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Abstract 51 

Aim: Climate change impacts forest functioning and services through two inter-related effects. 52 

First, it impacts tree growth, with effects, for example, on biomass production. Second, climate 53 

change might also reshuffle community composition, with further effects on forest functioning. 54 

However, the relative importance of these two effects has rarely been studied. Here, we 55 

developed a novel modelling approach to investigate such importance for forest productivity. 56 

Location: 11 forest sites in central Europe. 57 

Time period: Historical (years 1901-1990) and end-of the-century (2070-2100) climatic 58 

conditions. We simulated 2000 years of forest dynamics for each condition. 59 

Major taxa studied: 25 common tree species in European temperate forests. 60 

Methods: We coupled species distribution models and a forest succession model, working at 61 

complementary spatial and temporal scales, to simulate the climatic filtering shaping potential 62 

tree species pools, the biotic filtering shaping realized communities, and the functioning of these 63 

realized communities in the long term.  64 

Results: Under an average temperature increase (relative to 1901-1990) of between 1.5 ºC and 65 

1.7 ºC, changes in simulated forest productivity were mostly caused by changes in the growth of 66 

persisting tree species. With an average temperature increase of 3.6 ºC – 4.0 ºC, changes in 67 

simulated productivity at currently climatically mild sites were again predominantly caused by 68 

changes in tree species growth. However, at the currently warmest and coldest sites, 69 

productivity changes were mostly related to shifts in species composition. In general, at the 70 

coldest sites, forest productivity is likely to be enhanced by climate change, and at the warmest 71 

sites productivity might increase or decrease depending on the future regime of precipitation. 72 

Main conclusions: Combining two complementary modelling approaches that address questions 73 

at the interface between biogeography, community ecology, and ecosystem functioning, reveals 74 

that climate change-driven community reshuffling in the long term might be critically important 75 

for ecosystem functioning. 76 

 77 

Keywords:  78 

Climate change, forest succession modelling, forest community composition, species 79 

distribution modelling, species range shifts, temperate forests, tree growth, tree species richness.   80 



García-Valdés et al. 

4 

 

Introduction  81 

Forests cover about a third of the world land surface, harbour most of the terrestrial 82 

biodiversity, and represent an important carbon sink. They also play a pivotal role in climate 83 

regulation (Chapin, Randerson, McGuire, Foley, & Field, 2008) and provide other important 84 

ecosystem services (Kumar, 2012). However, climate change is affecting many of these forest 85 

ecosystem services, such as biomass production and carbon sequestration (Kirilenko & Sedjo, 86 

2007), with this impact likely to be strengthen in the future (Pachauri et al., 2014). The 87 

influence of climate change on forests can be divided into two inter-related effects (Adler, 88 

Leiker, & Levine, 2009, Morin et al., 2018). Climate change affects forests by altering tree 89 

physiological rates (Sack & Grubb, 2001), e.g. growth (Silva & Anand, 2013), phenology 90 

(Cleland, Chuine, Menzel, Mooney, & Schwartz, 2007), or survival (Allen, Breshears, & 91 

McDowell, 2015), which has direct consequences for ecosystem functioning (e.g. biomass 92 

productivity). Climate change also affects forest functioning when the pressure of climate 93 

change on trees’ growth is strong enough to drive species’ local extinction and colonization, as 94 

seen in natural, experimental and simulated forests (Liang et al., 2016; Morin, Fahse, Scherer-95 

Lorenzen, & Bugmann, 2011; Paquette & Messier, 2011). Understanding the relative 96 

importance of these two effects would greatly help to improve the projections of the impact of 97 

climate change on forest functioning, and on key ecosystem services such as carbon uptake and 98 

biomass provision. However, the two effects have been mostly studied separately, and very little 99 

is known about their relative importance for forest productivity under different circumstances 100 

(but see Coomes et al., 2014; Zhang, Niinemets, Sheffield, & Lichstein, 2018).  101 

The effects of climate change on species composition might amplify (Zhang et al., 102 

2018) or counteract (Fauset et al., 2012) the effects of climate change on tree growth. 103 

Furthermore, recent studies found that effects on species composition might be greater than 104 

previously expected. García-Valdés, Bugmann, and Morin (2018) found that when tree species 105 

go extinct in the order we would expect given climate change, reductions in the projected 106 

productivity of some forests were greater than we would expect by the single effect of random 107 

species loss. Thus, most of Biodiversity-Ecosystem functioning studies (e.g. Liang et al., 2016), 108 

might underestimate the strength of biodiversity loss when caused by climate change. Similarly, 109 

Morin et al. (2018) found that warmer and drier conditions might strongly affect Biodiversity-110 

Ecosystem functioning in forests experiencing the harshest climatic conditions, illustrating the 111 

importance of understanding changes in species composition for forest functioning. These 112 

findings suggest that local conditions, and the magnitude of the change in climate, might 113 

interact to determine the relative importance of tree physiological changes, and species 114 

reshuffling, for forest functioning. 115 
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Nonetheless, disentangling these two effects of climate change on ecosystem 116 

functioning is difficult. While estimating the effects of climate change on tree growth could be 117 

relatively straightforward through experiments or long-term observations (Hasenauer, Nemani, 118 

Schadauer, & Running, 1999), estimating the effects on species composition is much more 119 

complicated (Barry et al., 2018). Several mechanisms underlie the effects of climate change on 120 

species composition. First, climatic filtering determines whether the local environmental 121 

conditions are suitable for a species. Second, biotic filtering occurs when interactions among 122 

potentially co-occurring species lead to the exclusion or acceptance of some species. While 123 

climatic filtering is commonly studied at large spatial scales, such as regions or continents 124 

(Thuiller, Lavorel, Araújo, Sykes, & Prentice, 2005), species interactions are mostly studied at 125 

the local scale (Mayfield & Levine, 2010). We therefore studied both processes, each at the 126 

relevant spatial scale, to quantify their effects on future composition of forest communities .  127 

Species distribution models (hereafter “SDMs”) typically work by correlating the 128 

recorded presences of individual species with environmental variables (Gotelli et al., 2009), and 129 

can be used to simulate climatic filtering. Although this approach carries some caveats (see 130 

Dormann et al., 2012 and Discussion section), SDMs are particularly robust for measuring the 131 

environmental tolerances of species that are broadly distributed (Early & Sax, 2014; Estrada, 132 

Delgado, Arroyo, Traba, & Morales, 2016), as are the species considered here. Forest 133 

succession models (FSMs) – also called gap models (Bugmann, 2001) – can be used to simulate 134 

forest community dynamics from a few hundred square-meters up to landscape scale), given a 135 

specific starting species pool (Chauvet, Kunstler, Roy, & Morin, 2017). FSMs are based on a 136 

minimum number of ecological assumptions (Botkin, Janak, & Wallis, 1972), and rely on the 137 

ecophysiological responses of trees to abiotic factors (including climate), and biotic factors (i.e. 138 

inter and intra-specific interactions), to simulate individual tree growth and succession 139 

dynamics (colonizations and extinctions) over time (Bugmann, 2001). FSMs can hence simulate 140 

both the biotic filtering of species by forecasting the realized tree community (i.e. at long-term 141 

equilibrium), and the effects of climate change on tree growth.  142 

In this study, we coupled SDMs and FSMs to assess the relative importance of climate 143 

change effects on tree growth and species composition for the productivity of central European 144 

forests. Previous studies have coupled SDM-like modules with a process-based component 145 

simulating key processes, such as dispersal and demography (e.g. range dynamic models; 146 

Sarmento Cabral et al., 2013), and/or competition, e.g. the hybrid FATE-H model that considers 147 

only plant functional types (Boulangeat, Georges, & Thuiller, 2014). At a larger spatial scale, 148 

Meier, Lischke, Schmatz, and Zimmermann (2012) coupled a SDM with a FSM to predict the 149 

range-shift rates of several tree species under climate change, while accounting for interspecific 150 

competition. However, to our knowledge, no previous work has compared how climate change 151 
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will affect forest productivity through both altered species growth and composition by coupling 152 

SDMs’ with FSMs’ projections. Our study is thus among the first to take advantage of the 153 

complementarity of the two kinds of models to address questions at the interface between 154 

biogeography, community ecology, and ecosystem functioning. Specifically, we used 11 forest 155 

sites as an example and aimed at answering the following questions: 156 

 (1) How will climate change affect long-term forest aboveground biomass productivity 157 

in European temperate forests?  158 

(2) What will be the relative contribution of the changes in tree growth and of the shifts 159 

in species composition to such changes in forest productivity?  160 

(3) How will current local climatic conditions and the magnitude of climate change 161 

influence the patterns found in (1) and (2)?   162 
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Material and methods 163 

Overview 164 

In summary, we simulated the productivity of 11 forest sites across central Europe 165 

under historical (1901-1990) climatic conditions, and future (2071-2100) conditions, given four 166 

climate change projections. To do so, we first used SDMs (Fig. 1) to forecast the future 167 

suitability of 25 common tree species (i.e. climatic filtering). We then combined the suitabilities 168 

for all species in each location to generate potential species pools (e.g. Thuiller et al., 2005). 169 

Second, starting from these potential species pools and bare-ground conditions (no trees in the 170 

site), we used the local-scale FSM FORCLIM (Bugmann, 1996) to simulate 2000 years of forest 171 

succession (i.e. biotic filtering), leading to realized forest communities. Once each community 172 

had reached equilibrium (after 1000 years) we aggregated the simulated annual productivity 173 

across all trees in the site. Finally, we calculated the relative contribution of the changes in tree 174 

growth and in community composition on the differences in productivity between the current 175 

climate and the future climatic conditions. We explain all these steps in detail below. 176 

 177 

Study sites 178 

The geographic background from which species distributions and climatic data were 179 

drawn for SDMs comprises Europe from −10°9′23″ E to 30°43′0″ E and 34°59′30″ N to 180 

70°58′33″ N. We simulated forest growth in 11 temperate forest sites across central Europe 181 

(nine in Switzerland and two in Germany; Table S1). These sites cover a broad range of 182 

temperature and precipitation conditions (Table S1), and represent the diversity of environments 183 

and forest types in central Europe, as illustrated by previous studies (Bugmann, 1994; Morin et 184 

al., 2011).  185 

 186 

Climate data for Species Distribution Models 187 

We used historic climate data (climatology over the 1961-1990 period) from the 188 

Climatic Research Unit CL v. 2.0 dataset (New, Lister, Hulme, & Makin, 2002) and projected 189 

future climate data from the EURO-CORDEX project (Jacob et al., 2014), both at 10’ 190 

resolution. Two Representative Concentration Pathways (RCPs): 4.5 and 8.5, and two General 191 

Circulation Models (GCMs): CERFACS-CNRM-CM5 (CNRM-CM5) and ICHEC-EC-EARTH 192 

(EC-EARTH) were used in this study. Projected future climate data were downscaled via the 193 

Rossby Centre regional climate model (RCA4) within the CORDEX project. We used four 194 

climatic variables: mean annual growing degree-days (> 5ºC), mean temperature of the coldest 195 

month, annual precipitation, and a summer moisture index (potential evapotranspiration divided 196 



García-Valdés et al. 

8 

 

by precipitation). These variables have been previously used to model plant and vertebrates in 197 

Europe and they reflect two primary properties of climate (energy and water) that have been 198 

shown to affect species distributions (Araújo, Alagador, Cabeza, Nogués-Bravo, & Thuiller, 199 

2011; Morrison, Estrada, & Early, 2018). We used averaged annual values of these climatic 200 

variables for the 1961-1990 period as historical climatic conditions. For future climatic 201 

conditions, we used averaged simulated data of the variables for the 2071-2100 period under 202 

four climate change projections  203 

 204 

Climate data for the Forest Succession Model 205 

 We simulated 2000 years of forest dynamics with FORCLIM, given a “historical-like” 206 

climate (baseline) projection and four “future-like” climate change projections (RCPs 4.5 and 207 

8.5, and GCMs CNRM-CM5 and EC-EARTH, downscaled using RCA4). To do so we needed a 208 

generic 2,000 year-long time-series of monthly temperature (T) and precipitation (P) that 209 

incorporated inter-annual variability. For this purpose, we used the climate simulator embedded 210 

in FORCLIM, which uses the monthly mean and standard deviation of T and P, and the 211 

correlation between them (Bugmann, 1994). For the historical-like climate, we generated 2000 212 

years of data directly using the mean, standard deviation and correlation of monthly T and P 213 

(from Bugmann, 1994), which was calculated from historic (1901–1990) data from the Swiss 214 

Meteorological Agency (Bantle, 1989). Such data have previously been used to calibrate and 215 

validate forest productivity simulated by FORCLIM in our study sites. These data were 216 

analogous to, but not the same as the climatic time series from the 1901-1990 period (which we 217 

could not use as the time series was not long enough).  218 

To simulate future climate conditions, we could not directly use data from GCM climate 219 

projections because these models use a different “historical” data for bias correction to the data 220 

we used (1901-1990 data from Bugmann, 1994). To circumvent this problem, we calculated a 221 

climatic anomaly for each climate projection (see Morin & Chuine, 2005). For each climate 222 

projection we calculated the differences in monthly T and P between the future climate (years 223 

2071-2100) and the current climate (years 2006-2016). These anomalies quantify how much T 224 

and P would vary from baseline values under every climate projection. We added these 225 

anomalies to the means of the historical climate data from Bugmann (1994), and for each 226 

climate projection we generated 2000 years of climate data for each of the four future climate 227 

projections. All climate time-series thus contained no trend. In the projected future climate time-228 

series, the estimated changes in temperature depended mostly on the RCPs, while the estimated 229 

changes in precipitation depended mostly on the GCMs. The differences between the four 230 

climate projections and historical climate (1901-1990 period from Bugmann, 1994) were: (1) 231 
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RCP 4.5-CNRM-CM5, moderately warmer with more precipitation; (2) RCP 4.5-EC-EARTH, 232 

moderately warmer with similar precipitation; (3) RCP 8.5-CNRM-CM5, much warmer with 233 

more precipitation; and (4) RCP 8.5-EC-EARTH, much warmer with similar precipitation. The 234 

stress experienced by trees increases sequentially under projections 1-4. See Table S1 and S2 235 

for specifics. 236 

 237 

Species data and the Species Distribution Models 238 

We considered 25 of the most common tree species in this region (Table S3). We used 239 

presence data from the Atlas Florae Europaeae (AFE; Jalas & Suominen, 1972–1994; Jalas, 240 

Suominen, & Lampinen, 1996). When a species was not recorded in the Atlas, we used 241 

distribution data from EUFORGEN (http://www.euforgen.org/; see Table S4). AFE presence 242 

data were from 50 km × 50 km Universal Transverse Mercator (UTM) grid cells, and 243 

EUFORGEN presence data were range maps. We transformed EUFORGEN range maps into 244 

~50km UTM cells to run the models. We calculated the average historical climatic conditions in 245 

each 50-km grid cell from the 10’ climate grid resolution. The relationships between historical 246 

climatic variables and species’ distributions were modelled using seven SDM techniques: 247 

generalized linear models (GLM), generalized additive models (GAM), generalized boosting 248 

models (GBM), classification tree analysis (CTA), artificial neural networks (ANN), flexible 249 

discriminant analysis (FDA), and surface range envelope (SRE). Models were calibrated for the 250 

historical period (1961–1990) using an 80% random sample of the initial data, and cross-251 

validated against the remaining 20% of the data, using the area under the receiver operator 252 

characteristic curve (AUC) and the true skill statistic (TSS). SDMs were calculated 10 times, 253 

each time selecting a different 80% and 20% of the data for calibration and evaluation. Results 254 

from each SDM technique were then included in an ensemble model if the AUC from cross-255 

validation was higher than 0.8 and TSS was higher than 0.6 (similar to Araújo et al., 2011). 256 

However, the final ensemble model for each species was calibrated using 100% of the species 257 

distribution data to maximise the amount of data available for projections. For each species, the 258 

ensemble was calculated using the mean probability of occurrence, weighted proportional to the 259 

AUC and TSS obtained on the evaluation data. Ensemble models calibrated at 50-km resolution 260 

were downscaled to obtain suitability in each 10′ grid cell. We projected ensemble models to 261 

future climatic conditions at 10′ resolution for the four future climate projections (the 262 

combination of GCMs and RCPs). This approach follows methods employed by Araújo et al. 263 

(2011), though using more recently constructed climate data. All models were run in R (R Core 264 

Team, 2014) using default options of the biomod2 package (Thuiller, Georges, & Engler, 2013). 265 

 266 
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Forecasting of potential tree species pool in each site 267 

For each site and climate projection, we used the SDM-predicted suitability for each 268 

species to build a local species pools. To use the continuous suitability projections (rather than 269 

use an arbitrary threshold to distinguish suitable or unsuitable), we built 100 potential species 270 

pools for each site and climate projection and included each species proportionally to its climate 271 

suitability. For example, if the suitability of a given species in a given site and for a given 272 

climate projection was 0.6, this species would be included in 60 (randomly chosen) of the 100 273 

species pools for that site and climate projection.  274 

 275 

Forest Succession Model 276 

FORCLIM projections have been shown to be robust under various climatic conditions 277 

across a large number of studies (Bircher, Cailleret, & Bugmann, 2015; Gutiérrez, Snell, & 278 

Bugmann, 2016; Rasche, Fahse, & Bugmann, 2013; e.g. Rasche, Fahse, Zingg, & Bugmann, 279 

2011). Its projections of forest biomass productivity have been validated for the sites used in 280 

this study and using climate values generated with the same historical means, standard 281 

deviations and cross-correlations as the ones used here (Rasche et al., 2013). It has also been 282 

specifically used to study climate change effects on forest functioning on these sites (Didion, 283 

Kupferschmid, Wolf, & Bugmann, 2011; Mina et al., 2017; Morin et al., 2018; Rasche et al., 284 

2013). 285 

 In FORCLIM, the establishment, growth and mortality of trees are simulated using the 286 

abiotic and biotic conditions in small independent patches (800 m2 in this study). Tree location 287 

in the patch is not estimated, and all trees compete for light. The properties of several patches 288 

are aggregated to calculate forest properties across larger extents (Bugmann, 2001; Shugart, 289 

1984). Tree establishment is modelled as a stochastic process, depending on species-specific 290 

responses to light availability at the forest floor, growing degree-days, drought occurrence, and 291 

minimum and maximum winter temperature. Tree growth is measured as stem diameter 292 

increment, which depends on each species’ optimum growth rate, abiotic conditions 293 

(temperature, drought, and soil nitrogen), and biotic conditions (light availability, possibly 294 

reduced due to shading by competitor trees). Therefore, while competition for water and 295 

nitrogen between individuals are not taken into account explicitly in the model, soil water and 296 

nitrogen content constrain tree establishment and growth differentially between species in a 297 

given site, which in turn affects competition between trees (Appendix S1). Competition for light 298 

is modelled by calculating the amount of available light for each individual tree depending on 299 

tree height and the crown sizes of competing trees. FORCLIM also incorporates a shade tolerance 300 

parameter (Ellenberg, 1991), defining the classic trade-off between growth in full light and 301 
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survival in shade. Tree mortality has two components: (1) a ‘background’ mortality, which is 302 

constant across time and depends on the species’ maximum longevity, and (2) growth-related 303 

mortality reflecting the effect of stressful conditions on tree survival (i.e., trees with decreased 304 

vigour are more likely to die). The species parameters for FORCLIM can be found in Table S3, 305 

and more details about the model can be found in Appendix S1, and in Didion, Kupferschmid, 306 

Zingg, Fahse, and Bugmann (2009), and Bugmann (1996). 307 

 308 

Simulations of forest succession dynamics 309 

For each set of climate conditions (historical and future), we simulated 2000 years of 310 

forest dynamics with FORCLIM. This allowed us to assess the relative contribution of tree 311 

growth and species composition to climate-driven changes in productivity between the historical 312 

and future periods. However, this approach means that the simulations should not be taken as 313 

predictions of forest composition and productivity for the end of the 21st century, because the 314 

effect of, e.g. species colonization, is not realistic for short-term projections. 315 

After having checked that FORCLIM simulations conducted in the same conditions (site, 316 

climate, species pool) yielded very similar results after 2000 years, we performed one FORCLIM 317 

simulation for each site (n = 11), each set of climate conditions (historical and future, n = 5) and 318 

each species pool (n = 100). Each simulation included 100 patches of 800 m2 each, 319 

corresponding to an 8 ha forest. FORCLIM simulations started from bare-ground to avoid the 320 

influence of starting conditions. For each FORCLIM simulation, only the species in the site’s 321 

species pool - determined by the SDMs - were allowed to colonize the patches. The simulations 322 

were run for 2,000 years to allow forests to reach equilibrium in total biomass and composition, 323 

thus avoiding transient states. We extracted the productivity and composition from simulations 324 

after 1000 years, to allow the system to reach equilibrium. To avoid temporal autocorrelation we 325 

extracted values from the first year of each century after the year 1,000 (i.e., the years 1100, 326 

1200, … 2000; cf. Morin et al., 2011) and averaged the results from these sampled years across 327 

patches. For the calculation of the realized community composition we considered that a species 328 

was present in a community only if its simulated biomass reached 1 Mg · ha-1.  329 

 330 

Quantifying growth and composition effects of climate change  331 

To quantify the effects of climate change mediated by tree growth change, we 332 

calculated the proportion of productivity change in each site that was produced by species found 333 

under both present and future climatic conditions. To quantify the effects of climate change 334 

mediated by species composition shift, we calculated the productivity loss caused by species 335 
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extinction, and the productivity gained by species colonization. The relative importance of 336 

colonization and extinction was calculated by dividing the productivity change caused by either 337 

colonization or extinction by the summed changes in productivity (previously transformed to 338 

absolute values). 339 

 340 

Statistical analyses 341 

 To test whether the future projected change in forest productivity varied across an 342 

environmental gradient, we fitted linear regressions between forest productivity in each site and 343 

its mean annual temperature (MAT), total annual precipitation (TAP), and precipitation relative 344 

to potential evapotranspiration (P/PET). Climate data were obtained from Bugmann (1994) and 345 

were calculated from historic (1901–1990) data from the Swiss Meteorological Agency (Bantle, 346 

1989). We also fitted linear regressions between the relative importance of colonization and 347 

extinction for productivity, and the above climatic variables. Finally, we fitted a linear 348 

regression between the future change in productivity and future change in realized species 349 

richness at each site.   350 
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Results 351 

 352 

Climate change effects on potential species pools and richness (SDMs output)  353 

In most climate change projections and sites, climatic suitability for study species 354 

increased (Fig. 2 A-C). However, under extreme warming (RCP 8.5) and the driest conditions 355 

(EC-EARTH model; Fig. 2D), potential species richness increased in the coldest sites 356 

(Adelboden, Bever, Davos and Grande Dixence), but remained the same or decreased in the 357 

warmest sites (Basel, Bern, Cottbus, Huttwil, Schaffhausen, and Sion).  358 

 359 

Effect of climate change on realized species richness 360 

Under historical climatic conditions, simulated realized species richness varied from 361 

three (out of 25) in Grande Dixence and Davos to 11 in Huttwil and Bern (Fig. S1B). Under 362 

most climate change projections, the number of realized species increased in most of the sites 363 

(Fig. 2, lower panels). Although under the extreme RCP8.5-EC-EARTH projection, the realized 364 

species richness decreased in the warmest sites (Fig. 2H).  365 

 366 

Climate change effects on forest productivity  367 

The impact of climate change on forest productivity varied greatly along the climatic 368 

gradient, and with different intensity depending on the climate projection (Fig. 3 A-D). The 369 

greatest impact occurred in Sion, the warmest and second driest site, where productivity 370 

decreased by between -67.6% and -100%. However, with a projected increase in precipitation 371 

greater than 10.0% (CNRM-CM5 model in Table S1), forest productivity increased in all sites 372 

(Fig. 3 A and C), except Grande Dixence, Basel and Sion. With a very weak precipitation 373 

change (EC-EARTH model in Table S1), forest productivity increased in the coldest sites and 374 

decreased in most of the warmest sites (Fig. 3 B and D). 375 

Historical precipitation was positively correlated with the change in productivity under 376 

two climate change projections (p = 0.043 with RCP 4.5-EC-EARTH and p = 0.034 with RCP 377 

8.5-EC-EARTH; Fig. S2A). Temperature was negatively correlated with productivity change 378 

under one projection (p = 0.009 with RCP 8.5-EC-EARTH; Fig. S2B). P/PET was positively 379 

correlated with the change in productivity under three projections (p = 0.028 with RCP 4.5-EC-380 

EARTH, p = 0.027 with RCP 8.5-CNRM-CM5, and p = 0.002 with RCP 8.5-EC-EARTH; Fig. 381 

S2C). 382 

 383 
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The relative importance of the growth and composition effects on forest productivity 384 

With the climate scenario RCP 4.5, which projected a moderate increase in local 385 

temperature relative to the historical period, simulated changes in productivity were driven 386 

almost exclusively by the effects of climate change on tree growth of surviving species (Figs. 3 387 

E-F and 4). The rise in MAT was on average between +1.5 [+1.1, +2.0] ºC and +1.7 [+1.5, 388 

+2.2] ºC (Table S1), and the average rise in winter temperature was between +2.0 [+1.5, +2.6] 389 

ºC and +2.7 [+2.1, +3.1] ºC (Table S2). With such temperature increase there was a positive 390 

correlation between the increase in productivity and the increase in species richness under the 391 

two GCMs (p = 0.003; Fig. 5), but change in species richness did not strongly contribute to 392 

changes in productivity (Fig. 3 E-F). With the climate scenario RCP 8.5 that projected a 393 

stronger increase in local temperature (Fig. 3 G-H), there was also a positive relationship 394 

between the increase in realized species richness and the increase in productivity (p = 0.054 and 395 

R2 = 0.35 with the CNRM-CM5, p = 0.006 and R2 = 0.58 with the EC-EARTH GCM; Fig. 5). 396 

Under this more extreme temperature increase, changes in species richness (Fig. 5) and 397 

community composition did strongly contribute to the changes in productivity (Figs. 3 G-H and 398 

4). The increase in MAT ranged from +3.6 [+2.8 , +4.5] ºC to +4.0 [+2.9, +4.9] ºC (Table S1), 399 

and the increase in winter temperature from +3.8 [+2.9, 5.5] ºC to +4.5 [+4.1, +5.6] ºC (Table 400 

S2).  401 

The importance of community composition effects varied across the study sites (Fig. 3 402 

E-H). Their importance related to the current local temperature, which was negatively correlated 403 

with the importance of colonization under three climate projections (p <= 0.05; Fig. S3C). The 404 

importance of the composition effects was also correlated with current P/PET under one 405 

projection (p = 0.021; Fig. S3E) and did not correlate with current precipitation (Fig. S3 A-B).   406 
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Discussion  407 

 408 

Our simulations of forests located across a large climate gradient in central Europe 409 

showed that future changes in forest productivity might strongly depend on local temperature, 410 

P/PET, and precipitation (Fig. S2; Allen et al., 2015). Simulated forest productivity increased at 411 

high elevations, a result which we expect to be similar for sites at high latitudes (Füssel, 412 

Kristensen, Jol, Marx, & Hildén, 2017), where cold temperature currently limits tree 413 

establishment, growth and survival (Nemani et al., 2003). Climate change also created warmer 414 

winters in these sites (Table S2), which allowed new species to establish by decreasing the 415 

constraints on establishment (as shown in empirical studies, e.g. Conedera, Wohlgemuth, 416 

Tanadini, & Pezzatti, 2018). Climate change also produced longer growing periods that 417 

increased the productivity of the species currently present (consistently with recently observed 418 

trends, e.g. Boisvenue & Running, 2006). Contrarily, in the lowlands, simulated productivity 419 

decreased when climate change led to an increase in drought stress (mostly by increasing 420 

temperature and not changing the precipitation regime), which became a major constraint for 421 

tree growth and survival (as observed in Carnicer et al., 2011; Reyer, 2015). However, in a 422 

scenario of climate change with increased precipitation and only moderate temperature increase, 423 

productivity increased in the lowlands (Fig. 3A) because drought stress did not increase while 424 

winter temperature was lower and the growing season was longer (Table S2). While the former 425 

(increase of temperature with a decrease in precipitation), is predicted to occur in the southern 426 

half of Europe, the latter is typically predicted for higher latitudes, starting in central 427 

Scandinavia (Füssel et al., 2017).  428 

 429 

Shifts in tree species richness and composition drive productivity in the harshest climates 430 

We found that under moderate warming, changes in projected forest productivity were 431 

caused almost exclusively by the effects of climate change on tree growth (Fig 3 E-F; see 432 

Coomes et al., 2014). Contrarily, under extreme warming, and in locations at both ends of the 433 

temperature gradient, changes in productivity were driven mostly by changes in species 434 

composition (Fig 3 G-H). The increasing correlation between the relative importance of 435 

simulated colonization (i.e. a measure of the composition effect) and both local temperature and 436 

P/PET under the harshest climate projection (+3.6 ºC and -1.1% TAP; Fig. S3 C and E) further 437 

shows the strong role of species composition under harsh climatic conditions. This finding 438 

matches with empirical evidence of the role of tree richness on forest productivity along the 439 

latitudinal gradient in Europe (Jucker et al., 2016). We also observed a positive correlation 440 

between the change in species richness and in productivity (p < 0.054 across all climate 441 
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projections; Fig. 5). This supports theoretical studies which find forest productivity is especially 442 

sensitive to species loss in the harshest climates (see García-Valdés et al., 2018; Morin et al., 443 

2018). 444 

The link between forest species richness and ecosystem productivity (e.g. Liang et al., 445 

2016; Paquette & Messier, 2011) is usually explained by a greater niche partitioning in more 446 

diverse communities (Loreau et al., 2001; Morin et al., 2011). In simulated forests in the coldest 447 

sites, the effects of species richness and composition were strengthened because climate change 448 

allowed new species to colonize and be productive (Fig. 3 and S3; Coomes et al., 2014). 449 

Contrarily, in the warmest-driest sites, climate change caused the extinction of key species 450 

(Reyer, 2015), which reduced species richness and productivity. 451 

The observed importance of community composition change in cold and warm-dry sites 452 

in our study (see Anderegg & HilleRisLambers, 2019; Morin et al., 2018) is consistent with an 453 

extension of the stress gradient hypothesis (SGH; Bertness & Callaway, 1994; Crain & 454 

Bertness, 2006). This hypothesis states that the frequency of interspecific competitive 455 

interactions decreases in intensity with increasing abiotic stress. In our study sites, it is likely 456 

that species extinctions occurred when the species were at the boundaries of their suitability 457 

before climate change. At sites with intermediate temperature, such species were probably 458 

suppressed by competition before climate change and did not contribute significantly to the total 459 

productivity of the community. Hence, their extinction under climate change did not change 460 

greatly the total productivity of the site. Contrarily, at both ends of the temperature gradient, 461 

harsh climatic conditions reduced competitive interactions. This means, that in the absence of 462 

climate change, species that were close to their climatic limits could still contribute substantially 463 

to the total productivity of the site because they faced weak competition. Hence, their extinction 464 

with climate change substantially affected the total productivity of the community. With 465 

colonizations, we could expect a similar effect. In sites with mild climate conditions, colonizing 466 

species probably remained close to the species’ climatic limits (as climate change had 467 

transformed the site from unsuitable to suitable), and were unlikely to become dominant, thus 468 

probably not contributing substantially to the total productivity. This occurs because they still 469 

had to deal with biotic interactions (McGill, Enquist, Weiher, & Westoby, 2006), and were not a 470 

strong competitor under such conditions (low suitability and strong competition). In climatically 471 

harsh sites, colonizing species could immediately become dominant because it was less likely 472 

that they encountered strong competitors, as such site have a lower species richness on average. 473 

 474 

Increased sensitivity of warmest forests to climate change  475 
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Our simulations suggested that rapid and steep changes might arise in forest functioning 476 

(i.e. productivity) due to climate change. In the warmest site, a complete elimination of the 477 

forest cover was projected in the event of the most severe climate change scenario (Fig. 3H). In 478 

this scenario increase in drought stress drove the forest system to a change in community type 479 

(e.g. from forest to scrublands or meadows). García-Valdés et al. (2018) hypothesized such 480 

drastic changes in forest functioning when simulating a large number of species extinctions. 481 

Here, using a realistic scenario of composition change, we confirmed that such a drastic change 482 

could indeed occur in one of the study sites. 483 

 484 

Limitations of the approach 485 

To our knowledge this is the first study to couple models at complementary spatial, and 486 

temporal, scales (SDMs and FSMs), to quantify the relative importance of changes in growth 487 

and composition in mediating the effects of climate change on forest productivity. Although 488 

these simulations compared climates that are only 80 years apart (from now to the end of the 489 

century), they mimic long-term dynamics in order to compare mature forests. This means that 490 

simulations do not consider transient processes (e.g. disturbance, management, or brief extreme 491 

climatic events). Results should thus not be considered as short-term predictions, but instead 492 

estimates of the importance of climate change composition effects on mature forests, in 493 

comparison with growth effects. Our approach carries other limitations: (1) we used correlative 494 

SDMs that entail caveats (García‐ Valdés, Zavala, Araújo, & Purves, 2013; Pearson & Dawson, 495 

2003). However, correlative SDMs work well for widespread species such as those used here 496 

(Early & Sax, 2014) and process-based SDMs (e.g. Chuine & Beaubien, 2001) could not be 497 

used for so many species. (2) Our simulation design, relying on 2000-years simulation in both 498 

historical and future conditions, allows assessing the relative contribution of changes in tree 499 

growth and species composition to be assessed, and notably highlights the possible strength of 500 

compositional effects on changing productivity. However, these simulations cannot be directly 501 

used to infer forest composition and productivity at the end of the 21st century. Local species 502 

extinction by 2100 might be well reproduced by our design, because the exposition to the novel 503 

climate conditions may directly affect the adult trees of the sensitive species, while preventing 504 

the establishment of their seedlings. But site colonization by new species under the new 505 

conditions occurs through much slower dynamics, which means that the impact of these new 506 

colonizations would not be realistic for short-term projections. (3) We could not have measured 507 

the interaction between the growth and composition effects unless we had imposed a strong 508 

artificial control of the simulation, which would prohibit the measurement of complex 509 

community responses. (4) We did not consider species currently absent from central Europe. (5) 510 
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We ignored the possibility of plastic, or micro-evolutionary, responses of species (e.g. Jump & 511 

Peñuelas, 2005; Lavergne, Mouquet, Thuiller, & Ronce, 2010). (6) The importance of the 512 

composition effects might be further strengthened by taking into account interactions besides 513 

competition for light (e.g. Jactel & Brockerhoff, 2007). (7) The generated climate data had a 514 

temporal resolution of one month, so extreme events occurring at shorter scale were not 515 

considered. (8) Finally, we used the climatic anomaly between 2006-2016 and 2070-2100 as a 516 

measurement of climate change, which probably made the projections of forest responses 517 

conservative.  518 

 519 

Importance of climate change-composition effects on forests 520 

Our results highlight that composition effects on productivity could become very 521 

important under extreme changes in climate, which is likely to occur regarding the forecasts 522 

about the magnitude of climate change (Field, 2014). Our results also show that such 523 

composition effects might become especially important in some sites: negatively in terms of 524 

productivity in forests with warm and dry conditions, but positively in sites with cold 525 

conditions. Hence, we believe that our projections demonstrate that the role of species range-526 

shifts (i.e., composition effects) when simulating impacts of climate change on forests could be 527 

more important than previously anticipated, notably under harsh environmental conditions. The 528 

role of species’ range shifts and community composition’s changes is very often neglected in 529 

studies of climate change impacts on ecosystem functioning. We thus call for more research to 530 

improve our understanding of these effects considering the likelihood of an extreme change in 531 

climate.  532 
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Data availability statement: the original data used in this study are either available within the 717 

article (table S1), are part of on the models used (FORCLIM; Bugmann, 1996), or are available in 718 

the public domain: Atlas Florae Europaeae (AFE; Jalas & Suominen, 1972–1994; Jalas, 719 

Suominen, & Lampinen, 1996), EUFORGEN (http://www.euforgen.org/), Climatic Research 720 

Unit CL v. 2.0 (New, Lister, Hulme, & Makin, 2002) and EURO-CORDEX project (Jacob et 721 

al., 2014). The climate data was accessed and processed using the DataGURU server 722 

(dataguru.lu.se).  723 
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Figures 724 

 725 

Fig. 1: Models coupling used in this study. First, climatic suitabilities for 25 species were 726 

projected for each site and climate projection using SDMs. These 25 suitabilities were then 727 

aggregated to build potential species pools. To include the variability inherent to the suitabilities 728 

and to avoid choosing arbitrary thresholds, we built 100 species pools for each site and climate 729 

projection (i.e. if a species had a suitability of 0.6 it was included in 60 of the 100 species 730 

pools). Finally, succession dynamics (including tree growth) on the long-term, were simulated 731 

using a FSM. Figure modified from García-Valdés and Morales-Castilla (2016). 732 
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 733 

Fig. 2: Effect of climate change on the number of potentially occurring species, projected with 734 

the SDMs assuming a threshold in suitability of 50% (upper panels), and on the number of 735 

realized species, simulated with the FSM, assuming that only species with more than 1 Mg · ha-1 736 

are present in each site (lower panels). No bar means that there is no change in the number of 737 

species. Sites are ranked according to their historical temperature, which correlated strongly 738 

with the importance of the community composition effects on productivity. Sites on the left 739 

have the lowest historical temperature and sites on the right have the highest temperature. 740 
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 741 

Fig. 3: Effect of climate change on each forest annual aboveground biomass productivity (Mg · 742 

ha-1.yr-1), relative to a baseline (i.e., current climate) projection. Study sites are ranked from the 743 

coldest (left) to the warmest (right). Upper panels show total effect, and lower panels show the 744 

effect on forest productivity of colonizations, extinctions, and growth decrease or increase of 745 

species. To assess community composition, we considered that a species was present in a site 746 

whether its biomass reached at least 1 Mg ∙ ha-1. 747 

 748 

  749 
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750 

Fig. 4: Species productivity (Mg·ha-1·yr-1) at each site given a stable climate and four climate 751 

change scenarios. The species codes are the following: AAlb: Abies alba; ACam: Acer 752 

campestre; AGlu: Alnus glutinosa; AInc: Alnus incana; APse: Acer pseudoplatanus; AVir: 753 

Alnus viridis; BPen: Betula pendula; CAve: Corylus avellana; CBet: Carpinus betulus; FExc: 754 

Fraxinus excelsior; FSyl: Fagus sylvatica; LDec: Larix decidua; PAbi: Picea abies; PCem: 755 

Pinus cembra; PMon: Pinus montana; PNig: Populus nigra; PSyl: Pinus sylvestris; PTre: 756 
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Populus tremula; QPet: Quercus petraea; QPub: Quercus pubescens; QRob: Quercus robur; 757 

SAlb: Salix alba; TCor: Tilia cordata; TPla: Tilia platyphyllos and UGla: Ulmus glabra.  758 



García-Valdés et al. 

29 

 

 759 

760 

Fig. 5: Future change in realized species richness vs. future change in forest productivity (%) 761 

under different climate change projections, relative to baseline projections using current climate.  762 
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Supporting Information 

 

 

    MAT (°C) TAP (mm) 

    

Current 

climate 

RCP 4.5  RCP 8.5 

Current 

climate 

RCP 4.5  RCP 8.5 

Site name 
Latitude 

(°N) 

Longitude 

(°E) 

Elevation 

(m.a.s.l.) 

CNRM-

CM5 
EC-EARTH 

CNRM-

CM5 
EC-EARTH CNRM-CM5 EC-EARTH CNRM-CM5 EC-EARTH 

Adelboden 46.5 7.6 1325 5.66 7.56 7.63 10.13 10.59 1355 1665 1415 1516 1306 

Basel 47.5 7.6 317 9.34 10.54 10.8 12.5 12.84 799 887 821 845 738 

Bern 46.9 7.4 570 8.02 9.44 9.62 11.41 11.68 1017 1095 1018 1100 909 

Bever 46.6 9.9 1712 1.47 3.03 3.38 5.45 6.1 853 913 830 914 835 

Cottbus 51.8 14.3 76 9.13 10.29 10.63 12.14 12.22 574 633 616 677 598 

Davos 46.8 9.8 1590 2.5 4.01 4.26 6.53 7.18 1077 1201 1104 1239 1068 

Grande Dixence 46.1 7.4 2166 1.15 2.8 3.04 5.14 5.75 1041 1050 1033 1106 982 

Huttwil 47.1 7.9 638 8.08 9.54 9.7 11.49 11.75 1311 1421 1351 1423 1232 

Schaffhausen 47.7 8.6 400 8.58 9.96 10.06 11.88 12.18 887 1039 900 954 925 

Schwerin 53.6 11.4 45 8.43 9.57 10.01 11.26 11.29 625 709 655 727 617 

Sion 46.2 8.6 542 8.94 10.91 11.13 13.35 13.73 578 592 598 673 677 

Averaged differences with 
historical climate 

    

+1.49 ºC 

[+1.1 ºC, 

+2.0  ºC] 

+1.72 ºC 

[+1.5 ºC, 

+2.2 ºC] 

+3.63 ºC 

[+2.8  ºC, 

+4.5  ºC] 

+4.00 ºC 

[+2.9  ºC, 

+4.9  ºC] 

 

+10.24 % 

[+0.9 %, 

+22.9 %] 

+2.40 % 

[-2.7 %, 

+7.3 %] 

+11.00 % 

[+5.8 %, 

+17.9 %] 

-1.11 % 

[-10.6 %, 

+17.1 %] 



García-Valdés et al. 

32 

 

Table S1: Description of the study sites: latitude, longitude, elevation, and current and future mean annual temperature (MAT) and total annual 

precipitation (TAP). 
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Table S2: Projected future change in seasonality of mean annual temperature (MAT) and total annual precipitation (TAP). Differences in 

temperature are expressed in ºC, and in precipitation in percentage. 
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  MAT (°C) TAP (%) 

  RCP 4.5  RCP 8.5 RCP 4.5  RCP 8.5 

Site name Season 
CNRM-

CM5 
EC-EARTH 

CNRM-

CM5 
EC-EARTH CNRM-CM5 EC-EARTH CNRM-CM5 EC-EARTH 

 Spring 0.97 1.18 3.13 3.28 -9.99 6.90 -13.98 -0.24 

Adelboden Summer 2.04 2.05 5.93 6.94 53.68 -1.10 20.12 -8.40 

 Autumn 1.78 2.45 4.30 5.22 12.72 11.66 34.77 -2.31 

 Winter 2.81 2.22 4.54 4.28 18.95 3.64 3.56 -0.63 

 Spring 1.23 1.02 2.98 2.75 -8.57 6.46 -5.34 -0.91 

Basel Summer 0.26 1.61 2.51 4.62 27.87 -10.04 1.99 -28.08 

 Autumn 0.86 1.58 3.04 3.67 0.05 6.23 15.21 6.49 

 Winter 2.45 1.62 4.11 2.97 21.99 17.09 14.58 1.98 

 Spring 1.44 1.36 3.57 3.21 -5.87 0.34 -2.30 1.40 

Bern Summer 0.43 1.63 2.65 4.56 17.10 -8.54 6.02 -25.81 

 Autumn 1.00 1.58 3.07 3.66 3.11 8.34 22.19 -7.61 

 Winter 2.81 1.84 4.29 3.23 14.87 4.95 6.67 -1.95 

 Spring 1.04 1.20 3.14 3.23 -19.74 1.56 -8.59 -4.04 

Bever Summer 0.92 1.69 3.52 5.18 25.83 -0.16 15.43 -4.50 

 Autumn 1.55 2.77 4.87 5.98 2.08 -11.49 7.92 1.09 

 Winter 2.71 1.96 4.37 4.12 9.37 1.00 8.21 0.01 

 Spring 1.17 1.43 2.58 2.62 -2.85 12.83 18.47 30.99 

Cottbus Summer 0.34 1.25 2.12 3.24 13.24 -4.77 10.54 -20.09 

 Autumn 0.69 1.43 2.94 3.33 4.76 8.02 30.43 -0.67 

 Winter 2.43 1.89 4.40 3.17 26.20 21.01 16.21 22.04 

 Spring 0.98 1.20 3.02 3.07 -15.99 14.24 -11.48 5.57 

Davos Summer 0.99 1.30 4.10 5.66 23.08 0.35 26.11 1.75 

 Autumn 1.40 2.60 4.60 5.88 17.54 -6.33 21.31 -6.51 

 Winter 2.69 1.94 4.42 4.11 8.37 5.28 11.84 -6.24 

 Spring 0.93 1.17 3.37 3.50 -20.42 -3.00 -13.57 -15.03 

Grande Dixence Summer 1.04 1.53 3.34 4.71 19.43 -6.09 14.42 -6.90 

 Autumn 1.66 2.45 4.50 5.59 -5.64 7.28 25.97 8.35 

 Winter 2.96 2.40 4.73 4.61 7.05 -0.23 -3.02 -8.28 

 Spring 1.48 1.30 3.49 3.18 -4.02 -2.57 -3.17 -0.75 
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Huttwil Summer 0.43 1.64 2.63 4.44 16.98 -5.00 3.94 -21.10 

 Autumn 0.97 1.59 3.13 3.65 -1.99 8.64 18.18 -1.31 

 Winter 2.98 1.94 4.42 3.43 22.25 14.24 17.44 3.41 

 Spring 1.32 1.12 3.03 2.79 -3.67 3.75 -3.04 6.20 

Schaffhausen Summer 0.26 1.67 2.84 4.61 31.88 -7.15 3.46 -17.57 

 Autumn 0.84 1.59 3.17 3.64 8.47 7.53 18.94 19.15 

 Winter 3.07 1.52 4.15 3.32 26.01 5.60 12.69 19.39 

 Spring 1.10 1.65 2.39 2.54 -7.43 -1.28 -1.11 9.37 

Schwerin Summer 0.55 1.23 1.80 3.02 15.10 3.78 10.66 -14.46 

 Autumn 0.79 1.44 3.00 2.95 8.56 1.57 36.17 -2.13 

 Winter 2.13 2.01 4.14 2.93 36.36 15.72 20.07 8.21 

 Spring 2.16 2.17 4.63 4.73 -10.48 -0.22 17.86 -7.97 

Sion Summer 1.49 2.38 3.94 5.38 9.57 10.44 29.96 -20.77 

 Autumn 1.34 1.58 3.44 3.50 -1.82 21.26 23.14 62.25 

 Winter 2.93 2.65 5.65 5.55 8.63 -18.78 -5.46 30.69 

Mean and range 

across sites 

Spring 
1.26  

[0.93, 2.16] 

1.35 

[1.02, 2.17] 

3.21 

[2.39, 4.63] 

3.17 

[2.54, 4.73] 

-9.91 

[-20.42, -2.85] 

3.54 

[-3.00, 14.24] 

-2.39 

[-13.98, 18.47] 

2.24 

[-15.03, 30.99] 

Summer 
0.79  

[0.26, 2.04] 

1.63 

[1.23, 2.38] 

3.22 

[1.80, 5.93] 

4.76 

[3.02, 6.94] 

23.07 

[9.57, 53.68] 

-2.57 

[-10.04, 10.44] 

12.97 

[1.99, 29.96] 

-15.08 

[-28.08, 1.75] 

Autumn 
1.17  

[0.69, 1.78] 

1.92 

[1.43, 2.77] 

3.64 

[2.94, 4.87] 

4.28 

[2.95, 5.98] 

4.35 

[-5.64, 17.54] 

5.70 

[-11.49, 21.26] 

23.11 

[7.92, 36.17] 

-1.77 

[-8.24, 1.30] 

Winter 
2.72  

[2.13, 3.07] 

2.00 

[1.52, 2.65] 

4.47 

[4.11, 5.65] 

3.79 

[2.93, 5.55] 

18.19 

[7.05, 36.36] 

6.32 

[-18.78, 21.01] 

9.35 

[-5.46, 20.07] 

6.24 

[-8.28, 30.69] 
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Table S3: Tree species considered and their parameters in FORCLIM.  

 

kName: species name. 

kType: species type grouping parameter (foliage type). 

kS: allometric parameter for relating diameter and height growth. 

kHMax: maximum tree height (m). 

kAMax: maximum tree age (years). 

kG: growth rate parameter (cm.years-1). 

kDDMin: minimal annual degree-day sum (°C.day-1). 

kWiTN: mimimum winter temperature threshold (°C). If the species is assumed to have no 

limitation regarding minimum winter temperature, no value has been specified. 

kWiTX: maximum winter temperature tolerated for regeneration (°C). 

kDrTol: drought tolerance parameter (0: intolerant / 1: tolerant). 

kNTol: nitrogen tolerance parameter (1: needs less N for growth / 5: needs more N for growth). 

kBrow: browsing susceptibility (1=less susceptible, ..., 5=more susceptible). 

kLy: light requirement of tree saplings (0=low requirement / 1=large requirement). 

kLa : shade tolerance of adult trees (1=tolerant, ..., 9=intolerant). 

kLQ: leaf litter quality (1=fast, 3=slow decaying). 

 

 

For more details about FORCLIM, see the following references: 

Bugmann H (1994) On the Ecology of mountainous forests in a changing climate: A simulation 

study. PhD Thesis. Eidgenössische Technische Hochschule, Zürich. 

Bugmann H (1996) A simplified forest model to study species composition along climate 

gradients. Ecology, 77, 2055-2074. 

Bugmann H (2001) A review of forest gap models. Climatic Change, 51, 259-305. 

Didion M, Kupferschmid AD, Zingg A, Fahse L, Bugmann H (2009) Gaining local accuracy 

while not losing generality — extending the range of gap model applications. Canadian 

Journal of Forest Research, 39, 1092-1107.  
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kName kType kS kHMax kAMax kG kDDMin kWiTN kWiTX kDrTol kNTol kBrow kLy kLa kLQ 

Abies alba E5 73 60 700 117 641 -- -3 0.23 3 5 0.05 1 2 

Acer campestre D2 100 23 170 156 1062 -100 8 0.33 3 4 0.1 5 2 

Acer pseudoplatanus D3 100 37 550 125 898 -100 8 0.25 4 4 0.025 4 2 

Alnus glutinosa D2 111 31 240 250 898 -16 11 0.08 3 1 0.1 5 1 

Alnus incana D2 80 22 150 266 610 -100 7 0.08 3 1 0.2 7 1 

Alnus viridis D2 100 4 100 531 272 -100 -6 0.16 3 1 0.3 7 1 

Betula pendula D1 108 29 220 278 610 -100 9 0.16 1 1 0.3 9 2 

Carpinus betulus D3 70 27 220 177 898 -9 9 0.25 4 2 0.075 3 1 

Corylus avellana D3 142 10 70 95 898 -16 9 0.33 2 2 0.2 6 1 

Fagus sylvatica D3 64 45 430 191 723 -4 9 0.25 2 3 0.05 1 2 

Fraxinus excelsior D2 86 42 350 177 980 -17 8 0.16 5 3 0.075 6 1 

Larix decidua D2 72 52 850 170 323 -11 -1 0.25 1 3 0.4 9 3 

Picea abies E5 96 58 930 171 385 -100 -1 0.15 2 2 0.1 5 3 

Pinus cembra E5 40 26 1050 115 323 -11 -6 0.3 1 4 0.2 5 3 

Pinus montana E5 46 23 300 138 436 -100 -3 0.37 1 3 0.4 9 3 

Pinus sylvestris E4 111 45 760 119 610 -100 1 0.37 1 3 0.3 9 3 

Populus nigra D2 120 36 280 285 662 -100 12 0.08 4 2 0.1 5 2 

Populus tremula D2 126 30 140 310 610 -100 9 0.25 2 2 0.2 7 2 
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Quercus petraea D3 66 45 860 195 785 -5 9 0.25 2 4 0.2 7 2 

Quercus pubescens D3 50 25 500 148 1011 -100 9 0.33 2 4 0.3 7 2 

Quercus robur D3 66 52 1060 195 1042 -17 9 0.33 2 4 0.3 9 2 

Salix alba D1 80 27 170 278 1062 -100 12 0.08 3 2 0.1 5 2 

Tilia cordata D3 106 30 940 114 1339 -19 8 0.33 4 2 0.1 5 2 

Tilia platyphyllos D3 127 39 960 110 1339 -100 8 0.25 5 2 0.075 3 2 

Ulmus glabra D3 127 43 480 153 1062 -16 11 0.25 5 3 0.075 3 1 
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Table S4: Information source of the species data used for the SDMs. 

 

 

 

 

 

 

 

  

Species Source 

Abies alba AFE 

Acer campestre EUFORGEN 

Acer pseudoplatanus EUFORGEN 

Alnus glutinosa AFE 

Alnus incana AFE 

Alnus viridis AFE 

Betula pendula AFE 

Carpinus betulus AFE 

Corylus avellana AFE 

Fagus sylvatica AFE 

Fraxinus excelsior EUFORGEN 

Larix decidua AFE 

Picea abies AFE 

Pinus cembra AFE 

Pinus montana AFE 

Pinus sylvestris AFE 

Populus nigra AFE 

Populus tremula AFE 

Quercus petraea AFE 

Quercus pubescens AFE 

Quercus robur AFE 

Salix alba AFE 

Tilia cordata EUFORGEN 

Tilia platyphyllos EUFORGEN 

Ulmus glabra AFE 
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 1 

Fig. S1: Each forest’s potential species richness (projected by SDMs), realized species richness 2 

(projected by SDMs +  ForClim), and annual aboveground wood productivity (Mg·ha-1·yr-1), 3 

under baseline (i.e., current climate) conditions. Sites on the left have the lowest temperature 4 

and sites on the right have the highest temperature.  5 
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 6 

Fig. S2: Correlation between the future change in productivity, relative to baseline projections, 7 

and local temperature, precipitation and P/PET.   8 
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 9 

 10 

Fig. S3: Correlations between the relative contribution of colonizations and extinctions to the 11 

total future change in productivity, and local precipitation, temperature, and P/PET. 12 

 13 
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Appendix S1: FORCLIM description 14 

 15 

FORCLIM v2.9.6 (Didion et al. 2009), is built under the classic scheme of forest gap models, and 16 

is thus based on a small number of basic ecological assumptions (Shugart, 1984), i.e. (i) the 17 

forest stand is abstracted as a composite of many small patches of land (800 m2), each patch 18 

having its own dynamics; (ii) patches are horizontally homogeneous, i.e. tree position within a 19 

patch is not considered; (iii) the leaves of each tree are located in an indefinitely thin layer at the 20 

top of the stem; and (iv) successional processes can be described on each of those patches 21 

separately, i.e. there are no connections between patches. From these assumptions, the model 22 

follows the standard approach of gap models: the establishment, growth, and mortality of trees 23 

on the multiple forest patches are simulated, deriving stand properties at a larger spatial extent 24 

by averaging the properties simulated at the patch scale, and considering abiotic and biotic 25 

limitations to establishment and growth (specifically, growing degree-days, soil moisture and 26 

nitrogen status as well as light availability at the height of the tree crown, i.e. the outcome of 27 

inter- and intraspecific competition).  28 

 Trees are established with a diameter at breast height of 1.27 cm as a function of 29 

species-specific responses to winter temperature, light availability at the forest floor, growing 30 

degree-days and browsing pressure; principally, all species (from the species pool chosen) are 31 

available for establishment, i.e. there is no dispersal limitation in the model. Growth (i.e., stem 32 

diameter increment at breast height) is modeled using an empirical equation derived for 33 

optimally growing trees (Moore, 1989). Actual tree growth is calculated by modifying the 34 

optimum rate to the extent that abiotic or biotic conditions are limiting. Specifically, these are 35 

growing degree-days, soil moisture and nitrogen status, crown length, as well as light 36 

availability at the height of the tree crown, i.e. inter- and intraspecific competition and thus 37 

changes in species composition. In the current version, the model concentrates on competition 38 

for light. Other resources, such as nitrogen and soil water, are affecting species performance but 39 

they are constant at the site level, ie. not impacted by trees. To calculate weather-dependent 40 

factors, mean monthly temperatures and monthly precipitation sums are used. The model is 41 

further constrained by soil water holding capacity. From diameter at breast height, the sizes of 42 

other tree compartments (e.g., foliage, roots) and total aboveground biomass are estimated using 43 

allometric equations, which partly respond to changing competition and thus to diversity 44 

changes (Bugmann, 1994; Didion, Kupferschmid, Zingg, Fahse, & Bugmann, 2009). Species 45 

coexistence in forest gap models is brought about by two main mechanisms: first, trade-offs 46 

evident from the life-history strategies, such as high rates of colonization often being tied to low 47 

shade tolerance, or a typically short lifespan of early successional, fast-growing trees; and 48 

file:///E:/NON_PROJECT/PAPERS/PUBLISHED/Garcia-Valdes_etal_ForClim/PUBLISHED/Appendix%20S1.docx%23_ENREF_9
file:///E:/NON_PROJECT/PAPERS/PUBLISHED/Garcia-Valdes_etal_ForClim/PUBLISHED/Appendix%20S1.docx%23_ENREF_7
file:///E:/NON_PROJECT/PAPERS/PUBLISHED/Garcia-Valdes_etal_ForClim/PUBLISHED/Appendix%20S1.docx%23_ENREF_1
file:///E:/NON_PROJECT/PAPERS/PUBLISHED/Garcia-Valdes_etal_ForClim/PUBLISHED/Appendix%20S1.docx%23_ENREF_6
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second, the fact that cyclical succession is occurring on each individual patch, such that species 49 

with different properties are able to dominate during different parts of the cycle. Tree mortality 50 

is stochastic and has a background and a growth-related component. The former depends on 51 

species maximum longevity, whereas the latter is an integral proxy for stress conditions, i.e. tree 52 

vigor; since competition affects individual tree growth, it also has an indirect effect on the 53 

simulated mortality rates via growth-related mortality. Species parameters are provided in Table 54 

S2. 55 

FORCLIM has evolved from a simulator of forests in the Swiss Alps to a general model 56 

that is applicable to temperate forests of central Europe, eastern North America, the Pacific 57 

Northwest of the US, northeastern China and the Colorado Front Range of the Rocky Mountains 58 

(Bugmann, 2001; Bugmann & Cramer, 1998; Bugmann & Fischlin, 1996; Bugmann & 59 

Solomon, 2000; Shao, Bugmann, & Yan, 2001). To our knowledge FORCLIM is the only forest 60 

succession model that has been demonstrated to be applicable “out of the box”, i.e. without any 61 

re-parameterization, across widely different climates while still keeping a species resolution, 62 

which supports its generality. 63 
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