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Abstract18

1. Nestedness is a widespread pattern in mutualistic networks that has high ecological and evo-19

lutionary importance due to its role in enhancing species persistence and community stability.20

Nestedness measures tend to be correlated with fundamental properties of networks, such as size21

and connectance, and so nestedness values must be normalised to enable fair comparisons between22

different ecological communities. Current approaches, such as using null-corrected nestedness val-23



ues and z-scores, suffer from extensive statistical issues. Thus a new approach called NODFc24

was recently proposed, where nestedness is expressed relative to network size, connectance and25

the maximum nestedness that could be achieved in a particular network. While this approach is26

demonstrably effective in overcoming the issues of collinearity with basic network properties, it27

is computationally intensive to calculate, and current approaches are too slow to be practical for28

many types of analysis, or for analysing large networks.29

2. We developed three highly-optimised algorithms, based on greedy, hillclimbing and simulated30

annealing approaches, for calculation of NODFc, spread along a speed-quality continuum. Users31

thus have the choice between a fast algorithm with a less accurate estimate, a slower algorithm32

with a more accurate estimate, and an intermediate option.33

3. We outline the package, and its implementation, as well as provide comparative performance34

benchmarking and two example analyses. We show that maxnodf enables speed increases of35

hundreds of times faster than existing approaches, with large networks seeing the biggest improve-36

ments. For example, for a large network with 3000 links, computation time was reduced from 5037

minutes using the fastest existing algorithm to 11 seconds using maxnodf.38

4. maxnodf makes correctly-normalised nestedness measures feasible for complex analyses of even39

large networks. Analyses that would previously take weeks to complete can now be finished in40

hours or even seconds. Given evidence that correctly normalising nestedness values can signifi-41

cantly change the conclusions of ecological studies, we believe this package will usher in necessary42

widespread use of appropriate comparative nestedness statistics.43
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Introduction45

Nestedness is a widespread and important feature of species interaction networks (Bascompte46

et al. 2003). Nestedness refers to the tendency for specialist species to interact with subsets of the47



species that more generalist species interact with. The prevalence of nested architectures, coupled48

with their high ecological and evolutionary importance, has given nestedness research a high49

profile, particularly for networks representing mutualistic interactions between species (Bastolla50

et al. 2009, Thébault & Fontaine 2010, James et al. 2012, Saavedra & Stouffer 2013, Suweis et al.51

2013).52

Like many indices of network structure, however, nestedness is correlated with other network53

properties, like connectance and the number of species in the network, which are themselves also54

highly correlated (Song et al. 2017, Ulrich et al. 2009). Additionally, many nestedness measures55

have bounds that are unconstrained to other network properties. For example, NODF, a popular56

measure of nestedness, is bounded between 0 and 1. This is problematic because fundamental57

constraints resulting from the size of the network and the number of links mean that, for many58

networks, maximum NODF values may be substantially less than 1 (Song et al. 2017). Therefore,59

comparing the nestedness of different networks using raw nestedness values should be avoided.60

Instead, it is essential to use nestedness metrics which are independent from network size, con-61

nectance and maximum nestedness (Song et al. 2017).62

To resolve some of these issues, studies typically express nestedness values relative to a null63

expectation (for example, Welti & Joern 2015). Specifically, nestedness is expressed as a z-score:64

z = (Nestedness − µ)/σ, where µ and σ are the mean and standard deviation, respectively, of65

the nestedness values across an ensemble of networks generated using a particular null model.66

Problematically, it was recently shown that this method suffers from irrevocable statistical and67

inconsistency issues (Johnson 1999, Gelman & Stern 2006, Chagnon 2015, Song et al. 2017),68

prompting the search for an appropriate way to compare the nestedness of different networks. Song69

et al. (2017) proposed a new normalised nestedness metric, NODFc, based on the NODF measure:70

NODFc = NODFn /(C · log(S)), where NODFn = NODF /max(NODF), C is connectance, S is71

the geometric mean of the number of species in each level of the network (such as plants and72

pollinators or plants and seed dispersers), NODF is the raw NODF value for the network and73

max(NODF) is the maximum nestedness of a network with the same number of species and links74



as the focal network, subject to the constraint that every species has at least one link (Song et al.75

2017). This new metric does not suffer from the statistical issues associated with z-scores and76

is thus robust for nestedness comparisons between networks (Song et al. 2017). To demonstrate77

this, Song et al. (2017) considered the long-standing prediction that networks are more ordered78

in less predictable environments (Levins 1968, May 1975). Previous studies using raw or z-score79

normalised nestedness values failed to find unified answers to this question, but by employing the80

NODFc metric, Song et al. (2017) were able to confirm a positive associated between nestedness81

and temperature seasonality. This ability of the NODFc metric to uncover patterns that previously82

could not be found is one of the strongest arguments for why it should be widely adopted.83

While NODFc is demonstrably a good statistic for nestedness comparisons, more technically,84

calculating the max(NODF) term in its formula is a non-convex optimisation problem. Non-convex85

optimisation problems are generally NP-hard; as such there is no known polynomial time algorithm86

for computing the true maximum (see Appendix S1 where we show that NODF maximisation can87

be formulated into the class of mixed integer problems, which are also generally NP-hard). For88

these kinds of problems, heuristic algorithms can be used. While heuristic algorithms are not89

able to guarantee finding the true optimum, they should at least find solutions close to the true90

optimum. Widespread adoption of the NODFc approach is therefore highly dependent on the91

availability of fast algorithms that can find good solutions for the maximum nestedness of a92

network.93

To date, two algorithms for this problem have been proposed. The first was a greedy algorithm94

by Song et al. (2017) (the ‘Song algorithm’) that was intuitive and achieved good optima, but was95

slow when run on large networks (33 minutes for a network with 797 species and 2933 interactions)96

(Simmons, Hoeppke & Sutherland 2019). This algorithm was refined by Simmons, Hoeppke &97

Sutherland (2019), who combined the greedy approach with simulated annealing (the ‘Simmons98

old’ algorithm). This new algorithm found higher levels of maximum nestedness than the Song99

algorithm, while reducing computation time by two thirds for large networks (11 minutes for the100

797 species, 2933 interaction network). However, it was not available in R, which might limit its101



use among ecologists, and it was still too slow to be viable for many common types of analysis.102

For example, analyses with many iterations are often used in network ecology, such as testing the103

effect of network structure on thousands of extinction simulations, or quantifying the structure of104

thousands of simulated networks (Thébault & Fontaine 2010, Simmons, Cirtwill, Baker, Wauchope,105

Dicks, Stouffer & Sutherland 2019). Such analyses would require calculating NODFc hundreds or106

thousands of times. If the Song algorithm was used 1000 times on the large network mentioned107

above, the NODFc calculations would take 22.9 days. While the ‘Simmons old’ algorithm reduces108

this to 7.6 days, this remains impractical. Even if permutational approaches are not necessary, run109

times of 33 minutes and 11 minutes, for the original and refined algorithms respectively, for a single110

large network are likely to deter users. Furthermore, if even larger networks are considered, such111

as the largest network in the Web of Life (www.web-of-life.es) database which has 1500 species112

and 15255 interactions, neither of these algorithms are likely to be practical for even a single113

calculation.114

Thus while the normalised nestedness metric proposed by Song et al. (2017) is conceptually very115

robust, to date either slow implementations or suboptimal maxima has made the method imprac-116

tical for all but simple analyses. However, it is essential that nestedness values are normalised117

correctly in order to ensure studies make accurate inferences. Here we fill this gap by introducing,118

maxnodf, an R package that enables rapid evaluation of NODFc, for the first time making correctly-119

normalised nestedness values accessible for even complex analyses of large networks. Below we120

describe the package and its implementation, alongside comparative performance benchmarking121

and two examples of how it can be applied to empirical data.122

We note that while our focus here is on species interaction networks, nestedness is also found in123

patterns of species occurrence. maxnodf is equally applicable to these data.124



Description125

maxnodf contains three functions: maxnodf(), NODFc() and nodf cpp(). maxnodf() and NODFc()126

are the main two functions and are closely related: maxnodf() calculates the maximum NODF127

of a network, while NODFc() calculates the full NODFc metric as defined in the Introduction.128

nodf cpp() simply calculates the raw NODF of a network; calculation is fast because the code129

for this function is implemented in C++.130

maxnodf() and NODFc() have the same two arguments. The first is web, which requires a numeric131

matrix describing a bipartite network (a bipartite incidence matrix where rows represent one group132

of nodes, columns represent the other group of nodes, and elements are positive numbers if nodes133

interact, and 0 otherwise). maxnodf() alternatively accepts a numeric vector of length 3 of the134

form c(nRows, nColumns, nLinks) for the web argument, where each element of the vector gives135

the number of rows, columns and links in the network for which you want to find the maximum136

nestedness.137

The second argument is quality, which is a parameter to control the tradeoff between computation138

time and result quality; it can be 0 (the default), 1 or 2. Lower-quality settings are faster, but139

find worse optima; higher-quality settings are slower, but find better optima. quality = 0 (the140

fastest) uses a greedy algorithm; quality = 1, uses a greedy algorithm plus hillclimbing; and141

quality = 2 (the slowest) uses a simulated annealing algorithm. Each algorithm is guaranteed142

to find an equal- or higher-quality solution than the quality below it. Full details of each of these143

algorithms are given in Appendix S2. We believe the Quality 0 algorithm is the best choice for144

most questions, and the sacrifice in quality will rarely change conclusions qualitatively (see below145

and Analysis S1).146

As output, NODFc() returns the value of NODFc as a single number. maxnodf() returns a list147

of length 2, where the first element (’max nodf’) is the maximum nestedness of the network and148

the second element (’max nodf mtx’) is the incidence matrix corresponding to this maximum149

nestedness.150



Below is a simple example of calculating NODFc for a small network, at the quality 2 set-151

ting:152

m <- matrix(c(1,1,1,1,0,1,0,1,1), 3, 3) # make a small matrix153

NODFc(web = m, quality = 2) # calculate NODFc154

or calculating the maximum nestedness of a network with 14 rows, 13 columns and 52 links using155

the default quality:156

maxnodf(web = c(14, 13, 52))157

Performance158

We recorded the time to compute, and maximum NODF achieved, when calculating max(NODF)159

using five algorithms: the three algorithms in the maxnodf package (quality 0, 1 and 2), the original160

greedy algorithm proposed by Song et al. (2017) (‘Song’), and the refinement of this algorithm161

proposed by Simmons, Hoeppke & Sutherland (2019) (‘Simmons old’). Algorithms were run on162

all pollination networks from the Web of Life dataset (http://www.web-of-life.es), excluding 13163

networks with either more than 3000 links or which were not a single, connected component. These164

inclusion criteria ensured all algorithms could be run on the entire dataset: the Song algorithm165

was impractically slow on networks with more than 3000 links, and the algorithms cannot be run166

on networks which comprise multiple, disconnected subnetworks. This resulted in a dataset of 135167

networks. Timings were carried out on a computer with an i7-8550U (1.8 GHz) processor with 16168

GB RAM (2133 MHz).169

Overall, the variation in runtime was substantial, spanning five orders of magnitude. We find170

that, on average, the slowest algorithm is the ‘Simmons old’ algorithm, followed by the Quality 2171

algorithm, the original Song algorithm, the Quality 1 algorithm and finally the Quality 0 algorithm,172

which is the fastest (Figure 1a). This ordering is broadly expected: simulated annealing algorithms,173

like ‘Simmons old’ and Quality 2, achieve better optima but are slower, while greedy algorithms,174



like Song and Quality 0, achieve worse optima but are faster. The maxnodf Quality 2 algorithm175

is the fastest simulated annealing algorithm, and the Quality 0 algorithm is the fastest greedy176

algorithm. Notably, the Quality 1 algorithm, which uses greedy and hillclimbing components,177

would be expected to take an intermediate time, slower than greedy algorithms, but faster than178

simulated annealing. However, instead we find that Quality 1 is actually faster on average than179

the Song greedy algorithm, while also achieving better optima (Figure 1a).180

The above discussion focuses on the average performance of each algorithm, but average values181

can mask important patterns. Given that the Quality 0 algorithm will be the most widely used,182

in Figure 1b, we compare its performance to that of the original Song algorithm. Note that183

these two algorithms are equivalent: the maxnodf version is simply a faster implementation of184

the Song algorithm. The speed improvement offered by our implementation is substantial, and185

is greatest for networks with larger numbers of links: for the largest network in our dataset, our186

algorithm offers a 274 times speed improvement, reducing the computation time from 50 minutes187

to 11 seconds (Figure 1b). For networks with fewer links, the improvement is still large, becoming188

increasing less important for the networks with the fewest links. These performance improvements189

enable complex analyses to use the max(NODF) approach, even for large networks, while this was190

unlikely to be possible previously.191

In terms of maximum NODF achieved, as expected the ‘Simmons old’ and Quality 2 simulated192

annealing algorithms perform best, while the Song and Quality 0 greedy algorithms perform worst193

(Figure 1a). The magnitude of the improvement afforded by the slower algorithms is, however,194

generally small: on average, the Quality 2 algorithm produces maximum NODF values that are195

2.3% higher than those produced by Quality 0. However, again, this average masks some variation,196

with improvements of up to 17% (Figure 1c).197

In Analysis S1, we find that the Quality 2 simulated annealing algorithm and the Quality 0198

greedy algorithm produce almost identical results when the maximum nestedness is high, but the199

simulated annealing algorithm produces increasingly better maxima than the greedy algorithm200



when the maximum nestedness is low (Figure S4). Therefore, best practice might involve running201

all networks in a dataset through the greedy algorithm, and if any of these networks have a202

maximum nestedness below 0.6 (the value of maximum nestedness where the simulated annealing203

algorithm improves on the greedy algorithm by more than 5%), these networks should be run204

through the simulated annealing algorithm.205

Thus, while the Quality 0 algorithm will be suitable for most purposes, the higher-quality algo-206

rithms are available if only a small number of networks are being studied, or if the most accurate207

NODF values are needed. We believe that the greedy algorithm is the best choice for most ques-208

tions and think that the sacrifice in quality would rarely change conclusions qualitatively (Song209

et al. 2019).210



Figure 1: Comparative benchmarking of nestedness maximisation algorithms. (a) Comparison of

the time taken to run, and maximum NODF achieved, for: (i) the three algorithms in the maxnodf

package (quality 0, 1 and 2); (ii) the algorithm proposed by Simmons, Hoeppke & Sutherland

(2019); and (iii) the original algorithm proposed by Song et al. (2017). All algorithms were run on

an identical set of 135 empirical pollination networks from the Web of Life dataset. Small points

represent individual networks; large points represent medians. Ellipses represent 95% confidence

intervals. (b) Comparison of how long the quality 0 greedy algorithm and the original greedy

algorithm proposed by Song et al. (2017) take to run on networks with different numbers of links.

Network data were the same 135 networks as in (a). Arrows show the time difference between

the two algorithms for particular networks. The label of the arrow shows how many times faster

the quality 0 algorithm was (e.g. ‘80x’ is 80 times faster), while the numbers at the ends of the

arrow show the time each algorithm took to complete for a particular network (e.g. ‘50m’ = 50

minutes, ‘11s’ = 11 seconds.) (c) Percentage increase in maximum NODF achieved by the Quality

2 algorithm compared to the Quality 0 algorithm for all 135 networks in the dataset.



Applications211

Here we conduct two short analyses. First, we test the importance of normalising nestedness212

values by comparing normalised values to their raw counterparts. We use pollination networks213

from the Web of Life dataset (www.web-of-life.es) to determine the level of collinearity between214

raw NODF and NODFc values. Specifically, we calculate NODF and NODFc for all networks and215

test for a correlation in their ranks. We find no correlation in ranks (Spearman’s: ρ = -0.11, S =216

831880, P = 0.16; Figure 2a), indicating that the most nested network as measured by raw NODF217

is not the most nested as measured by NODFc (and so on). This demonstrates the importance218

of normalising nestedness correctly — the relative nestedness of networks when normalised is219

very different to when they are not normalised. Note that an extensive analysis comparing the220

normalised nestedness values derived with z-scores to those derived using the NODFc method, for221

two different null models and networks of different sizes and connectances, is provided in Song et al.222

(2017). Second, we test how normalising nestedness values could change ecological understanding.223

We compare how nestedness varies over time when measured using NODF and NODFc. Data was224

from four plant-pollinator communities in the Seychelles, sampled for eight consecutive months225

from September 2012 to April 2013 (Kaiser-Bunbury et al. 2017). To measure the stability of226

nestedness over time, we calculated the coefficient of variation in raw and normalised nestedness227

for each of the four communities. We found that nestedness appears more stable over time when228

measured using NODFc (t = 4.80, df = 3, P = 0.02), suggesting that the macro structure of these229

communities may be more stable than would be recognised from using raw NODF values.230
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Figure 2: (a) The relationship between the ranks of nestedness values in raw and NODFc forms

for pollination networks from the Web of Life dataset. No correlation in ranks was found. (b)

Coefficient of variation of nestedness values in four pollination networks over time, measured using

raw NODF and NODFc. Networks were measured over eight months in the Seychelles. NODFc

values indicate that nestedness values are significantly more stable over time than is shown with

the raw nestedness values.

Implementation and availability231

The maxnodf package is available for the R programming language. To install the package, run232

install.packages ("maxnodf"). This paper describes version 1.0.0 of the software. The source233

code of the package is available at https://github.com/christophhoeppke/maxnodf. Any problems234

can be reported using the Issues system. The code is version controlled with continuous integration235

and has code coverage of approximately 95%. All code is released under the MIT license.236

Conclusions237

Nestedness is a pervasive pattern in ecological systems. In particular, nestedness measures have238

been widely used in studies of mutualistic species interaction networks, but a lack of proper nor-239

malisation has limited our ability to make inferences. maxnodf is the first package to implement240



rapid calculation of the NODFc metric, a nestedness measure that is demonstrably fair to compare241

between networks of different sizes and connectances. The package contains three optimised algo-242

rithms that allow the user to choose their own trade off between speed and quality. We anticipate243

that, by making NODFc calculations feasible for complex analyses and for use with large networks,244

maxnodf will usher in widespread adoption of correctly-normalised nestedness values.245
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