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ABSTRACT 
 

Premature cognitive decline is a feature of age-related pathological processes, often associated with 

neurodegenerative disorders. Part of the systemic ageing process is the accumulation of senescent 

cells in tissues around the body, including the brain. Cellular senescence contributes to the systemic 

inflammation which comes with ageing and disrupts several cellular regulatory mechanisms. 

Alternative splicing is one of these processes. Here, we first characterise the inflammatory component 

or senescence associated secretory phenotype and the splicing dysregulation within astrocytes. We 

then observe and quantify the effects of this on the alternative splicing of essential transcripts related 

to astrocyte function. Finally, we assess the correlation between observable levels of splicing 

perturbation in peripheral whole blood and the progression of cognitive decline in a population study. 

As a result, we identify potential biomarkers for the cognitive decline associated with dementia and 

other neurodegenerative disorders.  
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1 INTRODUCTION 

1.1.1 The burden of age-related neurodegeneration 

 

Age is a major risk factor for cognitive decline and neurodegenerative disease, as it is for most 

common, chronic disorders (1). The process of biological ageing can be generalised as a gradual 

accumulation of molecular and cellular damage in an organism over time (2). The process is positively 

correlated with increased risk of chronic disease, and is the main risk factor for most common 

pathologies in the western world (3). Neurological ageing and associated neurodegenerative disorders 

(NDDs) characterise a group of disorders that have amongst the largest impact on health and quality 

of life for patients and their families; in 2015, 46.8 million people were living with dementia (4-6). 

These disorders also have profound economic consequences; the basic economic costs of dementia-

related illnesses worldwide was estimated as 604 billion dollars in 2010 (7), with 70% of this cost 

focused in Western Europe and North America (4, 6). Dementia survival estimates vary from 1-8.5 

years, depending on the age of onset; those being diagnosed earlier usually having increased survival 

time (8). Disorders characterised by cognitive decline include Alzheimer’s disease (AD), Parkinson’s 

disease (PD), Huntington’s disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis 

(MS)(9). Whilst specific disease processes may differ, generally the disorders disrupt motor, cognitive 

and sensory function, resulting in inability to perform physical and mental tasks, memory and 

emotional disturbance, and eventually death (9).  

The pathology of NDDs is linked to loss or dysfunction of neurons, which progressively lose ability to 

react to stimuli and eventually degenerate (10). Inflammatory processes are linked to the pathology 

of these disorders (11). Protein aggregates such as -amyloid or α-synuclein, along with neurofibrillary 

tangles consisting of Tau protein, present in brains affected by NDD’s, have been reported to elicit 
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immune responses and potentially contribute to this inflammatory process (12).  Ageing (3), infection 

(13) and trauma (14) have also been correlated to the process of neurodegeneration and associated 

pathologies.  

Recent evidence suggests that the accumulation of senescent cells in the brain may actively drive 

functional decline in NDDs (15). The accumulation of senescent cells in tissues and organs has emerged 

as a major driver of the ageing process and age-related disease in mammals; selective removal of such 

cells in genetically-engineered animals has been demonstrated to reverse or delay aspects of ageing 

(16, 17). Senescence is a phenomenon whereby cells lose the ability to proliferate, and demonstrate 

functional decline and morphological differences to their non-senescent counterparts (18). Senescent 

cells are alive and metabolically active but have altered function compared to their non-senescent 

counterparts. 

 Although neurons are terminally differentiated and therefore non-proliferative, they are supported 

by replication competent cells such microglia and astrocytes. It is likely that senescence-related 

changes to the function of these cells may compromise their roles in metabolic and neuronal ion 

homeostasis (19) (20). Astrocytes have a pivotal role in maintenance of trophic factors, 

neurotransmitters, and the support and strengthening of neuronal connections (21). Previous 

evidence has suggested that the accumulation of senescent astrocytes may drive neurodegenerative 

disorders (22) and recent work shows that clearance of senescent glial cells may prevent the 

accumulation of Tau aggregates and improve cognitive function in mouse models (15, 23). 

Pharmacological impairment of astrocytic function recapitulates cognitive deficits that are observed 

in old age (24). It is also noteworthy that irradiation-induced accumulation of senescent cells is 

associated with cerebro-microvascular dysfunction in animal models (25).    
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 A major feature of senescence is secretion of the senescence associated secretory phenotype (SASP), 

a cocktail of inflammatory cytokines which can act in a paracrine manner on neighbouring cells driving 

them into senescence or growth arrest. This catalyses a vicious cycle of senescence and inflammation 

in surrounding tissues and eventually throughout the entire organism, characterised in ageing (26) 

(27).This hypothesis is supported by the observation that senescent support cells exhibit a reduced 

capacity to support neurons grown in co-culture (28) and that analysis of the brains of patients with 

Alzheimer’s associated dementia, demonstrate a significantly higher load of senescent cells and 

associated SASP factors (29).   

Cells enter a senescent state for a number of reasons, one of which is repeated exposure to internal 

and external stressors (30). Exposure to cellular stress elicits an adaptive and plastic transcriptional 

response, which is partly orchestrated by alternative splicing (31). A large-scale gene enrichment study 

showed that successful or unsuccessful ageing (the primary risk factor for most high mortality 

pathologies), was most closely linked to perturbations in those genes which were linked to mRNA 

processing and splicing (32). 

Supporting the notion of a pivotal role for dysregulated alternative splicing in senescence, transcripts 

associated with chronological age in humans are enriched in gene ontology pathways involved in splice 

site choice (32) and splicing factor expression is also associated with cellular senescence in in-vitro 

models  (33, 34), with human ageing phenotypes (35) and with lifespan in long-lived mice (36). Perhaps 

most persuasively, restoration of splicing factor levels is associated with rescue of cellular senescence 

in multiple human primary human cell types (37-39). 



Alternative splicing and age-related neurodegeneration – Jed Lye 

Page 15 of 86 

 

Changes to the regulation of splicing have previously been reported in Alzheimer’s Disease (40) and 

global dysregulation of splicing is characteristic of several neurodegenerative conditions such as 

Huntington’s disease (41), frontotemporal lobar dementia (42) and Parkinson’s Disease (43). Specially, 

alterations to the splicing pattern of the MAPT gene which encodes Tau protein is known to contribute 

to neurofibrillary tangles (44). Genes may be regulated at multiple levels, but recent studies have 

demonstrated the importance of mRNA processing in ageing and age-related disease (32, 45). Three 

types of mechanism primarily explain ageing related phenotypes: isoform based loss of function, 

aberrant gain of function and ratio imbalance (46). 

 

1.2 ALTERNATIVE SPLICING 

The stunning complexity of the gene regulatory mechanisms exhibited in human cells is being 

demystified at an ever-increasing rate thanks to rapidly developing technology, increased manpower 

and funding in the bioscience field (47). The central dogma script of molecular biology is being 

continually punctuated with newly-elucidated molecular control mechanisms and regulatory 

processes (48, 49), which add still more layers to the regulation of mRNA transcription, splicing, decay 

and translation, ultimately determining the flux in concentrations of various isoforms of mRNA 

transcripts which direct the molecular production of proteins (50). Over 95% of human genes are able 

to produce different isoforms through these  this contributes in a pivotal way to the complexity of 

higher eukaryotes (51) (52).  

Normal, constitutive splicing is the process of removing intronic sequences from pre-mRNA transcripts 

and binding together the resulting exon sequences to yield a functional, mature mRNA (53). This is 

achieved through number of co-transcriptional or post-transcriptional processes, of which pre-mRNA 

splicing is the most complicated (53).  
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 Splicing occurs through a two-step, transesterification process occurring inside of a multi-megadalton 

ribonucleoprotein complex termed; the spliceosome. The spliceosome is the molecular machine 

through which much of the cellular splicing is done (54).  It consists of 5 small nuclear 

ribonucleoproteins (U1, U2, U4, U5 and U6) in addition to an impressive 150 associated proteins (55). 

A further central core of Sm proteins is needed for the assembly of the spliceosome, and methylation 

patterns of these directly affect their interactions and thus splicing (56). Assembly of the spliceosome 

is initiated first by the recognition of consensus sequences (most commonly GT/AG) at either end of 

the intron (57). U1 binds to the 5’ splice site, two U2 subunits bind to the polypyrimidine tract (plays 

an important role in 3’ splice site selection) and the 3’ AG (58).  

The mRNA transcripts are cleaved at the 5’ splice site with the addition of a hydroxyl group to the 

splice site. The 5’ end is then looped back around and ligated to the 3’ branch site via a 

transesterification process, and the hydroxyl group is excised with the branched lariat loop (54) (see 

Figure 1.1).
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Figure 1.1 Constitutive and regulatory control of splicing processes (personal Communication - L.W.Harries) 

1. Phosphorylated SR and hnRNP proteins bind to their respective intron/exon splicing enhancers and intron/exon splicing suppressors. 2. The U1 and U2 small 
nuclear ribonucleoproteins (snRNPs) bind to the 5’ splice site (SD) and the branch point (BP) respectively. The tri-snRNP consisting of U4, U5 and U6 snRNPs then 
assembles. 3. A lariat loop is formed, by conformational change. And the U1 and the U4 snRNPs are displaced.  4. The intron is removed in the form of a lariat and 5. 
The exons are bound together by a transesterification reaction. SD = Splice donor site. SA = splice acceptor site. BP = branch point. SR = Serine Arginine rich splicing 
activator. HNRNP – Heterogeneous nuclear ribonucleoprotein particle splicing silencer. Exon/Intron Splicing Enhancer sites (ESE, ISE) are indicated by yellow boxes. 
Exon/Intron splicing silencer (ISS, ESS) binding sites are indicated by pale green boxes. 
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In addition, to this canonical molecular process, alternative splicing is the process of producing 

variations of these isoforms from a single pre-mRNA by including or removing exons from transcripts 

in a specific pattern (54).  Alternative splicing is mediated by the combinatorial binding of a series of 

splicing activators and inhibitors to splicing enhancer and silencer sequences around the splice sites 

to determine whether or not each splice site is used (59, 60).In some instances exons are included 

which are normally excluded, in others an exon normally expressed can be spliced out for a mutually 

exclusive alternative (61). 4 basic alternative splicing patterns exist: Alternative 5’ splice site selection, 

alternative 3’ splice-site selection, cassette exon inclusion/ skipping, and intron retention (61). 

Mutually-exclusive alternative exons add an additional layer of complexity to these patterns (62) (See 

Fig 2). The resultant protein isoforms can have differential effects that range from mildly altered 

affinities, to demonstrating complete antagonism (63, 64).   
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Figure 1.2- graphical representation of the patterns of alternative splicing.  

Visual representation of the processes of splicing. Boxes represent exons joined by straight 
black lines representing the introns. Angular lines represent alternative splicing patterns and 
span the nucleic acid content to be removed.  Examples refer to: A) exon skipping, B) intron 
retention, C) alternative 5’ splice site, D) alternative 3’ splice site, E) mutually exclusive exons, 
and alternative F) first and g) last exons. 

 

Through this methodology, the genomic information present in a cell is able to generate an increased 

number of mRNA output variations and contribute to the increased tissue specific and temporal 

plasticity, facilitating adaptation to environmental pressures (65). The degree of transcriptional 

plasticity which can be achieved by this process is only now being fully unravelled.  Computational 

genomic analysis of binding sites for splice factors revealed over 38,000 possible splice variants of a 

single gene (Dscam) in Drosophila melanogaster (66). Whilst this number isn’t representative of the 
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vast majority of alleles, it goes some of the way to illustrating the vastness of the variation which exists 

beyond our basic genetic sequences.  The resultant transcripts can have differential or antagonistic 

function, or in some cases splicing can produce non-viable transcripts by the introduction of 

premature termination codons and thus induction of the nonsense mediated decay (NMD) pathway 

(67).  

The concentrations of, post-translational modifications to, and steric competition which occurs 

between trans-acting factors for cis-regulatory sequences for is a major driver of alternative splicing. 

Splice site usage (or not), is determined by the combinational balance of splicing inhibitors and 

activators (60). Splicing factors shuttle between nucleus and cytoplasm under the control of splicing 

regulator kinases that include Serine Threonine Protein Kinases 1 and 2  (SRPK1 and SRPK2) (68).  

Splicing factors are also themselves regulated by alternative splicing (67).  

As transcription is controlled by the interaction between sequences in the DNA and proteins which 

bind to elicit initiation of transcription, so alternative splicing occurs when splicing regulatory activator 

or silencer proteins bind to exon or intron splicing enhancers (ESEs, ISEs) or silencers (ESS, ISS) in the 

pre-mRNA transcript (69).  Sequence elements acting as enhancers or silencers are termed cis-

regulatory sequencers, whilst those factors which bind to them are termed trans-acting factors (54). 

The relatively low affinity between splicing factors and mRNA is sometimes overcome by duplication 

of cis elements (70) . Splicing inhibitor proteins such as hnRNPs bind to exon splicing silencers, creating 

a loop out between the ESS bound molecule and the 5’ splice site, thereby preventing the binding of 

SR proteins, and sequestering the exon from the pre-mRNA transcript (71). SR proteins, through their 

binding to enhancer elements bring about and stabilise a branch site (71). SR-like proteins are similar 

splicing effector proteins. They are not mandatory for the process of splicing, but have domains which 

are akin to those in SR proteins, enabling them to bind to splice sites in and can work antagonistically 

to the SR proteins (72). Some of these splicing factors which regulate splicing, are also regulated by 
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alternative splicing themselves (67), and a number are auto-regulated, whereby products bind to and 

control the splicing of their own transcripts, whilst also possessing the ability to bind to other 

transcripts with the same conserved sequence (73). 

This network is then further complicated by the role which transcriptional control plays in initiation of 

the process, being as it is; co-transcriptional, as evidenced by chromatin immunoprecipitation (ChIP) 

and RNA polymerase knockout models (74) (75).  Additional mechanism of alternative splicing control 

has been proposed based on results indicating endonucleases can induce splicing of the enzyme 

telomerase. Specifically the suggestion is that an mRNA transcript is produced from the 

complimentary strand, which is then digested forming a 47-mer oligonucleotide which binds at an 

intron exon junction – causing alternative splicing (76).  

Finally, expression and function of splicing factors seems to be under the control of “master 

regulators” including Tra2β (77) Nova 1 (78), ERK and AKT which, through downstream kinase and 

phosphatase action, induce or prevent the binding of the transacting elements (79) . Investigation into 

the downstream targets of these pathways has yielded further potential points of intervention. 

Latorre et al. demonstrate that splicing factors can themselves be up-regulated, using the downstream 

targets or ERK and AKT, FOXO1 and ETV6 (80). 

 It stands to reason then, if the spliceosome is the most complex molecular machine in the cell, that 

95% of the human genome is alternatively spliced, and master regulators control the elements of this 

splicing process, the potential ramifications of perturbations in the function or levels of these master 

regulators could be drastic.  



Alternative splicing and age-related neurodegeneration – Jed Lye 

Page 22 of 86 

 

  

1.3 DISRUPTED SPLICING IN THE AGEING BRAIN 

 

1.3.1 The genetics of neurodegenerative disorders 

Splicing disrupting mutations are those that through variants in the genetic sequence cause changes 

in the pattern of exon or intron usage (81). These are proposed to cause up to one third of all disease-

causing mutations (82, 83). For the majority of cases however, there is not a single gene cause, with 

genetic variation in multiple loci and environmental factors being associated with these conditions 

(84).  

Genome wide association studies (GWAS) are a powerful tool to identify genetic susceptibility factors 

for disease (85). GWAS studies have been employed to detect associations between common genetic 

variation and NDDs such as AD  (86) ALS (87) PD(88) and for age of onset in HD (89). Reviews of all of 

the GWAS studies conducted since 2007, show a large number of associated loci, with all but one 

indicating APOEε4 confirmed as the most significant risk factor (90) which accounts for up to 50% of 

cases of late-onset AD (91). In 2013, meta-analysis of GWAS studies found 19 additional loci reaching 

genome wide significance (P<5X10-8) additional loci for AD (92) and 24 additional loci for PD (93).  

GWAS studies also provide a foundation for investigation into treatment responses, allowing 

personalisation of therapeutic interventions in AD (94). Both monogenic (single gene) and 

multifactorial inheritance patterns for NDDs have been identified (95).  Mutations in the following 

genes: Presenillin 1 (PSEN1) (96), α-synuclein (SNCA) (97), β-synuclein (SNCB), microtubule associated 

protein (MAPT) (98), Amyloid precursor protein (APP) (99) Huntingtin (HTT) (100), and Glial fibrillary 

acidic protein (GFAP) (101)  are known to be monogenic causes of neurodegenerative diseases which 

demonstrate Mendelian patterns of inheritance within families. 
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1.3.2 Complex splicing patterns in the human brain 

The brain shows some of the most complex patterns of alternative splicing (102). This is exemplified 

by the neurexin3 (NRXN3) gene. Neurexins are pre-synaptic extracellular scaffold proteins, and the 

balance of their numerous isoform types is imperative for normal synapse formation and 

transmission(103). NRXN3 was originally believed to be capable of producing over 2000 different 

mRNA isoforms (104), although more recent studies suggest even this may have been an 

underestimate (103). The importance of the balance of the isoform ratio is a common theme 

throughout the transcriptome, both temporally and spatially (105, 106), and as such, control of 

isoform production is held under tight regulation (107).  

Governance of alternative splicing through proteins such as Ptbp1 and Rbfox family members can 

control cellular differentiation fate in the development stages of the brain (108). Other examples 

include the Aquaporin 4 (AQP4) M1/M23 transcripts, the ratios of which ensure that osmosis occurs 

at a finely controlled rate to ensure homeostasis is maintained (109) (110). The Leucine rich repeat 

kinase 2 (LRRK2) gene has multiple isoforms produced by differential splicing of its 51 exons which 

because of different activities are preferentially transcribed in different tissues (111). Exons 5, is 

spliced out for the transcript occurring in astrocytes whereas the truncated  exon 42a is produced in 

neurons and astrocytes, but is virtually undetectable in microglia (111). These are only a few examples 

of the importance of alternative splicing in the brain, the full complexity of which poorly understood. 
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1.3.3 Splicing dysregulation in neurodegenerative disorders 

The potential for point mutations to disrupt the cis-acting regulatory elements of specific genes means 

that splicing disruption is common in disease (112). Splicing regulator genes have themselves been 

directly linked to NDDs (113). In addition, mutations in trans-acting elements, which bind to these will 

also cause disruption, but on a much larger scale, as these trans-factors are involved in the splicing of 

vast number of genes (114). 

These trans-factor mutations cause metabolic and developmental problems (115) (114) and are 

sometimes lethal, as each splice factor will interact with cis-acting elements across a variety of genes 

(116).  Similarly, if ageing or pathogenic processes disrupt the regulatory kinases and phosphatases 

directly linked to the activation and localisation of splicing factors, similar outcomes can occur as 

canonical splicing is dysregulated (117, 118). This is especially true of neurodegenerative disease (119) 

(120).  Splice factors themselves are subject to further regulation through the action of phosphorylases 

and kinases. Phosphorylation of the SR and hnRNP proteins releases them from the cytoplasmic 

speckles in which they are normally localised (121), freeing them up to interact with the pre-RNA 

transcripts in the nucleus (122).  

 Examples of perturbation of such networks can be observed in existing cases of NDD’s: alternative 

splicing of exon 10 of the MAPT mRNA, brings about two specific isoforms, termed 3R (inclusive of 

exon 10) and 4R (exclusive of exon 10) (123).  Dysregulation of the MAPT splicing regulatory network 

and associated aggregation of pathological Tau, has been reported as a result of different phenomena. 

They include those caused by age-related and inflammatory mechanisms, aberrant activity of the 

regulatory kinases, and point mutations (120, 124). An example of pathogenicity resulting from 

phosphorylation status regulation in NDD’s can be seen in the mechanism of Cdc2- like kinases (CLK) 

1, 2, 3, and 4, which regulate exon 10 usage in Tau splicing through kinase action on SR proteins (125). 

Disruption of the exon 10 usage through CLK dysfunction produces imbalance between the Tau 3R 
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and 4R ratios, implicated in the development of AD (118).  This is just one example, demonstrative of 

the ubiquitous presence and importance of alternative splicing throughout so many mechanisms and 

pathways in the cell, and how disruption at any stage can be catastrophic. Moreover, changes in 

transcriptional activity of essential splicing factors in peripheral whole blood is correlated phenotypes 

known to be associated with unsuccessful ageing such as decreased grip strength, and reduced 

performance on cognitive functions tests, believed to be mediated by the dysregulation of splicing 

(126). 

1.3.4 Brain Inflammation and splicing regulation 

The complex regulatory network between ageing, inflammation, splicing dysregulation and the 

development of NDDs is beginning to be unpicked, but there is still much to be done. Splicing factor 

activity is regulated by SRPK protein kinases and by FOXO1 and ETV6 via ERK/AKT signalling  (127) (38, 

128). Interestingly, initiation of inflammatory signalling of the SASP is brought about through NFB 

pathway (129), which is also affected by the ERK and AKT signalling pathways (129). As a practical 

example, in mouse models of age related NDDs, increased transcription of inflammatory genes has 

been observed to correlate with subsequent dysregulation of the entire transcriptome and in addition 

dysregulation of alternative splicing and isoforms which affects synaptic plasticity (130).   

Neuroinflammation is known to be linked to the development of NDDs, and can be brought about by 

a number of factors (131). GWAS studies have linked the innate immune system to sporadic AD 

development, indicating a link between neuroinflammation and AD related dementia pathophysiology 

(132). Review of the literature suggests inflammation drives neuronal damage, which triggers 

inflammation as part of a vicious cycle, and targeting neuroinflammation may provide an opportunity 

to treat AD (133). Similar findings are present in reviews of literature for ALS (134) and PD (135) in 

both of which microglia and astrocytes are activated in a similar manner to AD (128, 129).  Splicing is 

also influenced by many factors which can include specific infectious agents such as Mycobacterium 
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tuberculosis (136).  The adenovirus is another known pathogen which dysregulates splicing , which it 

achieves by taking over host cell splicing machinery, by dephosphorylating splicing factors; inhibiting 

endogenous splicing (137). Pathogens have been linked to the initiation of NDDs (13) which has been 

correlated with their severe dysregulation of alternative splicing (138) (139).  

1.3.5 Brain stress response and splicing regulation  

The brain is exquisitely sensitive to cellular stress. It is the most metabolically active organ in the body, 

and as such, has a high output of factors such as reactive oxygen species (140). Splicing regulators are 

also known to be very responsive to cellular stress (31) and represent a crucial part of the organism’s 

repertoire of homeostatic mechanisms for dealing with changes in internal and external environment 

(141). Cholinergic hyper-activation brought about by physical or psychological stress in the CNS, brings 

about transcriptional activation and pre-mRNA splicing shifts (142, 143). In addition, changes in the 

RNA splicing of AChE transcripts has brain-to-blood effects, and can trigger neuronal – immune 

communication (144). Interestingly, suppression of these transcripts can reduce pro-inflammatory 

cytokine expression (144). Physiological stressors such as genotoxic agents, can induce changes in 

splicing patterns as a response to stress (145). For example, genotoxic stress can change the function 

of MDM2 transcripts, promoting p53 activity in response to this stress (145). These stress-induced, 

splicing pattern changes can have a range of functions including producing non-productive variants to 

counter transcriptional upregulation, or alternatively the can induce apoptosis and senescence (145) 

(146). 

 

1.3.6 Links between age-related changes and changes associated with neurodegenerative disorders 

Age related changes which occur in the brain, often predispose to both neurodegeneration and to 

NDD’s (147). These exist as both the accumulation of cellular and molecular damage, alongside 

breakdown in regulatory mechanisms (148, 149) and decline in the ability of the cells compensatory 
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mechanisms (147). As technology evolves allowing us to quantify the transcriptional changes common 

to ageing and to NDDs, interesting correlations begin to become apparent. Changes in alternative 

splicing patterns which are present in aged individuals are also present in those with a confirmed 

diagnosis of FTLD/AD, the difference in pattern is often only of magnitude (113). This may be due to 

age-related dysregulation of components of the core splicing machinery; activity levels of 

polypyrimidine tract binding protein (PTB) which aids in splice acceptor site recognition, was found to 

be consistent with these linked transcripts (113). Transcriptional changes directly linked to disorders, 

but not to age however, were consistent with decreased neuro-oncological ventral antigen (NOVA)–

dependent splicing regulation (113).  

The dysregulation of alternative splicing then, can come about by several mechanisms, and the 

subsequent effects in the brain are especially damaging. In an effort to unpick the problems, candidate 

genes known to be linked to the development of NDDs have been assessed for the production of 

multiple transcripts and for associated dysregulation of their concentration (150, 151). In AD, the 

delicate balance of isoforms with exon 10 inclusion/exclusion has been extensively explored and its 

dysregulation linked to the development of AD (152). In PD too, alternative splicing of a number of 

genes has been found to be linked to its pathogenic course (151).  

Dysregulation of splicing is almost ubiquitous amongst NDD’s. In AD, and Lewy Body Dementia, the 

presence of splice variants lacking the 7th and 9th exon of the glutamate transporter EAAT2 appear to 

contribute to excitotoxicity, causing neurodegeneration (153), suggesting a common pathway of 

dysregulation. Mutations in the valosin-containing protein (VCP) gene was demonstrated to have a 

central role in development of ALS, mediated by premature intron retention in developmental stages 

(154) Glial fibrillary acidic protein, the primary intermediate filament in astrocytes, has alternative 

isoforms present in Alexanders disease (155), and an upregulation of normally low abundance 
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isoforms in AD – a phenomenon which has been tightly associated with increased plaque load(156). 

Some more specific examples are included below. 

1.3.7 Alzheimer’s Disease 

Whole transcriptome analysis has provided evidence of large-scale changes across the transcriptome 

in Alzheimer’s Disease (AD), with over twenty-seven thousand unique transcripts being reported in an 

AD brain (157). Genes involved in the pathogenesis of AD commonly have alternative splice variants, 

Amyloid Beta Precursor Protein Binding Family B Member 2 (APBB2) , RNA binding fox homologue, 

(RBFOX), Presenilin1 (PSEN1), Presenilin 2 (PSEN2), and Apolipoprotein E (APOE), have all been 

reported to have alternative transcripts which have been suggested to result in the aggregation of β-

amyloid (150). Large scale splicing dysregulation has also been reported to create protein aggregates 

of many more types than previously believed. Using immunohistochemical analysis, core spliceosomal 

proteins such as the U1 snRNP were found to form aggregates themselves, implicating abnormal 

splicing more globally in AD pathogenesis (158).  The brains normal splicing regulation appears to be 

particularly reliant on the splicing factor NOVA, and many of the dysregulated transcripts are targets 

of this protein (113). Decreases in levels of some neurotransmitters such as choline, which are 

associated with progressive AD, can also lead to decreases in the translation of splicing factor 

transcripts via the Nonsense-mediated decay (NMD) pathway (159).  

Point mutations in splice donor sites in specific genes such as Amyloid precursor protein (APP), 

Presenilin1 (PSEN1) and Presenilin2 (PSEN2) genes have also been reported to produce aberrant 

transcripts that are also associated with -amyloid aggregates (160-163).  An intron inclusion 

transcript produced by an autosomal dominant PSEN1 mutation has been causally linked to AD (162). 

The gene encoding the microtubule associated-protein Tau (MAPT), a major component of 

neurofibrillary tangles, also produces multiple transcripts, the balance of which has been heavily 

implicated in AD (123). Tau protein functionality is dependent upon its phosphorylation status, hyper-
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phosphorylated Tau prevents its canonical role of binding to and stabilising microtubules (123).  

Mutations in the progranulin (GRN) gene, which encodes a pleiotropic anti-inflammatory protein, 

which has canonical neuronal protective effects, have also been linked to frontotemporal lobar 

degeneration (FTLD) (164-166). Aberrant splicing events around the first exon of GRN, leading to the 

introduction of premature termination codons, can lead to transcript degradation via the Nonsense-

mediated decay (NMD) pathway with associated loss of neuroprotective benefits (167) (168). The 

APOE gene is one which has been thoroughly investigated after getting multiple GWAS hits but no 

splicing dysregulation has been reported for this gene in the brain of AD (169), however its receptor 

APOER2 has been demonstrated to be dysregulated in both mouse and man (170) and restoration of 

correct splicing patterns was effective in preventing this mechanism of pathology (170). 

1.3.8 Parkinson’s disease 

Whole transcriptome studies in PD have been mildly less successful in producing inter-study 

concordance; with no specific genes transcripts being ubiquitously de-regulated (171) (172). Grouping 

the significantly changed transcription levels into pathway groups however circumvents this problem 

(172). 

-synuclein (SNCA) gene has also been associated age at onset and disease progression in PD. SNCA 

produces several alternatively expressed isoforms, 4 of which are usually found only at low levels in 

unaffected brain.  These isoforms have been reported to be overexpressed in different patterns in PD 

depending on the locality of the neurodegeneration (173-175). The same transcripts are also noted to 

be dysregulated in other NDDs, such as dementia with Lewy bodies and AD (176) (173, 177). It appears 

in some cases, that the presence of a known PD-associated SNP in the 3’ region of the SNCA gene 

drives higher ratios of one of the transcripts which is present in large amounts in affected individuals 

(178) indicating that a cis-regulatory element may have been disrupted. Mutations affecting splice 

acceptor sites have been recorded in cis elements of presenilin-1 gene (179). Aggregation of misfolded 
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α-synuclein is a primary factor in pathogenesis of PD and dementia with Lewy bodies (DWLB) (180). 

Its oligomerisation leads eventually to the production of the intracellular aggregate known as Lewy 

Bodies (181). Alternative splicing of the α-synuclein transcript is one way in which misfolding can occur 

and lead to aggregation (182). The build-up of α-synuclein appears to be caused by transmission from 

the gut to the brain (183). Other genes with notable dysregulation of splicing in PD include leucine-

rich repeat kinase 2 (LRRK2) implicated in neurite outgrowth, cytoskeletal integrity and autophagy. 

LRRK2 boasts 51 exons harbouring mutations which elicit effects through disrupted alternative 

splicing. In addition, vacuolar protein sorting 35 (VPS35), parkin RBR E3 ubiquitin ligase (PARK2) 

(implicated in mitophagy metabolism cell growth and survival), and PTEN induce putative kinase 1 

(PINK1).  

  

1.4 SPLICING MODIFIERS AS FUTURE THERAPEUTICS FOR NEURODEGENERATIVE DISEASE  

Whilst there are European Medical Association approved gene therapies now available for some 

genetic disorders such as GlyberaR® and Strimvelis®, much remains to be understood about the 

toxicity of these methodologies (184). Promising methods such as CRISPR/Cas9 technologies are still 

in very early stages, of investigation (184). Beyond gene therapy, three main points of intervention 

exist for tackling splicing. 1. Co-transcriptionally targeting RNA with complimentary sequences to 

modify access by splicing components, or  using RNAi to moderate levels of splicing factors, 2) 

Modulation of how RNA targets are recognised by modification of the binding proteins, 3) Modulation 

of the regulatory machinery which allow binding proteins to carry out splicing (185).  

Modification of splicing patterns using targeted oligonucleotides or antisense technologies has 

enormous potential for exploration as future therapies (186). Small interfering-RNA based approaches 

have shown significant potential in cancer treatment when targeting the protein’s kinases, which 
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directly affect the phosphorylation status and thus activity of splicing factors (187). The interactions 

between RNA binding proteins and RNA has been widely posited as a potential point for therapeutic 

intervention (113, 123, 188). However, the pharmaceuticals already in use with proven activity in the 

brain are non-selective (189), and so targeting specific interactions remains elusive. A more fruitful 

approach might lie in the identification of specific splicing changes with proven causality in driving 

neurodegenerative disease. Oligonucleotides which correct splicing dysregulation of the APOER2 gene 

in the region of exon 19, demonstrate dramatic effects in mouse models of AD (190). Similarly, the 

Klotho protein involved in age suppression and longevity (191) has two commonly known isoforms, a 

secreted (s-Kl), and a membrane bound (m-Kl) form, which are produced by AS. Injections of the 

secreted form increases cognitive function, learning and memory in mouse models (192). A further 

form can be created by cleavage of the membrane binding domain of the protein, resulting in a 

different secreted form (193). Pharmacological intervention in the form of small molecules has also 

showed promise for rectifying dysregulation which accompanies ageing in other cells lines (37), and 

based on the congruencies between many NDDs and ageing in regards to RNA splicing this may hold 

promise for NDD interventions. Once compounds have been validated as modulating splicing in in-

vitro studies, targeting them to the brain; a serious challenge – although one not without promising 

progress (194).  

Finally, the development of therapeutics that specifically targeted the senescent support cells in the 

brain (astrocytes and microglia) might be an avenue for exploration. Senescence modulation has been 

suggested as a method for tackling the root causes of the age-related decline. These approaches 

involve clearance of senescent cells (senolytics) (195) or reversal of elements of the senescence 

program (senostatics) (196).   
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1.4.1 Summary 

The hugely complicated process of alternative splicing is, because of this very nature of complexity 

potentially subject to so much error. In addition, as it is so ubiquitously involved with all the processes 

throughout the cell, when these errors occur, they will have far reaching consequences and in some 

cases be can be catastrophic. However, there is much promise as our technology and understanding 

advances further, and we can find enhanced methods of correcting the problems and re-balancing the 

delicate splicing process to combat disease and compress morbidity and delay mortality.  

The links between NDDs and alternative splicing are clear and strong, and research into splicing 

modulators is still in its infancy. Research continues to identify causal links to, and potential 

therapeutic targets for, NDDs. Given the colossal importance of alternative splicing to the 

maintenance of healthy ageing, and the shared and intimate links to NDDs, targeting alternative 

splicing and its regulation promises to yield valuable information and potential therapeutic 

interventions. The advancement of gene therapy techniques that target specific isoforms or selectively 

target components of the splicing regulatory machinery may herald a real and valuable step forward 

towards the next generation of anti-degenerative therapies.  

1.5 AIMS AND OBJECTIVES 

 

Alternative splicing is of great importance to normal cell functioning and age-related perturbations 

are intimately linked to age related disorders, which in brain can manifest as neurogenerative 

conditions and associated cognitive decline. Cellular senescence is an age-related phenomenon, which 

appears to be mediated, in part, by alternative splicing. The accumulation of these senescent cells 

brings about chronic paracrine inflammation, driving further dysregulation of normal cell function, 

alternative splicing and evoking further cellular senescence in surrounding tissues.  
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We hypothesised that the phenomenon of cellular senescence in the astrocytes of the brain, 

contributes to the development of neurodegenerative disorders and associated cognitive decline, and 

that this was mediated by the senescence associated secretory phenotype, dysregulation of splicing 

mechanics and subsequent changes in isoform production.  

We also considered, that if this was such, such isoform changes may be detectable in the blood, either 

through parallel changes in transcription organism wide, or through compromised integrity and 

breakdown in blood brain barrier, associated with age and NDDs. We aimed to create a senescent 

astrocyte population and characterise the associated secretory phenotype for this cell line. We then 

aimed to characterise splice factor dysregulation which occurs with cellular senescence and compare 

this with our characterised changes in isoforms of an a-priori gene panel in this cell line.  

Once this had been achieved in-vitro, we aimed to conduct cohort study in which we compared 

peripheral whole blood levels of the isoforms we had identified, and using multivariate regression, 

asses the association between changes in these levels over a time course, and the development of 

cognitive decline.  
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2 METHODS 

2.1 GENERAL METHODS 

 

2.1.1 In-Vitro investigation into astrocyte splicing dysregulation  

2.1.1.1 Cell culture  

These studies used cultures of early-passage and late-passage human primary astrocytes (HPA) 

previously isolated from a block of sub-ventricular deep white matter tissue in a 17-year-old male 

donor immediately post-mortem with consent from next-of-kin. Ethical approval was granted by the 

North and East Devon Research Ethics Committee. Astrocytes were isolated from tissue blocks as 

previously described (197).  

Human Primary astrocytes (HPA) were obtained from Celprogen (Celprogen Inc., Torrance, CA, USA) 

and at passage number 2. And cultured in-vitro. Cells were maintained in humidified incubators with 

95% O2/5% CO2 in HPA stock media (Celprogen Inc., Torrance, CA, USA). Cell culture was performed in 

T75 culture flasks coated with poly-L-lysine (Sigma Aldrich, UK). To coat flasks, poly-L-lysine was 

diluted to 1:1000 in PBS, 2ml of this mixture was added to the flasks for 30 minutes before being 

discarded and flasks sealed with parafilm and refrigerated until use. Cells were seeded at a density of 

400,000 cells per T75 flask.  Cells were cultured in 10ml Celprogen human astrocyte cell culture 

medium with serum (M36058 -01s). Human astrocyte cells were cultured until 75-80% confluence was 

reached.  Human astrocytes were washed twice with Dulbecco’s PBS (Sigma Aldrich, UK), treated with 

2ml 0.025% trypsin, neutralised with an equal amount of media, transferred to a flacon tube, pelleted 

using a centrifuge at 700xg resuspended in fresh media and counted. Counts were performed using 

the Biorad™, tc20 automated cell counter.  
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 3 cryovials of human astrocyte culture was frozen down at each passage. Cell freezing was performed 

with a freezing mixture of 700ul human serum (Celprogen Inc., Torrance, CA, USA) 200ul cells in 

medium and 100ul DMSO (Sigma Aldrich, UK). These were then placed in ‘Mr. Frosty’ tool, to reduce 

the rate of freezing and reduce crystal formation and placed in -800C freezer.  

For the production of senescent cultures, cells were counted, and equal numbers of cells seeded 

(4x103 cell/cm2) at each passage in continuous culture until the growth of the culture slowed to less 

than 0.5 population doublings (PD)/week. Astrocyte cultures underwent continuous culture until the 

onset of replicative senescence and growth arrest in 3 biological replicates. Early passage astrocytes 

at PD = 24 and late passage astrocytes at PD = 84 were used.  

 

2.1.2 Quantification of senescent cell load 

To quantify senescence in early and late passage astrocytes, 3 biological replicates were evaluated for 

activity of the biochemical senescence marker senescence-associated galactosidase (SA β-Gal) using 

a commercial kit (Sigma Aldrich, UK) according to manufacturer’s instructions, with a minimum of 100 

cells assessed per replicate.  

Briefly, cells were seeded into 6 well plates which had been ready -coated with Poly-L-lysine at a 

density of 60,000 cells per well and incubated in 2ml astrocyte media from Celprogen at 370C until 

these reached 75% confluence.  

At this point, media was aspirated off, cells were washed twice, and 1.5ml fixing solution was applied. 

Cells were then incubated for 5 minutes. Fixative was pipetted off, and cells were washed three times 

more with PBS, and finally 1.5 ml of staining solution (see Table 2.1) was added to each well. We 

noticed that if we followed the manufacturers guidelines and added a 2ml volume of the staining 
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solution to each well, the amount of blue stain produced by the cleavage reaction was too great and 

it was not possible to differentiate between those cells which were stained and those which were not. 

Amounts were reduced by 25%. 

Table 2.1 Staining solution reagents 

Reagent  Measure  

X-gal solution (pre-warmed) 0.25ml 

Reagent A 125ul 

Reagent B 125ul 

DDH2O 8.5ml 

 

Importantly the staining reaction is a redox reaction and particularly sensitive to changes in Ph. 

Manufacturer’s instructions including sealing the plate with parafilm and being sealed in a non-co2 

incubator.  Cells were then examined through microscopy and counts of stained cells were obtained 

and compared between young and old astrocytes to determine the overall levels of cellular 

senescence between samples.  

Senescence was also quantified by assessing the expression of the CDKN2A gene (a known molecular 

marker of cell senescence) and by changes in cell morphology typical of senescence as in our previous 

work (33, 37). Total RNA (100ng) was reverse transcribed in 20 µl reactions using EvoScript reverse 

transcriptase (Roche Life Sciences, Burgess Hill, UK). Total CDKN2A expression was measured by qRT-

PCR relative to 3 empirically-determined endogenous control genes (GUSB, PPIA and GADPH) on the 
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QuantStudio 12K Flex platform (Applied Biosystems, Foster City, USA). PCR reactions contained 2.5 µl 

TaqMan Universal Mastermix (no AMPerase) (Applied Biosystems, Foster City, USA), 900nM of each 

primer, 250nM probe and 0.5 µl cDNA in a total volume of 5 µl. Cycling conditions were a single cycle 

of 95 ºC for 10 minutes followed by 40 cycles of 95 ºC for 15 seconds and 60 ºC for 1 minute. 

2.1.2.1 Profiling of Senescence associated secretory phenotype in young and old cells 

Early and late passage human astrocytes were seeded in two biological replicates of 10x104 cells in a 

25cm2 flasks pre-lined with Poly-l-Lysine as described above at a density of 100,000 cells. After 

48hours incubation, cell supernatants were harvested and stored at -80°C. SASP was profiled using 

both ABCAM Human Cytokine Antibody Array (ab133997; Abcam, Cambridge, UK) and the ABCAM 

Human MMP Antibody Array (ab134004; Abcam, Cambridge, UK). SASP components measured were: 

IL-1B, IL-2, Il-6, IL-8, IL-10, TNF, IFN, GM-CSF, Angiogenin, ENA78, GRO, MMP3, MMP10 and 

TIMP2.  

 Cell membranes from the kits were blocked with supplied blocking buffer at room temperature for 

30 mins, before aspirating off blocking buffer. 1ml of media was then applied to each membrane and 

incubated for overnight at room temperature. Following overnight incubation, membranes were then 

washed for 30 minutes, in 20 ml of supplied wash buffer 1.  Six more subsequent washes of the 

membranes were then conducted, 3 each with both wash buffer 1, then wash buffer 2. Biotin-

conjugated anti-cytokines were then pipetted into each well and incubated for 2 hours, at room 

temperature. The anti-cytokines were then aspirated off, and the 6 washes with wash buffer 1 and 2 

were repeated. 2ml of HRP-conjugated streptavidin was then applied into each well, and the 

membranes were incubated for 2 hours at room temperature. 6 washes were then repeated once 

more, 3 each with wash buffer 1 and 2.  
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Membranes were transferred to tissue paper to dry. Excess buffer was removed by blotting the edges 

of the membrane with tissues paper, while preventing the membranes from drying out completely. 

Membranes were transferred to provided plastic sheet. 500µl of pre-mixed detection buffer C and 

detection buffer D were pipetted onto the membrane, taking care not to disrupt the reagents already 

bound to the membrane, and incubated for two minutes. A final plastic sheet was then applied to the 

top of the membrane surface, and membranes were imaged using Bio-Rad chemi-doc 

chemiluminescence. Images were interpreted using image J software, and the absorbance of each 

cytokine and MMP antibody was compared between the samples of media taken from old and young 

astrocyte cultures. Results were normalised using positive and negative controls as per the kit 

instructions using the LI-COR Odyssey CLx imaging system (Lincoln, NE, USA). An unpaired two tailed 

t-test was used to assess statistical significance in secreted matrix metalloproteinases and 

inflammatory cytokine secretion using Minitab 18 software package (Minitab, Centre County, USA). 

2.1.2.2  RNA extractions 

Cells were treated with 1ml trypsin for 1 minute, to detach from poly-L-lysine. Cells aspirated from the 

flasks and added to an Eppendorf tube. Trizol was added to lyse cells, and falcon was inverted 5 x and 

then incubated at room temperature for 5 minutes. 0.2 ml of chloroform was added, and tubes were 

shaken for 10 seconds and incubated at room temperature for a further 3 minutes. Falcons were then 

centrifuged at 12000 rpm for 15 minutes at 4oc. The aqueous phase is was then transferred to a fresh 

Eppendorf. 0.5ml of isopropanol was then added to the solution, to facilitate the precipitation of the 

RNA, and this was left overnight. 24 hours later, samples are centrifuged at 12000 rpm for 10 minutes 

to form a pellet. Supernatant was then pipetted off, and 1ml of 75% ethanol was added to wash the 

pellet. RNA was then pelleted again by centrifugation at 1200 x G for a further 30 minutes, this is then 

resuspended in 500ul 75% ethanol. This Eppendorf is then left open, for the ethanol to evaporate, and 

finally the RNA is then diluted in 10ul RNase free water.  
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2.1.2.3 Reverse Transcriptions 

Reverse transcriptions were carried out using The SuperScript VILO cDNA Synthesis Kit, (Thermo 

Fisher Scientific, Warrington, UK). All regents were mixed on ice. Primarily, 2µl of 10x superscript 

enzyme mix was combined with 5x VILO reaction mix, 2ul RNA (with total amount of RNA being 100ng), 

and 11 ul of DDH2O. Mix was then incubated at 25oC, for 10 minutes (annealing step), followed by 42 

oC for 60 minutes (extension step), and finally 85 oC for 5 minutes (denaturation step). 

 

2.1.3 Quantification of splicing factor expression 

Splicing factors have previously been demonstrated to be associated with cellular senescence with 

evidence suggesting they may be drivers of this process in some tissues (37-39). We measured the 

expression levels of an a priori panel of 20 splicing factors previously associated with age, lifespan, 

cellular senescence in different tissue types in our previous work (32-34). This panel included the 

splicing inhibitors HNRNPA0, HNRNPA1, HNRNPA2B1, HNRNPD, HNRNPH3, HNRNPK, HNRNPM, 

HNRNPUL2, the splicing activators AKAP17A, PNISR, SRSF1, SRSF2, SRSF3, SRSF6, TRA2B, SRSF7 and 

the SF3B1, IMP3, LSM14A, and LSM2 components of the core spliceosome. Splicing factor expression 

was measured in 3 biological and 2 technical replicates by qRT-PCR using custom TaqMan Low Density 

Arrays (TLDA) on the Quantstudio 12K Flex platform as previously described (33). Transcript levels 

were expressed relative to the geometric mean of the GUSB and PPIA endogenous control genes and 

normalised to their expression in RNA from early passage cells. We then performed tests for equality 

of variance and t-test using IBM SPSS Statistics 25.  
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2.1.4 Quantification of candidate gene expression in early passage and senescent astrocytes 

A panel of candidate genes were selected for analysis on the basis of biological relevance; known links 

with brain function, neurodegenerative disease or senescence, and where available, evidence from 

the literature that alternatively expressed isoforms may have differential function to allow 

interpretation of changes. The identity of genes tested, and brief description of function is given in 

Table 2.2. 

 TaqMan Assays specific to isoforms were designed to unique regions of the transcripts in question 

(assay sequences are available upon request). Assays were validated by standard curve analysis using 

7 serial 1:2 dilutions of cDNA derived from whole brain lysate. Reverse transcription and qRT-PCR 

conditions are described above. Experiments were carried out in 3 biological and 3 technical 

replicates. Again, transcript levels were expressed relative to GUSB and PPIA endogenous control 

genes and normalised to their expression in RNA from early passage cells. We then performed tests 

for equality of variance and t-test using IBM SPSS Statistics 25.  

 

Table 2.2– Transcript isoforms identified for expression analysis. 

The table gives the identity of the isoforms selected for analysis, the relevant NM accession numbers 
and a brief description of their function. 
 

Gene 
Transcript Accession Isoform/transcript function 

ATM 
NM_000051.3 DNA Damage repair 

AQP4 

AQP4M1 NM_001650.6 

 

Pore-forming Integral 
membrane protein 
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AQP4M23 
NM_004028.4 Pore-forming Integral 

membrane protein 

SLC1A2 

EAAT2A 
NM_004171.4 Excitatory amino acid 

transporter 

EAAT2B 
NM_001252652.1 Excitatory amino acid 

transporter 

GFAP 

GFAPΑ 
NM_002055 Astrocyte intermediate 

filament protein 

GFAP(B) 
NM_001131019.1 Astrocyte intermediate 

filament protein 

KL 

KLOTHO mKl 
NM_004795 Membrane bound isoform, 

coreceptor for FGF23 

KLOTHO msKl 
NM_004795.3  Secreted isoform, endocrine 

factor which improves 
cognitive performance in 
ageing 

CDKN2A 

p14ARF 
NM_058195 p53 pathway to cell cycle 

cessation  

p16INK4A 
NM_001195132 RB1 pathway to cell cycle 

cessation (198) 

CDKN1A 

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_004795.3&doptcmdl=GenBank&tool=genome.ucsc.edu
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p21a 
NM_078467 Inhibits proliferation 

 

p21b 
NM_000389 Promotes proliferation 

TP53 NM_001126118, 

NM_000546, 

NM_001126112, 

NM_001276696, 

NM_001126113, 

NM_001276699, 

NM_001276698, 

NM_001276697 

Cell cycle regulation 
 

PSEN2 
NM_012486.2  Processing of -amyloid  

MAPT 

TAU3 NM_001203251.1 

NM_001203252.1 

NM_016841.4 

Microtubule protein involved 
in neurofibrillary tangles  

TAU4 NM_001123066.3 

NM_001123067.3 

NM_005910.5 

NM_016834.4 

Microtubule protein involved 
in neurofibrillary tangles  

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_012486&doptcmdl=GenBank&tool=genome.ucsc.edu
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NM_016835.4 

  

Probes were designed by obtaining the genomic sequence of the transcripts using the UCSC Genome 

browser database and performing in-silico splicing of the sequence and designing probes bridging 

specific exons boundaries which only existed in the target isoforms, these were ordered from 

Thermofisher™. In the case that Thermofisher™ had off-the-shelf probes ready designed for an 

isoform species, these were ordered and efficiency of 100% was assumed; therefore these probes 

have values which appear blank in the table. Probe binding efficiency was validated via QPCR standard 

curve in whole blood (Table 2.3) Differential expression of the candidate isoforms in young and old 

primary astrocyte cell lines were measured using qRT-PCR, and expression changes were calculated 

using the ΔΔCT method, which is explained below.  

Table 2.3 Standard curve binding efficiency assay 

All probes had binding efficiency over the pre-designated threshold of 80% except for P2SV which did 
not successfully bind and was subsequently removed from the study. Gradients lower than -3.32 
indicate less than 100% efficiency. R2 values are indicative of pipetting error, with a value of 1 being 
ideal. The values were deemed to be acceptable. 

Gene Slope y R2 Binding efficiency 

p53    100 

ATM    100 

GADPH    100 

Gfapa -3.563 30.347 0.999 90.823 

gusb    100 

mKlotho -3.882 38.348 0.947 80.959  

p14    100 

P16    100 

p21b    100 
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p53    100 

ppia    100 

PSEN2 -3.663 34.477 0.995 87.49 

P2SV 0 0 0 0 

sKLOTHO -3.589 37.363 0.983 89.956 

tau3 -3.792 35.832 0.991 83.53 

tau4 -3.8 31.594 0.94 83.307 

 

2.1.4.1 ∆∆Ct method 

We trialled 3 common housekeeping genes PP1A, GUSB and GAPDH for comparison in expression 

changes across the candidate gene list. Once qRTPCR had been conducted we used the online tool ref-

finder (decommissioned) to ascertain which method of normalisation would be optimal based on the 

stability of expression. Methods trialled were each of the housekeeping genes (HKG’s) individually, 

combinations of two HKG’s, all three HKG’s, geomean of all samples, geomean of all samples plus 

HKG’s Geomean of all samples, plus combinations of two HKG’s and geomean of all samples plus 

individual HKG’s. It was determined that the most stable baseline for control was the geomean of all 

samples, plus PP1A and GUSB. GAPDH was observed to be very unstable in our astrocyte samples and 

was removed from all analysis. When calculating the differences between the cycle threshold (CT) of 

baseline expression and the expression of each sample, we used the median values of the triplicates 

to mitigate the effect of any outliers. The difference (∆) between CT of baseline and RNA isoform was 

compared for both young and old astrocytes (∆∆Ct), and log base 2 was taken of these values to derive 

fold change, this is the basis for the semi- quantitative 2∆∆Ct method which is used for deriving the 

relative abundance of gene or isoform expression.   
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2.1.5 Assessment of candidate gene expression levels with cognitive decline in a longitudinal human 

population 

The temporal study of cognitive decline and associated factors requires a study length beyond that of 

the allotted time of the current study. We have therefore made use of the epidemiological prospective 

population-based “InCHIANTI” study. Inverchiare in Chianti (ageing in the Chianti area) is an in-depth 

cohort study, providing the data from people of age range 20-102 years living in the Chianti geographic 

area (Tuscany, Italy) with detailed assessment of health and lifestyle parameters at baseline, and again 

at 4 subsequent follow-ups (FU2; 2004 – 2006, FU3; 2007 – 2009 and FU4; 2012 - 2014) (199).  

The study’s principal investigator Dr. Luigi Ferrucci initiated the study in 1998, supported by a grant 

from the National Institute on Ageing. The study was designed to enhance comprehension of the risk 

factors for age related disorders later in life, and to produce a standardised schematic for metric 

detailing and observation relating to ageing and associated pathologies. Physiological factors, which 

affect age related pathology, were broken down into 6 subsystems: the central nervous system, the 

peripheral nervous system, the perceptual system, muscles, bone-joints, and energy 

production/delivery. Basal data collection started in 1998 and was completed in 2000, with follow-ups 

of each participant every 3 years subsequently. These time-point intersections at which data was 

collected and clinical examinations were conducted were termed “waves”. The examination included 

vast amounts of survey questions about lifestyle, diet, education, background, physical health, and 

involved acquisition of samples of blood for analysis. 

For the initial study, samples were obtained from two specific areas – one urban (Greve in Chianti) 

with a population of 11,709 inhabitants of which 19.3% are 65+, and one rural (Bango a Ripoli) with 

4704 inhabitants of which 20.3% were 65+. A two-stage sampling procedure was used at both to 

obtain representative samples. Initially, 650 persons over the age of 65 were selected from the 

population registry, with the caveat of Italian birth being a pre-requisite for study inclusion. In 



Alternative splicing and age-related neurodegeneration – Jed Lye 

Page 46 of 86 

 

addition, 50 men and 50 women were then selected randomly from each 10-year age group from 20 

to 59, with 10 men and women from the age group 60-64.  

We selected 197 participants from this cohort for study. Inclusion criteria were age at FU3 > 64 years 

with an MMSE score > 18 to avoid those already on a declining cognitive trajectory and availability of 

an FU3 RNA sample with clinical information available at both FU3 and FU4. Participants were 

categorized into ‘mild’ or ‘severe’ groups depending their change in the MMSE score between FU3 

and FU4; individuals declining between 2 and 8 points were defined as ‘mild’ whereas those declining 

between 9 and 22 points were categorised as ‘severe’. These thresholds were chosen on the basis of 

previously defined criteria where a ‘severe’ decline was categorised as a drop in MMSE score > 3 points 

per annum (200-202). Ethical approval was granted by the Instituto Nazionale Riposo e Cura Anziani 

institutional review board in Italy. Methods were carried out in accordance with the relevant 

guidelines and regulations. Informed consent was obtained from all participants. 

2.1.6 Blood Collection 

Peripheral Blood samples were collected from 700 of the participants within 3 weeks of the 9-year 

follow up interview. Participants were instructed to fast for at least 8hrs prior to collection.  2.5ML 

peripheral whole blood was collected into PAXgene tubes (BD Biosciences) at wave 9 and wave 12 and 

frozen at -80oC and RNA was extracted using the PAXgene blood RNA kit (Qiagen, Paisley, UK) as per 

manufacturer’s instructions.  

RNA extractions were performed using the Pre-analytix whole blood RNA extraction kit on the whole 

blood of samples obtained from individuals from the InChianti cohort at the two separate time points 

(wave 9 and wave 12). Reverse transcriptions were carried out on 100ng RNA using the EvoScript™ 

Universal cDNA Master kit (Roche Life Sciences, Burgess Hill, UK) according to the manufacturer’s 

instructions except for a change to the extension phase of the reaction: a step of 30 minutes at 65°C 
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was used instead of 15 minutes at 65°C. reactions were set up in a nuclease free environment, and 

placed on ice. Reagents were added to the Eppendorf in according to manufacturer’s instructions (see 

Table 2.4). The enzyme mix was added last, before which all reagents were vortexed.  

Table 2.4 RTPCR reaction mix 

Reagent  Volume  

Water Make up to 18ul 

Reaction buffer 4ul 

Template RNA 100ng 

Enzyme Mix 2ul 

RtPCR thermocycler was set up as follows:  

 42°C for 15 minutes.  

 85°C for 5 minutes.  

 65°C for 30 minutes. 

 4°C with an unlimited Hold time. 

 Concentration of DNA was assessed using the Thermo Scientific NanoDrop 2000. We then assessed 

expression of transcripts which had observed senescence-related dysregulation in levels in-vitro in 

peripheral blood. These were GFAPa, Mklotho, Tau3, PSEN2, P14, P16, P21a and P21b. Relative 
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expression of mRNA isoforms was measured through qRTPCR. This was achieved using 96well plates 

on the Applied Biosystems™ QuantStudio™ 6 Flex Real-Time PCR System. Samples were run in 

triplicate; batch effect was corrected for by cross plate normalisation to control samples.  

We then investigated the association between transcript expression and cognitive decline as 

measured by change ( in mini mental state exam (MMSE) score. The MMSE was developed by 

Folstein and Folstein in 1975 as a method to assign quantifiable metrics to the intellectual abilities and 

deterioration thereof in patients. It has become the most common clinically utilised test of cognitive 

function (203). The MMSE takes around 10 minutes to complete, consists of both verbal and written 

participation and measure orientation, registration, attention calculation recall and language (204). It 

also has a higher sensitivity than other commonly used assessments (205).  

To conduct our analysis we organised the samples into two groups, those with a mild cognitive decline; 

as evidenced by a decrease in MMSE score of between 2 and 8 points over a 3-7 year period, or those 

with severe decline which was represented as a reduction of 9-22 points during that same period. 

 A mild reduction was classified as a reduction of 2-8 points in MMSE performance over a 3-7-year 

period or severe decline. Severe reduction classification was a reduction of 9-22 points in MMSE 

performance over the same period.  Using multivariate linear regression models with age, gender, 

smoking (lifetime pack-years), study-site, education level and white blood cell subtype counts (% 

neutrophils, monocytes, basophils, eosinophils) entered as confounding factors. 
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3 RESULTS  

Introduction 

We hypothesised that senescent astrocytes would display differential expression of splicing regulatory 

factors and altered patterns of alternative splicing in vitro, and that some of these isoform changes 

may be detectable in peripheral blood and show statistical associations with cognitive phenotypes in 

human populations.  

We first characterized the astrocyte SASP in terms of cytokine and MMP production, and then 

determined the splicing factor repertoire and patterns of alternative splicing for a panel of brain or 

senescence candidate genes in senescent human primary astrocytes. Where dysregulation of splicing 

patterns was demonstrated and expression was conserved in blood, we then assessed associations 

between peripheral blood isoform levels and measures of cognitive dysfunction from 197 individuals 

from the InCHIANTI study of aging, a longitudinal and cross-sectional population study of individuals 

from the Tuscany region of Italy (199). We identified that senescent astrocytes display a modified 

SASP, consisting of elevated IL8, MMP, MMP10 and TIMP2 levels, but decreased IL10. 50% of splicing 

regulatory factors tested demonstrated dysregulated expression in senescent astrocytes; this was 

accompanied by altered splicing of 7/13 of candidate genes tested. Furthermore, when we assessed 

the relationship between peripheral blood expression of isoforms dysregulated in astrocytes and 

cognitive decline as measured my Mini Mental State Exam (MMSE), GFAPα and TAU3 transcript levels 

were positively correlated with cognitive decline, whereas GFAPΑ transcript levels were negatively-

associated with cognitive decline over a 3-7 year period in participants from the InCHIANTI study of 

aging. Our data agree with the hypothesis that senescent astrocytes display differential expression of 

splicing regulatory factors and altered patterns of alternative splicing, and that some of these isoform 

changes may reflect those in peripheral blood. Such changes may show statistical associations with 

cognitive phenotypes in human populations.  
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3.1 RESULTS 

 

3.1.1 Characterization of senescent astrocytes 

Human primary astrocyte cultures were passaged until PD84 at which point they were considered 

senescent. This was verified by molecular and biochemical characterisation of the growth kinetics of 

the cultures; senescence associated β-galactosidase (SA--gal) staining demonstrated a significant 

increase in the number of senescent cells from 8% in early passage cells to 36% in late passage cells 

(Figure 3.1 A) which was mirrored by a concurrent increase in the expression of the CDKN2A gene 

Figure 3.1 B). SASP factors in conditioned media derived from senescent cells demonstrated altered 

levels for several key SASP proteins; we observed elevated IL-8, GM-CSF, Angiogenin, ENA78, GRO-, 

MMP-3, MMP-10 and TIMP2 levels (Table 3.1, Table 3.2, Figure 3.2, Figure 3.3). Several other changes 

in SASP profile were also seen to be approaching statistical significance; IL-12, MCP-2 and MIP-1o all 

saw increases in secretion at levels approaching P=0.05.  
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Figure 3.1 Senescence validation 

Change in senescent cell load as determined by senescence-associated -galactosidase (SA--
Gal) staining between early passage and late passage human primary astrocytes. The percentage 

of cells staining positive for SA--Gal is given on the Y axis, and the identity of the cell culture on 
the X axis. Early passage cells are population doubling (PD) 24, late passage cells are at PD = 84. 
Results are from 3 biological replicates. * = p<0.01, **=p<0.01, ***=P<0.001. Error bars refer to 
Standard deviation of measurement. 
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Table 3.1  Profiling the senescence associated secretory phenotype in astrocytes - Cytokines 

Table shows Gene ID, mean cytokine secretion in-vitro for young (Y) and old (O) astrocytes in arbitrary 
units, standard deviation, log-base 2 of fold change (n=6). T values and P values. Statistically significant 
(P <0.05) changes are denoted by * and row is shown in bold typeface, highlighted grey. Those 
approaching but not meeting statistical significance are shown in in bold typeface. 

 

Gene  Mean Y SD  Mean O  SD Log 
2FC 

T  p 

ENA78 160.6179 54.7 270.2554 54.7 0.75 -2.76 0.033* 

GM-CSF 27.05994 7.63 66.12956 15.3 1.29 -4.58 0.04* 

GRO 442.2389 134 528.5193 94.7 0.26 -1.05 0.334 

GRO-a 256.1518 55.6 461.5086 130.2 0.85 -2.902 0.027* 

I-309 56.35094 17.0 53.72426 32.7 -0.07 0.125 0.905 

IL-1a 79.76639 25.7 76.30872 17.3 -0.06 0.224 0.831 

IL-1b 274.2334 48.7 286.058 73.6 0.06 0.27 0.798 

IL-2 74.65903 48.0 111.5412 37.9 0.58 1.21 0.273 

IL-3 258.89 58.7 293.8777 58.7 0.18 0.98 0.363 

IL-4 99.51305 11.2 120.0094 17.0 0.278 2.01 0.091 

IL-5 91.63144 4.1 63.09812 37.6 0.54 1.508 0.182 

IL-6 78.75196 23.6 73.4896 19.0 -0.10 3.47 0.740 

IL-7 84.55205 27.3 84.66937 29.0 0.00 -0.06 0.995 

IL-8 409.5415 111.9 1097.73 256.3 1.42 -4.921 0.003** 

IL-10 56.5598 19.1 18.21913 9.6 -1.63 3.595 0.11 

IL-12p40/P70 144.4992 32.2 213.145 55.9 0.56 -2.131 0.077 

IL-15 148.8075 40.6 186.7788 43.8 0.33 -1.272 0.251 

IFN-y 120.7869 40.1 137.9333 47.8 0.19 -.550 0.602 

MCP-1 13789.02 2275.5 14939.13 4300.9 0.12 -.473 0.653 
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MCP-2 243.1771 53.8 325.7858 51.0 0.42 -2.230 0.067 

MCP-3 84.43644 26.2 108.8109 34.6 0.37 -1.122 0.305 

MCSF 329.5096 59.6 374.0884 57.7 0.18 -1.075 0.324 

MDC 313.7771 42.9 339.8177 97.7 0.12 -.488 0.643 

MIG 45.36578 25.8 55.28631 49.0 0.29 -.358 0.732 

MIP-1o 172.7754 30.9 235.2977 53.1 0.45 -2.035 0.088 

RANTES 483.5395 108.8 573.9288 150.5 0.25 -.973 0.368 

SCF 250.5389 56.4 293.2824 95.3 0.23 -.772 0.469 

SDF-1 467.7116 140.7 394.8161 153.0 0.24 .702 0.509 

TART 325.1283 44.7 399.2366 96.1 0.30 -1.398 0.211 

TGF-b1 177.1489 25.1 253.0473 103.0 0.51 -1.432 0.202 

TNF-a 10.21346 11.3 16.81171 16.2 0.72 -.598 0.576 

TNG-b 219.506 131.6 126.9624 19.4 0.79 1.392 0.213 

EGF 144.5994 32.3 132.2963 75.2 0.13 .301 0.774 

IGF-1 131.1638 50.4 167.6447 36.5 0.35 -1.173 0.258 

Angiogenin 881.4542 213.9 1397.67 206.7 0.67 -3.471 0.13 

Oncostatin M 1157.461 256.7 950.4137 129.2 0.28 1.441- 0.200 

Thrombopoietin 249.2383 69.8 312.3784 62.4 0.33 1.349 0.226 

VEGF 376.0153 92.0 483.9697 89.2 0.36 -1.685 0.143 

PDGF BB 230.6906 73.9 231.5844 35.6 0.01 -.022 0.984 

Leptine 178.1742 32.99756 234.2760 72.7 0.39 -1.406 0.229 
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Figure 3.2 Key SASP cytokines as measured by ELISA  

Figure displays data for key SASP cytokines based on those which demonstrate significant changes in 
the current research and those which have evidence of significance from previous research (79, 
206). The changes observed in secreted cytokines in young (light grey bars) and old (dark grey bars) 
astrocytes (N=6). Statistically significant changes were notes in IL-8 (P<0.005) and IL-10, GM-CSF, 
Angiogenin, ENA78, GRO-a (P <0.05) 
 

 

  

* 
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Table 3.2 Matrix Metalloproteinase levels in culture media of biologically old and young astrocytes 

Table shows Gene ID, mean MMP secretion in young (Y) and old (O) astrocytes (N=6) in arbitrary 
units, standard deviation, log-base 2 of fold change. T values and P values. Statistically significant (P 
<0.05) changes are denoted by * and row is shown in bold typeface, those approaching but not 
meeting statistical significance are shown in green. 

Gene  Mean Y SD  Mean O  SD Log2Fold 
Change 

T  p 

MMP-1 158.7 85.2 150.8 98.1 -0.07 -0.12 0.909 

MMP-2 29.8 24.1 11.63 15.99 -1.36 -1.26 0.264 

MMP-3 75.9 14.98 128.3 30.8 0.76 3.06 0.038* 

MMP-8 0.249 0.498 0 0   - - 

MMP-9 31.22 14.17 50.5 38.8 0.69 0.93 0.419 

MMP-10 6.28 6.29 18.57 5.15 1.56 3.02 0.029* 

MMP-13 58.9 21.4 11.63 18.62 -2.34 2.37 0.064 

TIMP-1 689.7 118 1074 291 0.64 2.45 0.091 

TIMP-2 4723 382 8403 1012 0.83 6.81 0.006* 

TIMP-4 156.7 38.8 203.6 163.7 0.38 1.79 0.133 
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Figure 3.3 Matrix Metalloproteinase Content 

MMP content in young vs old primary astrocytes (N=6). The light grey bar of each MMP represents 
the secreted MMP levels from young cells, and the dark grey bar of each colour represents the 
secreted MMP content from old cells. Statistically significant occurrences are marked with *. 
* = p < 0.05, ** = p < 0.005. 
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3.1.2 Changes in splicing factor expression and patterns of alternative splicing in senescent 

astrocytes 

We have previously demonstrated changes in splicing factor expression in senescent primary human 

cells of different lineages (33, 34, 37, 39). Similar changes were also apparent in senescent astrocytes, 

where 10/20 of the splicing factors tested demonstrated lower expression in late passage cells 

compared with earlier passage cells (Table 3.3, Figure 3.4). Both HNRNP splicing inhibitors and Serine-

arginine (SR) rich splicing activator transcripts demonstrated dysregulation; 4/8 (50%) transcripts 

encoding splicing inhibitors, 3/8 splicing activator transcripts and 3/4 (75%) of core spliceosomal 

transcripts demonstrated changed expression in senescent astrocytes. Most genes selected for study 

were expressed in astrocytes; only AQP4M1, EAAT2A and EAAT2B were not. 8 of the remaining 13 

transcripts demonstrated changes to their splicing patterns (Table 3.4, Error! Reference source not 

found.). 
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Table 3.3 Comparison of splicing factor levels in senescent and non-senescent astrocytes 

Values given refer to the mean expression of each splicing factor in either early or late passage cells 
(N=6). Values in parentheses are the standard error of the mean. Splicing factors demonstrating 
significant differences in expression are given in bold italic typeface. 3 biological and 3 technical 
replicates per sample. 
 

Splicing Factor Early passage astrocytes 

 

Late passage astrocytes p-value 

AKAP17A 1.035 (0.090) 1.01 (0.044) 0.077 

HNRNPA0 1.024 (0.077) 0.65 (0.031) 0.005 

HNRNPA1 1.236 (0.340) 1.863 (0.416) 0.449 

HNRNPA2B1 1.343 (0.353) 0.6 (0.108) 0.257 

HNRNPD 1.094 (0.180) 0.646 (0.048) 0.03 

HNRNPH3 1.071 (0.130) 0.743 (0.037) 0.003 

HNRNPK 1.153 (0.176) 1.37 (0.209) 0.551 

HNRNPM 1.021 (0.068) 0.66 (0.067) 0.012 

HNRNPUL2 1.074 (0.148) 0.784 (0.106) 0.089 

IMP3 1.088 (0.160) 0.62 (0.11) 0.035 

LSM14A 1.042 (0.113) 0.315 (0.047) 0.005 

LSM2 1.377 (0.426) 0.369 (0.045) 0.065 

PNISR 1.041 (0.098) 0.777 (0.030) 0.005 

SF3B1 1.018 (0.070) 0.716 (0.030) 0.018 

SRSF1 1.06 (0.140) 0.885 (0.038) 0.065 

SRSF2 1.038 (0.095) 1.017 (0.045) 0.121 

SRSF3 1.077 (0.175) 0.697 (0.032) 0.095 

SRSF6 1.07 (0.126) 0.762 (0.104) 0.098 

TRA2B 1.022 (0.081) 0.757 (0.057) 0.031* 

SRSF7 1.119 (0.198) 0.51 (0.063) 0.015* 
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Table 3.4 Comparison of alternative isoforms of selected brain or senescence genes in senescent and non-
senescent astrocytes 

Values given refer to the mean expression of each splicing factor in either early or late passage cells 

(N=6). Values in parentheses are the standard error of the mean. Transcripts demonstrating significant 

differences in expression as measured by t test are given in bold italic typeface, with p-values in right 

hand column. 3 biological and 3 technical replicates per sample. 

Transcript 

 

Early passage astrocytes 

 

Late passage astrocytes p-value 

GFAP(A) 0.809(0.208) 0.062(0.013) 0.0021** 

SKLOTHO 1.155(0.209) 0.498(0.275) 0.131 

MKLOTHO 1.059(0.122) 0.381(0.012) 0.005** 

AQPM23 1.252(0.459) 1.067(0.434) 0.784 

TAU3 1.044(0.114) 0.603(0.043) 0.023** 

TAU4 1.23(0.674) 1.542(0.196) 0.679 

PSEN2 1.009(0.12) 1.921(0.158) 0.01* 

CDKN2A-p14ARF 1.043(0.044) 0.532(0.048) 0.001*** 

CDKN2A-p16Ink4A 1.061(0.076) 2.133(0.127) 0.002** 

p21a 1.079(0.085) 1.666(0.087) 0.009* 

p21b 1.016(0.095) 2.041(0.077) 0.001*** 

TP53 0.974(0.052) 1.038(0.082) 0.541 

ATM 0.926(0.097) 0.612(0.069) 0.057 
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Figure 3.4 Heat map showing changes in splicing factor transcription between early and late passage 
astrocytes  (N=6) 

Non-statistically significant findings are blacked out. HNRNPA0, HNRNPD, HNRNPH3, HNRNPM, 
IMP3, LSM14A, PSISR, SF3B1, TRA2B, SRSF7, all displayed statistically significant changes in 
expression. Notably, most were downregulated, in line with current understanding suggesting that 
splicing factor expression decreases with age.  
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Heat map showing changes in isoform transcription between early and late passage astrocytes (N=6). 
Non-statistically significant findings are blacked out. Significant changes in isoform balance were 
observed in 8/13 mRNA species. Half of the transcripts experiencing significant changes were down 
regulated: GFAP(A), mKlotho, TAU3 (all related to astrocyte function) and P14 (cell cycle). We saw 
significant upregulation of 3 tumour-suppressive genes: P16, P21a and P21b, alongside PSEN2. GFAPa 
mKlotho, Tau3 and P14 had decreased expression.  
 
 

3.1.3 Association of senescence-related transcripts with cognitive decline in a longitudinal human 

population 

We next assessed whether any of the transcripts demonstrating senescence-related changes in aged 

primary human astrocytes were associated with cognitive decline as assessed by change in MMSE 

score between FU3 and FU4, in peripheral blood mRNA from individuals in the InCHIANTI study of 

aging. Of the 8 transcripts demonstrating associations with senescence in late passage astrocytes, 

Figure 3.5 Isoform expression in young vs old astrocytes (N=6). 
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TAU3, GFAP, mKLOTHO CDKN2A(p14ARF), CDKN2A(p16INK4A), CDKN1A(p21a), CDKN1A(p21b) and 

PSEN2 were also expressed in peripheral blood, and suitable for ongoing analysis. CDKN2A (p14ARF), 

and TAU3 were positively associated with mild cognitive decline (CDKN2A (p14ARF) beta coefficient 

0.122, 95% CI 0.01 to 0.24; p = 0.04, TAU3 beta coefficient 0.170, 95% CI 0.042 to 0.297; p = 0.01) 

whereas GFAPα was negatively associated with mild cognitive decline (beta coefficient -0.196 (95% CI 

-0.36 to 0.032; p = 0.02; figure 6; table 8). Interestingly the only association we found with severe 

cognitive decline was a negative association with TAU3 (beta coefficient -0.286, 95% CI -0.56 to 0.04; 

p = 0.04. GFAP and TAU3 demonstrated significant differences in level of isoform expression 

between mild and severe cognitive decline (Figure 3.6) (Table 3.5). 
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Table 3.5 Association between blood-based isoform production, induced by alternative splicing and cognitive decline in participants from the InCHIANTI population 
study of Aging 

The table gives the beta coefficients, 95% confidence intervals (95% CI) and p-values for the association between candidate transcript expression and 
cognitive decline as assessed by change in MMSE for 197 individuals in a 3-7 year period. Mild cognitive decline is categorised as a decline of between 2 and 
8 points in MMSE between FU3 and FU4, whereas severe cognitive decline is characterised as a decline of between 9 and 22 points. Transcripts 
demonstrating significant differences in expression are given in bold italic typeface. 

 

Mild cognitive decline (2 – 8 point decline in MMSE) Severe cognitive decline (9 – 22 point decline in MMSE) Difference between mild and severe decline in MMSE 

Isoform Beta 95% CI p-value Isoform Beta 95% CI p-value Isoform Beta 95% CI p-value 

GFAPα -0.196 -0.36 to 0.03 0.02 GFAPα 0.129 -0.23 to 0.49 0.48 GFAPα 0.363 0.08 to 0.65 0.01 

mKLOTHO -0.032 -0.16 to 0.09 0.61 mKLOTHO 0.070 -0.20 to 0.34 0.61 mKLOTHO 0.093 -0.18 to 0.37 0.50 

p14 0.122 0.01 to 0.24 0.04 p14 0.209 -0.04 to 0.46 0.10 p14 0.069 -0.18 to 0.32 0.59 

P16 -0.097 -0.29 to 0.09 0.31 P16 -0.095 -0.51 to 0.32 0.65 P16 -0.029 -0.45 to 0.40 0.89 

P21b -0.015 -0.11 to 0.08 0.74 P21b -0.085 -0.29 to 0.12 0.40 P21b -0.030 -0.22 to 0.16 0.75 

PSEN2 -0.075 -0.23 to 0.08 0.33 PSEN2 -0.215 -0.55 to 0.12 0.20 PSEN2 -0.133 -0.47 to 0.20 0.43 

TAU3 0.170 0.04 to 0.30 0.01 TAU3 -0.286 -0.56 to -0.01 0.04 TAU3 -0.460 -0.75 to -0.17 <0.01 
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Figure 3.6 Forrest Plot of association with cognitive decline of specific Isoforms in the InCHIANTI study of 
Aging 

The graph indicates the associations between peripheral blood expression of alternatively expressed 
transcripts of genes with known links with neurodegenerative disease or cellular senescence and 
mild or severe cognitive decline is given in this figure. Mild decline is denoted by open circles, severe 
decline is denoted by closed circles. * = p < 0.05. The null association point is given by the dotted 
line. Beta coefficients of association are given on the X axis and transcript identity are given on the Y 
axis. Data are from 197 participants classified as either mild cognitive decline (a reduction of 2-8 
points in MMSE performance over a 3-7 year period) or severe decline (a reduction of 9-22 points in 
MMSE performance over the same period). 
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4 DISCUSSION 

 

The accumulation of senescent cells due to repeated cell stresses is thought to be a major contributor 

to ageing and age-related disease. The ablation of senescent cells can bring about improvements in 

multiple age-related phenotypes in animal models (15, 17). Furthermore, correlations exist between 

circulating levels of senescence markers such as p16INK4a and HMGB2 and functional status in humans 

(207).  Suppression of senescent cell characteristics such as SASP using the flavonoid apigenin has also 

been demonstrated to reduce aggressive behaviour in breast cancer cells, providing further evidence 

that reduction of senescent cell load may bring benefits for age-related diseases (208).  To date, there 

have been a limited recorded trials of senolytics in humans (209, 210), although each with positive 

results. In September 2019, it was finally demonstrated that senolytics could clear senescent cells from 

the bodies of humans (211).  

Whilst the evolution of cellular senescence is understood to have emerged in part because of the 

tumour suppressive properties of the cell state, the senescence associated secretory phenotype has 

deleterious properties and the inflammatory paracrine effect can drive tumorigenesis in surrounding 

tissues. Therefore, whilst the individual cell may use the senescence pathway to escape neoplasm 

formation, the relief is only a temporary one. Senescent cell development triggers a chain reaction, 

propagating dysfunction through tissues by inflammation. This tumour suppressive “side-effect” 

appears to be a typical example of evolution precipitating antagonistic pleiotropic effects, commonly 

associated with ageing (212).  

Based on evidence linking senescence to RNA processing, we hypothesised that senescent astrocytes 

would display differential expression of splicing regulatory factors and altered patterns of alternative 

splicing in vitro. We also suggested that due to the systemic nature of ageing, or the blood brain barrier 
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degradation over time, some of these isoform changes may be detectable in peripheral blood and 

show statistical associations with cognitive phenotypes in human populations.  

Initially were able to show that replication competent, primary human astrocytes in culture do indeed 

reach a senescent state, simply through continued passage, and we generated evidence for a direct 

link between this and the reduction in splicing faction expression, demonstrably critical to normal 

transcriptional regulation and response to environmental stress.  We also have found functional 

evidence that the expression changes of splicing factors in a highly senescent cell population appear 

to be able to drive imbalances in isoform species known to be highly important in astrocyte function. 

What is not yet clear, is if senescence drives dysregulation, if dysregulation drives senescence, or if in 

fact they are both ‘symptoms’ of some other event. 

As such, age-related dysregulation of alternative splicing may contribute to or be a result of the 

accumulation of senescent cells during ageing. It would be of importance to ascertain if re-regulation 

of splicing in this cell line using small molecule effectors of splicing is possible, and if this can then 

modify the senescence state. Restoration of splicing factor expression can reverse cellular senescence 

and bring about rejuvenation of multiple other cell types in culture.  

A look at the in-vitro results of isoform expression demonstrates results congruent with the 

senescence hypothesis, and with evidence available in existing literature regarding the expression of 

tumour suppressors P53, P16, and P21a. Specifically, we observed a robust increase in the expression 

of P16, P21a and P53 isoforms overall in an aged cell population as seen elsewhere (213).  Even more 

encouraging was the observation that P14 expression, which produces a protein known to be 

associated with cell cycle arrest and premature senescence was positively associated with cognitive 

decline in our population study, providing potential biomarker for the pathology or even perhaps 

therapeutic targets.  
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We demonstrated that 50% of splicing factor transcripts we measured demonstrated dysregulated 

expression in senescent astrocytes, and splicing changes were evident for almost half of the 

alternatively spliced genes in an a priori panel of candidate genes. The changes in astrocyte splicing 

factor and isoform expression we have identified here, likely do not act directly on the transcriptome 

observable in whole blood, but rather reflect related cognition-associated changes to systemic splicing 

factor expression; changes which are also observable in blood, as we have recently described (35) 

 8/13 candidate isoforms demonstrated splicing alterations in senescent cells and were also expressed 

in human peripheral blood. Of these, 3 (TAU3, GFAPand CDKN2A (p14ARF) were associated with mild 

cognitive decline in ageing humans. The TAU3 isoform was also associated with severe cognitive 

decline, but in an opposing direction. Our data are consistent with a model whereby age-related 

splicing factor changes may lead to splicing patterns for genes with roles in brain function or 

senescence, which may influence the development of cognitive decline in the human population. The 

links between splicing factor changes and isoform changes are impossible to predict from global 

measures. Each individual splice site in each gene is regulated by a unique and specific combination 

of activators and inhibitors which determine its usage or not, which makes prediction impossible from 

levels alone. What our data do indicate is that senescent astrocytes have disrupted expression of many 

splicing factors, which would be predicted to alter the splicing patterns. We have demonstrated that 

this holds true for several genes important in senescence or in astrocyte function. 

The presence of senescent cells has been suggested to contribute to shortened overall lifespan (16), 

and clearance of such cells was able to bring about a delay in the appearance of ageing phenotypes in 

ageing mice (17). Other groups have reported increased lifespan, rejuvenation of ageing phenotypes 

such as thinning fur and improved kidney function in old mice that have undergone targeted removal 

of senescent cells (214). Ablation of senescent glial cells has been demonstrated to lead to a reduction 

of Tau-dependent pathology and improve cognitive function in mice (23). Accordingly, we observe the 
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generation of a strong SASP in astrocytes that have undergone replicative senescence, which may be 

contributory to the inflammatory increases evident in the pathophysiology of neurodegeneration. The 

SASP profile exhibited by the primary human astrocytes does not match that profile seen in other cell 

lines from our previous work (34, 37, 39), however cell type specificity in SASP has previously been 

described (215). The reasons behind these variations are unclear, but may reflect histologically 

discrete programmes, dysregulation patterns specific to existing transcriptomic profiles, or simply 

arbitrary patterns of cytokine production which represent the stochastic molecular dysregulation 

which is occurring. 

Unpicking the specific components of the SASP is no easy task. Investigation into existing literature 

does demonstrate astrocyte specific IL-8 secretion during times of stress such as acidosis (216). IL-8 

has neuroprotective and neurotrophic effects and is an angiogenesis promotor. It drives production 

of brain derived neurotrophic factor and seems to prevent amyloid beta induced apoptosis in 

Alzheimer’s. IL-8 was found to be much higher concentrations in the CSF of individuals with mild 

cognitive impairment as opposed to those with Alzheimer’s (217). 

Our observations, together with the marked changes in splicing factor expression are suggestive that 

the intersection between disrupted regulation of splicing, cellular senescence and its associated 

inflammatory phenotype in astrocytes may contribute to astrocyte dysfunction and have some 

bearing on eventual cognitive decline. Similar changes may also be occurring in other important 

proliferative brain cell types such as microglia.  

Similarly, the altered expression of alternatively expressed transcripts in blood may be reflective of 

changes that we demonstrate here also occur in astrocytes. We identified positive associations 

between CDKN2A (p14ARF), and TAU3 expression in peripheral blood and mild cognitive decline, and a 

negative correlation between GFAP expression and mild cognitive decline. The associations between 
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GFAPΑ and CDKN2A (p14ARF) were not apparent in severe cognitive decline, although this may reflect 

low power imposed by the inherent variability of human biological samples, since p14 expression in 

severe decline is trending in the same direction.  

 The association of TAU3 expression with severe cognitive decline was still evident, but was negatively, 

rather than positively correlated. GFAP expression also demonstrates opposing direction of effect 

between mild and severe decline. This may represent differences in cell subtype populations or altered 

cell characteristics between disease states. GFAP, which along with other intermediate filaments 

forms the cytoskeleton is important for signal transduction and structural properties (218). GFAP is 

highly expressed during key developmental stages during gestation, and has also been observed to 

have elevated expression levels in brain damage and a range of neurological diseases (218). Some 

studies have reported no change in whole blood GFAP protein levels, and hypothesised that without 

rapid astroglial destruction, GFAPα levels may not climb to a detectable level and thus may not be a 

good indicator of neurological pathology (219). Such studies however may not detect changes at the 

level of isoforms, if appropriate antibodies capable of specifically identifying individual splice variants 

are not used.  

Increased levels of CDKN2A (p14ARF) may be reflective of an increased load of senescent cells, and is 

one of two proteins produced by alternate reading frame of the CDKN2A locus (220). p14ARF inhibits 

the activity of MDM2, a protein which sequesters the p53 protein (221). Once p53 stabilises and 

accumulates it can trigger DNA repair or the apoptosis program of cell death (222). The consequences 

of increased p14ARF levels are complex and in places conflicted. It has been demonstrated to induce 

either cellular senescence or apoptosis in a p53 dependant manner (220). There have also been some 

reports that although CDKN2A (p14ARF) transcripts are upregulated in senescent cells, TP53 and MDM2 

levels can remain unchanged (221). Ectopic expression of p14ARF is capable of inducing senescence but 

overexpression must be maintained to commit cells to a senescent state (223). 
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 TAU3 transcript expression in the blood was observed to be correlated positively with mild cognitive 

decline, but interestingly, negatively correlated with severe cognitive decline. Microtubule associated 

protein Tau (MAPT) is an alternatively spliced regulator of microtubule dynamics – which is essential 

for cellular functions from structure to transport (224). An ever growing body of research in human 

and animal models of tauopathies is demonstrating that the delicately balanced 2:1 3R/4R TAU ratio 

(225), which is achieved through alternative splicing of exon 10, is imperative for maintaining healthy 

function in cells in the brain, and shifts to disrupt this balance in either direction can be catastrophic 

(225-228). A number of neurodegenerative diseases, including Alzheimer’s and frontotemporal 

dementia (FTD), have had tau isoform balance (specifically 3R and 4R isoforms) implicated in their 

pathophysiology (224, 229, 230). These include those examples with premature cognitive decline 

(231). The precise mechanisms by which TAU isoforms specifically contribute to each neurological 

pathology are still being investigated. The directionality of association between TAU3 transcript levels 

and mild and severe decline are consistent with existing literature suggesting imbalances in 3R/4R 

isoform ratios, rather than absolute isoform levels per se, are identified in cases of dementia and 

examples of neurodegenerative disease (225, 232). 

Our finding of dysregulated splicing factor expression in human primary astrocytes is novel, and 

consistent with reports from senescent cells of other tissue types (33, 34, 37, 39). Our study benefits 

from a systematic cells-to-populations approach including primary human cell lines and an exquisitely 

characterised longitudinal population study. Weaknesses of this study are the initial assessment in 

isolated astrocytes, which may not represent the holistic nature of the cytological and molecular 

mechanisms involved in cognitive decline and may not capture the extent of cross talk between other 

cell types in the human brain. It also needs to be recognised that the astrocytes used in this study 

derive from a single donor, and that differences reported here would benefit from confirmation in 

individuals of different genetic background.  Cell lines from a wider variety of donors may return more 

genes of interest, however these tissues are rare, and difficult to acquire. In addition, our a priori list 
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of genes do not include many other isoforms and genes involved in the process. Several of the isoforms 

selected for study are also not strictly specific for astrocytes. This is particularly true of the senescence 

genes tested, which reflect players in a more global mechanism. Our scope was narrowed by the need 

for these genes to be expressed in the blood, for assessment of association with living population. 

Further work may benefit from whole transcriptome sequencing and transcriptional profiling in 

several different cell types.  

Our data are consistent with a model by which accumulation of senescent astrocytes (and doubtless 

other important brain cell subtypes), their associated disrupted splicing patterns and the increased 

inflammatory microenvironment may contribute to premature cognitive decline. Inflammation and 

related cellular stresses are capable of activating cell signalling pathways and lead to further 

dysregulation of splicing factor expression (38), so it is possible that an auto-regulated feedback loop 

involving SASP-derived increases in inflammation, dysregulated splicing regulation and subsequent 

further increases in senescent cell load may occur as a result of positive feedback. The idea that some 

of the features of cognitive decline could therefore arise from dysregulated splicing of genes 

important in the support cells of the brain requires further exploration. This could be explored further 

by the selective manipulation of specific isoform levels, followed by assessment of effects on astrocyte 

cell kinetics or astrocyte function in cells and in systems. Our observations suggest that the role of 

splicing factor expression and dysregulated alternative splicing in cognitive decline may represent an 

interesting line of future investigation. 
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