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Abstract

Data across scales are required to monitor ecosystem responses to rapid warming in the Arctic and
to interpret tundra greening trends. Here, we tested the correspondence among satellite- and
drone-derived seasonal change in tundra greenness to identify optimal spatial scales for vegetation
monitoring on Qikiqtaruk—Herschel Island in the Yukon Territory, Canada. We combined
time-series of the Normalised Difference Vegetation Index (NDVI) from multispectral drone
imagery and satellite data (Sentinel-2, Landsat 8 and MODIS) with ground-based observations for
two growing seasons (2016 and 2017). We found high cross-season correspondence in plot mean
greenness (drone-satellite Spearman’s p 0.67—0.87) and pixel-by-pixel greenness (drone-satellite R>
0.58-0.69) for eight one-hectare plots, with drones capturing lower NDVI values relative to the
satellites. We identified a plateau in the spatial variation of tundra greenness at distances of around
half a metre in the plots, suggesting that these grain sizes are optimal for monitoring such variation
in the two most common vegetation types on the island. We further observed a notable loss of
seasonal variation in the spatial heterogeneity of landscape greenness (46.2%—63.9%) when
aggregating from ultra-fine-grain drone pixels (approx. 0.05 m) to the size of medium-grain
satellite pixels (10-30 m). Finally, seasonal changes in drone-derived greenness were highly
correlated with measurements of leaf-growth in the ground-validation plots (mean Spearman’s

p 0.70). These findings indicate that multispectral drone measurements can capture temporal plant
growth dynamics across tundra landscapes. Overall, our results demonstrate that novel
technologies such as drone platforms and compact multispectral sensors allow us to study
ecological systems at previously inaccessible scales and fill gaps in our understanding of tundra
ecosystem processes. Capturing fine-scale variation across tundra landscapes will improve
predictions of the ecological impacts and climate feedbacks of environmental change in the Arctic.

1. Introduction

Identifying the scales at which ecological processes
operate is a fundamental, yet often neglected ele-
ment of ecological research [1-3]. Cross-scale ecolo-
gical information can inform our understanding of
the causes and consequences of global change [2].
In tundra ecosystems, vegetation responses triggered
by rapid Arctic warming could influence ecosystem

© 2020 The Author(s). Published by IOP Publishing Ltd

functions through altered carbon and nutrient cycles
with potential feedbacks to the global climate sys-
tem [4-8]. Yet, challenging logistics have limited the
extent of field-based observations in Arctic ecosys-
tems [9—11]. The grain sizes of global-extent satellite
products (tens of meters to kilometres) are too coarse
to capture the fine-scale dynamics of tundra plants
[12-14] and to link vegetation change to key ecosys-
tem functions [13]. Thus, by bridging this ‘scale-gap’,
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we can transform our understanding of pan-Arctic
tundra vegetation change and associated global-scale
climate feedbacks.

1.1. Satellites show greening of the tundra

Satellite observations indicate a ‘greening’ of tundra
ecosystems [13, 15-20] and shifts in growing sea-
son phenology over recent decades [21-24]. Observa-
tions of increasing tundra greenness are often repor-
ted from surface-reflectance-derived Normalised Dif-
ference Vegetation Index (NDVI) [16, 18, 25, 26].
Satellite-observed tundra greening has occurred con-
currently with ground-based observations of veget-
ation change in Arctic ecosystems [27] including
increased shrub cover [28-31] and taller community-
level plant height [32], as well as earlier leaf emer-
gence and flowering at some [33-36], but not all
tundra sites [36—-39]. However, mismatches between
ground and satellite-based observations suggest the
potential for an observational scale gap [13].

1.2. Arctic vegetation change and phenology have
been linked to warming

Satellite-observed Arctic greening trends have been
linked directly to warming air temperatures [19, 20,
40-46] and indirectly to sea-ice declines [17, 47—
51]. Ground-based observations of tundra vegetation
change correspond with warming [27, 32, 52], but
do not always co-occur with satellite greening trends
in the regions around the ecological monitoring sites
[13, 53]. While satellite-based phenology observa-
tions from the Arctic have been mainly linked to tem-
perature [22, 54, 55], in situ phenology in the tun-
dra has been shown to be influenced by a suite of
interacting factors rarely tested in satellite-based ana-
lysis of Arctic phenology. These factors include, but
are not limited to: snowmelt, temperature, day length,
and the proximal influences of sea-ice on localised cli-
mate affect [34-36, 38, 56, 57]. Thus, ecological stud-
ies indicate greater complexity of drivers than ana-
lyses of satellite-derived greening trends to date.

1.3. Inconsistencies amongst satellite platforms
and heterogenous greening trends

Greening trends and phenology measures derived
from different satellite platforms do not always cor-
respond with each other [13, 18]. Additionally,
satellite-derived greening trends vary at global [18],
continental [42, 58-60] and regional scales [46—438,
61-64]. Many areas of the Arctic show no trends in
NDVI, with only around 20% of the Arctic spectrally
greening and around 1%-4% of the Arctic spec-
trally browning [13, 62, 65, 66]. Recent analyses sug-
gest a slowdown of the Arctic-wide spectral green-
ing trend over the past decade [43, 67]. Further-
more, despite NDVI being related to the photosyn-
thetically active biomass in the tundra [14, 68-70],
geophysical, environmental and ecological factors,
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such as low solar angle, atmospheric effects (includ-
ing cloud and fog), snow cover, soil moisture and
standing water, in addition to the non-linearity of
NDVI-biomass relationships, complicate the inter-
pretation of satellite-derived NDVI time-series at
high latitudes [13, 71]. The growing complexity high-
lighted in Arctic greening trends has led to repeated
calls for ground validation of satellite observations
[11, 18, 59, 60, 66, 72, 73].

1.4. The scale discrepancy problem in Arctic
greening

A major problem in linking satellite-derived trends
of spectral greenness and phenology to in situ obser-
vations of ecological processes in the tundra is the
discrepancy in observational scales [13, 29, 61, 72,
74]. Satellite datasets with long-term records are lim-
ited by their moderate- to coarse-grain sizes, ranging
from 30 m (Landsat) to 250 m (MODIS) and 8 km
(AVHRR-GIMMS3g). In situ ecological monitoring
in the Arctic is logistically challenging and therefore
restricted in extent to a limited number of sites and
often metre-squared plots [10, 75]. Only a few stud-
ies have linked on-the-ground vegetation or phen-
ology change to satellite trends in NDVI in Arctic
tundra [13, 14, 47, 48, 53, 76-78]. However, drones
equipped with compact sensors now allow for the
collection of ultra-fine-grain multispectral imagery
at landscape extents that can potentially bridge the
scale-gap between satellite and ground-based obser-
vations [14, 79-82].

1.5. Novel drone data to study variation in
greenness

Here, we set out to test whether drones can be used
to identify the key ecological scales for studying tun-
dra greenness on Qikigtaruk in the Canadian Arc-
tic by bridging the scale gap between satellite and in
situ data. First, we tested whether satellite- and drone-
derived measures of mean landscape-scale greenness
(NDVI) agree across two growing seasons while con-
trolling for the potentially confounding effects of
topography and land cover. Second, we identified the
key spatial scales for ecological variation in landscape
greenness within the two most common vegetation
types at our study site using variograms. Third, we
tested how the magnitude of seasonal variation in
tundra greenness scales across grain sizes from fine-
resolution drone imagery to medium-grain satellite
imagery. Finally, we assessed whether drone-derived
NDVI corresponds with on-the-ground measures of
within growing season change in plant growth based
on methods frequently used by long-term, field-based
monitoring networks. Thus, in our analysis, we val-
idated satellite-derived landscape estimates of vegeta-
tion greenness with ultra-fine-grain drone data and
described spatial and temporal variation in tundra
productivity at landscape extents (1-100 ha) with
grain sizes that were previously not accessible.
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2. Methods

2.1. Site description: Qikiqtaruk—Herschel Island
Qikigtaruk (69.57 N, 138.91 W) is located in the
Beaufort Sea along the coastline of the North Slope
of the Yukon Territory, Canada. The vegetation is
the moist acidic shrub tundra [83] characteristically
found in the Western Arctic regions of North Amer-
ica, which has experienced strong spectral green-
ing in recent decades [13]. The two most com-
mon plant communities on the island are the tus-
sock sedge (‘Herschel’) and Dryas-vetch (‘Komakuk’)
vegetation types [84, 85]. The tussock sedge veget-
ation is dominated by the name-giving tussock
sedge Eriophorum vaginatum L. with varying cover
of Salix pulchra Cham. The top-soils of the island
are underlain by ice-rich permafrost and undergo
frequent disturbance [85]. The Dryas-vetch vegeta-
tion is particularly found on ground disturbed by
soil creep and is characterised by the near ubiquit-
ous presence of Dryas integrifolia Vahl., the willow
Salix arctica Phall.,, various grass species including
Arctagrostis latifolia. (R.Br.) Griseb. and forb spe-
cies [86]. The relative abundances of these species
are shown in (figure S1, which is available online
at (https://stacks.iop.org/ERL/15/125002/mmedia)).
Though the two vegetation types are specific to the
region, these plant communities would group with
tundra types S1, W2 and G3/4 of the Circumpolar
Arctic Vegetation Map [87].

We established four study areas on the east end
of the island, each with two co-located one-hectare
plots in the two key vegetation types (figure 1, table
S1). We selected plots with homogenous terrain and
land cover to represent the two key vegetation types
and to control for the potentially confounding effects
of terrain and cover heterogeneity. The island har-
bours small herds of caribou (100s of individuals) and
muskox (3—35 individuals in recent years) of fluctuat-
ing size, as well as cyclic populations of voles and lem-
mings [88]. We estimate the overall impact of herb-
ivory on the vegetation in our study plots to be low
particularly in 2016 and 2017 when there were few
muskox on the island.

2.2. Multispectral drone time-series

We analysed a total of 62 drone surveys from 21 dates;
see table S2 for a breakdown by one-hectare monitor-
ing plots. We collected multispectral drone imagery
using Parrot Sequoia (Paris, France) compact multis-
pectral sensors mounted on multi-rotor drone plat-
forms in June to August in 2016 and 2017. We used
three different drone platforms: a Tarot 680 Pro hex-
acopter with camera sensor stabilisation in 2016, and
a 3DR Iris + and a DJI Phantom 4 Pro without sensor
stabilisation in 2017. Surveys were flown using paral-
lel flight lines (a lawn-mower flight pattern) at an alti-
tude of ca. 50 m, giving ground-sampling distances
of 0.04 m to 0.06 m. Images were acquired with 75%
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front- and side-lap as close as possible to solar noon
(mean absolute difference to solar noon 2.16 h, max-
imum 6-7 h). See table S2 and the methods section
of the supplementary materials for further details on
the drone surveys, including additional information
on radiometric calibration, as well as temporal and
spatial coverage. Drone data and code to carry out all
analyses are available via a GitHub repository [91].
We processed the Sequoia imagery using Pix4D
Mapper v4.0.21 (Lausanne, Switzerland) with the
agMultispectral template and the ‘merge map tiles’
option set to true to generate co-registered single-
band surface reflectance maps. Radiometric calibra-
tion was carried out in Pix4D Mapper using pre- or
post-flight imagery of calibrated reflectance panels; in
2016 we used a MicaSense (Seattle, USA) panel and in
2017 a SphereOptics (Herrsching, Germany) Zenith
Lite panel. We measured panel reflectance pre- and
post- season and used the mean values for radiomet-
ric calibration. We also calibrated for sensor proper-
ties and sun irradiance measured by the incident light
sensor. We used four to six ground control points per
survey that were precisely geolocated with a GNSS
system to spatially constrain the reconstructions in
Pix4D Mapper with an estimated accuracy of 1-2
pixels between bands and 2-6 pixels between surveys
[81]. We calculated the Sequoia NDVI as the norm-
alised difference between the near-infrared (770 nm—
810 nm) and red (640 nm—-680 nm) bands of sensor.

2.3. Satellite time-series

Satellite time-series were obtained from three differ-
ent satellite sensors: 1) the Moderate Resolution Ima-
ging Spectroradiometer (MODIS) on the USGS Terra
satellite, 2) the Multispectral Instrument (MSI) on
Sentinel-2 A & B and 3) the Operational Land Imager
(OLI) on Landsat 8.

We obtained MODIS NDVI values for the time
period from the 1st May to the 30th of September in
2016 and 2017 for all 250 m MODIS pixels that con-
tained the survey plots. NDVI values were retrieved
from the 16-day MOD13Q1 v6 Terra product [92]
using the Google Earth Engine [93]. We discarded all
values with a ‘Summary QA’ score of —1 (no data)
or 3 (cloudy). table S3 lists the resulting MODIS-
pixel-date pairs. The MODIS NDVI is calculated as
the normalised difference between bands 1 (841 nm-—
876 nm) and band 2 (620 nm—670 nm).

For the Sentinel-2 time-series, we gathered
all Sentinel-2 MSI L1C scenes containing the
tile covering Qikiqtaruk (TO7WET) that were
available on the Copernicus Open Access Hub
(https://scihub.copernicus.eu/) for the same time
period as the MODIS pixels. We processed all scenes
to L2A using Sen2Cor 2.4.0 [94], retained all bands
with 10 m resolution (2, 3, 4 and 8), applied the cloud
mask and generated a true-colour image. We inspec-
ted all scenes visually and discarded all imagery with
cloud contamination over the study area (78% of
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Figure 1. Drone-data captured the temporal variation in satellite data across vegetation communities, areas and years. This figure
showcases variation in mean landscape greenness (NDVI) across the eight one-hectare sampling plots on Qikiqtaruk as derived
from drone orthomosaics and the MODIS Vegetation Index (MOD13Q1.v006 Terra), Landsat 8 Level 2 and Sentinel-2 Level-2 A
products. Vertical dotted grey lines represent the average snow-melt at long-term monitoring plots close to Area 3—Hawk Valley
for the given year [88]. Dashed grey lines represent simple quadratic phenology curves (NDVI ~ a x> + b x + ¢, where x is the
day of year, a the quadratic coefficient, b the linear coefficient and ¢ the y-axis intercept) fitted to all data points pooled across
sensors. The lower central panel demonstrates the close correspondence between seven-day mean values from drone and satellite
NDVI, albeit with a positive offset for all satellite sensors. For this panel, drone NDVI values were spatially aggregated by mean to
the one-hectare plots and temporally aggregated by mean in consecutive seven-day blocks starting on the first of May in both
growing seasons (2016 and 2017) where data was available. Matching seven-day block pairs between drone and satellite platforms
were then identified and plotted as shown. Spearman’s rank correlation as well as mean differences (offsets) in NDVI amongst all

platform combinations can be found in tables S12 and S13 respectively. The grey dashed line in this panel represents the
one-to-one line. Map sources: North America [89, 90] in latitude and longitude on the WGS84 reference ellipsoid and
Qikigtaruk, Copernicus Sentinel-2 true colour image july 2017 in UTM 7 N based on the WGS84 reference ellipsoid.

scenes for 2016 and 74% of scenes for 2017). The res-
ulting set contained nine cloud-free Sentinel-2 L2A
scenes of the study area from 2016 and 15 scenes
from 2017 (table S4). Finally, the Sentinel NDVI
was calculated as the normalised difference between
band 8 (784.5 nm—899.5 nm) and band 4 (650 nm—
680 nm).

Landsat 8 OLI Level-2 (surface reflectance) time-
series were obtained using the USGS EarthExplorer
website (https://earthexplorer.usgs.gov/) by querying
the search engine for all scenes that covered the study
site during the same time-period as the MODIS pixels
(n = 94). The automatically generated cloud masks
were of insufficient quality, so we manually inspected
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all scenes and retained only the scenes cloud-free
over the study site (n = 7 for 2016, n = 8 for 2017,
table S5). The Landsat 8 NDVI was then calculated
as the normalised difference between band 5 (845—
885 nm) and band 4 (630-680 nm). The study plots
were not designed with a Landsat 8 analysis in mind
and did not naturally coincide with the Landsat grid.
We therefore calculated subsequent one-hectare plot
NDVI averages as a weighted mean, where each pixel
was weighted by the proportion of the plot area
covered by the pixel.

2.4. Ground-based plant phenology measurements
We carried out ground-based phenology monitoring
in eight 2 m x 2 m plots (table S6), one adjacent to
each one-hectare plot (mean distance = 23 m, max
distance = 52 m). We placed the ground-based mon-
itoring plots adjacent to the drone-based survey plots
to minimise the effects of ecological disturbance and
trampling in the drone survey plots caused by the
repeat visits necessary for the ground-based monitor-
ing. Within these plots, we monitored six individual
plants from the most common species: E. vaginatum,
D. integrifolia, S. pulchra and A. latifolia in tussock
sedge tundra; D. integrifolia, S. arctica and A. latifolia
in Dryas-vetch tundra. On each survey date, we meas-
ured the length of the longest leaf on each individual
to the nearest millimetre. This approach is widely
used in field-based phenology monitoring protocols
[95], and will allow for NDVI to be directly related
to phenological changes in plant traits. We conducted
the ground-based surveys in tandem with the drone-
based surveys where logistical possible, resulting in a
dataset of 52 drone and ground survey pairs spread
over 20 different dates. The majority of ground-based
phenology surveys were carried out on the same day
as the drone surveys (mean difference = 0.3 d, max-
imum difference = 3 d, table S7).

2.5. Cross-sensor correspondence

To test cross-sensor correspondence, we first had
to scale all datasets to a shared spatial grain and
time-window. To achieve this, we first plotted the
spatial mean NDVI for all one-hectare plots, time-
points and available sensors (MODIS = single pixel,
Landsat 8 = weighted mean) across both grow-
ing seasons (2016 and 2017). We then divided the
two growing seasons into 22 consecutive seven-
day blocks starting on the 1st of May each year.
Next, we calculated the temporal mean of the spa-
tial mean NDVI for each seven-day block for all
plot and sensor combinations where data was avail-
able. We then identified all matching seven-day block
and study plot combinations for each drone-satellite
and satellite-satellite combination. We then tested
cross-sensor correspondence by calculating Spear-
man’s rank correlation and mean sensor-to-sensor
difference in the plot means across the whole data
set.
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Additionally, we matched all drone and Sentinel-
2 scenes, as well as all drone and Landsat 8 scenes
that were less than two days apart. We resampled the
red and near-infrared drone bands to the relevant
Sentinel-2/Landsat 8 grids and calculated the NDVI.
We restricted the analysis to Landsat 8 pixels fully
contained within the study plots and reprojected the
drone data from UTM 7 N to UTM 8 N using a
bilinear reprojection where the Landsat 8 scenes were
provided in this projection. Finally, we tested the pre-
dictive relationship between the resampled drone and
satellite NDVI pixel-pairs for a random subsample of
Sentinel pixels (10% of total, n = 700) and all avail-
able Landsat 8 pixels (n = 198) with Bayesian linear
models (tables S8 and S9 for Sentinel-2, S10 and S11
for Landsat 8) using the MCMCglmm v.2.29 package
[96].

We used the ‘resample’ function of the R raster
package v. 3.0-12 [97] for resampling from finer to
coarser resolutions. The function first aggregates the
smaller grid to the largest clean divisor of the larger
grid using the mean and then, if required, resamples
to the larger grid using bilinear interpolation. We also
tested an alternative resampling approach by first res-
ampling to a common resolution and grid of 0.5 m
and then aggregating by mean, but found no qual-
itative differences in our results (figure S2). Further
details about software and package versions used for
raster manipulations and visualisations can be found
in the supplementary materials.

2.6. Spatial autocorrelation

To assess the spatial autocorrelation of variation in
tundra greenness within the eight plots, we sampled
variograms and fitted variogram models using the
gstat v. 2.0-5 package [98, 99]. First, we pre-thinned
the acquired drone-data by randomly sampling 5%
of the ca. 4 million pixels of each orthomosaic. We
then sampled variograms for all plots at the peak of
the 2017 season (26 and 28 July) and fitted variogram
models, letting the gstat algorithm select the best fit
amongst spherical, exponential and Matern models.
The only exception was Area 3 for which the closest
available complete set of flights was on the 18 July
2017. To test conformity of the variograms across the
season, we repeated the analysis for the surveys from
the 26 June and 9 August 2017 for Area 1 and 2.
No change in the variogram patterns were observed
across the 2017 season and we therefore assume that
our analysis is representative for the 2016 season also.
All variograms were sampled with a bin width of
0.15 m from 0 to 15 m and a bin width of 3 m from 0
to 45 m.

2.7. Grain size and phenology

We tested the influence of grain-size on observations
of tundra greenness phenology by fitting simplified
growing season curves to the raster stacks for each
plot and season. We first resampled the drone bands
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Figure 2. Drone-data better captured spatial heterogeneity in NDVI relative to Sentinel-2 MSI and Landsat 8 OLI in pixel-by-pixel
comparisons. (a) Pixel-by-pixel correlations between 10 m aggregated drone NDVI and native 10 m Sentinel-2 NDVI for a
random sample of pixels (10% of total pixels, n = 700) across all drone-sentinel image pairs for the 2017 growing season that were
a maximum of two days apart. No drone-sentinel image pairs were available for the 2016 season that fitted the latter criterium.
The black line represents a simple linear model describing the relationship, see table S8 for details. (b) Pixel-by-pixel correlations
between 30 m aggregated drone NDVI and native 30 m Landsat NDVI for the total number of available pixels (n = 198) across all
drone-sentinel image pairs for the 2016 and 2017 growing season. The black line represents a simple linear model describing the
relationship, see table S10 for details. (c) Example visualisations from the Dryas-vetch tundra at Area 2—Bowhead Ridge for the
17 July 2017 showing ultra-fine-grain 0.013 m true colour RGB imagery, 0.05 m native-scale drone NDVI, 10 m resampled drone
NDVI, 10 m native Sentinel-2 NDVI, the absolute difference between resampled drone and Sentinel-2 NDVI, 30 m resampled
drone NDVI, 30 m native Landsat 8 NDVI and difference between resampled drone and Landsat 8 NDVI.
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for all time-points to grids with grain sizes of 0.5, 1,
5, 10, 20 and 33.33 m. We then calculated the NDVI
and fitted simple quadratic models to each pixel in
the growing season stacks (y = ax* + bx + c, where
x is the day of year and y the pixel NDVI, a the quad-
ratic coefficient, b the linear coefficient and ¢ the
constant term). We found a strong negative correla-
tion between the quadratic and linear coefficients of
the models (figure S6), and therefore selected only
the quadratic coefficient for further analysis. Addi-
tional details on model choice and analysis can be
found in the method section of the supplementary
materials.

2.8. Ground validation

To test the correspondence between our ground-
based phenology measurements and the drone obser-
vations, we derived time-series of the plot mean
standardised longest leaf length (hereafter mean
longest leaf length) for all species (using a z-score—
centred data with a standard deviation of 1) and the
drone-greenness for each 2 m x 2 m ground-based
monitoring plot. See supplementary methods for
details on how the leaf measurements were standard-
ised. The drone-based plot mean NDVI values were
then matched with the plot mean longest leaf length
values from the closest ground-based survey date
(table S7). We then calculated the Spearman’s rank

correlation between mean NDVI and mean longest
leaf length for each plot and season. We replicated
the analysis using Sentinel-2 data where available (see
supplementary materials). Finally, we also conducted
a by-species version of the analysis using the by-
species mean of the absolute longest leaf length for
each 2 m x 2 m plot rather than the mean based on
the standardised longest leaf lengths.

3. Results

3.1. Landscape greenness corresponded among
sensors

Landscape greenness corresponded well among
drone, Sentinel-2, Landsat 8 and MODIS across both
the 2016 and 2017 growing seasons. Growing sea-
son curves of the mean NDVI for the one-hectare
plots were similar (figure 1) and the plots’ temporal
(seven-day) mean NDVI values were highly correl-
ated across sensors (Spearman’s p > 0.59-0.98, table
S12). However, we observed a positive offset between
the drone and satellite seven-day mean NDVI val-
ues for the plots. This offset ranged between 0.027
(Landsat 8) and 0.073 (Sentinel-2B) absolute NDVI
and was consistently positive across satellites (table
S13). The Landsat 8 offset of 0.027 fell within the
range of the estimated error (£0.03) associated with
the drone-derived mean NDVI for the study plots
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Figure 3. Spatial variation of vegetation greenness peaked at distances of ~0.5 m in both studied vegetation types, with little or no
increase in the spatial dependence of greenness at distances above ~0.5 m. Figure shows example variograms. Overall spatial
variation in greenness is higher in the Dryas-Vetch Tundra when compared to the Tussock-Sedge Tundra (a) and (c). Left panels:
variograms for the Dryas-vetch and tussock sedge tundra plots in Area 2 for distances up to 5 m (a) and 45 m (c) at peak season in
2017. The light grey dotted lines in panel (a) indicate the subset of the distance range depicted in panel (c). The dark grey line in
(c) indicates the mean range estimated from the variogram models of both vegetation types from Areas 1, 2, and 4 during
peak-season (26 and 28 July) in 2017 (see also figure S1). Right panels: Dryas-vetch tundra with bare ground patches caused by

willows and herbs (d).

cryoturbation and solifluction (c) and tussocks sedge tundra with distinctive patterns of tussocks interspersed by patches of

determined in a previous study using the same survey
method [81].

Resampled drone pixels (10 m and 30 m) and
the corresponding spatially co-located Sentinel-2 and
Landsat 8 pixels were highly correlated (marginal
R? = 0.69 and marginal R? = 0.58 respectively, see fig-
ure 2 and tables S8 and S10). We found that vegetation
type, the time-difference between satellite scene and
drone data acquisition, and the specific Sentinel plat-
form (Sentinel-2A/Sentinel-2B) influenced the rela-
tionship between Sentinel-2 pixel NDVI and drone-
derived NDVI (marginal R> = 0.87 see table S9).
While the Sentinel platform (Sentinel-2A/Sentinel-
2B) had the strongest impact on the intercept and
the slope of the linear model, vegetation type and
time-difference mainly influenced the slope, with
time-difference having the smallest effect on slope
and intercept overall (table S9). In contrast, we only
detected a statistically meaningful effect for the time-
difference between satellite and drone scene acquis-
ition in the Landsat 8—drone pixel model (mar-
ginal R = 0.70); vegetation type did not have a
statistically meaningful influence on this relationship
(table S11).

3.2. Spatial variation in landscape greenness
peaked at approx. 0.5 m

Spatial variability in the NDVI values associated
with distance peaked at ranges below 0.5 meter
(mean range 0.44 m) during the peak-season of 2017
(26-28 July). Little additional autocorrelation struc-
ture in the NDVI was found between pixel pairs for
distances of up to 45 m (figure 3). This pattern was
consistent across vegetation types in seven out of our
eight plots (figures 3, S3 and S4). The only exception
is the Dryas-vetch plot in Area 3, which showed the
same patterns for distances below 10 m, but thereafter
spatial variation steadily increased (figure S4). Peak
variability (sill) in NDVI decreased as the growing
season progressed (figure S5), and varied with veget-
ation type (figures 3, S3 and S4). Unexplained vari-
ability (nugget) was consistently low across all Areas
(figures 3, S3 and S4).

3.3. Seasonal-variation was lost when aggregating
to medium grain sizes

We observed a notable loss in the amount of sea-
sonal variation in tundra greenness when aggregating
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Figure 4. Fine-scale variation representing key ecological heterogeneity in tundra phenology was lost when aggregating from
ultra-fine-grain drone to medium-grain satellite pixel sizes. We observed a logarithmic decay in variation (standard deviation) in
the quadratic coefficient of simple growing season curves fitted to the eight vegetation plots in the 2017 season when aggregating
the drone data across grain sizes (a). To provide an example of the underlying raw data, we visualised the pixel-by-pixel curves
fitted to the time-series of pixels from the dryas-vetch tundra plot in Area 2 for a subset of three grain sizes (b). Here, each point
represents a pixel NDVI value at a given day of year and grain size (indicated by colour). The transparent lines represent the
simple quadratic curves fitted to each pixel across the time-series, again the colour of the line indicates the pixel’s associated
grain-size. See also figure S8, which shows a random sample of nine curves for all grain sizes from the same study plot.
Furthermore, to provide an example of the spatial distribution of the quadratic coefficient and how it changes across grain sizes,
we plotted the respective rasters for Area 2 dryas-vetch tundra in panel (c). Similar patterns are found across all areas (a).
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grain sizes from ultra-fine-grain drone to medium-
grain satellite data. The loss was particularly pro-
nounced at grain-sizes above 10 m—the grain size of
Sentinel-2 MSI pixels (46.2%—-63.9%) (figure 4). The
variation in the quadratic coefficient of the simple
growing season curves (figures 4(b) and S6) decayed
logarithmically with grain size (figure 4(a)), while no
change occurred in the mean tendency of the coeffi-
cient (figure S7). The quadratic and linear coefficients
of the growing season curves were strongly correl-
ated (Spearman’s p = —0.999), thus the same pattern
holds true for the linear component of the curve fit
(figure S6).

3.4. Drone-derived spectral greenness correlated
well with leaf measurements

Drone-derived spectral greenness correlated well
(mean p = 0.70) with ground-based measurements
of phenology for graminoids and deciduous plants
across the growing season (figure 5). The Spearman’s
correlation coefficient of the plot mean longest leaf
length and the mean drone-derived NDVI (mean
p = 0.70, table S14 and figure 5) matched the by-
species analysis based on absolute leaf lengths in

the ground-based phenology plots (mean p = 0.68,
table S15 and figure S9). The graminoids and decidu-
ous shrub species followed this mean tendency well
across all time-series, while the partially-evergreen
D. integrifolia showed mixed responses between plots
and years (mean p = 0.22, figure S9). The drone-
based time-series of greenness of the 2 m x 2 m
ground-phenology plots highlight fine-scale differ-
ences in phenology such as the continuous green-
ing of tussocks that was visible at the tussock sedge
tundra plot in Area 2 (figure 5(c)). Sentinel-2 green-
ness of the ground-monitoring plots showed slightly
weaker correlations (mean p = 0.58, figure S10) with
the mean longest leaf length, but for this analysis no
time-series of sufficient length were available for 2016
and peak-season observations in 2017 were limited.

4, Discussion

Our analysis of time-series of landscape greenness
on Qikiqtaruk across scales highlights four main
findings: 1) Measures of mean tendency in land-
scape greenness were consistent across sensors, but
drone-derived NDVI values were lower than those

8
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Figure 5. Time-series of ground-based mean longest leaf lengths correlated well with drone-derived mean NDVI on Qikiqgtaruk.
Longest leaf lengths were standardised across species (z-scores) to allow for calculations of plot mean values. (a) Correlations
between the mean longest leaf length for all individuals across all monitored species and the drone-derived NDVT in the

2 m x 2 m ground-phenology plot for each area, vegetation types and year combination. The time-series of mean longest leaf
length (b) and drone NDVI (c) corresponding to the values in (a). Lines represent least-square regressions to illustrate the
relationships for each area, vegetation type and year combination. A species-by-species version using absolute mean longest leaf
length for each plot can be found in figure S7. (d) As an example, we illustrate the drone-based NDVI observations by showing
the start, midpoint and end of the timeseries for the 2 m x 2 m ground-validation plot in the tussock sedge tundra of Area 2 in
2017. The first time-point in (c) represents the greenness in the plot at the beginning of the time-series, the two subsequent plots

show the relative difference in greenness to this first observation at the given day of year (DOY), and the final plot shows a
true-colour image of the plot taken by drone on the 17 July 2017 (DOY 198).

from Sentinel-2, Landsat 8 and MODIS products
(figures 1 and 2). 2) The majority of variation
in landscape greenness was contained at scales of
around half-a-metre, and is thus not captured by
medium-grain satellites such as Sentinel-2 (figure 3).
3) When aggregating growing season curves from
ultra-fine-grain drone to medium-grain satellite pixel
sizes, a notable amount (46.2%-63.9%) of variation
in greenness phenology was lost (figure 4). 4) Drone-
based measures of landscape greenness correlated
well with ground-based measurements of leaf length
(figure 5). Taken together, our results highlight that
drone platforms and compact multispectral sensors
can capture key ecological processes such as vegeta-
tion phenology and enable us to bridge the existing
scale gap between satellite and ground-based monit-
oring in tundra ecosystems.

The correspondence between drone and satellite-
derived NDVTI has yet to be comprehensively tested
across Arctic sites [13, 14]. Siewert and Olofson [14]
also demonstrate cross-sensor agreement between
drone- and satellite-derived NDVI from Arctic
Sweden. While similar or higher levels of cross-sensor
agreement have been observed in other natural and
agricultural systems [14, 100, 101], some non-Arctic
studies showed mixed or poor agreement [102—104].

Continued efforts in replicating these studies at dif-
ferent sites and systems are much needed to com-
prehensively evaluate cross-sensor correspondence in
Arctic tundra systems and beyond.

We observed a small but consistent offset between
drone- and satellite-derived NDVI that warrants
further investigation. A similar offset has been detec-
ted in rice fields in Italy [103] and with spectrora-
diometer readings in ecologically similar tundra in
Alaska [77], but see Siewert and Olofson [14] for
a lack of offset in the more heterogeneous tun-
dra of Arctic Sweden. Both technical and ecolo-
gical factors could explain the offset. We were not
able to conduct spectroradiometer readings coincid-
ing with our drone surveys for on-the-ground com-
parisons. Technical reasons for the observed offset
may include: atmospheric effects, differences in view-
ing geometries, sensor properties (e.g. band widths)
and signal processing between drones and satellites
(e.g. radiometric calibration), but also among dif-
ferent drone studies. Ecologically, the variation in
land cover (especially the presence/absence of non-
vegetative surfaces) or topography within a landscape
may influence the correspondence between measures
of vegetation greenness across scales due to non-
linearities in how different patch sizes and cover types




10P Publishing

Environ. Res. Lett. 15 (2020) 125002

are aggregated when measured with the NDVI [12,
105]. The high homogeneity of the survey plots on
Qikiqtaruk likely contributes to the strong correla-
tion between drone- and satellite-derived NDVI that
we have observed. Yet, in our drone data fine-grain
patterns of higher and lower NDVI within the land-
scape were evident, including bare-ground patches
and areas of more productive vegetation in wetter
parts of the landscape (figures 1-3). Non-linearities
in the scaling of these patches could contribute to
the offset between satellite and drone NDVI that we
observed on Qikiqtaruk. Further research is needed to
evaluate cross-sensor and cross-scale correspondence
in NDVI and other vegetation indices across Arctic
tundra systems.

We found that a plateau of spatial variation in
tundra greenness occurred around 0.5 m, approxim-
ately the same width as biological and environmental
patterning at this site. The E. vaginatum sedges that
dominate the tussock sedge vegetation type typically
have diameters of ~0.1-0.5 m (figure 3(b)) [106].
The tussock sedge vegetation type is underlain by
ice-wedge polygons that when thawed create bands
of wetter or drier plant communities with widths of
~0.5 m-3.0 m [107]. Dryas-vetch vegetation is often
found on gentle sloping uplands where active layer
disturbances such as cryoturbation and solifluction
create characteristic bare-ground patches perpendic-
ular to the slope [85] with dimensions of ~0.3 m—
0.5 m width and ~0.3-1.0 m length (figure 3(b)). We
expect that spatial variation would increase with dis-
tances beyond the one-hectare extents of our plots as
more topographic diverse terrain is encountered and
vegetation type transitions are reached. Topography is
a key proxy for many processes that structure hetero-
geneity in tundra vegetation [108—110] and the plots
were selected for little topographic variation to allow
us to isolate specific effects of land cover on scaling
of greenness patterns from topography. The plot with
the highest elevational range (Area 3—Dryas-vetch
tundra: 8.7 m) showed a small but steady increase in
spatial variation in distance classes above 10 m (figure
S4). Our findings illustrate that on Qikiqtaruk, grain
sizes of 0.5 m or less are required to capture key spatial
variation in vegetation greenness.

In our study, ecological information was lost
when upscaling from ultra-fine-grain (~0.05 m)
drone to moderate grain (~10-30 m) satellite res-
olutions. Even the most recent generation of freely-
available multispectral satellite products can be lim-
ited in their ability to capture fine-grain ecolo-
gical processes of tundra vegetation change [13].
Information transfer during upscaling leads to the
loss of more information in tundra ecosystems com-
pared to other biomes [14, 111] as land cover and
vegetation structure are fragmented at finer scales
[112]. However, exactly how spatial aggregation
influences the loss in observed ecological variabil-
ity across the diversity of Arctic landscapes remains
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poorly quantified [11]. Yet, this variability is critical
to understanding climate-driven changes in vegeta-
tion phenology [35, 36, 88], plant-pollinator interac-
tions [113], and trophic interactions [114]. With fine-
grain observations, we were able to detect a subtle
decrease in the magnitude of the spatial variability
in landscape-level phenology as the growing season
progressed (figure S5), while aggregation to moder-
ate satellite grains obscured both the magnitude and
timing of phenological heterogeneity (figure 4). Thus,
time-series of fine-grain remotely-sensed observa-
tions will be critical for answering key research ques-
tions about tundra ecosystem functioning in a warm-
ing Arctic [115].

Our results indicate that drone-based green-
ness time-series captured variation in leaf-growth of
deciduous tundra plant species at the plot level. We
demonstrate how drones can be used to measure
variation in tundra plant phenology of metre-scale
patches at landscape extents. Drones have been suc-
cessfully used to monitor phenology of individual
plants (trees) in temperate forest ecosystems [116—
118], and our ability to detect sub-decimeter vari-
ability in our study indicates that individual plant-
level phenology monitoring with drones could also
be carried out in the tundra. Future studies that
quantify plant growth or phenology events such as
leaf emergence and flowering across the landscape
could provide key information on resource avail-
ability for plant-consumer interactions [113, 114].
Our findings also highlight known limitations of
NDVI to track phenology in evergreens or other
non-deciduous taxa (D. integrifolia, figure S9), sug-
gesting that tests of alternative vegetation index—
plant growth relationships [118] are needed to cap-
ture variation in plant metabolic activity of tundra
evergreen and moss species within the growing sea-
son. Combining drone-based time-series with obser-
vations from phenocams, satellite and ground-based
study plots has the potential to revolutionise our
understanding of landscape-scale phenology [13] by
moving beyond the previously small samples of indi-
viduals monitored in the Arctic tundra [36, 37, 39,
119].

The collection of multispectral drone time-
series in Arctic ecosystems has limitations and chal-
lenges. Recent studies have discussed challenges with
radiometric consistency and repeatability when using
compact multispectral drone sensors [81, 120, 121].
Due to logistical constraints, we were not able to
always conduct surveys under optimal conditions
due to sun angle or cloud cover, nor as frequently
as planned due to wind or precipitation (table S2),
which likely introduced bias and/or noise into our
drone data (e.g. figure 4(b)). Site access limitations
meant that we could not capture spring and autumn
on Qikiqgtaruk. As an early-generation multispectral
drone sensor, the Parrot Sequoia was tailored for
deriving the NDVI, which despite being the legacy
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workhorse of tundra remote-sensing has limitations
[11, 13]. In particular, NDVI can be confounded
by moisture and surface water [11, 73, 122], com-
plicating interpretation in wet tundra, particularly
at fine-grain sizes. However, the rapid technolo-
gical development of drones and sensors, as well as
further consolidation and standardisation of meth-
ods [123], will allow for pan-Arctic syntheses of fine-
grain data to resolve the uncertainty and complexity
of Arctic greening patterns trends [13, 14, 81] (see
also the High Latitude Drone Ecology Network—
(https://arcticdrones.org/)).

Our study demonstrates that drones can fill the
scale-gap between satellite and field studies of ter-
restrial Arctic vegetation change. Rather than invest-
igating and explaining patterns at scales pre-defined
by satellite datasets or field-based networks, research-
ers can use drones to identify scale-domains that are
most closely associated with the ecological processes
of interest. Field ecologists can now combine scaling
theory provided by the remote sensing community
[74, 124—127] with observations at scales and tem-
poral intervals that allow for the testing of hypo-
theses about the mechanisms that drive landscape-
level ecological change. Drone imagery will also allow
the remote sensing community to track the effects of
sub-pixel heterogeneity on satellite products down to
the grain of individual plants and communities [14],
which have been long studied by field-based monit-
oring networks, like the International Tundra Exper-
iment [75]. Only by improving our understanding of
how ecologically important information is captured
across grain sizes can we reduce uncertainties in the
medium- and coarse-grain satellite observation that
feed into Earth system models and shape their pre-
dictions [4, 8]. Fine-scale remote sensing from drones
and aircraft therefore provide key tools for disen-
tangling the drivers behind the greening of the Arctic
[14,79, 115].

5. Conclusions

Novel remote-sensing technologies such as drones
now allow us to study ecological variation in land-
scapes continuously across scales. Fine-grain ecolo-
gical observations are of particular importance where
variation in plant growth happens at very small spa-
tial scales such as in tundra ecosystems [13, 71]. The
peak in spatial variation we found at distances of
~0.5 m in the plots on Qikigtaruk demonstrates the
grain size at which phenological information within
the plant communities is best captured at this site.
We show that key ecological information is lost when
observing the tundra at even decimeter or coarser
scales, such as those of medium grain satellites (~10—
30 m). Despite the methodological challenges of col-
lecting multispectral drone imagery in remote envir-
onments [81], our time-series of vegetation greenness
correlated well with ground-based measurements of
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leaf growth in the validation plots. Drones now enable
studies that fill the scale gaps between satellite and
ground-based observations, and therefore improve
our ability to identify the key drivers of vegetation
change and project climate change impacts and feed-
backs in the tundra biome.
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