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Abstract—The Internet-of-Things (IoT) has been deeply pene-
trated into a wide range of important and critical sectors, includ-
ing smart city, water, transportation, manufacturing and smart
factory. Massive data are being acquired from a fast growing
number of IoT devices. Efficient data processing is a necessity to
meet diversified and stringent requirements of many emerging
IoT applications. Due to the constrained computation and storage
resources, IoT devices have resorted to the powerful cloud
computing to process their data. However, centralised and remote
cloud computing may introduce unacceptable communication
delay since its physical location is far away from IoT devices.
Edge cloud has been introduced to overcome this issue by moving
the cloud in closer proximity to IoT devices. The orchestration
and cooperation between the cloud and the edge provides a
crucial computing architecture for IoT applications. Artificial
intelligence (AI) is a powerful tool to enable the intelligent
orchestration in this architecture. This paper first introduces such
a kind of computing architecture from the perspective of IoT
applications. It then investigates the state-of-the-art proposals on
AI-powered cloud-edge orchestration for the IoT. Finally, a list
of potential research challenges and open issues is provided and
discussed, which can provide useful resources for carrying out
future research in this area.

Index Terms—Cloud Computing, Edge Computing, Internet-
of-Things, Artificial Intelligence, Offloading.

I. INTRODUCTION

Due to advanced semiconductor and related technologies,
including microelectromechanical systems and sensors, the
Internet-of-Things (IoT) has gained significant attentions by
a wide range of sectors, e.g., smart city, water, transportation,
manufacturing, and smart factory [1], [2], [3], [4], [5], [6].
A report from Ericsson presents that the estimated number of
connected devices in a typical smart factory is 0.5 per square
meter1, and in dense areas, this number could be increased
up to 1 per square meter. According to the estimation by
Statista, the number of IoT devices will reach 75.44 billion
worldwide by 20252. The popularity of the IoT in different
sectors is owing to its essential abilities of ubiquitous data
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acquisition and the intelligent decision-making drawn from the
data [7], [8]. The data generated and collected by massive IoT
devices have a set of key features, including large volume, high
velocity, multi-modes, various veracities and heterogeneity
[9], [10], [11], [12], [13]. Essentially, these data need to be
transmitted to a computing facility for data processing and
knowledge extraction, and eventually decisions can be made
for autonomous operations of IoT applications [14], [15], [16].
The unique features of IoT data can therefore cause a signif-
icant increase in the burden on the communication networks
(mainly wireless networks) and the computing facilities.

Cloud computing has gained popularity at a rapid pace
for providing computing and storage resources to many ap-
plications including IoT applications [17], [18], [19]. Many
large companies, such as Microsoft, Google and Amazon, have
produced their cloud computing platforms (e.g., Microsoft
Azure IoT Suite, AWS IoT Platform and IBM Watson IoT
Platform) and have hosted numerous essential IoT services to
help with business digital transformation. However, centralised
cloud computing has been struggling to meet the demands of
large-scale IoT networks, creating the scalability issues [20],
[21]. Traditional centralised cloud computing that is located far
away from IoT devices, introduces remarkable delay overheads
due to the long transmission distance [22]. It also causes a
significant increase in the bandwidth consumption of commu-
nication networks between the cloud and IoT devices [23].
The increase in the delay cannot be tolerated by many delay-
sensitive IoT applications, e.g., augmented reality (AR), virtual
reality (VR), mixed reality (MR), and autonomous vehicles.
Besides, the privacy issue is another key concern when IoT
data need to be offloaded to the centralised cloud computing
for processing [24], [25], [26].

Edge computing brings the cloud in proximity to IoT
devices [27], [28]. It intrinsically solves the above issues due to
its decentralisation nature [29], [30]. In practice, edge servers
can be deployed at anywhere located closer to IoT devices,
e.g., within a house, on top of a building, at the side of a
road, and along with a base station. In principle, edge servers
have less computing and storage capacities than the centralised
cloud servers (also known as data centres) [31]. Therefore,
edge servers may not be able to completely satisfy the com-
puting and storage requirements of some IoT applications.
The orchestration between edge servers and cloud servers
is a necessity in certain IoT scenarios to meet diversified
and stringent application requirements [23]. Different from
centralised cloud servers, edge servers may belong to different
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network providers [32]. This creates additional challenges for
cloud-edge orchestration, since different network providers
may have different business models, operation rules, etc. In
addition, this factor also brings privacy issues, since IoT data
may be transferred to edge servers that are owned by different
network providers [33], [34].

In cloud-edge orchestration, data are transmitted between
the entities of IoT devices, edge servers and cloud servers, for
efficient processing and intelligent decision-making. Related
topics have received numerous attentions in recent years. Fig.
1 shows the number of publications in the IEEE Xplore
database3 and the ScienceDirect database4. The decrease from
Year 2019 to Year 2020 is due to the count of only half a
year in 2020 (i.e., until June 2020 - the time of writing this
paper). There are two key aspects affecting the performance
of cloud-edge orchestration: architecture and the associated
data processing algorithms [35]. The architecture of cloud-
edge orchestration varies with different IoT applications. The
communication network is an important media for data trans-
mission among the cloud, the edge and the IoT devices [36].
The fifth generation (5G) communication system has been
designed to provide data transmission with the requirements
of high throughput, high reliability and low latency, and it
also enables massive connections of IoT devices [2], [37],
[38]. Artificial intelligence (AI), especially deep learning,
has become powerful tools for data processing [39], [40].
The nature of pervasive AI in 5G and beyond 5G (B5G),
coupled with the cloud-edge orchestration architecture, can
enable on-demand local/remote data processing and real-time
decision-making for intelligent IoT eco-systems [41], [42],
[43], [44]. In this paper, the state-of-the-art proposals of these
two important aspects of cloud-edge orchestration will be
investigated, followed by a list of potential research challenges
and open issues. The aim of this survey paper is to provide
researchers a deeper understanding of these two aspects and
enables them to continuously make contributions to bridge
gaps in the research of cloud-edge orchestration.

The rest of this paper is organised as follows. Section II
briefly introduces the concept and use cases of the IoT. Section
III presents the architecture of cloud-edge orchestration for the
IoT and its recent studies. The state-of-the-art proposals of
AI-powered data processing for cloud-edge orchestration are
investigated in Section IV. Potential research challenges and
open issues are discussed in Section V. Finally, Section VI
concludes this paper.

II. INTERNET-OF-THINGS

The IoT is to connect any devices (essentially everything in
the physical world), with an “ON” and “OFF” switch, to the
Internet [45]. It has been widely introduced into a wide range
of sectors to enhance the automation in business operations.
In industry 4.0, the IoT has been deeply penetrated into the
areas of agriculture, power grid, water systems, autonomous
vehicles, healthcare and factories, to make these verticals

3https://ieeexplore.ieee.org/Xplore/home.jsp
4https://www.sciencedirect.com
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Fig. 1. The number of related publications from 2015 to June 2020 in (a) the
IEEE Xplore database and (b) the ScienceDirect database, using the keywords
‘cloud’, ‘edge’, and ‘internet-of-things’, and the keywords ‘cloud’, ‘edge’,
‘internet-of-things’, and ‘learning’, searched in the full text.

smarter, creating the so-called industrial IoT (IIoT) [46], [47],
[48], [49], [50].

The use of the IoT in healthcare, called Internet of Health-
care Things or Internet of Medical Things, has been widely
adopted to carry out digital transformation in the healthcare
industries [51], [52], [53]. This thanks to the fast development
of wearable and bio-sensor technologies, along with essential
medical devices. Remote health monitoring is one of the
most common and important application areas of the IoT
in healthcare. There are many cases where remote health
monitoring is necessary. For example, patients with chronic
diseases have to stay at home due to shortage of healthcare
staffs in hospitals (e.g., during special periods like Covid-19),
and the health monitoring data is vital in this case. Remote
health monitoring becomes essential for people living in rural
areas. The IoT is becoming more important in healthcare when
it is coupled with medical robotics. This is particularly useful
for remote surgery, especially in the era of 5G and B5G
providing the necessary communication environment.

Another important use case of the IoT is in manufacturing,
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Fig. 2. The architecture for the cooperation among the cloud, the edge and the mobile edge computing.

towards the so-called smart factory [54]. Coupling the IoT
technologies with the manufacturing processes, enables auto-
matic data collection and analysis. Results from the data analy-
sis can allow the factory management to make better-informed
decisions and achieve an optimised production process. The re-
mote control of IoT devices, together with certain techniques,
e.g., smart contract [55], provides the ability of automatic re-
mote monitoring for the production environment and automatic
decision-making for any changes of the production plans. It
can also monitor the whole life-cycle of product supply chain,
enabling a more streamline and automatic management. IoT
technologies can also be integrated into the products, creating
the so-called smart products. On the one hand, the feedback
information from the connected smart products can allow the
factory management to improve the efficiency and intelligence
of manufacturing processes. On the other hand, smart products
can collect user data, e.g., how the products are used by a
user, for their further improvement to meet the needs of the
competitive market.

Efficient data handling, including data collection, data pro-
cessing and decision-making, is necessary and crucial for
many IoT applications [56]. First, to meet the diversified
and stringent requirements from various IoT applications,
e.g., ultra-low latency and ultra-high reliability, efficient data
handling is a key factor. Second, the automation in business
operations due to the involvement of the IoT, also relies on
efficient data handling. With the fast growth of the number
of IoT devices in different sectors, data handling process has
placed significant pressures on computing and communication
facilities. This calls for the innovation on computing and
communication architectures for the IoT. Section III will
present a promising architecture for the IoT through cloud-
edge orchestration and investigate related works from the
perspectives of IoT applications and practical issues.

III. CLOUD-EDGE ARCHITECTURE FOR THE IOT

In this section, cloud-edge architecture will be elaborated
and the related architecture proposals will be surveyed. The
discussion will be mainly focused on the architecture, and the
related data processing will be lightly touched in this section
but will be discussed with more details in Section IV.

A. Cloud, Edge and Mobile Edge Computing

Cloud computing is able to provide on-demand availability
of computing and storage resources. It is essentially located
far away from computation tasks and belongs to one service
provider, e.g., Microsoft and Google. Edge computing brings
the cloud in proximity closer to the computation tasks. It
essentially has less computing and storage resources than the
remote cloud, and belongs to multiple service providers. Mo-
bile edge computing refers to the edge computing capabilities
provided by mobile devices, e.g., IoT devices. Due to various
computing and storage capabilities at different computing
facilities (e.g., cloud, edge and mobile edge), and the security
and privacy concerns where data need to be transferred outside
their origin for processing [57], the cooperation among the
cloud, the edge and the mobile edge computing is necessary
in practice, in order to satisfy the diversified and stringent
requirements of various IoT applications.

Fig. 2 shows a typical architecture for the cooperation
among the cloud, the edge and the mobile edge computing.
The IoT devices with the dual roles of both data collection
and data pre-processing, establish mobile edge computing
layer. IoT devices come from different verticals, e.g., wearable
devices for healthcare, robotic arms for smart factory, mobile
phones for Telecom, and AR/VR/MR for mixed verticals. Due
to limited computing capabilities of IoT devices, computation
tasks may have to be offloaded to mobile edge computing
devices (e.g., IoT devices), edge servers, and cloud data
centres for processing. Incentive mechanisms are essential for
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the cooperation between IoT devices as they have different
owners, and between edge servers as they may belong to dif-
ferent service providers [58]. Security and privacy preservation
mechanisms need to be in place to guarantee that the data
transmission can satisfy the corresponding requirements of IoT
applications and comply data protection laws [59], [60], [61],
[62], [63]. This can be considered from different aspects. For
example, appropriate security mechanisms, e.g., blockchain,
can be adopted to guarantee the transparency and security of
IoT data and data transmission [64], [65], [66], [67], [68],
[69]. In addition, appropriate machine learning frameworks,
e.g., federated learning [29], [70], can be enabled to ensure
the data privacy by carrying out the data analysis locally. The
basic idea of federated learning in the context of IoT, is to
learn and improve the model in each IoT device using its own
data. Any changes of the model in an IoT device are then
summarised and sent to a cloud (e.g., edge cloud and remote
data centres), using encrypted communication. The cloud then
averages the updated results (e.g., model parameters) from all
IoT devices as soon as they receive (no storage of the updates
at the cloud), and improves the shared model. All the training
data remain on the IoT devices, ensuring data privacy.

A number of recent studies have paid attentions on the
architecture for the cooperation of the cloud, the edge and
the mobile edge computing. These works focus on different
application areas (e.g., IIoT, mobile networks, and vehicular
networks), various practical issues (e.g., multi-domain and mi-
croservices), and network security and privacy considerations.
In what follows, the state-of-the-art and typical studies of these
architecture proposals will be investigated and discussed. A
summary of these proposals is provided in Table I.

B. Industrial Networks
Due to the significant increase in the implementation of

the IoT in industrial devices, industrial networks are moving
towards automation in many aspects, e.g., industrial resource
management, service upgrade, and operation policy implemen-
tation. A unique representation model for heterogeneous IIoT
data is essential [88], [89]. Unlike modern IIoT devices, there
are many legacy industrial devices that cannot be programmed.
These legacy devices are therefore not easily being controlled,
hindering the automatic implementation of service upgrades
and policy changes. In addition, industrial networks have been
deployed and operated for many years. They have their own
architecture for legacy industrial automation. It is crucial to
smoothly integrate modern control architecture and systems
into the legacy control architecture of industrial networks.

Xia et al. [71] proposed an architecture for IIoT with a
hierarchical control structure in the cloud-edge architecture.
Software defined networking (SDN) [90], [91] is used to
separate the control plane and data plane in this architecture.
The hierarchical SDN controllers are able to improve the
intelligence and flexibility of the control plane of the archi-
tecture. Remote radio heads form a mobile edge computing-
based radio access network, improving the scalability and
cooperation at data plane of the architecture. Deep learning
techniques are implemented in the mobile edge computing to
enhance the edge intelligence.

Dai et al. [72] studied the industrial edge computing and
how cloud-edge collaboration on edge servers can help meet
the requirements of IIoT applications. The authors first dis-
cussed the mapping of the 5-level reference architecture of
legacy industrial automation systems with the cloud-edge
architecture. Levels 0-2 in the legacy industrial systems,
focusing on industrial automation control and monitoring,
have more real-time requirements, and thus they require
edge computing to satisfy the needs. Levels 3 and 4, being
used for manufacturing operation management and enterprise
operations, have low real-time requirements, and thus cloud
computing is more appropriate to meet the computing needs.
The authors then proposed a reference architecture for the in-
dustrial systems with cloud and edge computing. The proposed
architecture contains the following three layers:

• The top layer. The industrial cloud computing platforms
are adopted to support a range of IIoT applications.

• The middle layer. The industrial edge gateway is in
charge of managing data collection processes from edge
servers, and balancing networking, computing and storage
resources.

• The base layer. This layer consists of edge servers.

C. Mobile and Vehicular Networks

The IoT devices in the context of mobile and vehicular
networks may experience varying network conditions and
quality-of-service (QoS) when moving across edge servers. It
is therefore necessary to take into account such context when
making decisions for the usage of the cloud and the edge
resources. In addition, service continuity is another important
factor that needs to be considered to ensure the required QoS
for IoT applications in the context of mobile networks. How
to ensure the end-to-end mobility support in the cloud-edge
architecture is a hot research topic.

Guo et al. [73] proposed a context-aware object detec-
tion algorithm for vehicular networks, based on edge-cloud
cooperation. The authors leveraged deep learning techniques
to build an object detection model in the cloud server. The
context information and the captured images extracted at the
edge servers were used to train model parameters locally, and
the results were used to adjust the object detection model in
the cloud. The cooperation between the edge and the cloud
improves the performance and adaptation of the detection
model under various real-world settings.

Ghosh et al. [74] proposed a mobility-driven framework
for real-time cloud-fog-edge collaboration5. It contains four
layers, i.e., IoT layer, edge layer, fog layer and cloud layer. The
proposed framework exploited the mobility nature of a moving
node, by analysing the global positioning system (GPS) log
data, the spatio-temporal mobility data, and other contextual
information. Then, it relied on advanced machine learning
algorithms to predict the location of the moving node (i.e.,
IoT and edge devices) in real-time. The proposed framework

5It is worth mentioning that the term of fog computing was proposed to
bring service provisioning in closer proximity to users [92]. It focuses on
service provisioning instead of data processing which is the focus of edge
computing.
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TABLE I
A SUMMARY OF THE STATE-OF-THE-ART PROPOSALS OF CLOUD-EDGE ARCHITECTURES FOR THE INTERNET-OF-THINGS

Applications and Practical Issues Existing Architecture Proposals Features

Industrial networks Xia et al. [71] A hierarchical control architecture based on SDN

Dai et al. [72] Mapping the reference architecture of legacy industrial automation
systems with cloud-edge architecture

Mobile and vehicular networks

Guo et al. [73] Context-awareness at the edge and deep analytics at the cloud

Ghosh et al. [74] Mobility-driven framework with real-time prediction of vehicle loca-
tions

Liu et al. [75] A three-layer architecture based on SDN

Shah et al. [76] Enhanced orchestration and management for mobile edge computing
to provide better end-to-end mobility support

Healthcare Muhammad et al. [77] A classic cloud-edge architecture

Baktir et al. [78] Dynamic management based on SDN

Multi-domain cloud-edge Taleb et al. [79] Content delivery network (CDN) slice over multiple domains

Microservice

Villari et al. [80] Osmotic computing

Alam et al. [81] A scalable and modular architecture based on lightweight virtualisation

Castellano et al. [82] Each application can have its own orchestration strategy

Dai et al. [83] A microservice-based and knowledge-driven architecture to enable
plug-and-play function components

Yousefpour et al. [84] QoS-aware service provisioning for dynamic deployment and release
of services

Security and privacy

Diro and Chilamkurti [85] A distributed deep learning model for the detection of cyber attacks
in the environment of fog-to-things computing

Nie et al. [25] A differentially private tensor computing model for SDN-based IoT
big data

Guo et al. [86] A trusted and automatic service function chain orchestration approach
based on consortium blockchain and deep reinforcement learning

Yang et al. [87] A distributed machine learning architecture to enable fog intelligence
for intelligent wireless network management with privacy preservation

can provide better QoS performance for IoT applications with
real-time requirements.

Liu et al. [75] proposed a cloud-edge network based on
SDN for mobile vehicles, with the aim of load balancing and
low response delay. They introduced three layers: data centre
layer that is used for performing function releasing, devices
orchestration and data aggregation, middle routing layer that
is designed for planning routers, and vehicle network layer for
transmitting data packets and services among devices.

Shah et al. [76] enhanced the orchestration and management
of mobile edge computing to provide better end-to-end mobil-
ity support that is needed to maintain service continuity when
mobile users move across edge servers. The proposed solution
integrated SDN and virtualisation techniques with mobile edge
computing architecture.

D. Healthcare

Healthcare IoT devices are usually highly heterogeneous,
since there are many different types of monitoring tasks in
healthcare eco-systems. It is important to have customised or-
chestrations for different types of healthcare IoT devices in the
cloud-edge architecture. Similar with the industrial networks,
an efficient control to significant number of healthcare IoT

devices is crucial to ensure QoS of orchestration in the cloud-
edge architecture.

Muhammad, Alhamid and Long [77] proposed a pathology
detection system based on deep learning, edge computing and
cloud computing for smart healthcare. Specifically, electroen-
cephalogram signals of a person were collected by sensors
and sent to an edge server. The server pre-processed the
received signals before transmitting them to a remote cloud
server. The cloud server extracted deep features from the
electroencephalogram signals using a tree-based deep learning
model.

Baktir et al. [78] proposed a multi-tier computing and
communication architecture amongst healthcare IoT devices,
edge servers and cloud data centres. SDN is adopted to carry
out dynamic management of the proposed architecture, policy
implementation and service orchestration of healthcare IoT
applications.

E. Multi-Domain Cloud-Edge Architecture

Cloud-edge architecture may be deployed at multiple net-
work domains in a wide area network scenario, e.g., the
Internet. For massive IoT data, some of them need to be
processed at the edge, but lots of them need to be transferred
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to the cloud for deep analysis. The results from the cloud
can be pushed back to the edge and even IoT for many
operations, including configuration and optimisation. This pro-
cess involves the North-South connectivity. Distributed edge
deployment may span multiple domains, resulting in the East-
West connectivity.

Taleb et al. [79] developed an architecture for providing
the video content delivery network functionality as a service
(called CDN slice) over cross-domain cloud-edge environment
in the context of 5G mobile networks. The authors used
network functions virtualisation (NFV) and edge computing to
drive resource allocation and management for ensuring QoS
of CDN slices over multiple domains.

F. Service/Microservice-Oriented Architecture

Service-oriented architecture is promising to enhance flexi-
bility and interoperability between cloud and edge services.
Osmotic computing [80] was a term proposed to support
data transfer protocols that enable seamless communication
between the cloud and the edge. It aims to achieve dynamic
management of services and microservices across the edge
and the cloud, solving the issues related to deployment,
networking, and security. These efforts were made to ensure
the guaranteed QoS for IoT applications. Osmotic computing
provides a federated environment for cloud providers, edge
providers, IoT providers and application providers, allowing
them to work together to make the success of all the parties.
The authors, who first proposed this computing paradigm,
have identified a list of research directions, e.g., runtime mi-
croservice deployment, microservice configuration, microser-
vice networking, microservice security, edge computing, mi-
croservice workload contention and interference evaluation,
and microservice orchestration and elasticity control [80].

Alam et al. [81] proposed a modular and scalable ar-
chitecture based on lightweight virtualisation. The proposed
architecture runs on cloud, fog and edge devices, and offers
containerised services and microservices for the IoT using
the Docker technique. The architecture ensures data collection
and processing at the most appropriate places between the
IoT devices and the cloud, making the computation and
intelligence distributed at appropriate places over the entire
network.

Castellano, Esposito and Risso [82] proposed a service-
based approach for cloud-edge service orchestration. With the
proposed approach, each application can then have its own
orchestration strategy, e.g., an application can have different
optimisation criteria and use different reactions when handling
the same event.

From the perspective of industrial edge computing, Dai et al.
[83] focused on the feature of plug-and-play function compo-
nents for industrial edges and proposed a microservice-based
architecture to enable this feature. The function components
can be dynamically configured for a service, based on the
orchestration of microservices with the knowledge base and
the reasoning process.

Yousefpour et al. [84] proposed a framework solution for
QoS-aware dynamic service provisioning for fog computing.

It was designed for achieving elastic deployment and release
of application services on fog nodes, to meet application
requirements, e.g., low latency.

G. Security and Privacy

Security and privacy are another main concerns for the
cloud-edge architecture [93], [94], [95]. The cloud is usually
operated by a third party and edge clouds may belong to
different service providers. In order to achieve a smart decision
to help with the automation of business operations, various
data including user data, network operation data, and business
operation data, may need to be transferred to the cloud and
the edge for processing. Malicious data will result in incorrect
decisions, affecting the performance of IoT applications even-
tually. Excessive exposure of data (or private data) can improve
the effectiveness of the learning models, but it may violate data
protection regulations/laws. How to ensure the security of data
transmission and the privacy of user and business data, is the
key factor to make the success and sustainability of the edge-
cloud architecture.

Diro and Chilamkurti [85] considered the low accuracy and
less scalability issues, caused by traditional cloud computing,
for cyber-attack detection mechanisms in the environment with
massive IoT devices. They proposed a distributed deep learn-
ing model for the detection of cyber attacks in the environment
of fog-to-things computing. Specifically, the authors developed
a deep learning scheme based on stacked autoencoder as
unsupervised deep learning. The deep learning scheme at the
fog level needs to handle the model, parameters, and data
distribution and update. A host-centric training scheme was
also proposed to facilitate efficient handling of distributed IoT
data.

Nie et al. [25] considered the adoption of SDN for the
management of IoT networks. Due to numerous communi-
cation demands to be taken place for efficient management,
data privacy is a big concern. To tackle this problem, a
differentially private tensor computing model was proposed
to model and analyse such kinds of big data. They further
devised an algorithm, called differentially private tensor de-
composition, to achieve secure computing in SDN-based IoT.
The proposed algorithm was able to maximise the resource
usage and cooperation of cloud-edge computing.

Guo et al. [86] proposed a trusted and automatic service
function chain orchestration approach for cloud-edge environ-
ment. The approach used deep reinforcement learning and
consortium blockchain techniques to minimise orchestration
cost and improve QoS. In addition, a time-slotted model was
devised to support dynamic service migration for IoT networks
with high mobility in heterogeneous cloud-edge environment.

Yang, Ma and Dou [87] developed a distributed machine
learning architecture to enable fog intelligence for intelli-
gent wireless network management. It integrated both dis-
tributed edge processing and centralised cloud computing. The
architecture also considered the privacy preservation while
maintaining its scalability. The proposed architecture was
particularly designed for network anomaly detection.
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IV. AI-POWERED DATA PROCESSING FOR THE
CLOUD-EDGE ARCHITECTURE

In what follows, the state-of-the-art proposals and repre-
sentative works of AI-powered data processing for cloud-edge
orchestration will be surveyed and discussed. A set of typical
use cases will be investigated, as shown in Fig. 3. A summary
of these proposals is provided in Table II.

A. Offloading

Task offloading is one of the core components that enable
the success of cloud-edge orchestration. It determines how
much computation tasks need to be transferred to other mobile
edge devices, edge servers and/or cloud servers (see Fig. 3(a)),
in order to satisfy the stringent requirements of diversified IoT
applications. The offloading decision is essentially subject to
a number of constraints and factors, including the computing
and storage capability of mobile edge devices, edge servers
and cloud servers, the communication delay (usually wireless
communications), power consumption, and the requirements
of IoT applications [111], [112], [113]. Machine learning has
been a promising tool in recent years that can be adopted to
make intelligent decisions for computation offloading.

Sun, Liu and Yue [96] investigated the cloud-edge orches-
tration problem for IIoT. Since service accuracy is important to
IIoT applications, in addition to delay and power consumption
that have been widely taken into account in the literature,
the authors considered service accuracy as a new performance
metric. They proposed an AI-powered offloading framework
with the aim of maximising the service accuracy. The proposed
framework was able to intelligently distribute the coming
traffic from IIoT devices to either edge servers or remote cloud.
The basic idea of the proposed framework was to enable a
three-layer architecture: IIoT layer, edge layer and cloud layer.
In the cloud layer, remote cloud pre-trains network models.
Edge servers in the edge layer then load the pre-trained models
from the cloud layer and further get them trained with domain
data. After the assessment of service accuracy of the trained
model in the edge layer, the tasks at the IIoT devices can be
offloaded to appropriate edge servers.

Chen et al. [97] studied the use of edge computing to
control traffic flow and investigated the way of transmitting
only useful data to the remote cloud. The authors proposed
a learning-based traffic control algorithm at the edge side
to allow limited data to be offloaded to the cloud, while
still maintaining appropriate level of intelligence at the cloud
side. An important contribution of this study is the label-
less learning, as unlabelled data collection has become more
practical in networking environment. The basic idea of label-
less learning includes the following steps:

• A small amount of data with labels are used to train a
model in order to enable the initial intelligence of the
model.

• The pre-trained model is used to label the unlabelled data.
A selection of the newly labelled data is added back into
the training dataset.

• Additional selection of newly added data is obtained
based on the mutual verification of multimodal data.

• The model is trained again using the newly added labelled
data.

Wang, Wei and Wang [98] developed an offloading al-
gorithm in cloud-edge environment for Internet of Vehicles.
The design philosophy of the algorithm was to minimise the
energy consumption of vehicles and the associated computing
facilities. They formulated the offloading as an optimisation
problem and proposed a heuristic algorithm to solve. A deep
learning model was devised to obtain the optimal workload
allocation which was part of the heuristics considered in the
proposed algorithm.

Huang et al. [99] discussed the challenges of SDN-based
computing platform for IoT applications, in terms of meeting
a set of requirements, including low latency and high relia-
bility. They proposed a task offloading approach for cloud-
edge architecture with service orchestration. The proposed
scheme considered computational complexity, communication
overhead, and offloading latency. It can reach offloading de-
cisions for tasks with diversified resource demands and delay
requirements.

B. Edge Server Placement

Due to the decentralised nature of edge computing, edge
servers are essentially geographically distributed to support
a significant growing number of IoT devices. The placement
of edge servers directly affects the performance of IoT ap-
plications, where Fig. 3(b) depicts a typical scenario. There
are many factors that need to be considered in the design of
an edge server placement algorithm, including scalability of
deployment, heterogeneity of IoT devices, fairness of service
provision, the density of servers, and service placement strate-
gies [114], [115], [30], [113].

Rodrigues, Suto and Kato [100] proposed an edge server
deployment policy for cloud-edge computing, based on k-
means clustering and particle swarm optimisation. The objec-
tive of the policy is to decrease the operational costs for service
providers and the service price for clients, while minimising
the service delay. In addition, the deployment policy should be
scalable with the dramatic increase in the number of IoTs and
the frequency of user requests in B5G/6G IoT environment.
The proposed solution can simultaneously decide where edge
servers should be deployed and how the computing resources
are allocated to each IoT user.

Cao et al. [101] further investigated the edge server place-
ment problem, by considering two important factors. One is
the heterogeneity of edge and cloud servers, and the other
is the fairness of response time of base stations. These two
factors can significantly affect the performance of server place-
ment algorithms, and thus the performance of IoT applications.
The authors proposed an approach consisting of both an online
stage and an offline stage. The offline stage adopted an integer
linear programming (ILP) technique to achieve an optimal
placement strategy of heterogeneous edge servers. The online
stage developed a game theory based algorithm to capture
dynamic characteristics of user mobility.
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Offloading

(a)

Edge Server 
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(b)
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Fig. 3. The typical data processing use cases for cloud-edge architecture: (a) offloading, (b) edge server placement, (c) network economy, and (d) resource
management.

C. Network Economy

Network economy considers economic factors in the in-
formation society. It is a key element affecting the success
of the eco-systems of many IoT applications, especially for
the cloud-edge architecture where many providers may be
involved as shown in Fig. 3(c). Edge servers may belong
to different providers and they may be selfish in serving
certain IoT devices. Many solutions have been developed to
address these issues. Considering the economic factors in these
solutions is an efficient way of making them practical.

Zhang et al. [23] paid more attentions on the cooperation
of cloud-edge architecture and the associated business models.
The authors proposed a framework to allow the edge and
the cloud to share their computing resources with each other
based on the wholesale and buyback scheme. They considered
two cases, where the edge and the cloud belong to the
same provider and different providers, respectively. Then, they
formulated the resource management between the edge and the
cloud as a profit maximisation problem. The authors solved
this optimisation problem from two points of view. One is
from the perspective of social welfare maximisation, through
the optimal cloud resource management. The other is from the
point of view of profit maximisation for the edge and the cloud,
through the optimal pricing and cloud resource management.

Luong et al. [102] investigated the study of incentive mech-
anisms for service providers to achieve the full potential of fog
computing. The authors leveraged deep learning techniques to
develop an optimal auction scheme as an incentive mechanism

for the resource allocation in fog computing. The deep learning
model was designed using feed-forward neural networks. The
economic and pricing model was considered in auction based
resource allocation. An application based on blockchain was
used to validate the effectiveness of the proposed auction
scheme.

D. Microservices and Data Transmission

Microservice is a variant of the service-oriented architecture
and has been a widely-used means for service deployment.
In this architecture, an application is orchestrated as a suite
of loosely coupled services. This modular way of service
deployment facilitates the service management, in terms of
configuration, fault detection and prediction. Many challenges
still exist in practical implementation, e.g., business awareness
and decentralised control.

Morshed et al. [103] discussed the concept of osmotic
computing and identified the current issues of this emerg-
ing paradigm. The authors then proposed a distributed deep
learning model that provides a detailed consideration of how
deep learning technologies can be orchestrated, and how this
orchestration can take advantage of the cloud, the edge, and
the mobile edge environment. They also presented a list of
challenges that need to be tackled in the development of deep
learning models, in terms of the following aspects.

• The heterogeneity of datasets coming from geographi-
cally distributed data sources, introduces significant com-
plexity for deep learning.
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TABLE II
A SUMMARY OF THE STATE-OF-THE-ART PROPOSALS OF DATA PROCESSING FOR CLOUD-EDGE ARCHITECTURES

Practical Issues Existing Data Processing
Proposals Features Application Areas

Offloading

Sun et al. [96] Taking into account delay, power consumption and service
accuracy when making offloading decisions Industrial networks

Chen et al. [97] A learning-based traffic control model with little labelled data,
to offload only useful data N/A

Wang et al. [98]
Minimising the power consumption of vehicles and computa-
tional facilities; A deep learning model was devised to obtain
the optimal workload allocation

Vehicular networks

Huang et al. [99] Considering computational consumption, communication
consumption and latency when making offloading decisions N/A

Edge server placement Rodrigues et al. [100] To decrease the operational costs for service providers and the
service price for clients, while minimising the service delay N/A

Cao et al. [101] Considering the heterogeneity of edge and cloud servers and
the fairness of response time of base stations Mobile networks

Network economy Zhang et al. [23] Considering a business model based on wholesale and buy-
back scheme N/A

Luong et al. [102]
Leveraging deep learning techniques to develop an optimal
auction scheme as an incentive mechanism for resource
allocation

N/A

Microservice Morshed et al. [103]
A holistic distributed deep learning approach that provides a
detailed consideration of how deep learning technologies can
be orchestrated across the edge and the cloud

N/A

Renart et al. [104] Automatically splitting and orchestration of IoT applications
across the edge and the cloud resources N/A

Resource management

Muñoz et al. [105]

Integrating the control of the packet and optical networks
with the distributed edge and cloud resources to dynamically
deploy IoT services, with the aim of reducing network band-
width utilisation

Video applications

Zhou et al. [106]

An online orchestration framework for cross-edge service
function chaining, with the aim of maximising the cost ef-
ficiency through jointly optimising the resource provisioning
and traffic routing

N/A

Na et al. [107] A resource orchestration approach between edge gateways
and edge servers N/A

Gilly et al. [108]
An edge computing orchestrator that can arrange location-
based vehicular edge services through hierarchical dynamic
resource management

Vehicular networks

Roig et al. [109]
Applying deep reinforcement learning for the management
and orchestration of the physical resources of virtual network
functions

N/A

Chien et al. [110]

Using suitable network models through AI to empower net-
work intelligence, and leveraging the integration of edge
computing and cloud computing to improve computing per-
formance

Telecom networks

• The expression of a context through different terminolo-
gies, including clinical notes and test results, makes it
hard for a deep learning model to identify patterns.

• The deployment and configuration of an application,
based on distributed deep learning, across the edge and
the cloud nodes is a challenge.

• It is not an easy task to evaluate which deep learning
framework, such as TensorFlow and Keras, is suitable for
the application based on a given deep learning model.

• Deep learning models developed and used in different
institutions may not be available to each other.

Renart et al. [104] investigated the splitting and orchestra-
tion of IoT applications across the edge and the cloud re-
sources. They tackled the problem by exploring heterogeneous
cloud-edge infrastructure for deploying dataflow applications,
and considering the limitations of IIoT devices in terms of
CPU, memory, and network bandwidth. The authors proposed
a programming model based on R-Pulsar6 to enable developers
to define dataflow splitting across the edge and the cloud.

6https://rpulsar.rdi2.rutgers.edu
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E. Resource Management

Proper distribution of IoT computations between the cloud
and the edge can improve the efficient usage of network
resources. In order to cope with various computation tasks
at different levels of cloud-edge architecture, efficient and
heterogeneous resource allocation and management schemes
are necessary, as shown in Fig. 3(d). Muñoz et al. [105]
integrated the control and management of the packet and
optical networks with the edge and cloud resources to enable
dynamic IoT service deployment. In the control and manage-
ment, the authors developed flow monitors and congestion
avoidance techniques, and also container-based edge nodes.
Experimental results show up to 90% reduction of network
bandwidth utilisation through a case study of video analytics.

Zhou, Wu and Chen [106] proposed an online orchestration
framework to carry out cross-edge service function chaining.
It aims to maximise the cost efficiency, through joint op-
timisation of resource provisioning and traffic routing. The
proposed solution was managing to fully unleash the benefits
of service function chaining in geographically dispersed edge
clouds. This cost optimisation problem was solved by com-
bining an online optimisation technique with an approximate
optimisation method in a joint optimisation framework.

Na et al. [107] considered an IoT scenario with edge servers
and edge gateways, where an IoT device may connect to
an edge server without the support of edge gateways. The
authors proposed a resource orchestration approach between
edge gateways and edge servers. The proposed approach can
allocate optimal resources by taking into account of computing
capacities of edge gateways and edge servers. It can also
manage interference among the gateways to maximise the
efficiency of IoT systems.

Gilly et al. [108] considered the demands of vehicular low
latency offloading in 5G and proposed an edge computing
orchestrator that can arrange location-based vehicular edge ser-
vices through hierarchical dynamic resource management. The
proposed orchestrator is able to ensure low latency responses
due to energy-efficient service allocation and migration.

Roig, Gutierrez-Estevez and Gunduz [109] applied deep re-
inforcement learning for the management and orchestration of
the physical resources of virtual network functions (VNF). A
central unit was proposed to learn to autonomously reconfigure
computing and storage resources, deploy VNF instances, and
offload the computation tasks to the edge and the cloud. The
learning process considered the network conditions, available
resources at the edge, and the VNF requirements. The opti-
misation aim was to minimise a cost function that considers
economical cost, latency and the quality-of-experience (QoE)
of users.

Chien et al. [110] proposed an architecture for B5G het-
erogeneous networks. The architecture intelligently optimised
network resource usage and network performance. It used
suitable network models through AI to empower the network
intelligence, and leveraged the integration of edge computing
and cloud computing to improve computing performance.
The authors also provided recommendations of which deep
learning models are useful to handle various network issues.

V. RESEARCH CHALLENGES AND OPEN ISSUES

Although many studies have been presented to cover various
aspects of cloud-edge orchestration for the IoT, there are still
some challenges and open issues that need to be investigated
and researched to unveil the full potential of this computing
architecture and enable the success of IoT in wider sectors.
In what follows, a list of potential challenges and open issues
will be discussed and explained.

• Space, air, ground and sea mobile networks. Most of
existing works are focused on air and ground networks,
e.g., fixed edge servers at base stations or roof of the
buildings, flying drones equipped with edge servers, and
mobile IoT devices. B5G/6G expects to have collabora-
tion among space, air, ground and sea mobile networks
[116]. How this mobile edge, edge and cloud cooperation
architecture can be extended for B5G/6G environment
is still an open issue. The issues in the current cloud-
edge orchestration in terms of offloading and security
and privacy, would become more challenging in this
complex architecture due to different communication and
computing environment at space (e.g., satellite networks),
air, ground and sea mobile networks (e.g., marine-based
edge computing and under sea networks).

• Mobility-awareness and context-awareness. Since IoT
devices at the mobile edge computing layer are mobile
in nature, mobility-aware and context-aware solutions are
needed when an IoT device is making decisions on task
offloading to other nearby IoT devices [117], [118]. The
decisions may include the size of a task to be partially
offloaded, which nearby IoT devices need to be offloaded,
and so on. In addition, mobility-awareness and context-
awareness also need to be considered when a mobile
IoT device offloads computation tasks to edge servers,
especially, in the presence of mobile edge servers (e.g.,
drones). Mobility patterns of IoT devices are usually not
predictable in certain circumstances, making accurate and
efficient offloading decisions a challenging task.

• Ultra-dense environment. One of the main use cases
of 5G is to support massive IoT connections. Thus,
the computation offloading needs to consider ultra-dense
networks, where multiple IoT devices compete for the
constrained computation resources and communication
channels, e.g., offloading the computation tasks of mass
IoT devices to one edge server or one mobile IoT
device. How to selectively offload some computations to
these resource constrained devices, while maintaining the
required QoS requirements of IoT applications, is still a
difficult task.

• Quality-of-experience guarantee. Application QoS may
not directly affect the perceived QoE of IoT devices.
To guarantee QoE, a number of questions need to be
answered, e.g.,

– How to define QoE metrics of different applications
in the cloud-edge orchestration architecture,

– How to link QoS with QoE by considering all
possible operations over caching, pre-fetching, and
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task offloading at mobile edge IoT devices, edge
servers and cloud servers,

– How to handle these issues when mobility presents
at the mobile edge layer.

• The mapping of physical IoT applications and virtual
computing resources. IoT devices are cooperated in the
physical world to accomplish an application task. The
task offloading to the virtual world of cloud-edge orches-
tration architecture needs to consider the behaviour of
the task in the physical world, so that the application
requirements can be satisfied in a holistic manner. How
the mapping between physical world and virtual world
can be integrated into the decision-making for various
operations in cloud-edge orchestration architecture is an
open issue.

• Balancing accountability and privacy. Accountability and
privacy are two important but contradictory factors in
cyber security [119]. Service providers expect the user
traffic to be accountable. To achieve this purpose, re-
ceivers need to know who should get penalty when
needed. In contrast, end users usually manage to protect
their privacy by hiding their identities. This issue exists
in the cooperation architecture of cloud, edge and mobile
edge computing. The computing and storage services are
provided in the form of microservices, which are then
used to serve IoT devices for e.g. computation tasks. How
to balance accountability and privacy in the cloud-edge
orchestration architecture is still a challenge.

• Network control and management. NFV and SDN are
two main technologies of 5G and B5G/6G. How the
computing services can be deployed at the cloud layer,
the edge layer and the mobile edge layer, and how
the services can be migrated between different layers,
under the SDN paradigm, are important to the practical
operations of cloud-edge orchestration architecture and
are still hot research topics [120]. In addition, how the
management of this architecture can be integrated into
the management and orchestration (MANO) framework
[121] of the NFV architecture is essential to the real-
world deployment of this architecture. Further, how the
management framework of cloud-edge architecture can
cope with the edge servers belonging to different network
providers is still an open issue.

• Autonomous network management. Due to the complex-
ity of this cloud-edge orchestration architecture, cou-
pled with dynamic-in-nature services/applications, net-
work management is becoming much harder than ever.
Manual network management is obviously not practical.
Autonomous management is the future direction in this
area [122]. However, how to streamline the data collec-
tion, data processing and decision making, and feed the
performance of decision making back to data collection
and processing to improve the whole process, is still an
open research question.

• Lightweight deep learning. Data processing is the key en-
abler of this cooperation computing architecture. Machine
learning, especially deep learning, is a significant way for

efficient data processing. How to ensure the efficiency of
data processing at different layers of this cloud-edge or-
chestration architecture, subject to the resource and power
constraints at different layers is important. Lightweight
deep learning has been a promising solution for data
processing at the resource-constrained IoT devices, due
to the wide adoption of federated learning in the IoT. The
design of lightweight deep learning models is limited by a
number of factors, including computation capability, data
features and properties, and application requirements.
The research of designing an efficient lightweight deep
learning model for cloud-edge orchestration architecture
is still in the infant stage.

• Label-less training. The training of learning models has
been a big challenge in cyber networks, due to the
dilemma of online labelling. Semi-supervised learning
and un-supervised learning have been a trend in cyber
networks to solve this issue [123]. The accuracy of these
learning paradigms is always a challenge that researchers
endeavour to address. Inaccurate models would yield less
accurate decisions for the operation, e.g., offloading, in
the cloud-edge orchestration architecture. How to ensure
efficient label-less training and accurate decision-making
is still a challenging issue.

• Ethics in deep learning. Deep learning models have been
widely adopted in the cloud-edge orchestration architec-
ture to enable the automation of many operations, includ-
ing resource management, offloading, and edge server
deployment. A deep learning model highly depends on its
training data. If there are biases in the training data (e.g.,
anomaly data is significantly larger than normal data), the
trained model may make unfair decisions for automatic
system operations. There are many ethical issues in AI-
powered data processing [124], especially in the process
of autonomous network management. Addressing ethics
is an open and very important issue to ensure the success
and sustainability of AI-powered cloud-edge orchestra-
tion architecture.

• Standardisation. Standardisation of this cloud-edge or-
chestration architecture is important to its practical im-
plementation and usage. How the development of this
architecture can be integrated into the standardisation of
mainstream 5G and B5G/6G architecture in ETSI, 3GPP
and IEEE is still under way.

VI. CONCLUSION

This paper investigated the representative and state-of-the-
art proposals for the architecture and its associated AI-powered
data processing approaches in cloud-edge orchestration for the
IoT. The investigated studies laid important foundations for the
success of cloud-edge architecture in support of emerging IoT
applications. However, there are still many research challenges
and open issues, which were discussed at the end of this paper,
that need to keep a watchful eye on. These challenges and
issues provided useful guidance for future research in this area.
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