the final form, i.e.

Ψ2(ξ) =

∫ ∫
Xm−1

1

{ |z − E{〈F〉[m−1],f(ξ)}[f(x)]|√
V ar[e] + V ar[η] + V ar{〈F〉[m−1],f(ξ)}[f(x)]

≤ a

}

×

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)}[f(x)]√

V ar{〈F〉[m−1],f(ξ)}[f(x)]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E{〈F〉[m−1],f(ξ)}[f(x)]√

V ar{〈F〉[m−1],f(ξ)}[f(x)]

)]

× π(f(ξ)|〈F〉[m−1])dxdf(ξ).
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Appendix B

ExeterUQ software

In this appendix, we provide some of the R code together with the Stan code that are

crucial for the demonstration of key functionality of ExeterUQ software presented

in Chapter 3.

B.1 Organisation of ExeterUQ

We start by describing the organisation of ExeterUQ. ExeterUQ is available via ver-

sion control and shared between teams at Laboratoire de Météorologie Dynamique

(LMD) and Centre National de Recherches Météorologiques (CNRM) and can be

applied to any climate models of Meteo France. Together with our collaborators,

we developed bash scripts that allow users to obstain SCM simulations, construct

GP emulators for a range of metrics of interest and perform calibration to simula-

tions from LES for 12 selected 1D cases that cover the main boundary layer clouds

regimes in real time. The focus of this chapter is the functionalities of ExeterUQ

that are necessary for the automatic and robust tuning. All primary functionali-

ties in ExeterUQ are categorized according to the directories with short description

provided below.

BuildEmulator is the “heart” of ExeterUQ. This directory contains all R and .stan

files that are necessary to construct and compute inferences from stationary

and multivariate GP emulators. The arrows from Figure B.1 indicate that this

directory “communicates” with other directories in the repository. For instance
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BuildEmulator

BayesCalibrationUncertaintyAnalysis SensitivityAnalysis

Diagnostics

HistoryMatchingExamples Demonstrations

Figure B.1: Code organisation of ExeterUQ with nodes in blue corresponding to the
currently available part of repository and nodes in grey corresponding to the parts
of repository under development.

in order to perform history matching using R files from HistoryMatching

directory, we are required to construct emulator using BuildEmulator.

HistoryMatching is a directory that contains R files used to perform history

matching introduced in subsection 2.6.1.

Examples is a directory that contains simple examples on emulation, history

matching and calibration.

Demonstrations is a directory that contains more complex examples, RData files

with climate models simulations.

Diagnostics, UncertaintyAnalysis, BayesCalibration and SensitivityAnal-

ysis are under development.

ExeterUQ has very different structure than a typical R package. R package con-

tains the following core elements (Wickham, 2015):

DESCRIPTION: package metadata

R/: home of R code (.R files)

man/: documentation (this is where helpfiles are stored)
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NAMESPACE: specifies what objects are exposed.

We have adopted a different structure for ExeterUQ, because our collaborators from

HIGH-TUNE project, primary users of ExeterUQ, found our structure where each

directory corresponds to the specific functionality easier to understand and relate

to.

B.2 Stan programs in ExeterUQ

To use Stan, we are required to write a Stan program that directly computes the log-

posterior density. The Stan program is written using the Stan modelling language

on a separate file with a .stan extension. The result of operating with Stan program

is a set of posterior simulations of the parameters in the model (Gelman et al., 2015).

We have produced two Stan programs for ExeterUQ, where each has its own role

and functionality that we will discuss in detail. The first Stan program is written in

FitGP.stan and is used to fit a GP model and extract a set of posterior simulations

of the parameters, Θ =
{
β, σ, δ, τ 2

}
. In particular, we specify in the data block of

Stan program a series of n design points, X = (x1, . . . ,xn), and the corresponding

simulations, F = (f(x1), . . . , f(xn)) as well as the parameters for prior distribution

for GP emulator hyperparameters discussed in detail in subsection ??.

1 data {

2 int <lower=1> N1; //number of ensemble members.

3 int <lower=1> pact; //number of active inputs.

4 int <lower=1> pinact; //number of inactive inputs.

5 int <lower=1> p;//number of inputs.

6 int <lower=1> Np;//number of regression functions.

7 int SwitchDelta;//switch variable for cor length prior.

8 int SwitchNugget;//switch variable for nugget prior.

9 int SwitchSigma;//switch variable for sigma prior.

10

11 // parameters for prior specification.
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12 real SigSq; //parameter for sigma prior.

13 real SigSqV; //parameter for sigma prior.

14 real AlphaAct; //parameter for delta prior(active ).

15 real BetaAct; //parameter for delta prior(active ).

16 real AlphaInact;//parameter for delta prior(less active ).

17 real BetaInact; //parameter for delta prior(less active ).

18 real AlphaNugget;//parameter for nugget prior.

19 real BetaNugget; //parameter for nugget prior.

20 real AlphaRegress; // parameter for regression coef prior.

21 real BetaRegress; //parameter for regression coef prior.

22 real <lower=0> nuggetfix; //nugget parameter fixed.

23

24

25 row_vector[p] X1[N1]; //design matrix.

26 vector[N1] y1; //vector of simulator output.

27 matrix[N1, Np] H1; //regression matrix.

28 }

We define in the transformed data block the variables that do not change when

running the Stan program.

1 transformed data{

2 real length_scale;

3 length_scale = pow(sqrt (2.0), -1 );

4 }

In particular, we define an extra length scale variable for the computation of co-

variance function, since the covariance function provided by Stan developers (cov exp quad)

is slightly different to the commonly used squared exponential correlation function,

i.e.

k(x,x′) = σ2 exp
{
− 1

2ρ2

p∑
i=1

(
xi − x′i

)2
}
,

where ρ corresponds to the length scale variable in the transformed data block,
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which is equal to
√

1/2.

We proceed to defining parameters that are going to be sampled by Stan’s sam-

plers (HMC and NUTS) in parametes block, i.e. Θ =
{
β, σ2, δ, τ 2

}
1 parameters{

2 real <lower=0> nugget;

3 real <lower=0> sigma;

4 row_vector <lower=0>[p] delta_par;

5 vector[Np] beta;

6 }

In transformed parameters block, we define new variables and expressions in

terms of the variables declared in parameters block. In particular, we define Mu

which corresponds to Hβ with regression matrix H =
[
h(x1), . . . , h(xn)

]T
and Sigma

which corresponds to the covariance matrix K, n×n covariance matrix with entries

Kij = k(xi,xj;σ
2, δ, τ 2).

1 transformed parameters{

2 row_vector[p] XScaled[N1];

3 vector[N1] Mu;

4 matrix[N1, N1] Sigma;

5 matrix[N1, N1] L;

6 for(i in 1:N1) XScaled[i] = X1[i] ./ delta_par;

7 //covariance matrix for design set

8 Mu = H1*beta;

9 Sigma = cov_exp_quad(XScaled , sigma , length_scale );

10 for(k in 1:N1) Sigma[k, k] = Sigma[k, k] + nugget;

11 L = cholesky_decompose(Sigma );

12 }

In the model block, we proceed to defining the probability of F conditioned on X

and parameters Θ as Gaussian

F|Θ ∼MVN(Hβ, K),
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and priors for parameters introduced in subsection ??.

1 model{

2 // Switch variable for prior specification for delta

3 // ’1’ same prior specification for delta_par ,

4 //’2’ separate prior specification for

5 // ’active ’ and ’inactive ’ parameters.

6 if(SwitchDelta == 1) delta_par ~ gamma(AlphaAct ,BetaAct );

7 else {

8 for(i in 1:pact)

9 delta_par[i] ~ gamma(AlphaAct ,BetaAct );

10 for(i in 1: pinact)

11 delta_par[pact+i] ~ gamma(AlphaInact ,BetaInact );

12 }

13 // Switch variable for prior specification for nugget

14 // ’1’ concentrated prior around nuggetfix value

15 // ’2’ inverse gamma specification for nugget.

16 if(SwitchNugget == 1) nugget ~ normal(nuggetfix ,0.00001);

17 else nugget ~ inv_gamma(AlphaNugget , BetaNugget );

18 // Switch variable for prior specification for sigma

19 // ’1’ original prior specification

20 // ’2’ lognormal prior specification

21 if(SwitchSigma == 1) sigma ~ normal(SigSq , SigSqV );

22 else sigma ~ lognormal(SigSq , SigSqV );

23 if(Np > 1) beta [2:Np] ~ normal(AlphaRegress ,BetaRegress );

24 y1 ~ multi_normal_cholesky(Mu, L);

25 }

Since ExeterUQ software is extensively used within the research group in Uncer-

tainty Quantification at the University of Exeter, we were interested to provide our

researchers with a flexibility in their prior specification by introducing a switch pa-

rameter. In particular, when SwitchDelta, SwitchNugget and SwitchSigma are set at
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value 1, we are operating with the default, “out of the box” prior specifications for

GP hyperparameters used as part of HIGH-TUNE. However, if the corresponding

switch parameters are set to some other arbitrary values, our researchers could use

and experiment with their own prior specifications.

We proceed to describe the content of the second Stan program PredictGen.stan,

which is used to produce predictions of GP emulator at unseen input x, i.e. posterior

mean and posterior variance values.

In this case, we use data block not only to specify a design matrix and the vector

with the corresponding simulator output evaluations as well a validation matrix, a

matrix of input parameters at which we are interested to produce predictions, and

a set of posterior simulations of parameters, (βi, σi, δi, τ
2
i ), i = 1, . . . ,M .

1 data {

2 int <lower=1> N1; //number of members in design.

3 int <lower=1> N2; //number of members in validation.

4 int <lower=1> p; //number of inputs.

5 int <lower=1> M; //number of posterior draws.

6 int <lower=1> Np; //number of regression functions.

7

8 row_vector[p] X1[N1]; //design matrix.

9 row_vector[p] X2[N2]; //validation matrix.

10 vector[N1] y1; //vector of simulator output at design.

11 matrix[N1, Np] H1; //regression matrix for design.

12 matrix[N2, Np] H2; //regression matrix for validation.

13

14 real <lower=0> sigma[M];

15 real <lower=0> nugget[M];

16 row_vector[Np] beta[M];

17 row_vector[p] delta[M];

18 }

19 transformed data {
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20 real length_scale;

21 length_scale = pow(sqrt (2.0), -1);

22 }

Contrary to FitGP.stan, we do not specify any variables in parameters block

and we define an empty model block, as we do not intend to use any of the

Stan’s samplers (HMC and NUTS) to obtain the posterior predictive distribution

for f(x). Instead, we reuse the posterior samples for GP hyperparameters Θ ={
β, σ2, δ, τ 2

}
, i.e. the samples from the set of posterior simulations of the param-

eters, (βi, σi, δi, τ
2
i ), i = 1, . . . ,M , are used to compute at a new input x, m∗i (x) =

E[f(x)|{X,F},βi, σi, δi, τ 2
i ] and C∗i (x,x) = Cov[f(x), f(x)|{X,F},βi, σi, δi, τ 2

i ] de-

fined in equations (2.6) and (2.7). We simulate f (i)(x) ∼ N(m∗i (x), C∗i (x,x)), i =

1, . . . ,M , in order to obtain the distribution of points and compute the summary of

this distribution, i.e.

Expectation =
1

M

M∑
i=1

f (i), StandardDev =

√√√√ 1

M − 1

M∑
i=1

(f (i)(x)− Expectation)2.

1 model {

2 }

3 generated quantities {

4 matrix[M, N2] predict_y;

5 vector[N2] tmeans;

6 vector[N2] tsds;

7 for(m in 1:M) {

8 row_vector[p] XS1[N1];

9 row_vector[p] XS2[N2];

10 matrix[N1, N1] A1;

11 matrix[N2, N1] A2;

12 matrix[N1, N1] inver;

13 vector[N1] e;

14
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15 // scaled design matrix by cor length parameters.

16 for(i in 1:N1) XS1[i] = X1[i] ./ delta[m];

17 // scaled validation matrix by cor length parameters.

18 for(i in 1:N2) XS2[i] = X2[i] ./ delta[m];

19 // covariance matrix for design set.

20 A1 = cov_exp_quad(XS1 , sigma[m], length_scale);

21 for(i in 1:N1) A1[i, i] = A1[i, i] + nugget[m];

22 // inverse of covariance matrix for design set.

23 inver = inverse(A1);

24 // covariance matrix for validation set.

25 A2 = cov_exp_quad(XS2 , XS1 , sigma[m], length_scale);

26 // error vector.

27 e = y1 - H1*to_vector(beta[m]);

28 for(n in 1:N2) {

29 real mu;

30 real sigma_squared;

31 // calculate mean

32 mu = H2[n, ]*to_vector(beta[m]) + A2[n, ]*inver*e;

33 // calculate variance

34 sigma_squared = pow(sigma[m], 2.0) +

35 nugget[m] - A2[n, ]*inver*A2[n, ];

36 predict_y[m, n] = normal_rng(mu, sqrt(sigma_squared ));

37 }

38 }

39 for(k in 1:N2) {

40 tmeans[k] = mean(predict_y[, k]);

41 tsds[k] = sd(predict_y[, k]);

42 }

43 }

The main reason for obtaining these two summaries of posterior predictive distri-
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bution of f(x) is that Expectation and StandardDev are necessary for computing

Implausibility function I(x) defined in equation (2.31) and as the result to perform

history matching.

In general, the workflow of operating with Stan programs consist of compiling

Stan program to C++ and then running it in R along with specified X and F . Our

collaborators tend to construct a number of GP emulators during one R session and

compiling Stan program every single time they attempt to fit GP emulator seemed

to be inefficient. We decided to save pre-compiled Stan programs, since pre-compiled

Stan programs could be run immediately when called, avoiding compilation time.

The chunk of Rscript BuildEmulator.R demonstrates that when we open a new

R session, we start by compiling and saving the pre-written static .stan files. The

function stanc translates the Stan program to C++ code. We use stan model func-

tion for C++ codes defined in ccdode fit and ccode predict plus other auxiliary

code to be compiled into a dynamic shared object (DSO) and loaded. The loaded

DSO, pre-compiled Stan programs, used to fit Gaussian Process (GP) and produce

predictions are stored in model fit and model predict respectively and could be

used to draw samples allowing inference to be performed for the model and data.

1 twd <- getwd()

2 tfile_loc = paste(twd ,

3 "/BuildEmulator/FitGP.stan", sep = "")

4 tprednewfile_loc = paste(twd ,

5 "/BuildEmulator/PredictGen.stan", sep = "")

6

7 ccode_fit <- stanc(file = tfile_loc)

8 model_fit <-stan_model(stanc_ret = ccode_fit)

9

10 ccode_predict <- stanc(file = tprednewfile_loc)

11 model_predict <- stan_model(stanc_ret = ccode_predict)

We note that our users have to re-compile Stan programs when they start a

new R session or after implementing changes to .stan files such as changing the
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form of priors for hyperparameters of GP model. However, we do not expect our

primary users, collaborators from HIGH-TUNE, to introduce any changes to our

Stan programs.

B.3 Constructing a GP emulator

In this section of Appendix, we aim to provide a step by step guide to constructing

a GP emulator for a single metric referring to the example considered in Section

3.5. We start by defining a data frame tData, that contains input parameters

thermals fact epsilon, thermals ed dz, cld lc lsc and cld tau lsc, and out-

put/outputs of complex computer model, that we are attempting to model. The

metric of interest, theta500, a potential temperature at 500 metres, is the last col-

umn of tData data frame. We also include an extra input variable Noise, which is a

vector of realisations from normal distribution with mean, µ = 0, and standard de-

viation, σ = 0.5, which importance in the process of deriving the form of regression

function, h(·). Here is the first six rows of a generated data frame.

The first two extensions contained in tData, 60 member LHC, are used as a

design for our GP emulator, while the last extensions, defined as tData.valid, is

used to validate the performance of GP emulator.

1 tData.valid <- tData [61:90 , ]

2 tData <- tData [1:60, ]
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B.3.1 Constructing the mean function

The process of constructing a GP emulator starts with obtaining a form of the mean

function h(x).

1 cands <- c("thermals_fact_epsilon", "thermals_ed_dz",

2 "cld_lc_lsc", "cld_tau_lsc", "Noise")

3 myem.lm <- EMULATE.lm(Response="theta500",

4 tData=tData , tcands=cands ,tcanfacs=NULL ,TryFouriers=TRUE ,

5 maxOrder=2,maxdf = 20)

The function EMULATE.lm allows our users to derive a more complex form of

mean function by using a stepwise regression procedure (Draper and Smith, 1998).

The same procedure for obtaining a mean function has been used by Williamson

et al. (2013); Salter and Williamson (2016). Interestingly, input variable Noise

is considered as one of the potential predictors and if it is selected by stepwise

algorithm, we add no further terms. Effectively, we consider Noise as a stopping

criteria for fitting a mean function of emulator. The role of Noise is discussed in

detail in Salter and Williamson (2016).

There is a number of arguments of function EMULATE.lm that specify and con-

trol the form of input parameters that could be added to h(x). For instance,

TryFouriers is a logical argument with default FALSE. With TryFouriers=TRUE

the function considers the Fourier transformation of input parameters added as po-

tential terms to h(x). The argument maxOrder corresponds to the maximum order

of Fourier transformation for input parameters. Effectively we allow function to

consider j ≤maxOrder for sin(j × π × xi) and cos(j × π × xi) with xi as one of the

input parameters, as potential terms for linear function of emulator. Lastly, maxdf

corresponds to the maximum number of degrees of freedom that we are allowed to

use for our regression model. In particular, we could add at greatest maxdf terms,

predictors, to regression function with maxdf+1 parameters to estimate.

The output of EMULATE.lm is a list with the elements that are crucial in con-

structing full GP model.

1 > names(myem.lm)
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2 [1] "Names" "linModel"

3 "mainEffects" "Interactions"

4 [5] "Factors" "FactorInteractions"

5 "ThreeWayInters" "Fouriers"

6 [9] "pre.Lists" "DataString"

7 "ResponseString"

In particular, Names is a vector of strings corresponding to the candidates whose

main effects are included in the final linear model and are considered inside the

residual term of GP emulator. Another important part of output generated by

EMULATE.lm is linModel. linModel is an object of class ‘lm’. For instance, the

function summary could be applied to print out the summary of the results.

B.3.2 Constructing a full GP emulator

After obtaining the form of regression function, h(x), we are ready to construct

a full GP emulator. We pass an obtained linear model to function’s argument

meanResponse.

1 myem.gp <- EMULATE.gpstan(meanResponse=myem.lm,

2 tData=tData , FastVersion=TRUE , additionalVariables=NULL)

Function EMULATE.gpstan contains the loaded DSO, pre-compiled Stan program

stored in model fit object that we discussed in subsection B.2. Inside function

EMULATE.gpstan we use function sampling that calls sampler ‘NUTS’ (No-U-Turn

samples ) (Hoffman and Gelman, 2011; Betancourt 2017) to draw posterior samples

from the model defined by model fit. We pass Stan number of cores to estimate on

(2) and number of iterations (2000 by default) and number of warmup iterations per

chain (1000). We use multiple chains to make sure that the posterior distribution

that we converge on is stable, and is not affected by starting values. A logical scalar

argument, FastVersion, defaulting to TRUE, indicates whether to include the GP

hyperparameters’ values fixed at maximum a posteriori values (MAP) and some of

the components of GP emulator for fast inference. If FALSE, these components are
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not saved and used for inference.

We could pass to additionalVariables a vector of character strings specifying

the input parameters that we would like to be considered in the model for residual

term (covariance function). The default is NULL indicating that only main effects in

the linear component are considered inside the residual term.

For pedagogical purposes we have considered how to construct linear component

and GP component of surrogate model step by step using functions EMULATE.lm and

EMULATE.gpstan respectively. In fact, our collaborators from HIGH-TUNE could use

function BuildStanEmulator to generate full GP emulator in one go which is based

on EMULATE.lm and EMULATE.gpstan functions.

B.3.3 Output generated by EMULATE.gpstan

EMULATE.gp returns an object StanEmulator. An object StanEmulator is a list

containing the following elements and we consider some of these elements in detail.

1 > names(myem.gp)

2 [1] "Names" "linModel"

3 [3] "mainEffects" "Interactions"

4 [5] "Factors" "FactorInteractions"

5 [7] "ThreeWayInters" "Fouriers"

6 [9] "pre.Lists" "DataString"

7 [11] "ResponseString" "Design"

8 [13] "tF" "H"

9 [15] "ParameterSamples" "FastParts"

10 [17] "StanModel" "prior.params"

11 [19] "init.list"

ParameterSamples is a list with elements sigma, delta par, beta and nugget,

where each element of the list contains the posterior samples of size 2000 (com-

bining samples generated by each chain after warmup) for the corresponding

parameter.
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FastParts is the list with the following elements tMAP, A, QA, Ldiff. tMAP corre-

sponds to the index of posterior samples at which we obtain MAP (maximum

a posteriori) value. A is a matrix of covariances evaluated at design points,

K(X,X). QA is a Cholesky decomposition of matrix A. Ldiff corresponds to

the vector of computed (QA)−1(F −Hβ), a part of posterior mean that could

be computed offline and used for fast inference.

StanModel is a stanfit object that is saved for diagnostics purposes, such as to

assess the convergence of chains using traceplot function demonstrated in

Figure B.2.

1 traceplot(myem.gp$StanModel)

Figure B.2: Trace plots obtained from myem.gp$StanModel.

B.3.4 GP emulator for multivariate computer model output

We define a tData, a data frame which contains normalized input parameters values

thermals fact epsilon, thermals ed dz, cld lc lsc and cld tau lsc, and four

metrics of interest that we attempt to emulate, i.e. theta500, qv500, zhneb and

nebmax.

We construct GP emulator for each metric of interest using the following code:
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1 myem.lm =InitialBasisEmulators(tData=tData ,

2 HowManyEmulators =4, additionalVariables = NULL)

which generates a list, where each element of the list contains an emulator object

generated using a function BuildStanEmulator for each metric. These objects could

be further used for diagnostics and calibration.

B.4 Diagnostics for GP emulators

In this section of Appendix, we describe the functions provided inside ExeterUQ

software to perform diagnostics (validate) a GP emulator.

B.4.1 Leave One Out (LOO) diagnostics

The code provided in this part of Appendix corresponds to the diagnostics performed

in subsection 3.6. In particular, we could generate Leave One Out (LOO) diagnostics

plot using the following code

1 tLOOs = LOO.plot(StanEmulator = myem.gp,

2 ParamNames=names(tData )[1: nparam],

3 ResponseName = "theta500")

where StanEmulator corresponds to the object previously generated by two func-

tions EMULATE.lm and EMULATE.gp, ParamNames is a string vector of input parameter

namings and ResponseName corresponds to the response variable name.

We generate a data frame of size n, employing the procedure described in sub-

section 3.6.1, with columns posterior mean corresponds to E
[
f(xj)|

{
X−j,F−j

}]
values and lower quantile and upper quantile correspond to

E
[
f(xj)|

{
X−j,F−j

}]
± 2×

√
V ar

[
f(xj)|

{
X−j,F−j

}]
j = 1, . . . , n.

The first six rows of the obtained data frame is provided below.

1 > head(tLOOs)
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2 posterior mean lower quantile upper quantile

3 1 306.0410 306.0180 306.0640

4 2 306.3035 306.2793 306.3277

5 3 306.1059 306.0809 306.1308

6 4 305.9206 305.8969 305.9444

7 5 306.4025 306.3794 306.4255

8 6 306.1614 306.1364 306.1864

Additionally we could obtain the standardised errors from LOO diagnostics for

example in subsection 3.6.1 by using the following R function:

1 std.error = CalStError(tLOOs , tData$theta500)

B.4.2 Validation plots for GP emulators

In the Appendix B.3, we defined a data frame tData.valid that was not used for

constructing GP emulator and instead was used for validation, i.e. to check the

predictive power of produced GP emulator on unobserved points.

1 Valid = ValidationStan(NewData = tData.valid ,

2 Emulator = myem.gp, main = "")

tData.valid corresponds to the data frame of unobserved parameter values together

with the model response. tData.valid has the same format as the tData. We pass

StanObject to Emulator argument of a function. main is a string that could be

used to produce an overall title of the diagnostic plot. This code has been used to

produce diagnostic plots in subsection 3.6.2.

In order to generate predictions, Expectation and StandardDev, for each input

point in tData.valid we use the pre-compiled Stan program object, model predict,

described in subsection B.2. We generate a data frame with columns posterior

mean corresponding to Expectation values and lower quantile and upper quantile

corresponding to Expectation−2×StandardDev and Expectation+2×StandardDev

respectively. The first six rows of the obtained data frame is provided below.
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1 > head(Valid)

2 posterior mean lower quantile upper quantile

3 1 306.2373 306.2144 306.2602

4 2 306.2919 306.2689 306.3149

5 3 306.2001 306.1776 306.2225

6 4 306.0642 306.0404 306.0880

7 5 306.4464 306.4210 306.4718

8 6 305.8652 305.8413 305.8892

B.4.3 Validation Summary Statistics

The predictive power of produced GP emulator could be assessed using Root Mean

Squared Error (RMSE) by calling RMSE.Fun function, where we pass the data frame

generate by function ValidationStan to argument pred and a vector of true model

values to argument y.true.

1 > RMSE.Fun(pred = Valid , y.true = tData.valid$theta500)

2 [1] 0.01243866

We also compute Interval Score (IS) by calling S.Int.score function, where ar-

gument alpha corresponds to the α parameter specified by user to compute equation

(3.1).

1 > S.Int.score(pred = Valid , y.true = tData.valid$theta500 ,

2 alpha = 0.05)

3 [1] 0.05945927

B.5 Code to perform calibration in ExeterUQ soft-

ware

In this section of Appendix, we provide the R code used to perform history matching

described in Section 3.7.
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B.5.1 History Matching

We provide a code used to perform Wave 1 HM by considering a single metric

theta500 in subsection 3.7.

We start by generating 10,000 points random LHC, stored in data frame Xp, to

represent the parameter space, X , at which we are going to compute the implausi-

bility function defined previously.

1 Xp <- as.data.frame(2*randomLHS (10000 , nparam )-1)

2 names(Xp) <- names(tData )[1: nparam]

In order to evaluate implausibility function, I(x), at each member of Xp, we

use the UniImplausibilityStan function and we pass the values of z, V ar[η] and

V ar[e] to Obs, Discrepancy and ObsErr respectively. For this demonstration we

specify Obs = 305.82, ObsErr = 0.0218 and Discrepancy = 0. The argument

FastVersion determines how we compute an expectation, E[f(x)], and variance,

V ar[f(x)], from emulator. If FastVersion=FALSE, we use pre-compiled Stan pro-

gram model predict described in subsection B.2 to obtain these values by using

a whole set of posterior samples for GP hyperparameters. On the contrary, if

FastVersion=TRUE, we fix GP hyperparameters at MAP values to obtain expec-

tation and variance.

1 Timps <- UniImplausibilityStan(NewData=Xp,

2 Emulator=myem.gp, Discrepancy=Disc , Obs=tObs ,

3 ObsErr=tObsErr , FastVersion = TRUE)

The output of UniImplausibilityStan function is a vector of length 10,000 of

computed implausibility function values at the data frame Xp.

1 > head(Timps)

2 [1] 2.752236 3.230644 2.960496 4.973720 3.488240 2.110816

We are interested in visualizing the results of history matching by obtaining the

implausibility plots. Firstly, we need to generate implausibility lists using function

CreateImpList. For function CreateImpList we need to specify ImpData, a data
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frame that contains the input points, Xp, and the corresponding values of implausi-

bility function evaluated at Xp. Cutoff is a value that corresponds to the threshold,

a, so that any value of I(x) > a is deemed implausible. For this demonstration we

specified Cutoff = 3 following the 3 sigma rule (Pukelsheim, 1994).

1 ImpData <- cbind(Xp ,Timps)

2 Cutoff <- 3

3 VarNames <- names(Xp)

4 ImpList <- CreateImpList(whichVars = 1:nparam ,

5 VarNames = VarNames , ImpData = ImpData ,

6 Resolution = c(15,15), whichMax=1, Cutoff = Cutoff)

In our demonstration the function ImpList generates a list of size 3:

ImpList[[1]] is a list of size 3 which is used to produce NROY density and min-

imum implausibility plots for the input parameter thermals fact epsilon

against other three input parameters, i.e. thermals ed dz, cld lc lsc and

cld tau lsc. Each member of the list ImpList[[1]] contains a matrix of di-

mensions 2× 225, where the first row corresponds to the proportion of NROY

space of Xp at each pixel and the second row corresponds to the minimum

implausibility of Xp at each pixel.

ImpList[[2]] is a list of size 2 which is used to produce NROY density and

minimum implausibility plots for the input parameter thermals ed dz against

cld lc lsc and cld tau lsc.

ImpList[[3]] is a list of size 1 which is used to produce NROY density and

minimum implausibility plots for the input parameter cld lc lsc against

cld tau lsc.

Finally, we are ready to produce NROY density and minimum implausibility

plots demonstrated in Figure 3.8, using function imp.layoutm11.

1 imp.layoutm11(ImpList ,VarNames ,newPDF=FALSE ,

2 the.title=paste("InputSpace_wave",WAVEN ,".pdf",sep=""),
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3 newPNG=FALSE ,newJPEG=FALSE ,newEPS=FALSE ,Points=NULL)

Setting one of the logical arguments newPDF, newPNG, newJPEG, newEPS equal to

TRUE automatically generates NROY density and minimum implausibility plots in

the corresponding image processing format.

B.5.2 Computation of multi-dimensional implausibility

In the same way as in subsection 3.7.1, we start by generating 10,000 points random

LHC, stored in data frame Xp, to represent the parameter space, X , at which we

are going to compute the implausibility function, Ii(x), i = 1, . . . , 4 for each of the

metrics.

1 Xp <- as.data.frame(2*randomLHS (10000 , nparam )-1)

2 names(Xp) <- names(tData )[1: nparam]

In order to compute implausibility function, Ii(x), i = 1, . . . , 4, for each metric at

each member of Xp, we use the ManyImplausibilitiesStan function. The function

uses StanEmulator objects stored in the myem.lm to obtain expectation, E[fi(x)],

and variance, V ar[fi(x)], for each metric of interest. Then we proceed to computing

implausibility function for each metric individually. We pass vectors of values of

observations, variance of observation errors and variances of model discrepancy to

arguments Obs, tObsErr and Discrepancy respectively.

1 > Disc

2 [1] 0 0 0 0

3 > tObs

4 [1] 3.058203e+02 1.618378e+01 1.521915e+03 9.296613e-02

5 > tObsErr

6 [1] 2.185544e-02 4.917087e-02 1.729015e+03 1.880364e-04

1 TMimpls <- ManyImplausibilitiesStan(NewData=Xp ,

2 Emulator=myem.lm, Discrepancy=Disc , Obs=tObs ,

3 ObsErr=tObsErr , FastVersion = TRUE)
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4 Impdata=cbind(Xp,TMimpls)

5 VarNames=names(Xp)

The output of ManyImplausibilitiesStan function is a matrix of dimension

10, 000× 4 where each column corresponds to Ii(x), i = 1, . . . , 4.

In order to visualize the NROY density plots and minimum implausibility plots

for 2-D projections of NROY space we are required to use CreateImpList function

to generate ImpList object, which is necessary for the image construction. We need

to pass the number of metrics that we are considering to nEms argument of the

function. The argument whichMax determines the form of implausibility measure

that we are considering, i.e. whichMax=1 corresponds to IM .

1 ImpList = CreateImpList(whichVars = 1:nparam ,

2 VarNames=VarNames , ImpData=Impdata , nEms=nmetrique ,

3 whichMax=1, Cutoff = Cutoff)

1 NROY1=which(rowSums(TMimpls <= Cutoff)>=nmetrique)

2 Xp2 = Xp[NROY1 , ]

In order to produce the second highest implausibility we use the same function

CreateImpList, but in this case we specify whichMax=2.

1 ImpList = CreateImpList(whichVars = 1:nparam ,

2 VarNames=VarNames , ImpData=Impdata , nEms=nmetrique ,

3 whichMax=2, Cutoff = Cutoff)

1 NROY1=which(rowSums(TMimpls <= Cutoff)>=nmetrique -1)

2 Xp2 <- Xp[NROY1 , ]

B.5.3 Performing iterative refocussing in ExeterUQ software

In general, we follow the following steps to perform refocussing with ExeterUQ soft-

ware:
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1. An initial sample of size n is taken in parameter space using a K-extended

Latin Hypercube design (Williamson, 2015) to obtain X[1]. SCM model runs

are produced at the design values to obtain metrics of interest, giving F[1]. We

define a list EMULATOR.LIST to store StanEmulator objects generated at each

step of multi-wave calibration. We also define a vector, Cutoff vec, to store a

value of a, Cutoff, and a vector, tau vec, to store a value of tau, where both

values could be adjusted at each step of multi-wave calibration. The value

of tau is important in specifying the form of implausibility function, i.e. we

derive valmax = tau + 1, which we pass to argument whichMax of calibration

functions.

2. Construct Gaussian Process emulators using InitialBasisEmulators and

perform Leave-One-Out diagnostics to check the performance of obtained em-

ulators. At wave k we save a collection of StanEmulator objects in a list

EMULATOR.LIST with entry k. We also save the pre-specified a (threshold

value) as the kth entry of vector Cutoff vec and an integer j, that determines

the jth maximum implausibility function, as the kth entry of vector tau vec.

The modified objects, i.e. EMULATOR.LIST, Cutoff vec and tau vec are saved

in RData file, EMULATOR LIST MULT METRIC.RData.

3. Start with loading EMULATOR LIST MULT METRIC.RData file. Generate a ran-

dom LHC sample of 10,000 points in parameter space at which we are going to

compute implausibilities. We are required to use StanEmulator objects from

previous waves, as we note that x is nonimplausible at wave k only if it is non-

implausible for all the waves that precede it. We sample n from the current

NROY space , X k−1, using random sampling instead of the entire parameter

space to create a new design and obtain a new ensemble,
{

X[k],F[k]

}
.
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Appendix C

Bayesian Design Computation

(BDC) plots

In this part of the appendix, we produce plots of representation of Term 2, Ψ2(ξ), and

Term 3, Ψ3(ξ), obtained as part of Bayesian Design Criterion (BDC) computation.

C.1 BOD for Wave 1 of history matching

We are interested in picturing the contribution to Term2, Ψ2(ξ), over the original

input space, X . To produce these plots, we start by specifying a number of equally

spaced intervals for x1 and x2, i.e. nres, which determines the resolution, the number

of pixels of obtained images. The value behind each pixel represents the proportion

of points that are expected to be part of wave 1 NROY space and “true” NROY

space and computed as

1

N1

N1∑
i=1

1

Nres

Nres∑
k=1

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E[f(x(k))|f(ξ)(i),ΘMAP

i ]√
V ar[f(x(k))|f(ξ)(i),ΘMAP

i ]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E[f(x(k))|f(ξ)(i),ΘMAP

i ]√
V ar[f(x(k))|f(ξ)(i),ΘMAP

i ]

)]

× 1

{
|z − E[f(x(k))|f(ξ)(i),ΘMAP

i ]|√
V ar[e] + V ar[η] + V ar[f(x(k))|f(ξ)(i),ΘMAP

i ]
≤ a

}
,

xl1 ≤ x
(k)
1 ≤ xl+1

1 , l = 1, . . . , nres − 1,

xr2 ≤ x
(k)
2 ≤ xr+1

2 , r = 1, . . . , nres − 1.
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Red regions correspond to the input space where we expect to obtain the largest

contribution towards the final value of Term 2. In contrast, white and yellow regions

correspond to the input space with very limited contribution towards the final value

of Term 2.

Similar steps are performed to depict the contributions to Term 3, Ψ3(ξ), over

the original input space, X . In this case, the value behind each pixel is the mean

contribution to the value of Term 3 computed via

1

N1

N1∑
i=1

1

Nres

Nres∑
k=1

[
Φ

(
z + a

√
V ar[e] + V ar[η]− E[f(x(k))|f(ξ)(i),ΘMAP

i ]√
V ar[f(x(k))|f(ξ)(i),ΘMAP

i ]

)

− Φ

(
z − a

√
V ar[e] + V ar[η]− E[f(x(k))|f(ξ)(i),ΘMAP

i ]√
V ar[f(x(k))|f(ξ)(i),ΘMAP

i ]

)]
,

xl1 ≤ x
(k)
1 ≤ xl+1

1 , l = 1, . . . , nres − 1,

xr2 ≤ x
(k)
2 ≤ xr+1

2 , r = 1, . . . , nres − 1.

Red regions correspond to the input regions where we expect to obtain the largest

contribution towards the final value of Term 3, effectively we have a high expectation

that this region is part of “true” NROY space. On the contrary, white and yellow

regions correspond to the input space with a limited contribution towards the final

value of Term 3, effectively we have lower expectation that these regions are part of

“true” NROY space.

Figure C.1: The integrand of Term 2, Ψ2(ξ), computed over the input space, X .
Each pixel of plots represents the mean value of the integrand of Term 2, Ψ2(ξ),
computed at input settings behind each pixel. Different design options are depicted
as black points.
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Figure C.2: The integrand of Term 3, Ψ3(ξ), computed over the input space, X .
Each pixel of plots represents the mean value of the integrand of Term 3, Ψ3(ξ),
computed at input settings behind each pixel. Different design options are depicted
as black points.

C.2 Bayesian Optimal Design and the Nonsta-

tionary GP model

We are interested in depicting the contribution to Term 2, Ψ2(ξ), over X 1. We start

by specifying the number of pixels nres and generate parameter plots by fixing two

parameters labelled for each pixel at the value of a pixel and exploring a 100 point

Latin Hypercube in the other dimensions. The value behind each pixel is the mean

contribution to the value of Term 2 computed via

1

Nres

Nres∑
i=1

Ψ2

(
ξ; x(i), f(ξ)(i)

)
x

(i)
1 = xl1, l = 1, . . . , nres

x
(i)
2 = xm2 ,m = 1, . . . , nres,

where Ψ2

(
ξ; x(i), f(ξ)(i)

)
is provided in equation (5.20). Red region corresponds to

the input space where we expect to obtain the largest contribution towards the final

value of Term 2, while white and yellow region corresponds to the input space with a

very limited contribution towards the final value of Term 2. We consider red region

as the region of the input space where we expect to observe an overlap between wave

2 NROY space with and “true” NROY space as part of BDC computation.

To obtain region-specific contributions towards Term 2, i.e. Ψ2l(ξ) with l =

1, . . . , L, the procedure described above is performed with an extra condition that

λl(x
(i)) > λj(x

(i)), j = {1, · · · , L}/l.
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Similar steps are performed to depict the contribution to Term 3, Ψ3(ξ), over

X 1. In this case, the value behind each pixel is the mean contribution to the value

of Term 3 computed via

1

Nres

Nres∑
i=1

Ψ3

(
ξ; x(i), f(ξ)(i)

)
x

(i)
1 = xl1, l = 1, . . . , nres

x
(i)
2 = xm2 ,m = 1, . . . , nres,

where Ψ3(ξ,x(i), f(ξ)(i)) is provided in equation (5.21). Red region corresponds to

the input regions where we expect to obtain the largest contribution to the final

value of Term 3, effectively we have a high expectation that this region is part of

“true” NROY space. On the contrary, white and yellow regions correspond to the

input space with a limited contribution towards the final value of Term 3, effectively

we have lower expectation that these regions are part of “true” NROY space.

To obtain region-specific contributions towards Term 3, i.e. Ψ3l(ξ) with l =

1, . . . , L, the procedure described above is performed with an extra condition that

λl(x
(i)) > λj(x

(i)), j = {1, . . . , L}/l.
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C.3 Application Study 1

We provide representation of Term 2 and Term 3 over the reduced input space, X 1,

for Application Study 1, considered in Section 6.5.

Figure C.3: Comparison of contributions towards Term 2, Ψ2(ξ), between “naive”
design (Naive Design), Bayesian Optimal Design (BOD) and arbitrary design
(Arbitrary Design) in the Application Study 1 for 2D projections over the NROY
space for a pair of parameters thermals ed dz and thermals fact epsilon. First
column: the value behind each pixel represents the mean contribution towards the
final value of Term 2. The ruled out input space is in grey. Second column: the value
behind each pixel corresponds to the mean contribution towards Term 2 computed
over X 1

1 , Ψ21(ξ). The ruled out input space and X 1
3 are in grey. Third column:

the value behind each pixel corresponds to the mean contribution towards Term 2
computed over X 1

3 , Ψ23(ξ). The ruled out input space and X 1
1 are in grey.
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Figure C.4: Comparison of contributions towards Term 3, Ψ3(ξ), between “naive”
design (Naive Design), Bayesian Optimal Design (BOD) and arbitrary design
(Arbitrary Design) in the Application Study 1 for 2D projections over the NROY
space for a pair of parameters thermals ed dz and thermals fact epsilon. First
column: the value behind each pixel represents the mean contribution towards the
final value of Term 3. The ruled out input space is in grey. Second column: the value
behind each pixel corresponds to the mean contribution towards Term 3 computed
over X 1

1 , Ψ31(ξ). The ruled out input space and X 1
3 are in grey. Third column:

the value behind each pixel corresponds to the mean contribution towards Term 3
computed over X 1

3 , Ψ33(ξ). The ruled out input space and X 1
1 are in grey.

C.4 Application Study 2

We provide representation of Term 2 and Term 3 over the reduced input space, X 1,

for Application Study 2, considered in Section 6.6.
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Figure C.5: Comparison of contributions towards Term 2, Ψ2(ξ), between “naive”
design (Naive Design), candidate design (Design 1) and arbitrary design (Arbitrary
Design) in the Application Study 2 for 2D projections over the NROY space for
a pair of parameters thermals ed dz and thermals fact epsilon. First column:
the value behind each pixel represents the mean contribution towards the final value
of Term 2. The ruled out input space is in grey. Second column: the value behind
each pixel corresponds to the mean contribution towards Term 2 computed over X 1

1 ,
Ψ21(ξ). The ruled out input space and X 1

3 are in grey. Third column: the value
behind each pixel corresponds to the mean contribution towards Term 2 computed
over X 1

3 , Ψ23(ξ). The ruled out input space and X 1
1 are in grey.
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Figure C.6: Comparison of contributions towards Term 3, Ψ3(ξ), between “naive”
design (Naive Design), candidate design (Design 1) and arbitrary design (Arbitrary
Design) in the Application Study 2 for 2D projections over the NROY space for
a pair of parameters thermals ed dz and thermals fact epsilon. First column:
the value behind each pixel represents the mean contribution towards the final value
of Term 3. The ruled out input space is in grey. Second column: the value behind
each pixel corresponds to the mean contribution towards Term 3 computed over X 1

1 ,
Ψ31(ξ). The ruled out input space and X 1

3 are in grey. Third column: the value
behind each pixel corresponds to the mean contribution towards Term 3 computed
over X 1

3 , Ψ33(ξ). The ruled out input space and X 1
1 are in grey.
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Appendix D

Emulator diagnostics

In Section 2.4, we emphasized the importance of checking the validity of a GP

emulator in representing a model response. We perform a diagnostic check with

Leave-one-out (LOO) cross-validation on ensemble {X,F}.

Leave-one-out cross-validation diagnostic plots are provided here for runs in the

training set, i.e. ensemble {X,F}. Each plot shows the posterior mean and two

standard deviation prediction intervals produced by emulators in black against input

parameters of the model. The green and red points are the true model values,

coloured “green” if they lie within two standard deviation prediction intervals and

“red” if they lie outside.

D.1 The 2D “wavy” function

Figure D.1: Leave-one-out (LOO) cross-validation plots of stationary GP emulator
(top row) and nonstationary GP emulator (bottom row) for 2D “wavy” function.
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D.2 5D function

Figure D.2: Leave-one-out (LOO) cross-validation plots for four sub-designs against
x5 input obtained for stationary GP emulator (top row) and nonstationary GP
emulator (bottom row).

Figure D.3: Leave-one-out (LOO) cross-validation plots for four sub-designs against
x5 input obtained for stationary GP emulator (top row) and nonstationary GP
emulator (bottom row) and considering x5 as an “active” input.
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D.3 Nugget predictor example

Figure D.4: Leave-one-out (LOO) cross-validation plots of nonstationary GP for a
nugget predictor example.

D.4 Experiments with ARPEGE-Climat model

Figure D.5: Leave-one-out (LOO) cross-validation plots for four sub-designs against
standardized ALFX input obtained for stationary GP emulator (top row) and non-
stationary GP emulator (bottom row).

D.5 A semi-sphere centred at 0 with radius 1

We provide the diagnostic plots for a simple 2D toy function, a semi-sphere centred

at 0 with radius 1, considered in section 5.5.
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Figure D.6: Leave-one-out (LOO) cross-validation plots of stationary GP against
inputs x1 and x2.

D.6 Application Studies

We provide the diagnostic plots for SCM qv500 response against input parameters

considered in Chapter 6.

Figure D.7: Leave-one-out (LOO) cross-validation plots against model inputs ob-
tained for stationary GP emulator.
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Figure D.8: Leave-one-out (LOO) cross-validation plots against model inputs ob-
tained for nonstationary GP emulator.
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