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Abstract 

 

The role of symbiotic bacteria in determining their host’s phenotype has become 

increasingly apparent in recent times. These bacterial communities can influence a 

range of host traits and fitness correlates. Symbiotic bacteria can alter their host’s 

immune function, metabolism, reproductive fitness, sexual and social signals as well 

as behaviour. The amount of research into the host fitness effects of symbiotic 

bacterial is rapidly increasing, however; few studies are investigating how these effects 

vary across different host genotypes. This thesis investigates the relationship between 

host genetic background and bacterial symbionts across a range of sexually selected 

fitness measures in Drosophila simulans. We focused on two main types of bacterial 

symbionts; exosymbionts, that consisted of gut bacterial communities and surface 

bacteria that inhabit the fly cuticle, along with the bacterial endosymbiont Wolbachia 

pipentis. Wolbachia is known to influence host fitness in a range of ways that vary from 

parasitic to mutualistic. The nature of these effects has previously been found to 

depend on both the host and the strain of Wolbachia. Previous work has attributed 

fitness effects found when curing Wolbachia infection with antibiotics to the change in 

the Wolbachia infection status. Antibiotic treatment is likely to change other bacterial 

components of the microbiota alongside removing Wolbachia infection.  

 

In chapter 2 I found that antibiotic-caused male sexual-fitness rank changes across 

genotypes were caused by Wolbachia curing and not altering exosymbiotic bacterial 

communities. In Chapter 3 I found that the level of bidirectional cytoplasmic 

incompatibility suffered when mating with a standardised tester mate, was dependant 

on the genotype of the focal host. This effect was true for both focal males and 

females. In Chapter 4 I tested whether D. simulans populations evolving under 

elevated or relaxed natural and sexual selection for 38 generations differed in their gut 

bacterial communities. We found evolving under elevated sexual selection resulted in 

more diverse gut bacteria for males but not females. We also found sexual selection 

altered the gut bacterial community composition of both males and females. We found 

no effects of natural selection on gut microbial communities and no interaction 

between natural and sexual selection intensity on these communities. In Chapter 5 I 

found that altering exosymbiotic bacterial communities had fitness effects on both 
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males and females. In females these effects were only present when the bacterial 

communities were altered, not if the bacteria were simply removed. In Chapter 6 I 

found that Wolbachia infection affects female choosiness dependent on the females’ 

genotype. Removing the exosymbiotic bacteria from females had no effect on their 

choosiness and genotype did not interact with this bacterial treatment. I also found 

that removing the symbiotic bacteria of females reduces their adult body size, however 

hosts infected with Wolbachia did not experience the same body size reduction with 

exosymbiont removal. Symbiotic bacteria are playing an important role in many 

sexually selected fitness traits. The direction and scale of these fitness effects depend 

on the host’s genetic background. Sexual selection is also able to act on a host’s gut 

bacteria. This means that a host’s symbiotic bacteria are likely to play an important 

role in the evolutionary outcomes of sexual selection. This thesis increases our 

understanding of the role symbiotic bacteria play in sexual selection. 
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Chapter 1 

 

General introduction 

 

Sexual selection can be thought of as variation in reproductive fitness (Hosken & 

House, 2011). Its mechanisms are mate choice, normally female choice, and mate 

competition, usually male-male. Male-male competition can occur both pre and post 

copulation and consists of males competing for access to females or male gametes 

competing for access to female gametes (sperm competition). Male-male competition 

causes selection to act on traits that make males better at monopolising access to 

females or their gametes. This leads to the evolution of exaggerated fighting weaponry 

(Berglund et al., 1996), male biased sexual size dimorphism (Fairbairn, 1997) and 

extreme sperm size or number (Gomendio & Roldan, 1991). 

 

Females tend to be more choosey because on average they invest more in each 

reproductive event. Female choice can occur both pre and post copulation where 

females choose to mate with preferred males based on specific phenotypes or a 

combination of phenotypes (Andersson, 1994). Whilst understanding why male-male 

competition would evolve is fairly easy, understanding the evolution of female choice 

is more difficult. Female choice leads to the evolution of exaggerated male phenotypes 

for courtship or reproduction (Andersson, 1994) and females have evolved extreme 

female reproductive tracts that that allow for post-copulatory female choice (cryptic 

female choice) (Firman et al. 2017).  

 

The evolution of exaggerated sexual traits can also be influenced by other organisms. 

For example, the presence of predators reduces the level conspicuous sexual 

colouration male guppies (Poecilia reticulata) (Endler, 1983). Increasingly we are 

becoming aware that the symbiotic bacterial communities that live on and in animals 

play an important part in determining their host’s phenotype (Archie & Theis, 2011). 

For example, in humans the genes of the gut microbiome alone outnumber those in 

the human genome at least 100 to 1 (Gill et al., 2006). It is therefore highly likely that 

these microbial communities could be playing an important role in sexual selection, 

however these effects are rarely considered or explored.  



11 
 

Research into the influence of symbiotic bacteria on the sexually selected traits of their 

hosts is limited.  The majority of research linking symbiotic bacteria to sexual selection 

so far has focused on the reproductive parasite Wolbachia pipientis (Wolbachia) 

(Werren et al. 2008). Wolbachia is an obligate bacterial endosymbiont found in the 

cytoplasm of arthropods. Wolbachia is maternally transmitted and incredibly abundant 

infecting between 20% and 76% of insect species (Stouthamer et al., 1999), as well 

as infecting mites, nematodes and crustaceans (Jeyaprakash & Hoy, 2000). This 

makes it one of the most prevalent bacterial symbionts in the animal kingdom. This 

alone would warrant the vast number of studies of Wolbachia, however it is the effects 

Wolbachia has as a reproductive parasite that receive the most investigation.  

 

Wolbachia is maternally transmitted meaning males are evolutionary dead ends and 

so its evolutionary optimum is not always aligned with that of its host. This means there 

has been selection on Wolbachia to alter its host’s reproductive biology, which can 

have fitness effects ranging from beneficial to costly. In some nematode worms and 

parasitic wasps Wolbachia is essential for normal reproduction (Bandi et al., 1999; 

Dedeine et al., 2001). Wolbachia alters host reproduction in many other ways even 

causing extreme reproductive phenotypes. These reproductive phenotypes include 

cytoplasmic incompatibility, parthenogenesis, male killing and feminisation of genetic 

males (see box 1 for description).  

 

These significant Wolbachia induced changes in reproductive phenotype can be 

costly, and so there is selection on the host to overcome these costs. This can lead to 

host parasite coevolution. Experiments using the two closely related Drosophila 

species, D. melanogaster and D. simulans, have transinfected D. simulans with a 

strain of Wolbachia from D. melanogaster. They found that in D. simulans the strain 

causes 98% CI induced embryonic mortality compared to 18-32% in D. melanogaster 

(Poinsot et al. 1998). This suggests that the D. melanogaster has coevolved with the 

Wolbachia to reduce the level of CI. They can also have important effects on sexual 

selection, for example where Wolbachia induces male killing in the butterfly Acraea 

encedon, the sex ratio is extremely female biased and has led to sex role reversal 

(Jiggins et al. 2000).  

 

In the woodlouse Armadillidium vulgare, feminising Wolbachia has caused the 
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evolution of a new mechanism of sex determination in some populations. Females are 

ancestrally and in some populations the heterogametic sex with males being ZZ and 

females ZW. In some populations with the feminising Wolbachia strain the female 

determining W chromosome has been lost so all individuals are ZZ. This means that 

Wolbachia infection is the sex-determining factor and there has been selection on the 

reduction of Wolbachia transmission efficiency (Rigaud & Juchault, 1993). Further 

work on A. vulgare has found that as populations become female biased and sex roles 

reverse males prefer to mate with ‘real’ females than feminised males (Moreau et al. 

2001). This then leads to the question of how in some populations the female 

determining W chromosome has been lost. If males are more likely to choose to mate 

females carrying the W chromosome, then there should be selection on its 

maintenance in the population.  

 

Wolbachia can also have effects on host reproduction beyond these large phenotype 

changes, which are diverse and seem to depend on the host and the strain of 

Wolbachia. These effects have important implications for sexual selection in their host. 

In male D. simulans Wolbachia has been associated with a decrease in fertility, sperm 

production and sperm competitive ability (Snook et al., 2000; Champion de Crespigny 

& Wedell, 2006). This is in contrast with Wolbachia’s effect in the flour beetle Tribolium 

confusum where infected males have an increased fertility (Wade & Chang, 1995). 

Finding conflicting examples of the effect of Wolbachia infection is not rare which 

further highlights that the host and strain interact in a dynamic way. In both D. 

melanogaster and D. simulans, Wolbachia infection increases male mating rate 

(Champion de Crespigny et al., 2006). This may have evolved as a host response 

because CI rates are reduced with multiple matings (Karr et al., 1998), or it may be 

caused by the Wolbachia to increase the males’ chance of mating with uninfected 

females.  

 

The female effects of Wolbachia infection are also well studied and are equally 

variable. Female T. confusum infected with Wolbachia have fewer offspring than 

uninfected females (Wade & Chang, 1995). This is the opposite of what is found in 

males suggesting there may be sexual conflict over Wolbachia infection. Female D. 

simulans from California show the incredible speed at which the fitness effects of 

Wolbachia can evolve, where infection has changed from causing a reduction in 
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fecundity of 20% to a benefit of 10% over 20 years (Weeks et al., 2007). This also 

displays how hosts and Wolbachia coevolve and why the fitness effects are so varied. 

For example, in different strains of D. melanogaster infected with the same strain of 

Wolbachia there were variable fitness effects across fecundity and survival (Fry et al., 

2004). Some D. melanogaster strains showing enhanced survival or fecundity in 

infected females and others showing no effect or one even incurring a cost.  

 

There are clearly many effects that Wolbachia has on its host, however the majority of 

studies that compare Wolbachia infected and uninfected individuals use antibiotics to 

remove the infection. This antibiotic treatment is not a targeted approach and will 

remove all non-resistant symbiotic bacteria. Only since recent advances in molecular 

techniques have the importance of these other bacterial symbionts started to be 

realised. A variety of symbiotic bacteria have been shown to influence signalling, male 

attractiveness, kin recognition, and female choice while also having wider behavioural 

effects.  

 

When courting, males use a variety of signals in attempt to attract a mate, bacteria 

play an important role in many of these signals in a number of ways. Sexual signals 

can be incredibly diverse ranging from olfactory pheromones to colourful visual 

displays, or behaviours such as dancing. Hawaiian bobtail squid (Euprymna scolopes) 

have a light organ within their mantle that contains the bioluminescent bacteria, Vibrio 

fischeri, that is used for camouflage. The Hawaiian bobtail squid is infact able to control 

the level of bioluminescence emitted by bacteria (Boettcher et al., 1996). It is also 

possible these bioluminescent bacteria could be involved in courtship, however little 

is known about the reproductive behaviour of bobtail squid. Under laboratory 

conditions the closely related Atlantic bobtail squid (Sepiola atlantica) was observed 

mating and there appeared to be no courtship (Rodrigues et al., 2009), however, this 

was with only 5 matings and it is unlikely to be representative of what happens in the 

wild. As these squid are active at night, it is definitely possible that the bioluminescence 

is involved in courtship, however this needs further investigation.  

 

Many birds have extravagant and colourful plumages that have evolved as a result of 

sexual selection. Females have frequently been shown to choose the showiest male, 

however explaining why females choose these more conspicuous males is more 
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difficult. One explanation, the handicap principle, is that the traits are costly to carry 

and so only the best condition males can afford to carry them (Zahavi, 1975). The cost 

of carrying these signals appears to be mediated by symbiotic bacteria in some cases. 

Bird’s feathers are home to bacteria communities a subset of which are known as 

feather degrading bacteria (FDB) because of their ability to break down feathers. 

These FDB are phylogenetically diverse (Onifade et al. 1998) and relatively prevalent 

across bird species (Burtt & Ichida, 1999).  

 

In spotless starlings (Sturnus unicolor), feathers responsible for male sexual signaling 

are more susceptible to degradation and habour more bacteria than feathers not used 

for signalling (Ruiz-Rodríguez et al., 2015). There are further examples of feathers 

involved in sexual signalling being degraded faster than normal feathers. Unmelanised 

areas of feathers are degraded by FDB faster than melanised ones (Ruiz-De-

Castañeda et al., 2012), and often white feathers or patches are involved in sexual 

signalling. In the European flycatcher (Ficedula hypoleuca) males have larger and 

brighter white patches on their wings than females and these patches are sexually 

selected. The white patches of the feathers are degraded faster than the dark areas 

of the same feathers (Ruiz-De-Castañeda et al., 2012). With these wing feathers not 

only involved in signalling but also flight having more degradable feathers will be costly 

and symbiotic bacteria are responsible for some of these costs (Ruiz-De-Castañeda 

et al., 2012). Symbiotic bacteria do not only impose some of the costs of sexual 

displays in birds they also help to protect against them. The uropygial glands of birds 

produce oily secretions that are used to protect the feathers while improving their 

flexibility and waterproofness (Moreno-Rueda, 2017). The secretion also reduces the 

growth of feather degrading bacteria, and the size of the gland inversely correlates 

with feather degradation (Moreno-Rueda, 2010). Symbiotic bacteria that live within the 

uropygial gland produce antibiotic peptides that protect against the feather degrading 

bacteria (Martín-Vivaldi et al., 2009).  

 

The symbiotic bacteria that live within animals’ guts have become the focus of many 

studies recently, and their impact on host fitness is hugely diverse and stretches 

beyond the obvious digestive and immune functions. In D. melanogaster alterations to 

the composition of the gut microbiota caused changes in male cuticular hydrocarbon 

(CHC) profile, which are pheromones used in courtship (Sharon et al. 2010; Inglby, 
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2015). Females also preferred to mate with males that had similar gut microbiota to 

them (Sharon et al. 2010). The effects found in this study could not be replicated in 

when the work was repeated by Leftwich et al. (2017) although this study failed to find 

any diet based assortative mating they did find D. melanogaster raised on different 

diets had different gut bacterial communities. The diet based assortative mating effect 

has been by Najarro et al. (2015). Further work has suggested that variation in the 

presence and amount of fungicide in the diets used in these experiments may explain 

the difficulty in replicating these result (Obadia et al. 2018). Fungicide present in the 

diets used has been shown to potentially alter the gut bacterial profiles of D. 

melanogaster (Obadia et al. 2018). Despite these various studies the microbiota 

associated assortative mating appear to be present when the diet mediated 

assortative matings are also present.  In Mediterranean fruit flies (Ceratitis capitata) 

changes to the symbiotic gut bacteria alters male reproductive success (Ami et al., 

2009). When sterilising males for use in pest control the gut microbiota was altered 

this caused the males to be less successful at securing matings. This effect was 

removed after reinfecting the flies with gut bacteria they had lost (Ami et al., 2009). 

Gut bacteria inhibits kin recognition in D. melanogaster where removing the gut 

microbiota caused males to invest significantly less when copulating with siblings (Lize 

et al., 2014). It is possible that there is conflict between the gut bacteria and host over 

male reproductive investment. The gut bacteria benefit from males mating with siblings 

because a large portion of the gut microbiota is maternally transmitted (Wade, 2014). 

Although males benefit by limiting their investment when mating with siblings as 

offspring may suffer from inbreeding costs (Okada et al., 2011). The possibility of host-

gut conflict has yet to be explored and warrants further testing.  

 

Gut microbiota have even been shown to have important effects on host behaviour. 

The most notable of these is in mice, where changes in gut microbiota caused 

increased anxiety and neurochemical changes (Neufeld et al., 2011). Behavioural 

changes are likely to have important implications in terms of sexual selection however 

so far no work has looked at the gut-brain axis from this angle. In the most extreme 

case, gut bacteria can cause reproductive isolation between two closely related 

species from the genus Nasonia. The hybrid lethality between Narsonia vitripennis and 

Narsonia giraulti is almost completely removed by the curing of their gut bacteria and 

can be brought back by reinfection (Brucker & Bordenstein, 2013). This highlights how 
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the effects of animal’s gut bacteria can be very similar to the effects of Wolbachia 

where this hybrid lethality is similar to cytoplasmic incompatibility.  

 

Clearly, Wolbachia amongst other reproductive parasites, play an important role in 

host reproduction, and therefore in sexual selection, also. The effects reproductive 

parasites have on their host are becoming increasingly important to understand as 

their potential for pest control is explored. If Wolbachia infection causes males to be 

less able to secure matings or to produce fewer and or less competitive sperm, then 

releasing them into the population may not be a cost effective way to reduce pest 

numbers. There is still potential to explore how Wolbachia infection interacts with host 

genotype. With most studies of Wolbachia, ignoring the potential impact of other 

symbiotic bacteria. The varied effects of the gut microbiota alone show how important 

they can be in terms of host reproduction. It is therefore important to control for the 

effects of the gut microbiota when testing the reproductive consequences of 

Wolbachia infection. Despite the wider fitness effects of symbiotic gut bacteria 

becoming increasingly well studied, its impact on sexual selection is still poorly 

understood. It will be important to control for symbiotic bacteria when studying all 

aspects of sexual selection. For example Wolbachia can bias estimates of sexual 

conflict in D. simulans (Duffy et al. 2019). The classic view of sexual selection may 

need to be adjusted as we become increasingly aware that symbiotic bacteria plays 

an important role in shaping both male and female reproductive fitness.  

 

This thesis will explore how the gut microbiota and host genotype interact. We use the 

model organism D. simulans to investigate these interactions. Drosophila simulans 

separated from its closely related sister species D. melanogaster around 2 million 

years ago (Powell, 1997). Although D. melanogaster is the more frequently studied 

model species there are substantial differences between the two species in relation to 

both natural (Chakir et al. 2002) and sexual selection (Taylor et al. 2009). Using a 

variety of model species provides us with a more complete picture of the natural world. 

Drosophila simulans are an ideal model to study the effects of the microbiota on 

several aspects of sexual selection. Females control mating decisions in D. simulans, 

so there is no forced copulation once females are sexually mature (Spieth, 1974; 

Markow, 2000). This allows us to study female choosiness and preference, as well as 

male attractiveness and competitive ability. Drosophila spp. also have relatively simple 
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symbiotic microbial communities (Wong et al. 2013). Wolbachia infection has also 

been found to impact range of sexually and naturally selected traits in D. simulans 

(Champion de Crespigny & Wedell, 2006; Weeks et al. 2007; Champion de Crespigny 

& Wedell, 2007; Bi et al. 2019). We are also able to use iso-genetic strains (isofemale 

lines, hereafter genotypes), as they are powerful way to assess naturally occurring 

genetic variation in a population and enable us to repeatably measure a range of fixed 

genotypes (Hoffmann & Parsons, 1988; David et al. 2005). Therefore, we are able to 

test the fitness effects of the microbiota across a range of genotypes. 

 

In Chapter 2, we investigate effects of Wolbachia infection and microbiota changes on 

male sexual-fitness across different genotypes. We used antibiotics to cure Wolbachia 

infection and then manipulated the microbiota in different ways to test if Wolbachia or 

other aspects of the microbiota caused the fitness rank changes with antibiotic 

treatment. In Chapter 3 we explore the possibility of bidirectional cytoplasmic 

incompatibility between the strain of Wolbachia our focal isofemale lines are infected 

with, and the strain our tester ebony flies are infected with. We also test if the level of 

CI depends on the host’s genotype when all focal flies were infected with the same 

Wolbachia strain. In Chapter 4 we evolve populations under either elevated or relaxed, 

natural and sexual selection in a fully-factorial manner. We then sequence the gut 

microbial communities of each population replicate for males and females using 16s 

rRNA amplicon sequencing. We test the gut microbiome response to natural and 

sexual selection in both males and females and the interactions between natural and 

sexual selection. In Chapter 5 we manipulate the symbiotic microbial communities of 

males and females and include a third microbial treatment of a novel microbiota 

collected from Drosophila pseudoobscura raised on a different diet. This allows us to 

compare the fitness effects of microbiota removal to the alteration of the microbiota to 

a community that is less adaptive. We manipulated the microbiota across genotypes 

to test if the response depends on the host’s genetic background. We test the fitness 

effects of this microbiota manipulation across a range of fitness measures in both 

males and females. In Chapter 6 we investigate how Wolbachia infection and other 

aspects of the microbiota affect female choosiness and body size across different 

genotypes.  
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Box 1. 

 

Cytoplasmic incompatibility (CI) is the most widespread and studied Wolbachia-induced phenotype 

(reviewed in Hoffmann & Turelli, 1997). CI occurs when males infected with a strain of Wolbachia mate 

with a female that is either uninfected or infected with a different strain of Wolbachia resulting in zygote 

mortality. All other crosses result in no zygote mortality meaning that females without that strain of 

Wolbachia have a lower reproductive output and that strain spreads throughout the population. One 

reason this phenotype has received so much attention is its possible use in pest control, by releasing CI 

inducing Wolbachia infected males into the population. If these males mate with uninfected wild females 

they will not produce offspring and so pest numbers will decrease (LePage & Bordenstein, 2013).  

Parthenogenesis inducing Wolbachia strains cause females to produce Wolbachia infected daughters 

without fertilisation from a male. Unfertilised eggs that normally would develop into a haploid male, which 

are an evolutionary dead end for the infecting Wolbachia, actually develop into diploid females. This 

means that the Wolbachia strain spreads throughout the population, as infected females can produce 

double the number of daughters as uninfected females. As a result this changes in the sex ratio with the 

population becoming female biased which can have further effects on sexual selection. Wolbachia induced 

parthenogenesis has been found in thrips, wasps and mites (Arakaki et al., 2001; Huigens et al., 2004; 

Weeks & Breeuwer, 2001).  

Male killing strains of Wolbachia act by killing any genetic male offspring. This phenotype only evolves 

when there is an effect of sibling competition on offspring fitness/survival. Male killing strains can spread 

through a population as females do not waste resources caring for sons or there is reduced competition 

for their daughters. Similar to parthenogenesis male killing also causes the population to become females 

biased. Wolbachia induced male killing can be found in Coleoptera, Lepidoptera and Diptera (Hurst et al., 

1999; Hurst et al., 2000).  

Wolbachia induced feminisation of genetic males is a process where genetically male offspring of 

Wolbachia infected females develop as functional females. Wolbachia induced feminisation occurs in 

some Crustacea, Hemiptera, and Lepidoptera (Rousset et al., 1992; Kageyama et al., 2002; Negri et al., 

2006). Inducing feminisation evolves as it benefits the Wolbachia in a similar way to inducing 

parthenogenesis it means that all offspring females produce are daughters and so are able to transmit 

Wolbachia.  
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Chapter 2 

 

The gut microbiome, Wolbachia and intergenomic epistasis 

for sexual fitness.  

 

Abstract 

 

A number of recent studies have documented apparent effects of gut bacteria on host 

fitness. However, many of these have not satisfactorily accounted for other curable 

symbionts that could also alter host phenotypes. One of these is the near ubiquitous 

endosymbiont of insects, Wolbachia. Wolbachia greatly affect host fitness, and 

treating hosts with antibiotics to investigate gut bacteria also affects Wolbachia, the 

relative contribution of the two to documented host-fitness impacts remains unclear. 

Here we simultaneously assess the impact of gut bacteria and Wolbachia on the male 

sexual-fitness of Drosophila simulans genotypes. We show that antibiotic treatment 

has major impacts on male fitness ranks. This is entirely driven by host genotype 

interactions with Wolbachia infection status, with no detectable effects of changes to 

the gut microbiome. These results show that to ascribe gut bacterial effects with 

certainty, accounting for the effects of other host commensals is critical. Furthermore, 

they suggest that Wolbachia may be a cryptic but important source of intergenome 

epistatic fitness-variation. 

 

Introduction 

 

The role of commensal bacteria in determining host phenotypes has only recently 

begun to be explored in detail (Archie & Theis, 2011). While we have long known that 

some “infections” have large fitness effects (Burnet & White, 1972), the acceptance 

that the total host microbiome may be important in host phenotype determination is 

new. Diverse bacterial communities live on and in animals, and these communities 

can influence a range of host traits and fitness correlates (Coyte et al. 2015). For 

example, bacteria can be key players in animal recognition, with communities 

inhabiting hyena scent-glands seemingly responsible for chemical cues used in social 

interactions (Theis et al. 2013). Equally, within-group similarity in the bacterial 
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communities inhabiting the anal scent-secretion of meetkats appears to be important 

in social interactions (Leclaire et al. 2014). Gut bacterial commensals have also been 

linked to obesity and human health (Turnbaugh et al. 2009; Coyte et al. 2015). 

 

It has also been suggested that gut bacterial communities have important effects on 

traits more closely linked to fitness, and in Drosophila melanogaster, treatment with 

antibiotics alters the fly gut microbiota and decreases longevity (Brummel et al. 2004), 

and also influences mate choice (Sharon et al. 2010). Changes in mate preference 

resulting from antibiotic exposure (e.g. Sharon et al. 2010) are potentially extremely 

important as this could shed light on the assortative mating seen in iconic studies of 

speciation that used flies experimentally evolving on different diets (Dodd, 1989). Diet 

can also alter gut microbiota and the gut microbiota may influence fly cuticular 

hydrocarbons (CHCs), which are key determinants of male attractiveness (Ingleby et 

al. 2014). Thus bacteria might underpin gene-flow disruption across diets caused by 

reduced mating rates between flies developing of different food. This has clear 

implications for speciation and our understanding of the mechanisms generating it.  

Unfortunately a common means of disrupting the gut biota of Drosophila involves 

treatment with antibiotics, but this has effects beyond the gut as antibiotics also kill 

other curable symbionts, including Wolbachia a widespread intracellular parasite that 

infects every insect order (Serbus et al. 2008). The loss of Wolbachia is of particular 

importance as they can profoundly influence host phenotype (Werren, 1997), and have 

been implicated in male fitness and mate choice previously (Koukou et al. 2006; De 

Crespigny & Wedell, 2006). 

 

Wolbachia are cytoplasmically inherited rickettsiae (Werren, 1997) and cause a range 

of phenotypes that vary in their effects from mutualistic, to commensal, to parasitic 

(Werren et al. 2008). Many of the effects on hosts are directly linked to their 

transmission mode, which explains why they kill or feminize males, and induce 

parthenogenesis and cytoplasmic incompatibility (Werren et al. 2008). In their more 

mutualistic interactions with hosts, Wolbachia can salvage ovarian defects and protect 

against viruses (Starr & Cline, 2002; Martinez et al. 2014). Additionally, mate choice 

effects have been attributed to them, with antibiotic treatment altering male 

attractiveness and fitness ranks (Koukou et al. 2006; Miller et al. 2010). However as 

noted above, curing flies of Wolbachia also cures them of their gut biota, and although 
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it was thought that the crossing regime used in a previous study assessing the mate-

choice effects of Wolbachia infection controlled for gut biota (Koukou et al. 2006), this 

was not directly assessed. As a result, it is currently not clear if the strong fitness 

effects of antibiotic treatment in Drosophila are due to loss of Wolbachia infection or 

altered gut biota.  

 

Drosophila simulans is a close relative of D. melanogaster. As with the latter, CHCs 

are important determinants of male attractiveness (Ingleby et al. 2013a) and they are 

influenced by diet (Ingleby et al. 2013b). Thus it is possible that gut bacteria which are 

also influenced by diet, alter CHCs and male fitness ranks in D. simulans. Additionally, 

Wolbachia infection alters one male fitness component, sperm competitiveness 

(Champion de Crespigny & Wedell, 2006), so there is potential for both the gut 

bacterial community and Wolbachia to affect male fitness. Here we tested for the 

effects of gut biota and Wolbachia on relative male fitness. We used D. simulans iso-

genetic strains (isofemale lines, hereafter genotypes or isolines), as they are powerful 

way to assess naturally occurring genetic variation in a population and enable 

researchers to repeatably measure a range of fixed genotypes (Hoffmann & Parsons, 

1988; David et al. 2005). We first assessed the effects of antibiotic treatment on a 

range of sexual fitness measures of host genotypes and then subsequently tested to 

see whether gut microbiota or Wolbachia were responsible for the changes in fitness 

we documented. 

 

Materials and Methods 

 

Drosophila simulans isolines used in this experiment were originally collected from 

Greece (Ingleby et. al., 2013a) and were maintained for > 45 generations with full-sib 

matings (n= 25 brothers and 25 sisters/isoline). Thus, each isoline could be considered 

as being distinct genotypes (David et al., 2004).  All stocks were reared on a standard 

cornmeal-based Jazzmix diet (hereafter Jazzmix) (supplied by Applied Scientific, UK) 

at 25°C on a 12∶12 hour light:dark cycle (unless stated otherwise).  
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Assay 1. Antibiotics and Fitness Ranks 

 

Thirty of these isolines were randomly selected and assessed for Wolbachia infection 

prior to the start of our investigation. Two were found to be naturally uninfected and 

excluded from further use due to design considerations. The remaining 28 isolines 

were split into two sets, one was subject to antibiotic treatment (see Wolbachia curing 

section below; called cured isolines hereafter) and the other was maintained as per 

the standard protocol described above (called infected isolines hereafter). Two ebony 

(a recessive, phenotypic body-colour mutant) stock populations were also established 

(stocks from Tucson stock centre) and maintained at the standard conditions 

described above (ca. 800 flies/cage) – one population was cured of Wolbachia, the 

other maintained with its natural infection.  

 

Wolbachia curing: To cure flies they were reared on ‘Drosophila quick mix medium’ 

(Blue media: Blades Biological, Edenbridge, Kent, U.K.) at 25°C and a 12:12 h 

light:dark during the curing and recovery process. Briefly, 25 males and 25 females 

from each isoline (and an ebony stock subset) were allowed to oviposit for three days 

on food supplemented with 0.03% of the antibiotic Tetracycline HCL (Sigma Aldrich). 

Offspring collected from these vials were used to start the next generation. This 

process was repeated for three generations, after which the presence or absence of 

Wolbachia was confirmed via PCR analysis (see Wolbachia screening section below) 

of 20 males and females per isoline (and ebony stock). Following confirmation of 

Wolbachia absence from the cured isolines (and ebony stock), we allowed them to 

recover for three generations on non-tetracycline blue media before any experiments 

were performed. 

 

Wolbachia screening: To determine the infection status of individuals, PCR 

amplification of Wolbachia-specific genes was conducted on DNA extracts of adult 

flies. Flies were squashed in 48 μl of STE buffer (Fisher Scientific; 25 mM NaCl, 10 

mM Tris-HCl pH=8.0, 1 mM EDTA), and incubated with 2μl Proteinase K (0.5 mg ml–

1) for 30 min at 56°C. The homogenate was heated at 95°C for 2 min to deactivate the 

Proteinase K, diluted 1:30 with DNase free water and was then used for PCR 

amplification. wsp primers used were wsp 81F (5′-

TGGTCCAATAAGTGATGAAGAAAC-3′) and wsp 691R (5′-
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AAAAATTAAACGCTACTCCA-3′) (Zhou et al. 1998). Cytoplasmic DNA extracts from 

known positive samples were used as positive controls and sterile water was used 

instead of DNA in the negative controls. The PCR program used was: 94 °C for 4 min; 

35 cycles of 95 °C for 30 sec, 52 °C for 30 sec, and 72 °C for 1 min; 72 °C for 4 min. 

PCR products were run on a 1% agarose gel, stained with RedSafeTM and visualized 

under an UV transilluminator.  

 

Assay 1: Fitness of focal male versus ebony males.   

 

We used competitive male reproductive output (the number of offspring sired by focal 

males competing against two ebony males for access to two ebony females) as a 

measure of male fitness. This was scored as the proportion of offspring that were sired 

by the focal male’s (wild-type) averaged to produce a mean isoline score. We used 4 

mating combinations: CxC (cured focal♂ + 2 cured ebony♂ + 2 cured ebony♀; n= 139), CxI 

(cured focal♂ + 2 infected ebony♂ + 2 infected ebony♀; n=122); IxI (infected focal♂ + 2 

infected ebony♂ + 2 infected ebony♀; n=128) and IxC (infected focal♂ + 2 cured ebony♂ + 2 

cured ebony♀; n=95) and tested 5 males from each isoline per mating combination. 

Briefly, each focal male was housed with two ebony males and two ebony females for 

48 hours, then males were removed and females were moved into fresh egg-laying 

vials for 48 hours and then again for 72 hours. All fly transfers were performed without 

anaesthesia (Champion De Crespigny & Wedell, 2008). Offspring from each vial were 

counted on the 8th day after the first eclosions. This measure has been shown to be 

a good proxy for lifetime productivity from a single copulation (Taylor et al. 2008; 

Nguyen & Moehring 2015). All parental flies were subsequently screened for 

Wolbachia to verify mating combinations. Any individuals not matching purported 

treatments were excluded from further analysis. 

 

Analyses 1: Monte Carlo simulations were used to test if isoline ranking in one 

treatment was predictive of its ranking in another treatment. We tested the following 

combinations (focal males x ebony female): CxC vs IxC and CxI vs IxI. Briefly, an 

actual correlation value was calculated and then ranks in each treatment were shuffled 

(within treatments) without replacements. Ranks were shuffled 10,000 times and used 

to calculate a two-tailed P-value. P-values > 0.05 mean that there was no significant 

correlation between the ranking across treatment pairs (i.e. ranking in one treatment 
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does not predict ranking in another treatment). These results were additionally verified 

using GLMM (using the arcsine square root transformed offspring proportion) with 

Treatment as a fixed effect and Isoline as a random effect. For robustness, we then 

used the raw proportional data in a generalised linear mixed effect model, taking into 

account the quasibinomial distribution of the dispersion parameter and treated 

Treatment and isoline IDs as fixed effects against the offspring count. Model 

simplification was used to test the significance of the interaction term.  All analyses 

were concordant, so we only present the randomization outcomes here. 

Figure 1. Experimental treatment for each isoline (N=13). Vials with brown food are 

raised on Jazzmix blue vials are raised on blue food. A represents antibiotic treatment 

with 0.03% tetracycline. The red arrow represents where the food was inoculated with 

the gut bacteria collected from flies in treatment 1 using the inoculation method 

described in assay 2. Treatment 1 is the standard control, treatment 2 is the food 

control, treatment 3 is the cured and 4 is the reinfected treatment. 
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Assay 2. Wolbachia, Gut Biota and Male Reproductive Success 

 

To establish whether changes in fitness ranks were caused by gut bacteria or 

Wolbachia, we haphazardly selected 13 uncured isolines and established sub-lines 

that were exposed to one of 4 experimental treatments. Flies were 1) untreated and 

left on their standard Jazzmix food (+W+G), 2) untreated but reared on the curing food 

(+WΔG), 3) treated with antibiotics (–WΔG) or 4) treated with antibiotics and re-

infected with previous gut bacteria (–W+G) – where W = Wolbachia (+ or -) and G is 

gut bacteria, altered (Δ) or not (+) (Figure 1). 

As above, curing involved rearing flies on Drosophila Quick Mix Media Blue (Blades 

Biological) treated with 0.03% tetracycline hydrochloride but here this was done for 

two generations. The flies were then allowed to recover on the blue media without 

tetracycline for 3 generations before being moved back onto Jazzmix.  

 

To re-infect flies (–W+G), the gut bacteria from their matching untreated sub-line was 

used. To collect the gut bacteria 25 males and 25 females from each sub-line were 

allowed to live and interact as normal on Jazzmix in 50ml vials for 3 days. The flies 

were then removed and 2ml of PBS was added to each vial on top of the food. The 

vial was then vortexed so the top layer of food mixed with the PBS and the liquid was 

pipetted out the vial into sterile 2ml Eppendorfs. The Eppendorfs were centrifuged at 

10000rmp for 3 minutes to pellet the bacterial cells and the supernatant discarded. 

The pellet was re-suspended in 500ul of PBS and stored at 4oC. Twenty-five females 

from each of the treatment 2 sub-lines (antibiotic treated but re-infected) were allowed 

to egg lay for 24 hours. The eggs were then dechorionated using 50% bleach, this 

removes any maternally transferred bacteria from the eggs, then rinsed in PBS. Eggs 

were then placed on fresh Jazzmix in 50ml vials and inoculated with 100ul of the line-

appropriate gut-bacteria solution. The eggs were then allowed to develop and the adult 

flies were moved onto new Jazzmix. 

 

In treatment 3 (reared on the curing food: (+WΔG)) flies from the sub-lines were reared 

on the same blue food as the antibiotic treated lines without the addition of tetracycline 

for 5 generation and then moved back onto Jazzmix. While for treatment 4 (+W+G), 

sub-lines were maintained as normal on Jazzmix and were not exposed to antibiotics.  
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Gut bacterial assay: To test if experimental treatments (–WΔG; –W+G; +WΔG; +W+G) 

altered bacteria as predicted, we sampled 10 of the 13 sub-lines from each treatment 

(this subsampling was purely for logistical reasons). Ten male and female guts/line 

were sterilely dissected out and pooled by sex in 100ul of PBS. The guts were crushed 

by hand using a sterile pestle. DNA was extracted using the DNeasy Blood & Tissue 

Kit (qiagen). PCR of the DNA extracted from the guts was used to test for the presence 

or absence of the 5 most common bacterial species in Drosophila guts (Lactobacillus 

brevis, Lactobacillus fructivorans, Lactobacillus plantarum, Acetobacter pomorum and 

Acetobacter tropicalis), ascertained using taxon specific primers (Wong et al. 2013). 

The PCR protocol was an initial denaturing step of 95OC for 3 minutes. Followed by 

30 cycles of 95OC for 35 seconds, 66OC for 35 seconds (56OC for 16S8F + 16S1492R, 

A. tropicalis and L. brevis), 72OC for 1 minute and a final extension at 72OC for 10 

minutes. Products were run on a 1% agarose gel to test band quality and size. Primers 

16S8F and 16S1492R (Lane, 1991) were used to amplify the 16S rRNA genes.  

 

Assay 2: Fitness post manipulation of Wolbachia and gut biota. 

To test for effects of Wolbachia and the gut microbiota on male fitness we compared 

the 4 treatments, –WΔG, –W+G, +WΔG and +W+G. 20 males and females from each 

subline were allowed to egg lay on 30ml of Jazzmix for 3 days and virgin males were 

collected from these vials. These males were allowed to sexually mature (for 4 days) 

and were then competed against 2 virgin ebony competitor males for access to 2 virgin 

ebony females (as described for Fitness assays 1 above) all from the Wolbachia 

infected ebony population.  We used infected testers because this best avoids any 

potential cytoplasmic incompatibility although leaves the possibility of birectional 

cytoplasmic incompatibility (O’Neill & Karr, 1990) or male killing. 

Analyses 2: To assess whether fitness effects were likely to be due to changes in gut 

biota or Wolbachia, we first had to establish that after curing flies we could re-establish 

the initial gut microbiota and that our antibiotic and diet treatments affected gut 

microbiota as expected. To test for the effects of experimental treatments (antibiotic 

and diet manipulations) on gut biota we used meta-analytic techniques (Rosenthal, 

1991). First, contingency table tests were used to compare infection rates of the major 

bacterial group across treatments, and then P-values for each comparison were 

converted to z-scores that were subsequently combined using Stouffer’s method 

(Rosenthal, 1991). We then assessed the statistical significance of these scores using 
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standard probabilities of the Normal Distribution. We then used GLMMs to assess the 

impact of Wolbachia and gut bacteria on male fitness while controlling for genetic 

background (founding isoline), before finally conducting rank correlations when using 

either gut treatment (ΔG vs. +G) or Wolbachia infection status (-W vs. + W) to split the 

data. 

 

Assay 3. Wolbachia and gut microbiota manipulation without diet manipulation  

 

We randomly selected 6 uncured isolines and established sub-lines that were exposed 

to one of 4 experimental treatments. In all treatments the experimental flies had their 

gut bacteria removed by dechorionating their eggs and then were either re-infected 

with their original bacteria from the matching isoline (re-infected) or inoculated with 

sterile PBS as a control (removed) to provide the gut bacteria +/- treatments.  Flies 

were 1) treated with antibiotics and had their gut bacteria removed (–W-G), 2) treated 

with antibiotics and re-infected (–W+G), 3) untreated but had their gut bacteria 

removed (+W-G) or 4) untreated and re-infected (+W+G) – where W = Wolbachia (+ 

or -) and G is gut bacteria, removed (-) or removed and then re-infected (+). As above, 

curing involved rearing flies on Drosophila Quick Mix Media Blue (Blades Biological) 

treated with 0.03% tetracycline hydrochloride but here this was done for two 

generations. The flies were then allowed to recover on the blue media without 

tetracycline for 3 generations before being moved back onto Jazzmix.  

 

The experimental flies from both sub treatments of each isoline (W+/W-) had their gut 

bacteria removed by dechorionating their eggs as in assay 2. Then 20 eggs were 

distributed into each small vial containing 7ml Jazzmix food. Then half of these vials 

were inoculated with 100ul of the gut bacteria collected from the matching isoline as 

the + gut bacteria treatment. The other half were inoculated with 100ul sterile PBS as 

the – gut bacteria treatment. Gut bacteria for inoculation was collected in the same 

way as for fitness assay 2. 

 

Assay 3: Male attractiveness post Wolbachia and gut biota manipulation. 

To test for effects of Wolbachia and the gut microbiota on male fitness we compared 

the 4 treatments, –W-G, –W+G, +W-G and +W+G. We used male attractiveness 

(latency to mate with a tester female) as a measure of fitness.  This is a standard 
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measure of male attractiveness (Speith, 1974; Ritchie et al. 1999; Taylor et al. 2008; 

Ingleby et al. 2013c: discussed in Narraway et al. 2010) and mating success is a key 

measure of Drosophila fitness (Powell, 1997). To collect focal males of each treatment 

the eggs from the gut treatment process above were allowed to develop and males 

collected as virgins every 6 hours. These virgin males were stored in vials of 5-10 

individuals then allowed to mature for 3-6 days. To collect tester females 25 male and 

25 female ebony flies were allowed to egg lay for 2 days in each large vial containing 

30ml Jazzmix. The eggs were left to develop until female virgins were collected as 

every 6 hours and stored in groups of 10. These flies aged for 3-5 days and used as 

tester mates for both males and females. All tester females were moved into individual 

vials ~12 hours before being introduced to a male. Individual males were introduced 

to the female 1 hour after incubator lights came on and the time from introduction until 

mating (mating latency) and mating duration were recorded by observers blind to the 

treatment of each pair. The focal flies were then removed and stored at -20 until they 

were tested for size with wing measurements. 

 

Analyses 3:  All analyses were performed in RStudio version  1.1.383 (RStudio Team, 

2016) using R version 3.6.2 (R Core Team, 2019). To assess whether fitness effects 

were likely to be due to changes in gut biota or Wolbachia, we used Kaplan-Meier 

curves to visualize the data and analysed differences in male attractiveness using a 

cox proportional hazard model (Kaplan & Meier 1958; Cox 1972) with isoline, gut 

bacteria treatment, and Wolbachia infection status as co-variates and mating being 

the hazard. This allows us to tests which factors impact the time to the event and also 

include individuals that did not mate during the observation period. We then tested the 

significance and interactions of all the risk factors using the ANOVA function in the car 

package (Fox & Weisberg, 2018). 

 

Results 

 

Antibiotic treatment (Methods: Assay 1) altered the relative male-fitness ranks of 

isolines. Monte Carlo simulations showed there was no correlation between the fitness 

ranks of isolines when males were treated (cured) with antibiotics or not (infected) 

(Figure 2). This was true whether the tester females were cured or infected 

(correlations in cured tester females: mean Spearman’s rho < 0.001; p = 0.77. 
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correlations in infected tester females: mean Spearman’s rho = 0.002; p = 0.25). Thus 

treating isolines with antibiotics fundamentally changed the relative fitness-ranks of 

male genotypes although these changes cannot be deemed statistically significant due 

to the nature of our analysis. 

 

Figure 2. The relative competitive male-fitness ranks of genotypes (isolines) either 

untreated (infected) or treated (cured) with antibiotics when tested against ebony 

males with ebony females that were either antibiotic treated (cured - left panel) or not 

(infected – right panel). There is no association between genotype fitness-ranks 

across antibiotic treatments (regardless of female status) as indicated by the major 

crossing over in ranks. Thus antibiotic exposure appears to have altered the male 

sexual-fitness ranks of fly genotypes. 

 

To assess whether curing flies of their Wolbachia infection caused changes in gut biota 

(Methods: Assay 2, Figure 1) we had to be able to manipulate both in a fully factorial 

manner.  We attempted this using dietary manipulation and also antibiotic treatments 

with reinfection and then tested to see if our experimental treatments altered gut 

bacteria as expected (putative treatments were, Wolbachia (W) present (+) or absent 



37 
 

(-) and gut bacteria (G) changed (-Δ) or unchanged (+) to generate 4 treatments: –W-

ΔG, –W+G, +WΔG and +W+G). To assess the efficacy of treatments, we first 

converted P-values from contingency tests comparing across treatment infection 

prevalence of the five major bacterial groups found in D. simulans to z-scores. These 

were subsequently combined using Stouffer’s method (Rosenthal, 1991) and 

treatment effects on the gut community changes were evaluated by the magnitude of 

the combined-z score. This showed there were significant gut biota differences across 

the 4 treatments (z = -2.69; P = 0.007). Focused post-hoc tests revealed that the gut 

biota of antibiotic-treated re-infected flies did not differ from untreated flies reared on 

the ancestral diet (-W+G = +W+G; z = -0.88; P = 0.38), but the gut bacteria of 

antibiotic-treated re-infected flies differed from antibiotic-treated flies that were not re-

infected (–W+G ≠ –WΔG; z = -2.65; P = 0.008). Furthermore, the gut microbiota of 

treated but non-re-infected flies did not differ from flies that were placed on the novel 

diet (–WΔG = +WΔG; z = -0.87; P = 0.40). Importantly, there were significant 

differences between treatments that putatively altered gut bacteria and those that did 

not ([–WΔG = +WΔG] ≠ [–W+G = +W+G]; z = -3.27; P < 0.001). Thus the experimental 

use of antibiotics, diet and reinfection altered gut bacteria and Wolbachia infection 

(see Methods) in a fully factorial manner. As a result we could subsequently compare 

the fitness of genotypes (isolines) when they were Wolbachia free or not and either 

had altered or unaltered gut bacteria. 

 

GLMM analysis of male fitness (arcsine square-root transformed proportion of 

offspring sired in competitive mating trials) as a function of changes to gut biota 

(changed versus unchanged), Wolbachia status (infected versus uninfected) (both 

fixed effects), and genotype (isoline: fitted as a random main effect only), showed that 

only Wolbachia status had a significant effect on male fitness (F1,87 = 6.47; P = 0.013). 

All other effects including the interaction between gut status and Wolbachia status 

were not statistically significant (all F < 1.7; all P > 0.19) (Figure 3). These data were 

therefore unable to determine the causes of changes in male fitness ranks across the 

genotypes. However, we did see significant reduction in absolute male fitness with 

Wolbachia infection status indicative of cytoplasmic incompatibility (CI), and this (CI) 

impedes our ability to ascribe causal factors generating the fitness rank changes 

(Figure 3).  
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Supporting this conjecture, averaging genotype fitness/treatment and then using these 

means to assess the fitness ranks of genotypes across gut-bacterial treatments (ΔG 

versus +G) revealed that there were no correlations across gut environments 

(Spearman’s rho = 0.29; P = 0.33), or when ranked by Wolbachia treatments (+/- W) 

(Spearman’s rho = -0.15; P = 0.63). This is consistent with previous analyses (Figures 

2 & 3) but again changes in the fitness ranks of genotypes could not be definitively 

assigned to changes in Wolbachia or gut microbiota.  

 

Figure 3. The effects of the gut bacteria and Wolbachia infection status on the 

reproductive fitness of male flies. A) shows the non-significant interaction plot 

(Wolbachia x gut bacteria), the right hand-panels the main effects: B) – gut bacteria; 

C) – Wolbachia. Only the presence or absence of Wolbachia had a significant effect 

on male fitness. 

 

To additionally test whether changes in fitness were primarily due to changes in gut 

biota or Wolbachia, we decided to manipulate both again in a fully factorial manner, 

but this time using an approach that did not require the use of diet manipulation 

(Methods: Assay 3).  Instead we used antibiotic treatments and reinfection (via 

collected bacteria). Putative treatments were, Wolbachia (W) present (+) or absent (-) 

and gut bacteria (G) removed (-) or re-infected (+) to generate 4 treatments: –W+G, –

W-G, +W+G and +W-G. To mitigate any reproductive effects caused by Wolbachia 

(eg. CI) we used male attractiveness (mating latency) as a measure of fitness (eg. 
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Taylor et al. 2008; Narraway et al. 2010; Ingleby et al. 2013c). Using a cox proportional 

hazard model (Kaplan & Meier, 1958; Cox, 1972)with male genotype, gut bacteria 

treatment, and Wolbachia infection status as risk factors and mating as the hazard, 

allowed us to test which factors impacted attractiveness and also include individuals 

that did not mate during the observation period (Figure 4). We found genotype (isoline) 

had a significant effect on male attractiveness (n= 433 Χ2=97.82, df=5, p < 0.001), but 

there was no effect of gut bacteria (Χ2=0.19, df=1, p = 0.66) or Wolbachia infection 

status (Χ2=0.58, df=1, p = 0.44). However, there was a significant interaction between 

Wolbachia infection status and genotype (Χ2=24.86, df=5, p < 0.001), but not between 

gut bacteria and genotype (Χ2= 3.23, df=5, p < 0.66). This finding is consistent with 

the fitness rank changes documented here and above being caused by changes with 

Wolbachia infection and not altered gut bacteria. 

 

Table 1. ANOVA output from the Cox proportional hazard model with significant p-

values in bold. 

 Predictor Χ2 DF Pr(>Chisq) 

Isoline 98.195 5 <0.0001 

Wolbachia 0.584 1 0.44 

Gut bacteria 0.194 1 0.66 

Isoline : 

Wolbachia 
24.863 5 <0.0002 

Isoline : Gut 

bacteria 
3.232 5 0.66 
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Figure 4. Kaplan-Meier curve showing proportion of unmated males over time 

separated by genotypes (n=6) and Wolbachia infection status with cured (-) a solid 

line and infected (+) dashed. The steeper the gradient of a curve the more attractive 

the males (the faster the males of that treatment mated). Male attractiveness effects 

of Wolbachia curing vary across genotypes (isolines) with some likes becoming more 

attractive after curing and others less so. 
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Discussion 

 

A broad range of host phenotypes have been attributed to gut bacteria (Coyte et al. 

2015) and in flies this varies from effects on development and longevity to mate 

preferences (Erkosar et al. 2013). In many studies however, antibiotics are employed 

to manipulate gut biota (reviewed in Erkosar et al. 2013). Antibiotics also kill other 

infections and in insects, which have served as models to explore the impacts of gut 

microbiota on hosts (Engel & Moran, 2013), this includes the endosymbiont, 

Wolbachia. Therefore to unequivocally ascribe effects of antibiotic treatment on insect 

phenotypes to one infection or another is problematic. This is exemplified by our 

results where Wolbachia infection-status, but not altered gut microbiota, drove fitness-

rank changes in host genotypes. Since we used isolines (= different genotypes) to 

explore these relationships, we can ascribe host fitness effects to intergenomic 

epistasis for fitness between nuclear and cytoplasmic genes. This epistasis occurs 

despite the fact that all of our stocks were infected with the same Wolbachia strain. 

This in turn suggests the interactive effects we document are potentially widespread, 

but infrequently detected because they are somewhat cryptic, and they could therefore 

be important in maintaining genetic variation in host fitness. This may be especially 

true because Wolbachia infections are not always fixed in populations (e.g. Turelli & 

Hoffmann, 1995), so the conditions necessary for infection-by-host genotype epistasis 

exist in nature. It should be noted that we cannot definitively rule out other 

infections/cytoplasmic elements that covaried with Wolbachia as the causative agents 

of the fitness findings. To some extent this does not matter however, as the epistasis 

for fitness remains, as does the finding that altered gut microbiota did not generate 

major host fitness effects. Despite these caveates, it appears likely that Wolbachia 

underlie the fitness impacts documented given their general importance for fitness 

across insects (e.g. Werren, 1997; Werren et al. 2008; Serbus et al. 2008). 

 

This is not the first case of cyto-nuclear epistasis for fitness in Drosophila. For example 

interactions between mito-types and nuclear background affect fitness in D. 

melanogaster (Dowling et al. 2007; Montooth et al. 2010), and in other taxa similar 

interactions influence a range of traits. For example, mito-nuclear interactions affect 

metabolic rate and sperm characters in beetles (Dowling et al. 2007; Arnqvist et al. 

2010). While mitochondrial-nuclear interactions influencing fitness and metabolism are 
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perhaps to be expected (Balloux, 2010), the flips in male fitness-ranks due to 

Wolbachia infection-status that we documented are more surprising. Similar effects of 

Wolbachia on mate preference in Drosophila have been previously reported (e.g. 

Koukou et al. 2006; Miller et al. 2010), but this is often when infection induces CI or 

male killing, and as noted above, these studies frequently do not control for antibiotic 

impacts on gut bacteria. Nonetheless, the breadth and consequences of genotype-

environment and genotype-genotype interactions in sexual selection is only now 

becoming fully appreciated (Hunt & Hosken, 2014) and the interaction we found here 

adds to this growing body of work. 

 

It should be noted that we did not investigate changes to the total gut microbiome of 

D. simulans, but instead recorded changes in the prevalence of five key members of 

the gut community (Wong et al. 2013). While we altered the occurrence of these key 

species in predictable ways, we did not document significant host-fitness effects of this 

change. These changes should lead to gut-community restructuring (Coyte et al. 

2015), especially because of documented impacts of antibiotics on gut microbiota 

communities (e.g. Young & Schmidt, 2004). Additionally, there is ample evidence that 

altering key community members generally, leads to fundamental community 

restructuring (Paine, 1966; Sanders et al. 2015). So again we expected to see effects, 

but found none. This has implications for views that hosts and all their microbiota are 

integrated genetic units (Bordenstein & Theis, 2015). We were unable to obtain 

enough bacteria from the focal fly guts that were dissected from the final assay to 

reliably identify presence or absence of the 5 most prevalent bacteria in Drosophila 

species (Wong et al. 2013). However, we used the reinfection protocol shown to work 

by Sharon et al (2010). 

 

One way to reconcile previous findings (e.g. Sharon et al. 2010) with ours is 

redundancy in the gut community, leading to community and effect stability (Coyte et 

al. 2015), even though we altered the prevalence of the five most common bacteria 

found in the host gut. We are currently expanding our investigation of the gut 

microbiota changes caused by antibiotic treatment beyond these five taxa. And of 

course it is possible that effects vary across host species. Intriguingly, the mating 

effects in Sharon et al.'s (2010) study occurred after a single generation of diet change, 

which appeared to rule out mating impacts due to Wolbachia. Is it possible that there 
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is environment-dependent intergenomic-epistasis between Wolbachia and the host? 

In any case, our data broadly support the notion that variation in host microbiota can 

alter gene flow between differentially infected host populations (Sharon et al. 2010). 

However, as we show here, changes in the relative fitness of host genotypes was 

driven by cytoplasmic rather than gut bacteria. 

 

Conclusions 

 

Our results show that using antibiotics in investigations of the microbiome can be 

problematic, as they are a blunt tool with multiple impacts. Results additionally suggest 

that altered gut microbiota may not always have major consequences for hosts, and 

reinforce the notion that Wolbachia are important determinants of host fitness, 

although in ways that are not always obvious. Furthermore, the inter-genomic epistasis 

we document may help explain the maintenance of genetic variation for fitness and 

support the notion that the microbiome generally could influence gene flow.  
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Chapter 3  

 

The effect of host genotype on cytoplasmic incompatibility 

 

Abstract 

 

Wolbachia pipientis is a maternally transmitted endosymbiont that infects roughly 20% 

of arthropods. Wolbachia can affect their host reproduction in a number of ways that 

increase their transmission. One of these effects is Cytoplasmic incompatibility (CI), 

which causes the embryonic death of offspring when infected males mate with 

uninfected females. Bidirectional CI can occur when males and females are infected 

with different strains of Wolbachia. This means that Wolbachia infected females have 

higher relative fitness compared to uninfected females. It also means that Wolbachia 

infected males have lower fitness than their uninfected counterparts. This should mean 

there is selection for males to overcome these costs. It is not clear what effect host 

genotype has on Wolbachia’s ability to impact their host. Here we tested whether 

different Drosophila simulans genotypes infected with the same strain of Wolbachia 

experienced different levels of CI when mating with testers infected with a different 

strain. We found evidence of bidirectional CI in our strains of flies as infected focal 

males did worse than uninfected males when mating with tester females infected with 

another infection, while infected and uninfected focal females did equally poorly when 

mated with males infected with another Wolbachia strain. In females we found 

genotype and Wolbachia infection status interact to influence the magnitude of CI. In 

some lines Wolbachia infection lowers the level of CI females experience and in other 

lines it increases the level. This is potential evidence of Wolbachia and its host 

coevolving in some lines to limit the impact of bidirectional CI on their fitness. In males 

we found that different genotypes suffer different levels of CI. This may be evidence 

that some lines are evolving in response to the selection that CI imposes on their 

reproductive success. Our work may help to explain why mixed infection populations 

persist despite models predicting Wolbachia infection should spread to fixation. 
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Introduction 

 

Wolbachia are a genus of intercellular bacteria that have high prevalence across 

arthropods and some nematodes, and one species, Wolbachia pipientis, is estimated 

to infect 20% of arthropod species (Werren 1997). However, infection estimates wildly 

vary and are based on limited observations (Hilgenboecker et al., 2008). In most 

cases, Wolbachia are maternally transmitted through the cytoplasm of the egg and so 

males represent evolutionary dead-ends in transmission terms. This transmission is 

similar to other cytoplasmic elements like mitochondria, chloroplasts and other 

cytoplasmically inherited microorganisms. In mitochondria, maternal transmission 

generates the mother’s curse (Gemmell et al. 2004), where mitochondrial mutations 

deleterious to males are expected to accumulate. This is in sharp contrast to mutations 

affecting female fitness. Similar processes should also occur in Wolbachia where 

mutations that increase transmission will accumulate for even if these reduce male 

fitness.  

 

Wolbachia have evolved to affect host reproduction in a number of ways in order to 

increase infection transmission. These effects can include male killing, male 

feminisation, induction of parthenogenesis and cytoplasmic incompatibility. 

Parthenogenesis, male killing and feminisation, all generate a female-biased sex ratio 

in the offspring of infected females, which in turn increases the transmission rate of 

the Wolbachia parasite. Generating a female-biased sex ratio in the offspring of 

infected females is beneficial to Wolbachia as only females are able to pass on the 

infection. This means that male production not only wastes resources and increases 

competition for them, but also produces potential mates for uninfected females. The 

Wolbachia parasite causes male killing in a variety of ways either through defects in 

male embryos that lead to either death (Riparbelli et al. 2012) or targeting specific 

masculinising genes (Fukui et al. 2015). Male killing is common in species that exhibit 

high levels of sibling egg cannibalism as killing male embryos provides food for female 

offspring and reduces the risk of these daughters being eaten by their brothers (Jiggins 

et al. 2000). Feminisation of genetic males will double the number of possible offspring 

that can transmit the Wolbachia infection. The mechanisms behind feminisation of 

genetic males are different for isopods and insects (Vandekerckhove et al. 2003; 

Narita et al. 2007). Both male killing and feminisation use similar mechanisms and 
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male killing often results from incomplete feminisation of males (Werren et al. 2008). 

The fitness benefits of Wolbachia induced parthenogenesis are not only in producing 

solely female broods but also in removing the requirement of mating. This means that 

Wolbachia can spread to fixation within a population without causing host extinction 

(Werren et al. 2008).  

 

Cytoplasmic incompatibility (here after CI) is different from these population-feminising 

mechanisms.  It acts by causing the embryonic death of offspring when infected males 

mate with uninfected females. So CI is unidirectional in its action: infected females are 

not affected but uninfected females are (Figure 1). The mechanism behind CI involves 

a “modification-rescue” system (Werren, 1997) where Wolbachia modifies the sperm 

of infected males and then rescues them in infected, but not uninfected, females. The 

result is a reduction in offspring production for uninfected females within a population. 

Thus, the relative prevalence of infected individuals increases.  Additionally, males 

infected with CI-inducing Wolbachia will have lower fitness than uninfected males 

(Figure 1). CI can also occur between different strains of Wolbachia, and in these 

instances is called Bidirectional CI, which is caused by strain specific modification and 

rescue genes.  

 

Much research has studied the effects of Wolbachia infection on hosts, however there 

has been less effort devoted to potential influences of host genotype on infection 

outcomes. This is surprising as host genotype can change whether Wolbachia 

infection causes unidirectional or bidirectional CI (Raychoudhury & Werren, 2012). 

This, combined with the increased host fitness that comes with reducing the level of 

CI suffered, should lead to strong selection for reducing the severity of CI. In addition, 

we know that host genotype has pronounced effects on other infections. There is 

genetic variation in resistance both within and between populations to a bacterial 

parasite in Daphnia magna for example (Ebert et al. 1998), and genetic background 

influences the magnitude of infection by intracellular protozoan parasites in chickens 

(Bumstead & Millard, 1992). Here, variation in parasite load across hosts starts to 

occur between 4 and 5 days after infection, suggesting variation in the rate of immune 

response across hosts (Blake et al. 2006). 
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Figure 1. Illustration of unidirectional (left) and bidirectional cytoplasmic 

incompatibility. Red and purple symbols represent infection with different strains of 

Wolbachia. Black symbols represent uninfected individuals. The symbol 

represents cytoplasmic incompatibility. As seen with unidirectional CI, infected males 

mating with uninfected females cause CI, which means no/fewer offspring, but all other 

matings produce viable young. In bidirectional CI males infected with different strains 

of Wolbachia cause CI when mating with the females of the alternate strain. Both types 

of CI result from attempts by the parasite to increase relative transmission rates 

regardless of impacts on the host. 

 

The ability of a host to overcome infection requires recognition of the infection and an 

effective response. Drosophila, like other invertebrates, rely on a cellular and humoral 

immune responses to clear infections. The cellular reaction consists of the release of 

haemocytes (immunosurveillance cells) which phagocytise or encapsulates invasive 

cells (Fauvarque & Williams, 2011).  The humoral reaction involves the release of 

antimicrobial peptides (AMPs) from the fat body into the blood (Yi et al. 2014). 

Drosophila melanogaster genotype impacts the bacterial load after infection (Lazzaro 

et al. 2006) and there is no correlation between genotypes across different bacteria 

types. This suggests genetic variation in immunity is dependent on pathogen type. 

Understanding the evolutionary consequences of host-parasite interactions require 

understanding how infection affects fitness across hosts. This is especially true for CI 
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inducing Wolbachia infecting mosquitos (Aedes aegypti) that have recently been 

employed to control wild populations and slow the spread of disease (Hoffmann et al. 

2011; Iturbe-Ormaetxe et al. 2011; Zabalou et al. 2004). Such controls may not work 

as well as they could if there was variation across host genotypes in suppressing CI 

for example. 

 

We previously found evidence consistent with bidirectional CI in Drosophila simulans 

where absolute offspring numbers were lower when males were infected with 

Wolbachia (chapter 2).  However, we could not determine whether changes in male 

fitness ranks were affected by variation in CI level that were dependent on male 

genotype (Chapter 2). The Wolbachia infecting our focal fly genotypes (isolines: (David 

et al. 2005)) were found to all belong to the same strain, whereas our tester population 

was infected with a separate strain (using multilocus sequence typing 

(MLST))(Unpublished Data). As a result, any differences in the level of CI we notice 

across isolines would indicate that host genotype influences Wolbachia’s ability to 

manipulate its host.  We tested this possibility here. 

 

Materials and methods 

 

Drosophila simulans isolines (David et al. 2005) used in this experiment were originally 

collected from Greece (Ingleby et al. 2013) and were maintained for > 45 generations 

with full-sib matings (n= 25 brothers and 25 sisters/isoline). Thus, each isoline could 

be considered as being distinct genotypes (David et al., 2005). We used the Wolbachia 

curing methodology (Chapter 2) to generate cured and infected treatments of each 

isoline.    All stocks were reared on a standard cornmeal-based Jazzmix diet (hereafter 

Jazzmix) (supplied by Applied Scientific, UK) at 25°C on a 12∶12 hour light:dark cycle 

(unless stated otherwise). All matings were with stock ebony flies naturally infected 

with Wolbachia (from Tucson stock centre). The ebony flies were infected with a 

different strain of Wolbachia to our experimental flies, which allows us to test for both 

CI and bidirectional CI. These flies had been housed in 30cmX30cmX30cm cages with 

free-mating and fed ad libitum on Jazzmix food.  
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To generate experimental flies, 25 males and females from each isoline (both infected 

and uninfected), were placed in a large vial and allowed to egg lay for three days. 

Ebony tester flies were set up in the same way with replicates of 25 males and females 

from the stock population placed in large vials to egg lay for 3 days. The offspring from 

these vials were then collected as virgins every 6 hours and stored in vials of 5 

individuals of the same sex and treatment. These virgin flies were then allowed to age 

for 3-5 days and then each focal isoline fly was paired with one tester ebony mate and 

they were watched to ensure they mated - any unmated flies were discarded – (N = 6 

males and 6 females from each isoline-infection combination). Once the mating 

ceased the female was placed in a laying vial allowed to lay for 24 hours, with a new 

laying substrate provided after 12 hours. The total number of eggs laid was counted 

immediately (at 12 and 24 hours) and again after ~18 hours to determine the number 

of unhatched eggs. This gave the total eggs laid and eggs laid that did not hatch.  

 

Data were analysed in Rstudio version 1.1383 (RStudio Team, 2016) using R version 

3.6.2 (R Core Team, 2019). Proportions of hatched eggs were compared between 

Wolbachia infection status and genotype (isoline) with GLMs fit with Wolbachia, 

isoline, and their interaction as fixed effects for both focal males and females 

separately. We ran general linear models with a quasi-binomial error structure to 

control for over dispersion. We also tested total number of eggs laid across Wolbachia 

infection status and genotype by running GLMs with Wolbachia infection status, 

genotype and the interaction between them as fixed effects for focal males and 

females separately again. This time the GLMs used a quasi-Poisson error structure 

again to control for over dispersion. Fixed effects were tested for significance using 

the Anova function in the car package (Fox & Weisberg, 2018). Rank changes in 

hatchability with Wolbachia infection across Isoline were analysed using a Spearman’s 

rank correlations. This is because variance partitioning approaches can miss 

significant crossing over (Lewontin, 2006) being primarily designed to detect main 

effects. These rank correlations will not be able to determine significance of rank 

changes but will reveal if the hatchability ranks are consistent across treatments. 
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Results 

 

To test for CI/bidirectional CI we compared the proportion of unhatched eggs from 

focal males and females either Wolbachia infected or cured when mating with tester 

flies infected with a different Wolbachia strain than our focal flies. We found a 

significant increase in the proportion of unhatched eggs when Wolbachia infected focal 

males mated with Wolbachia infected ebony females compared to uninfected focal 

males (Χ2=207.9, df=1, p < 0.001) (Figure 2).  This is consistent with bidirectional CI 

where infected males have lower fitness mating with females infected with another 

parasite strain, but uninfected males never need sperm rescue. We find no Wolbachia 

effects on the proportion of hatched eggs in focal females (Χ2= 0.31, df=1, p = 0.55). 

However overall the proportion of unhatched eggs was high across female treatments 

(Wolbachia infected 78% and uninfected 79% of eggs didn’t hatch).  Again this is 

consistent with CI/bidirectional CI because regardless of the female’s infection status 

they did not do well (Figure 2). Overall these results are consistent with bidirectional 

CI broadly as males infected with either Wolbachia strain appear to cause a reduction 

in hatchability when mating with females infected with the other strain. 

 

We found that genotype (isoline) had a significant effect on proportion of eggs that did 

not hatch for both focal males (Χ2=48.94, df=17, p < 0.001) and focal females (Χ2= 

48.12, df=18, p < 0.001). To test if genotype affected the level of CI we assessed 

whether there was an interaction between the Wolbachia infection status and the 

isoline of the focal individual influencing the proportion of unhatched eggs. There was 

no significant interaction between focal male’s Wolbachia infection and genotype 

(isoline) (Χ2= 20.33, df=17, p = 0.26). This is consistent with genotype not impacting 

CI levels. All lines show a drop in hatchability when focal males are Wolbachia 

infected. However there is variation in the magnitude of the reduction (Figure 3). This 

is further evident when comparing the rank changes in average hatchability across 

isolines (genotype) (Figure 4). There was no correlation between the ranks of each 

genotype in their egg hatching success across Wolbachia infection treatments 

(Spearman’s rho = 0.16; P = 0.54). This suggests despite no significant interaction 

between genotype and infection status, the fitness impact of CI may vary across 

genotypes.  
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For focal females we find a significant interaction between genotype and Wolbachia 

infection on proportion of unhatched eggs laid by focal females (Χ2= 33.27, df=18, p = 

0.016) (Figure 3). This suggests that female’s genotype impacts the level of CI despite 

seeing no effect of Wolbachia on hatchability across all isolines. We again find no 

correlation between hatchability ranks for focal females across the isolines when 

infected or cured of Wolbachia (Spearman’s rho = 0.18; P = 0.47) (Figure 4).  

 

We also tested whether any of the effects we saw could be caused by changes in egg 

laying rates caused by focal males and females. There was also no effect of the focal 

males Wolbachia infection (Χ2= 0.004, df=1, p = 0.95), genotype (Χ2= 10.41, df=17, p 

= 0.88) or interaction of genotype by Wolbachia infection (Χ2= 12.79, df=17, p = 0.75) 

on total number of eggs laid by the tester female. Similarly we see no effect of the 

focal females Wolbachia infection status (Χ2= 0.99, df=1, p = 0.32), genotype (Χ2= 

25.78, df=18, p = 0.10) or an interaction between the two (Χ2= 26.35, df=18, p = 0.09) 

on their total number of eggs laid. This suggests that all the significant effects we find 

above are caused by changes in CI and not sperm limitation or other effects that may 

accompany an increase in egg laying rates by females (i.e. inefficiency in fertilization 

with faster egg-laying for example).  

  

 Figure 2. Proportion of unhatched eggs averaged and standard error bars across 

Wolbachia cured (grey) and Wolbachia infected (red) treatments for focal females (left 

panel) and focal males (right panel).  The proportion of developmental failures was 

highest for infected males, which is consistent with bi-directional CI (tester females 
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were infected with another Wolbachia strain). There was no treatment effect for 

females, despite high failure rates, which again is consistent with CI and bi-directional 

CI (infected females (bidirectional CI effect) do as poorly as uninfected females (CI 

effect)). 

 

 

Figure 3. Proportion of unhatched eggs by genotype (isoline) for females (top left 

panel) and males (top right panel). Red circles are infected (Wolbachia +) black circles 

are cured (Wolbachia -). The change in hatchability with infection status by genotype 

for females (bottom left panel) and males (bottom right panel). An increase in the 

proportion of hatched eggs when the focal fly is Wolbachia infected will result in a 

positive value. The interaction between genotype and Wolbachia infection status can 

be seen in females where the proportion of unhatched eggs is greater with Wolbachia 

infection in some lines and lower in others. In males the bidirectional CI is obvious with 
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more unhatched eggs (proportion of total eggs) in infected than cured males 

regardless of genotype. In the lower plot for males the variation in CI level across 

genotypes is more obvious. 

 

Figure 4. Isoline ranks in the relative proportion of un-hatched egg (1 = lowest) of 

female (left panel) and male (right panel) genotypes (isolines) either cured (Wolbachia 

-) or infected (Wolbachia +) when paired with ebony mates that were infected (+) with 

another Wolbachia strain. There is no association between genotype ranks across 

antibiotic treatments as indicated by the crossing over in ranks. 

 

Discussion 

 

We previously (Chapter 2) found evidence of possible bidirectional cytoplasmic 

incompatibility and we were able to confirm this phenotype here.  Results are 

consistent with bi-directional CI because infected focal males did worse than 

uninfected males when mating with tester females infected with another infection, 

while infected and uninfected focal females did equally poorly when mated with males 

infected with another Wolbachia strain. These findings can only be fully explained with 

single strain CI and bi-directional CI when two strains are present. 

We did not find a significant interaction between genotype and Wolbachia infection on 

the proportion of unhatched eggs in males although there was some evidence of 

crossing over of genotype hatchability ranks across Wolbachia infection statuses. We 

did find an interaction between genotype and Wolbachia infection on the proportion of 
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unhatched eggs in females that was also accompanied by a change in genotype 

hatchability ranks with Wolbachia infection status.  Given that variance partitioning 

approaches like GLMs can miss significant interactions as they are primarily designed 

to detect main effects  (Lewontin, 2006), the lack of rank correlations may be indicative 

of host genotype affecting CI broadly although this needs further investigation as this 

is only the lack of correlation and not a statistically significant change.  

 

Despite that, these findings do not provide a completely compelling case for male host-

genotype impacting the level of CI caused by Wolbachia infection. Nonetheless, the 

crossing over of genotype hatchability (fitness) ranks is present (as per Chapter 2) 

which means that we can’t rule out male-host genotype effects on CI. Changes in 

genotype fitness effects previously found (Chapter 2) may in part be influenced by 

changes in CI across host genotype similar to possible effects noted here. This is 

consistent with host genotype influencing the effects of infectious disease (Hall & Ebert 

2012; Idaghdour et al. 2012). However, infectious diseases are generally horizontally 

transmitted and evolutionarily benefit from increasing the production of infectious 

elements, which in turn increases host mortality or reduces host reproduction (or both). 

With vertically/maternal transmitted infections the dynamic between host and parasite 

changes. Vertically transmitted infections usually maximise their fitness by maximising 

the fitness of their host (Ewald, 1987). In maternal transmitted infections this is only 

true for female hosts. Nevertheless, CI will still significantly reduce the fitness of 

infected males in any population of mixed infection so we should expect selection to 

favour reducing this cost. The rank-crossover suggests there is genetic variation to 

overcome CI fitness reductions and there is also evidence that Wolbachia infection is 

not universally costly (Teixeira et al. 2008). The molecular basis of the “modification-

rescue” mechanisms of CI is not well understood (Zabalou et al. 2008). This makes 

understanding the mechanisms that males evolve to overcome CI difficult. We know 

that Wolbachia infection increased mating rate in D. simulans (De Crespigny et al. 

2006) and this reduces the level of CI for males (Karr et al. 1998). In our design males 

only mated once, however, increased sperm production rate may have a similar effect 

on CI levels.  

 

In females there were no changes in hatching success based on Wolbachia infection. 

However, the low level of hatching success across both infected and uninfected 
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individuals is consistent with bidirectional CI. It is unsurprising that we found a 

genotype effect on hatching success as this has been documented before in 

Drosophila melanogaster (Chow et al. 2010; Delbare et al. 2017). It was more 

interesting to see an interaction between Wolbachia infection status and host genotype 

on hatchability in focal females despite not seeing any main effect of host infection 

alone, although this latter affect is probably due to the CI/bidirectional CI we jointly 

incorporated in the study design. In any case, it seems that the genotype of the female 

host determines the impact of CI (broadly) experienced depending on the Wolbachia 

strain. We were able to rule out changes rates of egg-laying as a potential confounder 

of this effect, but if should be noted that Wolbachia infection can influence females in 

so many different ways that disentangling the cause behind this interaction is difficult. 

Nonetheless, this is potentially another example of epistasis between Wolbachia and 

host that warrants further investigation. Wolbachia-host genetic interactions have 

been detected before. In D. simulans isolines with a siIII mitochondrial haplogroup 

received a dramatic fitness benefit when infected Wolbachia whereas isolines with 

different mitochondrial haplogroups saw no effect of Wolbachia infection (Dean, 2006). 

In this example Wolbachia infection provided a competitive fitness advantage in some 

D. simulans isolines. Increased hatching rate with Wolbachia infection would provide 

a fitness advantage. Our isolines could potentially be differencing in their mitochondrial 

haplogroups and this may be interacting with Wolbachia infection to impact our 

female’s fitness.  

 

Our results appear to show that the genetic background of female D. simulans will 

determine the level of CI they suffer and there may be potential effects in males. In 

females this suggests that Wolbachia and its host are co-evolving where some lines 

Wolbachia infection helps to prevent the negative fitness effects cause by other CI 

inducing strains. In males it appears some lines are better able to overcome the costs 

of infection. Host and parasite will be co-evolving over time where there will be 

selection for both to maximise their fitness. In vertically transmitted parasites this often 

leads to selection for reduced antagonism (Lipsitch et al. 1996; Stewart et al. 2005). 

In maternally transmitted parasites, like Wolbachia, this should be the same in 

females. In males there may be potential selection for reduced antagonism despite 

males being evolutionary dead ends, especially where there are high levels of 

inbreeding and infection impacts male fertility (Wade & Brandvain, 2009). Alternatively, 
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this may be evidence that males of different backgrounds evolve different levels of 

immunity to the Wolbachia induced CI. The population dynamics of Wolbachia when 

modelled generally predict that Wolbachia should spread to or close to fixation in CI 

inducing strains due to the fitness of infected females relative to uninfected (Hoffmann 

& Turelli 1997). In nature we find that over time Wolbachia frequency reaches a stable 

equilibrium at intermediate frequencies (Turelli & Hoffmann, 1995). Our findings may 

explain why Wolbachia infection does not always reach fixation if in some genetic 

backgrounds males are evolving to reduce the level of CI they suffer. Future models 

should include changes in CI rates across males when estimating population dynamics 

of Wolbachia infection. Our results are important for future work using CI inducing 

Wolbachia to control wild mosquito (Aedes aegypti) populations (Hoffmann et al. 2011; 

Iturbe-Ormaetxe et al. 2011; Zabalou et al. 2004). These controls may not work as 

well as they could due to variation across host genotypes in suppressing CI. 

 

Conclusions 

 

We found bidirectional cytoplasmic incompatibility in the Wolbachia strains that infect 

both our focal genotypes and tester stocks. We also found some evidence suggestive 

of host genotype affecting levels of CI. The evidence of an effect of male host genotype 

on the level of CI was not completely conclusive. Further work could evolve males in 

mixed infection populations too determine whether this can generate selection to 

overcome CI. Female’s genotype was related to variation in the effects of Wolbachia 

infection. We are unable to unequivocally ascribe the causes of these effects, but 

they’re consistent with CI. There is however, no overall effect of Wolbachia infection 

on hatchability across genotypes, which suggests that research that has previously 

not found effects of infection, may have missed potential epistatic effects. These 

results should inform future research into the use of Wolbachia in biological control. 

Further work could explore what causes the effects we find here, and also where this 

interaction with host genotype is present in other Wolbachia influence reproductive 

traits.  
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Chapter 4 

 

The effects of natural and sexual selection on the gut 

microbiome of Drosophila simulans. 

 

Abstract  

 

It is increasingly clear that the microbiota have important fitness consequences for 

hosts. The diversity of these microbial communities and the vast array of genes 

present in the microbiome have led to the suggestion we should study the combined 

genetic material of the host’s genome and microbiome (the ‘holobiome’). For the 

holobiome to be a useful evolutionary measure, selection must act on the microbial 

communities whose genes make up the microbiome. However, it is not clear how 

natural and sexual selection, two main mechanisms of organic evolution, affect the 

microbiome and whether they act on it antagonistically or not. Here we evolve 

population of Drosophila simulans under either elevated or relaxed, natural and sexual 

selection in a fully factorial design for 38 generations. We sequenced the gut 

microbiome of pools of males and females from each population and compared alpha 

and beta diversity changes across selection regimes. We found that males evolving 

under increased sexual selection had a more diverse gut microbiome. The gut 

bacterial communities of both males and females changed across sexual selection 

treatments. The changes in males were more likely to be functionally significant than 

in females. We found no effects of changing the strength natural selection on the gut 

microbiomes of either males or females. There was also no interaction between 

natural and sexual selection on the microbiomes of males or females. This is the first 

example of sexual selection altering gut microbial communities over evolutionary time 

and has important consequences of our understanding of host microbiota interactions. 
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Introduction 

 

The collection of bacteria, archaea, fungi, protists, and viruses that colonise the 

surfaces and cells of multicellular organisms are termed the microbiota. It is 

increasingly clear that the microbiota has important fitness consequences for their host 

(Archie & Theis, 2011). The bacteria of the microbiota are an important component of 

an animal’s physiology. Symbiotic bacteria  can be commensal, mutualistic or 

pathogenic in their relationship with their host and often these relationships can by 

dynamic (Sachs et al. 2011). There can be more bacterial cells living on and in an 

organism than host cells. For example, the number of bacterial cells in the human body 

is estimated to at least equal that of their host (Sender et al. 2016). These bacterial 

communities can be incredibly diverse. The number of genes present in the gut 

microbiome (the genomes of the symbiotic microbiota) of humans outnumber that of 

their host one hundred to one (Gill et al. 2006). With the vast array of genes that make 

up animals microbiome some have suggested that we study the combined genetic 

material of host’s genomes and their symbionts known as the ‘Holobiome’ (Guerrero 

et al. 2013). This idea requires that the microbiome is made up of the genes of 

microbial communities that persist over time and are subject to selection.  

 

Sexual selection and natural selection are the two main mechanisms of organic 

evolution. Sexual selection can be thought of as variation in reproductive success, 

while natural selection is essentially all other fitness components (Andersson, 1994). 

Natural selection acts on traits that alter the survivorship, fecundity and fertility of 

individuals (Endler, 1986).  Sexual selection acts through two mechanisms; mate 

competition (usually male-male competition) and mate choice (usually female choice) 

(Andersson, 1994). Mate competition can occur both before and after copulation, with 

individuals competing for access to a mate or their gametes compete for access to the 

gametes of the opposite sex. Mate choice involves one sex choosing (actively or 

passively) to mate with certain individuals of the opposite sex. Sexual selection 

frequently leads to exaggerated traits either used in competition for mates or as 

displays/signals used in mate choice (Andersson, 1994). The physical and biological 

environment are the common causes of natural selection (Endler, 1986).  Sexual 

selection and natural selection can both act on the same traits and the evolutionary 

outcomes will depend on the nature or their interaction (Blows, 2002). This interaction 
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can either be antagonistic where traits favoured by sexual selection are detrimental to 

survival or reinforcing where sexually selected trait benefit survival.  

 

Often exaggerated sexual signals are constrained by natural selection, as they are 

costly to produce and maintain and will reduce the survival of an individual. For 

example, predators and parasites have been shown to often exploit sexual signals to 

locate or catch their prey/hosts. This has been shown across a range of classes taxa 

including birds (Møller & Nielsen, 1997), fish (Endler, 1980), amphibians (Tuttle et al. 

1982; Ryan et al. 1981) and insects (Zuk et al. 2006; Hosken et al. 1994). In these 

instances predators or parasites exploit the morphology, colour/pattern and auditory 

nature of sexual signals. The exaggerated tail feathers of male barn swallows (Hirundo 

rustica) that are preferred by females also caused an increase in predation rate(Møller 

& Nielsen, 1997). The spot pattern and colouration that makes male guppies (Poecilia 

reticulata) more attractive also makes them easier targets of predation (Endler, 1980).  

Where loud calls of male neotropical frogs (Physalaemus pustulosus) helps to attract 

mates it also makes individuals more locatable by predators (Tuttle et al. 1982; Ryan 

et al. 1981). Male field crickets (Teleogryllus oceanicus) call to attract their mates 

however a parasitic wasp also uses this call to locate hosts (Zuk et al. 2006). 

 

There is also evidence that sexual selection is adaptive. Hamilton and Zuk (1982) 

suggested males with elaborate signals and displays will prove relative resistance to 

parasites compared with less showy males. The importance of parasites in sexual 

selection has been discussed since initially they could be important in the evolution of 

female choice. Evidence of a positive correlation between sexually selected traits and 

parasite immunity has been found in three-spined sticklebacks (Gasterosteus 

aculeatus) where females preferentially mated with males that had redder throats and 

those males also had lower parasite load and greater resistance (Milinski & Bakker, 

1990; Folstad et al. 1994). The offspring of redder males were more resistant to 

parasites showing that the females are receiving indirect benefits from their mate 

choice (Barber et al. 2001). Experimental evolution experiments in Drosophila 

melanogaster also found that selection for resistance to a parasitoid wasp (Asobara 

tabida) generated a correlated response in reproductive fitness: resistant males also 

enjoyed greater mating success (Rolff & Kraaijeveld, 2003). This shows the 
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importance of understanding how natural and sexual selection interact on important 

phenotypic traits.  

 

There are a number of ways the microbiota can influence their host’s fitness that are 

potentially under natural and sexual selection. Symbiotic bacterial communities have 

been shown to benefit their host’s immune function through a number of mechanisms. 

Symbiotic gut bacteria form stable communities that can resist colonisation by 

pathogens (Freter, 1955).  These communities can also directly kill or inhibit the growth 

of these pathogens through the production of organic compounds or metabolites (Pultz 

et al. 2005; Hammami et al. 2013; Cherrington et al. 1991). As demonstrated above, 

parasite immunity can be under both natural and sexual selection. The gut microbiota 

can also play a role in their host’s metabolism. Different bacterial communities change 

their host’s ability to harvest energy from their diet (Turnbaugh et al. 2006).  The 

symbiotic bacteria in the gut also help to break down in accessible nutrient sources 

into more readily absorbable metabolites (Tremaroli & Bäckhed, 2012). Improved 

energy uptake will provide benefits for survival, fecundity, mate competition and 

courtship. Fighting weapons and courtship displays are energetically costly (Clark, 

2012; Somjee et al. 2018). There is also predicted to be a trade-off in the energy 

investment in somatic maintenance and reproduction (Reznick, 1985). Increased 

energy uptake should limit the extent of this trade-off although the nutritional 

composition of the diet will also dictate the level of this trade-off (Rapkin et al. 2018).  

 

The microbiota can also impact their host’s behaviour in a number of ways. Gut 

bacteria have been found to synthesise neurotransmitters, that through various 

pathways, can affect the nervous system and brain (Forsythe et al. 2010). The removal 

or alteration of the gut microbiota can cause an increased stress response in mice 

(Sudo et al. 2004). More diverse microbiota were associated with an increase in 

learning and memory behaviour in mice (Li et al. 2009). Changes in the microbiota can 

also alter brain development problems in mice and can cause a reduction in adult 

motor function (Heijtz et al. 2011). These behavioural changes are likely to have 

impacts on all aspects of animal’s fitness. Both sexual selection and natural selection 

act on cognitive ability. Male Drosophila melanogaster from populations that evolved 

under reduced sexual selection intensity had a reduced cognitive ability compared to 

control males (Hollis & Kawecki, 2014).  
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Symbiotic bacteria play an important role in many sexual signals. In pied fly catchers 

(Ficedula hypoleuca) feather degrading bacteria have been shown to break down the 

white feathers used in sexual signals faster than the dark melanised flight feathers 

(Ruiz-De-Castañeda et al. 2012). While symbiotic bacteria living in the uropygial gland 

of hoopoes (Upupa epops) have been shown to defend against feather degrading 

bacteria (Martín-Vivaldi et al. 2009; Ruiz-Rodriguez et al. 2009). This should mean 

that sexual selection should favour an increase in the presence of these symbiotic 

bacteria. The microbiota of organisms has also been shown to influence their olfactory 

cues via the secondary metabolites they produce (Bienenstock et al. 2018). These 

olfactory cues are used in mate choice (Sharon et al. 2010) and kin recognition (Lizé 

et al. 2013). In D. melanogaster mating preferences for individuals raised on the same 

diet were removed after antibiotic treatment (Sharon et al. 2010). Individuals had 

different cuticular hydrocarbon (CHC) profiles across diets and the removal of the 

microbiota reduced these differences and the total CHC quantity. CHCs are important 

in sexual selection and function as sexual pheromones (Blows, 2002; Cobb & Ferveur, 

1995; Ingleby, 2015). CHCs also play an important role in other naturally selected traits 

such as desiccation resistance (Hadley, 1981). In Drosophila simulans there were 

antagonistic evolutionary responses to natural and sexual selection in male CHC 

profiles (Sharma et al. 2012). Environmental temperature changes were uses to 

manipulate the opportunity for natural selection and enforced monogamy was used to 

reduce the level of sexual selection.  

 

It is clear that the microbiota can impact their host’s phenotype and behaviour in a 

variety of ways that have fitness consequences. It is not clear how natural and sexual 

selection will affect the microbiota and whether they act on it antagonistically or not. 

For the ‘holobiome’ to be a useful evolutionary measure one of the requirements is 

that selection acts upon the microbial communities (Guerrero et al. 2013). The 

relationship that natural and sexual selection have is also important as it will determine 

the strength of selection on the microbiota (Blows, 2002). Previous work has found 

that altering the level of natural selection by raising or lowering the environmental 

temperature has strong effects on the microbiota in D. melanogaster (Moghadam et 

al. 2018). Higher development temperature led to an increase in the prevalence of 

Acetobacter and lower temperatures an increase in Wolbachia. This is particularly 

interesting as a lack of A. pomorum was previously associated with smaller body sizes 
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and slower growth rate (Shin et al. 2011), while Wolbachia can cause a range of host 

fitness effects (Werren et al. 2008). Moghadam et al. (2018) used extreme 

temperatures (13oC and 31oC) for their low and high temperature treatments, 

respectively. These temperatures have been shown to cause male sterility and 

substantially reduced growth rates. As these temperatures are beyond where 

populations could be sustainable, any microbiome changes are not evolutionary 

significant. 

 

Changing the environmental temperature will increase the opportunity for natural 

selection, as organisms are generally adapted to their thermal environment. 

Temperature has a wide range of effects on organisms including changing metabolic 

(Gillooly et al. 2001), desiccation (Parsons, 1980) and development rates (Zuo et al. 

2012). Ectotherms are particularly sensitive as their body temperature changes with 

the environmental temperature. Body temperature will impact the rate of biological 

processes and biochemical reactions. For example, this means that metabolic rate 

increases exponentially with body temperature (Gillooly et al. 2001) Performance of 

ectotherms usually increases with temperature until it reaches a peak then steeply 

declines close to lethal temperatures (Huey & Kingsolver, 1993). Once environmental 

temperatures exceed the optimal temperatures for an organism their fitness starts to 

decline. This should mean that there is strong natural selection for any traits that 

minimise these fitness costs. An extreme example of this is in Drosophila simulans 

where males raised in temperatures of 28oC or above are sterile (Chakir et al. 2002). 

This means that there should be selection for increased thermal tolerance or 

behavioural changes to mitigate the environmental temperature changes. Evidence of 

this is that Drosophila melanogaster (a closely related species to D. simulans) is more 

prevalent at lower latitudes with higher temperatures and male sterilisation happens 

at 30oC (Parsons, 1973).  

 

Despite the variety of ways the microbiota can influence sexually selected traits we do 

not know to what extent sexual selection acts on the microbiota. We know that 

changing the opportunity for natural selection through environmental temperature 

manipulation can cause microbiota changes (Moghadam et al. 2018). Here we test 

how altering the levels natural and sexual selection Drosophila simulans evolve under 

will impact their gut microbiota. We used D. simulans as the previous work comparing 
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the effects of natural and sexual selection intensity found an antagonistic effect on fly 

phenotypes (Sharma et al. 2012), but it is not clear if this extends to the microbiome. 

D. simulans have historically evolved at a more temperate climate (Chakir et al. 2002); 

this means that increasing temperatures by a few degrees should provide a stressful 

environment and impose stronger natural selection. We know that female mate 

preference is influenced by the microbiota in D. melanogaster (Sharon et al. 2010). 

We also know female mate preference is heritable and can evolve in D. simulans 

(Sharma et al. 2010). This means that natural (temperature) and sexual selection may 

act antagonistically on the gut microbiota of D. simulans or that female preference will 

evolve to prefer males with gut profiles more adapted to their temperature 

environment. 

 

Materials and methods 

 

In order to test the impacts of both temperature and sexual selection intensity on the 

gut microbiota of D. simulans we established selection lines from a founding stock 

population. This stock population was established from 20 iso-female lines collected 

from a wild population at Tuncurry, Eastern Australia in 2004. The stock was kept for 

approximately 5 years in population cages of 800–1000 flies, with overlapping 

generations and free mate choice. This population was reared on ‘Drosophila quick 

mix medium’ (BLADES BIOLOGICAL, Kent, UK) and maintained at 25 °C under a 

12:12 h light:dark cycle.  

 

The selection lines were established by creating replicate experimental population of 

flies with either relaxed (-) or elevated (+) sexual selection (SS) and either the standard 

rearing (-) or an elevated (+) temperature environment (T), in a fully factorial design. 

This generated four treatments: –SS/–T, –SS/+T, +SS/–T and +SS/+T. We 

established three replicates of each experimental treatment for a total of 12 

populations. The elevated temperature treatments were reared at 27°C while the 

standard rearing temperature treatments were kept at 25°C. Our temperature 

treatments were used to alter the level of natural selection. As the elevated 

temperature (27°C) will be more stressful the opportunity natural selection in those 

populations will be higher. In the elevated sexual selection treatment each female was 
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housed with 4 males whereas in the relaxed sexual selection treatment individual 

males and females were housed together. At total of 60 females were used to 

propagate the elevated sexual selection treatment and 64 females were used for the 

relaxed sexual selection treatment. These different female numbers were used in an 

attempt to equalise the effective population size (Ne) as there are a higher number of 

males present in the elevated sexual selection treatment (discussed in: Sharma et al. 

2012). To avoid any incubator effects, one replicate population per selection regime 

was reared in each of three incubators per temperature treatment. Selection lines were 

maintained using the protocol outlined in Fig. 1. (Sharma et al. 2012; Archer et al. 

2015) and mirrored the protocol of Archer et al. (2015), Sharma et al. (2012) and 

House et al. (2013).   

 

  

Figure 1.  Flies were housed for 6 days in ‘interaction vials’ before being transferred 

to ‘laying vials’ for 2 days. Adults were then discarded and virgin offspring collected 

from 7 days after and pooled by sex for each replicate population of each selection 

line. Individuals were selected haphazardly from these pools to propagate the next 

generation. Any excess virgins were placed in 2ml Eppendorf tubes and stored at -

80°C. Figure originally from Sharma et al. (2012) and Archer et al. (2015). 

 

Gut dissections and 16s sequencing 

 

After 38 generations of evolving in their respective selection lines, flies were 

haphazardly selected from the virgins not used for the next generation to be stored at 

-80oC. These flies were stored in single sex Eppendorfs separated by replicate and 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.12369#fec12369-fig-0001
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treatment. These flies were thawed at room temperature before being dissected. The 

guts were aseptically dissected out of 10 males and 10 female flies per replicate, per 

treatment. The flies were dissected under sterile conditions next to a flame to minimise 

contamination. Dissected guts were stored in 100ul nuclease free water before being 

extracted. DNA was extracted from the guts by 3 freeze thaw cycles and hand 

homogenising after which the Qiagen blood and tissue DNA extraction kit was used. 

DNA was eluted into 100ul of elution buffer and was then quantified using a Nanodrop 

Microvolume Spectrophotometers before being sent for 16s amplicon sequencing 

using the illumina miseq (Illumina Inc., San Diego, CA, USA). The v3-v4 region was 

amplified by PCR using universal primers (Table 1). Pools were checked on the 

Bioanalyser High sensitivity DNA chip to ensure primer dimers had been removed and 

sequenced using paired ends reads. The raw sequence data were processed using 

the Quantitative Insights Into Microbial Ecology (QIIME2) software pipeline. Dada2 

was run on the data for QC filtering and we used a de novo OTU picking process.  

 

Data Analysis 

 

The biom files were exported into RStudio version 1.2.5033 (RStudio Team, 2016) 

using R version 3.6.2 (R Core Team, 2019). These data were then analysed using the 

phyloseq (McMurdie & Holmes 2013) and vegan (Oksanen et al. 2013) packages. All 

plots were created using ggplot2 (Wickham, 2016). Male and female data was 

analysed separately to control for repeated sampling within the same population. The 

sequences were rarefied to even depths. The alpha diversities were plotted across the 

four selection regimes. The alpha diversity measures were used to compare the 

number and evenness of OTUs present in each treatment. We measured the alpha 

diversity of our samples in a number of ways. When mentioning species below we are 

referring to operational taxonomic units or OTUs as v3-v4 16s sequencing only 

provides us with Genus level identification. We calculated observed number of species 

(species richness), which was a simple count of OTUs after our samples have been 

controlled for sampling depth. The Chao1 index is an estimate of the expected species 

richness of our samples and other qualitative measures of species richness however 

takes into account the rarity of species gives more weight to less abundant species 

(Chao, 1984). Both the Shannon-Weaver and Simpson diversity indexes take into 

account the species richness, but also the relative abundance of each species. The 
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Shannon-Weaver index places a greater weight on species richness and the Simpson 

index is more weighted towards species evenness (Kim et al. 2017). Multiple 

measures of microbial diversity are used to analyse treatment effects and these 

multiple comparisons may increase the likelihood of a type one error. To analyse the 

Shannon-Weaver, Simpsons, Observed and Chao1 measures of species diversity we 

ran general linear models (GLMs) for the male and female data separately with the 

alpha diversity measure as our dependent variable, temperature, the level of sexual 

selection and the interaction terms between them as our fixed effects in our models. 

The Chao1, Shannon and Simpson diversity index used a gamma error structure while 

for observed number of species a Quasipoisson distribution was used to control for 

over-dispersion. All the GLMs were then analysed using the ANOVA function in the 

car package (Fox & Weisberg, 2018) in RStudio. 

 

Multivariate statistics were conducted via the adonis function from the R package 

Vegan v2.5-6 to analyse microbial beta-diversity to compare the diversity in microbial 

communities between temperature and sexual selection treatments. We ran 

permutational multivariate analysis of variance (PerMANOVA) using distance matrices 

with the adonis function to test the homogeneity of dispersion using different distance 

matrices. We tested the difference between bacterial communities across temperature 

treatments and sexual selection. We analysed males and females separately as we 

sequenced the gut microbiome of males and females from each population the 

measures are not independent. We used the Bray-Curtis distance measure to test 

dissimilarity between treatments and a weighted UniFrac distance measure that 

accounts for phylogenetic distances where branches are weighted by relative 

abundance (Lozupone et al. 2006). Both these measure will compare how the 

microbial composition of each sample vary however we are aware multiple 

comparisons of bacterial community composition may increase our chances of a type 

one statistical error however we feel the different nature of the measures justifies for 

the associated risk.  The Bray-Curtis distance measure accounts for the large number 

of zero values that are common in this type of 16s sequencing. The weighted UniFrac 

distance measure accounts for the phylogenetic similarity of different OTUs and their 

relative abundances, which may determine the functional significance of these 

microbial differences.  Bray-Curtis dissimilarity and UniFrac weighted distances were 

also used for distance-based ordination plots using the ggplot2 package (Wickham, 
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2016). Both ordination plots function in the same way where the distance between the 

data points corresponds to the relative distances between samples bacterial 

composition.  

Table 1. V3-V4 primer sequences used for DNA amplification and sequencing of the 

16s gene. 

 

 

 

 

 

 

 

 

 

 

Results 

 

To test for differences in alpha diversity across temperatures and sexual selection 

intensities, we ran GLMs for both males and females separately with the temperature 

and sexual selection intensity as fixed effects, as well as all the interaction between 

them. Sexual selection intensity has a significant effect on the Shannon-Weaver’s 

diversity index (f= 5.11, df=1, p=0.045) in males, where populations with 

higher/elevated sexual selection intensity had higher gut microbial diversity. However, 

sexual selection had no significant effect on the Shannon-Weaver’s diversity index in 

females (f= 1.99, df=1, p=0.186). There were no significant effects of sexual selection 

on any of our other alpha diversity measures for males or females (Table 2). There 

was also no effect of the temperature populations evolved at on any of our measures 

of alpha diversity across both males and females (Table 2). The interaction between 

temperature and sexual selection treatments also had no effect on any of our alpha 

diversity measures (Table 2). Overall, the trend across all alpha diversity indexes is in 

males evolving under stronger sexual selection and weaker natural selection (25oC) 

to have a more diverse microbiome however these interaction are not significant (see 

Figure 2). 

Direction Primer Primer sequence 

Forward 16S 

V3-V4 

(341F) 

5'-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG

CCTACGGGNGGCWGCaG  

Reverse 16s 

V3-V4 

(785R) 

5'-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA

GGACTACHVGGGTATCTAATcC 
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To test the sexual selection and temperature effects on population gut microbial beta 

diversity we used two distance measures. We tested the Bray-Curtis dissimilarity 

between males and females separately of each population evolving at 25oC and 27oC 

at elevated or relaxed sexual selection as well as testing if there were any interactions 

between sexual selection and temperature. We found a significant difference between 

the bacterial communities across sexual selection treatments in females but not males. 

There was no difference between the gut microbial communities across temperature 

treatments for either males or females. The interaction between temperature and 

sexual selection was not significant either (Table 3). The ordination plots for the bray 

distance measure also show a separation between the two sexual selection treatments 

for the females (Figure 3). 

 

 The weighted UniFrac distance matrix takes into account the similarity of the 

phylogenies and the relative abundance of them. We found that with this beta diversity 

measure, the gut microbiota was significantly different across sexual selection 

treatments for males but not females and did not vary across temperature treatments 

and there was no interaction between them in either males or females (Table 4). The 

ordination plot for the weighted UniFrac distance measure shows a greater separation 

between the 2 sexual selection treatments in males than females and no real 

separation between temperature treatments (Figure 4). 
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Table 2. General Linear models of alpha diversity measures for males and females. The only significant result we found was sexual 

selection strength impacts males’ microbial diversity when using the Shannon-Weaver index. We found that evolving under higher 

sexual selection intensity results in males having higher microbial diversity. We did not find any significant effect of our treatments 

across any of the other measures of alpha diversity in males or females. 
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Table 3. Result from the ADONIS analysis of the Bray-Curtis distance matrices across 

sexual selection and temperature treatments for males (top panel) and females 

(bottom panel). The results show that sexual selection treatment had a significant 

impact on the gut microbiome in females however not males.  The temperature 

treatments did not have significantly different gut microbial communities for either 

males or females. There is also no significant interaction between temperature and 

sexual selection treatments for either males or females. 

 

Table 4. Result from the ADONIS analysis of the weighted UniFrac distance matrices 

across sexual selection and temperature treatments for males (top panel) and females 

(bottom panel). The results show that sexual selection treatment had a significant 

impact on the gut microbiome in males but not females.  The temperature treatments 

did not have significantly different gut microbial communities for either males or 

females. There is also no significant interaction between temperature and sexual 

selection treatments for either males or females.
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Figure 2. Boxplots of alpha diversity measures separated by sexual selection and temperature treatment for males (right) and females (left). Each 

panel from left to right shows a separate diversity measure listed at the top. In each panel the 2 left boxplots identified as ‘nss’ have evolved under 

relaxed sexual selection and the 2 on the right identified as ‘ss’ have evolved under elevated sexual selection. The red boxplots represent the 

values for populations evolving at 27oC and the blue boxplots represent the populations evolving at 25oC. Higher sexual selection intensity appears 

to be associated with an increase in male gut microbial diversity across most measure however this is only significant for the Shannon-Weaver 

diversity index. Higher temperatures seem to be associated with lower gut microbial diversity however, these effects were not significant.
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 Figure 3. The Bray-Curtis distance based ordination analysis of gut communities from 

flies evolving at 25oC (blue symbols) and 27oC (red symbols). Circular data points 

have evolved under relaxed sexual selection (nss) and triangular data points have 

evolved under elevated sexual selection (ss). Results for males are plotted on the left 

and females on the right. The male plot does not appear to show any clustering by 

treatment. This suggests with this beta diversity measure neither of our treatments are 

having a consistent effect on male gut microbial communities. The female plot shows 

separation between the sexual selection treatments and some grouping across the 

temperature treatments. This appears to show sexual selection consistently alters 

female microbial communities.  
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Figure 4. The weighted UniFrac distance based ordination analysis of gut 

communities from flies evolving at 25oC (blue symbols) and 27oC (red symbols). 

Circular data points have evolved under relaxed sexual selection (nss) and triangular 

data points have evolved under elevated sexual selection (ss). Results for males are 

plotted on the left and females on the right. Both graphs show some separation of two 

sexual selection treatments however they do not solely cluster together and exhibit 

crossing over that suggests other factors are impacting the gut microbial communities. 

The male plot shows greater separation across the sexual selection treatments 

suggesting that the sexual selection has a greater impact on male microbial 

communities with this measure of diversity. 

 

Discussion 

 

Our results have shown that the sexual selection strength Drosophila simulans evolve 

at changes their gut microbiomes. This is the first time sexual selection has been 

shown to cause evolutionary changes to the gut microbiome. We found that the 

temperature environment/natural selection strength D. simulans evolve at does not 

alter their gut microbiome. There was also no significant interaction between natural 
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selection (temperature) and sexual selection on the microbiome in D. simulans. We 

found that males that evolved under increased sexual selection strength had 

significantly increased microbiome diversity when using the Shannon-Weaver 

diversity index. Sexual selection had no effect on any of our other alpha diversity 

measures in males or females. Across our two beta diversity measures we find that 

evolving under different strengths of sexual selection changes both male and female 

bacterial communities. We are aware of the risks of using multiple measures of 

diversity however finding effects of sexual selection treatment using both alpha and 

beta diversity measures suggests that sexual selection is having an impact of the gut 

microbiomes in our treatments. We found that females gut microbiomes differ across 

sexual selection treatments when we use the Bray-Curtis distance measure and males 

using a weighted UniFrac distance measure. The weighted UniFrac measure, where 

we found the male effect, accounts for the phylogenetic similarity of the OTUs in each 

community and their relative abundances. The Bray-Curtis measure, where we found 

a sexual selection effect in females, will only compare the abundance and presence 

of OTUs. This means that in males sexual selection treatment may be more likely to 

have a phylogenetically significant effect on gut microbiomes, these may be more 

phenotypically significant however further investigation would be needed to confirm 

this. In females their gut microbial communities change in their composition, but these 

changes may potentially be less likely to be biologically significant as the changed 

OTUs are potentially closer related. We found no effect of temperature treatment on 

the gut microbiome across any of our alpha or beta diversity measures. It is important 

to note that as our measures are based on pooled gut samples from a population we 

cannot distinguish if diversity changes are at the population or individual level.  

 

 

The impacts of sexual selection intensity on the gut microbial communities appear to 

be significant. Alpha diversity estimates show that the observed species (OTU) 

richness and the estimated Chao1 richness did not significantly differ across the 

sexual selection intensities in either males or females. This supports the idea that 

increasing the number of females in each generation by four, controlled for potential 

differences in effective population size (Ne)(Sharma et al. 2012). Our finding that when 

using the Shannon-Weaver diversity index alpha diversity increases with an increase 
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in sexual selection strength in males suggests that sexual selection is acting on the 

gut microbiome. As we find effects with the Shannon-Weaver index and not with the 

Simpson’s index means that communities have a richer and more even microbiome, 

however, this difference is more weighted to richness (Kim et al. 2017). This may mean 

that increased sexual selection strength selects for males with increased gut microbial 

diversity or that there is higher variation amongst males. The former would suggest 

that increased gut bacterial diversity increases male’s reproductive success and the 

later would indicate there is variation in preferred gut types in males. Further work 

should investigate both these potential options. This increase in bacteria diversity may 

be due to the link between gut microbiota and CHC profiles, where removing gut 

bacteria reduces the differences in five mating related CHCs (Sharon et al. 2010). The 

fact we only found a response in males suggests that these alpha diversity changes 

are having a functional effect. This would make sense as our elevated sexual selection 

regime impose stronger selection on males than femalesWhen measuring beta 

diversity differences we were looking at the differences in the makeup of each bacteria 

community. Beta diversity looks at whether the species and their individual 

abundances are different across populations. We analysed the beta diversity across 

treatments by using two distance measures. The Bray-Curtis distance measure looks 

at the dissimilarity between communities and is able to handle the large number of 

zero values common in this type of sequencing. The weighted UniFrac distance 

measures account for the phylogenetic similarity and is weight by the abundance of 

species. The Bray-Curtis measure will allow us to look at if communities differ between 

treatments and the weighted UniFrac measure may tell us more about if there are 

functionally significant differences. Our results show that populations evolving under 

either elevated or relaxed sexual selection intensity have different gut microbial 

communities across both beta diversity measures. Males and females each had 

changes in their microbiome when using different distance measures.  

 

When using Bray-Curtis dissimilarity we found a significant difference in female’s 

bacterial communities across the two sexual selection treatments. The weighted 

UniFrac distance analysis however found microbiome differences across our sexual 

selection treatments in males. These finding suggest that sexual selection is altering 

the microbiome of both males and females in different ways. The changes in the 
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makeup of female’s microbiomes are likely to be between more closely related OTUs. 

This means that while the microbial community changes, these changes are potentially 

less likely to be functionally significant. In males we only find changes when using the 

weighted UniFrac measure, this suggests that the changes in the microbiome are not 

as great in numerical terms as they are in females. However, the changes are between 

more distantly related OTUs. This could means these changes are more likely to be 

functionally significant and would be an important avenue for future research. Changes 

in certain phylum of bacteria can be associated with strong fitness effects. For 

example, age related changes in a specific phylum in the gut microbiota correlates 

with aging and mortality in humans and D. melanogaster (Clark et al. 2015; Claesson 

et al. 2012). In D. melanogaster changes in sexual signals correlated with changes in 

the prevalence of Lactobacillus spp. in the gut microbiota (Sharon et al. 2010).  

 

Our increased sexual selection treatment would impose stronger selection on males 

than females, as males would be subject to both mate competition and mate choice. 

It is also worth noting that the increased sexual selection treatment will potentially 

expose females to greater levels of male harm and harassment, which could reduce 

female longevity. However we would still expect functional changes in the gut 

microbiota driven by sexual selection to be more likely in males. This was found 

previously in D. simulans where evolving under elevated sexual selection resulted in 

significant changes in male CHC profiles but not in females (Sharma et al. 2012). As 

gut microbiota changes have been found to influence CHC profiles they may be one 

mechanism that sexual selection is acting on the gut microbiota (Sharon et al. 2010). 

The gut microbiota can have a wide range of fitness effects on their host so sexual 

selection may be acting on a number of these fitness effects. For example, increases 

in the energy harvesting capacity caused by the gut microbiota(Turnbaugh et al. 2006) 

could provide benefits in both mate competition and sperm competition as both are 

potentially energetically costly (Bretman et al. 2013). The microbiota can also have 

immune function effects and selection on increased parasite immunity in D. 

melanogaster was associated with an increase in male mating success (Rolff & 

Kraaijeveld, 2003). D. melanogaster evolving under weaker sexual selection have 

been found to have a reduced cognitive ability (Hollis & Kawecki, 2014). This suggests 

that sexual selection acts on cognitive ability and the gut microbiota have been shown 
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to affect their host’s cognition and behaviour (Forsythe et al. 2010; Li et al. 2009; Heijtz 

et al. 2011).  

 

We did not find a significant effect of temperature/natural selection on the gut microbial 

diversity of males or females across any of our diversity measures. This is surprising 

as higher and more stressful temperature environments have previously been show 

to decrease microbiota diversity in several other ectotherms including the eastern red-

backed salamander (Plethodon cinereus), common lizard (Zootoca vivipara) and 

northern leopard frog (Lithobates pipiens) (Fontaine et al., 2018; Kohl & Yahn, 2016; 

Bestion et al., 2017). Previous work on the closely related Drosophila melanogaster 

found development temperature altered gut microbial community composition 

(Moghadam et al. 2018). There are a few potential explanations we did not find 

differences in the microbiota of populations evolving at different temperatures. The 

previous work that found significant temperature based microbiota changes was 

carried out in D. melanogaster (Moghadam et al. 2018) which despite being closely 

related has previously been shown to differ in a number of ways to D. simulans. D. 

simulans are more sensitive to high temperatures with temperature induced male 

sterility happening above 28oC compared to 30oC in D. melanogaster (Chakir et al. 

2002). The different response we find in the gut microbiota evolving at different 

temperatures compared to Moghadam et al. (2018) may be due to differences 

between simulans and melanogaster in their response to temperature changes. We 

also used less extreme temperatures in our study that are stressful but below the level 

of thermal sterilisation. This may be another reason why gut bacterial communities did 

not differ across thermal environments as was found in Moghadam et al. (2018). The 

final explanation could be that as we are testing pooled individuals within a population 

the diversity of the population does not decrease but individuals may have 

experienced reduced gut bacterial diversity.  

 

A further explanation may be that our work allowed populations to develop at their 

temperatures for 38 generations and so should show the long-term consequences of 

changing temperatures on an ectotherms microbiota. Our results are less clear than 

previous work and may demonstrate that populations are evolving to minimise the 

effects of changing environment on their gut microbial communities. Previous work 
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only changed the temperature of development and so did not allow any evolution of 

the D. melanogaster in response to their climate changing their gut microbiota 

(Moghadam et al. 2018). As the effects of the gut microbiome are so wide reaching 

and important for fitness, large environment driven changes could select for a 

response in the host to negate these changes. This would mean that the populations 

raised at higher temperatures have evolved to offset short term costs of temperature 

induced microbiota changes. We know that a hosts gut environment imposes selection 

for certain bacterial community compositions, where reciprocal transplant of gut 

bacteria between zebrafish and mice found bacterial communities mimicked the 

composition of their original guts (Rawls et al. 2006). The idea of hosts evolving to 

offset the temperature induced gut changes would require further work looking at gut 

biota differences across generations. 

 

Our alpha diversity plots appear to show in males a trend for increased natural 

selection limiting the diversity increases associated with stronger sexual selection. 

This is in line with classical ideas of sexual selection being balanced by natural 

selection (Andersson, 1982; Kirkpatrick, 1982). However, we found no significant 

interaction between temperature (natural) and sexual selection on gut microbial 

communities. This may be because we found no overall temperature effects on the 

gut microbiome. It may be possible that with this experimental design the strength of 

sexual selection is so high that any antagonistic effects of natural selection are unable 

to offset the effects of sexual selection. Our study did not find an interaction between 

sexual selection and natural selection on gut microbial diversity, however, the 

possibility for antagonistic selection between sexual and natural selection warrants 

further study. 

 

If the ‘holobiome’ is going to be a useful evolutionary measure one of the main 

requirements is that selection is acting on a host’s microbial communities. Our work is 

the first instance of showing sexual selection altering the gut microbiota of organisms 

in evolutionary terms. Our work has shown the evolutionary response of gut profiles 

to varied sexual and natural selection intensity. We show that increased sexual 

selection is associated with both a changed and more diverse gut microbiome. As gut 

microbial profiles are heritable both through vertical transmission (Bright & Bulgheresi, 
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2010) and through the gut environment shaping bacterial communities (Rawls et al. 

2006), we can look at the importance of ‘holobiome’ in terms of sexual selection theory. 

 

Research into the importance of organisms’ microbiome has so far focused on 

changing the microbiota of individuals and measuring responses. This is the case 

whether researching gut microbial effects on development rate (Newell & Douglas, 

2014), where removing gut bacteria reduced development rate, or on metabolism 

(Wong et al. 2014), where microbial removal highlighted changes in nutrient uptake. 

The same methodology has been used in testing microbial effects on mate choice 

(Sharon et al. 2010) where removal and inoculation with different bacterial 

communities changed mating preference. Our research show that hosts and their 

microbiota are evolving together and the evolutionary history of the experimental 

animals will potentially determine the effects of microbiota removal on these fitness 

measures. Future work should account for the strength of selection their organisms 

have been evolving under when designing this type of experiment. 

 

Conclusions 

 

Overall, it appears that evolving under different sexual selection intensities causes 

changes in the gut microbiota within populations. Natural selection (temperature 

changes) does not have a significant effect on gut microbial communities. Increasing 

the strength of sexual selection appears to increase gut microbial diversity of males 

but not females when using an alpha diversity measure. We found the gut microbial 

communities of males and females both change with increased sexual selection 

intensity. The microbiome of males changes in a potentially more functionally 

significant way than that of females. This is likely due to the strength of sexual selection 

being higher in males. The functional differences of these changes need further 

investigation and future work should asses if more phylogenetically distant changes in 

gut microbiota have greater phenotypic significance. We did not find an interaction 

between natural and sexual selection on the gut microbiome. This is the first 

experimental evolutionary response of gut microbiota to sexual selection. Gut 

microbial communities may play an important role in mediating sexually selected traits 

or may be directly selected on for the indirect benefits that they can provide to 



89 
 
 

offspring. Finally, future work should test if these responses are caused by evolved 

changes in the gut environment of individuals promoting certain bacterial communities, 

or if these changes are cause by vertical and horizontal transmission within the 

selection populations. 
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Chapter 5 

 

The effects of microbiota across different genotypes on 

male competitive fitness, female choosiness and 

reproductive output.  

 

Abstract 

 

The exosymbiotic bacteria that inhabit the internal and external surfaces of animals 

play an important role in their host’s fitness. The number of bacterial cells can often 

outnumber that of their hosts. These bacteria play a role in their host’s immunity, 

development, physiology and behaviour. Symbiotic bacteria have also been found to 

influence a range of sexual signals. Most previous studies have compared germ-free 

individuals to standard individuals to find evidence of microbial influence on their hosts. 

Here we use a novel treatment where we alter the microbial profile of different 

Drosophila simulans genotypes and test the fitness effects across a range of 

measures compared to the removal of or original microbiota. We found a significant 

interaction between microbiota and genotype on male body size. Our microbial 

treatments did not influence male competitive reproductive success, female 

choosiness or body size. When comparing the effects on female reproductive output 

across genotypes simply removing the microbiota had no effects compared to the 

original microbiota fitness ranks, however, when we altered the microbiota fitness 

ranks were significantly changed. This shows that host genotype and the microbiota 

are interacting. When looking for microbiota fitness effects it is important that we test 

across a range of hosts. Future work should also attempt to use more biologically 

relevant microbial treatments rather than just comparing individuals with an intact 

microbiota to germ-free individuals.  
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Introduction 

 

Exosymbiotic bacteria are understood to be an important physiological feature of 

animals. These bacteria live on the surface (skin, feathers, scales, feathers and 

exoskeletons) or in reproductive tracts, specialised preening or olfaction glands and 

digestive tracts of their host. The number of symbiotic bacteria an organism hosts often 

out-number host somatic cells - for example in humans there are ten times more 

bacteria than somatic cells (Savage, 1977). This specific example means that the 

number of symbiotic bacterial genes outnumber human genes 100 to 1 (Yang et al. 

2009). This demonstrates the potential there is for symbiotic bacteria to have 

physiological or behavioural effects on their host. Symbiotic bacteria can interact with 

their hosts in a number of ways; they can benefit their host (i.e. a mutualism), have no 

fitness effect on their host  (i.e. have a commensal relationship), or, negatively affect 

their host (i.e. act as parasites) (Dimijian, 2000). To date the majority of research has 

focused on parasitic relationships as often these have the most dramatic or obvious 

effects on host fitness. In many cases it is now understood that many of these 

interactions are dynamic between bacteria and host. However, symbiotic bacteria 

have been shown to have wide ranging fitness effects on their host. 

 

Symbiotic bacteria have been shown to be important in improving host immune 

function. One mechanism of this is that commensal bacteria in the gut form fairly stable 

communities that resist the colonisation of the gut by pathogens (Freter, 1955). Gut 

symbionts have also been shown to directly inhibit the growth of pathogens and even 

kill them (Pultz et al. 2005). Some of the mechanisms behind these direct effects are 

either be the production of bacteriocins (Hammami et al. 2013) or the type VI secretion 

system (Russell et al. 2014). Both of these mechanisms involve by-products of 

bacterial competition from the commensal bacteria, which helps to stop the 

colonisation of the gut by pathogens. Immune benefits from symbiotic bacteria are not 

limited to the gut microbiota. In amphibians the symbiotic skin-bacteria help to defend 

again the pathogenic chytrid fungus (Batrachochytrium dendrobatidis) (Woodhams et 

al. 2007). Metabolites produced by symbiotic bacteria can also help to protect the host 

against infection by bacterial parasites. Some symbiotic anaerobic bacteria produce 
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short-chained fatty acids (SCFAs) which have been shown to inhibit the growth of or 

kill pathogens (Cherrington et al. 1991; Bohnhoff et al. 1964). 

 

Symbiotic gut bacteria can also impact their host’s metabolism. The SCFAs produced 

by some symbiotic gut microbiota can regulate host metabolism (Bjursell et al. 2011; 

Bellahcene et al. 2013). For example, obese and lean identical twins vary in their core 

microbiome (Turnbaugh et al. 2009). The gut microbiota from obese individuals have 

also been shown to increase energy harvesting capacity in mice (Turnbaugh et al. 

2006). Gut bacterial induced gut inflammation has also been shown to have 

detrimental metabolic effects in mice (Lam et al. 2012). The mechanisms behind 

microbiota effects on host metabolism are not fully understood. However, gut 

microbiota can break down inaccessible nutrient sources into more easily absorbable 

metabolites (Tremaroli & Bäckhed, 2012). These metabolites can also effect host 

neuroendocrine systems, which can have behavioural and development effects in 

mice (Bravo et al. 2011; Heijtz et al. 2011). These changes induce anxiety like 

behaviours and change motor activity.  

 

Metabolites and symbiotic bacterial by-products also influence the olfactory 

communication and signalling in a range of mammals. Changes in the anal glad 

bacterial communities co-vary with social odour in meerkats (Suricata suricatta) 

(Leclaire et al. 2017) and hyenas (Theis et al. 2013). Bacterial communities in 

European badger’s (Meles meles) (Sin et al. 2012) and meerkat’s (Suricata suricatta) 

(Leclaire et al. 2014) scent glands correlate with individual-specific traits such as age, 

sex, condition and reproductive status. These are examples of symbiotic bacteria 

potentially mediating important signalling pathways. However, once again all these 

examples show correlation and not causation. In greater sac-winged bats 

(Saccopteryx bilineata), males have a pouch like scent organ that is used in courtship 

and these are morphologically different to females’ pouches. The bacteria present in 

wing sacs varied across the sexes with males having much less diverse microbiota 

inhabiting their wing sacs compared to females (Christian et al. 2005). Males will clean 

and refill their wing sacs daily and this may be in order to maintain a highly specialised 

microbial community (Voigt, 2002). Bacterial communities in the uropygial (preen) 

glands of hoopoes (Upupa epops) protect against feather degrading bacteria (Ruiz-
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Rodriguez et al. 2009) and the white feathers used in sexual signalling are broken 

down faster than the darker, more melanised feathers (Ruiz-De-Castañeda et al. 

2012). Males with larger preen glands are able to better maintain these sexual signals 

(Ruiz-Rodríguez et al. 2015). This means that symbiotic bacteria are responsible for 

the honesty and the maintenance of the sexual signal. Gut microbiota have also been 

shown to influence signalling in invertebrates. In Drosophila melanogaster symbiotic 

bacteria have been shown to alter cuticular hydrocarbon (CHC) profiles (Sharon et al. 

2010). CHCs are important sexual signals (Howard & Blomquist, 2005) and have been 

shown to evolve in divergent ways under different levels of sexual selection (Sharma 

et al. 2012). This means that in Drosophila symbiotic bacteria are responsible for 

certain mating signals and once the symbiotic bacteria are removed mating signals 

change (Sharon et al. 2010). 

 

Symbiotic bacteria impact sexual selection in a number of ways. As shown above 

symbiotic bacteria cause changes in important olfactory and visual sexual signals. Gut 

bacterial changes have also been shown to influence development rates in D. 

melanogaster (Shin et al. 2011) and some of these changes appear to be cause by 

Lactobacillus plantarum modulating hormone signalling (Storelli et al. 2011). 

Interestingly, Sharon et al. (2010) found that flies raised on different diets greatly 

varied in the prevalence of L. plantarum in their guts. Males inoculated with different 

bacterial species varied in their mating duration (Morimoto et al. 2017). This can have 

important effects on male competitive ability as increased mating duration can result 

in a greater competitive mating success (Bretman et al. 2009). However, this change 

in mating duration was likely caused by the inoculation with Acetobacter pomorum 

causing a reduction in male condition (Morimoto et al. 2017). This study manipulated 

individual symbiotic bacteria species which is likely to not be biologically relevant as 

bacteria within a community interact and likely multiple species are responsible for 

many of the fitness effects described above.  

 

Much of the research into the fitness effects of symbiotic bacteria can be classified in 

to two groups: they either look for an association between the gut profiles of individuals 

in different groups, or they remove bacteria and compare germfree individuals to 

standard individuals. The problem with the first approach is that correlation does not 



101 
 
 

necessarily mean causation. The problem with removing bacteria or creating germfree 

individuals is that this is does not tell us much other than that symbiotic bacteria are 

important for a range of functions that are all linked.  

 

In the study conducted here, we take another approach.  We used Drosophila 

simulans as our model to test for effects of symbiotic bacteria on host sexual-fitness. 

Rather than the usual remove/retain bacteria then compare host fitness, we introduced 

another treatment, which tests if altering the microbial profiles of individuals has 

different effects compared to simply removing their microbiota.  Thus, we had three 

treatments: gut bacteria removed, removed and a re-infected with original gut bacteria 

and removed and subsequently inoculated with a novel bacterial community. We 

previously found that evolving under higher or lower intensities of sexual selection 

cause the evolution of divergent gut microbiomes in D. simulans (Chapter 4). This 

suggests that the symbiotic gut bacteria play a role in sexual selection in this species. 

As the gut bacterial communities appear to evolve with a population, we wanted to test 

if different genotypes responded differently to a novel symbiotic gut microbiota. Host 

genotype has been shown to influence their gut microbiome (Spor et al. 2011). 

Reciprocal microbial transplants between zebrafish and mice have shown that 

microbial communities return to a structure similar to the original host, but the bacterial 

species composition of these communities remain altered (Rawls et al. 2006). We 

tested whether manipulating the microbiota of D. simulans impacts sexually selected 

fitness-linked traits and if these effects are genotype dependent. 

 

Materials and methods 

 

Drosophila simulans isolines used in this experiment were originally collected from 

Greece (Ingleby et al. 2013) and were maintained for > 45 generations with full-sib 

matings (n= 25 brothers and 25 sisters/isoline). Thus, each isoline could be considered 

as being distinct genotypes (David et al. 2005).  All stocks were reared on a standard 

cornmeal-based Jazzmix diet (hereafter Jazzmix) (supplied by Applied Scientific, UK) 

at 25°C on a 12∶12 hour light:dark cycle. Each isoline was then split into one of three 

gut microbial treatments. For all treatments, founding isolines were allowed to egg lay 

for 24h on apple juice agar (50% apple juice, 50% DiH2O by liquid volume and 1.2% 
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agar powder) supplemented with yeast paste to encourage egg laying. These eggs 

were then collected had their chorion removed through washing in a 50% bleach 

solution in order to remove any gut bacteria from the eggs (Chapter 2). These clean 

eggs were then split into each of the three gut microbial treatments (Figure 1).  The 

bacteria used to generate these treatments were collected using the methods outlined 

in Chapter 2 - from food vials that 25 males and females interacted on for 3 days. One 

treatment was inoculated with gut bacteria collected from self-isoline to provide a 

treatment re-infected with their original gut bacteria (+ gut bacteria). The second 

treatment was inoculated with sterile PBS to provide a treatment with washed gut 

bacteria (- gut bacteria). The final treatment was inoculated with gut bacteria from 

Drosophila pseudoobscura raised on a separate diet type, this would provide a 

treatment with a new gut bacterial profiles (Δ gut bacteria). The D. pseudoobscura 

were originally collected from Lewiston, Montana, in 2008 (Price et al. 2014) and 

maintained as an isoline for >80 generations on a diet medium of rolled oats, brown 

sugar, dried yeast, agar, nipagin, proprionic acid and water (Shorrocks, 1972).  

 

After treatment appropriate inoculation, the eggs from each bacterial treatment were 

allowed to develop and adult flies collected as virgins <6 hours after eclosion. These 

virgin flies were then housed by isoline and treatment in single sex vials of up to 10 

individuals until they were between three and six days old. For all fitness assays tester 

flies came from a population of ebony (a recessive, phenotypic body-colour mutant) 

flies. The ebony stock populations (stocks from Tucson stock centre) were maintained 

at the standard conditions described above (ca. 800 flies/cage). To collect tester flies 

25 male and 25 female ebony flies were allowed to egg lay for 2 days in each large 

vial containing 30ml Jazzmix. The eggs were left to develop until virgin males and 

females were collected every 6 hours and stored in single sex groups of 10. These 

flies were left to age for 3-5 days and used as tester mates for both males and females.  

 

Male fitness assay 

 

We used competitive male reproductive output (the number of offspring sired by focal 

males competing against two ebony males for access to two ebony females) as a 

measure of male fitness. We set up 5 replicates/isoline per treatment (for a total of 270 
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flies). Each focal male was housed with two ebony males and two ebony females for 

48 hours, then males were removed and females were moved into fresh egg-laying 

vials for 48 hours and then again for 72 hours. All fly transfers were performed without 

anaesthesia to avoid any negative effects on female fecundity (Champion De 

Crespigny & Wedell, 2008). Offspring from each vial were counted on the 8th day after 

the first eclosions. This measure has been shown to be a good proxy for lifetime 

productivity from a single copulation (Taylor et al. 2008; Nguyen & Moehring, 2015). 

We counted the number of wild-type and ebony offspring to determine parentage. We 

scored the proportion of offspring that were sired by the focal males (wild-type). The 

focal males had wing measurements taken after being removed from their mating vials 

to determine if the gut bacterial treatments had an effect on male size as this may 

reflect changes in condition across treatments. 

 

 Male fitness analysis 

 

All data analyses were carried out in RStudio version 1.1383 (RStudio Team, 2016) 

using R version 3.6.2 (R Core Team, 2019). To analyse the effects of gut bacteria on 

the proportion of offspring sired by the focal male we used a GLM fit with quasi-

binomial error structure. Full models were fit with gut bacterial treatment, genotype 

(isoline) and the interaction between them as fixed effects. The interaction was 

included to see if the gut bacterial effects were dependent on the genetic background 

of the fly. Fixed effects were then tested for significance using the Anova function in 

the car package (Fox & Weisberg, 2011). Rank changes in the proportion of offspring 

sired by the focal male with gut bacteria treatment across Isolines were analysed using 

a Spearman’s Rho correlation coefficient. To test if gut bacterial treatment had an 

effect on male size we averaged the wing measurements of each fly to obtain an 

average wing size for each male. We then used a GLM fit with a Gaussian error 

structure. The full models were fit again with gut bacterial treatment, genotype (isoline) 

and the interaction as fixed effects. The fixed effects were again were then tested for 

significance using the Anova function in the car package. 
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Figure 1: Illustration of the bacterial treatment protocol. Males and females from each 

isoline were transferred on to separate apple juice agar for egg laying. Those eggs 

were then collected and de-chorionated using a 50% bleach solution. These eggs 

were then split into one of 3 treatments for each isoline. One third were re-infected 

with the original gut microbiota from their matching isoline. The next group were 

inoculated with sterile PBS to provide a washed treatment. The final treatment was 

inoculated with a new gut microbiota collected from D. pseudoobscura raised on a 

different diet.   

 

Female latency to mate assay 

 

We used female’s latency to mate with an ebony male as a measure of female 

choosiness. In Drosophila females have complete control over whether or not they 

choose to mate (Spieth, 1974; Lasbleiz et al. 2006). As there is not any forced 

copulation in D. simulans the time a female takes to mate can be used as an estimate 

of choosiness (Taylor et al. 2008; Narraway et al. 2010; Sharma et al. 2010; Ingleby 

et al. 2013). We provided each female with a single male and timed how long from 

introduction it took for copulation to occur. We set up 5 females per treatment for each 

isoline (for a total of 345 flies) in individual vials 24 hours before the introduction of a 

male. An ebony male was placed into each vial ~1 hour after lights on in the incubators. 

The time that each male was introduced into each vial was recorded and then 

investigators blind to the treatments of each female watched the vials until mating 
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started. We recorded the time that mating started and then allowed mating to conclude 

before the vials were moved.  

 

Female choosiness analysis 

 

To assess whether changes in gut biota causes changes in female choosiness, we 

used Kaplan-Meier curves to visualize the data and analysed differences in female 

choosiness using a cox proportional hazard model (Kaplan & Meier, 1958; Cox, 1972) 

with isoline and gut bacteria treatment as co-variates and mating being the hazard. 

This allows us to tests which factors impact the time to the event and also include 

individuals that did not mate during the observation period. We then tested the 

significance and interactions of all the risk factors using the ANOVA function in the car 

package (Fox & Weisberg 2011) of RStudio version 1.1383 (RStudio Team, 2016) 

using R version 3.6.2 (R Core Team, 2019). 

 

Female fitness assay 

 

To test if altering females gut biota also impacted their fitness we tested their 

reproductive output from the matings in the choosiness assay above. After the 

copulations ended the male was removed from the vial and the female allowed to egg 

lay for 48 hours until being moved to a fresh vial and egg-laying for another 48 hours 

and then moving to a final egg-laying vial for 72 hours. After the final transfer the 

females were removed and their wings measured to provide a body size estimate. The 

eggs were allowed to develop and the total offspring counted from each vial 8 days 

after the first eclosion. All transfers were carried out without anaesthesia to limit fitness 

effects of the transfers.  

 

Female fitness analysis 

 

To test the gut bacterial effects on female fitness we used a GLM fit with a quasi-

Poisson error distribution to compare the total number of offspring across treatments. 

Full models were fit with gut bacterial treatment, genotype (isoline) and the interaction 

as fixed effects. The model was the tested for significance as above using the Anova 
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function in the car package (Fox & Weisberg 2011) of RStudio version 1.1383 (RStudio 

Team, 2016) using R version 3.6.2 (R Core Team, 2019). We analysed female size in 

the same way as for male size to test for any gut bacterial effects on female condition. 

 

Results  

 

To test the effects of the three gut bacterial treatments on male fitness we used male 

competitive reproductive output as our measure of fitness. We found that Gut bacterial 

treatment had no effect on male competitive reproductive output (F= 1.10, df=2, p = 

0.33) with proportion of offspring sired by our focal male being ranging from 0.24 to 

0.33 (Figure 2). We found that genotype (isoline) had a significant effect on male 

competitive reproductive output (F= 1.93, df=18, p = 0.015). There was no significant 

interaction between the effects of genotype and gut bacterial treatment on male 

competitive reproductive output (F= 0.98, df=35, p = 0.81). However, we detected 

crossing-over in the average fitness ranks of each isoline across the three gut bacterial 

treatments (Figure 3). This suggests that the effects of gut treatment may depend on 

the genetic background of the individual although there is no significant interaction. To 

test this we averaged genotype fitness for each gut bacterial treatment and then using 

these means to assess the fitness ranks of genotypes across gut bacterial treatments. 

This revealed that there were no correlations between the new (Δ) and re-infected (+) 

gut bacteria treatments (Spearman’s rho = 0.28; P = 0.27), the re-infected (+) and the 

washed (-) gut bacterial treatments (Spearman’s rho = 0.42; P = 0.08) or between the 

new (Δ) and washed (-) bacterial treatments (Spearman’s rho = 0.03; P = 0.91).  

 

We used wing measurements as a proxy for body size and tested the effects of gut 

bacterial treatment, genotype (isoline) and their interaction on male body size. We 

found that genotype had a significant effect on male body size (Χ2=214.1, df=15, p < 

0.001). Gut bacterial treatment did not significantly affect male body size in a 

consistent way across genotypes (isolines) (Χ2=0.28, df=2, p = 0.87). We do find a 

significant interaction between gut bacterial treatment and genotype (isoline) on male 

body size (Χ2=61.6, df=30, p < 0.001) meaning the gut bacterial treatment effects 

depend on the genetic background or original gut bacterial profile of an individual 

(Figure 4). We also measure female body size and analysed the effects of gut bacterial 
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treatment, genotype and their interaction in the same way as for males. We found that 

genotype (isoline) had a significant effect on the body size of females (Χ2=90.42, 

df=16, p < 0.001). We found that gut bacterial treatment did not significantly alter 

female body size (Χ2=2.491, df=2, p = 0.288). There was also no significant interaction 

between gut bacterial treatment and genotype (isoline) (Χ2=42.49, df=32, p = 0.102) 

despite finding similar patterns to the male body size when plotted by genotype and 

bacterial treatments (Figure 4). 

 

To test if altering the gut bacterial profile of females changes their choosiness we used 

latency to mate with an ebony male as a measure of choosiness. We found that gut 

bacterial treatment had no effect on female choosiness (Χ2=3.11, df=2, p = 0.21). This 

is also shown in the Kaplan-Meier curve (Figure 5) where the time individuals that had 

their bacteria removed and inoculated with sterile PBS seem to be the least choosey 

however the differences are minimal. We also found that a female’s genotype (isoline) 

did not affect choosiness (Χ2=24.94, df=22, p = 0.30). We also found no interaction 

between gut bacterial treatment and genotype on this measure of female choosiness 

(Χ2=43.48, df=44, p = 0.49).  

 

The successfully mating females were allowed to egg lay for 7 days and their total 

reproductive output for this time was measured. The total number of offspring that 

eclosed from the egg lay vials was recorded for each female that successfully mated. 

We found that genotype (isoline) had a significant effect on female reproductive output 

(F=3.80, df=22, p < 0.001). Gut bacterial treatment had no effect on female 

reproductive output (F=1.89, df=2, p = 0.15) (Figure 2). We also found the interaction 

between gut bacteria treatment and genotype (isoline) had no effect on female 

reproductive output (F=1.16, df=44, p = 0.24). As above for male competitive 

reproductive success we averaged genotype fitness across our gut bacterial 

treatments and compared these averages. Again we see crossing over in the average 

fitness ranks of each isoline across the three gut bacterial treatments (Figure 3). When 

we compare the genotype fitness ranks across treatments we find no correlation 

between re-infection (+) and new (Δ) gut bacterial treatments (Spearman’s rho = 0.40; 

P = 0.06) or between new (Δ) and washed (-) gut treatments (Spearman’s rho = 0.21; 

P = 0.34).  There is however significant correlation between re-infection (+) and 
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washed (-) gut bacterial treatments (Spearman’s rho = 0.600; P = 0.002). This 

suggests that the effects of gut treatment may depend on the genetic background of 

the individual but only when changing the gut bacteria not simply removing it.  

 

 

Figure 2.  The effects of bacterial treatment on measure of male (left panel) and 

female fitness (right panel). All treatments had their gut bacteria removed. The 

Washed treatment were inoculated with sterile PBS (-), Re-infect were inoculated with 

their original gut bacteria (+) and New were inoculated with a novel gut bacteria from 

a different species of Drosophila (Δ). The mean proportion of offspring sired by the 

focal male with standard error bars across the three gut bacterial treatments averaged 

across isolines for the male fitness assay (left panel). The plot shows that gut bacterial 

treatment doesn’t significantly impact male competitive reproductive success however 

surprisingly the treatment where flies are re-infected with their original gut bacteria 

their average fitness is lowest and when inoculated with sterile PBS they have the 

highest average fitness. The mean female offspring production over 7 days averaged 

across isolines for each bacterial treatment with standard error bars (plotted on the 

right). Again the plot shows no significant effect of gut bacterial treatment on female 

fitness. Surprisingly we again see females inoculated with sterile PBS in the washed 

(-) bacterial treatment have the highest average fitness.
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Figure 3. The relative competitive male-fitness ranks of genotypes (isolines) on the left and female offspring production on the right 

with either new (Δ), re-infect (+) or washed (-) gut bacterial treatments. There is no association between genotype fitness-ranks 

across gut bacterial treatments as indicated by the major crossing over in ranks for males. This suggests changing gut bacterial 

profile fundamentally alters the male sexual-fitness ranks of fly genotypes. Female genotype fitness ranks cross over however there 

is significant correlation between the re-infect and washed treatments. This suggests the gut bacterial treatment genotype differences 

only apply when being inoculated with new bacteria. 
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Figure 4. Body size plotted across gut bacteria treatment and genotype (isoline). Gut bacterial treatments are shown with the different 

coloured data points where black circles represent the new (Δ) gut treatment of inoculation with a novel gut microbiota, red circles 

represent the re-infect with their original gut microbiota (+) gut treatment and green circles represent the washed (-) gut bacterial 

treatment where the gut microbiota a removed. Male body size is plotted on the left and female body size on the right. The plots show 

the gut bacterial treatments have different effects on body size across the genotypes (isolines) however this effect is only significant 

in males. In some instances removing or changing the gut bacterial profile causes flies to be larger and in some instances smaller. 
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Figure 5. Kaplan-Meier curve plotted for time until females mate with a stock ebony 

male across the three gut bacterial treatments. The y-axis shows the proportion of 

females that have mated plotted against time on the x-axis. Females with the new gut 

bacterial treatment (Δ) are plotted in black, females with the re-infect treatment (+) are 

plotted in red and the washed bacterial treatment (-) are plotted in green. The plot 

shows how close the three bacterial treatments track in terms of female choosiness 

with the washed (-) treatment only being slightly less choosey. 

 

Discussion 

 

Changing the composition of individual’s microbiota did not consistently affect male 

competitive reproductive success across all genotypes. The competitive reproductive 

success of males appeared to vary across genotypes (isoline), however, there was no 

significant interaction between genotype and bacterial treatment on male competitive 

reproductive fitness. When we plotted the averaged male fitness ranks of each isoline 



112 
 
 

across the three bacterial treatments we found crossing over of these ranks. We also 

found that there was no correlation between the male fitness ranks across any of the 

bacterial treatments. It has been suggested GLMs and analyses of variance are 

relatively poor at detecting genotype by environmental interactions (Lewontin, 2006), 

although, finding no significant correlation between the genotype fitness ranks across 

treatments does not mean the crossing-over of fitness ranks is statistically significant. 

This may be evidence that the impact of the gut microbiota on male reproductive 

success is dependent of the male’s genotype. The effects of bacterial treatment on 

male body size depend of the genotype on the male. This means that manipulating or 

removing the symbiotic bacteria causes larger males in some isolines and smaller 

males in others. Overall, we found no effect of bacterial treatment independently on 

male body size.  

 

Across all our measures of female fitness we found no effect of bacterial treatment. 

Female choosiness and offspring production did not vary across our symbiotic 

bacterial treatments. There was no significant interaction between genotype and 

bacterial treatment on either of these fitness measures either. When comparing female 

offspring production fitness ranks of isolines across treatments we found the there is 

a significant correlation between these ranks of washed (-) and re-infected (+) 

treatment females. There was no correlation between either re-infected (+) and new 

(Δ) or washed (-) and new (Δ) treatment females. This suggests that and symbiotic 

bacterial effects on female offspring production depend on the genetic background of 

the female and require manipulation with a novel bacterial community not just the 

removal the symbiotic bacteria although this would need further work to identify a 

significant interaction between genotype and microbiota on female fitness using this 

novel bacterial treatment. We did not find any effects of bacterial treatment on female 

body size or any interaction between bacterial treatment and genotype although this 

interaction was only marginally not significant. Only genotype had a significant effect 

on body size in females suggesting that males and females respond differently to gut 

microbiota changes.  

 

We found no consistent effect of microbiota treatment on our measure of male 

reproductive success. We would expect to see flies with different symbiotic bacterial 
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communities perform differently in male competitive fitness and have varied female 

choosiness as diet induced assortative mating is caused by diet caused gut bacterial 

changes in D. melanogaster (Sharon et al. 2010). This means that D. melanogaster 

are making mating choices based on gut bacteria profiles, which may be inducing CHC 

profile changes. Therefore, removing or changing the symbiotic bacterial communities 

should cause significant changes in males’ competitive ability. We may not see these 

consistent effects of the gut microbiota on male competitive ability as the scale and 

nature of the effects depend on the host’s genetic background. 

 

We were unable to find a significant interaction between gut bacterial treatment and 

genotype on male reproductive success. This may be due to cytoplasmic 

incompatibility (CI) between the Wolbachia strains that infect the focal flies and the 

ebony testers. CI causes offspring to fail to develop when Wolbachia infected males 

mate with females not infected with that Wolbachia strain. This may be the reason 

focal males only sire around 30% of offspring across treatments despite females 

normally preferring wild-type males (Sharma et al. 2010) and wild-type males 

outcompeting ebony males (Archer et al. 2017). CI causing offspring to fail to develop 

would reduce the proportion of offspring sired by focal males and this would make any 

interaction difficult to detect. We find that male competitive fitness isoline (genotype) 

ranks vary across bacterial treatments. With the potential CI effects on offspring 

production and the difficulties that GLMs have in detecting genotype by environment 

interactions this suggests that there may still be an interaction between bacterial 

treatment and genotype on male competitive fitness. This is important, as most 

research looking into symbiotic bacterial fitness effects uses mixed populations, 

individual genotypes or do not address the genotype of their focal animals. This could 

potentially lead to studies missing important fitness consequences of symbiotic 

bacteria as they interact with the host’s genotype. As we previously found that gut 

bacterial profiles evolve with varying sexual selection intensity (Chapter 4) it is likely 

that each isoline (genotype) has co-evolved with its symbiotic bacteria despite not 

evolving under sterile conditions.  

 

The direction and magnitude of the fitness consequences of symbiotic bacteria 

removal or modification could depend on a number of factors. Firstly, if more of the 
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symbiotic bacteria were parasitic and costly in certain isolines then the removal or 

alteration of these communities would be more beneficial than in lines with lower 

proportions of parasitic symbionts. Again, the opposite is true where removing more 

mutualistic communities from certain isolines would be more harmful than removing 

the less beneficial bacterial communities in other lines. The extent to which each 

isoline’s host selective process alters the composition of their microbiota may also 

explain why the fitness effects of bacterial treatments vary across genotypes. If some 

lines gut environment more strongly select for beneficial gut bacterial communities 

then removing or altering their gut microbiota may not have as detrimental effects on 

their fitness.  This however, would not explain why some lines have improved fitness 

when their bacterial communities are removed.   

 

We found no consistent effect of bacterial treatment across genotypes on either male 

or female size measures. This is surprising as the presence of A. pomorum, a common 

gut bacterial species across lab reared Drosophila species (Broderick & Lemaitre, 

2012), is able to influence both the growth rate and body size or D. melanogaster via 

the insulin signalling pathway (Shin et al. 2011). We would therefore expect to see 

removal of the symbiotic bacterial communities reduce the body size of our flies. 

However, we did find a significant interaction between microbiota treatment and 

genotype on male body size. This suggests that the body size effects of microbiota 

treatment seem to depend on the male’s genetic background. The reasons for this 

interaction are likely to be similar to the reasons listed above where the nature of 

male’s gut microbial communities changes across genetic backgrounds. We did not 

find a significant interaction between bacterial treatment and genotype on female body 

size although this was only marginally not significant. This may mean that males and 

females react differently to changes in their microbiota. Trans-generational microbiota 

effects on body size have been found to impact daughters and not sons in D. 

melanogaster (Morimoto et al. 2017). This provides evidence that microbiota changes 

impact males and females differently. 

 

We found no effect of gut microbiota treatment on female mating latency which is a 

component choosiness. Choosiness in females can vary depending on a wide range 

of factors including female condition (Judge et al. 2014) and male encounter rate 
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(Kokko & Rankin, 2006). Our body size measurements suggest female condition is not 

drastically changing across gut microbiota treatments, which may explain why we do 

not find any choosiness effects. The gut microbiota has been found to alter their host 

behaviour in mice (Neufeld et al. 2011). In D. melanogaster the removal of the gut 

microbiota has been shown to increase females walking speed and daily activity 

(Schretter et al. 2018). This increased activity may alter females mate encounter rate 

in wild flies and so alter levels of choosiness. In our treatments populations have not 

evolved with their gut microbiota treatments and this might explain why we did not find 

females changing their mating behaviour. 

 

We would expect changing symbiotic bacterial communities would alter female 

reproductive output as bacterial supplementation of females diet has been shown to 

significantly improve ovary size, egg number and slightly improve fecundity (Qiao et 

al. 2019). We did not find any microbiota effects on female body size in our treatments 

and this may explain why we don’t find any effect on female reproductive success. A 

potential explanation for our results not reflecting what other studies found is that the 

symbiotic bacterial communities are returning to close to what their original 

communities were even after their bacterial treatments. We know that host’s gut 

environments favour specific bacterial communities and the specific composition of 

these bacterial communities (Rawls et al. 2006). In this example, when the gut 

bacterial communities are reciprocally crossed between mice and zebrafish the 

community structures return resemble their original bacterial community. The new 

transplanted species however remain which shows that both the available bacteria 

and the host selective process are important. It may be that in our treatments the 

symbiotic bacterial communities can return to a similar structure as before treatment.  

 

One of the interesting observations from our results is that the fitness ranks of female 

7-day offspring production significantly correlated across the washed (-) and re-

infection (+) treatments. This may be evidence that when we simply remove the 

symbiotic bacterial communities hosts are able to return to closer to their original 

microbiota than if we inoculate them with a novel bacterial community. This also shows 

that comparing the fitness consequences of maintaining or removing the microbiota 

may not actually reveal the microbiota’s importance. Potential work needs to use novel 
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bacterial communities to understand the importance of animal’s microbiota. The same 

applies when interpreting the effects on individual bacteria on fitness. We don’t fully 

understand how changing the abundance or presence of one species of bacteria will 

change the entire community structure. This makes ascribing fitness effects to 

individual bacteria species difficult and ill advised. 

 

We were unable to test the changes in bacterial communities by our bacterial 

treatments, as we could not isolate sufficient bacterial DNA quantities for confirmatory 

PCR analysis. We did find that across our bacterial treatments development rates 

varied with the washed (-) bacterial treatment developing much slower than our other 

two treatments and the new (Δ) bacterial treatment developing slightly faster than our 

re-infected (+) treatment. We also found that there was a significant interaction 

between genotype and bacterial treatment on male body size and the interaction was 

only marginally not significant in females. This gives evidence that the bacterial 

treatments did create flies with different symbiotic bacterial communities. The method 

of bacterial removal and reinfection has also previously been used in Sharon et al. 

(2010), but we cannot be 100% certain these were effective. 

 

The importance of an individual’s microbiota on their fitness is becoming increasingly 

apparent. The microbiota have effects on the development rate/body size (Shin et al. 

2011), metabolism (Wong et al. 2014), kin recognition (Lizé et al. 2013) and immune 

function (Pickard et al. 2017). The importance of symbiotic bacteria on sexual selection 

are difficult to ascribe as sexual selection acts on such a range of traits that the 

responses to these changes are likely to be complex. We used male competitive 

reproductive success as that measure encompasses many aspects of sexual 

selection. The males have to compete for access to females and their sperm 

potentially compete for access to eggs as well as having to court females. This is a 

useful measure, however, as it is also complex and encompasses many male traits it 

may make inferring the mechanisms behind fitness changes difficult. So, where 

changing the symbiotic bacteria of an individual may make them better at competing 

against rival males, it may also make them less attractive and so these traits may 

balance each other out. We could only measure the total fitness effects of the 

microbiota changes. Our measure of female choosiness also does not account for 
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potential changes in male investment based on male mate choice. Previously, gut 

bacteria has been found to be involved in male mating investment (Lize et al. 2014). 

If males are responding differently to females based on female bacterial treatment any 

changes in choosiness may be obscured.  

 

Previous work hasn’t looked at how microbial changes affect different genotypes 

differently. We found that the interaction between symbiotic bacteria and genetic 

background may be important. The causes of these interactions are not yet known, 

however, if it is caused by variation between the level of mutualism or parasitism in 

the bacterial communities of isolines then certain lines may have evolved “better” 

microbiota. The other option is that different genotypes vary in their response to 

microbiota changes. Understanding how an individual’s genotype and microbiota 

interact is important to better understanding the importance of microbiota in general. 

Future research needs to account for how different genetic backgrounds will respond 

to microbiota changes and acknowledge any fitness effects may be specific to the 

genetic background they used. This could also have health and medical implications 

as microbiota treatments are being tested for multiple diseases (Vivarelli et al. 2019; 

Aggeletopoulou et al. 2019) and neurodevelopmental disorders (Kang et al. 2019). If 

the effects of altering an individual’s microbiota depend on their genotype then these 

treatments may need to be tailored to each patient or trials need to include genetically 

diverse patients.  

 

Conclusions 

 

Individual’s microbiota plays an important role on their phenotype and behaviour. We 

tested how microbiota changes interact with host genotype in their effects on sexual 

selection. We found a mixed response in the fitness traits we measured across 

symbiotic bacterial treatments. We found no overall fitness effects of the bacterial 

treatments on any of our fitness measures. We found a significant interaction between 

genotype and bacterial treatment on male body size. We also found that genotype 

fitness ranks changed across bacterial treatment for male competitive reproductive 

success, potentially indicating that again host genotype influences the importance of 

microbiota changes. We found bacterial treatment did not differentially alter female 
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choosiness across genotypes. We found no significant interaction between bacterial 

treatment and genotype on female offspring production. For female offspring 

production we found simply removing the symbiotic bacteria did not change genotype 

fitness ranks but inoculation with a novel bacterial profile did. This highlights the 

importance of research that changes individual’s microbiota rather than testing the 

fitness consequences of removing symbiotic bacteria. Our results also provide the first 

example of a microbiota/genotype interaction on both body size. These interactions 

were present despite not finding effects of microbiota changes when averaged across 

genotypes. Future research should account for these genotype/microbiota 

interactions. We are only starting to understand the magnitude of the effects 

microbiota have on their hosts however understanding the interactions between hosts 

and their microbiota will be essential. 
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Chapter 6 

 

How Wolbachia and microbiota impact female latency to 

mate and body size across genotypes. 

 

Abstract 

 

Female mate choice is an essential part of sexual selection. Female preference can 

lead to selection on males to evolve exaggerated sexual traits beyond their naturally 

selected optima. The strength of this selection will depend on the level of female 

choosiness. One key aspect of female choosiness is female’s latency to mate, as 

choosiness relates to the time individuals spend assessing potential mates. Female 

latency to mate can vary dependent on their environment, population dynamics or own 

condition. Microbial symbionts can alter the levels of female’s choosiness in a number 

of ways. Parasites are able to disrupt female’s ability to choose between partners or 

reduce the resources they are able to allocate to mate choice. Wolbachia are a wide 

spread endosymbiont of insects and can have many reproductive effects on their host. 

Many studies into these reproductive effects compare cured individuals to Wolbachia 

infected individuals but do not account for the effects curing has on other symbiotic 

bacteria. Here we assess the effects of Wolbachia infection and other non-cytoplasmic 

microbial symbionts on female latency to mate in Drosophila simulans. We used 

female latency to mate as it is an important aspect of female choosiness and will have 

mate choice implications. We found Wolbachia infection status and host genotype 

interactions on female latency to mate, with no effects of non-cytoplasmic microbiota 

treatment. We found these effects did not appear to be caused by changes in female 

condition. Wolbachia infection appears to reduce the negative effects of microbiota 

removal on female condition. This appears to show the importance of the interactions 

between host genotype and symbionts when assessing the fitness effects of the 

microbiota. 

 



125 
 
 

Introduction 

 

Darwin (1871) first suggested sexual selection as an explanation for the wide array of 

traits that were apparently not favoured by natural selection. Sexual selection can be 

thought of as variation in reproductive success as opposed to natural selection 

affecting all other fitness components (Hosken & House, 2011), but is should be noted 

that sexually selected traits are almost certainly subjected to natural selection. Mate 

choice is a major mechanism of sexual selection. Mate choice can occur in both males 

and females, however females are usually the choosier sex. Female choice occurs 

when females either actively or passively choose to mate with a certain sub-set of 

males. Female choice can lead to males evolving elaborate displays or signals that 

make them more attractive to females (Andersson, 1994). Cryptic female choice 

occurs after mating, where the females’ reproductive tract preferentially favour the 

gametes of certain males. Cryptic female choice can cause reproductive tracts to 

evolve that select for the gametes of specific males (Birkhead & Pizzari, 2002).  

 

It has been suggested that males originally evolve these conspicuous sexual signals 

to exploit pre-existing female sensory bias (Ryan, 1998). However, for female 

preference for these traits to be maintained, females must gain fitness benefits from 

their choices. The benefits of mate choice for elaborate sexual signals are not always 

clear, as these traits in their sons are often costly to produce or maintain. In some 

instances females gain direct benefits (Møller & Jennions, 2001). Females that mate 

with preferred males may benefit from increased fertility and fecundity through nuptial 

gifts, improved breeding territory, parasite avoidance or increased paternal care 

(Andersson 1994). The magnitude of the direct benefits gained by females during mate 

choice vary depending on the kind of direct benefit measured (Møller & Jennions 

2001). Females may also gain indirect genetic benefits for their offspring via mate 

choice. These genetic benefits would manifest as either increased offspring longevity 

or production of more attractive sons (Fisher 1930; Hamilton & Zuk, 1982; Heywood, 

1989).  

 

Mate choice can potentially provide indirect and direct benefits in terms of parasite 

avoidance. Hamilton and Zuk (1982) first suggested the importance of parasites in the 
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evolution female choice. As parasites reduce the fitness of their host, females would 

gain indirect fitness benefits for their offspring when choosing to mate with males that 

carry resistance genes. Hamilton and Zuk (1982) proposed that conspicuous sexual 

traits would be signalling parasite resistance of males and so female’s offspring would 

inherit these ‘good genes’. Females will also gain direct benefits by mating with males 

that are not infected with parasites by decreasing the risk of direct transmission. 

Research has focused on the link between parasites and sexual signals. Sexually 

selected signals in males have been shown to negatively correlate with parasite load 

and positively correlate with parasite resistance in birds, fish and reptiles (Møller 1990; 

Clayton 1991) (Milinski & Bakker 1990; Folstad et al. 1994; Molnár et al. 2013). Female 

Drosophila melanogaster prefer to mate with males that have been selected for higher 

parasite resistance (Rolff & Kraaijeveld, 2003). However, this study did not expose 

experimental flies to parasites and so the underlying mechanism behind the 

preference for parasite resistant males is unclear.  

 

For exaggerated sexual signals to evolve, females need to show a preference for the 

trait, however, the strength of selection on the trait will depend on how choosey the 

females are (Jennions & Petrie, 1997). Female mate choice speed or latency to mating 

is an aspect of female choosiness. Females that mate faster are potentially mating 

with a suboptimal male as their opportunity of encounter multiple males is reduced. 

Faster mating decisions have been shown to increase the instances of mating with 

lower quality partners in sand gobies (Pomatoschistus minutus) (Pauli & Lindstrom, 

2021).  Parasites also play a role in female choosiness with parasitized females being 

less choosey. This has been shown in upland bullies (Gobiomorphus breviceps) where 

heavily parasitized females made less mate inspections before mating (Poulin, 1994). 

There are a number of ways that parasites can alter female choosiness. If females are 

parasitized they will not gain direct benefits from the avoidance of mating with infected 

males. This means they should be less choosey in avoiding parasitized males. The 

costs of parasitism may limit the energy and time individuals can expend on mate 

assessment (Poulin & Vickery, 1996). This means that a female’s condition could alter 

their level of choosiness. This is found in crickets (Gryllus pennsylvanicus) where low 

condition females are less choosey than higher condition individuals (Judge et al. 

2014). Parasites may also alter their host’s ability to distinguish between mates. One 
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example of this is where parasitism by eye flukes reduces the vision of female 

sticklebacks (Gasterosteus aculeatus) (Owen et al. 1993), which make mate choice 

decisions based on male colouration difficult (Milinski & Bakker, 1990).  

 

Parasites may also alter the density or sex ratio of a population, which again could 

influence female choosiness. At higher population densities, females should be more 

choosey, especially if mating is costly (Kokko & Rankin, 2006). This prediction was 

supported in dung flies (Sepsis cynipsea) where at higher population densities females 

were more resistant to matings (Martin & Hosken, 2003) although mating resistance 

does not always equate to choosiness. One example of an endosymbiotic parasite is 

Wolbachia pipientis, an intracellular bacteria of that has been found in >20% of 

arthropods (Werren & Windsor 2000), which can have wide ranging fitness effects on 

their host. Wolbachia can cause male killing (Hurst & Jiggins, 2000) or feminisation 

(Rigaud, 1997), which can reduce population densities and skew the sex ratio towards 

females. As Wolbachia are maternally transmitted they can directly increase their 

transmission rate by creating a more female biased population. Wolbachia can also 

cause cytoplasmic incompatibility between infected males and uninfected females that 

will again reduce population densities (Hoffmann & Turelli, 1997). Females that are 

not infected with Wolbachia however, do not preferentially mate with uninfected males, 

despite potential fitness costs if mating with infected males in both Drosophila 

simulans and flour beetles (Tribolium confusum) (Champion De Crespigny & Wedell, 

2007; Wade & Chang, 1995; Hoffmann et al. 1990).  Wolbachia can, however, have 

further fitness effects on their host’s reproductive traits and behaviour. Wild female 

Drosophila simulans infected with Wolbachia originally had a 10% lower fecundity 

(Hoffmann et al. 1990) now after 20 years of coevolution infected females are now 

15% more fecund (Weeks et al. 2007). In the closely related sister species Drosophila 

melanogaster the fecundity effect of Wolbachia infection varied across strains with 

some infected females having increased fecundity (Fry et al. 2004). We have 

previously found that Wolbachia infection alters the attractiveness of male D. simulans 

differently across genetic backgrounds (Chapter 2). Ingleby et al. (2013) found genetic 

correlations between female preference and male attractiveness (measured by 

cuticular hydrocarbon profiles) in D. simulans. However, the Ingleby et al. (2013) study 

did not look for correlation in female choosiness and male attractiveness. In D. 
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melanogaster there is a positive genetic correlation between male attractiveness and 

female choosiness (Ratterman et al. 2014), although choosiness was measured as 

the standard deviation in female mating latency across male genotypes. This means 

that females that vary more in their latency to mate across males were deemed as 

more choosey. If there is genetic correlation between son’s attractiveness and 

daughter’s choosiness then we may expect to find Wolbachia changing the levels of 

choosiness in D. simulans dependent on genetic background.  

 

Many of the previous studies of Wolbachia-induced reproductive effects compare the 

responses of cured and infected individuals. This curing process involves antibiotic 

treatment over multiple generations. We now know eukaryotes are host to a wide 

range of microbial symbionts (Archie & Theis 2011). These communities are described 

as that host’s microbiota, and when antibiotics are used to cure individuals of their 

Wolbachia infection, they also remove other bacterial components the host’s 

microbiota, and since the microbiota can have wide ranging host fitness effects, we 

are also impacting hosts in ways we do not fully understand.  

 

The microbiota that inhabit the gastrointestinal tract of organisms have been shown to 

affect immune (Macpherson & Harris, 2004) and metabolic function (Turnbaugh et al. 

2006), as well as affecting hosts behaviour (Cryan & Dinan, 2012). Germ free mice 

(lacking their microbiota) have immunological defects in their intestines (Macpherson 

& Harris, 2004) and have impaired immune responses to pathogens (Hentges, 2018). 

The amount of energy harvest from food by lean mice increased when their gut 

microbiota was substituted with that from obese individuals (Turnbaugh et al. 2006). 

The gut-brain axis provides bidirectional communication that uses neural, hormonal 

and immunological pathways (Mayer, 2011). Germ free mice display lower levels of 

anxiety like behaviours (Neufeld et al. 2011). When germ free mice from different 

strains are given cognitive tests they perform in a similar way to when they are 

colonised by their original microbiota, however, when they are colonised by the 

microbiota of the alternate mouse strain their behaviour profile is more similar to that 

of their donors (Bercik et al. 2011). The mechanisms by which the microbiota can alter 

their host’s behaviour are not fully understood, however it likely involves various 

mechanisms of communication including immune activation, as well as the production 
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of metabolites and neurometabolites (Cryan & Dinan 2012). Microbiota-induced 

cognition and behavioural changes may have wide ranging fitness consequences. 

Cognitive changes may potentially alter females mating decision or ability to optimally 

choose a mate. Microbiota induced changes could also affect the mating investment, 

courtship and mating behaviour of males.   

 

The microbiota can also have an impact on their host’s sexual signals. Feather 

degrading bacteria (FDB) maintain the honesty of sexual signals of some birds by 

breaking down white feathers used as sexual signals faster than darker feathers (Ruiz-

Rodríguez et al. 2015). This makes larger more conspicuous white areas more costly 

to maintain meaning only higher quality males can afford to express them. Symbiotic 

bacteria in the preen (uropygial) glands of birds help to protect against these FDB 

(Ruiz-Rodriguez et al. 2009). In D. melanogaster the microbiota are responsible for 

diet induced mating preferences, where individuals preferentially mate within diet 

treatment unless their microbiota were removed (Sharon et al. 2010). The presence 

of an intact microbiota has also been found to disrupt males’ ability to recognise kin in 

D. melanogaster (Heys et al. 2018). Males invest more sperm when mating with 

unrelated females compared to sisters, but only if the females have their microbiota 

removed or the females are raised on a different diet. Other aspects of the microbiota 

may cause many of the phenotypic and behavioural effects previously attributed to 

Wolbachia.  

 

We asked if there were Wolbachia or other non-cytoplasmic microbiota effects on 

female’s latency to mate. We have used female latency to mate as a measure of 

female choosiness. As female choosiness relates to the time spent assessing a 

potential mate, measuring latency to mate will give us an estimate of the time females 

are spending making mating decisions (Jennions & Petrie, 1997). Female latency to 

mate will not be only a measure of female choosiness and will also reflect the female’s 

propensity to mate and quality of their potential mate. Despite females not having an 

active choice between males, using stock ebony tester males should minimise the 

variation in attractiveness across potential mates. This should maximise the portion of 

female latency to mate which reflects the individual female’s choosiness. To test this 

we used the model species D. simulans as we have previously found Wolbachia alters 
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male attractiveness dependent on their host’s genetic background (Chapter 2). As 

male attractiveness has been shown to positively genetically correlate with female 

choosiness (Ratterman et al. 2014) we may also find that Wolbachia alters female 

choosiness differently across genotypes. We used iso-genetic strains (isofemale lines, 

hereafter referred to as genotypes or isolines), as they are powerful way to assess 

naturally occurring genetic variation in a population and allow repeatable measures of 

a range of fixed genotypes (David et al. 2005). These isofemale lines were naturally 

infected with the same strain of Wolbachia so we could test if any choosiness effects 

were dependent on the female’s genetic background in the absence or presence of 

Wolbachia. To be able to determine if changes in female’s latency to mate were 

caused by Wolbachia curing and not by changes in the hosts’ non-cytoplasmic 

microbiota, we used a microbiota removal and reinfection protocol. We also wanted to 

test if any changes in female’s latency to mate were due to changes in condition. We 

used female body size measurements to test if our experimental treatments had an 

effect on their condition. In Drosophila melanogaster wing size was smaller in flies 

raised on a nutritionally limited diet or at stressful temperature suggesting wing size 

will provide a measure of body condition (De Moed et al. 1997). 

 

Materials and methods 

 

Drosophila simulans isolines used in this experiment were originally collected from 

Greece (Ingleby et al. 2013) and were maintained for > 45 generations with full-sib 

matings (n= 25 brothers and 25 sisters/isoline). Thus, each isoline could be considered 

as a distinct genotypes (David et al. 2005). All stocks were reared on a standard 

cornmeal-based Jazzmix diet (hereafter Jazzmix) (supplied by Applied Scientific, UK) 

at 25°C on a 12∶12 hour light:dark cycle (unless stated otherwise). 

 

Wolbachia and microbiota manipulation  

 

We randomly selected 6 naturally Wolbachia infected isofemales (isolines) from the 

lines established from wild caught females (Chapter 2) and established sub-lines that 

were exposed to one of 4 experimental treatments. All isolines were naturally infected 

with the same strain of Wolbachia. This means any changes in the effects of infection 
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on female choosiness across isolines will be due to changes in host genotype and not 

variation in the strain of Wolbachia. The isolines and treatment sub-lines are the same 

as used in Chapter 2 for the third assay.  In all treatments, the experimental flies had 

their non-cytoplasmic microbiota removed by dechorionating their eggs and then were 

either re-infected with their original bacteria from the matching isoline (re-infected) or 

inoculated with sterile PBS as a control (removed) to provide the microbiota +/- 

treatments.  Flies were 1) treated with antibiotics and had their gut bacteria removed 

(–W-G), 2) treated with antibiotics and re-infected (–W+G), 3) untreated but had their 

gut bacteria removed (+W-G) or 4) untreated and re-infected (+W+G) – where W = 

Wolbachia (+ or -) and G is gut bacteria, removed (-) or removed and then re-infected 

(+). Wolbachia curing involved rearing flies on Drosophila Quick Mix Media Blue 

(Blades Biological) treated with 0.03% tetracycline hydrochloride for two generations. 

The flies were then allowed to recover on the blue media without tetracycline for 3 

generations before being moved back onto Jazzmix for > 5 generations before being 

used in experiments to avoid and diet effects. After this process each isolines infection 

status was confirmed by PCR using the specific Wolbachia surface protein (wsp) 

primers wsp 81F  and wsp 691R (Zhou et al. 1998; Duffy et al. 2019). 

 

For our non-cytoplasmic microbiota manipulation, we used the same protocol as 

Sharon et al. (2010). The experimental flies from both sub-treatments of each isoline 

(W+/W-) had their gut bacteria removed by dechorionating their eggs using a 50% 

bleach solution. Then, 20 eggs were distributed into each small vial containing 7ml 

Jazzmix food. Half of these vials were then inoculated with 100ul of the gut bacteria 

collected from the matching isoline as the + microbiota treatment. The other half were 

inoculated with 100ul sterile PBS as the – microbiota treatment. Gut bacteria for 

inoculation was collected as in chapter 2. Briefly 25 male and 25 female flies from 

each isoline were allowed to live for 6 days on Jazzmix food. After this, the flies were 

removed and 10ml sterile PBS added to each vial and then vortexed for 10 seconds, 

before 5 ml of this solution was pipetted out into an Eppendorf for each isoline. These 

vials were then spun at a low speed (100 × g) for 10 minutes so the sediment settled 

and the supernatant was moved into a fresh Eppendorf and spun at high speed 

(16,000 × g) for 2 minutes to pellet the bacteria. The supernatant and was then 

discarded and the pellet washed in sterile PBS. This washed bacteria was pelleted 
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again and the pellet re-suspended in a total of 500ul PBS. This was stored for < 6 

hours between 2oc and 8oc, before it was added to washed eggs from the matching 

isolines.  

 

Female latency to mate assay post Wolbachia and microbiota manipulation 

 

To test the effects of Wolbachia and gut microbiota on female latency to mate we 

compared the 4 treatments, –W-M, –W+M, +W-M and +W+M across the 6 randomly 

selected isolines. Choosiness relates to the time and effort females spend assessing 

a potential mate and so measuring latency to mate will give us an estimate of the time 

females are spending making mating decisions (Jennions & Petrie, 1997). In D. 

simulans there is no forced copulation with sexually mature females (Spieth, 1974). 

Female latency to mate will depend on both female choosiness and the male’s 

attractiveness. By standardising the tester males presented to females we were able 

to use latency to mate as a measure of female choosiness as is common in Drosophila 

studies (Spieth, 1974; Narraway et al. 2010; Ingleby et al. 2013). To collect the focal 

females of each treatment the eggs from the gut treatment process above were 

allowed to develop and females collected as virgins every 6 hours. These virgin males 

were stored in vials of 5-10 individuals and allowed to mature for 3-6 days. Tester flies 

came from a population of ebony (a recessive, phenotypic body-colour mutant) flies, 

the stock populations were established (stocks from Tucson stock centre) and 

maintained on a standard diet of Jazzmix in a 30x30x30cm population cage of ~800 

flies with overlapping generations. All our tester males were naturally Wolbachia 

infected. Ebony males are more aggressive (Søndergaard, 1986) and often suffer 

courtship defects. This means females preferentially mate with wild-type males in 

competitive environments (Sharma et al. 2010). We used ebony tester males as a 

standard control male so that our latency to mate measures reflected female 

choosiness and not variation in male attractiveness. To collect tester males, 25 male 

and 25 female ebony flies were allowed to egg lay for 2 days in each large vial 

containing 30ml Jazzmix. The eggs were left to develop until female virgins were 

collected as virgins every 6 hours and stored in groups of 10. These flies were then 

aged for 3-5 days. Focal females were stored individually for >12 hours prior to the 

experiment starting. Individual tester males were introduced to the focal females one 
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hour after the incubator lights came on. Observations were conducted blind to 

experimental treatments to record the time from introduction until mating (mating 

latency) and mating duration. The focal flies were then removed and stored at -20 until 

a subset of 5 females for each of the 4 treatments were tested for body size with wing 

measurements. Wings were imaged and then measured using ImageJ (Schneider et 

al. 2012). 

 

Analyses 

 

All analyses were performed in RStudio version 1.1.383 (RStudio Team 2016) using 

R version 3.6.2 (R Core Team, 2019). To assess whether changes in female 

choosiness were likely to be due to symbiotic microbiota or Wolbachia, we used 

Kaplan-Meier curves to visualize the data and analysed differences in choosiness 

using a Cox’s proportional hazard model (Kaplan & Meier 1958, Cox 1972) with isoline, 

microbiota treatment, and Wolbachia infection status as co-variates and time to mating 

being the hazard. This approach allows us to tests which factors impact the time to the 

event and also include individuals that did not mate during the observation period. We 

then tested the significance and interactions of all the risk factors using the ANOVA 

function in the car package (Fox & Weisberg 2018).  

 

To analyse the effects of microbiota and Wolbachia infection status on female body 

size we used general linear models (GLMs) with a Gaussian error structure. Full 

models were fit with microbiota treatment, Wolbachia infection status, isoline and the 

interactions between them as explanatory variables. To test the effects of microbiota 

removal and Wolbachia infection status on female body size across genotypes, we 

used a GLM fit with a Gaussian error structure. We used wing size measures as a 

proxy of female body size (Gilchrist & Partridge, 1999). Full models were fit with isoline 

(genotype), Wolbachia infection status, microbiota treatment and the interactions 

between them as explanatory variables. We then tested for significance using the 

ANOVA function in the car package (Fox & Weisberg 2018). 
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Results 

 

We used female’s latency to mate with a tester male as a measure of females 

choosiness in order to test how an individual’s microbiota and Wolbachia infection 

status affect female choosiness. We found that genotype (isoline) had a significant 

effect on female latency to mate (Χ2=19.95, df=5, p = 0.001). Neither Wolbachia 

infection status (Χ2=0.85, df=1, p = 0.36) nor microbiota treatment (Χ2=1.91, df=1, p = 

0.17) had a significant effect on female latency to mate consistently across all 

genotypes (isolines). However, we found a significant interaction between female 

genotype and Wolbachia infection status on female latency to mate (Χ2=17.24, df=5, 

p = 0.004) suggesting Wolbachia caused choosiness effects depend on the females’ 

genotype (Figure 1). We did not find a significant interaction between female genotype 

and microbiota treatment (Χ2= 3.334, df=5, p = 0.649) suggesting that removal of 

females’ microbiota did not significantly impact on their choosiness (Figure 2).   

 

We also tested how changes in microbiota and Wolbachia infection status impact 

female size across different genotypes. Changing the female’s microbiota had a 

significant effect on body size (Table 1). We found that removal of a female’s 

microbiota significantly reduced their body size (Figure 3). There was no interaction 

between microbiota treatment and genotype on female body size (Table 1). We found 

no effect of Wolbachia infection status on female body size (Table 1) and the 

interaction between Wolbachia infection and genotype was marginally not significant 

(Table 1). Genotype had a significant effect on female body size however did not 

interact with any other variable significantly (Table 1). We did find that Wolbachia 

infection status and microbiota treatment interact in their effect on female body size 

(Figure 4). We found that the effect of microbiota on female body size was much 

greater when females were cured of Wolbachia (-). 
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Figure 1. Kaplan-Meier curve showing proportion of unmated females over time 

separated by genotypes (n=6) with the Wolbachia cured treatment (-) plotted with a 

dashed line and infected (+) with a solid line. The less steep the gradient of a curve 

the choosier the females (the slower the females of that treatment mated). Female 

latency to mating effects of Wolbachia curing vary across genotypes (isolines) with 

some lines becoming more choosey after curing and others less so. 
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Figure 2. Kaplan-Meier curve showing proportion of unmated females over time 

separated by genotypes (n=6) with the microbiota removed treatment (-) plotted with 

a dashed line and reinfected (+) with a solid line. The less steep the gradient of a curve 

the choosier the females (the faster the females of that treatment mated). Microbiota 

changes do not affect female choosiness independent of genotype (isoline). 

 

Table 1. Output from the GLM testing the effects of Wolbachia infection status, 

microbiota treatment, Isoline and their interactions on female body size.  
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Figure 3. Female size (mm) plotted by genotype (isoline). The left plot shows microbiota + treatment plotted in red and microbiota – 

plotted in black. The plot shows microbiota – (removal of female microbiota) treatment reducing female body size especially across 

three of the isolines. The right plot shows Wolbachia infected females plotted in red and Wolbachia cured females plotted in black. 

The plot shows that Wolbachia infection status does not have a consistent effect on female body size. The effect seems to depend 

on the genetic background of the female however this interaction is marginally not significant.  
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Figure 4. Interaction plot showing the effects of Wolbachia infection status and 

microbiota treatment on female body size with standard error bars plotted. The plot 

shows that the size difference between microbiota + and microbiota – flies is much 

greater when females are Wolbachia cured (-). 

 

Discussion 

  

We found that females from different genetic backgrounds have different latencies to 

mate, suggesting they vary in the time they spend mate inspecting. We found no effect 

of removing the female’s microbiota on their latency to mate or an interaction between 

genetic background and microbiota treatment. This suggests that females’ microbiota 

do not influence female choosiness in D. simulans when measured by latency to mate. 

Wolbachia infection did not consistently impact female latency to mate across all 

genotypes, but the interaction between Wolbachia infection status and female 

genotype affecting mating latency indicates that the effects of infection depend on the 

host genotype. We found that Wolbachia infection made some genotypes more 
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choosey and others less choosey.  This finding is discussed further below, but is 

indicative of epistasis between the host genome and their bacterial symbiont. We also 

tested if our different treatments affected body size, one indicator of female condition. 

We found that female size was affected by genotype and that microbiota removal 

reduces female body size, whereas Wolbachia curing has no effect. There were also 

no interactions between genotype and microbiota treatment or Wolbachia infection 

status on body size. This suggests that the impacts of the microbiota treatment on 

condition are not dependent on the genetic background of their host and Wolbachia 

infection is not changing the females’ condition. However, we found a significant 

interaction between Wolbachia infection and microbiota removal. Wolbachia infection 

appears to reduce the effects of microbiota treatment on female body size. The 

microbiota removal-induced reduction on body size is much greater when the females 

are cured of their Wolbachia infection. 

 

The effect of Wolbachia infection on female latency to mate appears to depend on 

host genotype. These changes are not due do variation in Wolbachia across isolines, 

as all of our lines were infected with the same strain. This means that these effects on 

female choosiness depend on the interaction between the host nuclear and Wolbachia 

cytoplasmic genes. Our results tie in with the finding that Wolbachia alters male 

attractiveness differently across host genotypes (Chapter 2). We can rule out changes 

in the surface or gut microbiota as our microbiota treatments have controlled for these 

changes. However, we cannot rule out other intracellular bacterial endosymbionts that 

co-vary with Wolbachia infection.  

 

Parasites are able to manipulate the choosiness of their host in a number of ways. 

Firstly, the Wolbachia infection may be manipulating the female’s behaviour and 

choosiness directly. Wolbachia has been found to alter female’s reproductive 

behaviour. Curing Wolbachia infection in D. melanogaster and D. paulistorum has 

been shown to reduce mate discrimination with infected individuals showing less 

assortative mating (Populations et al. 2006; Miller et al. 2010). As antibiotics were used 

for Wolbachia curing in these studies their results may also be explained by changes 

in other microbiota. However, we also find here that Wolbachia altered female mating 

behaviour. Wolbachia infection has also been shown to impact on a variety of other 
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mating behaviours including female oviposition location (Vala et al. 2004) and 

increasing male mating rate (Champion de Crespigny et al. 2006). Altering male 

mating rate within a population may also influence the level of female choosiness. For 

instance, if the down time between male mating events is lower, females’ encounter 

rate may also increase and their partners may be more sperm depleted (Lefevre & 

Jonsson, 1962; Markow et al. 1978). Higher male encounter rates could lead to an 

increase in female choosiness in the same way as increased population density can 

(Kokko & Rankin, 2006). More sperm depleted partners may select for less choosey 

females to reduce the risk of being unable to fertilise all of their potential eggs 

(Puurtinen & Fromhage, 2017). Wolbachia-induced behavioural changes in males 

may be selecting for changes in female choosiness.   

 

A second potential explanation for the changes choosiness may be that Wolbachia 

alters the female’s ability to determine male quality. Wolbachia accumulate in the 

nervous tissues of their host, as well as the reproductive tissue. This accumulation 

may have effects on host cognition, learning and memory. For example, in 

Armadillidium vulgare learning and memory function is significantly reduced with 

Wolbachia infection (Templé & Richard, 2015). In both D. melanogaster and D. 

simulans, Wolbachia infection significantly improved long term memory (Bi et al. 

2019). The fact that the effects of Wolbachia on learning and memory vary across 

species may indicate that there is epistasis between the Wolbachia infection and host 

nuclear genes. It is possible that the observed changes in female latency to mating 

are driven by Wolbachia induced learning/memory changes in our females. Female D. 

melanogaster with learning and memory mutations alter their response to male 

courtship songs (Kyriacou & Hall, 1984). Male seminal fluid proteins have also been 

found to increase female long term memory in D. melanogaster (Scheunemann et al. 

2019). These seminal proteins evolve to affect females reproductive behaviour to 

maximise male fitness, so it is likely memory plays a role in female reproduction (Kubli 

2003). Further work is needed to test how learning and memory affects female mating 

behaviour in D. simulans, as well as how Wolbachia infection alters female memory 

function across different genetic backgrounds. 
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Another possible explanation for the observed effect is that the Wolbachia infection is 

costly to some genotypes (isolines) and either beneficial or neutral in others. This 

would mean the Wolbachia infection could produce females with low body condition 

or fitness in some lines, and higher fitness females in other isolines. Higher fitness 

females may be more choosey compared with lower fitness counterparts. If Wolbachia 

infection is reducing female condition in some lines and not others, low-condition 

females may be less able to spend time and energy on assessing mates or making 

mate choice decisions. To test if Wolbachia infection or microbiota removal impacted 

female condition differently across genetic backgrounds, we compared body size.  

 

We found that Wolbachia infection did not significantly impact female body size and 

there was no interaction with genetic background. This suggests that variable changes 

in female body condition across genotype were not responsible for the Wolbachia-

induced changes in choosiness. We did find that microbiota removal significantly 

reduced female body size and this finding may indicate reduced condition of those 

females. This shows that removal of the microbiota significantly impacts female D. 

simulans and that it is important to control for other microbiota changes when curing 

of Wolbachia infection. We did not find any effects of microbiota removal on female 

choosiness in our study, despite the observed body size effects. Interestingly, we 

found a significant interaction between Wolbachia infection status and microbiota 

treatment on female body size. We found that the removal of the microbiota had a 

much greater effect on body size in females that were cured of Wolbachia compared 

to infected females. It appears that the Wolbachia infection is protecting the females’ 

from the full costs of losing their microbiota. In D. melanogaster, Wolbachia infection 

reduces the biodiversity of the gut microbiota but not the total bacterial load (Ye et al. 

2017) indicating that Wolbachia infection and the gut microbiota interact. Wolbachia 

seem to be altering the composition of the gut microbiota. The effects of these gut 

microbiota changes are unknown, however, they do not appear to alter antiviral 

protection (Ye et al. 2017). Wolbachia may be promoting gut bacteria that benefit the 

development and fecundity of females as Wolbachia are maternally transmitted. This 

means their transmission rate depends on female offspring production. Female body 

size positively correlates with fecundity in D. melanogaster (Lefranc & Bundgaard, 

2000). It would therefore be beneficial for Wolbachia to influence the gut microbiota in 
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a way that maximises female size and/or fecundity. This could mean that when we 

remove the microbiota in our treatments, Wolbachia-infected females are better able 

to acquire a beneficial gut microbiota from their environment than uninfected females. 

This is currently only a possible explanation and would require further investigation. 

 

Conclusions 

 

We found that removing the non-cytoplasmic microbiota of females reduced their body 

size, but did not significantly change their latency to mate. The effects of microbiota 

removal on body size were significantly reduced by the presence Wolbachia infection. 

This suggests that Wolbachia and the rest of the microbiota interact in their effects on 

female phenotype. Interestingly, Wolbachia appear to ‘save’ females from the costs of 

microbiota removal. These interactions between symbionts on host fitness need 

further investigation. We found evidence that parasites are potentially altering the 

choosiness of their host and the scale and direction of these effects depend on the 

genotype of their host. This has important implications for sexual selection, as changes 

in female choosiness will alter the strength of sexual selection. Hamilton and Zuk 

(1982) suggested that females choice may evolve as a mechanism for parasite 

avoidance. Poulin and Vickery (1996) subsequently suggested that if parasites were 

reducing female choosiness then the selection for parasite immunity would be much 

weaker. Although, if parasite resistance is an indicator of ‘good genes’ it is possible 

that the assortative mating between individuals with the same infection status may in 

fact increase the strength of selection (Rolff & Kraaijeveld, 2003). Our results show 

that the picture is less clear and that there is epistasis between the cytoplasmic 

Wolbachia genes and host nuclear genes. This finding shows that Wolbachia infection 

is increasing the strength of sexual selection in some backgrounds and reducing the 

strength of selection in others. In order to understand how endosymbiotic parasites 

are playing a role in sexual selection and specifically in the evolution of female choice, 

we need to understand how parasites are affecting female choice. We have shown 

that parasite effects on females vary depending on the female’s genetic background. 

Future work needs to investigate this host-parasite interaction further. 
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Chapter 7 

 

General Discussion  

 

Symbiotic bacterial communities play an important role in their hosts’ fitness. These 

communities are incredibly abundant and diverse, for example, in humans the number 

of bacterial cells are estimated to at least match that of their host (Sender et al. 2016). 

The collection of genes present in these bacterial communities outnumber those of the 

human genome 100 to 1 (Yang et al. 2009). It is therefore unsurprising that the range 

of effects these bacteria have on their hosts are also varied. However, the role of these 

symbiotic bacteria on their host’s phenotype have only recently begun to be explored 

in detail (Archie & Theis, 2011; Ezenwa et al. 2012). Before advances in sequencing 

technology most research focused on the fitness consequences parasitic infections 

(Burnet & White, 1972).  

 

Wolbachia pipientis (Wolbachia) is an obligate endosymbiotic parasite of arthropods 

and is incredibly wide spread (Hilgenboecker et al. 2008). Wolbachia are able to 

manipulate their hosts in a number of ways that increase their transmission. Wolbachia 

can cause major changes to reproductive phenotypes in their hosts and also 

manipulate their behaviour, immunity and other sexually and naturally selected traits 

(Werren et al. 2008). Often the impacts of Wolbachia infection are dependent on both 

the strain and their host (Iturbe-Ormaetxe & O’Neill, 2007). However, the majority of 

research into the effects of Wolbachia on their hosts’ fitness has used antibiotic 

treatment to remove infection and then compare cured to infected individuals. This 

antibiotic treatment is likely to not only alter the Wolbachia infection status but also the 

other symbiotic bacterial communities. Therefore, many of the fitness effects 

previously attributed to Wolbachia may in fact be due to other symbiotic bacteria. 

Despite this, research that attempts to determine the significance of other symbiotic 

bacteria on fitness traits previously attributed to Wolbachia infection is rare. The 

understanding of how symbiotic bacteria and their host’s co-evolve is limited. Most 

research will test Wolbachia or other symbiotic bacteria’s effect on a measure of host 

fitness in one genetic background or one population. In this thesis I have presented 
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research in which we have investigated the effects of Wolbachia and other non 

endosymbiotic bacteria on a variety of sexually selected traits across different D. 

simulans genotypes. We have also investigated how the gut microbial communities of 

D. simulans respond when evolving under different levels of natural and sexual 

selection. Despite the phenotypic and behavioral effects bacterial symbionts can have 

on their hosts little in know about how these communities respond to either natural or 

sexual selection. 

 

In Chapter 2 we simultaneously explore the impact of gut bacteria and Wolbachia on 

the male sexual-fitness of Drosophila simulans genotypes (isolines). We manipulated 

the symbiotic bacteria of both Wolbachia cured and infected flies in multiple ways. We 

found evidence that our gut microbial treatment was successful. We found no 

significant interaction between genotype and either Wolbachia infection or gut 

bacterial treatment, so we were still unable to determine the causes of fitness rank 

changes. We found evidence of bidirectional cytoplasmic incompatibility (CI) in this 

assay, which may have been obscuring our ability to find significant interactions 

between genotype and bacterial treatments. This potential fitness effects from using 

diet to manipulate gut microbiota could also have been influencing our sexual-fitness 

measures. We used male attractiveness as a measure of male sexual-fitness to avoid 

any CI effects. We also used a new re-infection and bacterial washing treatment to 

manipulate the gut bacteria of our flies to control for diet effects. We found a significant 

interaction between Wolbachia infection status and genotype on male attractiveness 

but no interaction between gut bacterial treatment and genotype. This means that the 

antibiotic caused changes male fitness ranks were caused by changes in Wolbachia 

infection and not gut bacteria. This also suggests that Wolbachia is a potential source 

of intergenome epistatic fitness-variation. 

 

In Chapter 3 we investigated the potential bidirectional cytoplasmic incompatibility (CI) 

found in Chapter 2. We tested if there was bidirectional between the Wolbachia strain 

our D. simulans isolines were infected with and the strain our tester ebony flies were 

infected with. We also tested whether the level of bidirectional CI changed across 

either male or female genotypes. We found evidence of bidirectional CI in our strains 

as infected focal males did worse than uninfected males when mating with tester 
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females infected with a different strain of Wolbachia. While infected and uninfected 

focal females did equally poorly when mated with males infected with a different 

Wolbachia strain. In females we found a significant interaction between genotype and 

Wolbachia infection status on magnitude of CI. In some genotypes Wolbachia infection 

lowers the level of CI females’ experience, and in others it increases the level. This is 

potential evidence of Wolbachia and its host coevolving in some genotypes to limit the 

impact of bidirectional CI on their fitness. In males we found that different genotypes 

may suffer different levels of CI, as the genotype fitness ranks do not correlate 

between Wolbachia infected and cured males. This could be evidence that some lines 

are evolving in response to the selection that CI imposes on the number of offpring 

they sire. However, the interaction between male genotype and Wolbachia infection 

status was not significant. This work may help to explain why mixed infection 

populations persist despite models predicting CI inducing Wolbachia infection should 

spread to fixation. 

 

Chapter 4 investigates the effects of evolving under different strengths of natural and 

sexual selection has on a host’s gut microbiome. The combined genetic material of 

both the host genome and the genes present in the communities that make up the 

microbiota (microbiome) has been termed the ‘holobiome’ (Guerrero et al. 2013). 

Selection must be able to act on a host’s symbiotic microbial communities for the 

holobiome to be a useful evolutionary measure. Understanding how natural and sexual 

selection effect a host’s microbiota and the nature of the relationship between the two 

mechanisms of selection is important in determining the strength of selection (Blows, 

2002). Research into the effects of either natural or sexual selection on the microbiota 

is limited. Most research has been limited to comparing microbiome changes across 

within generational environmental manipulation. We evolved populations of 

Drosophila simulans under either elevated or relaxed natural and sexual selection in 

a fully factorial design for 38 generations. We found that elevated sexual selection 

resulted in a more diverse gut microbiome in male but not females. And that both male 

and female gut microbial communities varied across sexual selection intensities. The 

males gut microbial changes with sexual selection were more phylogenetically distinct 

than the females suggesting that they are more likely to be functionally significant 

changes. This is likely due to the strength of sexual selection being higher on males 
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than females in our treatment. We found significant effects of natural selection on the 

gut microbiome of males or females across any of our measures of diversity. There 

was also no interaction between natural and sexual selection on the gut microbiome. 

This is the first study to find that sexual selection can act on the gut microbial 

communities and cause changes to these communities over evolutionary time.  

 

In Chapter 5 we tested how the symbiotic bacteria effects host fitness across different 

genotypes on a range of male and female fitness traits. Most research that 

manipulates the microbiota to test host fitness effects uses one of two methods. The 

first method involves comparing individuals with an intact microbiota to individuals that 

have their microbiota removed. The second method involves manipulating individual 

bacterial species and comparing fitness effects. Neither of these methods is likely to 

be biologically relevant as germ-free and monoculture organisms do not exist in 

nature. In this chapter we introduce a third microbial treatment and test the fitness 

responses in males and females across D. simulans genotypes. Our microbial 

treatments did not influence female choosiness or body size. When comparing the 

female genotypes fitness ranks, we found when simply removing the microbiota ranks 

correlated compared the original microbiota fitness ranks. When we altered the 

microbiota, fitness ranks were significantly changed. This suggests microbiota fitness 

effects are not straight forward. This chapter provides further evidence that the host 

and microbiota are co-evolving and that different genetic backgrounds respond 

differently to microbiota removal or alteration. 

 

Chapter 6 explores the effects of Wolbachia infection and the non-endosymbiotic 

microbiota on female choosiness and body size across different D. simulans 

genotypes. The level of female choosiness will impact the strength of sexual selection 

through female choice. Female choosiness can vary dependent on population 

dynamics, their condition as well as their environment (Kokko & Rankin, 2006). 

Parasites can also influence the level of female choosiness by either disrupting 

females ability to choose between partners or reducing the resources they’re able to 

allocate to mate choice. In Chapter 2 we found that Wolbachia infection alters male 

attractiveness dependent on their hosts genetic background. As male attractiveness 

has been shown to positively genetically correlate with female choosiness (Ratterman 
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et al. 2014), we may also find that Wolbachia alters female choosiness differently 

across genotypes.  To test this we manipulated the Wolbachia and gut microbiota 

using the same methods as in third assay of chapter 2. We used antibiotics to cure 

Wolbachia infection and used the microbiota removal and reinfection protocol to avoid 

any diet effects. We also compared changes in female body size across treatments to 

test if any choosiness changes were caused by changes in female condition. We found 

a significant interaction between Wolbachia infection status and female genotype on 

choosiness levels. This affect did not appear to be caused by changes in female body 

condition, as there was no interaction between Wolbachia infection and genotype on 

female body size. We found the changes in the non-endosymbiotic microbiota did not 

effect female choosiness and there was no interaction between this treatment and 

genotype on choosiness. Microbiota removal caused a reduction in female body size 

across genotypes. There was a significant interaction between Wolbachia infection 

status and microbiota treatment on female body size where Wolbachia infection 

reduces the negative effects of microbiota removal. This is further evidence that the 

genetic background of a host plays an important role in the fitness effects of their 

microbial symbionts. 

 

Overall, this thesis has found evidence that the effects of symbiotic bacteria on 

sexually selected traits in their host are complex. We have shown that both 

endosymbiotic and exosymbiotic bacteria are having significant effects on these traits 

in their hosts. We found that using a blunt tool, such as an antibiotic, to remove specific 

symbiotic bacteria is likely to alter other bacterial components of the microbiota. This 

shows the importance of controlling for all changes in the microbiota when 

investigating the role these symbiotic bacteria play on their hosts’ fitness. We have 

shown for the first time that sexual selection can act on the composition of gut bacterial 

communities. Symbiotic bacterial communities and their hosts are coevolving and their 

effects vary across hosts. We find evidence of symbiont-by-genotype epistasis for a 

range of sexually selected traits in both males and females. Understanding the 

complex interactions between microbiota and their hosts is essential to better 

understand the importance of the microbiota in general.  
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