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Abstract

Evolutionary algorithms (EAs) are randomised general-purpose strategies, inspired
by natural evolution, often used for finding (near) optimal solutions to problems in
combinatorial optimisation. Over the last 50 years, many theoretical approaches in
evolutionary computation have been developed to analyse the performance of EAs,
design EAs or measure problem difficulty via fitness landscape analysis. An open
challenge is to formally explain why a general class of EAs perform better, or worse,
than others on a class of combinatorial problems across representations. However,
the lack of a general unified theory of EAs and fitness landscapes, across problems
and representations, makes it harder to characterise pairs of general classes of EAs
and combinatorial problems where good performance can be guaranteed provably.

This thesis explores a unification between a geometric framework of EAs and
elementary landscapes theory, not tied to a specific representation nor problem, with
complementary strengths in the analysis of population-based EAs and combinatorial
landscapes. This unification organises around three essential aspects: search space
structure induced by crossovers, search behaviour of population-based EAs and
structure of fitness landscapes. First, this thesis builds a crossover classification
to systematically compare crossovers in the geometric framework and elementary
landscapes theory, revealing a shared general subclass of crossovers: geometric
recombination P-structures, which covers well-known crossovers. The crossover
classification is then extended to a general framework for axiomatically analysing the
population behaviour induced by crossover classes on associated EAs. This shows the
shared general class of all EAs using geometric recombination P-structures, but no
mutation, always do the same abstract form of convex evolutionary search. Finally,
this thesis characterises a class of globally convex combinatorial landscapes shared by
the geometric framework and elementary landscapes theory: abstract convex elemen-
tary landscapes. It is formally explained why geometric recombination P-structure
EAs expectedly can outperform random search on abstract convex elementary land-
scapes related to low-order graph Laplacian eigenvalues. Altogether, this thesis paves
a way towards a general unified theory of EAs and combinatorial fitness landscapes.
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Chapter 1

Introduction

A few years after the end of World War II, the transition to programmable digital
computers and the opening of the field of evolutionary computation (EC) [4] gave
birth to certain computer programs, called evolutionary algorithms (EAs), inspired
by Darwin's theory of evolution by natural selection [27].

EAs are general-purpose, randomised, problem-solving strategies; that is, models
of meta-heuristics [9, 52, 122]. EAs can accomplish a wide range of tasks in multiple
domains. For instance, to search for solutions of mathematical optimisation prob-
lems, like the well known travelling salesman problem (TSP) [46]; or, to simulate the
evolution of biological organisms, where the goal is not so much to optimise a fixed
function as to adapt to a changing environment [32, 65, 77]. This thesis concerns
EAs for mathematical optimisation problems, mainly those with a finite number
of possible solutions (i.e. combinatorial optimisation problems). Conventional EAs
consist of only a few key components reminiscent of natural evolution [4]:

• A population of individuals where each individual is a symbolic form (called
‘genotype’) that corresponds to a candidate solution (called ‘phenotype’)
according to a genotype-phenotype function (called ‘representation’).

• A fitness function to evaluate the quality of candidate solutions, based on the
objective function and possibly other information about the problem.

• A selection operator that selects the fittest individuals from a given population
depending on their fitness function evaluation.

• A crossover and mutation operator that transform selected individuals into
other individuals.

These components are enough for an EA to carry out an evolutionary search that,
broadly speaking, consists in creating an initial population and then iteratively
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transforming it to generate new (expectedly fitter) populations via selection, crossover,
and mutation operations for as long as needed.

It is no surprise that EAs are often applied to find approximate solutions of
optimisation problems since EAs strike a good balance between their general problem-
solving capabilities and efficiency [4, 53, 96]. For example, consider the problem of
finding shortest-paths between every pair of vertices in a directed weighted graph1

with n vertices and m edges. This is the well known all-pairs shortest-path
problem with countless applications in computer science. Doerr and others [37] show
an EA that finds an optimal solution to the all-pairs shortest-path problem within
O(n3 log n) fitness evaluations, compared with the computational time complexity
O(n2 log n+ nm) of best-specific solvers based on Johnson's algorithm [72].

Designing effective and efficient EAs is not simple though. A recommendation
in EC [4, 96] is to design classes of EAs that target specific classes of problems
by incorporating heuristic information of those problems into the EAs. This is in
keeping with the no-free-lunch (NFL) theorems [68, 155], from which (loosely speak-
ing) follows that any EA performs as ‘good’ as any other EA, or pure random search,
if their performance is averaged across all problems with discrete objective functions.
But this raises the more difficult issue of formally explaining why certain EA classes
perform well (or poorly) on certain problem classes, which motivates the context of
this thesis: general theories of EAs and fitness landscapes of combinatorial problems.

The notion of fitness landscapes in EC [120] is a valuable tool to deal with the
aforesaid issue because it provides a means to identify and analyse what features
of problems affect EA performance, which can be used to guide EA design. Fitness
landscapes consist of a fitness function defined on the set of all candidate solutions
for a given problem and a topological structure, normally associated with crossover
or mutation, interrelating those solutions. Informally, a feature refers to a property
of a fitness landscape that may be known a priori or not (e.g. whether the fitness
function is linear or non-linear, or a particular distribution of local optima is present).

Currently, however, it is still unclear how the design and performance analysis
of general EA classes, as well as the analysis of general fitness landscapes associated
with problem classes, can be integrated within a coherent mathematical framework.
In other words, it is unclear if a general unified theory of EAs and fitness landscapes
across different problems and solution representations is possible. This is mainly due
to a lack of common theoretical foundations in EC between research on EAs and
fitness landscapes [4, 33, 97, 120, 141][95, chs. 2–3,7], despite the increasing efforts
to consolidate both areas. This thesis will contribute towards such unification.
1Assuming there is at least one path between any two vertices and no negative weight cycles.
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1.1 Aim and Motivations
The aim of this thesis is to explore if and how it is possible to formally unify the
foundations of a general theory of EAs and a general theory of combinatorial fitness
landscapes, known in EC respectively as: the geometric framework (GF) of EAs
proposed by Moraglio [100], and elementary landscapes theory (ELT) proposed by
Stadler [136]. To motivate and clarify what this thesis means by their unification,
let us overview first some of the most salient aspects of the GF and ELT.

1.1.1 Overview of the Geometric Framework of EAs

The GF is a theory about a class of generalised EAs that comprises many pre-existing
EAs, based on a geometric generalisation of traditional mutation and crossover oper-
ators across problems and solution representations [100]. Among them, a prominent
class are geometric-crossover EAs (without mutation). Geometric crossovers are gen-
eralised crossovers associated with a generic notion of metric distance [34, 100], which
can be designed in a principled manner by specifying a distance and comprise many
crossovers used in practice for many solution representations (e.g. trees, sequences,
vectors of reals, or permutations). Some applications of geometric crossovers are [100]:
filtering redundancies in genotype-phenotype maps to prevent loss of search per-
formance, removing undesired biases inherent to evolutionary search, or generalis-
ing other meta-heuristics like particle swarm optimisation [52, 80, 105]. Provably,
all geometric-crossover EAs do the same form of search regardless of a specific
problem and solution representation: abstract convex evolutionary search [100]. Also,
a general runtime analysis in the GF [104] shows that certain geometric-crossover
EAs can exponentially outperform pure random search on a certain class of abstract
convex fitness landscapes [101] across problems and solution representations.

1.1.2 Overview of Elementary Landscapes Theory

ELT is a theory built upon a general class of combinatorial fitness landscapes,
called elementary landscapes, whose underlying structure of local optima tends
to respect certain symmetries and correlation among fitness values [35, 136, 137].
Elementary landscapes appear for instance in physics models of real phenomena like
spin-glass, software engineering problems and various combinatorial optimisation
problems in the P or NP-complete computational complexity classes (e.g. linear
assignment, TSP, or graph colouring) [85, 91, 121]. Moreover, elementary land-
scapes correspond to eigenfunctions of certain discrete Laplacian operators, in turn,
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associated with mutation operators or generalised crossovers called recombination P-
structures [51, 139, 150]. This makes the powerful tools of spectral graph theory [13]
available in ELT, thus opening the door to a large number of possible applications
of Laplacian eigenfunctions [5, 7, 8, 20, 56, 84, 87, 136, 140]: general methodologies
for analysis of elementary landscapes, guiding local search algorithms, analysis of
(recombination P-structure) random walks, among many others.

1.1.3 Towards a Unified Theory of EAs and Landscapes

By unifying the GF and ELT, this thesis means to develop a theory about a general
class of EAs associated with a general class of fitness landscapes both shared by the
GF and ELT. That is, to take a step towards a general theory of EAs and fitness
landscapes, across problems and solution representations, where it is possible to:

• Design useful crossovers, whether based on geometric crossover or recombina-
tion P-structures, in a principled manner.

• Formalise the search behaviour of EAs based on geometric crossovers or
recombination P-structures, possibly as some generalised form of abstract
convex evolutionary search.

• Identify and analyse how features of elementary landscapes or abstract convex
landscapes, associated with relevant known problems, impact the performance
of EAs based on geometric crossovers or recombination P-structures.

The principal reason motivating this thesis to focus on the three previous aspects
is that they correspond to three key areas where, in view of Sections 1.1.1 and 1.1.2,
the GF and ELT can contribute and complement each other towards one such general
theory of EAs and fitness landscapes. That is, crossover operators, evolutionary
search and fitness landscapes, as follows:

• Crossovers. Geometric crossovers occur often in practice and can be designed
in a principled manner across different representations [100]; however, geomet-
ric crossovers are inherently limited to metric spaces and thus exclude useful
non-geometric crossovers [103] such as Koza's subtree swap [86] or Davis's
order [31]. By contrast, few crossover examples of recombination P-structures
are known [51, 150], basically multi-point string-based crossovers (e.g. one-
point or uniform), and recombination P-structures have no established design
principles. Nevertheless, recombination P-structures do not require metrics
and thus do not exclude non-geometric crossovers in principle.
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• Evolutionary search. The search carried by geometric-crossover EAs can be
formalised across problems and representations, and it is always abstract con-
vex evolutionary search [100]; however, abstract convex evolutionary search
is not guaranteed in the presence of mutation or non-geometric crossovers.
By contrast, ELT lacks a model of population-based EAs for recombination
P-structures [85]; instead, evolutionary search is modelled as recombination
P-structure random walks [140, 150]. Nevertheless, recombination P-structure
random walks inherently do a form of macro-mutation (or ‘headless-chicken’
crossover), similar to that shown independently by Jones [73], and are not
necessarily limited to metric spaces.

• Fitness landscapes. For certain classes of abstract convex fitness landscapes,
certain geometric-crossover EAs can produce offspring populations whose
fitness is on average not worse than that of their parent populations [101],
or expectedly achieve polynomial runtime performance [104]. However, it is
unclear what kind of optimisation problems characterise such abstract convex
landscape classes, which is further obscured by the lack of landscape analy-
sis tools in the GF to determine when a given problem corresponds to any
of those classes [104]. By contrast, no performance analysis of any class
of population-based EAs using recombination P-structures has been carried
out on classes of elementary landscapes, except for recombination P-structure
random walks [140]. Nevertheless, elementary landscapes are associated with
several important problems in combinatorial optimisation and real-world
scenarios, whose landscape features can be analysed with a wide range of
tools based on spectral graph theory [85, 136, 139].

Thus unifying the GF and ELT in the above three areas will mean hereinafter that
this thesis seeks to characterise (according to mathematical axioms of the GF and
ELT) what classes of crossovers, classes of evolutionary search and classes of fitness
landscapes do the GF and ELT have in common or not. As such, the methodology
adopted in this thesis fundamentally consists in developing formal classifications to
rigorously define, analyse and compare what those classes are.

Although this thesis discusses mutation operators in the GF and ELT, mutation
operators are not the main focus of this thesis because the fundamental differences
between GF and ELT stem from how they formalise crossover, namely geometric
crossovers [100] and recombination P-structures [139], where a unification is precisely
most needed.

Would such a general unified theory be possible at all? Whether the answer is
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positive or not, exploring it is worthwhile either way. In the worst-case scenario, it
would clarify the limits and potential practical implications of a general theory in
EC built upon the GF and ELT. In the best-case scenario, it would reveal a profound
and rigorous understanding of the inherent relationships between important classes
of EAs and fitness landscapes as conceived in GF and ELT.

1.2 General Research Questions
Considering the aim and motivations mentioned in Section 1.1, this thesis
investigates the following general research questions:

1. How can geometric crossovers, proposed in the GF, and recombination P-
structures, proposed in ELT, be unified?

2. How can geometric-crossover EAs, proposed in the GF, and recombination
P-structure random walks, proposed in the ELT, be unified?

3. How can abstract convex fitness landscapes, proposed in the GF, and elemen-
tary landscapes, proposed in the ELT, be unified?

4. What are the consequences of each of the previous unifications and how do
they contribute to unify the GF and ELT under a common mathematical
framework?

1.3 Contributions Overview
The overall contribution of this thesis is showing a three-fold integrated approach to
unify the theoretical foundations of a geometric framework of EAs and elementary
landscapes as described in Section 1.1, corresponding to three major contributions:

1. A classification of crossovers that simplifies and systematises the task of
formally comparing new or existing crossovers with respect to classes of
generalised crossovers in the GF and ELT, namely geometric crossovers and
recombination P-structures, across problems and solution representations. This
classification reveals geometric crossovers and recombination P-structures share
a common general subclass of crossovers, which can be designed in a principled
manner through a notion of distance associated with the problem at hand.

2. A qualitative framework for abstract interval convex search of evolutionary
algorithms, built upon the classification of crossovers and abstract convexity
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theory, that simplifies and systematises the task of comparing how different
crossovers affect the search behaviour of EAs using them. This reveals the GF
and ELT share a general class of EAs (without mutation), called geometric
recombination P-structure EAs, which based on a crossover subclass shared
between geometric crossovers and recombination P-structures. The population
behaviour of geometric recombination P-structure EAs is described as a
specific case of a general form of search which is the same across problems
and representations: abstract interval convex evolutionary search.

3. Abstract convex elementary landscapes as a class of combinatorial fitness land-
scapes shared by the GF and ELT, which respect certain desirable conditions
of symmetry, global convexity and correlation in fitness of candidate solutions,
independent of a specific solution representation or problem. Among the ex-
amples of such landscapes are one-max fitness landscapes (with or without
bounded perturbations) defined on binary sequences. This thesis reveals ELT
provides tools to identify analytically certain kinds of global convexity present
in abstract convex elementary landscapes in a direct manner. Also, this the-
sis justifies why certain EAs based on geometric crossover or recombination
P-structures would expectedly outperform pure random search on abstract
convex elementary landscapes.

Another contribution of this thesis is to provide an updated, comprehensive yet
concise revision of the foundations of the GF and ELT most relevant to this thesis,
including additional clarifications and examples. Besides making this thesis self-
contained, this revision is a helpful resource for those who are not familiar with
GF or ELT and a quick reminder of the essential ideas for those who are familiar
already.

All formal results of this thesis are stated as lemmas, theorems or corollaries
with a corresponding proof next to them. Any result taken from the literature is
stated as a proposition, omitting its proof, with a bibliographical reference.

1.4 Organisation
This thesis has the following organisation. After this introduction, Chapter 2 places
this thesis in a wider context of related research in EC by presenting a literature
review. Then, the main body of this thesis is divided into Parts I, II and III
corresponding to the three major contributions overviewed in Section 1.3: a clas-
sification of crossovers (Chapter 5), a qualitative framework of abstract interval
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convex evolutionary search (Chapter 8) and abstract convex elementary landscapes
(Chapter 11). In turn, each major contribution develops upon two corresponding
preliminary chapters that revise specific background of the GF and ELT respectively:
search spaces associated with mutation and crossover operators (Chapters 3 and 4),
evolutionary search (Chapters 6 and 7) and fitness landscapes based on those
mutation and crossover operators (Chapters 9 and 10). Chapter 12 concludes this
thesis with a discussion of all contributions, limitations, and directions for future
research. Figure 1.1 below illustrates the overall organisation of this thesis.
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Figure 1.1. Thesis organisation.
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Chapter 2

Literature Review

Evolutionary algorithms (EAs) and fitness landscapes constitute a fundamental part
of EC since its origins [4]. Because both are generally difficult to analyse, much effort
has been necessary to form a precise and coherent understanding about EAs and
fitness landscapes [33, 42, 70, 97, 141][95, chs. 2–3,7] for a lack of solid theoretical
foundations in EC. Still, it is far from clear how the existing theories of EAs [36] and
fitness landscapes [120] make a general unified theory of EAs and fitness landscapes.
Indeed, there is little indication if and how that unification is possible at all, except
for a geometric framework (GF) of EAs [100]. If such a unified theory is not possible,
then it is questionable if one coherent mathematical framework can rigorously ex-
plain why a certain class of EAs performs well (or poorly) on a certain class of fitness
landscapes across different problems and solution representations. While this thesis
does not aim to analyse performance of EA classes on fitness landscapes, the previ-
ous question adds to the motivations for exploring a theoretical unification between
the GF and elementary landscapes theory (ELT) as introduced in Chapter 1.

2.1 Aim
This chapter reviews the literature in EC about other major theories or frameworks
of EAs and fitness landscapes, rather than GF and ELT. The reason being Part I,
Part II and Part III are self-contained and will cover all details or background of the
GF and ELT to understand the contributions of this thesis outlined in Section 1.3.
The aim of this literature review is two-fold. First, to provide additional context in
EC where GF and ELT can be placed. Second, to clarify whether the theories and
frameworks reviewed meet the requirements that motivated the GF [100] towards a
general theory of EC:
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(a) Explain rigorously why, when and how a certain class of EAs performs well
(or poorly) on a certain class of problems.

(b) Identify and analyse how features of a fitness landscape class, associated with
relevant known problems, affect the performance of a corresponding EA class.

(c) Inform about convergence and runtime of EAs.

(d) Guide the design of EAs, including mutation and crossover operators or
parameters thereof, for a class of problems.

(e) Be independent from a specific problem and representation of solutions.

These requirements inform the topics of the literature review organised as in
Section 2.2. Although the scope of this literature review is necessarily broad, it
does not intend to be fully detailed nor exhaustive with regards to any of the items
(a) to (e).

2.2 Organisation
This chapter has the following organisation. Section 2.3 reviews major families of
EAs to provide preliminary context for subsequent sections. Section 2.4 reviews
key issues and approaches involved in the design of EAs based on knowledge spe-
cific to problem classes. Section 2.5 reviews major theories about the performance
of EAs, including population behaviour, convergence (Section 2.5.1) and runtime
analysis (Section 2.5.2). Section 2.6 reviews the foundations of fitness landscapes
and common approaches to analyse fitness landscapes (Section 2.6.1) addressing the
question: what makes an EA perform well (or poorly) on a given optimisation prob-
lem? Finally, Section 2.7 contrasts various issues in the literature reviewed with
a unification between the GF and ELT explored in this thesis as well as specific
research questions to be addressed.

2.3 Major Families of Evolutionary Algorithms
The roots of EC trace back to three independent families of EAs around the mid
1960s: evolutionary programming (EP) due to Fogel, Owens and Walsh [45]; genetic
algorithms (GAs) proposed by Holland [65]; and, evolution strategies (ESs) thanks
to Rechenberg [118] and Schwefel [130]. Overviews of their seminal works and related
historical remarks in EC are referred to in [4, 52, 96] and [33, ch. 2].
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Fogel and his co-workers [45] proposed EP to model how natural evolution [27]
creates intelligent beings and their ability to predict future events. EP simulates the
evolution of a population of finite state machines (undergoing mutations, e.g. adding
transition rules or states) according to how well they predict unobserved symbols
from a given sequence of symbols (the ‘environment’). Holland [65] conceived GAs
to simulate how complex systems adapt to changing environments, as observed
in global economies or immune systems for instance. To do so, individuals are
described as symbolic strings reminiscent of genetic code, delegating to a genotype-
phenotype function the issue of how those symbols represent a real system. Then,
GAs simulate that system by successively generating populations subject to: a
selection that favours individuals of above-average fitness (i.e. survival of fit or
competitive individuals), and genetic variation due to crossover operations or (to a
lesser extent) mutations. By contrast, Rechenberg [118] and Schwefel [130] addressed
numerical optimisation problems in engineering with ESs. In ESs, individuals are
directly encoded as the candidate solutions, these being real-valued vectors, and
populations are as small as a single individual subject to mutation operations but
no crossover.

The previous three families laid a basis for new EAs, whose differences often
blurred. Koza proposed genetic programming (GP) [86] which, in plain words,
teaches a computer how to automatically evolve ‘intelligent’ computer programs.
GP differs from traditional EP, GAs and ESs in the representation of individu-
als as hierarchical tree-like structures of variable size, these representing programs'
syntax trees. Two other types of EAs are particle swarm optimisation (PSO) [3,
ch. 7][28, 80] and differential evolution (DE) [28, 142]. Both target global optimisa-
tion of possibly non-linear, non-differentiable and multi-modal functions. PSO and
DE represent individuals as real vectors like ESs but use crossover and have differ-
ent mutation operators. Another form of EAs that more recently gained attention
in EC are estimation of distribution algorithms (EDAs) [36, ch. 9][106]. EDAs differ
significantly from all aforesaid EAs: they do not evolve individuals in a population
but evolve a probability distribution model (defined on a search space of candidate
solutions). At each generation, the EDA samples promising candidate solutions from
its current probabilistic model to generate an improved version of the model where
sampling high-quality solutions is more likely. EDAs use neither genetic mutation
nor crossover operators.

Many taxonomies [9, 122][36, ch. 9][52, ch. 17] helped to organise the vast collec-
tion of existing EAs, clarifying differences between EAs, suggesting new EA designs
and correcting inaccurate terminology. But these classifications basically depend on
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historical, subjective or superficial aspects of EAs. By contrast, formal hierarchies
of EAs based on their search operators, behaviour or computational complexity
are means to understand why certain EAs provably perform well or not on certain
problems. However, rigorous taxonomies or hierarchy results linking EA classes with
runtime performance are few and scattered [39, 63, 116], mostly for simple EAs and
toy problems. Jones [73] classified various local search algorithms but less formally.
Clearly, EC lags behind classic theory of computation [76, 88] in the sense that
mathematical hierarchies of algorithms or Turing machines associated with problem
complexity classes are well established since the 1960s.

2.4 Design of Evolutionary Algorithms
The design of conventional EAs for optimisation problems involves making choices
or assumptions about various EA components, primarily the search operators, such
as mutation or crossover, and the associated representation of candidate solutions.

One design approach is to represent candidate solutions indirectly by defining a
genotype-phenotype function that maps a set of symbolic forms (i.e. genotypes) to
a set of candidate solutions (i.e. phenotypes) [123]. For instance, in traditional GAs
[53, 65], genotypes are fixed-length binary sequences, and standard genetic operators
are single-bit flip mutation or one-point crossover. With indirect representations,
familiar genetic operators can be chosen once and then reused for different problems
by modifying the genotype-phenotype map. Rothlauf [123, 124] discusses in-depth
other good reasons to use indirect representations over direct representations1, which
define search operators on phenotypes themselves, for instance: to represent complex
real-world objects that are not easily manipulated by search operators directly, or
to encode problem constraints that reduce the search space dimensionality as shown
also by Davis [31].

However, Koza [86], Radcliffe and Surry [117, 143] argue that indirect rep-
resentations are unnecessary and prevent search operators from fully exploiting
problem-specific knowledge compared with search operators defined on phenotypes
directly. Whether direct or indirect representations are used, many agree [52, 68,
96, 153] that EAs should be designed for a certain class of problems, to abandon
the pure ‘black box’ setting where EAs make no assumptions about (thus not ex-
ploiting) the underlying structure of the problem at hand, in view of Wolpert and
Macready's NFL theorems [155]. The NFL theorems are ‘zero-sum’ statements that,

1Effectively, direct representations equate to bijective genotype-phenotype functions.
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in rough terms, imply the average performance of any two algorithms (including EAs
and random search) is equal across all fixed objective functions with discrete domain
and co-domain. See [93] for an updated complete review of NFL theorems.

Genetic operators and representations should be designed according to problem
characteristics favourable to efficient evolutionary search, but how? Some theory-
driven frameworks propose to do so via metric distances [38, 123, 124, 144], cer-
tain equivalence classes called formae [117, 143], crossover invariant subsets [98, 99]
or permutation groups [125, 126] relating the search spaces and genetic opera-
tors. Overall, these frameworks take advantage of problems with certain correlation
between candidate solutions, so similar solutions have similar fitness, and problem
decomposability, so (near) optimal solutions can be built incrementally by genetic
variation operators that combine and propagate the genetic code of promising candi-
date solutions through generations as in Goldberg's ‘building blocks’ hypothesis [53].
At the root of this hypothesis and the aforesaid frameworks is schema theory [53, 65]
(see next Section 2.5).

One factor to consider when designing genetic operators is choosing parameter
settings that favour good performance. The crossover bias parameter, for instance,
controls how the genetic code of an offspring is built from a mixture of the genetic
code of its parents. Interestingly, Chicano, Whitley and Alba [23] show closed-
form expressions, computable in polynomial time, indicating which bias of uniform
crossover maximises the expected fitness of the offspring, for k-bounded pseudo-
Boolean optimisation problems [11] including the maximum k-satisfiability NP-hard
problem [76] with at most k > 0 literals per clause. Their theoretical framework
relies on decomposing the fitness function with respect to the Walsh basis [54, 151].

In practice though, it is still time-consuming and difficult to determine what EA
components (i.e. representation, crossover, mutation, selection and replacement
mechanisms, population size, etc.) are the best design choice for solving a certain
problem, when there are plenty of EAs to choose from (Section 2.3). This is indeed
part of the algorithm selection problem formulated by Rice [119] already in 1976,
which, in plain words, consists in selecting the best algorithm from a given set of
algorithms to solve a given problem. Since Rice's seminal work, a whole area of
research has developed state-of-the-art automated systems [81] for the selection and
configuration of EAs (and other meta-heuristics), during or prior to execution, based
on empirical data collected from the specific problem to be solved.

Adopting the theoretical or empirical approaches to design efficient EAs comes
with its own challenges [97]: the former may lack practicality and the latter rigour.
Currently, research areas such as dynamic parameter control [36, ch. 6] and parametrised
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computational complexity [36, ch. 4] are bridging theory and practice with mathe-
matically rigorous but practice-oriented frameworks to design efficient EAs.

2.5 Performance of Evolutionary Algorithms
Schema theory, proposed in 1975 by Holland [65] and popularised by Goldberg [53], is
the earliest well-known attempt to explain the population behaviour of a simple GA.
Despite being regarded as the fundamental theory of GAs [53], schema theory, and
its schema theorem in particular, has attracted considerable criticism [4, ch. B2.5][2,
125, 154]. One of the most recurrent reasons is that the schema theorem only gives
a lower-bound on the expected fraction of a population in a given schema2 after one
generation, thus it is inexact even for one generation and proves nothing about the
population behaviour over multiple generations.

Nevertheless, much of the criticism on Holland's schema theory was addressed in
follow-up studies between 1991 and 2013 [2, 98, 99, 115–117, 125, 141, 148] showing
how schemas are generalised beyond binary strings and traditional GAs to GP and
other EAs (not based on binary string representations exclusively) and how certain
generalisations of Holland's schema theorem are exact (passing from a lower-bound
to an equality) as well as applicable over multiple generations.

Apart from schema theory, other theories inspired in statistical mechanics or
quantitative genetics [42, 138] contributed to explain the population behaviour of
EAs, even though they have received less attention compared with more recent
advancements in EC theory [3, 36].

Holland [65] did not conceive GAs and schema theory particularly for solving
optimisation problems [32], yet when GAs or other EAs are used for such purposes
it is worth knowing if the EA will be able to find optimal solutions for the problem
at hand and how long will it take to find them. This concerns two other aspects
of EA performance besides population behaviour, namely convergence and runtime
analysis [3, 70] reviewed next.

2.5.1 Convergence of Evolutionary Algorithms

Markov chain theory [19, 110] entered EC in the early 1990s, laying the foundations
for the first rigorous analyses on the global convergence [4, ch. B2.3][95, ch. 8] of
simple GAs. A notion of global convergence is that the probability of containing a
global optimum in the current population tends to one as the number of generations

2Schemas describe subsets of n-dimensional binary strings sharing up to n bits at certain positions.
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elapsed tends to infinity. Using this notion Rudolph [127] showed, for all non-
constant bounded pseudo-Boolean functions [11] on fixed-length binary strings, that
GAs using fitness-proportionate selection, any string-based crossover, and single-bit
flip mutation, do not converge to any global optima unless an elitist version of
selection is used (i.e. one where populations always keep the fittest individual[s]
found so far). In a follow-up work, Rudolph [128] generalised that result to other
EAs and arbitrary search spaces. A different approach is Vose's infinite-population
model [149] of simple GAs: populations are described by vectors of proportions of
individuals in the population, and convergence of population sequences is understood
as trajectories towards fixed-points (i.e. attractors) in a dynamical system. But, as
its name suggests, this infinite-population model becomes accurate in predicting
such trajectories when the population size is large tending to infinity.

Convergence guarantees, however, are of little use per se because they do not
respond to a more practical yet difficult question: how fast does an EA converge per
iteration to an optimal set of solutions of a given problem? To answer this question
usually involves a Markov chain analysis of the convergence rates of the EA, which
measure a form of progress towards optima, as shown for instance by Schmitt and
Rothlauf [129] for a simple GA or by Jun He and Lin [60] more recently for general
finite-population EAs. But this subject is comparably less studied than EA runtime
analysis (Section 2.5.2) because certain difficulties inherent to Markov chain analysis
[3, ch. 2][4, chs. B2.2–B2.4][70, ch. 3] complicate answering the aforesaid question
precisely, except for very simple EAs like the (1+1) EA substantially restricting the
representation of solutions and search operators. The typical (1+1) EA uses single-
individual populations, elitist selection, single-bit flip mutation and no crossover: in
essence, a local hill-climb search algorithm [9, 52] for bit-string search spaces.

2.5.2 Runtime of Evolutionary Algorithms

Runtime analysis is the standard way to formally analyse the performance of EAs
and other randomised meta-heuristics [36]. Essentially, runtime analysis concerns a
simple question: how much time does a given EA take to find an optimal solution
to a given problem? In relation to this question, this section briefly reviews what
is meant by performance measure as well as the intuitive idea behind two related
general approaches to runtime analysis.
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Performance Measures

A usual performance measure is the expected number of fitness function evaluations
elapsed until the EA finds an optimal solution (called expected optimisation time
or expected runtime) [3, 36, 70]. Three reasons for using this measure are:

• It is independent of implementation details, from the specification of the EA
itself to hardware details such as processor architecture or clock ticks, which
otherwise would make a formal analysis and comparison of EA performances
not viable or misleading. For example, due to the randomised nature of EAs,
there may be high variance in the number of clock ticks between different runs
of the same EA with the same configuration and input for the same problem.

• The number of fitness function evaluations takes into account population size,
whereas a performance measure defined by the number of generations elapsed
does not and thus ignores prohibitively large population sizes.

• It approximates well the performance observed in practice because fitness func-
tion evaluations are usually the most costly operation per generation.

However, according to Jansen and Zarges [71]: the expected runtime is not a prac-
tical performance measure because it assumes that EAs can recognise when they
have found an individual that is an optimal solution, but optima of fitness functions
are usually unknown and difficult to recognise. They propose performance measures
based on fixed-budget analysis [71][36, ch. 5], an alternative to runtime analysis,
which analyses the expected fitness function value obtained after a predetermined
fixed number of function evaluations (the ‘budget’). This and other practice-oriented
performance measures [36, ch. 3] are not widely adopted yet, and few fixed-budget
results are known for combinatorial optimisation problems like TSP [108].

Drift Analysis and Level-based Analysis

Runtime analysis has advanced significantly since the early pioneering work by
Droste, Jansen and Wegener [39] on the very simple (1 + 1) EA for simple pseudo-
Boolean fitness functions [11] such as one-max (counting the number of 1 bits for
an input bit-string). Thanks to two general methods, called drift analysis and
level-based analysis, it is now possible to analyse the runtime of many EA variants
(see Section 2.3) with or without populations, crossover, mutation, elitist or non-
elitist selection, for toy problems and relevant combinatorial optimisation problems
[3, 36, 63, 70, 99].
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Drift analysis was Hajek's proposal in 1982 [57], later introduced in EC by
He and Yao in 2001 [61] and more recently generalised by Lehre and Witt [89]
under one unifying drift theorem that subsumes nearly all previous drift theorems.
Overviews of drift analysis and related techniques are found in [3, 36, 70]. Drift
theorems allow to derive bounds on the expected runtime of EAs by deriving bounds
for the expected progress (the ‘drift’) between one population generation and the
next, which is easier to analyse compared with the whole run, without having to
directly analyse a Markov chain model of the EA (as in Section 2.5.1). This is
possible by mapping via a drift function, also known as potential or distance func-
tion, each Markov state to a non-negative real number that measures the distance
to the optima. Effectively, the drift function replaces a Markov chain model of
the EA, where random variables describe populations, by a comparably easier one-
dimensional random process, where random variables describe distances [3, ch. 2][61].

However, finding a suitable drift function is often difficult because it requires
precise mathematical inspection of both the problem and EA on a case-by-case
basis, particularly when dealing with population-based EAs such as GAs. This issue
was addressed by Corus, Dang, Eremeev and Lehre [24] who proposed a level-based
theorem, derived from a drift theorem and tailored to population-based EAs, which
encapsulates a general drift function in a way that the user does not need to specify
one. That is, no drift function is required when applying the level-based theorem
to obtain bounds on the expected runtime of population-based EAs. But the level-
based theorem still has certain prerequisites [24] that the user needs to deal with
separately for each EA-problem pair, such as finding an appropriate partitioning of
the search space via fitness level sets (hence called level-based analysis).

2.6 Fitness Landscapes
EC inherits the notion of fitness landscape [120] from what in evolutionary biology is
originally called ‘surface of selective values’ as introduced by Wright [156] in 1932.
His idea was to describe the complex dynamics of evolutionary processes with a
visually appealing graphic, which metaphorically evokes physical landscapes with
peaks and valleys seen in nature. But, in Wright's own words the fitness landscape
metaphor is ‘useless for mathematical purposes’ [157] or, worse, can be misleading
according to Jones [73].

Nevertheless, building upon early work of Kauffman [77] and Weinberger [152]
about fitness landscapes, or energy landscapes as known in statistical physics [83],
the current definition of fitness landscape in EC [120] was made precise by Jones [73]
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and Stadler [136] in line with using EAs for mathematical optimisation. Briefly, a
fitness landscape is a mathematical relation or tuple consisting of: a set of candidate
solutions for a given problem, a topological structure (associated with mutation
and crossover) imposed on that solution set, and a fitness function defined on the
solution set. The former two define the search space structure of a fitness landscape.
Thus fitness landscapes are fundamental to understand how EAs and optimisation
problems relate with each other, and analysing this relationship is essentially the
purpose fitness landscape analysis (see Section 2.6.1 below).

Note, however, that it may not be always practical or possible to define fit-
ness landscapes mathematically in closed-form in the above sense. For instance,
fitness values may be accessible not from a fitness function but from the output of
a computer simulation whose internal details are unknown, or ignored, acting as a
‘black box’ for the EA [81]. The rest of this section mostly concerns (combinatorial)
optimisation problems for which the fitness function is mathematically defined in
closed-form but not everything about it is known necessarily (e.g. location of global
optima), that is ‘grey box’ problems [153].

2.6.1 Fitness Landscape Analysis

What makes an EA perform well or poorly on a given optimisation problem?
Fitness landscape analysis [82, 120] addresses this question from the problem's view,
by identifying and analysing properties of the fitness function or its associated search
space structure that affect EA performance, rather than the EA's algorithmic view
of Section 2.5. This section overviews two common approaches to fitness landscape
analysis.

Characterising Fitness Landscapes

The first approach consists in characterising classes of fitness landscapes that share a
common property related to EA performance, so each class includes only those fitness
landscapes of similar ‘difficulty’ with respect to such common property [69, 114]. A
fitness landscape may be called ‘difficult’, for instance, if an EA searching in that
landscape needs exponential expected runtime to find a (near) optimal solution; if
the expected runtime is polynomial, it may be called ‘easy’. Note problem difficulty
here differs from the classical computational complexity of problems [76, 88] which
is independent from the EA used and its expected runtime [36, 70].

The class of fitness landscapes formed by all linear, non-negative, pseudo-Boolean
functions [11] on n-dimensional binary sequences is an example that is provably
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easy for the simple (1 + 1) EA since the expected runtime is O(n log n) according to
Droste, Jansen and Wegener [39]. Here the search space structure is that of binary
Hamming graphs [14, 59] because the (1 + 1) EA uses single-bit flip mutation as the
search operator (i.e. adjacent vertices are one-flip away from each other).

Apart from linearity, Rothlauf [123, 124] shows that fitness landscapes with high
locality can benefit the performance of EAs which exploit such property. Informally,
when fitness landscapes have high locality, similar candidate solutions tend to have
similar fitness; similarity may be defined in terms of Lipschitz continuity [12, 132],
provided the search space and search operators are associated with a natural notion
of metric distance (e.g. Hamming distance for Hamming graphs) [34]. According to
McDermott [93], meta-heuristics whose search operators exploit locality avoid NFL
theorems [68, 155] and thus outperform random search.

Smoothness (or ruggedness) is also a property of fitness landscapes classes where
similar solutions tend (not) to have similar fitness. EC [120] normally formalises
smoothness not in terms of Lipschitz continuity or distances but statistical correla-
tion between fitness values. This, in fact, has been the tradition since the 1990s when
Weinberger [152] and Hordijk [66] used time series auto-regressive models [19] to
analyse the class of tunably-ruggedNK-landscapes introduced by Kauffman [77, 78].
However, not all fitness landscapes with high correlation or smoothness lead to
good EA performance. For example, the needle-in-a-haystack pseudo-Boolean func-
tion [39] is highly correlated because it is a constant zero-valued function except for
the all-ones binary sequence with co-domain value one. But any EA that does not
know the global optimum (i.e. the all-ones sequence) requires exponential expected
runtime to find it [3, 39, 70].

Other properties, including deception (where the fitness function misleads EAs
away from global optima) [54, 55], modality and isolation (regarding number and
distribution of local optima) [147], have been attempted to characterise difficulty of
fitness landscapes. However, counterexamples to these properties [92, 114] showed
that none of them alone suffices to characterise, in general, the difficulty of fitness
landscapes accurately. Or, in other words, each fitness landscape class defined by
those properties comprises landscapes of varying, rather than similar, difficulty: a
constant landscape and a needle-in-a-haystack landscape are both smooth but the
former is trivial and the latter difficult for any EA. Moreover, only a few past
studies actually addressed crossover-based fitness landscapes [26, 73, 139], whose
search space structure cannot be associated with graphs or neighbourhoods induced
by mutation operators [51], which more recent fitness landscape analyses largely
overlooked [63, 82, 120] focusing only on mutation-based EAs and local search.
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Predictive Measures of Performance

Compared with the previous descriptive approach, characterising fitness landscape
classes, a more quantitative approach to analyse fitness landscapes consists in
defining statistical measures that estimate how well an EA performs on a given
fitness landscape based on specific fitness function values [69, 114].

In the worst case, Jun He and others [62] proved that no general measure,
computable in polynomial time, can accurately estimate EA performance for all
fitness functions unless P = NP holds [88]. But this does not prevent in theory that
useful predictive measures exist for restricted problem classes, and in fact many
such measures have been proposed [92]. However, not all of them, including fitness-
distance correlation [74] and epistasis variance [29] for GAs, are always reliable mea-
sures because they can lead to wrong predictions or have exponential computational
cost according to Jansen [69].

Nevertheless, there exist approximate practical measures like accumulated
escape probability [120, ch. 5], which does not require prior knowledge of global
optima (unlike fitness distance-correlation [74]) and reliably predicted the relative
difficulty of several instances of the subset-sum NP-complete problem [76] versus
other toy problems (e.g. one-max) against various mutation-only EAs. A more de-
tailed study of problem difficulty of subset-sum, among other binary knapsack NP-
hard problems [76], was carried recently by Khulood [82] for local search algorithms.

Furthermore, in contrast to previous approximate and computationally
expensive measures [69, 92], Chicano and others [22] showed an exact closed-form
expression to compute in polynomial time the auto-correlation (length) [19] for the
quadratic assignment problem (including TSP), building upon Weinberger's auto-
correlation measure [114, 152] and Stadler's seminal works on elementary landscapes
theory [136, 137]. This exact auto-correlation measure, together with local optima
network models [120, ch. 9][109], reliably predicted the performance of simulated
annealing against several instances of the quadratic assignment problem but less
reliably for a steady-state GA using a so-called ‘partition’ crossover [21].

2.7 Discussion
This chapter broadly reviewed the literature in EC concerning the major families
of EAs (Section 2.3) as well as the main theories or frameworks to design EAs
(Section 2.4), analyse their search performance (Section 2.5) and fitness landscapes
associated with them (Section 2.6). Significant progress has been accomplished in
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each of those arenas where frameworks strive for a balance between theoretical rigour
and practical utility. But all of them still fall short of one or more of the requirements
suggested in Section 2.1 for a general unified theory in EC. That is, a general unified
theory should integrate the design and analysis of EAs as well as fitness landscapes
within a single cohesive framework. To develop formal taxonomies or hierarchies
may be a possible methodology to find a sufficiently general class of EAs with a
corresponding sufficiently general class of relevant landscapes while avoiding NFL,
provided that many combinatorial optimisation problems actually have sufficient
structure that EAs can exploit profitably.

Furthermore, a substantial part of the literature still focuses on a small fraction
of all the EA families known (Section 2.3); that is, mutation-only EAs with single-
individual populations and GAs for binary string representations. This is mainly
due to:

• the behaviour of population-based EAs with crossover is comparably harder
to analyse than EAs without populations or without crossover.

• mutation and crossover operators using more complex representations, for
instance based on trees as in GP or permutations as in TSP, are harder to
analyse and design.

• performance analyses using drift analysis or Markov chain analysis are not
easily transferable from one EA-problem pair to another and thus have to be
considered on a case-by-case basis.

• the lack of a theoretical basis to analyse how fitness landscapes associated with
crossover and other representations than binary strings affect EA performance.

By contrast, a general unified theory of the GF and ELT has the potential to
overcome the previous issues, while fulfilling the requirements suggested in
Section 2.1, for the reasons which motivated this thesis to begin with (see
Section 1.1):

• GF defines a class of crossovers based on a generic notion of metric distance,
namely geometric crossovers, independent from specific representations and
problems. Geometric crossovers can be designed in a principled manner and
cover many existing crossovers for many representations (e.g. sequences, trees,
permutations, vectors of reals, etc.) [100].

• GF defines the class of geometric-crossovers EAs as any EA that uses a
geometric crossover but no mutation. The abstract population behaviour
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of any geometric-crossover EAs is always the same independent of problems
and representations: abstract convex evolutionary search [100, 101], which is
intuitively described by ‘shrinking convex shapes’.

• GF proved a class of geometric-crossover EAs has exponentially better
expected runtime than random search on a class of abstract convex land-
scapes [104], in principle for any problem and representation, without relying
on Markov chain analysis nor drift analysis.

• ELT provides a solid theoretical basis to analyse a general class of combi-
natorial landscapes called elementary landscapes, associated with mutation
or a general crossover class known as recombination P-structures, whose fit-
ness function is an eigenvector of a corresponding discrete Laplacian operator
[8, 35, 136, 139]. Several real-world problems as well as classic P and NP-
complete combinatorial problems have elementary landscapes [56, 85, 91, 121].

Although the unification between GF and ELT is promising, at least the following
questions need to be addressed to make their unification viable:

1. What class of crossovers is shared by geometric crossovers and recombination
P-structures?

2. What class of EAs doing abstract convex evolutionary search is shared by GF
and ELT? Can it use mutation operators?

3. What class of combinatorial landscapes is shared by abstract convex land-
scapes and elementary landscapes? How does the discrete Laplacian operator
corresponding to the shared landscape class relate to the difficulty of problems
associated with it?

Part I will address question (1) with a formal classification of crossovers that is
missing in the literature [39, 63, 116]. Part II will extend this crossover classification
and use it to address question (2), showing how different crossovers in the crossover
classification (possibly with mutation) affect the population behaviour described by
abstract convex evolutionary search. To do so, Part II will establish links
between abstract convexity theory [107, 112, 146] and a generalisation of Holland's
schema [65] using Mitavskiy's notion of crossover invariant subsets [98, 99]. Part III
will address question (3) by characterising a class of combinatorial landscapes shared
by abstract convex landscapes and elementary landscapes, to then show that certain
landscapes in such class where certain geometric-crossover EAs expectedly perform
well are localised in low-order Laplacian eigenvalues.
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Search Spaces
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Abstract

This first part lays the foundation of this thesis based on how the GF and ELT
formalise the search space structure induced by mutation or crossover operators,
revised next in background Chapters 3 and 4. That is, the set of all possible
offspring obtained for given parents after a mutation or crossover operation. By
defining search spaces as metric spaces, continuous or finite, the GF generalises
traditional mutation and crossovers across representations and problems via metric
balls and metric segments (i.e. geodesic intervals). This leads to so-called geometric
operators and particularly to geometric crossovers, which cover many crossovers
used in practice and can be designed in a principled manner. Geometric mutation
and crossovers are seamlessly understood as searching within the same search space.
ELT instead adopts a ‘one operator one landscape’ approach separating mutation
search spaces and crossover search spaces, both independent of representations and
problems, assuming them finite. The former relies on a simple notion of neigh-
bourhood associated with adjacency matrices of graphs and shortest-path metric
distances. The latter are defined in terms of recombination P-structures: a form
of finite (non-geodesic) intervals that need not be associated with metrics but can be
associated with hypergraphs. In certain cases, a equivalence between mutation and
crossover search spaces is possible via a mutation-recombination structure-preserving
map.

The contribution of this first part of the thesis is presented in Chapter 5, which
focuses on the research question (1) from the literature review in Chapter 2: what
class of crossovers is shared by geometric crossovers and recombination P-structures?
To address this question, Chapter 5 builds a formal crossover classification upon the
class of geometric crossovers and recombination P-structures as well as subclasses
thereof defined in Chapters 3 and 4 respectively. Also, a methodology is proposed
for how to use or extend the crossover classification. From this crossover classifica-
tion, geometric recombination P-structures reveal themselves as a general subclass
shared by geometric crossovers and recombination P-structures. From Chapter 2,
being geometric or highly local are known properties of crossovers favourable to the
performance of EAs. However, Chapter 5 proves they do not correspond to identical
crossover classes: any geometric crossover is highly local, but not all highly local
crossovers are geometric. Finally, Chapter 5 formally explains, in connection with
certain inbreeding properties of geometric crossovers, why to classify a crossover
as geometric without explicitly knowing the distance could be helpful and the
difficulties behind this approach.
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Chapter 3

Search Spaces in the
Geometric Framework

This chapter revises background material for subsequent chapters. It summarises
and clarifies key ideas about the structure of search spaces associated with mutation
operators and, especially, crossover operators in the GF. This chapter principally
supports the contributions in Chapter 5 on a classification of crossovers that sets
the foundation to unify the GF and ELT.

3.1 Search Spaces as Metric Spaces
The GF defines search spaces as metric spaces, abstracting any specific problem
and algorithmic implementation details, representation of candidate solutions and
associated search operators [100]. Candidate solutions become abstract objects in
a metric space, and a structure over those objects is established by the distances
between them in the metric space. An example is to use a set of Hamming sequences
as the solution set and the Hamming distance to impose the structure, resulting in
a Hamming graph as the search space. Metric spaces and notions of distance (see
Examples 3.1–3.3) are the foundation of the geometric framework (GF).

Definition 3.1 (Metric space [94]). A metric space is a pair (X, d) with an arbi-
trary set X and a function d : X ×X → R≥0, called metric or distance, such that
∀x, y, z ∈ X: (I) identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y; (II) positiv-
ity: d(x, y) > 0 when x 6= y; (III) symmetry: d(x, y) = d(y, x); and (IV) triangle
inequality: d(x, y) ≤ d(x, z) + d(z, y).
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Example 3.1 (Euclidean metric [34]). The Euclidean metric d2 : Rn×Rn → R≥0

outputs the length of the line segment between two n-dimensional real vectors:
d2(x, y) def=

√∑n
i=1(xi − yi)2.

Example 3.2 (Manhattan metric [34]). The Manhattan or rectilinear metric
d1 : Rn ×Rn → R≥0 outputs the sum of the lengths obtained by projecting the line
segment between two n-dimensional real vectors onto the Cartesian coordinate axes:
d1(x, y) def= ∑n

i=1 |xi − yi|.

Example 3.3 (Hamming metric [34]). The Hamming metric dH : Hn
q ×Hn

q → N0

outputs the number of positions in which two sequences x, y ∈ Hn
q = {0, 1, . . . , q−1}n

differ: dH(x, y) def= |{i : 1 ≤ i ≤ n, xi 6= yi}|.

Definition 3.1 makes clear that candidate solutions are points in a metric space
and its metric defines the structure over them, but what about the search operators?
The two prominent kinds of search operators in EAs that generate new candidate
solutions are mutation and crossover (or recombination), and the GF models them
across representations and problems using two abstractions in metric spaces, namely
metric balls and segments (Section 3.2). Briefly, the GF's approach is to choose first
a metric space for the problem at hand, which comes with such abstract mutation
and crossover, and then derive from these abstractions the corresponding specific
operators that would be actually implemented for that metric space. A major fea-
ture of this approach is that metric spaces (i.e. search spaces) are decoupled to
an extent from specific search operators, thus enabling distinct search operators to
search within the same metric space, hence within the same search space. Section 3.2
and Section 3.3 explain what is the relationship between metric spaces, the abstrac-
tions over mutation and recombination, and the actual mutation and recombination
operators used in EAs.

3.2 Geometric Mutation and Crossover
To abstractly define mutation and crossover in metric spaces, the GF uses metric
balls and metric segments.

Definition 3.2 (Metric ball and segment [146]). Let (X, d) be any metric space.
A closed ball centred at point x ∈ X with radius r ∈ R≥0 is defined as B̄d(x, r) def=
{y ∈ X | d(x, y) ≤ r}. A geodesic interval or metric segment is defined as [x, y]d def=
{z ∈ X | d(x, z) + d(z, y) = d(x, y)}, where x, y ∈ X are called the extremes of the
segment and d(x, y) its length.
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Figure 3.1. Example of a metric ball and a metric segment for the Euclidean metric
space (R2, d2) in Figures 3.1a and 3.1d, Manhattan metric space (R2, d1) in Figures 3.1b
and 3.1e, and Hamming metric space (H3

2, dH) in Figures 3.1c and 3.1f.

Observe in Figures 3.1a–3.1c that a metric ball captures the notion of neighbour-
hood around a point, characteristic of mutation (e.g. single-bit flip), and also that
a metric segment captures the notion of picking two parents and returning a set of
offspring (Figures 3.1d–3.1f), characteristic of crossover (e.g. one-point). Based on
them, abstract mutation and crossover are defined geometrically via metrics, hence
the name geometric operators (Definitions 3.3–3.4).

GF emphasises the structure of geometric operators over other aspects such as
probability distributions imposed on offspring sets. The reason behind is the GF
prioritises the underlying search space structure associated with search operators
over their probabilistic nature [100]. This is possible if one considers the support
sets of search operators: the sets of all immediate offspring in the search space
reachable from given parents, namely offspring generated with non-zero probability,
which are fixed once a search operator is chosen. For simplicity, this thesis does not
make use of probability distributions over metric spaces, for this entails extending
the GF to metric measure spaces [101, 146], and that is out of scope. Also, this
thesis follows the same representation-independent setting adopted in GF, which is
transparent to whether genotype-phenotype maps [123] are explicitly defined or not.

Definition 3.3 ([Complete/Incomplete] geometric crossover [100]). Let (X, d)
be any metric space. An operator ξ : X ×X → P(X) is a geometric crossover for
(X, d), if all offspring support sets belong to the metric segment between parents.
That is, if ξ(x, y) ⊆ [x, y]d for all parents x, y ∈ X. If ∀x, y ∈ X : ξ(x, y) = [x, y]d,
then ξ is a complete geometric crossover. If ξ is not complete, it is called incomplete
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geometric crossover. The class of geometric crossovers is denoted GX , and GX fin

for finite geometric crossovers (i.e. with X finite). The subclasses of complete, in-
complete, finite-complete, and finite-incomplete geometric crossovers are denoted
respectively: GX -complete, co-GX -complete def= GX \GX -complete, GX -completefin
and co-GX -completefin

def= GX fin \ GX -completefin.

Definition 3.4 (Geometric mutation [100]). Let (X, d) be any metric space. An
operator µε : X → P(X) is a geometric mutation for (X, d), if all offspring support
sets of µε for an individual belong to a metric closed ball around such individual.
That is, if ∀x ∈ X : µε(x) ⊆ B̄d(x, ε) where ε ∈ R≥0 is the smallest non-negative
real number for which that condition holds and ε = 1 is assumed if unspecified.

From Definitions 3.3–3.4 it is clear that geometric crossover and mutation search
in the same metric space (hence same search space) after one is fixed, even if the
specific search operators they represent are different. For instance, even though
Hamming balls and segments (Figures 3.1c and 3.1f respectively) represent single-
bit flip mutation and unbiased uniform crossover, Hamming balls and segments are
well defined for the same Hamming graph.

Definition 3.5 (Uniform crossover). Let (Hn
q , dH) be any n-dimensional q-ary

Hamming metric space with q ≥ 2. The support function of the traditional (unbi-
ased) uniform crossover is the function Uniform : Hn

q × Hn
q → P(Hn

q ), (x, y) 7→
{(z1, . . . , zn) | zi ∈ {xi, yi}, 1 ≤ i ≤ n} for any parents x, y ∈ Hn

q .

Example 3.4 (Finite-complete geometric: uniform crossover). The tradi-
tional (unbiased) uniform crossover on a finite set of Hamming sequences is a finite-
complete geometric crossover because its support set coincides with the Hamming
metric segment between parents. For instance, consider parents 000, 110 ∈ H3

2.
Then, Uniform(000, 110) = [000; 110]dH = {000, 010, 100, 110}. Analogously for
any other pair of parents [100].

Definition 3.6 (Asymmetric one-point crossover). Let (Hn
q , dH) be any n-

dimensional q-ary Hamming metric space with q ≥ 2. Let any two parents x, y ∈ Hn
q

and a crossover point i ∈ {1, . . . , n}. The asymmetric one-point crossover of x
and y at i returns a single offspring z formed by concatenating all symbols of x
up to position i with all symbols (if any) of y in remaining positions. Formally:
asym-OnePoint(i) : Hn

q ×Hn
q → Hn

q , (x, y) 7→ z = (zj)j∈{1,...,n}, where

zj =

xj, if j ≤ i,

yj, if (i < j) and (i 6= n).
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The support function of asymmetric one-point crossover is: asym-OnePoint(x, y) def=⋃
1≤i≤n asym-OnePoint(i)(x, y).

Example 3.5 (Finite-incomp. geometric: asymmetric one-point crossover).
The asymmetric one-point crossover on a finite set of Hamming sequences is a finite-
incomplete geometric crossover because its support set may not coincide with the
Hamming metric segment between parents. For instance, asym-OnePoint(111, 000)
= {100, 110, 111} 63 011 ∈ [111, 000]dH = {0, 1}3.

Remark 3.1 (Definition 3.3). To be geometric, a crossover only requires a single
instance of a metric space fulfilling Definition 3.3. But there is a caveat for generic
metric spaces (e.g. n-dimensional q-ary Hamming metric spaces): if a crossover is
geometric, it must be so for every instance (i.e. every dimension n and alphabet size
q).

Abstracting mutation and recombination in this geometric fashion has the fol-
lowing three main advantages [100].

First, it enables mutation and recombination to be described within the same
search space, which historically has not always been the case. For instance, under
the ‘one operator one landscape’ view of Jones [73], a GA searches not in one but
several search spaces simultaneously (one when doing mutation, other for recombi-
nation, other for selection); and, Gitchoff, Stadler and Wagner [51, 139] use graphs
to formalise search spaces associated with mutation but recombination involves dis-
tinct structures based on hypergraphs [6].

Secondly, geometric operators can help us formalise what is a mutation and re-
combination operator in problems for new or unfamiliar search spaces (e.g. trees,
variable-size sets). This is possible because: metric balls and segments are not tied
to a specific problem or solution representation, and there exist a natural duality be-
tween edit distances [34] and syntactic operations on sequences, trees, permutations,
etc. [100].

Thirdly, the definition of geometric crossover (and mutation) may be interpreted
as a ‘template’ that can be instantiated by choosing a specific distance to obtain a
notion of geometric crossover tailored to such metric space. Effectively, the definition
of geometric crossover offers a strategy to design crossovers (see next Section 3.3).

Geometric operators attain as much generality as metric spaces allow. Neverthe-
less, not all crossovers are compatible with metric spaces (i.e. their structure cannot
be expressed via metrics) such as the unequal crossover on strings [131, 135] and
Koza's subtree crossover in GP [86, 103]. Sections 3.4–3.5 provide more detail on
non-geometric crossovers.
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3.3 Principled Design of Geometric Crossovers
Crossovers operators are abstracted from their specific definitions when their struc-
ture is formalised via metric segments (i.e. geodesic intervals), obtaining thus the
abstract notion of geometric crossover (Section 3.2). Loosely speaking, principled
design of geometric crossovers1 [100] consists in ‘reversing’ such process of abstrac-
tion, summarised as follows.

Geometric crossovers are defined by metric segments (Definition 3.3), which is a
function parametrised by a generic metric distance. Substituting a specific distance
results in distinct and specific kinds of metric segments (Figures 3.1d–3.1f), and each
delimits a corresponding notion of geometric crossover. In theory, there are as many
valid notions of geometric crossover as distances. In practice, one needs a specific
crossover operator to implement it on a digital computer, and not all distances may
be adequate to obtain a geometric crossover. For example, geometric crossovers
under the reversal distance, based on the inversion or 2-opt operator [4], cannot be
efficiently implemented in an exact manner, only approximately [100]. The GF uses
the following criteria for what is a ‘good’ distance: (a) a distance d for which there
exists an efficient implementation of a crossover that is geometric under d; and, (b) a
distance d for which a given fitness function defined on a metric space (X, d) induces
a fitness landscape ‘easy’ to search using the crossover operator in (a).

Depending on what is known about a particular given problem, finding such dis-
tance may be more or less difficult for the designer. Here the GF follows the premise
‘good mutation, good crossover’ [100]: if one knows a particular mutation opera-
tor performs well, and it is associated with a distance, then the same distance can
be used to define a specific notion of geometric crossover that expectedly performs
well. This rule-of-thumb assumes that a ‘good’ neighbourhood structure given by
mutation is likely to perform well for different meta-heuristics [52].

3.4 Non-geometric Crossovers
Many crossovers are geometric for a wide variety of search spaces (e.g. trees, per-
mutations, sequences, etc.), but not all of them are geometric. Two examples are
Koza's subtree swap [86] and Davis's order [31] crossovers (Figure 3.2).

1Principled design also applies to geometric mutation (Definition 3.4). In fact, the design of
operators based on distances is not necessarily limited to geometric operators: geometric shapes
other than metric balls and segments may be considered to define other forms of principled design.
This thesis does not consider such other forms of principled design.
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(Crossover section: 2)
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Figure 3.2. Examples of non-geometric crossovers: Koza's subtree swap (‘left’) and
Davis's order (‘right’). They are not geometric since they fail, respectively, the purity and
convergence inbreeding properties of geometric crossovers (Section 3.5).

Definition 3.7 (Non-geometric crossover [103]). Let X be an arbitrary set and
D

def= {d | d ∈ R(X×X), d is a metric} the set of all metrics on X. A crossover ξ
is a non-geometric crossover if, for every metric, there always exists at least one
offspring that does not belong to the metric segment between parents. That is, if
∀d ∈ D ∃x, y, z ∈ X : z ∈ ξ(x, y) and z /∈ [x, y]d.

Proposition 3.1 (Existence of non-geometric crossovers [100, 103]). The class
of non-geometric crossovers GX is not empty. Therefore, recombination operators
split into two classes: geometric GX and non-geometric GX .

Remark 3.2 (Proposition 3.1). The class of non-geometric crossovers GX def= U\GX
is the complement of the geometric class GX with respect to the universal class of
all crossovers U .

A lesson from the no-free-lunch (NFL) theorems [68, 155] is that to provide
reliable performance assurances for combinatorial optimisation algorithms, deter-
ministic or stochastic (like most EAs), it is necessary to embed knowledge about the
structure of the problem's objective function into the algorithm. So that the algo-
rithm can exploit it during the search (i.e. the algorithm must ‘match’ the class of
problems it wants to solve). Otherwise it is not statistically guaranteed to perform
better than pure random search. In short, restricted problem-algorithm class pairs
must be considered.

In the light of NFL, Proposition 3.1 (see Theorem 14.4.4 in [100]) is a fundamen-
tal result of the GF because it states that the GF is not a theory of all crossovers
(hence the class of EAs based on geometric crossovers is effectively restricted), and
because the practitioner can embed problem knowledge through a suitably chosen
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metric when designing an EA using geometric crossovers [100]. By problem knowl-
edge, the GF means that the fitness landscape fulfils certain conditions2, namely
certain kinds of smoothness and abstract convexity, defining a class of landscapes
where geometric-crossover EAs (without mutation) can outperform pure random
search [101, 104]. By suitable metric, the GF means that the metric should be cho-
sen carefully because such classes of fitness landscape and geometric-crossover EA
may or may not match depending on which metric is chosen. In short, Proposi-
tion 3.1 itself does not say that the GF is a ‘useful’ theory, but it does say that the
GF is not a futile theory inasmuch as it escapes the NFL negative consequences.

Chapter 9 discusses abstract convexity conditions of fitness landscapes where
geometric-crossover EAs with geometric crossover and no mutation expectedly out-
perform pure random search.

3.5 Inbreeding Properties of Geometric Crossovers
Geometric crossovers are a relevant class of crossover operators: many crossovers
used in practice are geometric and can be designed systematically across representa-
tions (Sections 3.2–3.4). To distinguish which crossovers are non-geometric is equally
important, and this is the purpose of the inbreeding properties described next.

To prove that a crossover is geometric, it suffices to find at least one metric
where Definition 3.3 holds, which can be challenging. Proving that a crossover is
non-geometric is significantly harder, if not nearly impossible, for one may have to
test an arbitrarily large (possibly infinite) number of metrics before reaching a con-
clusion according to Definition 3.7. That is not feasible. The inbreeding properties
of geometric crossovers stated in Propositions 3.2–3.4 (see Theorems 1–3 in [103])
circumvent such complication. The inbreeding properties (Figure 3.3) are indepen-
dent of any underlying metric space because they do not involve distances, and they
provide sufficient conditions to determine if a crossover is non-geometric. It suffices
to find a single counterexample where any of them fails to conclude automatically
that such crossover is not geometric for every metric space, so that one need not
test arbitrarily many metrics. An open problem is whether the inbreeding proper-
ties [103] are also sufficient conditions to guarantee geometricity of crossovers: if a
crossover fulfils all three, is it geometric for some metric?

2The GF assumes that the designer can derive or has access to the closed mathematical expression
of the fitness function and metric.
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x y

z yx

s1 s26=
(s1 6= z or s2 6= z)

Partition

Parents: x, y
Offspring: z
Grandchildren: s1, s2, t

x x

z = x

Purity

x y

(z 6= x) z y

t 6= x

Convergence

Figure 3.3. Diagrams of the inbreeding properties of geometric crossovers. Purity:
mating two identical parents x produces an identical offspring z = x. Convergence: if
parents x and y produce an offspring z such that z 6= x, and z mated with y produces
a grandchild t, then t 6= x. Partition: if parents x and y produce an offspring z which
in turn is mated separately with both parents leading to grandchildren s1 and s2, then
s1 6= s2 when at least one of the grandchildren is different from z.

Proposition 3.2 (Property of purity [103]). Let ξ be a binary crossover operator
defined on a set X. If ξ is a geometric crossover for some unspecified metric on X,
then recombining an individual with itself can only produce itself as offspring. That
is, ∀x ∈ X : ξ(x, x) = {x}.

Proposition 3.3 (Property of convergence [103]). Let ξ be a binary crossover
operator defined on a set X, and offspring z ∈ ξ(x, y) for any parents x and y.
If ξ is a geometric crossover for some unspecified metric on X, then ξ(x, z) cannot
produce y unless z = y. That is, ∀x, y ∈ X and ∀z ∈ ξ(x, y) : y ∈ ξ(x, z) =⇒ z = y.
Analogously, ξ(z, y) cannot produce x unless z = x.

Proposition 3.4 (Property of partition [103]). Let ξ be a binary crossover op-
erator defined on a set X, and any parents x, y ∈ X. Let also a child z ∈ ξ(x, y),
and grandchildren s1 ∈ ξ(x, z) and s2 ∈ ξ(z, y) such that s1 6= z or s2 6= z (or both).
If ξ is a geometric crossover for some unspecified metric on X, then s1 6= s2. In
other words, z is the only offspring (if any) common to ξ(x, z) and ξ(z, y).

In summary, the main relationships between geometric crossovers and the in-
breeding properties are: (a) if ξ is a geometric crossover for some metric space,
then ξ fulfils the inbreeding properties; and, (b) if a crossover ξ fails an inbreeding
property, then ξ is non-geometric for every metric space.

48



Chapter 4

Search Spaces in
Elementary Landscapes Theory

This chapter revises background material for subsequent chapters. It summarises
and clarifies key ideas about the structure of search spaces associated with mutation
and recombination operators in ELT. This chapter principally supports the contri-
butions in Chapter 5 on a crossover classification that sets the foundation to unify
GF and ELT.

4.1 Mutation Search Spaces
Mutation operators are normally implemented as probabilistic algorithms, but it is
possible to define a corresponding search space structure that is fixed by means of
their support functions and support sets. A support set of a mutation operator is a
set of all possible candidate solutions in the search space that result from applying
the mutation operator to a given candidate solution. Support sets are determined
by a support function called neighbourhood function N : X → P(X) mapping a
candidate solution x ∈ X to a subset N(x) ∈ P(X) of neighbouring solutions in the
power set of all candidate solutions X. Since neighbourhoods and their supports sets
are fixed, this approach allows ELT [136] to formalise a mutation search space as a
fixed pair (X,N) consisting of a domainX (i.e. the set of all candidate solutions) and
a neighbourhood function N imposing a structure on X. Hence the mutation search
space is determined as soon as the mutation operator and domainX are chosen. ELT
does not make particular assumptions about genotype-phenotype maps or solution
representations.

Elementary landscapes theory (ELT) focuses on combinatorial optimisation prob-
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lems whose search spaces are finite as opposed to continuous spaces like Euclidean
spaces Rn. Accordingly, ELT uses graphs to describe finite mutation search spaces
(X,N), where each vertex describes a candidate solution and each edge a neigh-
bour relationship between the two end vertices of the edge. This is possible due to
a natural equivalence between adjacency matrices of graphs and neighbourhoods:
a vertex y is adjacent to x if and only if y neighbours x. In other words, graphs
formalise search spaces associated with mutation operators because adjacency ma-
trices, like neighbourhoods, define supports sets of mutation operators. To illustrate
it, consider the (generalised) multiple-bit flip neighbourhood for general Hamming
sequences.

Definition 4.1 (Multiple-bit flip neighbourhood). Let Hn
q be n-dimensional

Hamming sequences with alphabet size q ≥ 2. The (generalised) multiple-bit flip
neighbourhood, parametrised by k such that 1 ≤ k ≤ n, is defined by Bitflip(k) :
Hn
q → P(Hn

q ), x 7→ {y ∈ Hn
q | dH(x, y) ≤ k, x 6= y}. So that y ∈ Bitflip(k)(x)

(i.e. y neighbours x) if their Hamming distance dH(x, y), namely the number of
positions in which both sequences differ, never exceeds the maximum k.

111

000 100

001 101

010

011

110

111
000

100

001

101

010

011

110

A(H(3, 2)) =

0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0


(a)

A(K8) =

0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0


(b)

Figure 4.1. The hypercube graph H(3, 2) in Figure 4.1a and the complete graph K8 in
Figure 4.1b, labelled using binary sequences, with their respective adjacency matrices.

For n-dimensional binary Hamming sequences Hn
2 , Bitflip(k) is the neighbour-

hood associated with the supports sets of traditional (multiple) bit flip mutation
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operators.
For example, consider three-dimensional binary Hamming sequences H3

2 and
single-bit flip mutation, which selects one bit at random from a given binary se-
quence and applies bitwise negation to the selected bit. Then, its neighbourhood
is Bitflip(1). So 001 ∈ Bitflip(1)(000) because 001 is reachable from 000 in a
single bit flip. Equivalently, {000, 001} is an edge of the three-dimensional binary
Hamming graph H(3, 2) or hypercube. Therefore, the search space associated with
Bitflip(1) is a hypercube (Figure 4.1a).

Now, consider three-bit flip mutation1, which selects three bits at random from
a given binary sequence and applies bitwise negation to the three selected bits. Its
neighbourhood is Bitflip(3). So 111 ∈ Bitflip(3)(000) because 111 is reachable
from 000 in three bit flips. Equivalently, {000, 111} is an edge of the complete graph
K8 with vertex set all three-dimensional binary Hamming sequences H3

2. In other
words, the search space associated with Bitflip(3) is the complete graph K8 in
Figure 4.1b because every sequence is reachable from any given sequence under a
single application of three-bit flip mutation.

Graphs may be of various kinds depending on their adjacency matrices (or neigh-
bourhoods): regular or irregular, undirected or directed, unweighted or weighted.
This thesis, unless stated otherwise, assumes the ‘simplest’ scenario addressed by
ELT: a graph2 without loops, regular, undirected and unweighted [136]. Extensions
to ELT for search spaces with irregular or directed graphs are possible [5, 35], but
this thesis does not focus on them because ELT is less developed in such cases.

4.2 Recombination Search Spaces
Research in ELT on recombination operators [139, 140, 150] develops as an extension
to ELT's original work on mutation [136] rather than as part of its foundation. This
led to formalise recombination search spaces differently from mutation search spaces
and in a way that complicates their comparison (Sections 4.2.1–4.2.2).

1A three-bit flip mutation is also achieved with three consecutive single-bit flips on the same
individual. However, that does not mean their neighbourhoods are identical. For three-bit flip
mutation 111 neighbours 000, whereas for single-bit flip mutation 111 does not neighbour 000.

2The conditions of regularity and undirectedness of a graph are expressed via neighbourhoods by
requiring respectively that: all individuals have the same number of neighbours, namely |N(x)|
must be constant, and the neighbourhood is symmetric, that is y ∈ N(x) ⇐⇒ x ∈ N(y).
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4.2.1 Recombination P-structures

Similar to mutation operators (Section 4.1), a fixed search space structure can be
defined for recombination operators via their support functions and support sets. A
support set of a recombination operator is a set of all possible candidate solutions
in the search space that result from applying the recombination operator to a given
pair of candidate solutions (i.e. parents).

Unlike mutation operators, recombination operators act on two individuals, which
complicates formalising their support functions and corresponding search space.
Here, neighbourhood functions or adjacency matrices (Section 4.1) are inappropri-
ate because neighbourhoods are not binary functions defined on pairs of individuals,
and adjacency relations are vertex-to-vertex where each vertex represents at most
one individual not two.

Instead, ELT relies on the notion of interval in interval spaces (Definition 4.2),
where endpoints of the interval would represent parents and points ‘in between’
would represent offspring. Formally, that is an interval operator I : X×X → P(X)
mapping a pair of (parent) candidate solutions to a set of (offspring) candidate
solutions in the power set P(X) of the search space domain X.

Definition 4.2 (Interval space [146]). Let I : X × X → P(X) be any function
defined on any set X such that ∀x, y ∈ X: (I) extensitivity: x, y ∈ I(x, y); and,
(II) symmetry: I(x, y) = I(y, x). Then, I is an interval operator on X, I(x, y) is
the interval between x and y, and (X, I) is an interval space.

A recombination search space is formalised in ELT as a particular case of an
interval space known as recombination P-structure (Definition 4.3). So all examples
of recombination P-structures seen in this and forthcoming chapters are interval
spaces. Besides intervals, recombination P-structures have been similarly described
as transit functions [18], introduced in [107] to unify intervals, paths, convex struc-
tures and betweenness relations in graphs and partially ordered sets [17, 112, 146].

Definition 4.3 (Recombination P-structure [51, 139]). LetX be any non-empty
finite set and any interval operator R : X ×X → P(X). Then, (X,R) is a recom-
bination P-structure, if ∀x, y, z ∈ X: (I) fix-point: R(x, x) = {x}; (II) symmetry:
R(x, y) = R(y, x); (III) null-recombination: {x, y} ⊆ R(x, y); and (IV) size-mono-
tonicity: if z ∈ R(x, y), then |R(x, z)| ≤ |R(x, y)|. The class3 of all interval opera-
tors R of recombination P-structures is denoted RP .

3Abusing the language, if no confusion arises, the ‘class of recombination P-structures’ refers
hereinafter indifferently to the class of interval operators R or recombination P-structures (X,R).

52



CHAPTER 4. SEARCH SPACES IN ELEMENTARY LANDSCAPES THEORY

Remark 4.1 (Definition 4.3). Recombination P-structures (X,R) may be consid-
ered independent of a specific optimisation problem and representation of solutions
as far as the finite domain X where they are defined is independent. Recombina-
tion P-structures cannot be used for problems defined on continuous domains, like
Euclidean spaces, unless the finiteness of X is relaxed.

One of the simplest examples of a recombination P-structure, defined for any
finite set of candidate solutions X, is (X, Id) given by the support function of the
identity crossover Id (Definition 4.4). More interesting recombination P-structures
are those associated with uniform and one-point crossovers in Examples 4.1–4.2.

Definition 4.4 (Identity crossover [139]). Let X be a non-empty finite set. The
support function of identity crossover is Id(x, y) def= {x, y} for any parents x, y ∈ X.

Example 4.1 (Uniform recomb. P-structure [51, 139]). Recall Definition 3.5 of
the support function Uniform for the (unbiased) uniform crossover on n-dimensional
q-ary (q ≥ 2) Hamming sequences Hn

q . Then, RΩ
def= (Hn

q ,Uniform) is the uniform
recombination P-structure. For instance, verifying the recombination P-structure
axioms for parents 100 and 001 yields:

(I) Uniform(100, 100) = {100}, and Uniform(001, 001) = {001};

(II) Uniform(100, 001) = Uniform(001, 100) = {100, 001, 000, 101};

(III) {100, 001} ⊆ Uniform(100, 001);

(IV) |Uniform(100, 000)| = 2 ≤ 4 = |Uniform(100, 001)|.

Definition 4.5 (One-point crossover). Recall from Definition 3.6 the asymmet-
ric one-point function asym-OnePoint(i) at crossover point i on n-dimensional
q-ary (q ≥ 2) Hamming sequences Hn

q . The one-point function parametrised with
crossover point 1 ≤ i ≤ n is the ‘symmetrised’ version of asym-OnePoint(i):

OnePoint(i) : Hn
q ×Hn

q → Hn
q ×Hn

q

(x, y) 7→ (s, t) = {asym-OnePoint(i)(x, y),

asym-OnePoint(i)(y, x)}

for any parents (x, y) and offspring (s, t). The support function of the traditional
one-point crossover is OnePoint(x, y) def= ⋃

1≤i≤n OnePoint(i)(x, y).

Example 4.2 (One-point recomb. P-structure [51, 139]). Let n-dimensional q-
ary (q ≥ 2) Hamming sequences Hn

q . Then, R1
def= (Hn

q ,OnePoint) is the one-point
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recombination P-structure. For instance, verifying the recombination P-structure
axioms for parents 000 and 111 yields:

(I) OnePoint(000, 000) = {000}, and OnePoint(111, 111) = {111};

(II) OnePoint(000, 111) = OnePoint(111, 000) = {0, 1}3 \ {010, 101};

(III) {000, 111} ⊆ OnePoint(000, 111);

(IV) |OnePoint(000, 011)| = 4 ≤ 6 = 23 − 2 = |OnePoint(000, 111)|.

Remark 4.2 (Example 4.2). Notice that (Hn
q , asym-OnePoint) is not a recombi-

nation P-structure since asym-OnePoint (Definition 3.6) fails the symmetry axiom.
For instance, asym-OnePoint(111, 000) 63 011 ∈ asym-OnePoint(000, 111).

Remark 4.3 (Definition 4.3). If (X,R) is a recombination P-structure and the set
X is parametrised, say n-dimensional Hamming sequences Hn

q for alphabet size q,
then R must fulfil the recombination P-structure axioms for all values of n and q.

Thus far the situation is mutation and recombination search spaces are formally
distinct in ELT, graphs represent the former and recombination P-structures the
latter. This disagreement may be interpreted from the ‘one operator one landscape’
view of Jones [73] by focusing on the support structure of mutation and recombi-
nation operators and voluntarily ignoring their transition probabilities from parents
to offspring. That is, because neighbourhoods (i.e. support functions of mutation
operators) and abstract intervals (i.e. support functions of recombination operators)
are formally distinct, so are their associated search spaces: each search operator
induces its own search space [73]. Nevertheless, such disagreement is true only to a
certain point [26, 51, 139]. Next, Section 4.2.2 explains in what sense mutation and
recombination search spaces are equivalent in ELT.

4.2.2 Hypergraphs, Backbone Graphs and the Mutation-
recombination Homomorphism

Mutation and recombination are the main operators driving evolutionary change in
EAs. Consequently, knowing if and how mutation and recombination structures are
different is key to understand the effect of these operators on EAs. Mutation affords
a simple and natural definition via graphs (Section 4.1) but recombination, namely
recombination P-structures, does not (Section 4.2.1). This motivates Gitchoff and
Wagner [51] to suggest hypergraphs.
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A hypergraph G is a generalisation of a graph whose edges (alias hyperedges) are
formed by a set of vertices rather than just a pair of vertices (Figure 4.2). Formally,
it is a pair (V (G), E(G)), or simply (V,E) if G is clear from the context, that
consist of a finite vertex set V = {v1, v2, . . . , vn} and a family E = {E1, E2, . . . Em}
of subsets of V , its hyperedges, such that: (a) Ej 6= ∅, for all j ∈ {1, . . . ,m}; and,
(b) ∪mj=1Ej = V . A hypergraph G is also defined by its binary incidence matrix
H = (hi,j) ∈ {0, 1}n×m whose rows hi,· are indexed with vertices vi and columns h·,j
with hyperedges Ej, where hi,j = 1 if vi ∈ Ej (hi,j = 0 otherwise) [6].

v1

v2

v3

v4

E2

E1

H =

E1 E2


v1 1 0
v2 1 1
v3 1 0
v4 0 1

Figure 4.2. A hypergraph (‘left’) with vertex set V = {v1, v2, v3, v4}, hyperedge set
E = {E1, E2} where E1 = {v1, v2, v3} and E2 = {v2, v4}, and incidence matrix H (‘right’).

The hypergraph of a recombination P-structure (X,R) has vertex set X (i.e. the
set of candidate solutions) and its hyperedge set is the family of all possible offspring
sets R(x, y). So hyperedges are the support sets R(x, y) of the recombination oper-
ator with support function R.

Definition 4.6 (Recomb. P-structure hypergraph [139]). Denote R a recom-
bination P-structure (X,R). Its hypergraph is hypR

def=
(
V (hypR), E(hypR)

)
where

V (hypR) = X is the vertex set, and the hyperedge set is E(hypR) = {R(x, y) |
x, y ∈ V (hypR), R(x, y) 6= ∅}. Each offspring set R(x, y) is a hyperedge.

Besides Definition 4.6, hypergraphs of recombination P-structures are defined
through their binary incidence matrices H where each entry hx,(y,z) indicates whether
or not x is offspring of parents y and z under R

hx,(y,z)
def=

1, if x ∈ R(y, z),

0, otherwise.
(4.1)

Rows hx,· are indexed by all offspring x ∈ X and columns h·,(y,z) by all pairs of
parents (y, z) ∈ X ×X [139].
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Figure 4.3. Hypergraph hypRΩ of the uniform recombination P-structure on three-
dimensional binary Hamming sequences RΩ

def= (H3
2,Uniform). The vertices are illus-

trated as ‘circles’, and the hyperedges (i.e. offspring sets of Uniform) are illustrated as
‘solid’ and ‘enclosing lines’. Enclosed vertices define hyperedges; lines shapes/colours are
only visual cues. Red lines: hyperedges of cardinality two. Blue dotted lines: hyperedges
of cardinality four. Green dotted-dashed line: the hyperedge that includes all vertices.

Uniform(110, 101)
= Uniform(101, 110)
= Uniform(100, 111)
= Uniform(111, 100)

Uniform(010, 001)
= Uniform(001, 010)
= Uniform(000, 011)
= Uniform(011, 000)

Uniform(000, 100)
= Uniform(100, 000)

Figure 4.4. Specific hyperedges in the hypergraph hypRΩ of the uniform recombina-
tion P-structure on three-dimensional binary Hamming sequences RΩ

def= (H3
2,Uniform),

alongside all Uniform recombinations that produce them.

Generally, it is difficult to visualise hypergraphs of recombination P-structures
due to the many hyperedges they may contain (one per every pair of parents). One
of the least intricate non-trivial examples4 is the hypergraph hypRΩ

(Figure 4.3) of
the uniform recombination P-structure RΩ seen in Example 4.1. The vertex set of
hypRΩ

consists of all three-dimensional binary Hamming sequences. Its hyperedge
4Figure 4.3 omits the incidence matrix H of the uniform recombination P-structure hypergraph due
to its large dimensions. It contains 23 · 23 · 23 = 512 entries hx,(y,z); 23 = 8 rows for all x ∈ {0, 1}3

and 23 · 23 = 64 columns for all pairs (y, z) ∈ {0, 1}3 × {0, 1}3. Note also that for symmetry of
the uniform recombination P-structure, its hypergraph will contain duplicate hyperedges, one for
Uniform(x, y) another for Uniform(y, x), even if these offspring sets are equal. Figure 4.3 omits
duplicate hyperedges for clarity and displays only one of Uniform(x, y) or Uniform(y, x).
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set consists of all offspring sets Uniform(x, y) for all vertices x, y; Figure 4.4
displays some of the hyperedges separately for extra clarity. Each hyperedge is
an offspring set, so the vertices connected by a hyperedge are the offspring in an
offspring set. For instance, {000, 001} is a hyperedge connecting only 000 and 001
precisely because Uniform(000, 001) = {000, 001}; whereas Uniform(000, 111) =
{0, 1}3, so {0, 1}3 is a hyperedge connecting all vertices.

One relevant aspect of hypergraphs is that with hyperedges one can see why
candidate solutions may appear closer in recombination search spaces than in mu-
tation search spaces, if ‘nearness’ is understood as being connected by a hyperedge
(or an edge). For example, consider again the uniform recombination P-structure
hypergraph hypRΩ

, and recall the hypercube graph in Figure 4.1a representing the
mutation search space associated with single-bit flip mutation seen in Section 4.1.
Observe that {000, 111} is not an edge of the hypercube since 111 cannot be reached
in one bit flip from 000. However, 000 and 111 are connected in the hypergraph
hypRΩ

by the hyperedge {0, 1}3 (‘green line’ in Figure 4.3). Hence 000 and 111
can be said to be closer in the search space associated with uniform recombination
than in the search space associated with single-bit flip mutation. Another example
would be individuals 000 and 011 connected by a hyperedge in hypRΩ

(Figure 4.4)
yet disconnected in the search space associated with single-bit flip mutation since
{000, 011} is not an edge of the hypercube graph.

Hypergraphs of recombination P-structures contain a kind of graphs named back-
bone graphs or underlying graphs5. These are the subgraph extracted from hyper-
graphs when selecting only the hyperedges that contain exactly two vertices (i.e. off-
spring sets of cardinality two).

Definition 4.7 (Recomb. P-structure backbone graph [18, 139]). Denote R

a recombination P-structure (X,R). Its backbone graph is bbgR
def=

(
V (bbgR),

E(bbgR)
)
where V (bbgR) = X is the vertex set, and the edge set is E(bbgR) ={

{x, y} | x, y ∈ V (bbgR) and x 6= y and R(x, y) = {x, y}
}
.

Building on earlier work of Culberson [26] and Jones [73], Gitchoff and Wag-
ner [51] show that sometimes the graphs of mutation spaces are precisely the back-
bone graphs embedded in the hypergraphs of recombination P-structures. This
result is known as the mutation-recombination homomorphism [51, 139] because
the search space structure induced by mutation operators would be preserved by
recombination operators.
5This thesis may use the term ‘underlying graph’ for graphs associated with search spaces in gen-
eral, whether speaking of GF or ELT. The term ‘backbone graph’ is preferred to avoid confusion.
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Figure 4.5. The backbone graph, isomorphic to a hypercube graph, embedded in the
hypergraph hypRΩ of the uniform recombination P-structure on three-dimensional binary
Hamming sequences RΩ

def= (H3
2,Uniform).

A trivial example is given by the three-bit flip neighbourhood Bitflip(3) and the
identity recombination P-structure ({0, 1}3, Id). Here the hypergraph of ({0, 1}3, Id)
is indeed identical (up to isomorphism) to the complete graph K8 seen earlier in
Figure 4.1b. That is, K8 is the backbone graph for ({0, 1}3, Id); the reason be-
ing that there are no non-trivial hyperedges (i.e. joining more than two vertices)
since Id(x, y) = {x, y}, ∀x, y ∈ {0, 1}3. Moreover, the following relationship holds:
Id(x, y) = {x, y} is an edge of K8 ⇐⇒ y ∈ Bitflip(3)(x) and x ∈ Bitflip(3)(y).

A non-trivial example is the hypercube associated with the single-bit flip mu-
tation neighbourhood (Figure 4.1a), which is the backbone graph (Figure 4.5) em-
bedded in the hypergraph of the uniform recombination P-structure (Figure 4.3).
In other words, there is a structure-preserving map (i.e. homomorphism) from the
mutation search space associated with single-bit flip neighbourhood to the uniform
recombination P-structure hypergraph: every edge in mutation space corresponds
to a hyperedge in recombination space. For instance, {000, 001} is an edge of the
hypercube in Figure 4.1a and also a hyperedge of the hypergraph in Figure 4.3. But
not all hyperedges correspond to ordinary edges in mutation space, so the map is
not an isomorphism. A key conclusion of this result is that even when mutation
and recombination are defined differently, behave differently and the performance
of EAs using them is possibly different, their underlying search space structure
may be homomorphic [51, 139]. Part III discusses further details of the mutation-
recombination homomorphism and its implications for fitness landscape analysis.

Finally, despite the resemblances between graphs and hypergraphs, there is one
important distinction between them when comparing mutation and recombination:
from a given graph its associated neighbourhood function can be recovered, but
from a given hypergraph its associated recombination P-structure cannot be recov-
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ered [51, 139]. To illustrate it with an example, recall the hypercube graph asso-
ciated with single-bit flip mutation in Figure 4.1a and the hypergraph associated
with the uniform recombination P-structure RΩ in Figure 4.3. Unlike the hyper-
cube, where the adjacency structure makes clear which individual is obtained after
mutating a given one, from the hypergraph alone one cannot tell which offspring
set came from recombining which pair of parents. Hyperedges themselves do not
distinguish between offspring and parents, unless RΩ is associated with them. In
short, recombination P-structures provide the mappings from parents to offspring
absent in hypergraphs, and thus remedy the insufficiency of hypergraphs to describe
recombination search spaces.

4.2.3 A Note on Some Similarities and Differences between
Recombination P-structures and Geometric Crossovers

This thesis studies side by side recombination P-structures (Definition 4.3) and
geometric crossovers (Definition 3.3). To avoid possible confusions, the following
points highlight some subtle similarities and differences between them regarding
how ELT and GF understand recombination search spaces:

• GF defines search spaces as a metric spaces (X, d) such that geometric mu-
tation and geometric crossover are defined implicitly via a metric d on the
domain X, so GF does not distinguish between mutation and recombination
search spaces (Chapter 3). By contrast, ELT separates mutation (X,N) and
(X,R) recombination search spaces, making explicit that the former use neigh-
bourhoods N and the latter interval operators R to impose a structure on the
domain X (Sections 4.1–4.2). This leads to opposite views on search spaces:
in GF search spaces induce search operators, in ELT search operators induce
search spaces (i.e. the ‘one operator one landscape’ view [73]).

• Both geometric crossovers and recombination P-structures rely on the notion
of interval to formalise the support functions of recombination operators, but
not the same kind of interval. Geometric crossovers use geodesic intervals, so
offspring only occur in geodesics between parents. Recombination P-structures
instead use intervals that do not require a distance, hence more general than
geodesic intervals. In practice, many crossovers are geometric crossovers [100];
however, there exist crossovers in non-metric spaces, and so recombination P-
structures are an advantage in such cases. For instance, the unequal crossover
on strings is an (infinite) interval operator associated with a non-metrisable
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space [131]; realistic examples of non-metrisable spaces can be found in foldings
of ribonucleic acid structures [134].

• Hyperedges of hypergraphs represent the support sets of recombination P-
structures (Section 4.2.2) but also of geometric crossovers in finite domains
at least. For example, recall the hypergraph of the uniform recombination P-
structure (Hn

q ,Uniform) in Figures 4.3–4.4. Note the hyperedges or offspring
sets Uniform(x, y) agree with Hamming metric segments [x, y]dH or equally
finite-complete geometric crossovers (Definition 3.3) under Hamming distance.
For instance, Uniform(011, 000) = {011, 001, 010, 000} = [011, 000]dH . That
is due to Corollary 3.4 in [18]: Uniform(x, y) = [x, y]dH for all x, y ∈ Hn

q .

4.2.4 Special Recombination P-structures

Alternative definitions and characterisations of recombination P-structures are pos-
sible by selecting, restricting or relaxing their axioms. Two general subclasses of re-
combination P-structures are geometric and monotonic recombination P-structures
(Definitions 4.8–4.9). Both are introduced in [18] as transit functions using dif-
ferent terminology, which generalise recombination P-structures dropping the size-
monotonicity axiom, so Definitions 4.8–4.9 are a particular case of those in [18].

A geometric recombination P-structure is a recombination P-structure (X,R)
that requires a given ‘reference’ graph G with vertex set X and one additional
axiom: offspring sets R(x, y) must lie in shortest-paths between x and y on the
reference graph G. Hence geometric recombination P-structures are specific cases
of geometric crossovers (Definition 3.3) [18]; provided that graphs are instances of
metric spaces, and shortest-paths on graphs are instances of metric segments.

Definition 4.8 (Geometric recomb. P-structure [18]). Let (X,R) be a recom-
bination P-structure and G a connected graph with vertex set X. If ∀x, y ∈ X :
R(x, y) ⊆ I(x, y), where I(x, y) is the set of all shortest paths between x and y in G,
then (X,R) is a geometric recombination P-structure. The subclass of geometric re-
combination P-structures is denoted RP-geometric. The subclass of non-geometric
recombination P-structures is: co-RP-geometric def= RP \ RP-geometric.

For example, the uniform (Hn
q ,Uniform) and one-point (Hn

q ,OnePoint) re-
combination P-structures on general Hamming sequences (Examples 4.1–4.2) are
geometric recombination P-structures. That is because both uniform and one-point
crossovers return offspring in the Hamming metric segment between parents (i.e. in
shortest-paths on the Hamming graph) [18].
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A salient feature of geometric recombination P-structures, true by definition, is
fulfilling the inbreeding properties of geometric crossovers (Section 3.5). In fact,
any property true of geometric crossovers that depends solely on offspring being in
shortest-paths is true of geometric recombination P-structures, again by definition.
Chapter 5 proves that there exists another subclass of recombination P-structures
not invoking the definition of geometric crossovers to fulfil the inbreeding properties.

Monotonic recombination P-structures are another relevant subclass of recom-
bination P-structures. They use a stronger version of the size-monotonicity axiom
of recombination P-structures: for any children u, v ∈ R(x, y) of any parents x
and y, the grandchildren R(u, v) are always a subset of R(x, y). Size-monotonicity
is weaker because grandchildren need not be subsets of children, only that their
number must not exceed that of children.

Definition 4.9 (Monotonic recomb. P-structure [18, 107]). Let (X,R) be a
recombination P-structure. Then, (X,R) is a monotonic recombination P-structure
if ∀x, y ∈ X and ∀u, v ∈ R(x, y) : R(u, v) ⊆ R(x, y). The subclass of monotonic re-
combination P-structures is denotedRP-monotonic. The subclass of non-monotonic
recombination P-structures is: co-RP-monotonic def= RP \ RP-monotonic.

Uniform recombination P-structures (Example 4.1) are monotonic. For instance,
given parents 010 and 001

Uniform(
u

010,
v

011) = {010, 011} ⊂ {000, 001, 010, 011} = Uniform(
x

010,
y

001) .

(4.2)

Other multi-point recombination P-structures such as one-point (Example 4.2) are
not monotonic in general [18]. For example, given parents 000 and 111

OnePoint(
u

100,
v

011)
{010,101} member

6⊆ OnePoint(
x

000,
y

111)
{010,101} not a member

. (4.3)
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Chapter 5

A Classification of Crossovers

This chapter is an original major contribution of this thesis, extending two papers
that I co-authored with Moraglio [48, 49]. This chapter presents a formal classifi-
cation of crossovers based on the classes of geometric crossovers and recombination
P-structures, reviewed in Chapters 3 and 4 respectively, independent of specific
problems and representation of solutions.

5.1 Introduction
Classification is a systematic process of organising entities into groups called classes,
providing a rigorous means for the accumulation, retrieval and communication of
knowledge about such entities. It has been a fundamental tool across many disci-
plines, and evolutionary computation is no exception [141].

This chapter presents a classification of crossovers, given by their support func-
tions, with respect to the classes defined by geometric crossovers (Chapter 3) and
recombination P-structures (Chapter 4). That is, a hierarchy of crossover classes
independent of problems and representations that classifies crossovers in terms of
their parent-offspring reachability structure, transparent to their probabilistic na-
ture, and constitutes the foundations to unify the GF and ELT.

In the GF and ELT the reachability structure of crossovers, within an ambient
search space, plays a key role in crossover design and EAs' behaviour and perfor-
mance. For example, the GF uses distances associated with search spaces to design
specific crossovers across representations as well as to understand why and how
geometric-crossover EAs, polynomial performance and abstract convex landscapes
relate to each other [100, 104]. ELT relies on the reachability structure of mutation
and crossover operators to compare operator performance via landscape correlation
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and epistatic interactions in the genotype of solutions, corroborate Holland's schema
theorem [65], or explain why commutativity of mutation and crossovers leads to
unbiasedness in evolutionary search [136, 139, 140]. Despite the GF and ELT adopt
a general, representation-problem independent approach to study crossovers, their
views remain incomplete.

The GF regards the search space as a set of solutions equipped with a metric, to
formalise crossovers across representations through geodesic intervals (Section 3.2);
however, this approach is inherently limited to search spaces where distances must
be defined, and little is known beyond a coarse classification of crossovers into geo-
metric and non-geometric (Proposition 3.1). In contrast, ELT allows more general
(i.e. less structured) search spaces by defining them using sets not metrics, lead-
ing to recombination P-structures as a specific case of general interval functions to
formalise crossover (Section 4.2), but ELT never addressed their classification.

This chapter aims to remediate such partial views on crossover with the proposed
crossover classification, thereby setting a basis to understand how the structure of
crossovers may affect their design or the behaviour and performance of EAs using
them. This chapter will extend the classification of geometric versus non-geometric
crossovers in the GF (Chapter 3) and propose one for the first time in ELT. Its
contributions are:

1. A formal justification that it is theoretically possible and meaningful to com-
pare geometric crossovers and recombination P-structures to develop a classi-
fication of crossovers in the GF and ELT. (Section 5.3.)

2. A crossover classification with respect to geometric crossovers and recombina-
tion P-structures. Section 5.2 overviews it and Section 5.4 develops it.

3. Two case studies to demonstrate how the crossover classification may be used.
The first checks the existence of a crossover in the classification with a spe-
cific property: high-locality [144]. The second defines a new subclass of
recombination P-structures fulfilling the inbreeding properties of geometric
crossovers [103]. (Section 5.5.)

4. Proving that high-locality [144] and geometricity of crossovers [100] are not
always equivalent concepts. (Section 5.5.1.)

5. Providing evidence to support the conjecture that the inbreeding properties
proposed in [103] (see Chapter 3) are insufficient to determine if a crossover is
geometric and thus can only be used to test non-geometricity. (Section 5.5.2.)

Section 5.6 concludes this chapter.
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5.2 Overview and Methodology
This section overviews this chapter by summarising what crossovers and (sub)classes
are considered in the classification, an illustration of such classification, and outlining
in Section 5.2.1 three approaches to exploit it.

The crossover classification consists of the following major classes and subclasses
of geometric crossovers and recombination P-structures outlined in Table 5.1, all of
which were introduced in Chapters 3–4.

No. Name Notation Class/Subclass Definition

1 Universal U Class All crossovers

2 Geometric crossovers GX Class 3.3

3 Recombination
P-structures

RP Class 4.3

4 Non-geometric
crossovers

GX Class (U \ GX )

5 Not recombination
P-structures

RP Class (U \ RP)

6 Finite-complete geo-
metric crossovers

GX -completefin Subclass 3.3

7 Geometric recombi-
nation P-structures

RP-geometric Subclass 4.8

8 Monotonic recombi-
nation P-structures

RP-monotonic Subclass 4.9

9 Finite-incomplete
geometric crossovers co-GX -completefin Subclass 3.3

10
Non-geometric
recombination
P-structures

co-RP-geometric Subclass (RP \ RP-geometric)

11
Non-monotonic
recombination
P-structures

co-RP-monotonic Subclass (RP \ RP-monotonic)

Table 5.1. Crossover (sub)classes in the crossover classification.

The choice of geometric crossovers and recombination P-structure classes is ev-
ident since they are an integral part of the GF and ELT, and this chapter aims to
set the foundations of a unified theory upon such classes. The subclasses (6–8), or
their complements (9–11), in Table 5.1 are chosen for their salient features:

• Complete geometric crossovers coincide with geodesic intervals: the offspring
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are all the points in shortest-distance trajectories between the endpoints of a
geodesic interval. This makes complete geometric crossovers enjoy the proper-
ties of geodesic intervals [146] (e.g. symmetry) that other geometric crossovers
may not have.

• Geometric recombination P-structures, being a special case of geometric cross-
overs, fulfil the inbreeding properties (Propositions 3.2–3.4). Hence the in-
breeding properties are always present in geometric recombination P-structures,
as they are for geometric crossovers, across representations and problems.

• Monotonic recombination P-structures have the particular property that off-
spring sets are always closed or invariant by Definition 4.9. That is, all possible
descendants of two parents x and y are confined to the offspring set R(x, y),
so R(u, v) ⊆ R(x, y) for all u, v ∈ R(x, y). A similar notion of invariance was
used in [98, 99, 117] to generalise Holland's schema [65].

Crossover examples of these (sub)classes were seen in Chapters 3–4 as well, but this
chapter requires additional ones to build the classification, so this chapter recalls or
introduces them as needed. Table 5.2 summarises key details about all the crossovers
to be classified.

Name Notation Search space Definition

Uniform (unbiased) Uniform Hamming sequences 3.5
Asymmetric one-point asym-OnePoint Hamming sequences 3.6
One-point OnePoint Hamming sequences 4.5
Koza's subtree swap Koza Labelled trees in GP 5.1
Davis's order Davis Permutations 5.2
Symmetric Davis's order sym-Davis Permutations 5.3
All-Hamming-paths AllPaths(H(n, q)) Hamming sequences 5.4
Intersecting-Hamming-balls Balls(dH) Hamming sequences 5.6
Identity Id Generic: finite spaces 4.4

Table 5.2. Crossover support functions in the crossover classification.

The classification that results from these crossovers and (sub)classes is illustrated
in the following Figure 5.1. The universal class of crossovers U is at the top of the
hierarchy, containing the two fundamental classes: geometric crossovers GX and
recombination P-structuresRP . Within their intersection, geometric recombination
P-structuresRP-geometric form a superclass of finite-complete geometric crossovers
GX -completefin. By contrast, the monotonic recombination P-structures subclass
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RP-monotonic is not completely within the intersection of GX and RP (see all-
Hamming-paths crossover), but RP-monotonic does share crossovers with both of
GX -completefin and RP-geometric (e.g uniform and identity crossovers). Finally,
neither GX nor RP cover all existing crossovers in U (e.g. Koza's subtree swap,
Davis's order crossover and its symmetric version).

UU
RP

GX
GX -

completefin
RP-monotonic

RP-
geometric

GX -completefin

RP-monotonic

GX

RP-geometric

RP

† Any finite-complete
geometric crossover on a
K2,3 graph is not
RP-monotonic (Figure 5.6)

asym-OnePoint

†

OnePoint

Uniform Id

Koza

sym-Davis
Davis Balls(dH)

AllPaths

Figure 5.1. Classification within the universal class U of crossovers by (sub)classes of
geometric crossovers and recombination P-structures. Classes: geometric crossovers GX
and recombination P-structures RP. Subclasses: finite-complete geometric crossovers
GX -completefin, geometric recombination P-structures RP-geometric and monotonic
recombination P-structures RP-monotonic. Crossover examples: (unbiased) uniform
(Uniform), one-point (OnePoint), asymmetric one-point (asym-OnePoint), Koza's
subtree swap (Koza), Davis's order (Davis), symmetric Davis's order (sym-Davis),
all-Hamming-paths (AllPaths(H(n, q))), intersecting-Hamming-balls (Balls(dH)) and
identity (Id).

By its very nature, this classification does not involve other aspects of crossovers
than their structure. For example, probability distributions over offspring, algorith-
mic implementation details, or practicality on a certain problem have been left out.
Not because they are unimportant but because each of them deserves a separate
study. Nevertheless, from the discussion in Section 5.4, those other aspects are not
completely unrelated to this classification inasmuch as the structure of crossovers
plays a key role in them. The rest of this chapter consists in justifying why a unified
theory of the GF and ELT grounded on this classification is not futile (Section 5.3),
proving all necessary results that lead to this classification (Section 5.4), and then
two case studies to demonstrate its utility (Section 5.5).
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5.2.1 Methodology

Three possible general strategies to use the crossover classification are outlined next:
bottom-up, top-down and inter-class. Although these are not the main focus of this
chapter, a brief explanation can help appreciate better the overall utility of the
classification and how the two case studies in Section 5.5 use it in particular.

Class Class

new crossover/property/class

Classification

(a)

Class Class

new crossover/property/class

Classification

(b)

Class Class

Classification

A B

(c)

Figure 5.2. Three strategies to use the classification of crossovers: bottom-up (Fig-
ure 5.2a), top-down (Figure 5.2b) and inter-class (Figure 5.2c).

The bottom-up strategy (Figure 5.2a) is about classifying and generalising previ-
ously unclassified crossovers, classes of crossovers or specific properties. For example,
given a crossover or a class, one proves which classes in the hierarchy include the
given crossover or class. In this manner, one not just finds the associated structure
(whether geometric or not) but at the same time obtains the superclasses that gener-
alise the given crossover or class. Likewise, for a given property, one proves whether
there exist a crossover or class in the hierarchy fulfilling such property. Sections 5.4
and 5.5.1 follow this strategy.

The top-down strategy (Figure 5.2b) is about specialisation of classes and de-
sign of specific crossovers from those already present in the hierarchy, rather than
generalisation as in bottom-up. Here, one starts with a given class in the hierarchy
and from its axioms proposes specific crossovers that belong to such class. Or, mod-
ifying the axioms of the given class (i.e. adding, removing, restricting or relaxing
them), one derives more specific classes with desired properties. For example, geo-
metric and monotonic recombination P-structures are obtained from recombination
P-structures by requiring one additional axiom for each of them (Section 4.2.4).
Section 5.5.2 follows this strategy.

Finally, the inter-class strategy (Figure 5.2c) is about comparing two or more
classes in the hierarchy through their axioms or definitions. For example, given two
seemingly disjoint classes, one may want to prove if they are actually disjoint. If one
of the classes verifies the axioms of the other class, then the former is included in the
latter, and so the classes were not disjoint after all. Indeed, this is precisely what
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Theorem 5.1 does in Section 5.3 to show that finite-complete geometric crossovers are
a subclass of recombination P-structures. This strategy is useful even if the classes
are already present in the classification because not all their relationships may be
known a priori. Doing a class-to-class comparison helps us find new relationships or
clarify existing ones.

5.3 Crossover Classification is Possible
Geometric crossovers GX and recombination P-structures RP originate in separate
theories with distinct aims and views on search spaces (Section 5.1), and a first
inspection of their respective Definitions 3.3 and 4.3 reveals little about their re-
lationship. Are these two classes of crossovers related in any meaningful way or
are they disjoint? If GX and RP were disjoint classes, then no axiomatic relation-
ships other than disjointness could be established between geometric crossovers and
recombination P-structures since their axioms would represent distinct crossovers
having nothing in common. Consequently, developing a hierarchy of subclasses of
GX and RP and comparing crossovers based on such hierarchy would be futile.
Knowing whether GX and RP are disjoint (Question 5.1) is fundamental to ensure
that unifying the GF and ELT is not futile.

Question 5.1. Are the classes defined by geometric crossovers GX and recombina-
tion P-structures RP disjoint?

Theorem 5.1 proves that the answer to Question 5.1 is: no. Geometric crossovers
and recombination P-structures are not disjoint because finite-complete geometric
crossovers GX -completefin (Definition 3.3) are a subclass of geometric crossovers
GX (Proposition 3.1) but also a subclass of recombination P-structures RP (The-
orem 5.1). Hence Theorem 5.1 justifies that pursuing a unified theory of geometric
crossovers and recombination P-structures remains possible.

Theorem 5.1 (GX -completefin crossovers are recomb. P-structures [48]).
Let (X, d) be any metric space with a finite set X and any finite-complete geo-
metric crossover ξ(x, y) = [x, y]d for arbitrary parents x, y ∈ X. Then, (X, ξ) is a
recombination P-structure.

Proof. Let us prove that metric segments fulfil the axioms of recombination P-
structures.

(I) Fix-point. The only possible z in [x, x]d = {z ∈ X | d(x, z)+d(z, x) = d(x, x)}
is exactly x. Therefore, [x, x]d = {x}.
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(II) Symmetry. [x, y]d = [y, x]d follows immediately from the symmetry axiom of
metric spaces (Definition 3.1).

(III) Null-recombination. {x, y} ⊆ [x, y]d holds by definition because in a closed
metric segment the extremes, x and y, are always included.

(IV) Size-monotonicity. To prove that if z ∈ [x, y]d, then
∣∣∣ [x, z]d ∣∣∣ ≤ ∣∣∣ [x, y]d

∣∣∣, it
suffices to know that metric segments fulfil monotonicity (see Proposition 4.6.1
in [146]): ∀x, y, z ∈ X if z ∈ [x, y]d then [x, z]d ⊆ [x, y]d. Therefore, it follows
that

∣∣∣ [x, z]d ∣∣∣ ≤ ∣∣∣ [x, y]d
∣∣∣.

Geodesic intervals are a well known type of interval operators enjoying a rich set
of properties [107, 112, 146], some of them stronger than those fulfilled by recom-
bination P-structures (e.g. monotonicity in Proposition 4.6.1 [146] compared with
size-monotonicity), and so Theorem 5.1 may appear unsurprising. But Theorem 5.1
is significant because it makes possible to unify the GF and ELT based on a clas-
sification of crossovers. That is, since the geometric crossovers and recombination
P-structures classes are not disjoint, it is possible and worth knowing to what extent
crossovers in both classes share common properties, as the remainder of this chapter
elaborates. Theorem 5.1 makes explicit that geometric crossovers and recombination
P-structures have more in common than what appears at first glance.

Recall from Chapter 3 that Proposition 3.1, proving that not all crossovers are
geometric, is essential for the GF to guarantee its viability as a unified theory of
EAs. Theorem 5.1 shows that finite-complete geometric crossovers are a subclass
of recombination P-structures, but it leaves open another fundamental question to
ensure that unifying the GF and EL is not futile.

Question 5.2. Does the recombination P-structuresRP class include all crossovers?

Theorem 5.2 proves that the answer to Question 5.2 is: no. Not all crossovers
are recombination P-structures, so they split into the class RP and its complement
RP with respect to the universal class of all crossovers.

Theorem 5.2 (Existence of RP [49]). The class of crossovers that are not recom-
bination P-structuresRP is not empty. Therefore, crossover operators split into two
classes: recombination P-structures RP and not recombination P-structures RP .

Proof. The asymmetric one-point crossover (Definition 3.6) is not a recombination
P-structure since it violates the symmetry axiom of recombination P-structures (Re-
mark 4.2). Other examples are crossovers that never return the parents in the

69



CHAPTER 5. A CLASSIFICATION OF CROSSOVERS

offspring set, thus violating the null-recombination axiom; for example geometric
crossovers ξ (Definition 3.3) whose offspring sets coincide with open geodesic inter-
vals, that is ξ(x, y) = [x, y]d \ {x, y} for some parents x, y and metric d.

Theorem 5.2 proves the analogous of Proposition 3.1 for recombination P-
structures, and together they ensure that a unified theory of geometric crossovers
and recombination P-structures is not a theory of all crossovers. This is impor-
tant for the viability of unifying the GF and EL for essentially the same reasons
Proposition 3.1 is vital to the GF (Section 3.4). First, a theory of all crossovers
can be a symptom of an overgeneralised theory that leads to meaningless or tau-
tological statements about crossovers, so in this sense the limitation imposed by
Theorem 5.2 over recombination P-structures, and that of Proposition 3.1 over geo-
metric crossovers, is more of an advantage than a disadvantage. Secondly, embedding
problem knowledge (i.e. landscape features) in an EA effectively entails restricting
the search operators it uses, so that the EA is tailored to the problem (or a class
thereof) it wants to solve. Therefore, a theory of all crossovers where no restrictions
are imposed would be futile in principle, suggesting that a meaningful theory that
matches EAs and problems cannot involve all possible crossover operators. Finally,
although examples of crossovers that are not recombination P-structures are known
in the literature (e.g. unequal crossover [131]), the classes RP and RP were not
defined explicitly. Theorem 5.2 makes clear the existence of these classes and proves
it using other examples than unequal crossover, namely the asymmetric one-point
crossover and every crossover whose offspring sets always exclude parents.

In contrast with geometric crossovers, what is still unclear is the practicality of
recombination P-structures. That is, whether they include many crossovers used in
practice; hardly any concrete examples are known besides multi-point crossovers on
strings [51, 139]. Nevertheless, recombination P-structures are promising, for they
overlap with geometric crossovers (Theorem 5.1), which include many crossovers
used in practice across solution representations and problems [100]. Section 5.4 con-
tributes in that regard by presenting other examples of recombination P-structures
and a classification that can help us find new ones.

5.4 A Classification of Crossovers
This section develops a classification of crossovers upon the (sub)classes of geo-
metric crossovers and recombination P-structures overviewed in Section 5.2. First,
Sections 5.4.1–5.4.5 identify the corresponding classes in Table 5.2 for each crossover
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in Table 5.1. Then, Section 5.4.6 presents the main result in Theorem 5.15, observed
earlier in Figure 5.1, establishing the key relationships between the (sub)classes of
geometric crossovers and recombination P-structures that constitute the classifica-
tion. Contributions overall are discussed at the end of Section 5.4.6.

5.4.1 Uniform and (Asymmetric-)One-point

The classes to which uniform and (asymmetric-)one-point crossovers belong are al-
ready known from Chapters 3–4 and from [18, 100]. Next, Theorems 5.3–5.5 make
it explicit for the classification of crossovers.

Theorem 5.3 (Uniform ∈ GX -completefin, RP-geometric, RP-monotonic). Let
(Hn

q , dH) be any n-dimensional q-ary (q ≥ 2) Hamming metric space. Then, the
(unbiased) uniform crossover Uniform is a finite-complete geometric crossover on
(Hn

q , dH). Also, (Hn
q ,Uniform) is both a geometric and monotonic recombination

P-structure.

Proof. Let us prove first that Uniform is a finite-complete geometric crossover, and
then that it is both a geometric and monotonic recombination P-structure:

1. Uniform is a finite-complete geometric crossover on (Hn
q , dH) because its off-

spring sets equal the Hamming metric segment: Uniform(x, y) = [x, y]dH for
all parents x, y ∈ Hn

q . Theorem 3.4.2 in [100] proved it for binary Hamming
sequences Hn

2 and Corollary 3.4 in [18] for general Hamming sequences Hn
q .

2. Because Uniform is a finite-complete geometric crossover, (Hn
q ,Uniform)

is a recombination P-structure by Theorem 5.1, and by Definition 4.8 also
a geometric recombination P-structure since Uniform outputs offspring in
shortest-paths between parents on the Hamming graph induced by (Hn

q , dH).

3. Corollary 3.4 in [18] proves that (Hn
q ,Uniform) is a monotonic recombination

P-structure: Uniform(u, v) ⊆ Uniform(x, y) for all x, y ∈ Hn
q and for all

u, v ∈ Uniform(x, y). See Equation 4.2 for an example.

Theorem 5.4 (OnePoint ∈ co-GX -completefin, RP-geometric, co-RP-monotonic).
Let (Hn

q , dH) be any n-dimensional q-ary (q ≥ 2) Hamming metric space. Then,
the one-point crossover OnePoint is a finite-incomplete geometric crossover on
(Hn

q , dH). Also, (Hn
q ,OnePoint) is a geometric recombination P-structure but not

monotonic.
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Proof. Let us prove first that OnePoint is a finite-incomplete geometric crossover,
and then that it is a geometric recombination P-structure but not monotonic:

1. It follows from Theorem 5.3 that OnePoint is a finite-incomplete geometric
crossover because its offspring sets are subsets of Uniform: OnePoint(x, y)
⊆ Uniform(x, y) for all parents x, y ∈ Hn

q [18].

2. (Hn
q ,OnePoint) is a recombination P-structure [139]. Since OnePoint is a

finite-incomplete geometric crossover, it produces offspring in shortest-paths
between parents, and therefore (Hn

q ,OnePoint) is also a geometric recombi-
nation P-structure by Definition 4.8.

3. In general, one-point crossover does not fulfil Definition 4.9 of monotonic re-
combination P-structures [18]: OnePoint(u, v) 6⊆ OnePoint(x, y) for all
u, v ∈ OnePoint(x, y) and all x, y ∈ Hn

q . See Equation 4.3 for a counterex-
ample.

Theorem 5.5 (asym-OnePoint ∈ co-GX -completefin, RP). Let (Hn
q , dH) be any

n-dimensional q-ary (q ≥ 2) Hamming metric space. Then, the asymmetric one-
point crossover asym-OnePoint is a finite-incomplete geometric crossover on (Hn

q , dH).
However, (Hn

q , asym-OnePoint) is not a recombination P-structure.

Proof. Let us prove first that asym-OnePoint is a finite-incomplete geometric
crossover, and then that it is not a recombination P-structure:

1. Because the offspring sets of asym-OnePoint are a subset of OnePoint (Def-
inition 4.5), it follows immediately from Theorem 5.4 that asym-OnePoint
is a finite-incomplete geometric crossover.

2. (Hn
q , asym-OnePoint) is not a recombination P-structure because it fails

the symmetry axiom (Remark 4.2): there exist parents x, y ∈ Hn
q such that

asym-OnePoint(x, y) 6= asym-OnePoint(y, x).

One interesting insight from Theorems 5.4–5.5 is that even when two crossovers
‘look similar’, such as asym-OnePoint and its symmetric version OnePoint, for-
mally their classes can be completely separate. That is, one-point crossover is a
recombination P-structure (OnePoint ∈ RP) but asymmetric one-point crossover
is not (asym-OnePoint ∈ RP). Consequently, in cases where the difference is less
obvious, having a classification would help to formally distinguish the structure of
otherwise ‘seemingly identical’ crossovers.
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5.4.2 Koza's Subtree Swap and Davis's Order

Koza's subtree swap and Davis's order (Definitions 5.1–5.2) are two well known
crossovers to recombine genetic programs in GP and, respectively, permutations
in combinatorial optimisation problems like the TSP [4]. Both are non-geometric
crossovers [103], for they fail the purity and convergence inbreeding properties re-
spectively (see Figure 3.2 in Section 3.4 for an example). This section proves that
Koza's subtree swap and Davis's order neither are recombination P-structures.

Definition 5.1 (Koza's subtree swap crossover [49, 86]). Let parents x, y ∈ T ,
where T is a non-empty set of labelled ordered trees. Select uniformly at random
one node from each parent: i from x, and j from y. An offspring pair (s, t) results
from swapping the subtrees with root nodes i and j. This crossover, parametrised
with the chosen nodes i and j, is denoted Koza(i, j) : T × T → T × T , (x, y) 7→
(s, t) = Koza(i, j)(x, y) for parents x and y with offspring s and t. The support
function is Koza(x, y) def= ⋃

i∈V (x), j∈V (y) Koza(i, j)(x, y), where V (x) and V (y) are
the vertex sets of the labelled ordered trees x, y.

Theorem 5.6 (Koza ∈ RP [49]). Let T be any non-empty finite set of labelled
ordered trees. Then, (T,Koza) is not a recombination P-structure.

Proof. Koza subtree swap is not a geometric crossover (Theorem 5 in [103]) because
recombining two identical parents sometimes results in a different offspring, thus
violating the purity inbreeding property (Proposition 3.2). Consequently, it also
violates the fix-point axiom of recombination P-structures requiring R(x, x) = {x}
for every parent x. For instance, Figure 3.2 shows an example where swapping the
subtrees with root nodes i = 2 (node ‘x’) in the first parent and j = 3 (node ‘∗’) in
the second identical parent leads to offspring different from parents.

Theorem 5.6 proves then, alongside [103], Koza's subtree swap crossover is neither
a geometric crossover nor a recombination P-structure. Next, Theorem 5.7 proves
the analogous result for Davis's order crossover (Definition 5.2) and a new symmetric
version (Definition 5.3) that I proposed in [49].

Definition 5.2 (Davis's order crossover [31, 49]). Let individuals x, y, z ∈ SX be
permutations of any non-empty finite set X with n elements. Randomly pick indices
i and j delimiting the crossover section1 such that 1 ≤ i ≤ j ≤ n. Then from the first
parent x (the ‘cutter’) copy the genes in the section xi, . . . , xj and paste them into

1A crossover section with all parent's genes, namely i = 1 and j = n, is also a valid contiguous
section, even if this is not usually done in the literature [4].
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the offspring through zi, . . . , zj in the same order. Finally, from left to right, fill in
order the remaining positions of z using the genes of the second parent y (the ‘filler’)
except those that have been copied. This crossover, parametrised with crossover
section indices i and j, is denoted Davis(i, j) : SX × SX → SX , (x, y) 7→ z =
Davis(i, j)(x, y). The support function is Davis(x, y) def= ⋃

1≤i≤j≤n Davis(i, j)(x, y).

Example 5.1 (Davis's order crossover is asymmetric [49]). Let parents
x = 312 (the ‘cutter’) and y = 123 (the ‘filler’). Consider offspring 213
= Davis(2, 2)(312, 123), where 1 is the crossover section. Notice 213 cannot be
generated by Davis(i, j)(123, 312) for any crossover section indices i and j because
it is not possible to generate 2 at the first position. Either the second parent places
3 or 1 as fillers, or the first parent places 1 with the crossover section. Therefore,
Davis(i, j)(312, 123) 6= Davis(i, j)(123, 312) for all 1 ≤ i ≤ j ≤ 3.

Davis's order crossover does not meet the symmetry axiom of recombination
P-structures in general (Example 5.1). But its symmetric version (Definition 5.3)
achieves it in a similar fashion to how one-point crossover (Definition 4.5) sym-
metrises the asymmetric one-point crossover (Definition 3.6): using both parents as
the ‘first’ and ‘second’ parent.

Definition 5.3 (Symmetric Davis's order crossover [49]). Let any parents
x, y ∈ SX be permutations of any non-empty finite set X with n elements. Then,
sym-Davis(x, y) def= ⋃

1≤i≤j≤n{Davis(i, j)(x, y),Davis(i, j)(y, x)} is the symmetric
Davis's order crossover, producing all possible offspring of parents x and y over all
possible crossover sections.

Example 5.2 (Symmetric Davis's order crossover: not size-monotonic [49]).
Using the same parents of Example 5.1: sym-Davis(312, 123) = {312, 123, 321, 132,
213}. That is, |sym-Davis(312, 123)| = 5. Recombining now the first parent 312
with offspring 213: sym-Davis(312, 213) = {231} ∪ sym-Davis(312, 123). There-
fore, |sym-Davis(312, 213)| = 6 > 5 = |sym-Davis(312, 123)|, so sym-Davis is not
size-monotonic.

Example 5.2 is one of the simplest counterexamples to disprove size-monotonicity
of sym-Davis crossover. To help finding other less trivial counterexamples in an
automated way, Appendix A.2 provides a software implementation of sym-Davis.

Remark 5.1. Example 5.2 also shows that symmetric Davis's order crossover is
non-geometric since it fails the convergence inbreeding property. For instance,
213 ∈ sym-Davis(312, 123), and 123 ∈ sym-Davis(312, 213).
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Theorem 5.7 (Davis, sym-Davis ∈ RP [49]). Let SX be permutations of any
non-empty finite set X. Then, neither (SX ,Davis) nor (SX , sym-Davis) are recom-
bination P-structures.

Proof. Examples 5.1–5.2 provide counterexamples respectively.

5.4.3 All-paths

The all-paths transit (or interval) function of a finite, connected, and undirected
graph G is a function that returns the set of vertices lying on any path between two
given vertices of G [17]. Recall that a path is a sequence without repeated vertices,
and a cycle is a sequence (with at least three vertices) where the first and last vertex
repeat [59], so all-paths does not return cycles.

Here, all-paths is deemed a ‘generic’ crossover by interpreting the given vertices
as parents and the output set as their offspring (Definition 5.4). Generic in the sense
that the vertex set of G, where all-paths is defined, is not bound to a particular
search space other than being a finite set (e.g Hamming sequences, permutations,
etc.). Example 5.3 shows a specific case on hypercubes.

Definition 5.4 (All-paths crossover [17]). Let vertices x, y, z ∈ V of a ‘reference’
graph G. Then, the all-paths crossover is AllPaths(G) : V ×V → P(V ), (x, y) 7→
{z | z lies on any x-y path in G}, parametrised with G, returning all offspring z

lying on any path between parents x and y. It is denoted AllPaths when it is
clear from the context which graph it refers to.

Example 5.3 (All-paths crossover in hypercube graphs [49]). Consider the
three dimensional hypercube graph. If the chosen parents are identical, then off-
spring equal parents: AllPaths(001, 001) = 001. The only valid path from 001
to itself is the one-element sequence (001). For example, (001, 000, 001) is a cycle,
not a path, thus 000 /∈ AllPaths(001, 001). If parents are different, then offspring
equal the whole vertex set: AllPaths(000, 001) = {0, 1}3.

Remark 5.2 (To Example 5.3). In general, all-paths does not return all vertices
of the given graph for different parents, such as in star graphs or trees for example.
Hamming graphs are an exception (Lemma 5.1).

This section proves that all-paths crossover on Hamming graphs (hereinafter
named all-Hamming-paths crossover) is not a geometric crossover (Theorem 5.8) but
it is a monotonic recombination P-structure (Theorems 5.9–5.10). First, Lemma 5.1
needs to ensure that all-Hamming-paths crossover outputs as offspring all vertices
of a Hamming graph for different parents.
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Lemma 5.1 ([49]). Let x and y be distinct vertices of any n-dimensional q-ary
(q ≥ 2) Hamming graph H(n, q). Then, AllPaths(x, y) returns all vertices of the
Hamming graph as offspring.

Proof. Let us show constructively that all vertices in the Hamming graph are vis-
ited by at least one path between x and y. List all vertices of H(n, q) as a Grey
code cyclic sequence (v1, v2, . . . , vqn) such that any two consecutive vertices are at
Hamming distance dH(vi, vi+1) = 1, and the same holds for the first and last vertices
dH(v1, vqn) = 1 hence cyclic. Since x and y are distinct Hamming sequences, there
exist distinct vi and vj such that (v1, . . . , vi = x, . . . , vj = y, . . . , vqn). Then, p1

def=
(vi = x, vi+1, . . . , vj−1, vj = y) and p2

def= (vj = y, vj+1, . . . , vqn , v1, . . . , vi−1, vi = x)
are disjoint paths between x and y because: both p1 and p2 start or end at x and y
(so do not form a cycle), each pair of consecutive vertices is an edge since they are
at Hamming distance one, and the paths are independent because the only common
vertices are the start and end vertices. Therefore, every vertex in H(n, q) is visited
by p1 or p2. Figure 5.3 shows an example of two such paths.

p2

111

101

100

110

001

011

000

010

p1

111

000 100

001 101

010

011

110

000
001

111
110

100

011

101

010

Figure 5.3. Two disjoint paths p1 and p2 on a three-dimensional binary Hamming graph
H(3, 2) by ordering its vertices as a Grey code cyclic sequence.

Theorem 5.8 (AllPaths(H(n, q)) ∈ GX [49]). The all-Hamming-paths crossover,
denoted AllPaths(H(n, q)), is not a geometric crossover.

Proof. Let us proof by counterexample that AllPaths(H(n, q)), AllPaths for
short, does not fulfil the convergence inbreeding property (Proposition 3.3) in gen-
eral. Let parents x = 000 and y = 001 for the three-dimensional binary Hamming
graph H(3, 2). Then, the second parent y is generated again by recombining the
first parent x and the offspring 111 ∈ AllPaths(x, y): y ∈ AllPaths(x, 111).
Therefore, all-Hamming-paths is not a geometric crossover.

Theorem 5.9 (AllPaths(H(n, q)) ∈ RP [49]). Let V be the vertex set of any n-
dimensional q-ary (q ≥ 2) Hamming graph H(n, q). Then,

(
V,AllPaths(H(n, q))

)
is a recombination P-structure.
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Proof. Let us prove that the all-Hamming-paths crossover fulfils the axioms of re-
combination P-structures.

(I) Fix-point: AllPaths(x, x) = {x}. It holds because the only path that can
begin and end at offspring x is x itself. Otherwise cycles can be formed, and
AllPaths only returns paths not cycles.

(II) Symmetry: AllPaths(x, y) = AllPaths(y, x). It holds because AllPaths
is an interval function [17], which by Definition 4.2 are symmetric.

(III) Null-recombination: {x, y} ⊆ AllPaths(x, y). It holds because of the ex-
tensitivity axiom of interval functions (Definition 4.2), and AllPaths is an
interval function [17].

(IV) Size-monotonicity: if z is offspring of AllPaths(x, y), then |AllPaths(x, z)|
≤ |AllPaths(x, y)|. If x = y, it is trivial because there is only one off-
spring: z = x = y. If x 6= y, there are two cases. Case 1: if z = x, then
|AllPaths(x, x)| = 1 ≤ |AllPaths(x, y)|. Case 2: if z 6= x, then AllPaths
returns offspring in all possible paths between x and z, so all vertices are vis-
ited by at least one path (Lemma 5.1). Hence |AllPaths(x, z)| = qn ≤ qn =
|AllPaths(x, y)|, where qn is the number of vertices of a Hamming graph.

Theorem 5.10 (AllPaths(H(n, q)) ∈ RP-monotonic). Let V be the vertex set of
any n-dimensional q-ary (q ≥ 2) Hamming graph H(n, q). Then, the recombination
P-structure

(
V,AllPaths(H(n, q))

)
is monotonic.

Proof. To be a monotonic recombination P-structure, AllPats needs to satisfy
AllPaths(u, v) ⊆ AllPaths(x, y), for all parents x, y ∈ V and for all offspring
u, v ∈ AllPaths(x, y):

1. If x = y, then AllPaths(x, y) = AllPaths(x, x) = {x}. So AllPaths(u, v)
= {x} ⊆ {x} = AllPaths(x, x).

2. If x 6= y, then AllPaths returns all vertices of H(n, q) by Lemma 5.1, that
is AllPaths(x, y) = V . So AllPaths(u, v) ⊆ AllPaths(x, y) = V since
AllPaths(u, v) is either a single vertex of V when u and v are identical, or
the whole vertex set otherwise.

Besides classification purposes, why consider the all-Hamming-paths crossover?
From the previous Example 5.3 it is clear that all-Hamming-paths either outputs a
single offspring solution that equals its parents or outputs the entire set of solutions
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(i.e. all vertices of the Hamming graph). Hence it is impractical for most EAs. Nev-
ertheless, all-Hamming-paths will be helpful in Part II to establish key behavioural
differences between EAs using geometric crossovers and recombination P-structures.

5.4.4 Intersecting-balls

This section defines a generic crossover, not bound to a specific search space, called
intersecting-balls (Definition 5.5) and shows that, for Hamming metric spaces, it
is a non-geometric crossover (Theorem 5.11) and a non-monotonic recombination
P-structure (Lemma 5.2 and Theorems 5.12–5.13).

x y

z
R(x,y)

x y

z

Balls(d2)(x, y)

(a)

Balls(dH)(010, 100)
111

000 100

001 101

010

011

110

(b)

Figure 5.4. Intersecting-balls crossover in two-dimensional Euclidean metric space
(R2, d2) in Figure 5.4a (‘shaded region’) and in three-dimensional binary Hamming space
(H3

2, dH) in Figure 5.4b (‘black lines’).

Intuitively, for given parents in an arbitrary metric space, intersecting-balls out-
puts as offspring set all the points in the metric space whose distance from the
parents does not exceed the distance between the parents themselves. In Euclidean
spaces, the offspring set is seen by intersecting the two Euclidean metric closed
balls centred at each parent and using their mutual distance as radius (Figure 5.4a),
analogously for Hamming spaces (Figure 5.4b). Appendix A.3 provides a software
implementation of intersecting-Hamming-balls.

Definition 5.5 (Intersecting-balls crossover [49]). Let (X, d) be any metric
space and arbitrary parents x, y ∈ X. Then, the intersecting-balls crossover is
defined as Balls(d) : X × X → P(X), (x, y) 7→ B̄d(x, d(x, y)) ∩ B̄d(y, d(y, x))
parametrised with metric d.

Definition 5.6 (Intersecting-Hamming-balls crossover [49]). Let (Hn
q , dH) be

any n-dimensional q-ary (q ≥ 2) Hamming metric space. Then, the Hamming
intersecting-balls crossover is Balls(dH)(x, y) def= B̄dH(x, dH(x, y))∩ B̄dH(y, dH(y, x))
for any parents x, y ∈ Hn

q .
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Theorem 5.11 (Balls(dH) ∈ GX [49]). The intersecting-Hamming-balls crossover,
denoted Balls(dH), is not a geometric crossover.

Proof. Let us proof by counterexample that Balls(dH) does not fulfil in general
the convergence inbreeding property (Proposition 3.3). Let parents 010 and 100 in
three-dimensional binary Hamming metric space (H3

2, dH). Then, offspring 001 ∈
Balls(dH)(010, 100), but the second parent 100 is generated by recombining the
first parent 010 and the offspring 001: 100 ∈ Balls(dH)(010, 001). Therefore,
Balls(dH) is not a geometric crossover.

Intersecting-Hamming-balls crossover Balls(dH) is a recombination P-structure
by Theorem 5.12. Compared with the fix-point, symmetry and null-recombination
axioms, proving size-monotonicity is more complicated. Size-monotonicity states: if
z ∈ Balls(d)(x, y), then |Balls(d)(x, z)| ≤ |Balls(d)(x, y)|. The main difficulty
is Balls(d)(x, z) 6⊆ Balls(d)(x, y), in general; however, notice that does not dis-
prove size-monotonicity necessarily: A 6⊆ B 6=⇒ |A| > |B| for arbitrary sets A,B.
The overall idea to proof size-monotonicity is summarised by the following three
observations that constitute the proof's main steps:

1. In principle, z may be anywhere in the intersection of the two Hamming balls
given by Balls(dH)(x, y). But, regardless of z, there is always a z′ ∈ [x, y]dH

such that dH(x, z) = dH(x, z′).

2. Hamming graphs are distance-transitive [14]. So whenever dH(x, z) = dH(x, z′),
there is an automorphism φ such that φ(x) = x and φ(z) = z′ (Figure 5.5).
Every graph automorphism is an isomorphism by definition (see [59, ch. 14]
or [14, appx. A.3]), so φ preserves the adjacency structure of the Hamming
graph.

3. Lemma 5.2 shows, for all z′ ∈ [x, y]dH , Balls(dH)(x, z′) ⊆ Balls(dH)(x, y)
holds.

Together, the previous three observations essentially mean that size-monotonicity of
Balls(dH)(x, z) can be proved through the size-monotonicity of Balls(dH)(x, z′),
by relabelling with φ the vertices of a reference Hamming graph associated with
Balls(dH).
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BdH(x, dH(x, y))

BdH(x, dH(x, z))

BdH(y, dH(x, y))

z

x y
φ

φ

z′
d H

(x
, z
′ )

dH
(x,
y)

d H
(x
, z

)

Figure 5.5. Diagram of the automorphism φ used in Theorem 5.12 to prove size-
monotonicity of the intersecting-Hamming-balls crossover. Relying on distance-transitivity
of Hamming graphs, there is such φ mapping an offspring z ∈ Balls(dH)(x, y) to an-
other one z′ ∈ Balls(dH)(x, y), at the same distance from x, where z′ ∈ [x, y]dH . Size-
monotonicity follows immediately as a consequence of Balls(dH)(x, z′) ⊆ Balls(dH)(x, y)
using Lemma 5.2. This diagram is an auxiliary visual aid, not a true illustration of such
automorphism in Hamming space.

Lemma 5.2 ([49]). Let (X, d) be any metric space. Then, for all x, y ∈ X it holds:
if z ∈ [x, y]d, then Balls(d)(x, z) ⊆ Balls(d)(x, y).

Proof. Note first that if z ∈ [x, y]d, then naturally z ∈ Balls(d)(x, y). We need
to prove that if s ∈ Balls(d)(x, z), then s ∈ Balls(d)(x, y). By Definition 5.5 of
intersecting-balls crossover:

z ∈ Balls(d)(x, y) ⇐⇒
(
d(x, z) ≤ d(x, y)

)
and

(
d(y, z) ≤ d(x, y)

)
, (5.1)

s ∈ Balls(d)(x, z) ⇐⇒
(
d(x, s) ≤ d(x, z)

)
and

(
d(z, s) ≤ d(x, z)

)
. (5.2)

Hence d(x, s) ≤ d(x, z) ≤ d(x, y), and therefore s ∈ B̄d(x, d(x, y)). To complete the
proof we need to show s ∈ B̄d(y, d(y, x)). That is, to show d(y, s) ≤ d(x, y) holds.
From the assumption z ∈ [x, y]d

d(x, y) = d(x, z) + d(z, y) , (5.3)

and from the triangle inequality of metric spaces

d(y, s) ≤ d(y, z) + d(z, s) . (5.4)
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Combining Equations 5.3–5.4

d(y, s) ≤ d(y, z) + d(z, s) ≤ d(y, z) + d(x, z) = d(x, y) (5.5)

because d(z, s) ≤ d(x, z) from Equation 5.2, and because of symmetry d(y, z) =
d(z, y) in metric spaces. Hence from Equation 5.5 it holds s ∈ B̄d(y, d(y, x)), so
s ∈ Balls(d)(x, y). Therefore, if s ∈ Balls(d)(x, z), then s ∈ Balls(d)(x, y).

Theorem 5.12 (Balls(dH) ∈ RP [49]). Let (Hn
q , dH) be any reference n-dimensional

q-ary (q ≥ 2) Hamming metric space. Then, (Hn
q ,Balls(dH)) is a recombination

P-structure.

Proof. Let us prove that the intersecting-Hamming-balls crossover fulfils the axioms
of recombination P-structures.

(I) Fix-point: Balls(dH)(x, x) = {x}. In metric spaces dH(x, y) = 0 iff x = y.
Therefore, Balls(dH)(x, x) = B̄dH(x, dH(x, x)) ∩ B̄dH(x, dH(x, x)) = B̄dH(x, 0)
∩ B̄dH(x, 0) = {x} ∩ {x} = {x}.

(II) Symmetry: Balls(dH)(x, y) = Balls(dH)(y, x). Follows from Definition 5.6
and commutativity of intersection: A ∩B = B ∩ A.

(III) Null-recombination: {x, y} ⊆ Balls(dH)(x, y). Since dH(x, x) = 0 ≤ dH(x, y),
we know x ∈ B̄dH(x, dH(x, y)). Since dH(x, y) ≤ dH(x, y), we know as well
y ∈ B̄dH(x, dH(x, y)). Therefore, {x, y} ⊆ B̄dH(x, dH(x, y)). By symmetry,
{x, y} ⊆ B̄dH(y, dH(y, x)). So {x, y} ⊆

(
B̄dH(x, dH(x, y)) ∩ B̄dH(y, dH(y, x))

)
= Balls(dH)(x, y).

(IV) Size-monotonicity: if z is offspring of Balls(dH)(x, y), then |Balls(dH)(x, z)|
≤ |Balls(dH)(x, y)|. The proof follows from: (a) ∀z ∈ Balls(dH)(x, y) there
is a z′ ∈ [x, y]dH where dH(x, z) = dH(x, z′), so that using (b) and (c) below,
we have |Balls(dH)(x, z)| = |Balls(dH)(x, z′)| ≤ |Balls(dH)(x, y)|.

(a) We prove that: ∀x, y ∈ Hn
q , if z ∈ Balls(dH)(x, y), then ∃z′ ∈ [x, y]dH

such that dH(x, z) = dH(x, z′). Assuming z ∈ Balls(dH)(x, y), we know
dH(x, z) ≤ dH(x, y). Because the Hamming graph is connected and undi-
rected, there exists at least one path between x and y, in particular
a shortest path [x, y]dH . Because it is unweighted, each integer dis-
tance unit between x and y has a corresponding z′ ∈ [x, y]dH . Since
dH(x, z) ≤ dH(x, y) and dH(x, z′) ≤ dH(x, y), it is always possible to find
a z′ ∈ [x, y]dH such that dH(x, z) = dH(x, z′).
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(b) From Lemma 5.2 follows that if z′ ∈ [x, y]dH , then |Balls(dH)(x, z′)| ≤
|Balls(dH)(x, y)|.

(c) We prove that: for all x, z, z′ ∈ Hn
q , if dH(x, z) = dH(x, z′), then

|Balls(dH)(x, z)| = |Balls(dH)(x, z′)|. It follows from the distance-
transitivity of Hamming graphs (Theorem 9.2.1 in [14]). That means if
dH(x, z) = dH(x, z′), then there is an automorphism φ : Hn

q → Hn
q where

φ(x) = x and φ(z) = z′ (see Figure 5.5). Graphs' automorphisms are iso-
morphisms by definition, preserving the graph adjacency structure (see
[59, ch. 14] or [14, appx. A.3]). Because φ is an adjacency-preserving
map, φ cannot alter the number of common neighbours of x and z at
distance dH(x, z), namely |B̄dH(x, dH(x, z)) ∩ B̄dH(z, dH(z, x))|. Hence
|Balls(dH)(x, z)| =

∣∣∣Balls(dH)
(
φ(x), φ(z)

)∣∣∣ = |Balls(dH)(x, z′)|.

Theorem 5.13 (Balls(dH) ∈ co-RP-monotonic). Let (Hn
q , dH) be any n-dimen-

sional q-ary (q ≥ 2) Hamming metric space. Then, the recombination P-structure
(Hn

q ,Balls(dH)) is not monotonic.

Proof. To be a monotonic recombination P-structure, Balls(dH) needs to satisfy
Balls(dH)(u, v) ⊆ Balls(dH)(x, y), ∀x, y ∈ Hn

q and ∀u, v ∈ Balls(dH)(x, y).
The next counterexample proves it is false in general. Let parents x = 010 and
y = 100 as in Figure 5.2b. Let offspring u = 100, v = 111 in Balls(dH)(x, y).
Then, Balls(dH)(u, v) 6⊆ Balls(dH)(x, y) since 101 ∈ Balls(dH)(u, v) but 101 6∈
Balls(dH)(x, y).

5.4.5 Identity

The identity crossover Id (Definition 4.4), also called discrete metric geometric
crossover [100], accepts any pair of parents x and y as input but just outputs
those parents as offspring. Therefore, it is a fix-point operator under repeated ap-
plications: {x, y} = Id(x, y) = Id(Id(x, y)) . . .. Although Id is impractical for EAs
since it cannot produce new solutions, it is relevant for the crossover classification
because:

• Every crossover ξ whose offspring sets do not include the identity, that is
Id(x, y) = {x, y} 6⊆ ξ(x, y), cannot be a recombination P-structure since ξ
immediately violates the null-recombination axiom requiring {x, y} ⊆ ξ(x, y).

• Even if a crossover's definition differs from Id, their structure may be equiv-
alent in certain cases. For example, the structure of traditional crossovers
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on strings (i.e. Hamming sequences), like uniform or one-point crossover, is
equivalent to Id [139] when:

– The Hamming distance between parents is one. For instance, dH(000, 001)
= 1 and Uniform(000, 001) = {000, 001} = Id(000, 001).

– The crossover is an involution, namely a function that is its own inverse
f(f(x)) = x. For instance, consider the one-point crossover function
OnePoint(i) at crossover point i = 1. Then, OnePoint(1)(000, 111) =
{011, 100}, but OnePoint(1)(011, 100) = {000, 111}, hence:

OnePoint(1)
( 011, 100

OnePoint(1)(000, 111)
)

= {000, 111} = Id(000, 111) .

If two crossovers belong to the same class, their structure is equivalent to the ex-
tent that both share the axioms of such class. Therefore, knowing which (sub)class
Id belongs to can help distinguish crossovers with a similar structure, like One-
Point and Uniform, from those dissimilar. Theorem 5.14 proves Id to be a finite-
incomplete geometric crossover that is simultaneously a monotonic and geometric
recombination P-structure.

Theorem 5.14 (Id ∈ co-GX -completefin, RP-geometric, RP-monotonic). Let (X, d)
be any finite graphic metric space and any parents x, y ∈ X. Then, Id(x, y) is a
finite-incomplete geometric crossover, and (X, Id) is both a geometric and mono-
tonic recombination P-structure.

Proof. The proof is trivial because Id(x, y) = {x, y} for all x, y ∈ X:

1. Id is a finite-incomplete geometric crossover (Definition 3.3) since it is a subset
of the metric segment between parents: Id(x, y) = {x, y} ⊆ [x, y]d.

2. (X, Id) fulfils all axioms of recombination P-structures (Definition 4.3): fix-
point, Id(x, x) = {x}, symmetry, Id(x, y) = Id(y, x) = {x, y}, null-recombi-
nation, {x, y} ⊆ Id(x, y) = {x, y}, and size-monotonicity |Id(x, z)| ≤ |Id(x, y)|
since Id(x, z) ⊆ Id(x, y) for all z ∈ Id(x, y).

3. (X, Id) is a geometric recombination P-structure (Definition 4.8) since metric
segments are shortest-paths on graphic metric spaces and always include their
extremes: Id(x, y) = {x, y} ⊆ [x, y]d.

4. (X, Id) is a monotonic recombination P-structure (Definition 4.9) since for all
u, v ∈ Id(x, y) = {x, y}: Id(u, v) ⊆ Id(x, y).
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5.4.6 Geometric Crossovers vs Recombination P-structures

The relationships between the geometric crossovers and recombination P-structures
(sub)classes (Table 5.2) must be determined to prove the classification of crossovers
overviewed in Section 5.2. Relying on Section 5.3 and Sections 5.4.1–5.4.5, Theo-
rem 5.15 proves a non-exhaustive list of the main relationships between such classes
that form the classification. Later, Section 5.5 uses it to examine two concrete
aspects of geometric crossovers: high-locality [144] and inbreeding properties [103].

Theorem 5.15 (Class relationships [49]). Given the universal class U of all
crossovers, consider the (sub-)classes of: geometric crossovers GX , finite-complete
geometric crossovers GX -completefin, recombination P-structuresRP , geometric re-
combination P-structures RP-geometric and monotonic recombination P-structures
RP-monotonic. The following relationships hold:

(a) GX ∪RP 6= ∅. The class of crossovers that are neither geometric nor recom-
bination P-structures is not empty.

(b) GX 6= RP . Geometric crossovers and recombination P-structures are distinct
classes.

(c) RP ∩ GX 6= ∅. The class of crossovers that are recombination P-structures
but not geometric crossovers is not empty.

(d) GX -completefin ⊂ RP-geometric. Finite-complete geometric crossovers are a
strict subclass of geometric recombination P-structures.

(e) GX -completefin 6⊆ RP-monotonic. Finite-complete geometric crossovers are
not a subclass of monotonic recombination P-structures.

(f) RP-geometric = GX ∩RP . Geometric recombination P-structures are a sub-
class of crossovers that are both geometric crossovers and recombination P-
structures.

(g) RP-monotonic 6⊆ GX ∩ RP . Monotonic recombination P-structures are not
a subclass of crossovers that are both geometric crossovers and recombination
P-structures.

(h) RP-geometric 6= RP-monotonic. Geometric recombination P-structures and
monotonic recombination P-structures are distinct subclasses.

(i) RP-geometric ⊂ RP . Geometric recombination P-structures are a strict sub-
class of recombination P-structures.
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(j) RP-monotonic ⊂ RP . Monotonic recombination P-structures is a strict sub-
class of recombination P-structures.

Proof. (a) Koza's subtree swap and (symmetric) Davis's order crossovers are non-
geometric (see Remark 5.1 and [103]). Theorems 5.6–5.7 prove they are neither
recombination P-structures. Therefore, Koza, Davis and sym-Davis belong
to GX ∪RP .

(b) Asymmetric one-point crossover is a geometric crossover but not a recombina-
tion P-structure due to its asymmetry (Theorem 5.5).

(c) Theorems 5.11–5.12 prove that intersecting-Hamming-balls crossover is not
a geometric crossover but is a recombination P-structure. Theorems 5.8–5.9
prove it analogously for all-Hamming-paths crossover.

(d) Theorem 5.1 proves that GX -completefin ⊆ RP . Since finite-complete ge-
ometric crossovers produce offspring in shortest-paths they are also geomet-
ric recombination P-structures by Definition 4.8. Hence GX -completefin ⊆
RP-geometric. The strict inclusion GX -completefin ⊂ RP-geometric follows
because the one-point (OnePoint) and identity (Id) crossovers are geomet-
ric recombination P-structures but not finite-complete geometric crossovers
(Theorems 5.4 and 5.14).

(e) In general, not all metric segments fulfil the monotonicity property of mono-
tonic recombination P-structures (Definition 4.9). Figure 5.6 presents a coun-
terexample. Hence not all finite-complete geometric crossovers are monotonic
recombination P-structures.

1

2

3 4 5

Figure 5.6. A K2,3 bipartite graph where every finite-complete geometric crossover
(i.e. metric segment) does not fulfil Definition 4.9 of monotonic recombination P-structures.
That is, there exist vertices x, y and u, v ∈ [x, y]d such that [u, v]d 6⊆ [x, y]d, d being the
metric induced by K2,3. For instance, [1, 2]d = {1, 3, 4, 5, 2} 6⊆ {3, 1, 2, 5} = [3, 5]d.

(f) This is trivially Definition 4.8: geometric recombination P-structures are re-
combination P-structures that produce offspring in shortest paths between
parents, thus being geometric crossovers (Definition 3.3).
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(g) Although monotonic recombination P-structures are a subclass of recombina-
tion P-structures, not all of them are geometric crossovers: all-Hamming-paths
crossover is one example (Theorems 5.8 and 5.10).

(h) All-Hamming-paths crossover is a monotonic (Theorem 5.10) but not geo-
metric recombination P-structure since all-Hamming-paths is not a geometric
crossover (Theorem 5.8). Conversely, one-point crossover is a geometric re-
combination P-structure but not monotonic (Theorem 5.4).

(i) By Definition 4.8, geometric recombination P-structures are a subclass of re-
combination P-structures. The strict inclusion RP-geometric ⊂ RP follows
because not all recombination P-structures are geometric. For instance, the
intersecting-Hamming-balls crossover is in RP (Theorem 5.12) but not in
RP-geometric because it is not a geometric crossover (Theorem 5.11).

(j) By Definition 4.9, monotonic recombination P-structures are a subclass of
recombination P-structures. The strict inclusion RP-monotonic ⊂ RP holds
because not all recombination P-structures are monotonic, for example one-
point and intersecting-Hamming-balls crossovers (Theorems 5.4 and 5.13).

The reasons that justify the significance of Theorem 5.15, and the crossover clas-
sification overall, concern: crossover structure, crossover design, and EAs' behaviour
and performance.

Crossover Structure

Individually, the GF and ELT provide a partial view on the structure of crossovers,
the former focusing only on geometric crossovers and the latter only on recombina-
tion P-structures. The crossover classification broadens these views by incorporating
geometric crossovers and recombination P-structures all together. As a result, the
GF and ELT are extended as follows:

• The coarse classification of crossovers into geometric and non-geometric is
enhanced by the class and subclasses of recombination P-structures, which
not necessarily coincide with geometric crossovers, enabling thus a more fine-
grained classification of crossovers.

• Geometric crossovers are confined to metric spaces, whereas recombination P-
structures may exist in non-metric spaces since they do not require metrics.
So the crossover classification facilitates comparing crossovers between metric
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and non-metric spaces through the axioms that define the (sub)classes. Fur-
thermore, recombination P-structures are a bridge to other abstractions such
as interval or transit functions and betweenness relations [18, 107, 146], which
have been well studied and are potentially useful to gain further insight into
geometric crossovers' structure.

• For the first time, ELT has a proper classification of crossovers. This classifi-
cation reveals an existing but unnoticed overlap between geometric crossovers
and various classes of recombination P-structures, bringing to light two impor-
tant aspects left unclear in ELT. First, recombination P-structures are not a
purely theoretical crossover class because they include potentially many prac-
tical geometric crossovers. Secondly, the search space structure of geometric
recombination P-structures can be understood, like geometric crossovers, in
intuitive geometrical terms via finite metric spaces as a simpler alternative to
hypergraphs.

Crossover Design

Problem-specific representations and search operators are most profitable to achieve
optimal algorithm performance [4, 96]. Yet when the problem requires unfamiliar
representations, it is generally difficult to decide which search operators, crossovers in
particular, should be used. This motivated the GF to propose a formal representation-
independent strategy of designing crossovers called principled design (Section 3.3).
By contrast, although ELT may provide valuable insight on design of crossovers
(and EAs) [139, 140], it is unclear how ELT guides practitioners to select a specific
crossover operator based on the general Definition 4.3 of recombination P-structures.
That is, ELT does not provide a method for crossover design.

The crossover classification makes clear that if a crossover belongs to GX ∩RP ,
then it can be treated both as a geometric crossover (GX ) and a recombination
P-structure (RP). Hence the crossover classification reveals a fundamental aspect
of crossover design in ELT: the recombination P-structure class contains crossovers
that can be designed according to the GF's principled design. Or, put differently,
the GF's principled design is compatible with certain recombination P-structures.
Therefore, principled crossover design is possible in ELT. Furthermore, the limits of
principled design are clarified as follows. Recall that principled design entails finding
a suitable distance or metric to derive specific crossovers (Section 3.3). Clearly, such
design strategy is inapplicable to crossovers whose structure cannot be formalised
using a notion of distance, namely in non-metric spaces. So principled design is of
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little or no use for crossovers in RP ∩ GX , namely recombination P-structures that
are non-geometric crossovers (e.g. intersecting-Hamming-balls and all-paths), since
recombination P-structures do not require distances in general.

Behaviour and Performance of EAs

The crossover classification by itself does not state anything about EA performance
since it does not consider problem-algorithm class pairs, thus NFL prevails [155].
For the same reason, it does neither tell us how practical a crossover is on some
problem. For example, Koza's subtree swap crossover is useful in some situations2

[4, 86], yet it falls outside the classes of geometric crossovers and recombination P-
structures, rendering the GF and ELT of little use to further study Koza's crossover.
How then is the crossover classification relevant here?

The crossover classification does state the structure of geometric crossovers and
recombination P-structures. This is relevant since the GF holds that the essential
behavioural differences between EAs lie in the solutions' representation and search
operators, making search space structures a natural choice to classify EAs. For
geometric crossovers, their structure is reflected in EAs without mutation as an ab-
stract form of convex search behaviour [100, 101]. Surprisingly, such form of convex
search is extensible to ELT for the recombination P-structure class (as Chapter 8
will show), and the reason it is possible is precisely that recombination P-structures
are a superclass of certain geometric crossovers as the classification shows. There-
fore, the classification underpins not just the structure of crossovers but also their
effect in EAs, stressing thus its significance as a foundation to unify the GF and
ELT.

5.5 Exploiting the Crossover Classification
This section focuses on two properties related to geometric crossovers as a case study,
relying on the classification of crossovers in Section 5.4. First, Section 5.5.1 shows
why geometric crossovers and highly local crossovers are not equivalent in general
[144] by checking the existence of a non-geometric yet highly local crossover in the
classification. Afterwards, Section 5.5.2 tackles an open problem on the inbreeding
properties (Section 3.5) by finding a new subclass of recombination P-structures
that fulfils them.
2For instance, Koza's subtree swap may help prevent premature convergence of populations in
EAs [86] since, in contrast with traditional genetic crossovers on strings, it can produce offspring
different from parents even when these are identical.
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5.5.1 High-locality

In contrast with locality of representations [123], which concerns the design of ef-
fective genotype-phenotype maps, locality of search operators concerns the design of
effective search operators [124, 144]. In particular, locality of crossovers is a prop-
erty describing the similarity between parents and offspring in terms of distances
(Definition 5.7). It affects the performance of EAs: designing crossovers with high
locality is desirable because dissimilarity between parents and offspring, present in
crossovers with low locality, potentially leads an EA to random search [124, 144].
High-locality was also proposed in [38] though under the name ‘Guideline R 1’ as a
‘good’ crossover design rule.

Definition 5.7 (High locality [124, 144]). Let (X, d) be any metric space. Then,
a crossover ξ has high locality on (X, d), if for any parents x, y ∈ X and any offspring
z ∈ ξ(x, y): max{d(x, z), d(z, y)} ≤ d(x, y). That is, if the distances between parents
and offspring never exceed the distance between parents themselves.

Geometric crossovers (Definition 3.3) and high locality (Definition 5.7) are con-
sidered equivalent in [124, 144], that is geometric crossovers have high locality; how-
ever, such equivalence is not formally proved. A priori it is unknown if there exists
a crossover or a class in the crossover classification (Figure 5.1) with high locality.
Accordingly, following the bottom-up strategy outlined in Section 5.2.1, Lemma 5.3
proves next that every intersecting-ball Balls(d) crossover (Definition 5.5) has high
locality, in particular the intersecting-Hamming-balls crossover (Definition 5.6).

Lemma 5.3 ([49]). Let (X, d) be any metric space and arbitrary parents x, y ∈ X.
Consider the set of points with high locality R(x, y) def= {z | max{d(x, z), d(z, y)} ≤
d(x, y)}. Then, R(x, y) is identical to Balls(d)(x, y).

Proof. Follows directly: z ∈ R(x, y) ⇐⇒ d(x, z) ≤ d(x, y) and d(z, y) ≤ d(x, y)
⇐⇒ z ∈

(
B̄d(x, d(x, y)) ∩ B̄d(y, d(y, x))

)
⇐⇒ z ∈ Balls(d)(x, y).

As a result of Lemma 5.3, and because intersecting-Hamming-balls is not geo-
metric, Corollaries 5.1–5.2 show that geometric crossovers always have high locality
but not all crossovers with high locality are geometric crossovers necessarily.

Corollary 5.1 (High locality 6≡ geometricity). There exists a crossover with
high locality that is not a geometric crossover.

Proof. The intersecting-Hamming-balls crossover has high locality (Lemma 5.3) but
it is not a geometric crossover in Hamming metric spaces (Theorem 5.11).
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Corollary 5.2 (Geometricity 6⇐=
=⇒ High locality). Geometric crossovers have

high locality for any metric space, but not all crossovers with high locality are
geometric.

Proof. Due to Lemma 5.3, all intersecting-balls Balls(d) crossovers (Definition 5.5)
have high locality (Definition 5.7) regardless of the metric space. Now, notice for
any metric space (X, d) and any x, y ∈ X, [x, y]d ⊆ Balls(d)(x, y) holds because:
for all z ∈ [x, y]d we have d(x, z) ≤ d(x, y) and d(z, y) ≤ d(x, y), which means
z ∈ Balls(d)(x, y). Therefore, any geometric crossover ξ defined on any metric
space (X, d) has high locality since ξ(x, y) ⊆ [x, y]d ⊆ Balls(d)(x, y). However, not
all highly local crossovers are geometric due to Corollary 5.1.

Corollaries 5.1–5.2 are significant for three reasons. First, they clarify that high
locality and geometricity of crossovers are not equivalent concepts in general as
stated in [124, 144] or assumed implicitly in [38]; rather, geometricity is a particu-
lar case of high locality. This matters because it shows that geometricity like high
locality is a property favouring ‘good’ EA performance even if they do not coincide
always. Secondly, it clarifies the following important aspect about the formal design
of highly local crossovers. The classification in Section 5.4.4 shows that intersecting-
Hamming-balls crossover is non-geometric; therefore GF's crossover principled de-
sign of geometric crossovers (Section 3.3) does not apply to highly local crossovers
always. This limits the extent to which highly local crossovers can be designed across
representations in a principled manner. Finally, the positive side is that out of all
crossovers with high locality, geometric crossovers ξ happen to be a subset due to
ξ(x, y) ⊆ [x, y]d ⊆ Balls(d)(x, y). High locality and geometricity coincide precisely
when [x, y]d = Balls(d)(x, y) for a given metric d and all x and y. So, after all,
there are certain highly local crossovers that can be designed in a principled manner:
geometric crossovers!

5.5.2 Inbreeding Properties

The inbreeding properties can tell if a crossover is non-geometric without having
to test a possibly infinite number of metrics which Definition 3.7 requires. Proving
that a crossover is geometric is relatively easy for some search spaces by suggesting a
metric for them and then verifying Definition 3.3. But it can be difficult in general,
even in well known search spaces as Moraglio [100] points out for trees in GP. This
brings us to the following question left open in the GF (Section 3.5).
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Question 5.3. Are the inbreeding properties sufficient conditions to guarantee that
a crossover is geometric?

If the answer to Question 5.3 was affirmative, then the inbreeding properties
could be used to test geometricity of crossovers also. Why would it be useful?
Besides knowing whether a crossover is geometric, one may want to know under
which metric. But testing the inbreeding properties (if sufficient) would only tell us
the former not the latter, for they are independent of metrics. However, testing the
inbreeding properties is useful for classification purposes: to classify a crossover as
geometric or non-geometric, it is only necessary to know if it is geometric or not! If
a given crossover was geometric, and we did not know the distance, the inbreeding
properties (if sufficient) would classify it as geometric without knowing the distance.

This section first makes some remarks about proving the insufficiency of the
inbreeding properties to clarify why answering Question 5.3 is not as simple as one
may expect. Then, Question 5.3 is formulated more precisely and partially answered
adopting the top-down approach outlined in Section 5.2.1, explaining why it is only
a partial answer.

Proving Insufficiency of the Inbreeding Properties: Remarks

To answer Question 5.3, one looks for a crossover (or class of crossovers) that fulfils
the inbreeding properties but it is not a geometric crossover, which would prove the
inbreeding properties insufficient. A simple approach could be to claim that: recom-
bination P-structures are such class, by proving they fulfil all the inbreeding prop-
erties, and proving that only the subclass of geometric recombination P-structures
is equivalent to geometric crossovers. There are two issues with this claim:

1. It is false that all recombination P-structures fulfil the inbreeding properties,
for example all-Hamming-paths and intersecting-Hamming-balls crossovers fail
the convergence inbreeding property (Sections 5.4.3–5.4.4).

2. It is false that the geometric recombination P-structures subclass is equiva-
lent to the geometric crossovers class: the asymmetric one-point crossover is a
geometric crossover but not a recombination P-structure (Theorem 5.5). Also,
geometric recombination P-structures and finite-complete geometric crossovers
are not equivalent neither: one-point and identity crossovers are geometric
recombination P-structures but not finite-complete geometric crossovers (Sec-
tions 5.4.1 and 5.4.5).
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Fortunately, there actually exist a subclass of recombination P-structures that fulfils
all the inbreeding properties as shown next.

Proving Insufficiency of the Inbreeding Properties: A Partial Answer

Although not all recombination P-structures fulfil the inbreeding properties, it may
be possible that a subclass of recombination P-structures fulfils them and it contains
non-geometric crossovers; thus proving the insufficiency of the inbreeding properties.
This brings us to Question 5.4, which restates Question 5.3 in terms of insufficiency
rather than sufficiency and more precisely.

Question 5.4. Is there any subclass of recombination P-structures other than geo-
metric recombination P-structures that satisfies all the inbreeding properties of ge-
ometric crossovers? If so, what is an example of such a recombination P-structure
that is not a geometric crossover but fulfils the inbreeding properties?

To answer the first part of Question 5.4, the top-down approach (Section 5.2.1)
can be adopted and suggest a subclass of recombination P-structures with the desired
inbreeding properties. Accordingly, Definition 5.8 introduces strict size-monotonic
recombination P-structures as a new subclass of recombination P-structures by re-
stricting the original size-monotonicity axiom. An example of a strict size-monotonic
recombination P-structure is shown later in Example 5.4. Next, Lemma 5.4 proves
that they are a subclass of recombination P-structures. Theorem 5.16 proves that
they fulfil the inbreeding properties adapting the proof of Theorem 2 in [48].

Definition 5.8 (Strict size-monotonic recomb. P-structure). Let X be any
non-empty finite set and R : X × X → P(X) mapping pairs of parents into off-
spring sets. Then, (X,R) is a strict size-monotonic recombination P-structure, if
∀x, y, z ∈ X: (I) fix-point: R(x, x) = {x}; (II) symmetry: R(x, y) = R(y, x);
(III) null-recombination: {x, y} ⊆ R(x, y); and (IV) strict size-monotonicity: if
z ∈ R(x, y) and z 6= y, then |R(x, z)| < |R(x, y)|. The class of all strict size-
monotonic recombination P-structures is denoted by RP-strictsize.

Lemma 5.4. Let (X,R) be a strict size-monotonic recombination P-structure.
Then, (X,R) is also a recombination P-structure.

Proof. The proof is trivial by Definition 5.8 since strict size-monotonicity is a
particular case of size-monotonicity (Definition 4.3).

Theorem 5.16 (RP-strictsize fulfils inbreeding properties). Let (X,R) be any
strict size-monotonic recombination P-structure. Then, R satisfies all the inbreeding
properties of geometric crossovers: purity, convergence and partition.
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Proof. Purity: Recombining one parent with itself can only produce the parent itself.
Follows immediately from the fix-point axiom: ∀x ∈ X, R(x, x) = {x}.

Convergence: Recombining one parent with one offspring cannot produce the other
parent of that offspring, unless the offspring and the second parent coincide.
Let offspring z ∈ R(x, y) for any parents x, y ∈ X, and let also s ∈ R(x, z).
We want to prove that if z 6= y, then s 6= y. Assume z 6= y. Because R is a
strict size-monotonic recombination P-structure,

|R(x, z)| < |R(x, y)| . (5.6)

Besides, either s = z or s 6= z. If s = z, then immediately s 6= y since
s = z 6= y and we are done. If s 6= z, then

|R(x, s)| < |R(x, z)| (5.7)

because R is a strict size-monotonic recombination P-structure. Now, if s was
allowed to be y, then |R(x, s)| = |R(x, y)|; however, by Equation 5.7

|R(x, s)| = |R(x, y)| < |R(x, z)| , (5.8)

thus contradicting Equation 5.6. Therefore, s 6= y for the s 6= z case as well.
Consequently, the only possibility left for s = y is that z = y.

Partition: If z is a child of x and y, then the recombination of x and z, and the
recombination of y and z, cannot produce a common grandchild s other than
z. Let a child z ∈ R(x, y) for any parents x, y ∈ X. Let also grandchildren
s1 ∈ R(x, z) and s2 ∈ R(z, y). We want to prove that if s1 6= z or s2 6= z (or
both), that is if at least one grandchild is different from z, then s1 6= s2. Let
us clear all the trivial cases first.

• Trivial case 1: z = y. Then, R(x, z) = R(x, y) and R(z, y) = R(y, y),
so s1 ∈ R(x, y) and s2 ∈ R(y, y) = {y}. Hence s2 = y = z, but notice
s1 6= z since at least one grandchild must be different from z, so s1 6= s2.

• Trivial case 2: s1 6= z and s2 = z. Then, s1 6= z = s2, so s1 6= s2.

• Trivial case 3: s1 = z and s2 6= z. Then, s1 = z 6= s2, so s1 6= s2.

At this point we are left with the non-trivial case: z 6= y, s1 6= z and s2 6= z.
Proceed by contradiction assuming the opposite s1 = s2. Because R fulfils the
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convergence property, we know y /∈ R(x, z) and x /∈ R(z, y), so s1 6= y and
s2 6= x. Notice, however, that it is possible to have s1 = x and s2 = y. But
the assumption s1 = s2 leads to the following contradictions: x = s1 = s2 6= x

and y = s2 = s1 6= y. Therefore, s1 6= s2 must hold.

Hence the answer to the first part of Question 5.4 is: yes, strict size-monotonic
recombination P-structures fulfil the inbreeding properties of geometric crossovers.

To finally prove the insufficiency of inbreeding properties, the second part of
Question 5.4 asks for an example of a strict size-monotonic recombination P-structure
that is a non-geometric crossover. Example 5.4 shows a strict size-monotonic recom-
bination P-structure (X,Op) whose operator Op is not a geometric crossover on the
specific metric space defined by a complete graph K3 in Figure 5.7 below. However,
that does not prove Op is a non-geometric crossover (i.e. Op ∈ GX ): one has to
prove that is not geometric for every metric, not just the metric of K3. In that
sense, Question 5.4 remains partially answered, and it is unclear how it may be fully
answered. Let us explain then why it is unclear and why Theorem 5.16 is significant.

Example 5.4 (Strict size-monotonic recomb. P-structure). Let the three-
element set X = {a, b, c}. Define the binary operator Op : X ×X → P(X) as:

Op(a, a) = {a};

Op(b, b) = {b}; Op(a, b) = Op(b, a) = {a, b};

Op(c, c) = {c}; Op(b, c) = Op(c, b) = {b, c}; Op(a, c) = Op(c, a) = {a, b, c}.

Then, (X,Op) is a strict size-monotonic recombination P-structure by construction.

Op(b, b) = {b}
Op(a, a) = {a}

Op(c, c) = {c}

a

b

c

Op(a, b) = Op(b, a) = {a, b}
Op(b, c) = Op(c, b) = {b, c}
Op(a, c) = Op(c, a) = {a, b, c}

Figure 5.7. A binary operator Op (‘right’) defined on the vertex set X = {a, b, c} of a
complete graph K3 (‘left’), such that (X,Op) is a strict size-monotonic recombination P-
structure by construction, but Op is not a geometric crossover on the metric space (X, d)
defined by K3 since {a, b, c} = Op(a, c) 6⊆ [a, c]d = {a, c} for parents a, c ∈ X.

The significance of Theorem 5.16 is proving the existence of a subclass of recombi-
nation P-structures (RP-strictsize) that potentially proves the inbreeding properties
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cannot guarantee if a crossover is geometric. This matters because if they are insuffi-
cient, then classifying crossovers as (non-)geometric becomes more complicated: the
known alternative to the inbreeding properties is to verify Definition 3.3 by guessing
distances, which is difficult for unfamiliar search spaces, or trial and error, which is
impractical. Although Theorem 5.16 does not completely answer Questions 5.3–5.4,
it is an starting point for two reasons. First, strict size-monotonic recombination
P-structures RP-strictsize, unlike geometric recombination P-structures, can con-
tain non-geometric crossovers. Secondly, the axioms of RP-strictsize (and any other
recombination P-structure) do not involve metrics similar to the inbreeding proper-
ties. So it remains possible that RP-strictsize or further subclasses thereof contain
non-geometric crossovers (thus proving insufficiency); in that case, the axioms of
such subclasses would precisely characterise those non-geometric crossovers.

The reason why it is unclear how to fully answer Questions 5.3–5.4 is the follow-
ing problem: how do we prove that crossovers fulfilling the inbreeding properties,
like strict size-monotonic recombination P-structures (see Example 5.4), are non-
geometric if the only known viable test of non-geometricity relies on not satisfying
the inbreeding properties? That is, proving non-geometricity without using the
inbreeding properties. Three alternatives are:

(a) To propose new inbreeding properties, which leaves us with the original prob-
lem: prove again that such new properties are sufficient conditions.

(b) To prove that Definition 3.3 of geometric crossovers follows from the inbreeding
properties (Propositions 3.2–3.4).

(c) To prove for every possible crossover and search space that, whenever it fulfils
the inbreeding properties, it is geometric for some metric.

Except for option (b), options (a) and (c) are clearly not feasible. At this point,
based on Theorem 5.16 and the existence of recombination P-structures that are non-
geometric crossovers (Theorem 5.15), it may well be conjectured that the inbreeding
properties are insufficient subject to further research on the relationship between
non-geometric recombination P-structures and the inbreeding properties.

Conjecture 5.1. The inbreeding properties are insufficient conditions to guarantee
if any given crossover is geometric for at least one metric space.

This section has not determined if the inbreeding properties are sufficient or not,
but by exploiting the crossover classification (Section 5.4) it has provided formal
evidence to support Conjecture 5.1, clarified its major difficulties, and found a new
relevant subclass of recombination P-structures that may help prove it.
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5.6 Conclusion
Carefully reconsidering the strengths and weaknesses of the GF and ELT, this
chapter opens up a path to understand (across problems and representations) if and
how the search space structure induced by crossovers influences crossover design as
well as population behaviour or performance in EAs.

My original contribution is a crossover classification based on geometric crossovers
and recombination P-structures. A classification that the GF and ELT never
developed before or aimed to do so, as they focus exclusively on geometric crossovers
or recombination P-structures not both. This classification reveals geometric
recombination P-structures are a crossover subclass of both geometric crossovers
and recombination P-structures, thereby justifying that a general unified theory
of the GF and ELT is theoretically possible and not futile (Sections 5.3 and 5.4).
Moreover, the crossover classification is not just a formal system to axiomatically
compare geometric versus non-geometric crossovers with respect to their support
structure, but also a promising means to investigate crossover design or EAs'
behaviour in GF and ELT more deeply as discussed in Section 5.4.6. In fact,
it became clear that principled design of geometric crossovers is possible and an
integral part of ELT, which was unknown to the GF and especially to ELT as the
latter never addressed crossover design at all.

This unified approach helped to identify and tackle other questions and
misconceptions around crossover, relevant to the GF and ELT, that otherwise would
have remained open: confusing geometricity and high-locality of crossovers
(Section 5.5.1), and whether the inbreeding properties are sufficient to guarantee
geometricity (Section 5.5.2). Thus classifying crossovers for its own sake is not the
aim of the classification here presented, but rather to formally understand the
axiomatic properties inherent to crossovers across problems and representations.
This chapter accomplished it for both geometric crossovers and recombination P-
structures comprehensively and systematically, which in no way previous work in
the GF (Chapter 3) nor ELT (Chapter 4) could do independently from each other.
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Part II

Evolutionary Search
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Abstract

This second part develops upon Part I to unify the general models of evolutionary
search proposed by the GF and ELT, revised next in background Chapters 6 and 7.
EAs with crossover but no mutation are generalised in the GF across metric spaces as
geometric-crossover EAs: any EA based on geometric crossover parametrised by an
unspecified metric distance. Interestingly, their abstract population behaviour can
be formalised solely in terms of geodesic convexity associated with metric spaces: an
abstract form of (geodesically) convex evolutionary search, independent of problems
and representations, intuitively described as a sequence of nested convex shapes. By
contrast, ELT conceives two different approaches to model evolutionary search
depending on the kind of search space. For mutation search spaces, ELT defines
random walks on connected simple graphs, based on the neighbourhood induced by
mutation, or more specifically: time-homogeneous, reversible, and irreducible, finite
Markov chains. For crossover search spaces, or recombination P-structures, ELT
defines a generalised random walk parametrised by a certain probability distribution,
which is a form of headless-chicken crossover random walk. The associated finite
Markov chain depends on the probability distribution used and recombination P-
structure (hypergraph).

The contribution of this second part is presented in Chapter 8, adopting the GF's
approach as a basis because recombination P-structure random walks do not model
population-based EAs. The focus is on the two-fold research question (2) from the
literature review in Chapter 2: what class of EAs doing abstract convex evolutionary
search is shared by the GF and ELT? Can it use mutation operators? To address
these questions, Chapter 8 extends the crossover classification laid in Chapter 5
with a new crossover class described by finite interval operators, not necessarily
based on metric spaces nor geodesic convexities, which includes all (geometric or
non-geometric) recombination P-structures but also crossovers similar to the macro-
mutations present in headless-chicken crossover random walks. This new crossover
class leads to a corresponding generalised class of EAs (possibly using mutation),
called formal interval EAs, which undertake a generalised form of the abstract convex
evolutionary search carried by geometric-crossover EAs. As a particular case of
formal interval EAs, Chapter 8 shows that the subclass of geometric recombination
P-structure EAs, without mutation, shared by GF and ELT, provably do abstract
(geodesically) convex evolutionary search. Overall, Chapter 8 develops a qualitative
framework that simplifies and systematises the task of axiomatically comparing how
different crossovers classes affect the abstract search behaviour of EAs using them.
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Chapter 6

Evolutionary Search in the
Geometric Framework

This chapter revises background material for subsequent chapters. It summarises
and clarifies key ideas in the GF about abstract convex search of EAs using geo-
metric operators (Chapter 3). This chapter principally supports the contributions
in Chapter 8 generalising such abstract search behaviour to EAs based on recombi-
nation P-structures introduced in Chapter 4.

6.1 From EAs to Geometric-crossover EAs
The fundamental mechanism behind the numerous and diverse kinds of EAs that
exist fits the following pseudo-code [4].

1 Generate an initial population P
2 Evaluate P
3 while termination criteria is unsatisfied do
4 Select a subset P1 from P as parents
5 Recombine P1 to produce offspring P2
6 Mutate P2
7 Evaluate P2
8 Replace P with P2

9 return P

Algorithm 6.1. Pseudo-code of a conventional evolutionary algorithm.

Algorithm 6.1 is a simplified and general description of an EA that has been
stripped of specific representation of solutions, fitness function(s), mutation and
crossover rates, among other factors. Each of these factors involves a choice that
may lead to completely different specific EAs. To provide a common and coherent
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basis across EAs, the GF proposed by Moraglio [100] defines a general model of
EAs, which is the subject for this chapter.

Distance is the fundamental notion in the GF to abstract search spaces as metric
spaces, where generalisations of mutation and crossover operators used in practice
are defined by metric balls and metric segments (Chapter 3). Such geometric op-
erators (Definitions 3.3–3.4) are regarded as parametrised by a metric (i.e. distance
function). Similarly, one may regard EAs using geometric operators as parametrised
by a metric and treat them as a formal object relying only on the metric axioms.
Doing so, while not specifying any metric, turns Algorithm 6.1 into a formal EA
independent of the underlying search space structure and solutions' representation.
The GF names it formal metric evolutionary algorithm (Definition 6.1) and abstract
evolutionary search its behaviour (Definition 6.2) to emphasise that they are formal
entities depending only on the axioms of metric spaces.

Definition 6.1 (Formal metric EA [100, 101]). A formal metric evolutionary
algorithm is any EA using geometric operators on a fixed but unspecified metric
space (X, d) where X is the set of all candidate solutions and the metric d imposes
a structure on X.

Definition 6.2 (Abstract evolutionary search [100, 101]). Abstract evolutionary
search is the abstract behaviour of a formal metric EA across all metric spaces.
That is, the behaviour common to all EAs obtained from the formal metric EA by
specifying a set of solutions and a metric.

Based on Algorithm 6.1, the key components of a formal metric EA at a population-
level are thus [100, 101]:

• A population of individuals where each individual represents a candidate so-
lution and may occur multiple times in the population (i.e. a multi-set of
individuals).

• Fitness and distance functions are unspecified but fixed1. The following pop-
ulation operators may internally use these functions.

• Selection: an operator that accepts an input population and outputs another
population where some input individuals may have been eliminated, or their
multiplicity may have increased or decreased, but the underlying set of the
output population is a subset of the input population.

1Time-varying fitness functions are not excluded, so ‘fixed’ should not be confused with ‘static’.
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• Recombination/Crossover : an operator that accepts an input population and
outputs another population by applying any geometric crossover operator any
desired number of times to pairs of individuals in the input population.

• Mutation: an operator that accepts an input population and outputs another
population by applying any geometric mutation operator any desired number
of times to any individual in the input population.

• Replacement: an operator that accepts two input populations P1 and P2 and
outputs a population P3 by applying the union2 operation of multi-sets to P1

and P2, and then applying selection to the population that results from their
union so that P3 ⊆ P1 ∪ P2 (with respect to their underlying sets).

There are no restrictions on whether some of these population operators are
deterministic or probabilistic. In particular, any probability distribution may be
imposed over offspring obtained by geometric operators as long as their formal Def-
initions 3.3–3.4 are respected. Moreover, any of the population operators may de-
generate to the case where the output population equals the input population (e.g. a
probabilistic mutation operator may not mutate any individual at all).

Besides, if mutation is not used, then one obtains a class of formal metric EAs
called geometric-crossover EAs3 (Definition 6.3) in which crossover is the only op-
erator introducing evolutionary change in populations (i.e. new individuals).

Definition 6.3 (Geometric-crossover EA [100, 101]). A geometric-crossover evo-
lutionary algorithm is any formal metric EA that does not mutate populations.

Geometric-crossover EAs exhibit a very distinctive abstract behaviour where
populations through generations become more ‘localised’ in a region of the search
space delimited by the initial population. Such behaviour can be characterised using
abstract convexity theory [146], hence its name abstract convex evolutionary search
[100, 101]. Section 6.2 reviews some basic notions on convexity prior to formalising
abstract convex evolutionary search in Section 6.3.

6.2 Abstract Convexity Preliminaries
To understand the behaviour of geometric-crossover EAs, it is key to understand how
offspring relate to parents at a population's level in terms of geometric crossovers.
2The union of multi-sets takes the maximum of the occurrences for given multi-sets. Alternatively,
the sum operation may be used, which takes the sum of the occurrences for given multi-sets.

3A software implementation of a geometric-crossover EA used in [104] is available at [102].
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For that, Section 6.2.3 introduces an abstract notion of convexity used later in
Section 6.3 to formalise such behaviour and offspring-parent relationship. But first
let us have a look at convexity in Euclidean (Section 6.2.1) and Hamming metric
spaces (Section 6.2.2) to gain some intuition.

6.2.1 Geodesic Convexity in Euclidean Metric Spaces

In Euclidean spaces, and other vector spaces, line segments and convex combina-
tions [12] capture the intuitive idea of offspring lying ‘between’ two parents and,
respectively, a set of parents or population.

Consider a given set of parents A = {a1, . . . , a5} ⊂ R2 as illustrated in Figure 6.1.
Then, every point a′ def= θ1a1 + · · ·+ θ5a5, such that θi ≥ 0 and ∑i θi = 1, is a convex
combination of the points in A. Here, a′ may be considered an offspring resulting
from a weighted combination of the parents a1, . . . , a5 using weights θ1, . . . , θ5. The
set of all those possible offspring, namely all convex combinations of A, is its convex
hull co(A) def= {∑i θiai | ai ∈ A, θi ≥ 0, ∑i θi = 1}. Equivalently, co(A) is the
‘smallest’ convex set including A. Restricting A to two parents co({a1, a2}) precisely
results in the line segment θa1 + (1− θ)a2 between the two points a1, a2 ∈ R2 with
θ ∈ [0, 1]. Therefore, it is clear that for all x, y ∈ A : [x, y]d2 = co({x, y}) ⊆ co(A)
under the Euclidean metric d2. So a geometric crossover in Euclidean space produces
offspring in the line segment between two parents, and at a population's level within
its convex hull.

a2

a1
a′

1
0.5

0θ

a′

a1
a2

a3

a4

a5

θ1

θ2

θ3θ4

θ5

Figure 6.1. A line segment (‘left’) and a convex combination (‘right’) in the Euclidean
metric space (R2, d2).

6.2.2 Geodesic Convexity in Hamming Metric Spaces

For Hamming metric spaces, Hamming segments and Holland's schemas [65] capture
the intuitive idea of offspring lying ‘between’ two parents or a set of them.

A schema is a string of length n using a q-ary alphabet for q ≥ 2, like Hamming
sequences, but with an extra ‘wildcard’ symbol * [65]. The set of all such schemas
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is {0, 1, . . . , q − 1, *}n, and a wildcard represents any of {0, 1, . . . , q − 1}. So 2*1*
is a schema for n = 4 and q = 3: it represents all Hamming sequences formed by
substituting all wildcards by any of the other symbols (i.e. 0, 1 or 2), and fixing
2 and 1 at the first and third leftmost positions respectively. Not substituting all
wildcards produces a subspace of the original schema, for instance: 201* ⊆ 2*1*.

Every schema defines a convex set (compare Proposition A.1 in [98] and the defi-
nition of convexity in [146, ch. 1]). This is also justified by the fact that the convexity
structure of a Hamming graph is the product convexity of its factors [146], namely
a n-dimensional q-ary Hamming graph H(n, q) is formed by the graph Cartesian
product of n copies of the complete graph Kq (which is convex). Consequently, the
schema of lowest order, namely having fewest * symbols, that matches a set of Ham-
ming sequences is the convex hull of that set (i.e. ‘smallest’ convex set that includes
it). For instance, let n = 3, q = 2 and a population P of individuals 001, 101, 000

P =


(0 0 1),
(1 0 1),
(0 0 0)

 .

Then, *0* is the lowest-order schema that matches P . So the convex hull of P is
co({001, 101, 000}) = {000, 001, 100, 101} ≡ *0*. The schema *** also matches P ,
except it is not of lowest order. If P is limited to two parents, then its lowest-order
schema also corresponds to offspring under uniform crossover (Definition 3.5):

Uniform(101, 001) = {101, 001} =
*

{1, 0}×
0

{0, 0}×
1

{1, 1} ≡ *01

or equally the Hamming segment between parents [101, 001]dH for the Hamming
metric dH. In other words, for all x, y ∈ P : [x, y]dH = co({x, y}) ⊆ co(P ). So a
geometric crossover in Hamming space produces offspring in the Hamming segment
between two parents or within a schema (i.e. convex hull) of a set of parents.

6.2.3 Geodesic Convexity in General Metric Spaces

Geometric crossovers are well defined on every metric space. Therefore, it is appro-
priate to introduce a convexity that generalises those of Euclidean and Hamming
metric spaces (Section 6.2.1–6.2.2) to any metric space. A natural choice is the
geodesic convexity associated with metric spaces (Definition 6.4) since geometric
crossovers are defined by geodesic intervals (Definition 3.2). To each geodesic con-
vex space there corresponds a unique geodesic convex hull (Definition 6.5).
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Definition 6.4 (Geodesic convex space [146]). Let (X, d) be any metric space.
A point z ∈ X is geodesically between two points x, y ∈ X, if and only if z ∈ [x, y]d.
A subset C ⊆ X is geodesically convex, if and only if all points geodesically between
any two points x and y in C are also in C; that is, if ∀x, y ∈ C : [x, y]d ⊆ C. The
family C of all geodesically convex subsets C in X is the geodesic convexity of (X, d),
and the pair (X, C) is a geodesic convex space.

Definition 6.5 (Geodesic convex hull [146]). Let (X, C) be the geodesic con-
vex space of any metric space (X, d). The geodesic convex hull closure operator, or
geodesic convex hull for short, of a set A in X is the intersection of all geodesically
convex supersets C ∈ C of A, or equally the smallest geodesically convex set includ-
ing A, under the metric d. Formally, it is denoted co : P(X) → P(X) and defined
on any A ∈ P(X) by co(A) def= ⋂{C | A ⊆ C ∈ C}, P(X) being the power set of X.
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Figure 6.2. Examples of geodesically non-convex (Figures 6.2a–6.2b) and convex
sets (Figures 6.2c–6.2d) in two-dimensional Euclidean metric space (R2, d2) and three-
dimensional binary Hamming metric space (H3

2, dH).

Observe that Definitions 6.4–6.5 are parametrised by a metric. So by substitut-
ing a specific metric such as the Euclidean or Hamming metric one obtains their
associated specific geodesic convexities (Sections 6.2.1–6.2.2) and specific notions of
geodesic (non-)convex sets (Figure 6.2), likewise for other metrics.

However, that all geodesic convexities share Definitions 6.4–6.5 does not imply
necessarily that all properties of a specific geodesic convexity are true for another
geodesic convexity [146]. For instance, unlike Euclidean balls (Figure 6.2c), Ham-
ming balls are not geodesically convex in general: the Hamming segment [100, 001]dH

is not completely included in the Hamming ball of Figure 6.2b.

104



CHAPTER 6. EVOLUTIONARY SEARCH IN THE GEOM. FRAMEWORK

Furthermore, even if metric segments and geodesic convex hulls sometimes coin-
cide4, as seen in Sections 6.2.1–6.2.2, in general that is false because ∀x, y ∈ S ⊆ X :
[x, y]d ⊆ co({x, y}) ⊆ co(S) for every metric space (X, d) [146]. Figure 6.3 shows an
example where not all metric segments are geodesic convex hulls.

1

2

3 4 5

Figure 6.3. A K2,3 bipartite graph where metric segments (i.e. shortest-paths) do not
always equal convex hulls: [3, 5]d = {3, 1, 2, 5} ⊂ {3, 1, 2, 4, 5} = co({3, 5}), d being the
shortest-path metric induced by K2,3.

6.3 Behaviour of Geometric-crossover EAs:
Abstract Convex Evolutionary Search

The GF states that the core behaviour of EAs, specifically geometric-crossover EAs
(Definition 6.3), can be described axiomatically across representations and problems;
and, ultimately, the differences between EAs stem from the solutions' representa-
tion and search operators [100, 101]. To support this claim, the GF proved that
all geometric-crossover EAs exhibit the same behaviour: abstract (geodesically) con-
vex evolutionary search (Proposition 6.1, see Theorem 15.4.3 in [100]) regardless of
the representation of solutions, problem (fitness function), geometric crossover with
any probability distribution, selection and replacement population operators, and
whether the population size varies or not through generations. Figure 6.4 shows such
abstract convex behaviour for an hypothetical geometric-crossover EA in Euclidean
and Hamming metric spaces based on their associated convexities (Section 6.2).

Proposition 6.1 (Abstract [geodesically] convex evolutionary search [100,
101]). Let (X, d) be any metric space and Pt ⊆ X a population at generation t ≥ 0,
with P0 being the initial population. Then, for any geometric-crossover EA repeating
the cycle of population operators selection, crossover and replacement: co(P0) ⊇
co(P1) ⊇ · · · ⊇ co(Pt) ⊇ co(Pt+1).

4For geodesic convex spaces that coincide with convex geometries [41], [x, y]d ⊆ co({x, y}) becomes
[x, y]d = co({x, y}) if x and y are extreme points of [x, y]d (i.e. [x, y]d \ {x, y} is also geodesically
convex). That is because in convex geometries every (geodesically) convex set C is the convex
hull of the extreme points of C. Graphs with such property are Ptolemaic graphs [41, 112].
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P0 co(P0) co(P1) co(P2)

(a)

P0
(0 0 0 1 1),
(0 1 0 0 1),
(1 0 0 0 1),
(1 1 0 1 1)



co(P0)

**0*1

co(P1)

0*0*1

co(P2)

010*1

(b)

Figure 6.4. Abstract (geodesically) convex evolutionary search during two genera-
tions for an initial population P0 in: two-dimensional Euclidean metric space (R2, d2)
(Figure 6.4a) and five-dimensional binary Hamming metric space (H5

2, dH) (Figure 6.4b).

Thus abstract convex evolutionary search5 produces a nested inclusion chain of
populations' geodesic convex hulls that is restricted to the geodesic convex hull of
the initial population co(P0): all individuals outside co(P0) will not be generated in
future generations. For Euclidean metric spaces (Figure 6.4a), each individual at
each generation is a convex combination of the parent population. For Hamming
metric spaces (Figure 6.4b), each individual at each generation belongs to the schema
of the parent population. When a population operator of a geometric-crossover EA
(or formal metric EA in general) produces offspring within the geodesic convex hull
of the parent population, it is called a convex population operator6 (Definition 6.6).

Definition 6.6 (Convex population operator [100, 101]). Let (X, d) be any
metric space and multi-sets P, P ′ ∈ NX be arbitrary populations such that P ′ ⊆
co(P ). Denote s, c : NX → NX and r : NX × NX → NX to be selection s, crossover
c and replacement r population operators. Then, s, c and r are convex population
operators, if s(P ) ⊆ co(P ), c(P ) ⊆ co(P ) and r(P, P ′) ⊆ co(P ) respectively, in terms
of the underlying sets of P, P ′.

Precisely, the reason why geometric-crossover EAs do abstract convex evolu-
tionary search is that selection, crossover and replacement (Section 6.1) are convex
5The term ‘abstract convex evolutionary search’ is used as in ‘abstract geodesically convex’. This
thesis makes it explicit when discussing non-geodesic convexities in later chapters.

6The original name ‘convex operator’ may be mistakenly confused with convex hull operators. To
avoid confusion, this thesis renames it as ‘convex population operator’ to emphasise that it refers
to the population operators of EAs, namely selection, crossover, etc.
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P co(P ) Psel

co(P ) ⊇ co(Psel) co(P ) ⊇ co(Psel) ⊇ Poffs co(Poffs
(n+1))

⊆ co(P(n))
co(P ) ⊇ co(Psel) ⊇ co(Poffs)

Figure 6.5. Abstract (geodesically) convex evolutionary search in two-dimensional Eu-
clidean metric space (R2, d2): relationship between parent P , mating pool after selection
Psel and offspring Poffs populations, and their respective convex hulls co(P ), co(Psel) and
co(Poffs).

population operators (Proposition 6.2, see Theorem 15.4.2 in [100]). For exam-
ple, Figure 6.5 illustrates in Euclidean metric space that selecting a mating pool
of parents Psel from a given population P and then recombining them (using some
unspecified geometric crossover) produces an offspring population Poffs such that
co(P ) ⊇ co(Psel) ⊇ co(Poffs).

Proposition 6.2 ([100, 101]). For any geometric-crossover EA, selection, crossover
and replacement are convex population operators.

6.3.1 Abstract Non-convex Evolutionary Search

In contrast with geometric-crossover EAs (Definition 6.3), formal metric EAs (Def-
inition 6.1) can use mutation. As a result, their abstract evolutionary behaviour
(Definition 6.2) need not be abstract convex evolutionary search (Proposition 6.1)
because mutation is provably not a convex population operator (Definition 6.6)
[100, 101], except for degenerate cases where a probabilistic mutation operator mu-
tates no individual.

Put differently, mutation may produce offspring outside the geodesic convex hull
of a parent population, breaking thus the nested inclusion chain that characterises
abstract convex evolutionary search. For example, recall the nested chain of schemas
in Figure 6.4b for the first two generations of an initial population P0

co(P0)

**0*1 ⊇
co(P1)

0*0*1 ⊇
co(P2)

010*1 .

Suppose 00011 is an individual of P1, so 00011 ∈ co(P1). Then, applying single-bit
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flip mutation to the rightmost bit 0 (i.e. 00011) produces 00111 /∈ co(P0) ≡ **0*1,
thus breaking the nested chain.

Arguably, if the disruptive effects of mutation are somehow ‘restricted’, then an
approximated convex evolutionary search may be possible [100]. However, its formal-
isation remains as future work [104] since it requires extending the GF from metric
spaces to metric measure spaces (incorporating probabilities besides distances) [101].
It is out of the scope of this thesis to address such extension.
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Chapter 7

Evolutionary Search in
Elementary Landscapes Theory

This chapter revises background material for subsequent chapters. It summarises
and clarifies key ideas in ELT about two degenerate forms of evolutionary search,
random walks and crossover random walks, associated with mutation search spaces
(defined by neighbourhoods) recombination search spaces (defined by recombination
P-structures) introduced in Chapter 4. This chapter principally supports the con-
tributions in Chapter 8 providing ELT with a proper and more general EA model
using crossovers defined by recombination P-structures.

7.1 Evolutionary Search Rooted in Search Spaces
Evolution by means of natural selection [27], and its application in EC [4], inspired
research in ELT [136, 140, 150] towards a mathematical theory for the analysis
of complex adaptive systems (e.g. ensembles of particles, organisms, etc.) [65],
focusing on the algebraic structure of search spaces and fitness landscapes more
than the population behaviour of EAs. The behaviour of populations undergoing
selection, recombination and mutation has been studied in connection with the so-
called elementary landscapes via dynamical systems [138], but departing from the
ELT graph-theoretical approach based on search space structures (see Chapter 10).

ELT distinguishes between search spaces induced by mutation and those induced
by recombination (Chapter 4). Although ELT is a theory about landscapes, such
distinction leads to two separate search strategies for each kind of search space:
random walks for mutation search spaces (Section 7.2) and for recombination search
spaces a form of random walk that ‘fakes’ the action of crossovers (Section 7.3).
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7.2 Random Walk
Random walks [19, 110] are stochastic processes that consist of a sequence of events
occurring at discrete time steps and where future events depend on the present
(subject to a random perturbation) but are independent from the past. That is,
random walks have the Markov property for which they are named also discrete-
time Markov processes. Figure 7.1 illustrates two examples of random walks where
events are described by random variables in discrete and continuous spaces.

Particularly, ELT considers discrete-state discrete-time Markov processes (i.e. fi-
nite Markov chains) where random variables take values from a finite set, called the
set of states, such as a graph's vertex set. Random walks on graphs or mutation
search spaces are then finite Markov chains as Section 7.2.1 explains.

X

t

(a)

X

Y

(b)

Figure 7.1. A one-dimensional random walk plotted against time t for an integer-valued
random variable X (Figure 7.1a). A two-dimensional random walk, after some unspecified
time, with real-valued random variables X and Y whose values have been interpolated by
lines to appreciate the random walk's trajectory (Figure 7.1b).

7.2.1 Finite Markov Chain: Definition and Example

In ELT, a mutation search space is a pair (X,N). X being a finite set of all
candidate solutions and N : X → P(X) a neighbourhood function describing the
support function of a mutation operator, which imposes a structure onX by mapping
x ∈ X to a subset N(x) ∈ P(X) of neighbour solutions. ELT represents mutation
search spaces as graphs since N determines an adjacency matrix (see Section 4.1).
Thus ELT defines the following finite Markov chain for a connected graph G with
vertex set V = {v1, . . . , vn} where V = X and the edge set E is given by N . The set
of states of the Markov chain is the vertex set V , and the transition probabilities pvi,vj

from state vi to state vj are given by its transition probability matrix P [136, 137]

P def= AD−1 (7.1)
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where the adjacency A and (diagonal) vertex-degree1 D matrices of the given graph
G have entries

avi,vj

def=

1, if {vi, vj} ∈ E,

0, otherwise,
dvi,vj

def=

|N(vi)| , if vi = vj,

0, otherwise
∀vi, vj ∈ V.

Then, the Markov chain on G is determined by the pair (p(0),P). The row
vector p(0) is the initial probability distribution over the set of states, and the
corresponding probability distribution after t time steps is given by the t-th power
of P: p(t) = p(0) Pt. So p(0) describes an initial solution of a random walk on G and
p(t) a solution after t steps of such random walk.

00

10

01

11

(a) (b)

A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



(c)

D =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2



(d)

P = AD−1 =


0 1

2
1
2 0

1
2 0 0 1

2
1
2 0 0 1

2
0 1

2
1
2 0



(e)

Figure 7.2. State transition diagram (Figure 7.2b), whose labels 1, . . . , 4 correspond to
00, . . . , 11, and transition probability matrix P (Figure 7.2e) of a Markov chain for the mu-
tation search space (H2

2,Bitflip(1)) induced by single-bit flip neighbourhood Bitflip(1)
on two-dimensional binary Hamming sequences H2

2. Figure 7.2a shows its associated Ham-
ming graph with adjacency A and vertex-degree D matrices (Figures 7.2c–7.2d).

For example, consider the multiple-bit flip neighbourhood (Definition 4.1), specif-
ically the single-bit flip neighbourhood Bitflip(1) that outputs all Hamming se-
quences one bit flip away from a given one.

The mutation search space induced by Bitflip(1) on two-dimensional binary
Hamming sequences is the Hamming graph in Figure 7.2a. A Markov chain for
such Hamming graph has states the vertices v1 = 00, . . . , v4 = 11. The transition
probability matrix P for such states (Figure 7.2e) follows using Equation 7.1 from the
adjacency and vertex-degree matrices (Figures 7.2c–7.2d) of the Hamming graph.
1The degree of a vertex is the number of vertices adjacent to it.
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Hence P alongside any initial distribution over the states determines a Markov
chain, with state diagram in Figure 7.2b, on the mutation search space induced by
the single-bit flip neighbourhood Bitflip(1). Moreover, the transition probabilities
reflect the neighbourhood structure of Bitflip(1): when pvi,vj

> 0, the vertex vj is
one bit flip away from vertex vi in the Hamming graph, namely vj ∈ Bitflip(1)(vi).
Note that regardless of the initial distribution and time step of the Markov chain:

• The transition probabilities are constant.

• Each transition is equiprobable in both directions. For instance, moving from
state 00 to state 01 occurs with probability 1

2 , which equals that of moving
from state 01 to 00.

• All four states are accessible from any state after some time. For instance, state
11 is not directly accessible from state 00 since p00,11 = 0, which is in turn due
to 11 /∈ Bitflip(1)(00). But state 11 is accessible from state 00 after two bit
flips (i.e. two time steps) since 01 ∈ Bitflip(1)(00), 11 ∈ Bitflip(1)(01),
and the corresponding transition probabilities p00,01 and p01,11 are not zero.

The next section clarifies why these three properties hold not just for the example in
Figure 7.2 but every Markov chain as defined in ELT by Equation 7.1. Appendix A.5
includes a software implementation of the Markov chain in the previous example.

7.2.2 Finite Markov Chain: Properties

To understand the differences between the two major forms of random walk discussed
in this chapter, it is necessary to remark some key aspects and assumptions made in
ELT about the Markov chain presented in Section 7.2.1. Its transition probability
matrix P in Equation 7.1 is a specific case of a more general Markov chain with
transition probability matrix P(t) at time step t, transition probabilities p(t)

i,j , and set
of states S that has the following characteristics [110]:

(a) P(t) is a non-negative matrix because p(t)
i,j ∈ [0, 1] for every time step t ∈ N0

and states i, j ∈ S.

(b) P(t) is a stochastic matrix because the entries of each row p
(t)
i,· add up to one:∑

j∈S p
(t)
i,j = 1 for every time step t ∈ N0 and state i ∈ S.

(c) Time-homogeneous because the transition probabilities do not change over
time: P(t1) = P(t2) for every two time steps t1, t2 ∈ N0. For time-homogeneous
Markov chains, P(t) is simply written as P.
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(d) Reversible because P(t) is symmetric: p(t)
i,j = p

(t)
j,i for every time step t ∈ N0 and

states i, j ∈ S.

(e) Irreducible because it is possible to move from any state i ∈ S to any other
state j ∈ S eventually.

A Markov chain need not fulfil properties (c–e), but ELT assumes that the
Markov chain given by P in Equation 7.1 does. In fact, that is partly due to
the usual assumptions2 made about graphs in ELT [136]: connected (so there is a
path between any two vertices), undirected (so the adjacency matrix is symmetric)
and regular (so all vertices have the same number of neighbours, i.e. all diagonal
entries of the vertex-degree matrix are equal). For example, if ELT allowed directed
graphs, then P may not be reversible since directed graphs need not have symmetric
adjacency matrices.

7.3 Headless-chicken Crossover Random Walk
EAs are a natural choice to model population dynamics under the effects of crossover
[4, 52]. Generalisations of random walks involving populations and crossover also
exist: crossover random walks [139, 140, 150]. Before Section 7.3.2 presents their
formal definition, Section 7.3.1 introduces first what is a crossover random walk
intuitively and what it has to do with ‘headless chickens’.

7.3.1 Overview and the Headless Chicken Metaphor

Using generalised forms of crossover to move between states in random walks appears
in ELT [139] with the introduction of certain interval structures called recombina-
tion P-structures seen in Chapter 4. Later, ELT formalised how distinct probability
distributions over a set of solutions, from which parents are sampled for recombina-
tion and that may be fixed and independent from the current state of the search,
affect such crossover random walks [140, 150].

The overall idea of a crossover random walk is the following. First, generate
an initial candidate solution (the ‘father’), then sample a second candidate solution
(the ‘mother’) from a probability distribution over the set of solutions (possibly the
entire search space), recombine both and randomly choose one of the offspring as
the next father to repeat this cycle. In this manner, the sequence of fathers (or

2ELT is extensible to directed and non-regular graphs [5, 35], but this thesis does not consider
them since ELT is not as well developed in such cases.
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offspring) yields the sequence of states visited by the crossover random walk whose
pseudo-code is Algorithm 7.1. Although any crossover may be used in principle,
ELT focuses on those represented by recombination P-structures (see Section 7.3.2
for details), but the idea of crossover random walk is the same.

1 Generate an initial candidate solution x ∈ X
2 while termination criteria is unsatisfied do
3 Set the current state to x
4 Sample a new candidate solution y from a probability distribution over X
5 Recombine x and y
6 Choose at random an offspring z of x and y; discard the rest
7 Replace x with z

Algorithm 7.1. Pseudo-code of a crossover random walk.

Sample
Crossover

probability
distribution

parent 1

parent 2

offspring 1

offspring 2 (discard)

(keep)

solution set

Figure 7.3. Diagram of a headless-chicken crossover (or macro-mutation).

This kind of random walk is originally known as headless-chicken (HC) crossover
random walk [73]. Its name metaphorically alludes to the fact that a ‘headless
chicken’ is not really a chicken, and likewise a ‘crossover’ where one of the parents
is randomly chosen not from a population but a probability distribution over the
search space (as in Algorithm 7.1) is not really a crossover operation. Indeed HC
crossover3 is deemed a generalised mutation (or macro-mutation) operation [73] since
both mutation and HC crossover accept one input individual and randomly modify
it to output one new individual as Figure 7.3 illustrates.

The idea of crossover in EAs is to combine solutions taken from a parent pop-
ulation to form an improving offspring population of solutions [4]. However, HC
crossover random walks (Algorithm 7.1) differ from conventional EAs: no popula-
tions are used, new individuals are created by macro-mutations on a prescribed indi-
vidual rather than by recombining parents in a population, and neither replacement
nor selection mechanisms are enforced to successively produce fitter populations

3HC crossovers appear in the literature under other names like ‘random-mate random-child’ [66].
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over generations. Thus HC crossover random walks are essentially random walks,
or degenerate types of EAs, doing a form of random search.

7.3.2 Finite Markov Chain: Definition and Example

In a HC crossover (Figure 7.3) the first parent x is given and the second parent y is
sampled from a probability distribution over a solution set S, then only one offspring
z is kept and reused as first parent for the next recombination. This describes a
transition from the current state x to the next state z in any HC crossover random
walk, where states correspond to solutions in S. Probabilistically, the current and
next states are represented by a random variable X at time steps t and t+1, namely
X(t) and X(t+1), and the sampled parent by an independent random variable Y (t).
Then, the transition probability at time step t is

Pr{X(t+1) = z | X(t) = x}
(a)

def=
∑
y∈S

Pr{X(t+1) = z | X(t) = x, Y (t) = y}
(b)

·Pr{Y (t) = y}
(c)

(7.2)

where (a) is the probability of moving from the current state x to the next z, (b)
the probability that z is offspring of x and y, and (c) the probability of sampling y
from S [139].

Equation 7.2 defines the transition probabilities of a finite Markov chain repre-
senting a HC crossover random walk, but it is inconvenient because it leaves implicit
the crossover and associated search space. Fortunately, in certain cases and under
certain assumptions, ELT provides closed form expressions of Equation 7.2 in terms
of the search space structure. The rest of this section focuses on the case that
assumes terms (b) and (c) in Equation 7.2 follow uniform distributions [139]: all
possible offspring are equally likely for given parents, and all individuals in the
search space are equally likely to be sampled as second parent. A more general
case [140] is briefly compared in Section 7.3.3 with other random walks seen in this
chapter.

Definition for Any Recombination P-structure and Uniform Distribution

In ELT a recombination search space is a recombination P-structure (X,R) denoted
R (Definition 4.3) consisting of a finite set X of all candidate solutions and a struc-
ture imposed upon it by a certain interval function R : X×X → P(X), which maps
any two parents in X to their set of possible offspring in the power set P(X). That
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is, R represents the support function of any crossover fulfilling the recombination P-
structure axioms. Moreover, the associated recombination P-structure hypergraph
hypR (Definition 4.6) has vertex set V (hypR) = X, abbreviated V , and hyperedge
set E(hypR) = {R(x, y) | x, y ∈ V, R(x, y) 6= ∅}, abbreviated E (see Section 4.2).

A finite Markov chain is defined by a recombination P-structure R if uniform
probability distributions are assumed in the right-hand side of Equation 7.2. The
set of states of the Markov chain is the set of vertices V = {v1, . . . , vn} of the
recombination P-structure hypergraph hypR . The transition probability matrix P is
defined entry-wise by transition probabilities px,z [139] from the current state x = vi

to the next state z = vj for vi, vj ∈ V such that

px,z

(a)

def=
∑
y∈V

hz,(x,y)

|R(x, y)|
(b)

· 1
|V |
(c)

; (7.3)

where hz,(x,y) are the entries of the binary incidence matrix H (Equation 4.1) for
the hypergraph hypR with hz,(x,y) = 1 if and only if z is offspring of x, y. Notice
Equation 7.3 is a specific case of Equation 7.2 with respect to terms (b) and (c):
assuming that all offspring z are equally likely, term (b), and all individuals are
equally likely as the second parent y, term (c).

Alternatively, P can be expressed in the equivalent and more concise form [139]

P def= 1
2 |V | S with entries px,z def= 1

2 |V | sx,z (7.4)

where S may be interpreted as a generalised adjacency matrix since, when its entries

sx,z
def= 2

∑
y∈V

hz,(x,y)

|R(x, y)| (7.5)

are non-zero, x and z are connected by a hyperedge R(x, y) in hypR (i.e. ‘adjacent’).
The factor 1

2|V | normalises S so the entries of P fall within [0, 1].
Then, the Markov chain on a recombination P-structure R is determined by the

pair (p(0),P). The row vector p(0) is the initial probability distribution over the set
of states, and the distribution after t time steps is given by the t-th power of P:
p(t) = p(0) Pt. So p(0) describes an initial solution, and p(t) a solution after t steps,
of a HC crossover random walk on a recombination P-structure R.
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Example: Uniform Recombination P-structure and Uniform Distribution

Recall Example 4.1 of the uniform recombination P-structure RΩ
def= (Hn

q ,Uniform)
specified by the function Uniform that represents the support function of the uni-
form crossover operator on n-dimensional q-ary Hamming sequences Hn

q . Denote
hypRΩ

its hypergraph with vertex set V = Hn
q and hyperedge set E = {Uniform(x, y)

| x, y ∈ V, Uniform(x, y) 6= ∅}.
For RΩ on binary sequences (Hn

2 ,Uniform), the entries of the generalised ad-
jacency matrix S (Equation 7.5) may be calculated more easily with the equivalent
form sx,z = 2

(
3
2

)n
3−dH(x,z) (see Theorem 5 in [139]) where dH(x, z) is the Ham-

ming distance between x, z ∈ V . Fixing n = 3 and q = 2 leads to the following
Markov chain (see Appendix A.6 for a software implementation). States are vertices
V = {v1, . . . v8} where v1 = 000, . . . , v8 = 111. The transition probability matrix
P = 1

2|V | S = 1
2·8 S follows from Equation 7.4:

P =
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(7.6)

Hence P alongside any initial distribution over the states determines a Markov
chain on the uniform recombination P-structure (H3

2,Uniform). Notice the state
diagram would be equivalent to a complete graph with a loop at each vertex. That
is explained by the structure of the hypergraph hypRΩ

in which any two vertices
x and z are connected by at least one hyperedge (see Figure 4.3 for details). This
reflects in all entries sx,z of the generalised adjacency matrix S, and thus all entries
of P, being non-zero. Clearly the Markov chain properties fulfils all properties seen
in Section 7.2.2:

(a) P is non-negative since all transition probabilities are greater than zero.

(b) P is stochastic since all rows add up to one.

(c) Time-homogeneous since the transition probabilities between states are con-
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stant over time.

(d) Reversible since P is symmetric.

(e) Irreducible since any state can be reached from any other state after some time
steps. Indeed, any state is reachable in one time step since each of the eight
states has a transition to the other seven with non-zero probability.

Therefore, a HC crossover random walk described by the above Markov chain can
generate in one step any individual (i.e. binary sequence) from any given
‘father’ at any given time. This is a consequence of properties (c)–(e) above and
the assumptions on the uniform probability distributions over offspring and sam-
pled ‘mother’ as second parent in Equation 7.2. For instance, take father 000, the
offspring 011 can be generated only from recombinations Uniform(000, 011) and
Uniform(000, 111), where 011 and 111 are the mothers. The probability p000,011

of such transition is 3
64 from the transition probability matrix P in Equation 7.6. It

is easy to see how p000,011 follows from such recombinations by expanding the entry
s000,011 of the generalised adjacency matrix S with Equation 7.5:

s000,011 = 2
∑
y∈V

h011,(000,y)

|Uniform(000, y)| .

Because h011,(000,y) = 0 for all other mothers y ∈ V \ {011, 111}, it follows

s000,011 = 2
(

h011,(000,011)

|Uniform(000, 011)| + h011,(000,111)

|Uniform(000, 111)|

)
= 2

(1
4 + 1

8

)
= 3

4 ,

so from Equation 7.4 the corresponding transition probability p000,011 in P is

p000,011 = 1
2 |V | s000,011 = 1

2 · 8
3
4 = 3

64 .

7.3.3 Finite Markov Chain: Generalisation

The finite Markov chain in Section 7.3.2 is generalised by [140] to model HC crossover
random walks where no uniform probability distributions have to be assumed in
Equation 7.2 over offspring or their parents. To achieve it, other assumptions are
introduced and the generality of other aspects is sacrificed:

• It assumes recombination P-structures based on strings, such as the uniform
and the one-point recombination P-structures (Examples 4.1–4.2), rather than
general recombination P-structures (Definition 4.3).
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• It assumes Geiringer's linkage equilibrium [50] distribution in Equation 7.2
from which the second parent is sampled for HC crossover (Figure 7.3). This
distribution does not have to be uniform and may be defined over a subset
rather than the entire set of possible individuals as Section 7.3.2 does. But it
requires there is no genetic interdependence (i.e. epistasis) between the alleles
of the individuals' genotypes: for each string (i.e. individual), the values at
each position are statistically independent from the values at other positions.
So if X is a random variable that represents some individual x = (x1, . . . , xn)
sampled from a population under linkage equilibrium, and fi(xi) is the fre-
quency of xi at position i for such population, then Pr{X = x} def= ∏

i fi(xi).

• The finite Markov chain is reversible (see Lemma 2 in [140]), though not time-
homogeneous nor irreducible necessarily. That is, transition probabilities are
symmetric, but they may change over time and become zero for some states
(i.e. states may become unreachable).

In summary, ELT considers two major types of random walks (Table 7.1). For
mutation search spaces, random walks on graphs (Section 7.2). For recombination
search spaces (i.e. recombination P-structures), HC crossover random walks assum-
ing either a uniform (Section 7.3.2) or linkage equilibrium probability distribution
(Section 7.3.3).

Markov chain
properties

Random walk
based on mutation

HC crossover
random walk (1)

HC crossover
random walk (2)

Time-homogeneous   #

Reversible†    

Irreducible   #

(1) Uniform distribution (2) Linkage equilibrium distribution
( ) Property holds (#) Property may not hold
† Assuming symmetric neighbourhoods and recombination P-structures on strings

Table 7.1. Types of (crossover) random walks and key properties fulfilled by their re-
spective finite Markov chains.
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Chapter 8

A Qualitative Framework for
Abstract Interval Convex Search
of Evolutionary Algorithms

This chapter is an original major contribution of this thesis, extending a paper that
I co-authored with Moraglio [49]. This chapter presents a qualitative framework
built upon the crossover classification in Chapter 5, to systematically study the
abstract interval convex evolutionary search of a general EA class that unifies
geometric-crossover EAs (reviewed in Chapter 6) and HC crossover random walks
for recombination P-structures (reviewed in Chapter 7).

8.1 Introduction
The classification of crossovers proposed in Chapter 5 is a formal system to under-
stand crossovers across problems and representations with respect to the axioms of
geometric crossovers and recombination P-structures. Building upon this crossover
classification, this chapter now develops a framework for an evolutionary search
model generalising those of the GF and ELT reviewed in Chapters 6 and 7.

In the GF, formal metric EAs (Section 6.1) are a general class of EAs defined with
geometric mutation and crossover operators independent of a specific problem and
representation. Among them, geometric-crossover EAs (without mutation) stand
out: their behaviour is always abstract convex evolutionary search (Section 6.3), and
their runtime is provably polynomial on problems with certain abstract convex land-
scapes according to Moraglio and Sudholt [104]. However, EAs using non-geometric
crossovers or mutation do not do abstract convex evolutionary search [101].
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By contrast, ELT models recombination-like search through headless-chicken
(HC) crossover random walks (Section 7.3). A HC crossover (or macro-mutation)
can be any recombination P-structure where one of the parents is taken from a previ-
ous recombination and the other is randomly sampled from a prescribed probability
distribution (possibly over the entire solution set). No populations, selection nor re-
placement mechanisms as in GAs are actually used though: formalising population-
based EAs for recombination P-structures is an open challenge in ELT [85].

Neither geometric-crossover EAs nor recombination P-structure random walks
are fully satisfactory as a general and realistic model of EAs. The former lack
non-geometric crossovers, some of which are useful like Koza's subtree swap [86]
or Davis's order [31], and the ability to mutate individuals, which may prevent
premature convergence. The latter are not EAs really. This chapter aims towards a
general EA class that integrates both approaches, namely geometric-crossover EAs
and recombination P-structure random walks, and whose abstract behaviour across
problems and representations remains analogous to abstract convex evolutionary
search. The next fundamental open question frames it concisely.

Question 8.1. Is there any class of EAs, other than geometric-crossover EAs, based
on recombination P-structures and whose behaviour is analogous to abstract convex
evolutionary search (Proposition 6.1)? Is it still true, if such EAs use mutation?

This chapter proves that abstract convex evolutionary search extends to a class
called formal interval EAs. Formal interval EAs can use a wide range of crossovers
including geometric ones, non-geometric like some recombination P-structures, and
certain forms of crossover with mutation. Furthermore, recombination P-structure
EAs, a subclass of formal interval EAs, provides ELT with the means to model
population-based EA using recombination P-structures for the first time.

The brief answer to Question 8.1 will be that the abstract behaviour of formal
interval and recombination P-structure EAs is theoretically analogous though not
always equivalent to geometric-crossover EAs. By comparing the abstract convexi-
ties [146] intrinsic to geometric and non-geometric crossovers, this chapter will show
that some non-geometric crossovers have ‘degenerate’ abstract convexities leading
to degenerate types of abstract convex search which no longer describe the actual
behaviour of populations. Specifically, the contributions of this chapter are:

1. Extending the classification of crossovers in Chapter 5 with interval operators
of finite interval spaces. This extension also explains why Stadler and oth-
ers [135] observed that Koza's subtree swap crossover [86] is similar to unequal
one-point crossover [131] in that neither lie in a metric space. (Section 8.2.1.)
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2. Defining formal interval EAs and their subclass recombination P-structure EAs
based on the extended classification, which generalise geometric-crossover EAs
using geometric recombination P-structures. (Section 8.2.2.)

3. Explaining how various fundamental notions on abstract interval convexity
relate to crossovers in the extended classification. (Section 8.3.)

4. Proving that any formal interval-crossover EA (including any recombination
P-structure EA) does a generalised form of abstract convex evolutionary search
called abstract interval convex evolutionary search. (Section 8.4.)

5. Illustrating how crossovers in the extended crossover classification affect con-
vergence of abstract interval convex evolutionary search. Degenerate and non-
degenerate cases are discriminated via three coarse-grained types of abstract
interval convex evolutionary search. (Section 8.4.1.)

6. Proving abstract interval convex evolutionary search forms a sequence of nested
generalised schemas or invariant subsets in Mitavskiy's sense [98, 99]. (Sec-
tion 8.4.2)

Section 8.5 discusses this chapter's contributions. Section 8.6 concludes this chapter.

8.2 Towards Formal Interval EAs
Before defining formal interval EAs, we need to introduce the class of generalised
crossover operators characteristic of formal interval EAs called finite interval
operators (Definition 8.1) within the universal class U of all possible crossovers. We
focus on their support structure, describing what offspring are reachable from par-
ents rather than how probable, similar to the formalisation of geometric crossovers
and recombination P-structures in Chapters 3 and 4 respectively.

Definition 8.1 (Finite interval space [146]). Let I : X×X → P(X) be any func-
tion defined on any finite set X such that ∀x, y ∈ X: (I) extensitivity: x, y ∈ I(x, y);
and, (II) symmetry: I(x, y) = I(y, x). Then, I is a finite interval operator on X,
I(x, y) is the (finite) interval between x and y, and (X, I) is a finite interval space.
The class of all finite interval operators I is denoted Ifin and its universal comple-
ment Ifin def= U \ Ifin.

Finite interval operators will allow us to address Question 8.1 for three main
reasons:
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1. Ifin is a superclass of recombination P-structures RP , and RP includes cer-
tain non-geometric crossovers as well as certain geometric crossovers, namely
geometric recombination P-structures (see Chapter 5).

2. Ifin includes certain forms of crossover that mutate individuals and are not
covered by recombination P-structures.

3. All finite interval operators have a corresponding abstract interval convexity.

The next Section 8.2.1 extends the crossover classification presented in Chapter 5
to justify the first two reasons; the third reason is covered later in Section 8.3.

8.2.1 A Extended Classification of Crossovers

This section presents a extended classification of crossovers (Figure 8.1) by proving
through Theorems 8.1–8.6 the main class relations that incorporate the class of finite
interval operators Ifin and two additional crossovers: the unequal one-point crossover
by Shpak and Wagner [131, 135] and ball-mutation segment crossover defined next.

U
U
Ifin

RP

GX
GX -

completefin
RP-monotonic

RP-
geometric

GX -completefin

RP-monotonic

GX

RP-geometric

Ifin

RP

† Any finite-complete
geometric crossover on a
K2,3 graph is not
RP-monotonic (Figure 5.6)

asym-OnePoint

†

OnePoint

Uniform Id

Koza

uneq-
OnePoint

Davis
sym-Davis BallSegment(d, r)

Balls(dH)

AllPaths

Figure 8.1. Extended classification within the universal class U of crossovers.
Classes: geometric crossovers GX , recombination P-structures RP and finite interval
operators Ifin. Subclasses: finite-complete geometric crossovers (GX -completefin), ge-
ometric recombination P-structures (RP-geometric) and monotonic recombination P-
structures (RP-monotonic). Crossover examples: unbiased uniform (Uniform), one-
point (OnePoint), asymmetric one-point (asym-OnePoint), unequal one-point (uneq-
OnePoint), Koza's subtree swap (Koza), Davis's order (Davis), symmetric Davis's or-
der (sym-Davis), all-Hamming-paths (AllPaths(H(n, q))), intersecting-Hamming-balls
(Balls(dH)), ball-mutation segment (BallSegment(d, r)), and identity (Id).
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Definition 8.2 (Ball-mutation segment crossover). Let (X, d) be any metric
space and arbitrary parents x, y ∈ X. Then, the ball-mutation segment crossover is
defined as BallSegment(d, r) : X ×X → P(X), (x, y) 7→ ∪{B̄d(z, r) | z ∈ [x, y]d}
parametrised with metric d and radius r ∈ R>0.

A ball-mutation segment crossover, illustrated in Figure 8.2, applies a d-metric
ball mutation to all possible offspring in the d-metric segment [x, y]d between two
parents x, y, that is the offspring of a complete geometric crossover (Definition 3.3).
Consider for example, on a binary Hamming metric space, the Hamming ball-
mutation segment crossover BallSegment(dH, 1) parametrised with Hamming dis-
tance and ball radius one; see Appendix A.4 for a software implementation. To apply
BallSegment(dH, 1)(x, y) is equivalent to recombine parents x, y under uniform
crossover and then return all neighbours under single-bit flip mutation. So {000, 100}
are the offspring of parents 000 and 100 under uniform crossover, and those offspring
along with their neighbours under single-bit flip mutation are {000, 001, 010,100}∪
{100, 000, 101, 110} (Figure 8.2b).

y

x

r

BallSegment(d2, r)(x, y)
(a)

111

000 100

001 101

010

011

110

111

000 100

001 101

010

011

110

BallSegment(dH, 1)(000, 100)
(b)

Figure 8.2. Ball-mutation segment crossover in two-dimensional Euclidean metric
space (R2, d2) in Figure 8.2a (‘shaded region’). Ball-mutation segment crossover in three-
dimensional binary Hamming space (H3

2, dH) in Figure 8.2b (‘black lines’).

From the example above, it is not difficult to see why BallSegment(d, r)
belongs to Ifin but not to RP nor GX (Theorem 8.1). Note that recombination
P-structures (X,R) require the fix-point axiom ∀x ∈ X : R(x, x) = {x}, known as
the purity inbreeding property for geometric crossovers (Proposition 3.2). Clearly,
even if a crossover fulfils them, applying a non-degenerate1 mutation to the off-
spring inevitably breaks the fix-point axiom as well as the purity inbreeding prop-
erty (Lemma 8.1). Finite interval operators do not require such fix-point axiom or
purity inbreeding property.

1The input and output individuals of non-degenerate mutation operators are always distinct.
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Lemma 8.1. Let ξ : X × X → P(X) and µ : X → P(X) be support functions
of an arbitrary crossover and a mutation operator, respectively, defined on a non-
empty finite set X such that ∀x ∈ X: ξ(x, x) = {x} and µ(x) 6= {x}. Define an
operator Op(x, y) def= {µ(z) | z ∈ ξ(x, y)} for all parents x, y ∈ X. Then, Op is not
a geometric crossover and (X,Op) is not a recombination P-structure.

Proof. Op fails the fix-point axiom of recombination P-structures (Definition 4.3):
Op(x, x) = {µ(z) | z ∈ ξ(x, x)} = {µ(z) | z ∈ {x}} = {µ(x)} 6= {x}. Hence Op also
fails the purity inbreeding property of geometric crossovers (Proposition 3.2).

Theorem 8.1 (BallSegment(d, r) ∈ GX , RP , Ifin). Let the ball-mutation seg-
ment crossover BallSegment(d, r), with any radius r ∈ R>0, on a finite and con-
nected metric space (X, d) where |X| ≥ 2. Then, BallSegment(d, r) is not a geo-
metric crossover, and (X,BallSegment(d, r)) is not a recombination P-structure
but a finite interval space.

Proof. 1. By Lemma 8.1 and Definition 8.2, BallSegment(d, r) is not a geomet-
ric crossover and (X,BallSegment(d, r)) is not a recombination P-structure.
Notice for any non-zero radius and any x ∈ X: BallSegment(d, r)(x, x) =
∪{B̄d(z, r) | z ∈ [x, x]d} = ∪{B̄d(z, r) | z ∈ {x}} = {B̄d(x, r)} 6= {x}. The
last inequality is true by the assumption of (X, d) being connected and con-
taining at least two points (i.e. every closed metric ball with non-zero radius
contains at least one point other than its centre).

2. (X,BallSegment(d, r)) is a finite interval space because X is a finite set
and BallSegment(d, r) fulfils the extensivity and symmetry axioms of in-
terval spaces (Definition 4.2). Extensivity follows from Definition 3.2 since
metric segments include their extremes (i.e. x, y ∈ [x, y]d) and closed metric
balls their centres (i.e. z ∈ B̄d(z, r)), so x, y ∈ ∪{B̄d(z, r) | z ∈ [x, y]d} =
BallSegment(d, r)(x, y). Symmetry follows from the symmetry of metric
segments: BallSegment(d, r)(x, y) = ∪{B̄d(z, r) | z ∈ [x, y]d} = ∪{B̄d(z, r)
| z ∈ [y, x]d} = BallSegment(d, r)(y, x).

Despite being so general that admits crossovers with mutation (e.g. ball-mutation
segment crossover), the class Ifin of finite interval operators does not exhaust all
crossovers. One of them is the unequal one-point crossover (Definition 8.3) proposed
by Shpak and Wagner [131] to model gene duplication in evolutionary biology. Next,
we prove that unequal one-point crossover is non-geometric and falls outside the class
Ifin alongside Koza's subtree swap crossover. This justifies why Koza's crossover is
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similar to unequal one-point crossover in that both are undefined on metric spaces
or non-metrisable as Stadler and others [135] observed.

Definition 8.3 (Unequal one-point crossover [131, 135]). Let X be any non-
empty set and x = (x1, . . . , xn) and y = (y1, . . . , ym) be sequences in X of arbitrary
lengths n,m ∈ N0, where a zero-length sequence is the empty sequence ε. Denote the
prefix x[i]

def= (x1, x2, . . . , xi) and suffix x[j] def= (xj+1, xj+2, . . . , xn) subsequences of x,
where x[0] = x[n] = ε, x[n] = x[0] = x; also, denote xy def= (x1, . . . , xn, y1, . . . , ym) the
concatenation of x and y. The unequal one-point crossover produces all concatena-
tions up to length n+m of prefixes and suffixes of parents x, y ∈ X: uneq-OnePoint(x, y)
def= {x[i]y

[j] | 0 ≤ i ≤ n, 0 < j ≤ m} ∪ {y[j]x
[i] | 0 ≤ i ≤ n, 0 < j ≤ m}.

Length uneq-OnePoint(01, ε) uneq-OnePoint(01, 1) uneq-OnePoint(00, 11)

0 ε ε ε

1 0 0 0
1 1 1

2

01 01 00
10 01

10
11

3

011 001
101 011

100
110

4 0011
1100

Table 8.1. Offspring binary Hamming sequences, ordered by their length, obtained
under unequal one-point crossover for: uneq-OnePoint(01, ε), uneq-OnePoint(01, 1)
and uneq-OnePoint(00, 11), where ε is the empty sequence.

Unlike the traditional one-point crossover (Definition 4.5), the unequal one-
point crossover can recombine and produce sequences of variable length, including
the zero-length empty sequence, as exemplified in Table 8.1. This makes unequal
crossover similar to Koza's subtree swap (Definition 5.1) in that both can increase
the dimensionality of the space and produce offspring distinct from two identical
parents; compare Table 8.1 and Figure 8.3 below. That is why neither of them
induce a finite interval space in general (Theorems 8.2 and 8.3) nor fulfil the purity
inbreeding property of geometric crossovers (Theorems 5.6 and 8.2).

Theorem 8.2 (uneq-OnePoint ∈ GX , Ifin). Let X be any non-empty set. Then,
the unequal one-point crossover uneq-OnePoint is not a geometric crossover, and
(X, uneq-OnePoint) is not a finite interval space.
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Proof. 1. By Definition 8.3, uneq-OnePoint can produce offspring different
from parents even if these are identical: uneq-OnePoint(x, x) 6= {x} ∀x ∈ X
in general [131]. Hence uneq-OnePoint is non-geometric for violating the
purity inbreeding property of geometric crossovers (Proposition 3.2).

2. In general, (X, uneq-OnePoint) is not a finite interval space due to its Defi-
nition 8.3. Note uneq-OnePoint can produce sequences of arbitrary variable
length (see Table 8.1), so even if a finite X is assumed, uneq-OnePoint could
produce offspring outside X [131].

Theorem 8.3 (Koza ∈ Ifin). Let T be any non-empty set of labelled ordered trees.
Then, (T,Koza) is not a finite interval space.

Proof. In general, (T,Koza) is not a finite interval space by Definition 5.1. Koza
produces all possible subtree swaps for any two parent trees x, y ∈ T with vertex sets
V (x), V (y): Koza(x, y) = ⋃

i∈V (x),
j∈V (y)

Koza(i, j)(x, y). With this definition, Koza can
produce offspring trees outside T , if assumed finite, due to their larger dimensional-
ity. For example, let T = {t1, t2} as in Figure 8.3a, then one offspring pair produced
by Koza(t1, t2) is Koza(2, 1)(t1, t2) in Figure 8.3b, where the none of them are in
T and the first offspring is clearly larger than both parents.

∗
y zx3

+
1

2 3

1

32

Parent 1 Parent 2

t1 t2

(a)

1

2 3

4 5
∗

+

x

y z

1
3

Offspring 1 Offspring 2

Koza(2, 1)(t1, t2)

(b)

Figure 8.3. Koza's subtree swap can produce offspring (Figure 8.3b) of dimensionality
larger than parents (Figure 8.3a), so it cannot induce a finite interval space in general.

Like uneq-OnePoint and Koza, Davis order crossover (Definition 5.2) is nei-
ther a finite interval operator though for another reason: it is asymmetric. According
to Theorem 8.4, Davis belongs to Ifin but its symmetric version sym-Davis (Defi-
nition 5.3) belongs to Ifin. An analogous situation occurs between the asymmetric
one-point crossover (Definition 3.6) and the (symmetric) one-point crossover (Def-
inition 4.5) due to Theorem 8.5. This highlights how crucial symmetry (or lack
thereof) may be to distinguish seemingly identical versions of the same crossover.
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Theorem 8.4 (Davis ∈ Ifin, sym-Davis ∈ Ifin). Let SX be permutations of
any non-empty finite set X. Then, (SX ,Davis) is not a finite interval space;
(SX , sym-Davis) is a finite interval space.

Proof. (SX ,Davis) is not an interval space for the same reason Theorem 5.7 proved
it not to be a recombination P-structure: it fails to be symmetric. (SX , sym-Davis)
is trivially an interval space by its Definition 5.3: it is symmetric, and since it
produces all possible offspring across all possible crossover sections (including the
entire sequence) both parents are generated as offspring (i.e. extensivity holds).

Theorem 8.5 (asym-OnePoint ∈ Ifin). Let Hn
q be n-dimensional q-ary Hamming

sequences (q ≥ 2) and asym-OnePoint the asymmetric one-point crossover. Then,
(Hn

q , asym-OnePoint) is not a finite interval space.

Proof. Trivial, for the same reason Theorem 5.5 proved asym-OnePoint not to be
recombination P-structure: it does not fulfil the symmetry axiom.

Theorem 8.6 (Crossover classification extension). Consider the original clas-
sification of crossovers within the universal class U , the class Ifin of finite interval
operators and its complement Ifin = U \ Ifin. The following relationships hold:

(a) Ifin 6= ∅. The class of crossovers that are not finite interval operators is not
empty.

(b) RP ⊂ Ifin. The class of crossovers that are recombination P-structures is a
strict subclass of those crossovers that are finite interval operators.

(c) GX 6= Ifin. Geometric crossovers and finite interval operators represent dis-
tinct classes of crossovers.

(d) GX ∪ Ifin 6= ∅. The class of crossovers that are neither geometric crossovers
nor finite interval operators is not empty.

(e) GX ∩Ifin 6= ∅. The class of crossovers that are both geometric crossovers and
finite interval operators is not empty.

Proof. (a) Unequal one-point, Koza's subtree swap, Davis's order and asymmetric
one-point crossovers all belong to Ifin (Theorems 8.2–8.5).

(b) By Definitions 4.2–4.3, any recombination P-structure operator is a finite in-
terval operator, so RP ⊆ Ifin. By Theorem 5.7 and Theorem 8.4 if follows
RP 63 sym-Davis ∈ Ifin, so RP ⊂ Ifin.
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(c) asym-OnePoint crossover belongs to the class of geometric crossovers GX
(Theorem 5.5) but not to the class of finite interval operators Ifin due to
asymmetry (Theorem 8.5). Conversely, sym-Davis crossover belongs to Ifin
(Theorem 8.4) but not to GX (see Remark 5.1 and Theorem 5.15).

(d) By Theorems 5.6–5.7 and Theorems 8.2–8.4, unequal one-point, Koza's sub-
tree swap and Davis's order crossovers are not geometric crossovers nor finite
interval operators.

(e) GX ∩ RP 6= ∅ holds because of Theorem 5.15, and RP ⊂ Ifin holds because
of (b). Therefore, GX ∩ Ifin 6= ∅.

8.2.2 Defining Formal Interval EAs

For each crossover (class) in the extended crossover classification (Section 8.2.1), one
can think of specific EAs defined with those crossovers and, by abstraction, treat
them as a class. For example, geometric-crossover EAs (Definition 6.3) comprise all
specific EAs using any geometric crossover in the class GX and no mutation.

By the extended crossover classification, geometric crossovers in the non-empty
class GX ∩ RP = RP-geometric are a subclass of recombination P-structures RP
and of finite interval operators Ifin in turn. This hierarchical relationship between
GX , RP and Ifin is the fundamental reason why Definitions 8.4–8.5 of formal
interval EAs and recombination P-structure EAs are proper generalisations over
geometric-crossover EAs based onRP-geometric, called geometric recombination P-
structure EAs. They should be treated as formal mathematical objects relying only
on the axioms of finite interval spaces and recombination P-structures. Table 8.2
summarises the correspondence between such crossover classes and EA classes.

EA class Crossover class Search space structure

Formal interval EA Ifin Finite interval space
Recombination P-structure EA RP Recombination P-structure
Geometric recombination P-structure EA GX ∩RP Finite graphic metric space

Table 8.2. Key EA classes associated with crossover classes in the extended crossover
classification and their corresponding search space structures.

Definition 8.4 (Formal interval EA). A formal interval evolutionary algorithm is
any EA using a crossover whose support function is given by the interval operator I
of a fixed but unspecified finite interval space (X, I), where the finite set X describes
all candidate solutions and I imposes a structure on X.
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Definition 8.5 (Recombination P-structure EA). A recombination P-structure
evolutionary algorithm is any formal interval EA (without mutation) restricted from
finite interval spaces to a fixed but unspecified recombination P-structure (X,R).

The key components of formal interval EAs and recombination P-structure EAs
are defined similarly to those of geometric-crossover EAs seen in Section 6.1:

• Populations are multi-sets, the fitness function is fixed but unspecified, selec-
tion and replacement population operators as for geometric-crossover EAs.

• Recombination/Crossover : accepts an input population and outputs another
population by applying any crossover either in RP or Ifin any desired number
of times to individuals in the input population. For recombination P-structure
EAs, the underlying crossover belongs to RP and mutation cannot occur since
it violates the fix-point axiom of recombination P-structures (see Lemma 8.1).
For formal interval EAs, the crossover belongs to Ifin and mutation may occur
(e.g. ball-mutation segment crossover in Definition 8.2).

• No mutation population operator is explicitly used, but in formal interval EAs
mutation may occur during recombination.

Specific implementations of those components determine a specific instance of
a formal interval EA, or recombination P-structure EA, with a corresponding and
possibly distinct specific behaviour. Nevertheless, all those instances share a com-
mon behaviour called abstract interval convex evolutionary search. Section 8.4 will
show it generalises abstract (geodesically) convex evolutionary search of geometric-
crossover EAs (Proposition 6.1). First, Section 8.3 needs to introduce interval con-
vexities, more general than geodesic ones, associated with crossovers in RP or Ifin.

Definition 8.6 (Abstract interval convex evolutionary search). Abstract
interval convex evolutionary search is the abstract behaviour of a formal interval
EA across all finite interval spaces (X, I). That is, the behaviour common to all
specific EAs obtained from the formal interval EA by specifying set of all candidate
solutions X and an interval operator I.

8.3 Interval Convexities of Crossovers
Geometric crossovers are naturally associated with geodesic convexities of metric
spaces (Section 6.2). From the classification of crossovers, whether the original
(Section 5.2) or its extension (Section 8.2.1), it is clear that geometric recombination
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P-structures are associated with geodesic convexities as well since they are a specific
case of geometric crossovers by Definition 4.8. But what is a natural convexity for
other recombination P-structures RP or the superclass of finite interval operators
Ifin? The answer is interval convexities (Definition 8.7) because:

• RP is a subclass of Ifin, hence any crossover in either of them is a finite
interval operator of some finite interval space.

• Every (finite) interval space has a corresponding interval convexity [146].

Together, these two facts imply that every crossover in RP and Ifin is associated
with an interval convexity. It will be called either finite interval convexity, if it
assumes a finite interval space, or recombination P-structure convexity, if it assumes
a recombination P-structure.

Definition 8.7 (Interval convex space [146]). Let (X, I) be any interval space
and x, y, z ∈ X arbitrary points. Then, z is in the interval between x and y, if and
only if z ∈ I(x, y). A subset C ⊆ X is interval convex, if and only if all intervals
between pairs of points in C are also in C; that is, ∀x, y ∈ C : I(x, y) ⊆ C. The
family C of all interval convex sets C in X is the interval convexity of (X, I), and
the pair (X, C) is an interval convex space.

Crossover Structures Abstract Convexities

M
or
e
G
en

er
al

Family of Sets Convexity/Aligned Spaces

Interval Spaces Interval Convex Spaces

Finite Interval Spaces Finite Interval
Convex Spaces

Recombination P-structures Recombination P-structure
Convex Spaces

Geometric
Recombination P-structures

(on Finite Graphs)

Geodesic Convex Spaces
(on Finite Graphs)

+ finiteness

+ interval

+ fix-point axiom
+ size-monotonicity axiom

+ shortest-path

+ geometricity axiom
graphic distance

Figure 8.4. Ladder of hierarchical relationships between interval spaces and associated
abstract convexities according to their level of generality. A ‘downward arrow’ between
any two levels indicates that the level below inherits all of the attributes of the one above
and incorporates the new attributes ‘+’.
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Depending on what assumptions are made, interval convexities may be spe-
cialised or generalised to other convexities (Figure 8.4). For instance, finite inter-
val convexities specialise to recombination P-structure convexities by assuming the
fix-point and size-monotonicity axioms of recombination P-structures. Moreover,
recall from Theorem 5.1 that all geodesic intervals on finite metric spaces are re-
combination P-structures, so recombination P-structure convexities can be further
specialised to geodesic convexities (Definition 6.4) on finite graphs by assuming
a graphic shortest-path distance. By contrast, dropping the notion of interval in
interval spaces leaves us with just a family of sets, leading to aligned spaces (Def-
inition 8.8) as the most abstract convexities. Although other abstract spaces exist
beyond aligned spaces (e.g. pre-topologies) [134, 135], interval convex spaces and the
Kuratowski's axioms inherited from aligned spaces already suffice to prove abstract
interval convex search of formal interval EAs later in Section 8.4.

Definition 8.8 (Convexity/Aligned space [146]). A family C of subsets of a set
X is called a convexity or alignment on X if: (I) the empty set ∅ and the universal
set X are in C; (II) C is stable under arbitrary intersections, that is if D ⊆ C, then⋂D ∈ C; and, (III) C is stable under arbitrary nested unions, that is if D ⊆ C
is totally ordered by inclusion, then ⋃D ∈ C. The pair (X, C) is called convex
structure, convexity space or aligned space, and the members of C are convex sets.

Definition 8.9 (Convex hull: Kuratowski's axioms [94, 146]). Let (X, C) be
an aligned space and arbitrary subsets A,B ∈ P(X). The convex hull closure
co : P(X) → P(X), co(A) def= ⋂{C | A ⊆ C ∈ C}, fulfils the following Kuratowski
axioms: (I) normalisation: co(∅) = ∅; (II) extensivity: A ⊆ co(A); (III) isotony:
A ⊆ B =⇒ co(A) ⊆ co(B); and, (IV) idempotency: co(co(A)) = co(A).

For any of the abstract convexities in Figure 8.4, a convex hull closure of a set
can be defined as the intersection of all convex supersets of that set; all of them con-
forming to Kuratowski's axioms (Definition 8.9). Convex hulls in interval spaces (for
short, interval convex hulls) have another equivalent definition that makes explicit
how a crossover's support function induces an interval convexity as follows.

Definition 8.10 ([Recursive] pre-hull operator [112, 146]). Let (X, I) be any
interval space and S ∈ P(X) any subset in the power set of X. A (recursive) pre-
hull operator for (X, I) and some natural number k ∈ N0 is defined on S by the
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recursive function clkI : P(X)→ P(X)

cl0I(S) def= S ,

clkI (S) def= ∪ {I(x, y) | x, y ∈ clk−1
I (S)} .

The smallest k such that clk+1
I (S) = clkI (S) is the closure iteration number2 of S

denoted cinI(S) def= mink∈N0 cl
k+1
I (S) = clkI (S). The maximum closure iteration

number of X is cin∗I(X) def= maxS⊆X cinI(S). Note cin∗I(X) ≥ cinI(S).

Proposition 8.1 (Interval convex hull [112, 146]). Let (X, I) be an interval space
and cinI(S) the closure iteration number of an arbitrary subset S ∈ P(X). The
convex hull of S, co(S), fulfils co(S) = clkI (S) for any k ≥ cinI(S); if S is already
convex, then cinI(S) = 0. If X is an infinite set, cinI(S) can be infinitely large and
so co(S) = cl∞I (S) in general.

Proposition 8.1 (adapted from Pelayo's Proposition 2.1 [112] and Van de Vel's
Proposition 4.1.2 [146]) states that a convex hull of a set in an interval space can
be constructed recursively by applying the recursive pre-hull operator for at least as
many times as the closure iteration number of such set (Definition 8.10). Because the
support function of crossovers in RP or Ifin are interval operators, such crossovers
have corresponding recursive pre-hull operators.

Then, in terms of crossovers, generating an interval convex hull via their recursive
pre-hull operator entails generating all possible descendants of a given set of parents
by applying the crossover operator to all parent pairs and then to their offspring
recursively as Stadler, Wagner and others note [18, 51, 131]. Indeed, the set of all
descendants obtained by recursively applying a crossover on a set of parents is their
full dynastic span, which may be formalised via pre-hull operators (compare Defi-
nition 8.10 with Mitavskiy's Definition A.5 [98] and Radcliffe's Definition 37 [117]).
In short, the interval convex hull of a set of parents yields the full dynastic span of
such parents (compare Proposition 8.1 with Mitavskiy's Proposition A.4 [98]).

The following three examples illustrate the relationship between a crossover's
support function and the interval convex hull it induces on a set of parents. For
visual clarity, all examples use a reference Hamming metric space, even though
recombination P-structures and finite interval spaces need not be associated with
metric spaces. Appendices A.1–A.4 provide computer programs that helped to pre-
pare the examples.

2Some authors call it geodetic iteration number when I is a geodesic interval [112].
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Example 1: One-point Crossover vs Uniform Crossover

Let us compare first the uniform recombination P-structure (H3
2,Uniform) and

one-point recombination P-structure (H3
2,OnePoint) corresponding to the support

functions of uniform and one-point crossovers (Definitions 3.5 and 4.5) on three-
dimensional binary Hamming sequences H3

2.

S = {000, 111}

cinOnePoint(S) = 2

cl1OnePoint(S) = {0, 1}3 \ {010, 101}

111

000 100

001 101

010

011

110

cl2OnePoint(S) = {0, 1}3 ≡ ***
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000 100

001 101

010

011

110

(a)

S = {000, 111}

cinUniform(S) = 1

cl1Uniform(S) = {0, 1}3 ≡ ***

111

000 100

001 101

010

011

110

cl2Uniform(S) = {0, 1}3 ≡ ***

111

000 100

001 101

010

011

110

(b)

Figure 8.5. Comparison between the recursive pre-hull operators associated with the
one-point recombination P-structure (H3

2,OnePoint) in Figure 8.5a and the uniform
recombination P-structure (H3

2,Uniform) in Figure 8.5b for three-dimensional binary
Hamming sequences H3

2 and given set of parents S = {000, 111}. Uniform crossover
requires only one recursive application of the pre-hull operator to generate the convex hull
of S, that is cl1Uniform(S) = {0, 1}3 or schema ***, whereas one-point crossover requires
two recursive applications to generate the convex hull of S, that is cl2OnePoint(S) = {0, 1}3.

Let the set of parents S = {000, 111}. Then, applying recursively the pre-hull
operator for Uniform on S (Figure 8.5b):

cl0Uniform({000, 111}) = {000, 111} ,

cl1Uniform({000, 111}) = ∪ {Uniform(x, y) | x, y ∈ cl0Uniform({000, 111})} = {0, 1}3 ,

cl2Uniform({000, 111}) = ∪ {Uniform(x, y) | x, y ∈ cl1Uniform({000, 111})} = {0, 1}3 .
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Hence the convex hull of S is co(S) = cl1Uniform(S) = {0, 1}3 or schema ***, and
the closure iteration number is cinUniform(S) = 1 since cl2Uniform(S) = cl1Uniform(S).
Analogously, for one-point crossover (Figure 8.5a):

cl0OnePoint({000, 111}) = {000, 111} ,

cl1OnePoint({000, 111}) = ∪ {OnePoint(x, y) | x, y ∈ cl0OnePoint({000, 111})}

= {000, 001, 011, 100, 110, 111} = {0, 1}3 \ {010, 101} ,

cl2OnePoint({000, 111}) = ∪ {OnePoint(x, y) | x, y ∈ cl1OnePoint({000, 111})}

= {0, 1}3 ,

cl3OnePoint({000, 111}) = ∪ {OnePoint(x, y) | x, y ∈ cl2OnePoint({000, 111})}

= {0, 1}3 .

The convex hull is again co(S) = cl2OnePoint(S) = {0, 1}3. Therefore, {0, 1}3 is the
set of all descendants (or full dynastic span) of parents S = {000, 111} under uni-
form and one-point crossovers. Clearly, both crossovers induce a geodesic convexity
for Hamming spaces since they are geometric crossovers under Hamming distance.
The pre-hull operator of one-point crossover requires, however, one extra iteration
compared with uniform crossover. In general, one-point crossover requires the same
or more iterations than uniform crossover to achieve the same convex hull [18, 51].

Example 2: Uniform Crossover vs All-Hamming-paths Crossover

This example illustrates how a non-geodesic interval convexity differs from a geodesic
one by comparing uniform crossover and the non-geometric all-Hamming-paths
crossover (Definition 5.4). Let (H3

2,Uniform) be a uniform recombination P-
structure. Let also (H3

2,AllPaths(H(3, 2))) be an all-Hamming-paths recombina-
tion P-structure, abbreviated (H3

2,AllPaths), where H(3, 2) is a three-dimensional
binary Hamming graph whose vertex set are three-dimensional binary Hamming se-
quences H3

2. Now fix the set of parents S = {010, 110, 100} and apply recursively
the pre-hull operator for Uniform on S:

cl0Uniform({010, 110, 100}) = {010, 110, 100} ,

cl1Uniform({010, 110, 100}) = ∪ {Uniform(x, y) | x, y ∈ cl0Uniform({010, 110, 100})}

= {000, 010, 100, 110} = {0, 1}2 × {0} ,

cl2Uniform({010, 110, 100}) = ∪ {Uniform(x, y) | x, y ∈ cl1Uniform({010, 110, 100})}

= {0, 1}2 × {0} .
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S = {010, 110, 100}

cinUniform(S) = 1

cl1Uniform(S) = {0, 1}2 × {0} ≡ **0

S = {010, 110, 100}

cinAllPaths(S) = 1

cl1AllPaths(S) = {0, 1}3 ≡ ***
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Figure 8.6. Comparison between the recursive pre-hull operators associated with the
uniform recombination P-structure (H3

2,Uniform) in Figure 8.6a and the all-Hamming-
paths recombination P-structure (H3

2,AllPaths) in Figure 8.6b for three-dimensional
binary Hamming sequences H3

2 and given set of parents S = {010, 110, 100}. The convex
hull of S induced by uniform crossover is cl1Uniform(S) = {0, 1}2×{0} or schema **0, and
the convex hull of S induced by all-Hamming-paths is cl1AllPaths(S) = {0, 1}3 or schema
***. Both crossovers require only one recursive application of their pre-hull operators to
generate the convex hull of S.

Therefore, the convex hull of S induced by Uniform crossover (Figure 8.6a)
is co(S) = cl1Uniform(S) = {0, 1}2 × {0}, or equally the schema **0, since further
recursive applications cl2Uniform(S), cl3Uniform(S), etc., yield **0 again. However,
AllPaths crossover induces a different convex hull:

cl0AllPaths({010, 110, 100}) = {010, 110, 100} ,

cl1AllPaths({010, 110, 100}) = ∪ {AllPaths(x, y) | x, y ∈ cl0AllPaths({010, 110, 100})}

= {0, 1}3 ,

cl2AllPaths({010, 110, 100}) = ∪ {AllPaths(x, y) | x, y ∈ cl1AllPaths({010, 110, 100})}

= {0, 1}3 .

The convex hull of S induced by AllPaths crossover is co(S) = cl1AllPaths(S)
= {0, 1}3 or the schema *** (Figure 8.6b). This is due to the degenerate behaviour
of AllPaths (Lemma 5.1): for identical parents, AllPaths outputs such parent,
and for distinct parents, it outputs the Hamming graph's vertex set entirely. As a
result, the only possible convex sets induced by AllPaths are: the empty set ∅,
singleton sets {v} where v ∈ V (H(3, 2)), and the entire vertex set V (H(3, 2)) of
the Hamming graph H(3, 2) parametrising AllPaths. Any other set S, such as
{010, 110, 100}, is not convex: AllPaths(x, y) 6⊆ S, ∀x, y ∈ S.

Observe that both Uniform and AllPaths induce an interval convex space, yet
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only the former is geodesic. C = {0, 1}2 × {0} is geodesically convex for Uniform
since it is a (complete) geometric crossover under Hamming distance, so ∀x, y ∈ C :
Uniform(x, y) = [x, y]dH ⊆ C; however, because AllPaths is non-geometric some
of its offspring lie outside C: AllPaths(010, 000) 3 111 6∈ C, for 010, 000 ∈ C.

Example 3: Hamming Ball-mutation Segment Crossover

For the convexities in the previous examples, the convex hull of a single point would
be exactly that point as one could intuitively expect based on traditional Euclidean
convexity. Quite the opposite is true for the non-geodesic interval convexity induced
by the ball-mutation segment crossover (Definition 8.2): the convex hull of a single
point is the entire space. This example illustrates it.

S = {000}
cinBallSegment(dH,1)(S) = 2

cl0BallSegment(dH,1)(S)

111

000 100

001 101

010

011

110

cl1BallSegment(dH,1)(S)

111

000 100

001 101

010

011

110

cl2BallSegment(dH,1)(S)
111

000 100

001 101

010

011

110

cl3BallSegment(dH,1)(S)
111

000 100

001 101

010

011

110

Figure 8.7. Recursive application of the pre-hull operator for the finite interval space
(H3

2,BallSegment(dH, 1)) associated with the ball-mutation segment crossover with ra-
dius one BallSegment(dH, 1) on three-dimensional binary Hamming sequencesH3

2 under
Hamming distance dH. After two recursive applications of the pre-hull operator, the con-
vex hull of {000} induced by BallSegment(dH, 1) is cl2BallSegment(dH,1)({000}) = {0, 1}3
or schema ***.

Let (H3
2,BallSegment(dH, 1)) be a finite interval space for the ball-mutation

segment crossover, parametrised with Hamming distance dH and radius one, on
three-dimensional binary Hamming sequences H3

2. Fix a set of parents S = {000}.
Applying the pre-hull operator of BallSegment(dH, 1) recursively on S yields the
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convex hull cl2BallSegment(dH,1)(S) = {0, 1}3 or schema *** (Figure 8.7):

cl0BallSegment(dH,1)({000}) = {000} ,

cl1BallSegment(dH,1)({000})

= ∪ {BallSegment(dH, 1)(x, y) | x, y ∈ cl0BallSegment(dH,1)({000})}

= {000, 001, 010, 100} ,

cl2BallSegment(dH,1)({000})

= ∪ {BallSegment(dH, 1)(x, y) | x, y ∈ cl1BallSegment(dH,1)({000})}

= {0, 1}3 , (note 111 ∈ BallSegment(dH, 1)(001, 010))

cl3BallSegment(dH,1)({000})

= ∪ {BallSegment(dH, 1)(x, y) | x, y ∈ cl2BallSegment(dH,1)({000})}

= {0, 1}3 .

In fact, regardless of which set S is chosen, as long as it is non-empty, the
convex hull is {0, 1}3. In this example, the closure iteration number will be at
worst cinBallSegment(dH,1)(S) = 2 when S is singleton (Figure 8.7); increasing the
number of points in S, can only reduce its closure iteration number. The reason
being that ∅ and {0, 1}3 are the only convex sets for the interval convexity induced
by the ball-mutation segment crossover. Due to the mutation component, any other
set S distinct from ∅ and {0, 1}3 such as {000} is not convex as in Definition 8.7:
BallSegment(dH, 1)(x, y) 6⊆ S, ∀x, y ∈ S.

To summarise, the key points of the three previous examples are:

• In general, interval spaces (X, I) require an infinite number of iterations to
construct a convex hull using the recursive pre-hull operator. For finite interval
spaces it can be achieved in finitely many iterations since X is finite.

• Some non-geometric crossovers (e.g. all-Hamming-paths and ball-mutation
segment) induce ‘degenerate’ interval convexities because applying them (re-
peatedly) on a set of parents may produce all individuals in a given space.

• Different crossovers may induce different abstract interval convexities with
different notions of convex hull even if the crossovers are defined on the same
set of candidate solutions (e.g. binary Hamming sequences).

• Interval convex hulls may be geodesic or non-geodesic.
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8.4 Abstract Behaviour of Formal Interval EAs
This section proves that the abstract behaviour of formal interval EAs (Defini-
tion 8.4) or any subclass thereof, including recombination P-structure EAs (Defini-
tion 8.5), is abstract interval convex evolutionary search as shown in Theorem 8.7
and its Corollary 8.1. In particular, for geometric recombination P-structure EAs,
Corollary 8.2 shows abstract interval convex evolutionary search reduces to abstract
geodesically convex evolutionary search (Proposition 6.1). That is, abstract interval
convex evolutionary search may be geodesically convex or non-geodesically convex
depending on the underlying crossover class; see Table 8.3 below.

If the crossover belongs to the class of geometric recombination P-structures
RP-geometric = GX ∩ RP , then its interval convexity is geodesic as for geometric
crossovers, and offspring will always lie within a geodesic convex hull of parents
(Proposition 6.2), leading to abstract geodesically convex evolutionary search. By
contrast, if the crossover is non-geometric and belongs either to RP or Ifin, then
its interval convexity can be non-geodesic, and offspring can lie within a possibly
non-geodesic interval convex hull of parents (Lemma 8.2), leading to abstract non-
geodesically convex evolutionary search.

Crossover class EA class Interval convexity Abstract interval con-
vex evolutionary search

Ifin Formal interval EA Finite interval
convexity

Non-geodesically convex
RP Recombination P-structure EA Recombination P-

structure convexity

RP-geometric Geometric recomb. P-struct. EA Geodesic convexity Geodesically convex

Table 8.3. Main types of abstract interval convex evolutionary search associated with
crossover classes, EA classes and abstract convexities.

Lemma 8.2. Selection, crossover and replacement population operators of a formal
interval EA are convex population operators for any finite interval space (X, I).

Proof. First, note that by Definition 8.10 and Proposition 8.1 the maximum closure
iteration number m = cin∗I(X) is finite m < ∞ for finite interval spaces. So the
recursive pre-hull operator always produces a convex hull after m iterations co(S) =
clmI (S) regardless of S ⊆ X since m ≥ cinI(S) the closure iteration number of S. To
simplify notation, multi-sets (i.e. populations) are treated in terms of their support
sets. The rest of this proof is similar to Moraglio's [101] proof of Proposition 6.2 for
geometric-crossover EAs.
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Selection. Let P ′ = s(P ) be a population resulting from a selection population
operator s on an input population P as defined in Section 8.2.2. If P ′ ⊆ co(P ),
then s is a convex population operator. By definition of s, P ′ ⊆ P , and by
Kuratowski's axiom of extensivity in Definition 8.9, P ⊆ co(P ). Therefore,
P ′ ⊆ P ⊆ co(P ).

Crossover. Let P ′ = c(P ) be a population resulting from a crossover population
operator c on an input population P as defined in Section 8.2.2. If P ′ ⊆ co(P ),
then c is a convex population operator. By definition of c, all offspring z ∈ P ′

fulfil z ∈ I(x, y) for at least one pair of parents x, y ∈ P . By Definition 8.10,
I(x, y) ⊆ clmI ({x, y}) ⊆ clmI (P ). By Proposition 8.1, co(S) = clmI (S) for any
subset S. Therefore, I(x, y) ⊆ co({x, y}) ⊆ co(P ), hence P ′ ⊆ co(P ).

Replacement. Let P3 = r(P1, P2) be a population resulting from a replacement pop-
ulation operator r on input populations P1 and P2 as defined in Section 8.2.2.
If whenever P2 ⊆ co(P1), P3 ⊆ co(P1) holds, then r is a convex population
operator. By definition of r, P3 ⊆ P1 ∪ P2. Moreover, P3 ⊆ co(P3) by Kura-
towski's axiom of extensivity, and P3 ⊆ P1 ∪ P2 =⇒ co(P3) ⊆ co(P1 ∪ P2) by
Kuratowski's axiom of isotony (Definition 8.9). So P3 ⊆ co(P3) ⊆ co(P1 ∪P2).
Now, suppose P2 ⊆ co(P1), then:

co(P1 ∪ P2) ⊆ co(P1 ∪ co(P1))

= co(co(P1)) using Kuratowski's axiom of extensivity

= co(P1) by Kuratowski's axiom of idempotency.

Therefore, P3 ⊆ co(P3) ⊆ co(P1 ∪ P2) ⊆ co(P1).

Theorem 8.7 (Abstract interval convex evolutionary search [49]). Let (X, I)
be any finite interval space and Pt ⊆ X a population at generation t ≥ 0, with P0

being the initial population. Then, there exists a finite maximum closure iteration
number m = cin∗I(X) such that clmI (P0) ⊇ clmI (P1) ⊇ · · · ⊇ clmI (Pt) ⊇ clmI (Pt+1),
for any formal interval EA repeating the cycle of population operators: selection,
crossover and replacement.

Proof. We need to prove that such maximum closure iteration number exists and
the nested chain of inclusions is formed:

(a) By Proposition 8.1, for any population Pt there is a natural number k ≥ cin(Pt)
such that co(Pt) = clkI (Pt). By Definition 8.10, the maximum closure iteration
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number m = cin∗I(X) fulfils m ≥ k = cin(Pt) since all populations Pt are
subsets of X and m <∞ since (X, I) is finite. Hence ∀Pt : co(Pt) = clmI (Pt).

(b) From (a) there is a finite maximum closure iteration number m such that
∀Pt : co(Pt) = clmI (Pt). By Lemma 8.2, selection s, crossover c and replacement
r are convex population operations, so their sequential application on a parent
population Pt produces an offspring population Pt+1 = r

(
Pt, c(s(Pt))

)
where

Pt+1 ⊆ co(Pt) since c(s(Pt)) ⊆ co(Pt). Therefore, co(Pt+1) ⊆ co(co(Pt)) =
co(Pt) by Kuratowski's axioms of isotony and idempotency (Definition 8.9),
so the nested chain of inclusions follows by induction on t since t was chosen
arbitrarily.

Restricting the underlying crossover of formal interval EAs from the class of finite
interval operators Ifin to recombination P-structures RP leads to recombination
P-structure EAs (Section 8.2.2) whose behaviour is also abstract interval convex
evolutionary search (Corollary 8.1).

Corollary 8.1 (Abstract interval convex evolutionary search [49]). Let (X,R)
be any recombination P-structure and Pt ⊆ X a population at generation t ≥ 0, with
P0 being the initial population. Then, there exists a finite maximum closure iteration
number m = cin∗R(X) such that clmR(P0) ⊇ clmR(P1) ⊇ · · · ⊇ clmR(Pt) ⊇ clmR(Pt+1),
for any recombination P-structure EA repeating the cycle of population operators:
selection, crossover and replacement.

Proof. It follows immediately from Theorem 8.7 and that any recombination P-
structure EA is a formal interval EA by Definition 8.5.

If recombination P-structures RP are further restricted to geometric recombina-
tion P-structures RP-geometric, then the corresponding recombination P-structure
EA becomes a geometric-crossover EA. In such case, abstract interval convex evolu-
tionary search and abstract geodesically convex evolutionary search become equiv-
alent (see Corollary 8.2 and Figure 8.8 below).

Corollary 8.2 (Abstract interval convex evolutionary search ≡ abstract
geodesically convex evolutionary search [49]). Any recombination P-structure
EA over a geometric recombination P-structure does abstract geodesically convex
evolutionary search. Also, any geometric-crossover EA over a geometric recombina-
tion P-structure does abstract interval convex evolutionary search. So abstract inter-
val convex evolutionary search and abstract geodesically convex evolutionary search
are equivalent when both are restricted to geometric recombination P-structures.
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Proof. Any crossover in the class RP-geometric = GX ∩ RP is both a geometric
crossover and a (geometric) recombination P-structure by Theorem 5.15. Hence by
Definitions 6.3 and 8.5, any recombination P-structure EA using geometric recom-
bination P-structures is a geometric-crossover EA; and conversely, any geometric-
crossover EA using a geometric recombination P-structure is a recombination P-
structure EA. Therefore, by Corollary 8.1 any geometric-crossover EA using geo-
metric recombination P-structures does abstract interval convex evolutionary search;
and, by Proposition 6.1 any recombination P-structure EA using geometric recom-
bination P-structures does abstract geodesically convex evolutionary search.

Recombination P-structure EA
on RP-geometric

Definition 6.3

Definition 8.5
Geometric-crossover EA

on RP-geometric

Corollary 8.2Abstract interval convex Abstract geodesically convex
evolutionary searchevolutionary search

Corollary 8.1 Proposition 6.1

Figure 8.8. Equivalence between abstract interval convex evolutionary search and
abstract geodesically convex evolutionary search for recombination P-structure EAs
and geometric-crossover EAs on geometric recombination P-structures RP-geometric.
Bidirectional arrows mean equivalence; unidirectional arrows mean conformity.

Remark 8.1 (Theorem 8.7 and Corollaries 8.1–8.2). Abstract interval convex evo-
lutionary search does not necessarily generalise abstract geodesically convex evo-
lutionary search of geometric-crossover EAs for geometric crossovers that are not
finite interval operators, namely crossovers in the class GX ∩ Ifin.

According to Theorem 8.7 and Corollaries 8.1–8.2, any formal interval EA does a
form of abstract interval convex evolutionary search, whether geodesically convex or
not, regardless of: a specific representation of solutions, problem (fitness function),
crossover in the class Ifin (possibly using mutation) without assumptions on specific
probability distributions over offspring, selection or replacement mechanisms, and
whether the population size varies or not through generations. Theorem 8.7 is true
not just for crossovers covered by recombination P-structures RP but any kind of
crossover as long as it is symmetric and returns parents in the offspring set, namely
finite interval operators Ifin. Corollary 8.2 proves that is exactly equivalent to
abstract geodesically convex evolutionary search when restricting to crossovers in
RP-geometric, but what about other (non-geometric) crossovers in RP or Ifin?
The following Section 8.4.1 exemplifies both abstract geodesically convex and non-
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geodesically convex evolutionary search to grasp how ‘analogous’ they really are,
postponing a discussion to Section 8.5.

8.4.1 Illustrating Formal Interval EAs Convergence

An abstract interval convex evolutionary search performed by a formal interval EA
after t ≥ 0 generations, in a finite interval space (X, I) with maximum closure
iteration number m = cin∗I(X), is described by the nested chain of interval convex
hulls clmI (P0) ⊇ · · · ⊇ clmI (Pt) corresponding to a specific sequence of populations
(Pi)i∈{0,...,t} that such formal interval EA has generated (Theorem 8.7). We can
distinguish the following three principal cases of the nested inclusion chain:

(a) Strictly decreasing: clmI (P0) ⊃ clmI (P1) ⊃ · · · ⊃ clmI (Pt).

(b) Weakly decreasing, so the nested chain of interval convex hulls decreases at
some point. That is, there exist i, j ∈ {0, . . . , t} where i < j such that
clmI (Pi) ⊃ clmI (Pj).

(c) Non-decreasing: clmI (P0) = clmI (P1) = · · · = clmI (Pt).

Observe that for each generation i, the population Pi fulfils Pi ⊆ clmI (Pi) due to Ku-
ratowski's extensivity axiom (Definition 8.9) provided that co(Pi) = clmI (Pi) due to
Proposition 8.1. Thus a nested chain strictly or weakly decreasing over generations
forces populations to confine themselves to increasingly more specific regions of the
interval space (X, I). In this sense, three ‘coarse-grained’ types of convergence for
abstract interval convex evolutionary search are distinguished (Definition 8.11). For
the sole illustrative purposes of this section is not necessary to make Definition 8.11
more precise nor distinguish other possible cases than the ones above.

Definition 8.11 (Formal interval EA: coarse-grained convergence). The ab-
stract interval convex evolutionary search of a formal interval EA for a particular
sequence of populations is said to be: (a) strictly convergent, if the nested chain of
interval convex hulls is strictly decreasing; (b) weakly convergent, if the nested chain
of interval convex hulls is weakly decreasing; or, (c) stationary or non-convergent, if
if the nested chain of interval convex hulls is non-decreasing.

The actual search of a formal interval EA is described by the sequence of popu-
lations generated, instead of their nested chain of interval convex hulls. Hereinafter,
if a sequence of populations is said to converge, it means that the number of copies
of specific candidate solutions or individuals increase so populations become more
homogeneous over generations [4].
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Definition 8.11 allows us to easily compare how, for a given population sequence,
different crossovers in the class Ifin of finite interval operators lead to different
types of convergence by comparing the nested chain of interval convex hulls that
such crossovers induce. This links explicitly the extended classification of crossovers
(Section 8.2.1) with their associated interval convexities (Section 8.3) and conver-
gence of formal interval EAs from a qualitative viewpoint. Recall from Section 8.3
that certain non-geometric crossovers in Ifin, like all-Hamming-paths or Hamming
ball-mutation segment, induce degenerate convexities because repeatedly applying
them on a set of parents can produce offspring anywhere in the search space of
solutions. Yet any formal interval EA based on them does abstract interval convex
evolutionary search due to Theorem 8.7. The purpose of the following examples
summarised in Table 8.4 is to illustrate that, even if the actual sequence of popula-
tions converges to a specific individual, the abstract convex evolutionary search can
be stationary or non-convergent. The abstract behaviour of a formal interval EA
may not always reflect the specific behaviour of the populations it generates.

EA Selection Crossover Mutation Replacement Abstract behaviour

Geometric recombination
P-structure EA

* Uniform None Generational Figure 8.9a

Recombination
P-structure EA

* Balls(dH) None Generational Figure 8.9b

Recombination
P-structure EA

* AllPaths(H(4, 2)) None Generational Figure 8.9c

Formal interval EA * BallSegment(dH, 1) Yes† Generational Figure 8.9d
* Fixed but unspecified
† BallSegment(dH, 1) equates to uniform crossover followed by single bit-flip mutation (see Figure 8.2b)

Table 8.4. Examples of formal interval EAs, given by main population operators, and as-
sociated abstract behaviours. Crossover operators are: uniform (Uniform), intersecting-
Hamming-balls (Balls(dH)), all-Hamming-paths (AllPaths(H(4, 2))), and Hamming
ball-mutation segment with radius one (BallSegment(dH, 1)); where H(4, 2) is a four-
dimensional binary Hamming graph and dH the Hamming distance.

The examples in Figure 8.9 consider distinct variants of a formal interval EA
(Table 8.4) that only differ in their respective crossover and all the following are fixed:
(a) individuals represented by binary Hamming sequences of length four, (b) no
mutation (except for the mutation implicit in ball-mutation segment crossover),
(c) generational replacement, and (d) the population size is four. To facilitate their
comparison, the examples assume all these formal interval EAs can generate the
same sequence of populations in Figure 8.9e via some selection mechanism that is
fixed but left unspecified since any fitness related aspect is not a concern for the
examples' purpose.
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P0 P1 P2 P3 P4

k = cinUniform(Pi) 1 1 1 0 0

clkUniform(Pi) {0, 1}4
(****)

⊃ {0} × {0, 1}3
(0***)

⊃ {0}2 × {0, 1}2
(00**)

⊃ {0}2 × {1} × {0, 1}
(001*)

⊃ {0011}

(a) Uniform: geodesically convex, strictly convergent

P0 P1 P2 P3 P4

k = cinBalls(dH)(Pi) 2 2 2 0 0

clkBalls(dH)(Pi) {0, 1}4

(****)
= {0, 1}4

(****)
= {0, 1}4

(****)
⊃ {0}2 × {1} × {0, 1}

(001*)
⊃ {0011}

(b) Intersecting-Hamming-balls: non-geodesically convex, weakly convergent

P0 P1 P2 P3 P4

k = cinAllPaths(H(4,2))(Pi) 1 1 1 1 0

clkAllPaths(H(4,2))(Pi) {0, 1}4

(****)
= {0, 1}4

(****)
= {0, 1}4

(****)
= {0, 1}4

(****)
⊃ {0011}

(c) All-Hamming-paths: non-geodesically convex, weakly convergent

P0 P1 P2 P3 P4

k = cinBallSegment(dH,1)(Pi) 1 1 2 2 3

clkBallSegment(dH,1)(Pi) {0, 1}4

(****)
= {0, 1}4

(****)
= {0, 1}4

(****)
= {0, 1}4

(****)
= {0, 1}4

(****)

(d) Hamming ball-mutation segment: non-geodesically convex, stationary


(1 1 0 1),
(0 0 1 0),
(0 0 1 0),
(0 1 0 0)




(0 0 1 0),
(0 1 0 1),
(0 0 0 1),
(0 0 0 0)




(0 0 1 0),
(0 0 1 1),
(0 0 0 1),
(0 0 1 0)




(0 0 1 0),
(0 0 1 1),
(0 0 1 1),
(0 0 1 1)




(0 0 1 1),
(0 0 1 1),
(0 0 1 1),
(0 0 1 1)


P0 P1 P2 P3 P4

(e) Populations

Figure 8.9. Abstract interval convex evolutionary search (Figures 8.9a–8.9d) induced
by each formal interval EA variant in Table 8.4 on an initial population P0 during four
generations (Figure 8.9e). For each population Pi, each example indicates the correspond-
ing interval convex hull (or schema) produced by the pre-hull operator clk· (Pi) and clo-
sure iteration number k for crossovers: uniform (Uniform), intersecting-Hamming-balls
(Balls(dH)), all-Hamming-paths (AllPaths(H(4, 2))), and Hamming ball-mutation seg-
ment (BallSegment(dH, 1)). The closure iteration numbers are obtained with the help
of computer programs in Appendices A.1–A.4, except for all-Hamming-paths which is
trivially one for any set with at least two different elements.

145



CHAPTER 8. A QUALITATIVE FRAMEWORK FOR ABSTRACT INTERVAL
CONVEX SEARCH OF EVOLUTIONARY ALGORITHMS

Figure 8.9 shows abstract interval convex evolutionary search, from strictly con-
vergent in Figure 8.9a to stationary in Figure 8.9d, for various crossovers in all
three main crossover classes (GX , RP and Ifin) that comprehend distinctive fea-
tures of geometric crossovers, monotonic recombination P-structures and highly local
crossovers (see Definitions 3.3, 4.9 and 5.7 respectively):

• Uniform crossover: geometric, monotonic and highly local.

• Intersecting-Hamming-balls crossover: non-geometric, non-monotonic and highly
local.

• All-Hamming-paths crossover: non-geometric and non-monotonic.

• Hamming ball-mutation segment crossover: non-geometric, non-monotonic
and uses mutation.

Out of these, uniform crossover, precisely the only geometric crossover, is the only
one inducing abstract interval convex evolutionary search that strictly converges
(Figure 8.9a) according to Definition 8.11. Observe the nested chain of interval con-
vex hulls indicates a succession of increasingly specific schemas that reflect how pop-
ulations converge towards 0011. However, that is not the case for the non-geometric
crossovers above; their interval convex hulls degenerate to {0, 1}4 or schema **** for
most (or all) of the populations, so the corresponding nested chains no longer reflect
the actual progress of populations towards 0011. For instance, the intersecting-
Hamming-balls and all-Hamming-paths crossovers induce abstract interval convex
evolutionary search that weakly converges (Figures 8.9b–8.9c), but it is stationary
for most generations. Only when the populations have (practically) converged to
0011, do their interval convex hulls become more specific than schema ****. The
last and least convergent of all examples is in Figure 8.9d, where the Hamming ball-
mutation segment crossover induces the stationary type of abstract interval convex
evolutionary search: nothing relevant can be said about the actual population be-
haviour from the nested chain of interval convex hulls, except that the schema ****
matches all populations.

Changing the populations in Figure 8.9e does not fundamentally change the types
of abstract interval convex evolutionary search in Figures 8.9a–8.9d because the it
does not fundamentally change the interval convexities and convex hulls induced
by the crossovers. The interval convex hulls induced by Hamming ball-mutation
segment, all-Hamming-paths and intersecting-Hamming-balls crossovers would be
**** as long as the populations are respectively: non-empty, contain two individuals
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that differ in at least one position, and contain two individuals that differ in at least
two positions.

Other Examples of Abstract Interval Convex Evolutionary Search

Although Figure 8.9 exemplifies all coarse-grain types of convergence for abstract
interval convex evolutionary search, it does not cover all cases for geodesic and non-
geodesic convexities neither all crossovers in the class Ifin of finite interval operators.
These other cases may not occur in practice, they may be analogous, or it may be
hard to find non-trivial examples. For instance:

• Identity crossover. By Definition 4.4, Id is a fix-point operator Id(x, y) =
{x, y} for all parents x, y ∈ S ⊆ X and finite set X, so any offspring set
Id(x, y) is interval convex for any such x, y ∈ S: Id(x, y) ⊆ S. Trivially, the
interval convex hull is cl0Id(S) = cl1Id(S) = S. In the absence of mutation and
selection, any formal interval EA only using Id generates trivial sequences
of populations P0, P1, . . . , Pt identical to the initial population P0; that may
not be the case for other crossovers. So cl0Id(P0) = · · · = cl0Id(P0) is the only
possible nested chain since cl0Id(P0) = P0. Therefore, the abstract interval
convex evolutionary search is stationary according to Definition 8.11.

• One-point crossover. Given the same sequence of populations, OnePoint
crossover induces the same abstract interval convex evolutionary search as
Uniform crossover (i.e. strictly convergent for the example in Figure 8.9a).
The reason is their respective interval convex hulls clkOnePoint(S) and clk′Uniform(S)
coincide for any set S of Hamming sequences, even if their closure iteration
numbers k = cinOnePoint(S) and k′ = cinUniform(S) do not (Section 8.3).

• Uniform crossover. Uniform need not always induce abstract interval con-
vex evolutionary search that is strictly convergent as in Figure 8.9a. If all
populations in Figure 8.9e had all individuals differing in all positions (i.e.
∀i ∈ {0, . . . , 4} ∀x, y ∈ Pi : dH(x, y) = 4), then the nested chain of interval con-
vex hulls would be **** = · · · = **** as for BallSegment(dH, 1) crossover
in Figure 8.9d. In practice, such sequence of populations may be unlikely; as-
suming no mutation and some level of elitism via selection, populations would
begin to converge, so individuals would not differ in all positions. In this sense,
Uniform is unlikely to induce the stationary type of abstract interval convex
evolutionary search, as opposed to crossovers like BallSegment(dH, 1) which
always induces it whenever populations are non-empty.
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• Symmetric Davis's order crossover. Except for trivial populations (e.g. empty
or containing identical individuals), all-Hamming-paths, intersecting-Hamming-
balls and Hamming ball-mutation segment crossovers never induce the strictly
convergent type of abstract interval convex evolutionary search. By contrast,
sym-Davis crossover (Definition 5.2) is the only known non-geometric crossover
in the class Ifin which compares to geometric crossovers like Uniform be-
cause, for some non-trivial sequences of populations, it can induce the strictly
convergent type of abstract interval non-geodesically convex evolutionary search
as in Figure 8.10 for the permutation space SX of elements inX = {1, 2, 3, 4, 5}.

P0 P1 P2 P3

k = cinsym-Davis(Pi) 2 0 0 0

clksym-Davis(Pi) S{1,2,3,5} × {4} ⊃ S{1,2,3} × {5} × {4} ⊃ {13254, 31254} ⊃ {31254}

(a) Symmetric Davis's order: non-geodesically convex, strictly convergent

{
(2 1 3 5 4),
(1 2 3 5 4),
(1 3 5 2 4),

} {
(2 1 3 5 4),
(1 3 2 5 4),
(3 1 2 5 4),

} {
(1 3 2 5 4),
(3 1 2 5 4),
(3 1 2 5 4),

} {
(3 1 2 5 4),
(3 1 2 5 4),
(3 1 2 5 4),

}
P0 P1 P2 P3

(b) Populations

Figure 8.10. Abstract interval convex evolutionary search (Figure 8.10a) induced on
an initial population P0 during three generations (Figure 8.10b) by a formal interval EA
with symmetric Davis's order crossover, no mutation and generational replacement. For
each population Pi, clksym-Davis(Pi) indicates the corresponding interval convex hull with
closure iteration number k = cinsym-Davis(Pi) for symmetric Davis's order crossover. (see
Appendix A.2 for the computer program used to prepare the example.)

8.4.2 Interpreting Abstract Convex Evolutionary Search as
Nested Generalised Schemas or Invariant Subsets

The examples in Figure 8.9 illustrate that abstract interval convex evolutionary
search in finite interval spaces based on binary Hamming sequences can be described
by Holland's schemas [65]. The nested chain of populations' convex hulls corresponds
to a succession of schemas, where the schema of an offspring population is either
equal or more specific than its parent population. In binary Hamming metric spaces,
schemas have a dual nature: they may refer to geodesically convex sets of binary
Hamming sequences or syntactic patterns representing those sets (see Section 6.2.2
for more details).
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However, abstract interval convex evolutionary search (Theorem 8.7) applies to
any finite interval space, not just those defined on binary Hamming sequences. For-
tunately, there is a representation-independent notion of schemas, called generalised
schemas [98, 99], which generalises Holland's when viewed as subsets of solutions
rather than syntactic patterns representing them. Indeed, generalised schemas are
also called invariant subsets precisely because they are the subsets of a space which
are closed or invariant under a given operator, that is Definition 8.12.

Definition 8.12 (Generalised schema [98, 99]). Let an arbitrary non-empty
set X. Then, S ⊆ X is a generalised schema or invariant subset with respect
to a given operator defined on X, if for any input parents P ⊆ S the operator
outputs all offspring as a subset of S.

Based on Definition 8.12, Mitavskiy's Proposition A.1 [98] shows that the fam-
ily of all generalised schemas or invariant subsets in some arbitrary space actually
constitutes a family of convex sets of a corresponding aligned space (Definition 8.8);
interval convex spaces being a particular case of them (Definition 8.7) as Figure 8.4
showed in Section 8.3. Thus, the (interval) convex hull of a given set is the most
specific generalised schema or smallest invariant subset that includes the given set,
leading immediately to the next Corollary 8.3 of Theorem 8.7.

Corollary 8.3 (Interpretation via generalised schema). Let (X, I) be any
finite interval space. Let also clmI (P0) ⊇ clmI (P1) ⊇ · · · ⊇ clmI (Pt) ⊇ clmI (Pt+1) be the
nested chain of interval convex hulls on populations Pt ⊆ X produced by a formal
interval EA through generations t ≥ 0, where m = cin∗I(X) is the maximum closure
iteration number. Then, any clmI (Pt) is a generalised schema or invariant subset with
respect to r

(
Pt, c(s(Pt))

)
, that is the sequential application of selection s, crossover

c and replacement r population operators of the formal interval EA.

Proof. Recall from Theorem 8.7 that Pt+1 = r
(
Pt, c(s(Pt))

)
⊆ co(Pt) = clmI (Pt)

holds because of Proposition 8.1 and because s, c and r are convex population
operators (Lemma 8.2). Since any interval convex hull clmI (Pt) is a convex set, it
is also a generalised schema or invariant subset as in Definition 8.12 due to Mi-
tavskiy's Proposition A.1 [98].

Remark 8.2 (Alternative proof of Corollary 8.3). To prove co(Pt) is an invariant
subset with respect to the sequential application of s, c and r, we have to prove
such application on any population P ′t ⊆ co(Pt) yields an offspring population P ′t+1

such that P ′t+1 ⊆ co(Pt). That is, to prove P ′t+1 = r
(
P ′t , c(s(P ′t))

)
⊆ co(Pt) holds

∀P ′t ⊆ co(Pt). Suppose P ′t ⊆ co(Pt). Then, co(P ′t) ⊆ co(co(Pt)) = co(Pt) by
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Kuratowski's axioms of isotony and idempotency (Definition 8.9). Because s and
c are convex population operators, c(s(P ′t)) ⊆ co(P ′t). Since r is also a convex
population operator and c(s(P ′t)) ⊆ co(P ′t), it follows: r

(
P ′t , c(s(P ′t))

)
⊆ co(P ′t).

Therefore, P ′t+1 = r
(
P ′t , c(s(P ′t))

)
⊆ co(P ′t) ⊆ co(Pt).

Then, Corollary 8.3 proves abstract interval convex evolutionary search (Theo-
rem 8.7) has an alternative interpretation via generalised schemas or invariant sub-
sets. Any formal interval EA produces a sequence of populations corresponding to
a nested inclusion chain of generalised schemas or invariant subsets associated with
a geodesic or non-geodesic interval convexity, regardless of: a specific representation
of solutions, problem (fitness function), crossover in the class Ifin (possibly using
mutation) without assumptions on specific probability distributions over offspring,
selection or replacement mechanisms, and whether the population size varies or not
through generations.

It must be noted that, unlike Holland's schemas, generalised schemas as in
Definition 8.12 may not always correspond to a syntactic pattern; and, if one
does, it may not suitably describe allelic similarities of offspring produced by the
crossover at hand. (That is, offspring sharing specific alleles at specific positions.)
The following example shows how generalised schemas, or interval convex sets,
induced by the symmetric Davis's order crossover (Definition 5.3) correspond to
a syntactic pattern for permutations enforcing specific symbols (i.e. alleles) must
appear at fixed positions. This pattern is Goldberg's absolute ordering schema [53]
under a slightly different notation. However, the symmetric Davis's order crossover,
like the original (non-symmetrised) Davis's order crossover (Definition 5.2) [31],
respects the relative ordering of parents alleles in the offspring but not necessarily
their absolute ordering for all offspring.

Example Based on Symmetric Davis's Order Crossover for Permutations

Recall from Figure 8.10, in Section 8.4.1, the finite interval space (SX , sym-Davis)
over the set of permutations (without repetitions) SX of X = {1, 2, 3, 4, 5} and sym-
Davis the symmetric Davis's order crossover. The nested chain of interval convex
hulls (Figure 8.10a) induced by sym-Davis for the populations in Figure 8.10b is:

(S{1,2,3,5} × {4}) ⊃ (S{1,2,3} × {5} × {4}) ⊃ (S{1,3} × {2} × {5} × {4}) ⊃ {31254} .

It can be regarded a nested chain of generalised schemas as follows.
Observe S{1,2,3,5} × {4} comprises only those permutations whose rightmost ele-

ment is four, out of all possible in SX . Therefore, S{1,2,3,5} × {4}, or a permutation
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of the form s1s2s3s44, can be said to be a generalised schema where 4 is fixed and
the juxtaposed sequence of variables s1s2s3s4 acts as a ‘wildcard’ representing any
permutation in S{1,2,3,5}. Likewise, S{1,2,3} × {5} × {4} comprises only those per-
mutations whose two rightmost elements are five and four, out of all possible in
SX . Therefore, S{1,2,3} × {5} × {4}, or a permutation of the form s1s2s354, would
be a generalised schema where 5 and 4 are fixed and s1s2s3 is any permutation in
S{1,2,3}. More precisely, s1s2s3s44 and s1s2s354 are the smallest invariant subsets or
generalised schemas induced by sym-Davis that include, respectively, populations
P0 and P1 in Figure 8.10b.

Clearly, S{1,2,3} × {5} × {4} is a subset of S{1,2,3,5} × {4}, or, in other words,
s1s2s354 is a generalised schema that is more specific than s1s2s3s44. Following
the same reasoning for the rest of the populations explains why the aforesaid nested
chain of interval convex hulls may be regarded a nested chain of generalised schemas.

In contrast with Holland's schema, where a wildcard is a single symbol * that
always represents any of {0, 1, . . . , q−1}n for n-dimensional q-ary (q ≥ 2) Hamming
sequences, here a wildcard has the form of a permutation that varies depending
on the fixed symbols of the generalised schema. The wildcard for s1s2s354 is a
permutation of length three s1s2s3 ∈ S{1,2,3} where 5 and 4 cannot be used in s1s2s3;
for instance, s14s354 and s151254 are not generalised schemas because this example
considers permutations without repetitions and do not match any permutation in
S{1,2,3} × {5} × {4}.

ANote on Monotonic Recombination P-structures vs Generalised Schemas

Interestingly, the nested chain of generalised schemas induced by a formal interval
EA may be regarded a generalisation of the invariance present in monotonic recom-
bination P-structures (X,R), where R(u, v) ⊆ R(x, y) for any parents x, y ∈ X

and offspring u, v ∈ R(x, y). Offspring sets R(x, y) of monotonic recombination
P-structures are, by Definition 4.9, generalised schemas (Lemma 8.3) and always
coincide with the interval convex hull of parents (Theorem 8.8).

Lemma 8.3. Let (X,R) be any monotonic recombination P-structure and arbitrary
x, y ∈ X. Then, R(x, y) is a generalised schema with respect to R.

Proof. To prove that the offspring set R(x, y), for arbitrary parents x, y ∈ X, is
a generalised schema with respect to R, we have to prove that recombining any
possible subset of offspring S ⊆ R(x, y) results in grandchildren that belong to
R(x, y), that is ∀u, v ∈ S ⊆ R(x, y) : R(u, v) ⊆ R(x, y). It follows immediately
from Definition 4.9 of monotonic recombination P-structures.
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Theorem 8.8. Let (X,R) be any monotonic recombination P-structure and arbi-
trary x, y ∈ X. Then, R(x, y) = clkR({x, y}) = co({x, y}) and k = cinR({x, y}) ≤ 1.

Proof. From Definition 8.10 of recursive pre-hull operator:

cl0R({x, y}) = {x, y} ,

cl1R({x, y}) = ∪ {R(x′, y′) | x′, y′ ∈ {x, y}}

= ∪ {R(x, x),R(y, y),R(x, y),R(y, x)}

= R(x, y) , (8.1)

where the last equality (Equation 8.1) follows from symmetry and null-recombination
axioms of recombination P-structures (Definition 4.3). Now, either {x, y} is interval
convex or it is not.

• Case 1. Assume it is interval convex, so ∀x′, y′ ∈ {x, y} : R(x′, y′) ⊆ {x, y}.
Then, cl1R({x, y}) = R(x, y) = {x, y} = cl0R({x, y}) for the null-recombination
axiom {x, y} ⊆ R(x, y) and the above assumption implying R(x, y) ⊆ {x, y}.

• Case 2. Assume it is not interval convex, so ∀x′, y′ ∈ {x, y} : R(x′, y′) 6⊆ {x, y}.
Then, continuing with the recursive pre-hull operator:

cl2R({x, y}) = ∪ {R(x′, y′) | x′, y′ ∈ cl1R({x, y})}

= ∪ {R(x′, y′) | x′, y′ ∈ R(x, y)}

= R(x, y) (8.2)

= cl1R({x, y}) ,

where the penultimate equality in Equation 8.2 follows from: the axiom of
null-recombination {x, y} ⊆ R(x, y), and R being a monotonic recombination
P-structure or generalised schema R(x′, y′) ⊆ R(x, y) (Lemma 8.3).

In either case R(x, y) = clkR({x, y}) = co({x, y}) and the closure iteration number
is k ≤ 1.

8.5 Discussion
This chapter showed the class of formal interval EAs do a generalised form of abstract
convex evolutionary search and can use some geometric or non-geometric crossovers
as well as mutation, effectively unifying geometric-crossover EAs and recombination
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P-structure random walks by asking a fundamental two-fold question. Is there
any class of EAs, other than geometric-crossover EAs, based on recombination P-
structures and whose behaviour is analogous to abstract convex evolutionary search?
Is it still true, if such EAs use mutation? (Question 8.1.)

The discussion of Question 8.1 and formal interval EAs is split into: the extended
classification of crossovers (Section 8.5.1), a qualitative comparison between formal
interval EAs and geometric-crossover EAs (Section 8.5.2) as well as formal inter-
val EAs and recombination P-structure random walks (Section 8.5.3), and abstract
interval convex evolutionary search (Section 8.5.4).

8.5.1 Extended Classification of Crossovers

Extending the original crossover classification in Chapter 5 with the class Ifin of
finite interval operators may seem not very useful. Assuming that is relatively easy
to design crossovers that are symmetric and return parents in the offspring set, then
one may regard Ifin overgeneralised inasmuch as it includes virtually any crossover.
Strictly speaking that is not the case; not all crossovers are provably interval oper-
ators whether finiteness is assumed or not: the asymmetric one-point and Davis's
order crossovers are two examples due to their asymmetry (see Section 8.2.1).

Nevertheless, this chapter does not claim that the extended crossover classifica-
tion is any more practical than the original one. The purpose was to investigate
in line with Moraglio and Stephens [100, 141] how classifying crossovers helps us
formally understand the abstract behaviour of EA classes defined over crossover
classes and, in particular, address Question 8.1. This chapter showed that neither
the axioms of finite interval operators, nor recombination P-structures RP proposed
by Stadler and others [51, 139], are strong enough to ensure abstract interval convex
evolutionary search is always equivalent to abstract geodesically convex evolutionary
search induced by geometric crossovers GX (see Section 8.4). An exception is the
subclass RP-geometric (Corollary 8.2). Also, the symmetric Davis's order crossover
is neither geometric nor a recombination P-structure, yet the example in Figure 8.10
shows it induces strictly convergent type of abstract interval convex evolutionary
search as geometric crossovers like uniform crossover (see Figure 8.9a).

8.5.2 Formal Interval EAs vs Geometric-crossover EAs

Unlike geometric-crossover EAs, EAs with mutation or non-geometric crossovers
provably do not do abstract geodesically convex evolutionary search [101]. Then,
how formal interval EAs possibly do any form of abstract convex evolutionary search
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if they use non-geometric crossovers and mutation? It suffices to look again at the
crossovers distinguishing geometric-crossover EAs and formal interval EAs.

Geometric-crossover EAs always require a crossover ξ that is geometric for at
least one distance d of some metric space (X, d). By Definition 3.3, geometric
crossovers always produce offspring within geodesic intervals between given parents.
Therefore, geometric crossovers are always associated with a geodesic convexity
(X, C) since ξ(x, y) ⊆ [x, y]d ⊆ C, for any geodesically convex set C ∈ C and parents
x, y ∈ C. That is fundamentally why geometric-crossover EAs can produce offspring
populations within the geodesic convex hull of parents, hence abstract geodesically
convex evolutionary search (Proposition 6.1).

By contrast, formal interval EAs require a crossover associated with a finite
interval space but not a distance nor have to be geometric: they may use any
crossover in the class Ifin of finite interval operators (Figure 8.1). Some finite interval
operators are not geometric crossovers (e.g. all-Hamming-paths and Hamming ball-
mutation segment) and so do not produce offspring within the geodesic convex hull of
parents (Section 8.3). However, that does not imply such crossovers are not convex
with respect to any convexity! The key from Section 8.3 is every crossover associated
with a finite interval space induces its own notion of interval convexity and convex
hull (i.e. intrinsic to the crossover). This applies to any crossover in Ifin, whether it
is geometric or not, whether it uses mutation or not. Then, formal interval EAs do
abstract interval convex evolutionary search (Theorem 8.7) because, if the interval
convexity specific to the crossover is taken into account, they produce offspring
populations within the interval convex hull of parent populations by Lemma 8.2.

A counter-intuitive fact about formal interval EAs is that they comprehend also
certain EAs with mutation and no crossover, which is impossible for geometric-
crossover EAs by Definition 6.3. The class Ifin of finite interval operators is so gen-
eral that it includes forms of ‘crossover’ with mutation. Like ball-mutation segment
crossover (Definition 8.2), one could define the union-balls ‘crossover’ parametrised
with a distance d and ball radius r ∈ R>0 in a finite metric space (X, d):

UnionBalls(d, r)(x, y) def= B̄d(x, r) ∪ B̄d(y, r) ,

that for parents x, y ∈ X it returns as offspring all neighbours (alongside parents)
within the respective d-metric closed balls centred at each parent. For instance, the
offspring of parents 001 and 100 under Hamming distance dH and ball radius one
are: UnionBalls(dH, 1)(001, 100) = {001, 000, 011, 101} ∪ {100, 000, 101, 110}.
Effectively, UnionBalls(dH, 1) applies a single-bit flip mutation to both parents.
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UnionBalls(d, r) trivially fulfils the symmetry and extensivity axioms of fi-
nite interval spaces, that is UnionBalls(d, r) ∈ Ifin, and it is neither a geometric
crossover nor recombination P-structure for similar reasons to Theorem 8.1. Hence,
according to Theorem 8.7, a formal interval EA using union-balls crossover does ab-
stract interval convex evolutionary search even if union-balls is not really a crossover!
This is counter-intuitive because, according to Moraglio [101], mutation operators
are not geodesically convex and thus break the nested chain of geodesic convex hulls.
Like ball-mutation segment crossover (Figure 8.9d), union-balls would also induce
the stationary type of abstract interval convex evolutionary search (Definition 8.11).

The bottom line is that abstract geodesically convex evolutionary search of
geometric-crossover EAs can be generalised to abstract interval convex evolutionary
search of formal interval EAs. However, that involves unnatural forms of crossover
with counter-intuitive interval convexities (e.g. union-balls and ball-mutation seg-
ment), which can lead to formal interval EAs whose abstract search is theoretically
sound but does not tell anything relevant about the actual population behaviour.

8.5.3 Formal Interval EAs vs Recombination P-structure
Random Walks

Until now, headless-chicken (HC) crossover random walks for recombination P-
structures were the only recombination-based search model analysed in ELT (Sec-
tion 7.3). As an alternative, this chapter proposes recombination P-structure EAs,
a subclass of formal interval EAs, for the following reasons.

HC crossover random walks significantly differ from conventional EAs (compare
Algorithms 6.1 and 7.1). At any time, a HC crossover random walk would evolve
just one individual by applying a recombination P-structure to two parents, where
one is given from a previous recombination and the other is randomly sampled from
a prescribed probability distribution over the solution set. But no actual selection,
crossover nor replacement as in EAs are involved. The only way a HC crossover
random walk could simulate an EA is by prescribing a sequence of probability dis-
tributions that reflected the evolution of a population subject to some selection
force. However, in that case it is pointless to use a HC crossover random walk to
begin with. Furthermore, ELT made additional assumptions (Sections 7.3.2–7.3.3)
restricting HC crossover random walks such as unrealistically assuming a uniform
probability distribution over the entire solution set, or a string-based representation
of individuals with none (or sufficiently low) statistical interdependence between
values at any position in the string (i.e. between alleles at different loci).
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By contrast, a recombination P-structure EA (Definition 8.5) does have true
population dynamics, and it can use: any finite representation of individuals, se-
lection, replacement, crossover (as long as it is a recombination P-structure), and
population size (fixed or variable). Also, any probability distribution may be defined
over offspring because it is transparent to the support sets of crossover; put differ-
ently, the recombination P-structure in a recombination P-structure EA makes no
assumptions on an underlying probability distribution over offspring. In any case,
the behaviour of a recombination P-structure EA is abstract interval convex evolu-
tionary search (Corollary 8.1) or abstract geodesically convex evolutionary search
(Corollary 8.2) when restricting to geometric recombination P-structures. Does it
mean a recombination P-structure EA cannot degenerate to pure random search if
degenerate crossovers like all-Hamming-paths are used? No, it is possible; however,
HC crossover random walks do not offer much choice beyond pure random search.

8.5.4 Abstract Interval Convex Evolutionary Search

Formal interval EAs do abstract interval convex evolutionary search in finite interval
spaces (Theorem 8.7), and it could extend to infinite interval spaces, in principle, if
the assumption of finiteness is dropped. But, in doing so, abstract interval convex
evolutionary search incurs a cost due to Proposition 8.1: the closure iteration number
of a subset S ⊆ X may be infinite. Consequently, for a sequence of populations
(Pi)i∈{0,...,t} in an infinite interval space (X, I), where Pi ⊆ X, the corresponding
nested chain of interval convex hulls may be indeterminate: cl∞I (P0) ⊇ · · · ⊇ cl∞I (Pt).

Unequal one-point crossover is one such infinite interval operator [131], which is
expected since Theorem 8.2 proved it is not a finite interval operator yet trivially
fulfils the axioms of interval spaces (Definition 4.2). Recalling the example from
Table 8.1, it is easy to see why the interval convex hull induced by unequal one-
point crossover on {00, 11}, for instance, is not finite:

{00, 11}

cl0uneq-OnePoint({00,11})

6= {0011, . . .}

cl1uneq-OnePoint({00,11})

6= {00110011, . . .}

cl2uneq-OnePoint({00,11})

6= · · ·

In other words, there is no natural number k <∞ such that clk+1
uneq-OnePoint({00, 11})

= clkuneq-OnePoint({00, 11}). The same applies to Koza's subtree swap crossover [86]
for an analogous reason (see Figure 8.3). Therefore, it is unclear whether abstract
interval convex evolutionary search applies to virtually all crossovers as discussed
earlier in Section 8.5.1.

Finite interval operators Ifin, or recombination P-structures RP , neither guar-
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antee that abstract interval convex evolutionary search conveys any information on
whether the populations of a formal interval EA are converging (Section 8.4.1). Even
if populations converge due to selection or other bias, a formal interval EA using
non-geometric crossovers in RP or Ifin, such as all-Hamming-paths or Hamming
ball-mutation segment, potentially induces an abstract interval convex evolutionary
search that is (mostly) stationary (Figure 8.9). This disagreement in convergence
between the abstract search and the actual search of formal interval EAs is a con-
sequence of Theorem 8.7 and two underlying reasons. First, the nested chain of
populations' interval convex hulls is determined only by the populations and the
crossover, hence independent of selection and replacement operators3. Secondly, the
crossovers themselves can generate individuals anywhere in the search space when
applied recursively to a set of parents (Section 8.3), thereby favouring exploration
like mutation operators, which results in degenerate interval convexities and ulti-
mately a stationary abstract search performed by the formal interval EA.

Then, it becomes necessary to consider crossover classes with more restrictive
axioms than Ifin and RP to avoid the stationary type of abstract interval convex
evolutionary search. Preferably, one may want to find the conditions where abstract
interval convex evolutionary search converges while being beneficial on problems.
The following observations4 altogether indicate what those conditions may be:

• Abstract interval convex evolutionary search of a formal interval EA forms
a nested chain of interval convex hulls all of which are invariant subsets or
generalised schema (Definition 8.12) with respect to the sequential application
of selection, crossover and replacement population operators (Theorem 8.3).

• Vose [148] argues that GAs are effective when they produce a nested sequence
of invariant subsets (called stable in Vose's terms) and the fitness function of
a given problem increases monotonically along those subsets. Mitavskiy and
He [98, 99] provide a methodology to design EAs accordingly by matching the
invariant subsets with the fitness level sets of the fitness function.

• Moraglio and Sudholt [104] prove a specific geometric-crossover EA finds the
global optimum of the ‘leading-ones’ function in O(n log n) fitness evaluations,
where leading-ones is quasi-concave function whose fitness level sets form a
nested sequence of schemas (i.e. invariant subsets).

3Interval operators are very general, so it may be possible to define more complex interval convex
hulls that take into account selection, crossover and replacement.

4The motivation behind some of these observations is Holland's schema theorem [65]. This chapter
does not attempt to generalise Holland's schema theorem.
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• Although not all highly local crossovers are geometric (Corollary 5.2), geo-
metric crossovers (including geometric recombination P-structures) are always
highly local. Rothlauf and Thorhauer [124, 144], as well as Droste and Wies-
mann [38], recommend high locality based on similar grounds underlying prin-
cipled design of geometric crossovers in Chapter 3: highly local crossovers
produce offspring relatively close to parents with respect to a distance and,
if such distance is correlated with a problem's fitness function, it favours ex-
ploitative search in promising regions of the problem's search space.

• Monotonic recombination P-structures are the subclass of recombination P-
structures that produce offspring sets which are both invariant (Lemma 8.3)
and convex (Theorem 8.8). Such invariance in Mitavskiy's sense [98] is a gen-
eralisation of Radcliffe's crossover design principle of respect [117] deemed rele-
vant for an exploitative genetic search: any formae (i.e. alleles) shared by par-
ents must be shared by their offspring. Reformulating Radcliffe’s crossover de-
sign principles in terms of geodesic convexity is possible according to Hofmeyr
[64].

These observations point to two prime requirements for convergence and efficacy
of abstract interval convex evolutionary search. First, restricting the possible off-
spring produced by crossover, so that parents and offspring are similar to each other
to an extent. Secondly, designing crossovers that can exploit relevant features of the
fitness function (i.e. problem knowledge) during the search.

These requirements are feasible for abstract interval convex evolutionary search
by limiting to crossover subclasses RP-geometric and RP-monotonic of recombi-
nation P-structures, which seem to align well with the aforesaid quasi-convex and
monotonically increasing functions. All crossovers in RP-geometric are geometric
crossovers and thus can exploit problem knowledge by carefully selecting a distance
for the problem, and crossovers in RP-monotonic can achieve it if invariant subsets
correspond to fitness level sets. Also, RP-geometric and RP-monotonic clearly re-
strict the possible offspring to a geodesic interval between parents or an invariant
subset given by parents, so they are unlikely to induce degenerate interval convexi-
ties and display mutation-like behaviour as other crossovers in Ifin or RP do. Ex-
ceptions are the degenerate all-Hamming-path crossover in RP-monotonic and the
non-degenerate symmetric Davis's order crossover in Ifin which indeed can produce
invariant subsets (Section 8.4.2). An unexplored but interesting crossover class is the
strict-size monotonic recombination P-structures found in Chapter 5 because they
fulfil the convergence inbreeding property of geometric crossovers seen in Chapter 3.

158



CHAPTER 8. A QUALITATIVE FRAMEWORK FOR ABSTRACT INTERVAL
CONVEX SEARCH OF EVOLUTIONARY ALGORITHMS

8.6 Conclusion
Formally understanding the population behaviour of EAs or classes thereof is a
long-standing challenge in EC, including the GF and ELT. Despite all progress,
the foundations of the GF and ELT are not fully satisfactory in the following two
senses: (a) the EA classes they cover, across problems and representations, are not
as general as one may expect (e.g. not using populations or mutation, missing useful
crossovers, etc.); and, (b) they lack a systematic approach to rigorously understand
how different search operators (e.g. crossover and mutation) affect the behaviour of
such EA classes.

My original major contribution is a qualitative framework built upon the crossover
classification in Chapter 5 to address issues (a) and (b) mentioned above, allowing
a systematic analysis of how different crossover classes can lead to possibly
different abstract behaviours in a corresponding general EA class. That is a
framework to axiomatically analyse and classify the population behaviour of
formal interval EAs, an EA class which generalises and integrates geometric-crossover
EAs from the GF (Chapter 6) and recombination P-structure random walks from
ELT (Chapter 7). Three main aspects of this framework set it apart from the GF
and ELT:

• Introducing a crossover class (i.e. finite interval operators) that includes: non-
geometric crossovers besides geometric ones, all recombination P-structures,
and other more general crossovers some of which can even act as mutation.

• Defining formal interval EAs based on finite interval operators, thus general-
ising geometric-crossover EAs (which cannot use mutation and non-geometric
crossovers) and recombination P-structure random walks (which clearly are
not population-based EAs and can only use recombination P-structures).

• Showing that formal interval EAs do abstract interval convex evolutionary
search across problems and representations, which generalises the abstract
convex evolutionary search of geometric-crossover EAs and may not always
coincide with it. Unlike geometric-crossover EAs in the GF, the abstract
behaviour of formal interval EAs can be geodesically or non-geodesically
convex depending on the crossover used. Unlike recombination P-structure
random walks, formal interval EAs provide ELT with an EA model that has
true population dynamics rather than headless-chicken walk dynamics.

Thus formal interval EAs can be more exploitative or explorative depending
on the underlying crossover and whether mutation occurs or not. Generalising
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abstract (geodesically) convex evolutionary search, which the GF only conceived
for geometric-crossover EAs, is therefore possible as this chapter showed. But it
comes at a cost: certain non-geometric crossovers and mutation can sometimes
lead to degenerate forms of abstract interval convex evolutionary search that is no
longer useful to describe the actual behaviour of populations. For this reason, it is
necessary to characterise precisely the degenerate and non-degenerate kinds of
abstract convexity associated with crossover classes, besides the abstract behaviours
induced by them. The framework here presented can help us accomplish both.
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Part III

Fitness Landscapes
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Abstract

This third and last part develops upon Part I and Part II to unify the general classes
of fitness landscapes proposed by the GF and ELT, as revised in background Chap-
ters 9 and 10. Fitness landscapes in the GF are generalised across problems and
representations as functional forms parametrised by: a metric space, providing a
search space and its structure, and a fitness function defined on such metric space.
This approach not only allows geometric-crossover EAs to be instantiated to a given
fitness landscape by specifying the same metric distance, but also allows various
classes of abstract convex landscapes to be defined as generalisations of traditional
convex functions. ELT provides a general framework, based on spectral graph theory,
to carry a Fourier-like decomposition analysis of landscapes. Of special interest are
the general class of elementary landscapes based on mutation search spaces, whose
fitness function happens to be an eigenfunction of an associated graph Laplacian
matrix, present in several classical combinatorial problems and real-world problems.
An analogous class of elementary landscapes can be defined based on recombination
P-structures, or crossover search spaces, via recombination P-structure Laplacians.
For certain recombination P-structures, ELT shows that if a fitness function is
elementary then it is also recombination P-structure elementary and vice versa.

The contribution of this third part is presented in Chapter 11 focusing on the
two-fold research question (3) from the literature review in Chapter 2: what class of
combinatorial landscapes is shared by abstract convex landscapes and elementary
landscapes? How does the discrete Laplacian operator corresponding to the shared
landscape class relate to the difficulty of problems associated with it? To address
these questions, Chapter 11 first identifies certain conditions to conceive abstract
convex elementary landscapes precisely as a class of combinatorial landscapes that
are abstract convex, as in the GF, and (recombination P-structure) elementary, as
in ELT. To characterise them, various examples of pseudo-Boolean fitness functions
are classified. This provably reveals the existence of abstract convex elementary
landscapes: one-max functions (with or without certain bounded perturbations) are
given as examples. Then, a more general characterisation reveals all (quasi-)convex
or (quasi-)concave elementary landscapes correspond to graph Laplacian eigenvalues
of order less than two, providing a direct and ‘sampling-free’ way to classify such
abstract convex elementary landscapes and possibly others as well. Interestingly, the
GF showed already geometric-crossover EAs in expectation can exponentially out-
perform random search on subclasses of quasi-concave (or quasi-concave) landscapes;
whereas ELT showed order-one elementary landscapes are smooth landscapes.
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Chapter 9

Abstract Convex Landscapes
in the Geometric Framework

This chapter revises background material for subsequent chapters. It summarises
and clarifies key ideas about classes of abstract convex fitness landscapes where
geometric-crossover EAs, introduced in Chapter 6, may outperform pure random
search. This chapter principally supports the contributions in Chapter 11 to find if
such classes comprehend landscapes of real-world or NP-complete problems.

9.1 Matching Abstract Evolutionary Search and
Abstract Fitness Landscapes for Performance

Geometric-crossover EAs (Definition 6.3) always do abstract geodesically convex
evolutionary search (Proposition 6.1), irrespective of the optimisation problem and
representation of solutions, on any search space defined by a metric space. But
Proposition 6.1 itself does not state anything at all about geometric-crossover EAs
performance [100]. Indeed, due to NFL theorems [68, 155], any EA would perform
as well (or bad) as any other EA, including pure random search, if their performance
is averaged across all possible optimisation problems whose objective function has
a fixed discrete domain and co-domain.

Nevertheless, NFL does not prohibit that certain EAs outperform others when
a restricted subset of problems is considered, or when EAs are specially designed
for certain problems. This prompts GF to find those problems where geometric-
crossover EAs provably outperform pure random search (at least), for GF would
be a futile theory of EAs otherwise, by examining conditions of their corresponding
fitness landscapes that abstract geodesically convex evolutionary search can exploit

163



CHAPTER 9. ABSTRACT CONVEX LANDSCAPES

profitably. In particular, GF proposes various classes of ‘globally convex’ fitness
landscapes where geometric-crossover EAs may outperform pure random search
[101]. This chapter presents those fitness landscape classes. Their relation with
geometric-crossover EAs performance [104] is described only tangentially since this
thesis does not analyse geometric-crossover EAs performance. Sections 9.1.1–9.1.2
overview first how fitness landscapes and geometric-crossover EAs relate one an-
other, and what is the main motivation behind globally convex landscapes.

9.1.1 Fitness Landscapes and Geometric-crossover EAs

A fitness function is an assignment of numerical values, typically real numbers, to
candidate solutions of an optimisation problem to quantify their optimality. Defin-
ing a fitness function over solutions with an associated search space structure, for
example a metric space, constitutes a fitness landscape.

Definition 9.1 (Fitness landscape). A fitness landscape is a triplet (X, d, f)
where an arbitrary real-valued function f : X → R, the fitness function, is defined
on an arbitrary metric space (X, d) with a set X and metric d : X ×X → R≥0. A
fitness landscape is called flat whenever f is a constant function.

Remark 9.1. Definition 9.1 assumes fitness functions are known closed-form math-
ematical expressions. Also, for simplicity, no distinction is made between fitness
function and objective function, nor between encoded solutions (i.e. genotypes) and
formal solutions (i.e. phenotypes).

GX-EA(F )F = (X, d, f) ACS(F ) ASP(F )input run result

Figure 9.1. Causal relations between a fitness landscape F , geometric-crossover EA
(GX-EA), abstract convex evolutionary search (ACS) and the resulting abstract search
performance (ASP). ASP is a general runtime expression parametrised with certain char-
acteristics of the fitness landscape F (e.g. dimensionality, cardinality, distance, etc.).

Definition 9.1 describes generic fitness landscapes, not tied to a predetermined
specific problem nor representation, in the same sense geometric-crossover EAs are
abstract specifications of conventional EAs (Algorithm 6.1) without mutation. That
is, fitness landscapes and geometric-crossover EAs are functional objects parametrised
by a fixed but unspecified metric. Such abstraction has two main consequences [101]:

• Turns fitness landscapes and geometric-crossover EAs into separate but related
entities. Definition 9.1 does not enforce specific geometric-crossover EAs on
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a given fitness landscape (thus separate). Yet specific instances of geometric-
crossover EAs can be defined on a landscape by choosing the same distance
and specifying their population search operators in Section 6.1 (thus related).

• Facilitates a systematic understanding of fitness landscapes and geometric-
crossover EAs because their functional forms can be automatically instantiated
on any specific problem and search space using these as parameters. This is
illustrated in Figure 9.1 through causal relations [101]. First, a geometric-
crossover EA is instantiated by functional substitution of its components with
an input fitness landscape; then, running that specific geometric-crossover EA
produces a specific geodesically convex search on the input fitness landscape,
which results in a specific performance for that landscape and EA.

The traditional viewpoint ‘one operator one landscape’ [73] conceives EAs search-
ing not in one but multiple fitness landscapes because, in this view, each specific
search operator defines its own fitness landscape: changing the search operator
changes the landscape, hence one operator one landscape. So there would be muta-
tion landscapes, crossover landscapes, selection landscapes, etc. GF fundamentally
challenges the former view since different geometric-crossover EAs can search within
the same fitness landscape, implying ‘one landscape many operators’ instead.

9.1.2 Why Globally Convex Fitness Landscapes?

Convex functions in continuous spaces can be optimised efficiently and effectively [12,
40]. The same is true of certain generalised convex functions in discrete spaces. For
example, TSP, weighted bipartite matching and flow-shop scheduling problems have
specific instances, provably solvable in polynomial time, where their objective func-
tion is submodular [11, 15][40, ch. 2] sharing certain properties with generalised
forms of convexity [79, 90, 111, 132]. The potential performance benefits for EAs
due to a ‘globally convex trend’ or ‘big valley’ in fitness landscapes [10] have been
corroborated experimentally for some but not all instances of various combinato-
rial problems [46, 109]. This motivates GF to propose several fitness landscape
classes [101] which to different extents have a globally convex trend, align well with
abstract convex evolutionary search, and where geometric-crossover EAs may have
exponentially better performance than pure random search [104]. Figure 9.2 sum-
marises those classes. The following Sections 9.2–9.3 introduce them focusing on
convex functions from the viewpoint of minimisation problems, but the same ideas
apply to their counterparts based on concave functions for maximisation problems.
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Quasi-convex =⇒ Approximately quasi-convex~w ~w
Convex =⇒ Approximately convexw� w�

Average-convex =⇒ Approximately average-convex

Figure 9.2. Overview of abstract convex fitness landscape classes and logical relation-
ships: if a class implies another class, all members of the first are members of the second.

9.2 Towards General Convex Fitness Landscapes
Let us start with traditional convex functions in Euclidean spaces, or other vector
spaces, and extend them to more general metric spaces.

Definition 9.2 (Convex function [12]). Let f : C → R be a real-valued function
defined on a convex subset C ⊆ Rn. Then, f is convex if Jensen's inequality holds
for all x, y ∈ C and θ ∈ [0, 1]:

f
(
θx+ (1− θ)y

)
≤ θf(x) + (1− θ)f(y) . (9.1)

If strict inequality holds in Equation 9.1, then f is strictly convex, whenever x 6= y

and 0 < θ < 1. Similarly, f is concave if −f is convex; f is strictly concave, if −f is
strictly convex; and f is affine, if it is convex and concave.

yx θx+ (1− θ)y

θf(x) + (1− θ)f(y)

f(θx+ (1− θ)y)

f

R

R

Figure 9.3. Visualisation of a strictly convex function using Jensen's inequality in a
two-dimensional Euclidean metric space (R2, d2).

Remark 9.2 (Definition 9.2). Jensen's inequality extends to convex combinations
conforming the convex hull of a set. Let A = {a1, . . . , ak} ⊂ Rn be a finite non-empty
subset with k > 0. If f is a convex function, then f

(∑k
i=1 θiai

)
≤ ∑k

i=1 θif(ai), where
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θi ≥ 0 and ∑k
i=1 θi = 1. Note that the convex hull co(A) is the set of all convex

combinations a′ = ∑k
i=1 θiai, hence for each a′ ∈ co(A): f(a′) ≤ ∑k

i=1 θif(ai) [12].

Remark 9.3 (Definition 9.2). All linear functions in vector spaces, including con-
stant functions, are both convex and concave, thus affine [12].

To understand what Definition 9.2 means in terms of fitness and geometric
crossovers, observe based on Figure 9.3 that:

• θx + (1 − θ)y is a geodesic interval on the real line representing offspring of
parents x and y for some geometric crossover under Euclidean metric d2; and,

• θf(x) + (1− θ)f(y) is a weighted sum of the parents' fitnesses for each weight
θ ∈ [0, 1]. (Their arithmetic mean is obtained exactly when θ = 1

2 .)

Therefore, for a traditional convex function and fixed parents and offspring un-
der geometric crossover, Equation 9.1 indicates that the offspring fitness cannot be
greater than a weighted sum of the parents' fitnesses. The same is true for offspring
in the convex hull of parents, taking into account Remark 9.2 and that geometric
crossovers produce offspring (i.e. convex combinations) within the convex hull of
parents (see Section 6.2). For a random variable offspring, an analogous form [12]
of Equation 9.1 describes the expected offspring fitness.

(a)

f(x, y) = x2 + y2

(b)

Figure 9.4. Plot of the convex function f(x, y) = x2 + y2 in three-dimensional Euclidean
metric space (R3, d2) in Figure 9.4b. Example of abstract convex evolutionary search,
during three population generations, displayed over the contour plot of f in Figure 9.4a.
Legend: first population (‘white dots’), second population (‘grey dots’), third population
(‘black dots’), boundaries of populations' convex hulls (‘black thick lines’), contours of f
(‘dashed concentric circles’), and f(x, y) values (‘gradient colour’).
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Observe that the convex functions in Figures 9.3–9.4 have two salient
characteristics:

• The high correlation between the function evaluation at a point and its distance
from the global minima: the closer they are, the lower the function value.

• The convexity of their lower contour sets or sub-level sets, these being defined
as L≤`(f) def= {x ∈ X | f(x) ≤ `} for some arbitrary f : X → R and ` ∈ R.
Particularly, Figure 9.4a shows for f(x, y) = x2 + y2 that each contour where
f is constant f(x, y) = `, see the ‘dashed concentric circles’, circumscribes a
corresponding sub-level set L≤`(f) that is convex: the line segment between
any two points in a given ‘circle’ lies within such ‘circle’.

The previous features of convex functions align well with abstract convex evo-
lutionary search in Figure 9.4a: populations approach the global minimum while
the mutual distance between individuals within each population progressively de-
creases through generations, and the nested chain of populations' convex hulls forms
a nested chain of convex sets.

Indeed, geometric-crossover EAs produce offspring populations which improve
over parent populations on average, whether in Euclidean or more general metric
spaces, according to Proposition 9.1 below. But traditional convex functions must
be generalised appropriately, and there are numerous ways to do it [40, 79, 90, 132].
One way is to reformulate Jensen's inequality (Equation 9.1) in terms of metrics as
Equation 9.2 does to define d-metric convex functions and convex fitness landscapes.

Definition 9.3 (d-metric convex function [133]). Let (X, C) be the geodesic
convex space of an arbitrary metric space (X, d). Let f : C → R be a real-valued
function defined on a geodesic convex subset C ∈ C. Then, f is d-metric convex if
for all x, y ∈ C, such that d(x, y) 6= 0, and all z ∈ [x, y]d:

f(z) ≤ d(y, z)
d(x, y)f(x) + d(x, z)

d(x, y)f(y) . (9.2)

The triplet (X, d, f) is a convex fitness landscape.

Remark 9.4 (Definition 9.3). Strictly convex, concave and strictly concave fitness
landscapes are defined by replacing the relation ≤ in Equation 9.2 with relations: <,
≥, and > respectively. Affine fitness landscapes are convex and concave. In normed
vector spaces with metric d(x, y) def= ‖x− y‖2, namely Euclidean distance, d-metric
convex functions are convex in the traditional sense of Definition 9.2 [133].
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Proposition 9.1 (Convex landscapes: expected offspring fitness [101]). Let
(X, d, f) be any convex fitness landscape. Let a finite offspring population Pt+1 ⊆ X

result from a finite parent population Pt ⊆ X, at generation t ≥ 0, by applying a
geometric crossover under metric d to pairs of parents, each of them sampled (with
replacement1) uniformly at random from Pt. Then, the expected fitness E[f(z)] of
any offspring individual z ∈ Pt+1 is less or equal than the mean fitness of Pt.

Proposition 9.1 (see Corollary 1 in [101]) relies on two assumptions:

• The probability of producing z from any given parents remains unchanged if
the roles of first and second parent are exchanged: Pr{Z = z | z ∈ ξ(x, y)} =
Pr{Z = z | z ∈ ξ(y, x)}, where ξ is a geometric crossover (so z ∈ [x, y]d) and
Z is a random variable representing all possible offspring of parents x, y.

• In an arbitrary metric segment [x, y]d, the number of points at a certain dis-
tance t from the endpoint x equals those at distance t from the endpoint y.
That is, |{z : z ∈ [x, y]d ∧ d(x, z) = t}| = |{z : z ∈ [x, y]d ∧ d(y, z) = t}|, for all
0 ≤ t ≤ d(x, y). Metric segments with such property will be called regular2

(see Figure 9.5).

If these assumptions are not met, then the mean fitness of the parent population
Pt could be biased3 to some of its individuals more than others, in which case
Proposition 9.1 may not hold: E[f(z)] may be greater than the mean fitness of
Pt. Nevertheless, E[f(z)] ≤ maxp∈Pt f(p) would hold because for any x, y ∈ Pt and
z ∈ Pt+1 such that z ∈ [x, y]d : f(z) ≤ max{f(x), f(y)}, provided that f is a d-
metric convex function [101]. In other words, the expected offspring fitness would
not be worse than the worst parent fitness.

62

3

4

5

1

Figure 9.5. A graph where not all metric segments (i.e. shortest-paths) are regular. For
example, consider points z in [1, 6]d at distance one from endpoint 1 and from endpoint
6 separately; d being the shortest-path metric. Then, |{z : z ∈ [1, 6]d ∧ d(1, z) = 1}| =
|{2}| = 1 6= 3 = |{3, 4, 5}| = |{z : z ∈ [1, 6]d ∧ d(z, 6) = 1}|.
1The probability of sampling the same element from a distribution is equal each time it is sampled.
2Regular metric segments are what Moraglio calls ‘symmetric metric segments’ [101]. Because any
metric segment is symmetric as in [x, y]d = [y, x]d [146], ‘regular’ is preferred to avoid confusion.

3This bias was noted also by Droste and Weismann [38] and recommended ‘Guideline R 2’ to
prevent it.
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Although Proposition 9.1 does not necessarily imply convergence to global op-
tima nor efficiency of geometric-crossover EAs on convex fitness landscapes, it guar-
antees that, on average, they produce improving offspring populations or do not get
worse than parents in the worst case. In this sense, GF justifies geometric-crossover
EAs and convex fitness landscapes are well matched. Proposition 9.1 is true for any
representation of solutions and any problem (regardless of dimension, instance, etc.),
as long as its fitness function is d-metric convex and the aforesaid assumptions are
accepted. Naturally, the guarantee can degrade when selection population operators
give preference to individuals with worse fitness over individuals with better fitness.

9.3 Other General Convex Fitness Landscapes
Convex fitness landscapes (Definition 9.3) are a promising landscape class since they
can be defined on general metric spaces, whether continuous or discrete, and are well
matched with geometric-crossover EAs in the sense of Proposition 9.1. However,
characterising which combinatorial or real-world problems belong or do not belong
in this convex landscape class remains an open question in the GF. Chapter 11 will
show in fact that convex fitness landscapes are not characteristic for certain classes
combinatorial optimisation problems, as they become flat on a large class of finite
graphs. Nevertheless, the following Sections 9.3.1–9.3.2 explain how the notion of
d-metric convex function (Definition 9.3) can be ‘approximated’ or ‘relaxed’ to cover
a larger class of landscapes other than such degenerate cases like flat landscapes.

9.3.1 Approximately Convex Fitness Landscapes

Moraglio's [101] idea of an approximately convex fitness landscape (Definition 9.4) is
one whose fitness function is d-metric convex (Definition 9.3) if a bounded perturba-
tion is tolerated, so that increasing or decreasing the tolerance increases or decreases
the extent to which a fitness function is d-metric convex. Thus, approximately con-
vex fitness landscapes are landscapes with a tunable degree of convexity. This gener-
alises Hyers and Ulam's approximately convex functions [67] from Euclidean spaces
to general metric spaces based on Soltan's d-metric convex functions [133].

Definition 9.4 (d-metric ε-convex function [67, 101]). Let (X, C) be the geodesic
convex space of an arbitrary metric space (X, d). Let ε ∈ [0,∞) and a real-valued
function f : C → R defined on a geodesic convex subset C ∈ C. Then, f is d-metric
ε-convex, or simply (d, ε)-convex, if for all x, y ∈ C, such that d(x, y) 6= 0, and all
z ∈ [x, y]d:
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f(z) ≤ d(y, z)
d(x, y)f(x) + d(x, z)

d(x, y)f(y) + ε . (9.3)

The triplet (X, d, f) is an approximately convex fitness landscape with tolerance ε.

Remark 9.5 (Definition 9.4). Approximately convex fitness landscapes (X, d, f)
with a (d, 0)-convex fitness function f are convex fitness landscapes. Strictly convex,
concave and strictly concave versions of approximately convex fitness landscapes are
defined by: (a) replacing the relation ≤ in Equation 9.3 with relations <, ≥, and >
respectively; and, (b) replacing ε with −ε for the concave versions.

yx θx+ (1− θ)y

θf(x) + (1− θ)f(y) + ε

f(θx+ (1− θ)y)

f
R

R

ε

Figure 9.6. Visualisation of a (d2, ε)-convex function, for some ε > 0, using Jensen's
inequality in a two-dimensional Euclidean metric space (R2, d2).

Thus approximately convex fitness landscapes extend convex fitness landscapes
because (d, ε)-convex functions (Equation 9.3) extend d-metric convex functions
(Equation 9.1): the former add a tolerance ε to the latter to allow varying degrees of
perturbation in the fitness function. If this tolerance is large enough, then effectively
any fitness landscape would be approximately convex according to Definition 9.4.
However, this does not mean any actual fitness landscape of combinatorial or real
world problems necessarily has a ‘globally convex’ trend resembling, for example,
the one illustrated in Figure 9.6. Notice that increasing the tolerance allows higher
and higher degrees of perturbation in the fitness function, which can break globally
convex trends. For instance, according to Definition 9.4, degenerate cases like a
fitness function with fitness values randomly chosen within [0, 1] would also be ap-
proximately convex if the tolerance chosen is ε = 1. The relevance of approximately
convex fitness landscapes very much depends on whether the fitness functions of
interesting optimisation problems are (d, ε)-convex for relatively small ε.
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Earlier in Section 9.2, Proposition 9.1 justified that geometric-crossover EAs
are well matched with convex fitness landscapes because of the fitness improvement
expected for any offspring population over its parent population. Proposition 9.2 (see
Theorem 5 in [101]) proves the analogous result of Proposition 9.1 for approximately
convex fitness landscapes.

Proposition 9.2 (Approx. convex landscapes: expected offspring fitness
[101]). Let (X, d, f) be any approximately convex fitness landscape with a (d, ε)-
convex fitness function f . Let a finite offspring population Pt+1 ⊆ X result from
a finite parent population Pt ⊆ X, at generation t ≥ 0, by applying a geometric
crossover under metric d to pairs of parents, each of them sampled (with replace-
ment) uniformly at random from Pt. Then, the expected fitness E[f(z)] of any
offspring individual z ∈ Pt+1 fulfils: E[f(z)] ≤ Pt + ε, where Pt is the mean fitness
of Pt.

The potential impact the tolerance ε has on geometric-crossover EAs perfor-
mance is noticeable due to Proposition 9.2. Increasing ε allows fitness landscapes
to be less convex, thereby diminishing the likelihood that a geometric-crossover EA
generates, on average, offspring populations improving over their parent popula-
tions. Notice E[f(z)] ≤ Pt + ε does not necessarily imply E[f(z)] ≤ Pt; when ε > 0,
it may be true that E[f(z)] > Pt without falsifying Proposition 9.2. Consequently, a
relatively small ε is important for keeping a globally convex trend in the landscape
and avoid damaging geometric-crossover EAs performance.

9.3.2 Quasi-convex and Average-convex Fitness Landscapes

Quasi-convex and average-convex fitness landscapes are two alternative ways to gen-
eralise convex fitness landscapes (Section 9.2) without perturbing the fitness function
like approximately convex fitness landscapes (Section 9.3.1). Instead, they ‘relax’
the notion of convexity in d-metric convex functions (Definition 9.3) while retaining
distinctive properties thereof that make geometric-crossover EAs well matched with
quasi-convex and average-convex fitness landscapes.

Quasi-convex Fitness Lansdcapes

Moraglio [101] proposes quasi-convex fitness landscapes, defined in terms of d-metric
quasi-convex functions, based on Singer [132] and Soltan [133]. These functions have
the characteristic that every sub-level set must be geodesically convex.
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Definition 9.5 (d-metric quasi-convex function [101]). Let (X, C) be the geodesic
convex space of a metric space (X, d). Let a real-valued function f : C → R defined
on a geodesic convex subset C ∈ C. Then, f is d-metric quasi-convex if every sub-
level set L≤`(f) def= {x ∈ X | f(x) ≤ `} is geodesically convex. That is, for all ` ∈ R
and x, y ∈ L≤`(f): [x, y]d = {z ∈ X | d(x, z) + d(z, y) = d(x, y)} ⊆ L≤`(f). The
triplet (X, d, f) is a quasi-convex fitness landscape.

Remark 9.6 (Definition 9.5). Quasi-concave fitness landscapes are defined similarly
via super-level sets L≥`(f) def= {x ∈ X | f(x) ≥ `}. Quasi-linear fitness landscapes
are quasi-convex and quasi-concave.

Definition 9.5 of d-metric quasi-convex functions generalises Definition 9.3 of
d-metric convex functions because: any d-metric convex function has geodesically
convex sub-level sets according to Proposition 9.3 below (see Theorem 2 in [133]), but
not all functions with geodesically convex sub-level sets are d-metric convex functions
necessarily. In other words, convexity implies quasi-convexity, but the converse is
false in general. A simple example of a quasi-convex function in Euclidean space
that is not convex is f(x) =

√
|x| plotted in Figure 9.7: the line segment, or chord,

between two points (x1, f(x1)) and (x2, f(x2)) in the graph of f lies below the graph
not above it as required by Jensen's inequality (Equation 9.1) of convex functions.

x1 x2θx1 + (1− θ)x2

f(θx1 + (1− θ)x2)

θf(x1) + (1− θ)f(x2)

f(x1)

f(x2)

f(x) =
√
|x|

Figure 9.7. Visualisation of a d2-metric quasi-convex function f in two-dimensional
Euclidean metric space (R2, d2). The function does not fulfil Jensen's inequality
f
(
θx1 + (1 − θ)x2

)
≤ θf(x1) + (1 − θ)f(x2), so it is not convex, but it fulfils

f
(
θx1 + (1− θ)x2

)
≤ max{f(x1), f(x2)} where θ ∈ [0, 1].
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Proposition 9.3 (d-metric convex function: sub-level sets [133]). Let (X, C)
be the geodesic convex space of an arbitrary metric space (X, d). If f : C → R
is a d-metric convex function on a geodesic convex subset C ∈ C, then the sub-
level sets L≤`(f) def= {x ∈ X | f(x) ≤ `} are geodesically convex; that is, ∀` ∈ R
∀x, y ∈ L≤`(f) : [x, y]d ⊆ L≤`(f). The same is true of strict sub-level sets L<`(f) def=
{x ∈ X | f(x) < `}.

A quasi-concave fitness landscape which is not convex nor concave is ({0, 1}n, dH,

fLeadingOnes) proven in Chapter 11: ({0, 1}n, dH) is a n-dimensional binary Hamming
metric space, and fLeadingOnes(x) def= ∑n

i=1
∏i
j=1 xj ∀x ∈ {0, 1}n is the ‘leading-ones’

function that counts the number of consecutive left-most bits set to one in x.
Although d-metric quasi-convex functions generally do not satisfy the original

Jensen's inequality of d-metric convex functions, they always satisfy the following
‘weaker’ forms in Proposition 9.4 which derives easily4 from Definition 9.5.

Proposition 9.4 (d-metric quasi-convex functions: inequalities [101, 104]).
Let (X, d) be any metric space and f : X → R a d-metric quasi-convex function.
Then, the following two inequalities are true:

(a) ∀x, y ∈ X and ∀z ∈ [x, y]d: f(z) ≤ max{f(x), f(y)}; and,

(b) ∀P ⊆ X and ∀z ∈ co(P ): f(z) ≤ maxp∈P f(p).

Proposition 9.4 has relevant implications concerning geometric-crossover EAs
performance on quasi-convex fitness landscapes comparable to those discussed ear-
lier in Section 9.2 for convex fitness landscapes. Regardless of a specific represen-
tation of solutions and specific problem, Proposition 9.4 means that fitnesses of
individuals in an offspring population Pt+1 are never worse than the worst fitness
(i.e. maximum fitness) of its parent population Pt at any generation t, considering
that Pt+1 ⊆ co(Pt+1) ⊆ co(Pt) due to abstract convex evolutionary search. That
is, for any offspring z ∈ Pt+1, its fitness f(z) ≤ maxp∈Pt f(p). In this sense, GF
regards geometric-crossover EAs and quasi-convex fitness landscapes well matched.
Remarkably, for a restricted but still general subclass of quasi-convex landscapes,
certain geometric-crossover EAs provably find their global optima in a polynomial
number of generations and fitness evaluations [104].

4Let (X, d, f) be a quasi-convex landscape and any x, y ∈ X. Suppose f(x) ≤ f(y) without loss of
generality. Then, x, y ∈ L≤f(y)(f), so [x, y]d ⊆ L≤f(y)(f) because f is quasi-convex. Therefore,
any z ∈ [x, y]d fulfils f(z) ≤ f(y) since z ∈ L≤f(y)(f), hence f(z) ≤ max{f(x), f(y)}.
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Average-convex Fitness Lansdcapes

Average-convex fitness landscapes are those where the expected fitness of any off-
spring uniformly distributed over the metric segment between its parents is not
greater than the arithmetic mean fitness of such parents. In essence, average-convex
fitness landscapes make Proposition 9.1 of convex fitness landscapes their own defi-
nition, without them being convex fitness landscapes necessarily.

Definition 9.6 (d-metric average-convex function [101, 104]). Let a real-valued
function f : X → R be defined on any metric space (X, d). Then, f is a d-metric
average-convex if for all x, y ∈ X and all z ∼ Unif([x, y]d): E[f(z)] ≤ 1

2

(
f(x)+f(y)

)
.

The triplet (X, d, f) is an average-convex fitness landscape.

Remark 9.7 (Definition 9.6). Average-concave fitness landscapes are defined anal-
ogously by replacing the relation ≤ in Definition 9.6 with the relation ≥. Average-
affine fitness landscapes are average-convex and average-concave.

For convex fitness landscapes, the expected fitness in an offspring population is
not worse than its parent population's mean fitness due to Proposition 9.1. Ev-
idently, the same would be true for average-convex fitness landscapes given that
Definition 9.6 of d-metric average-convex functions is a particular case of the above
restricted to populations with only two parents. Therefore, geometric-crossover EAs
would perform on average-convex fitness landscapes comparably as well as on convex
fitness landscapes.

The principal advantage of average-convex fitness landscapes is being a less re-
strictive class than convex fitness landscapes. Consider ({0, 1}n, dH, fOneMax) where
({0, 1}n, dH) is a n-dimensional binary Hamming metric space with Hamming metric
dH, and fOneMax(x) def= ∑n

i=1 xi is the ‘one-max’ function that counts the number of
bits set to one of any given x ∈ {0, 1}n. Chapter 11 will prove ({0, 1}n, dH, fOneMax)
is an average-affine fitness landscape, thus average-convex and average-concave, but
neither convex nor concave.

Approximately Quasi-convex and Average-convex Fitness Landscapes

Convex fitness landscapes have been generalised adopting two separate approaches
so far: either by approximating their definition, leading to approximately convex fit-
ness landscapes, or by relaxing their definition, leading to quasi-convex and average-
convex fitness landscapes. These can be further generalised to approximately quasi-
convex and approximately average-convex fitness landscapes, combining both ap-
proaches as in the following Definitions 9.7–9.8.
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Definition 9.7 (d-metric ε-quasi-convex function [101]). Let (X, C) be the
geodesic convex space of an arbitrary metric space (X, d). Let ε ∈ [0,∞) and a
real-valued function f : C → R defined on a geodesic convex subset C ∈ C. Then,
f is d-metric ε-quasi-convex, or simply (d, ε)-quasi-convex, if for all x, y ∈ C and all
z ∈ [x, y]d : f(z) ≤ max{f(x), f(y)} + ε. The triplet (X, d, f) is an approximately
quasi-convex fitness landscape with tolerance ε.

Definition 9.8 (d-metric ε-average-convex function [104]). Let ε ∈ [0,∞) and
real-valued function f : X → R defined on an arbitrary metric space (X, d). Then,
f is d-metric ε-average-convex, or simply (d, ε)-average-convex, if for all x, y ∈ X

and all z ∼ Unif([x, y]d) : E[f(z)] ≤ 1
2

(
f(x) + f(y)

)
+ ε. The triplet (X, d, f) is an

approximately average-convex fitness landscape with tolerance ε.

Remark 9.8 (To Definitions 9.7–9.8). Approximately quasi-concave and approxi-
mately average-concave fitness landscapes are defined analogously by replacing the
inequalities ≤ with ≥ and the tolerances ε with −ε.

Regarding geometric-crossover EAs performance, no formal guarantees analogous
to Proposition 9.2 on the expected offspring fitness in approximately convex fitness
landscapes have been proved yet for approximately quasi-convex and average-convex
fitness landscapes [101, 104]. Nevertheless, from Section 9.3.1 and Section 9.3.2
earlier, one may argue that the expected fitness in offspring populations would not
be worse than the average or worst fitness of their parent populations; provided that
perturbations in the fitness function are bounded by a sufficiently small tolerance
ε, thus preserving a ‘global convex’ trend to some degree. Obviously, for ε = 0
the approximately quasi-convex and average-convex classes reduce to their non-
approximated quasi-convex and average-convex counterparts. The question here is
whether the fitness functions of relevant optimisation problems actually fall into the
above classes for a small non-zero ε.
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Chapter 10

Fitness Landscape Decomposition
in Elementary Landscapes Theory

This chapter revises background material for subsequent chapters. It summarises
and clarifies key ideas in ELT to analyse general fitness functions defined on finite
graphs and recombination P-structures introduced in Chapter 4. This chapter prin-
cipally supports the contributions in Chapter 11 analysing the convexity of fitness
functions for certain well known combinatorial problems.

10.1 Fitness Landscape Decomposition
A primary aim of ELT is analysing fitness landscapes associated with combinatorial
optimisation problems to understand the efficiency and efficacy of EAs searching
in those landscapes [5, 35, 136–138, 140, 150]. ELT proposes a fitness landscape
analysis that basically consists in decomposing fitness landscapes into simpler and
separate ‘components’, relying on fundamental notions in linear algebra and spectral
graph theory [8, 13, 25, 113]. Such analysis facilitates a rigorous understanding of
the relationship between the fitness functions of combinatorial problems, the search
operators of EAs driving evolutionary change, namely mutation and recombina-
tion, and the underlying search space structure associated with them. This chapter
explains how ELT formalises fitness landscape decomposition. First, Section 10.1.1
introduces some necessary preliminary notions based on the above bibliography.

10.1.1 Basics of Fitness Landscape Decomposition

To decompose fitness functions of combinatorial optimisation problems, whether
defined on mutation or recombination search spaces (Chapter 4), ELT considers the
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set of all real-valued fitness functions RX = {f : X → R} with a finite domain set
X = {x0, x1, . . . , xn−1}, |X| = n. The set RX forms an inner product vector space
where the inner product is the scalar product

〈f, g〉 def=
∑
x∈X

f(x)g(x) , ∀f, g ∈ RX . (10.1)

Elements in RX are treated as functions or vectors. Moreover, if {ϕ0, ϕ1, . . . , ϕn−1} is
an orthonormal basis of functions that spans RX , then every fitness function f ∈ RX

is uniquely described as a linear combination

f(x) =
n−1∑
i=0

aiϕi(x) (10.2)

of the basis functions ϕi and the scalars ai = 〈ϕi, f〉 that represent the magnitude
of f projected onto ϕi. Equation 10.2 can be written f = a0ϕ0 + · · ·+ an−1ϕn−1 in
vectorial form, from which it is clear there is a one-to-one correspondence between
a function f ∈ RX and a real vector (a0, a1, . . . , an−1) ∈ Rn once {ϕi} is fixed. That
is, RX is isomorphic to R|X| = Rn.

Figure 10.1a intuitively illustrates what a decomposition would look like for an
hypothetical real-valued function f defined on X = {x0, x1, x2}, where f(xi) = ai

for some ai ∈ R, by assigning a coordinate system to X based on the standard basis
functions in R3: ϕ0 = (1, 0, 0), ϕ1 = (0, 1, 0), ϕ2 = (0, 0, 1). Here f decomposes into
three functions: a0ϕ0 = (a0, 0, 0), a1ϕ1 = (0, a1, 0) and a2ϕ2 = (0, 0, a2).

f = a0ϕ0 + a1ϕ1 + a2ϕ2

ϕ1

ϕ2

ϕ0
a0ϕ0

a2ϕ2

a1ϕ1

(a)

f

g

f g

〈f, g〉 = 0

〈f, g〉 = 1

(b)

Figure 10.1. A linear combination f of orthonormal basis functions ϕi and scalars ai in
Figure 10.1a, and the orthogonality of two normalised functions f and g with respect to
their inner product in Figure 10.1b.

Equation 10.2 provides the means to decompose combinatorial fitness functions,
but it is not clear how it relates to the underlying structure of mutation or recombina-
tion search spaces where ELT defines fitness functions. The next Sections 10.2–10.3
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explain how that is accomplished by choosing the orthonormal basis of appropriate
symmetric linear operators. A linear operator M : RX → RX is symmetric or self-
adjoint if and only if 〈Mu, v〉 = 〈u,Mv〉 for all u, v ∈ RX . Juxtaposition Mu means
M applied to u, so Mu ∈ RX , or ordinary matrix multiplication viewing M as a
matrix and u as a column vector.

10.2 Mutation Fitness Landscapes
A mutation fitness landscape (X,N, f) consists of a fitness function f : X → R
defined on a mutation search space (X,N), where X is a finite set of all candi-
date solutions, and N : X → P(X) is a neighbourhood function that describes the
support sets of a mutation operator by mapping x ∈ X to a subset of neighbouring
solutions N(x) ∈ P(X) [136]. Mutation search spaces are associated with finite con-
nected graphs (Chapter 4). Sometimes (X,N, f) will be more conveniently denoted
(G, f) and leave the neighbourhood implicit in the graph G = (V,E) with vertex
set V = X and edge set E = {(x, y) | y ∈ N(x), x, y ∈ V }. Unless stated otherwise,
N is symmetric, thus G is undirected. Extensions for directed and irregular graphs
[5, 35] are not addressed in this thesis since most of ELT develops upon connected,
simple, undirected and regular graphs.

10.2.1 Decomposition via Discrete Laplacian Operators

To decompose mutation fitness landscapes (X,N, f) via Equation 10.2, ELT chooses
an orthonormal basis of a symmetric linear operator called discrete Laplacian
operator [8, 136, 137] relating the fitness f and neighbourhood N functions

L : RX → RX ,

(Lf)(x) def=
∑

y∈N(x)

(
f(x)− f(y)

)
= |N(x)| f(x)−

∑
y∈N(x)

f(y) . (10.3)

Plainly, L transforms an input fitness function f to a function Lf that sums the dif-
ferences in fitness between a given individual x and its neighbours y ∈ N(x). These
finite differences are reminiscent of ‘discrete derivatives’ for graphs. In spectral graph
theory [13], it is customary to write L (Equation 10.3) as the graph Laplacian matrix
(of dimensions |X| × |X|) for the graph G associated with N

L def= D−A , (10.4)
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D and A being the vertex degree and adjacency matrices of G. An orthonormal
basis {ϕi} of L consists of the eigenfunctions or eigenvectors ϕi of L, hence (Lϕi)(x) =
λiϕi(x) and λi is the eigenvalue corresponding to ϕi. Note Lf is a linearly trans-
formed function, whereas (Lf)(x) is the evaluation of such transformed function at
x. Figure 10.2 shows a Laplacian eigenfunction for the star graph S5.

L


4 −1 −1 −1 −1
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1

f


0
1
1
−1
−1

=

Lf


0
1
1
−1
−1

Figure 10.2. A function f : V → {−1, 0,+1} defined on the vertex set V of a star graph
S5 (‘left’) that is an eigenfunction of the graph Laplacian matrix L of S5 with eigenvalue
one since the column vectors f and Lf are equal (‘right’).

Then, using Equation 10.2, every fitness function f ∈ RX in a mutation fitness
landscape (X,N, f) can be decomposed according to an orthonormal basis of eigen-
functions for the graph Laplacian associated with the neighbourhood function N

(Equations 10.3–10.4). Such decomposition is called a Fourier series expansion of f
for its analogy with Fourier series analysis of periodic functions like signals [136, 137].
Hereinafter, the eigenvalues of L are enumerated in increasing order and starting at
index zero

λ0 ≤ λ1 ≤ · · · ≤ λi−1 < λi = λi+1 = · · · = λi+mi−1

mi times

< λi+mi
≤ · · · ≤ λ|X|−1 , (10.5)

where mi is the multiplicity of the eigenvalue λi. This enumeration is called the
spectrum1,2 of L denoted as a multiset of the form Spectrum(G) = {λi[mi]}, for
a given graph G, and the subscript [mi] indicates the number of occurrences of
each λi. The order p of an eigenvalue is its index or position in the spectrum
without counting multiplicities [8]. For instance, the star graph S5 in Figure 10.2
has Spectrum(S5) = {0[1], 1[3], 5[1]} = {0, 1, 1, 1, 5} [13], so the example eigenfunction
f corresponds to the eigenvalue λp = 1 of order p = 1.

1The eigenvalue λ0 = 0 corresponds to the constant (all-ones) eigenvector ϕ0 = 1 = (1, 1, . . . , 1)
and, for connected graphs, λ0 = 0 has multiplicity one [136].

2In spectral graph theory, the spectrum of a graph may also refer to the eigenvalues of the adjacency
matrix [13]. This thesis always refers to the spectrum of the graph Laplacian.
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Example: Pseudo-Boolean Fitness Functions in the Walsh Basis

A class of fitness functions well known in combinatorial optimisation are pseudo-
Boolean functions.

Definition 10.1 ([k-bounded] pseudo-Boolean function [11]). Let J ⊆ {1, . . . , n}
be an index set for any n ∈ N. A pseudo-Boolean function is any function f :
{0, 1}n → R uniquely represented as a multi-linear polynomial

f(x) def=
∑
S⊆J

cS

( ∏
j∈S

xj

)
, (10.6)

where cS are real number coefficients and x = (x1, . . . , xn) ∈ {0, 1}n. By convention,∏
j∈∅ xj = 1. If the cardinality of the largest subset S for cS 6= 0 is |S| ≤ k, then f

is k-bounded; that is, the bit-wise non-linearity of f is at most k bits.

Example 10.1 (2-bounded pseudo-Boolean function). A simple 2-bounded
pseudo-Boolean function is f(x) = −1

2x1 + x1x2, for an index set J = {1, 2} and
coefficients: c∅ = 0, c{1} = −1

2 , c{1,2} = 1. The function values are: f(00) = 0,
f(01) = 0, f(10) = −1

2 and f(11) = 1
2 .

The space of all pseudo-Boolean functions R{0,1}n = {f : {0, 1}n → R}, isomor-
phic to R2n , is spanned by an orthogonal basis that has been studied extensively in
relation with GAs and Holland's schemas: the Walsh basis [54, 55, 65, 124, 125, 151].
In other words, any pseudo-Boolean fitness function linearly decomposes into a sum
of Walsh basis functions3 ψw indexed by each w ∈ {0, 1}n: ψw(x) def= ∏n

i=1(−1)wixi for
all x ∈ {0, 1}n. For notational convenience, the (non-normalised) Walsh functions
ψw can be written using the equivalent alphabet {−1,+1}, rather than the usual
{0, 1}, for each index set J ⊆ {1, . . . , n} [8, 85, 137]:

ψJ(x) def=
∏
j∈J

xj , ∀x ∈ {−1,+1}n . (10.7)

Each ψJ is an eigenfunction of the graph Laplacian L for binary Hamming graphs
induced by the single bit-flip neighbourhood seen in Chapter 4:

LψJ = 2p ψJ , (10.8)

with eigenvalue λp = 2p of order p = |J | and multiplicity
(
n
|J |

)
[8, 85, 137]. Fig-

ure 10.3 below shows the 23 = 8 possible Walsh functions on a three-dimensional bi-
3Walsh functions are also called p-spin functions (as in the spin-glass model from physics) [139, 150].
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nary Hamming graph. For example, consider the order-two Walsh functions ψ{1,3} =
x1x3 and ψ{2,3} = x2x3 in Figure 10.3 and the binary sequence x = (+1, −1,+1) cor-
responding to the vertex label +-+. Then, ψ{1,3}(x) = (+1) · (+1) = +1 shown as
a ‘red vertex’, and ψ{2,3}(x) = (−1) · (+1) = −1 shown as a ‘blue vertex’. Klemm,
Stadler [85], and Goldberg [54] show alternative visualisations of these Walsh func-
tions.

+++

--- +--

--+ +-+

-+-

-++

++-

ψ{}(x) = +1

+++-++

++--+-

+-+--+

+-----

ψ{1}(x) = x1

+++-++

--+ +-+

+-----

-+- ++-

ψ{2}(x) = x2

+++

--- +--

--+ +-+

-+-

-++

++-

ψ{3}(x) = x3

+++

--- +--

--+ +-+

-+-

-++

++-

ψ{1,2}(x) = x1x2

+++

--- +--

--+ +-+

-+-

-++

++-

ψ{1,3}(x) = x1x3

+++

--- +--

--+ +-+

-+-

-++

++-

ψ{2,3}(x) = x2x3

+++

--- +--

--+ +-+

-+-

-++

++-

ψ{1,2,3}(x) = x1x2x3

Figure 10.3. The eight possible Walsh basis functions ψJ(x) for J ⊆ {1, 2, 3} and
x ∈ {−1,+1}3 on a three-dimensional binary Hamming graph. Vertices correspond to
three-dimensional binary Hamming sequences using the alphabet {−1,+1}. A ‘red’ vertex
indicates that ψJ evaluates to +1 and a ‘blue’ vertex that ψJ evaluates to −1.

10.2.2 Elementary Fitness Landscapes

The Fourier series expansion of a fitness function presented in Section 10.2.1 puts
at our disposal the powerful machinery of spectral graph theory to analyse fitness
functions defined on graphs (e.g. their connectivity, fitness correlation, estimated
number of local optima, etc.) [8, 13, 136, 137]. But would such series expansion be
practical actually? Although the series in Equation 10.2 always expands into finitely
many terms because the solution set X is assumed finite, in general there could be
an exponentially large number of terms to evaluate (e.g. up to |{0, 1}n| = 2n for
pseudo-Boolean functions), thereby undermining the practicality of fitness function
decomposition.

However, for many NP-complete problems in combinatorial optimisation, the
Fourier series expansion of their fitness function has only a few non-zero terms with
a localised spectrum, meaning their Fourier series expansion does not comprise an
exponentially large number of terms [85, 136, 137]. For instance, the fitness func-
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tion of the subset sum problem and the quadratic assignment problem decompose
into a sum of two and, respectively, three Laplacian eigenfunctions [20]. Indeed,
Grover [56] discovered that the fitness function of several NP-complete problems is
itself a Laplacian eigenfunction up to an additive constant4 c for common choices
of neighbourhood functions. So that the Fourier series expansion (Equation 10.2)
reduces to an even simpler form

f(x) = c+ ϕ(x) ,

where ϕ is an eigenfunction of the graph Laplacian. Such class of fitness landscapes
constitute the foundations of ELT hence their name elementary landscapes (ELs) as
in Definition 10.2. Any elementary landscape (EL) has, therefore, a graph Laplacian
eigenfunction as fitness function. Key characteristics of ELs regarding their local
optima and global structure are discussed later in Section 10.4.

Definition 10.2 ([Flat/non-flat] elementary landscape [136, 137]). Let a fit-
ness landscape F be defined by a fitness function f : V → R on a finite connected
graph G. F is elementary if and only if f is a graph Laplacian eigenfunction ϕp with
eigenvalue λp ≥ 0 of order p ≥ 0, so that: (Lf)(v) = λpf(v), ∀v ∈ V . If f is ϕ0 with
λ0 = 0 and p = 0, then F is flat elementary because ϕ0 is the constant all-ones
eigenvector 1. If f is ϕp with λp > 0 and p > 0, then F is non-flat elementary
because 〈ϕp, ϕ0〉 = 0: ϕp is orthogonal to 1, so it is non-constant.

Remark 10.1 (Definition 10.2). A fitness function f offset by a scalar c ∈ R as
in f ′ = f − c1 may be a graph Laplacian eigenfunction even if f is not. Offsetting
all fitness values by an equal amount does not fundamentally change the fitness
function, so a fitness landscape (G, f) can be called elementary if and only if (G, f ′)
is elementary for at least one scalar offset c (see Corollary 4 in [5]).

From Definition 10.2, it is clear that the Walsh functions shown in Figure 10.3
earlier are examples of ELs on a three-dimensional binary Hamming graph since they
are eigenfunctions of the associated graph Laplacian (Equation 10.8). Chapter 11
will analyse and give examples of simple and NP-complete problems in combinatorial
optimisation whose fitness function corresponds to a Walsh function.

Remark 10.2 (Definition 10.2). Each eigenfunction corresponds to an eigenvalue at
a specific position in the spectrum. If two ELs are the same, their fitness function

4The additive constant c is the global average f̄ of f if 〈ϕ,ϕ0〉 = 〈ϕ,1〉 = 0 [137]. Notice:
|X| f̄ = |X| 1

|X|
∑

x∈X f(x) =
∑

x∈X(c+ ϕ(x)) = |X| c+
∑

x∈X ϕ(x) = |X| c+ 〈ϕ,1〉 = |X| c.
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is the same graph Laplacian eigenfunction at the same position and thus of the
same order p. However, two eigenfunctions of equal order need not be the same
eigenfunction when the eigenvalue's multiplicity is not one (Figure 10.4).

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4

l l l l l
λ0 = 0, λ1 = 1 , λ2 = 1, λ3 = 1 , λ4 = 5

Same spectrum position 6⇐=
=⇒ Same order

ϕ1, ϕ3: order 1
ϕ1: position 1
ϕ3: position 3

Figure 10.4. Graph Laplacian eigenfunctions of same order need not be the same
eigenfunction. This figure shows the relationship between the order and position of
graph Laplacian eigenfunctions ϕ0, . . . , ϕ4 corresponding to eigenvalues in the spectrum
Spectrum(S5) = {0[1], 1[3], 5[1]} = {0, 1, 1, 1, 5} of the star graph S5 in Figure 10.2.

Elementary Landscapes via Random Walks

The transition probability matrix P def= AD−1 of a random walk on a graph (see
Equation 7.1) provides an alternative way to define ELs as revealed by the identity

D−1L = D−1(D−A) = I−D−1A = I−PT , (10.9)

relating the transpose PT of P and a normalisation D−1L of the graph Laplacian
L, I being the identity matrix [8]. For D-regular graphs, Equation 10.9 simplifies to
P = I− 1

D
L, where P and L both are symmetric linear operators with an identical

orthogonal basis of eigenfunctions, that is identical ELs (see Lemma 12 in [136]).
(Besides P = PT, the symmetry of P is justified if one recalls from Chapter 7 that
P induces a reversible finite Markov chain.) Therefore, a mutation fitness landscape
is called elementary equivalently when its fitness function is an eigenfunction of the
transition probability matrix of a random walk on that landscape [136, 137].

10.3 Recombination Fitness Landscapes
A recombination fitness landscape (X,R, f) consists of a fitness function f : X → R
defined on a recombination search space or recombination P-structure (X,R), where
X is a finite set of all candidate solutions, and R : X × X → P(X) is a certain
finite interval operator mapping any pair of parents (x, y) ∈ X ×X to their set of
possible offspring R(x, y) ∈ P(X) [139, 140, 150]. Having no equivalent definition
via graphs or neighbourhood functions, recombination P-structures are thus inher-
ently different from mutation search spaces (Chapter 4), and it explains why ELT
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distinguishes recombination fitness landscapes from mutation fitness landscapes in
line with the ‘one operator one landscape’ view [73]. Nevertheless, recombination
fitness landscapes still admit a decomposition analogous to mutation fitness land-
scapes via a Fourier series expansion of their fitness function [139, 140, 150]. The
next Section 10.3.1 explains why it is so.

10.3.1 Recombination P-structure Laplacian and the
Mutation-recombination Homomorphism

Every fitness function f ∈ RX can be linearly decomposed using Equation 10.2 if
an orthonormal basis that spans RX is known, regardless of whether f is defined
on mutation or recombination fitness landscapes. The question is if such orthonor-
mal basis is associated with the underlying structure of the fitness landscape at
hand. Except in special cases explained later in this section, recombination fitness
landscapes (X,R, f) are not decomposable with respect to the orthonormal basis of
the graph Laplacian L because L itself is undefined for recombination P-structures
(X,R). Accordingly, investigations in ELT [139, 140, 150] began exploring a gen-
eralisation of the graph Laplacian for recombination P-structures. That is, a linear
operator LR : RX → RX called recombination P-structure Laplacian matrix with
dimensions |X| × |X|

LR
def= 2 |X| I− S , (10.10)

for a recombination P-structure R = (X,R). The matrix S is the generalised ad-
jacency matrix (see Equation 7.5 in Chapter 7) of the recombination P-structure
hypergraph associated with R, and 2 |X| I is a diagonal matrix with diagonal en-
tries all equal to 2 |X|. Due to the spectral theorem for symmetric linear operators
[58, 113], if LR is symmetric, then the eigenfunctions of LR form an orthonormal
basis of RX as desired. The problem is S may not be symmetric, and thus nei-
ther LR , for general recombination P-structures; therefore, there are no general
guarantees LR has such basis. However, the following Proposition 10.1 (adapted,
for simplicity, from Stadler and Wagner's Proposition 3 [139]) states the basis does
exist if recombination P-structures are restricted to generously transitive recombina-
tion P-structures (Definition 10.4), whose automorphisms (see Definition 10.3 and
Figure 10.5) are inspired by those of generously transitive graphs [14].

Definition 10.3 (Recombination P-structure automorphism [139]). An au-
tomorphism of a recombination P-structure (X,R) is any function φ : X → X
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such that R
(
φ(x), φ(y)

)
= {φ(z) | z ∈ R(x, y)} for all x, y ∈ X. The set of all

automorphisms on (X,R) is denoted Aut(X,R).

01
φ←− 11

φ ←
− φ −→

00
φ−→ 10

{10, 00}

= Uniform
(
φ(00), φ(01)

)
= {φ(z) | z ∈ Uniform(00, 01)}
= {φ(00), φ(01)}
= {10, 00} ;

{0, 1}2

= Uniform
(
φ(01), φ(10)

)
= {φ(z) | z ∈ Uniform(01, 10)}
= {φ(00), φ(01), φ(10), φ(11)}

= {0, 1}2 .

Figure 10.5. An automorphism φ for the uniform recombination P-structure
(H2

2,Uniform) on two-dimensional binary Hamming sequences H2
2.

Definition 10.4 (Generously transitive recomb. P-structure [139]). A recom-
bination P-structure (X,R) is generously transitive if, for all x, y ∈ X, there exists
an automorphism φ ∈ Aut(X,R) such that y = φ(x).

Proposition 10.1 (Existence of LR eigenbasis [139]). For any generously tran-
sitive recombination P-structure R = (X,R), its generalised adjacency matrix S is
symmetric, and thus the eigenfunctions of the recombination P-structure Laplacian
LR constitute an orthonormal basis of RX .

Although string-based recombination P-structures (e.g. one-point and uniform)
are the only known specific class whose generalised adjacency matrix S is symmet-
ric [139], Proposition 10.1 is not necessarily limited to those in principle. Hence any
recombination P-structure fitness landscape (X,R, f) has a Fourier series expansion
with respect to the orthonormal basis eigenfunctions of LR , as long as R = (X,R) is
a generously transitive recombination P-structure. Then, an elementary landscape,
akin to Definition 10.2 for mutation fitness landscapes, would be any such (X,R, f)
whose Fourier series expansion consists of exactly one eigenfunction of LR .

Definition 10.5 (Recomb. P-structure elementary landscape [139]). Let a
fitness landscape F be defined by a fitness function f : X → R on a generously
transitive recombination P-structure R = (X,R). F is elementary5 if and only if
f is a recombination P-structure Laplacian eigenfunction ϕp with eigenvalue λp ≥ 0
of order p ≥ 0, so that: (LR f)(x) = λpf(x), ∀x ∈ X.

5To avoid awkward wordiness, the term ‘recombination P-structure EL’ is sometimes referred as
‘EL’. The context will make clear whether EL refers to recombination P-structures or graphs.
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Orthonormal Eigenbasis Equivalence between L and LR

For generously transitive recombination P-structures R, Proposition 10.1 guarantees
the existence of an orthonormal basis spanning RX that consists of LR eigenfunc-
tions, but it does not indicate how to find them. Finding eigenfunctions analytically
is already difficult for graph Laplacians L in general, despite there exist method-
ologies for that purpose [20], even more so for LR . Certainly, the Walsh basis for
pseudo-Boolean fitness functions in R{0,1}n is associated with L under the single
bit-flip neighbourhood (Section 10.2.1); however, not all neighbourhoods or search
spaces are associated with a Walsh basis. For example, there is no Walsh basis for
permutations in the TSP [125]. Moreover, the bases of L and LR need not be the
same, and investigating the algebraic properties of LR , besides symmetry and hav-
ing non-negative real eigenvalues, poses additional complications [139]. Effectively,
for generously transitive recombination P-structures there is little guidance on how
to find a basis when it is unknown.

To mitigate those difficulties, Proposition 10.2 below (see Corollary 1 in [139])
goes a step further than Proposition 10.1 and provides a sufficient condition where
the eigenfunctions of L and those of LR are identical; that is, where both share ex-
actly the same orthonormal eigenbasis spanning RX [139]. This condition is distance-
transitivity on the backbone graphs associated with recombination P-structures
(Definition 10.6) analogous to the standard notion of distance-transitivity in graph
theory [14], and, as explained next, it relates directly to the mutation-recombination
homomorphism seen in Chapter 4.

Definition 10.6 (Backbone distance-transitive recomb. P-structure [139]).
Let R = (X,R) be a recombination P-structure with a connected backbone graph
bbgR = (V,E) and whose natural shortest-path metric is d, and Aut(X,R) the set
of automorphisms of R. Then, R is distance-transitive with respect to bbgR , if
for every two vertex pairs (x, y), (u, v) ∈ V × V , with d(x, y) = d(u, v), there is an
automorphism φ ∈ Aut(X,R) such that x = φ(u) and y = φ(v).

Proposition 10.2 (Eigenfunctions of L and LR are identical [139]). If a recom-
bination P-structure R = (X,R) is both backbone distance-transitive and gener-
ously transitive, then the eigenfunctions of the recombination P-structure Laplacian
LR are identical to the eigenfunctions of the graph Laplacian L for the backbone
graph associated with R.
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Proposition 10.2 Implications: Mutation-recombination Homomorphism

Proposition 10.2 implies that if a fitness function f is elementary for a certain
graph G as in Definition 10.2, then f is elementary as in Definition 10.5 for any
recombination P-structure (X,R) conforming to Proposition 10.2 that has G as
its backbone graph. Furthermore, recall from Section 10.1.1 that, once a basis is
fixed, to every f ∈ RX there corresponds a unique real vector of coefficients in
R|X| that linearly combined with the basis functions generate f . So the Fourier
series expansion of f is the same with respect to (X,R) and G above for sharing
the same basis, assuming that G has vertex set V = X. None of this, however,
necessarily means that the mutation (G, f) and recombination (X,R, f) landscapes
themselves are identical in every aspect. Stadler and Wagner [139] show that (G, f)
and (X,R, f) possibly have, for example, different correlation or ruggedness because
their associated eigenvalues may be different even if Proposition 10.2 holds.

What makes Proposition 10.2 significant is allowing us to compare (possibly
different) ELs and recombination P-structure ELs with respect to a common eigen-
basis as long as Proposition 10.2 is satisfied. This comparability is rooted in the
underlying mutation-recombination homomorphisms [26, 51] known in ELT [139],
whereby the graph induced by neighbourhoods of typical mutation operators is (up
to isomorphism) the backbone graph embedded in the hypergraph of recombination
P-structures, and this embedding is a homomorphism from the backbone graph to
the hypergraph.

A trivial example where Proposition 10.2 holds is the n-bit flip neighbourhood
Bitflip(n) and the identity recombination P-structure ({0, 1}n, Id) seen in Chap-
ter 4. The reason being that the hypergraph and backbone graph of ({0, 1}n, Id)
are both isomorphic to the complete graph K2n induced by Bitflip(n).

A non-trivial example is the binary Hamming graph induced by the single bit-flip
neighbourhood, which is the backbone graph embedded in the hypergraph of the
uniform recombination P-structure associated with uniform crossover (Chapter 4).
The uniform recombination P-structure6 fulfils Proposition 10.2, and therefore its re-
combination P-structure Laplacian shares the same eigenfunctions as the Hamming
graph Laplacian according to Corollaries 2–3 in [139]: these are exactly Walsh func-
tions (Section 10.2.1), extended to non-binary Hamming graphs as well in [140, 150].

To summarise, Proposition 10.2, alongside mutation-recombination homomor-
phisms, is useful to analyse or find ELs for existing or new recombination P-
structures because:

6Its backbone distance-transitivity is basically due to Hamming graphs' distance-transitivity [14].
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• The graph Laplacian eigenfunctions of many NP-complete problems are known
already for common neighbourhood functions [5, 20, 56, 85, 136, 137].

• The problem of finding an orthonormal basis of recombination P-structure
Laplacians LR (Equation 10.10) reduces to the problem of finding an orthonor-
mal basis of graph Laplacians L (Equation 10.4) for the backbone graph asso-
ciated with R, where the neighbourhood and the basis are possibly known or
can be less difficult to find.

• In essence, recombination P-structures fulfilling Proposition 10.2 do not have
to be directly dealt with to determine what their ELs are: the graph Laplacian
eigenfunctions of the backbone graph embedded in their hypergraphs suffice.

Elementary Landscapes via Headless-chicken Crossover Random Walks

Recombination P-structure ELs (Definition 10.5) may be defined in terms of tran-
sition probability matrices P for headless-chicken (HC) crossover random walks in-
troduced in Chapter 7. Particularly, for HC crossover random walks that assume
a uniform probability distribution over the finite set X of all states (i.e. candidate
solutions), Equation 7.4 and Equation 10.10 relate P and recombination P-structure
Laplacians LR through the identity

P = 1
2 |X| S = I− 1

2 |X| LR . (10.11)

As pointed out in [139, 150], P and LR have the same eigenfunctions provided
that S is symmetric. Therefore, a recombination fitness landscape is elementary also
when its fitness function is an eigenfunction of the transition probability matrix of
a HC crossover random walk on that landscape.

When HC crossover random walks are based on other (non-uniform) probability
distributions, such as linkage equilibrium [50] (see Section 7.3.3 in Chapter 7), it
is possible to define ‘weighted’ versions of P and LR accounting for frequencies
of individuals in a population modelled by the distribution [140]. However, doing
so implies that a recombination fitness landscape may or may not be elementary
depending on which distribution is used.

10.4 Structure of Elementary Fitness Landscapes
Sections 10.2–10.3 presented a general approach to decompose mutation fitness land-
scapes into a sum of ELs and recombination fitness landscapes into a sum of re-
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combination P-structure ELs. However, due to the distinct nature of graphs and
recombination P-structures, the analysis of ELs and recombination P-structure ELs
requires separate approaches in general. For the former, spectral graph theory is
readily available; for the latter, ELT envisions a generalised spectral graph theory via
recombination P-structure Laplacians to be developed. Fortunately, the existence of
mutation-recombination homomorphisms and Proposition 10.2 provide conditions
where recombination P-structure ELs and ELs are comparable in a fundamental
sense (Section 10.3.1). The remainder of this chapter introduces a general approach
to analyse the structure of ELs and, as long as the aforesaid conditions hold, may
be extensible to recombination P-structure ELs through their backbone graphs.

10.4.1 Discrete Nodal Domains and Local Optima

The graph Laplacian spectrum (Equation 10.5) of an EL bears intimate and hidden
relationships with the structure of its local optima. To reveal and understand these
relationships, ELT [85, 136, 137, 139] suggests discrete nodal domains DNDs, also
called sign graphs for they represent connected subsets of vertices where image values
of eigenfunctions do not change sign, according to Definition 10.7 next. Figure 10.6
exemplifies the four possible types of DNDs.

−1

−1+1 0

+1

(a)

+1 0

+1

S5[L≥0(f)]

(b) W+(f) = 1

−1

−10

S5[L≤0(f)]

(c) W−(f) = 1

Total Number of
Weak DNDs
W(f) = 2

Total Number of
Strong DNDs
S(f) = 4

+1

+1

S5[L>0(f)]
(d) S+(f) = 2

−1

−1

S5[L<0(f)]
(e) S−(f) = 2

Figure 10.6. A function f : V → {−1, 0,+1} defined on the vertex set V of a star
graph S5 (Figure 10.6a) and its associated discrete nodal domains: the positive weak and
negative weak DNDs in Figures 10.6b–10.6c, and, the positive strong and negative strong
DNDs in Figures 10.6d–10.6e.
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Definition 10.7 (Discrete nodal domains [DNDs] [8, 30]). Let f : V → R be
a graph Laplacian eigenfunction defined on the vertex set V of a finite connected
graph G. A positive weak DND is a maximal connected subgraph of G, denoted
G[L≥0(f)], induced by the super-level set L≥0(f) = {v ∈ V | f(v) ≥ 0} with
one non-zero vertex at least. Negative weak, positive strong and negative strong
DNDs are defined analogously by replacing the previous inequalities ≥ with either
≤, > or < respectively. The number of these DNDs is denoted W+(f), W−(f),
S+(f) and S−(f) respectively. The total number of weak and strong DNDs of f are
W(f) =W+(f) +W−(f) and S(f) = S+(f) + S−(f).

Another way to refer to DNDs are the connected components given by pre-
images of the fitness function defined on a graph. For example, on the star graph S5

in Figure 10.6a, the connected component of f−1
(
(−∞, 0]

)
is exactly the subgraph

S5[L≤0(f)] shown in Figure 10.6c, which is a negative weak DND according to Def-
inition 10.7. Likewise, f−1

(
(0,+∞)

)
has two connected components corresponding

to the subgraph S5[L>0(f)], namely two positive strong DNDs that happen to be
two isolated vertices as shown in Figure 10.6d.

Besides their presence in important combinatorial optimisation problems, ELs
are an interesting class of fitness landscapes because their local optima exhibit a
distinctive structure that manifests in their DNDs and justifies why ELT regards
ELs as ‘well behaved’ compared with non-elementary fitness landscapes [85]. That
is, the maximum principle of non-flat ELs in Proposition 10.3 consisting of various
inequalities (see Proposition 3 and Corollary 4 in [35], and Theorem 5 in [5]).

Proposition 10.3 (Maximum principle of non-flat ELs [5, 35, 85]). Let c ∈ R
and a fitness function f : V → R defined on a finite connected graph G = (V,E).
If f ′ = f − c1 is an eigenfunction of the graph Laplacian L on G with eigenvalue
λ > 0, then for all local minima vmin ∈ V and all local maxima vmax ∈ V :

f ′(vmin) ≤ c ≤ f ′(vmax) . (10.12)

Specifically, if f ′ is an eigenfunction for the offset c = f̄ = 1
|V |
∑
v∈V f(v), then:

f̄ − ε∗

λ
≤ f ′(vmin) ≤ f̄ ≤ f ′(vmax) ≤ f̄ + ε∗

λ
, (10.13)

where ε∗ = max{u,w}∈E |f ′(u)− f ′(w)| is the maximum local variation in fitness.

Remark 10.3 (Proposition 10.3). The original maximum principle considered by
Grover [56] and Stadler [136, 137] is stated specifically for zero-averaged functions
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f − f̄1 with offset c = f̄ = 1
|V |
∑
v∈V f(v). Later, Barnes and others [5] extended it

to fitness functions with any offset as in Equation 10.12 (see Remark 10.1).

Example 10.2 (Maximum principle on star graph S5). Consider the function
f defined on the vertex set of the star graph S5 in Figure 10.6a. Let the offset
c = f̄ , so f ′ = f − f̄1 = f since the global average of f is f̄ = 0. The maximum
local variation is ε∗ = 1. From the example in Figure 10.2 earlier in Section 10.2.1:
Lf = λf with λ = 1 of order 1 since Spectrum(S5) = {0[1], 1[3], 5[1]}. Substituting
in Equation 10.13: −1 ≤ f(vmin) ≤ 0 ≤ f(vmax) ≤ 1. So it is clear from Figure 10.6a
that the maximum principle holds for all local minima vmin and local maxima vmax.

For the maximum principle, therefore, ELs have all local maxima in positive weak
(or strong) DNDs and all local minima in negative weak (or strong) DNDs; local
optima include global optima as well. Particularly, choosing the offset c = f̄ makes
the zero fitness level of f ′ = f − f̄1 coincide with the global average f̄ fitness level,
and thus positive DNDs would contain candidate solutions of above-average fitness,
whereas negative DNDs would contain those of below-average fitness. Furthermore,
the fitness of any locally optimal solution will lie in the interval [f̄ − ε∗

λ
, f̄ + ε∗

λ
] due

to the lower and upper bounds in Equation 10.13 of the maximum principle.

f

X

R

f̄

(a) Local minimum above average f̄

f

X

R

f̄

(b) Local maxima below average f̄

Figure 10.7. Informal sketch of fitness landscapes that cannot be elementary landscapes
due to the maximum principle (Proposition 10.3).

The number of DNDs (regardless of which type) in ELs depends on the graph
and function at hand and, unlike the simple example in Figure 10.6, counting them
is intractable in general [8]. Nevertheless, the discrete nodal domain theorem [8, 30]
in Proposition 10.4, which is a discrete version of Courant's nodal domain theorem
for eigenfunctions on continuous spaces [25], provides general upper-bounds on the
total number of weak and strong DNDs of an EL. This section focuses on graph
Laplacians, so Proposition 10.4 and the improved upper-bounds in Proposition 10.5

192



CHAPTER 10. FITNESS LANDSCAPE DECOMPOSITION

are specific instances of the original statements in [8, 30] expressed more generally
with generalised Laplacians or essentially non-positive matrices of graphs.

Proposition 10.4 (General upper-bounds DNDs [8, 30]). Given a connected
graph with n vertices, any graph Laplacian eigenfunction fk corresponding to the
k-th eigenvalue λk, with multiplicity r, has W(fk) ≤ k and S(fk) ≤ k + r − 1.

As soon as a fitness function is known to be elementary, the position and
multiplicity of the corresponding eigenvalue in the spectrum are known. Indeed,
closed-form analytical expressions of graph Laplacian eigenfunctions and eigen-
values can be derived for many important combinatorial optimisation problems
[20, 56, 85, 136, 137]. Thus, if we think of DNDs as ‘clusters’ of local optima
in ELs, Proposition 10.4 provides a direct analytical way to upper-bound the total
number of those clusters solely from the graph Laplacian spectrum (Equation 10.5);
no further assumptions nor experimental data on ELs are required. This could be
useful to design EAs or guide their search. The actual number of local optima in an
EL may exceed the number of DNDs though: DNDs can contain multiple local op-
tima (Figures 10.6b–10.6c). The upper-bounds can be improved for certain classes
of graphs such as binary Hamming graphs as in Proposition 10.5, which are sharp
for eigenvalue orders p ∈ {0, 1, 2} regardless of the number of vertices (see Table 4.1
in [8]).

Proposition 10.5 (Upper-bounds on hypercubes: weak DNDs [8]). Let fp
be a graph Laplacian eigenfunction, with eigenvalue 2p, for a n-dimensional binary
Hamming graph H(n, 2), where p is the eigenvalue order (ignoring multiplicities).
Let also N be the number of vertices of H(n, 2). Then, the total number W(fp) of
weak DNDs is upper-bounded as:

W(fp) ≤ wN,p =



p+ 1 if p = 0 or p = 1,

2
1 +

p/2−1∑
k=0

(
N

2k

) if p is even,

2
1 +

bp/2c−1∑
k=0

(
N

2k + 1

) if p is odd.

(10.14)

ELs corresponding to the smallest non-zero eigenvalue (of order one) are a special
class because the total number of weak DNDs is exactly two; see Proposition 10.6
below, or Corollary 3.2 in [8] and Theorem 3.3 in [44]. Motivated by Kauffman [77],
Stadler calls the order-one ELs Fujiyama7 for they happen to have a unique local
7Fujiyama ELs are called also Fiedler vectors or characteristic valuations [8, 44].
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maximum and minimum on binary Hamming graphs (not so for other graphs nec-
essarily) [136, 137, 139]. By contrast, non-Fujiyama ELs possibly have more than
two weak DNDs.

Proposition 10.6 (Fujiyama ELs: 2 weak DNDs in total [8, 44]). A graph
Laplacian eigenfunction f corresponding to the smallest non-zero eigenvalue of any
connected graph has W(f) = 2 weak DNDs.

A function defined in Euclidean space where all sub-level sets' pre-images have
a single connected component is unimodal according to Kanemitsu and others [75].
Proposition 10.7 (see Corollary 2.6 in [145]) states that, for certain graphs,
Fujiyama ELs satisfy a notion of unimodality, or topological monotonicity [43], given
in Definition 10.8 generalising what Tlusty calls tightness [145].

Definition 10.8 (Weakly unimodal / tight function). Let an arbitrary real-
valued function f defined on the vertex set of a finite connected graph G. Then,
f is called weakly unimodal or weakly tight on G if the subgraphs induced by all
sub-level or super-level sets on G are connected, namely G[L≤`(f)] or G[L≥`(f)] or
both are connected ∀` ∈ R. If G[L≤`(f)] and G[L≥`(f)] are connected ∀` ∈ R, then
f is called tight.

Proposition 10.7 (Fujiyama ELs: unimodality/tightness [145]). Let f be a
real-valued graph Laplacian eigenfunction corresponding to the smallest non-zero
eigenvalue for any connected graph G resulting from a Cartesian product of paths,
cycles, or complete graphs. Then, the subgraphs G[L≤`(f)] and G[L≥`(f)] induced,
respectively, by all sub-level and super-level sets of f on G are connected ∀` ∈ R.

Remark 10.4 (To Proposition 10.7). In general, neither G[L≤`(f)] nor G[L≥`(f)]
need to be connected for non-constant graph Laplacian eigenfunctions on arbitrary
connected graphs [145].

Example 10.3 (Weakly unimodal / tight Fujiyama EL). The function f

defined on the star graph S4 shown in Figure 10.6 is a weakly unimodal Fujiyama EL
but not tight: notice S4[L≥−1(f)] is a connected subgraph but S4[L≤−1(f)] is discon-
nected, also S4[L≤+1(f)] is connected but S4[L≥+1(f)] is disconnected. Any of the
order-one Walsh functions on the binary Hamming graph shown in Figure 10.3 are
tight Fujiyama ELs (thus also weakly tight or weakly unimodal). Constant func-
tions defined on connected graphs are obviously Fujiyama ELs and also (weakly)
tight since the use of inequalities in Definition 10.8 allows subsets of connected
vertices with equal fitness.
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Compared with general Fujiyama ELs, weakly unimodal Fujiyama ELs (and also
tight ones) are a more restricted class. Both have two weak DNDs in total, where
all local minima belong to a negative weak DND and all local maxima belong to a
positive weak DND due to the maximum principle (Proposition 10.3). However, in a
weakly unimodal Fujiyama EL all subgraphs G[L≤`(f)] or G[L≥`(f)] are connected
for all fitness co-domain values ` ∈ R, whereas in a general Fujiyama EL that is not
necessarily true (except for ` = 0 due to Proposition 10.6). Put differently, each
level ` represents a hyperplane that always ‘cuts’ a weakly unimodal Fujiyama EL
into no more than two connected components, not so for other ELs in general.

Fitness landscapes in ELT, therefore, belong to one of the following mutually-
exclusive classes: not elementary, elementary and flat, elementary and not flat. The
latter can be further subdivided into: tight Fujiyama, weakly unimodal (or weakly
tight) Fujiyama, Fujiyama, and non-Fujiyama (which are generally multi-modal).

195



Chapter 11

Abstract Convex Elementary
Landscapes

This chapter is an original major contribution of this thesis, extending a paper that
I co-authored with Moraglio [48]. This chapter presents theoretical foundations to
systematically classify combinatorial fitness landscapes, across problems and repre-
sentations, with respect to the classes of abstract convex landscapes and elementary
landscapes reviewed in Chapters 9 and 10 respectively.

11.1 Introduction
The crossover classification presented in Chapter 5 laid the foundations to develop
in Chapter 8 a qualitative framework for analysing the abstract behaviour of EAs,
based on geometric crossovers and recombination P-structures, across problems and
representations. What about their performance? To explain why some EAs perform
better on some problems and worse on others, it is necessary to understand how
search operators driving EAs' behaviour relate to the problems' fitness functions.
Fitness landscapes formalise that relationship and their classification [69], according
to key landscape features affecting the performance of a class of EAs, is a means to
separate which classes of problems may be ‘easier’ or ‘harder’ for those EAs.

On certain classes of abstract convex landscapes with a globally convex or big
valley structure [101], formal evidence in the GF [100, 101, 104] supports that
geometric-crossover EAs could perform exponentially better than pure random search
at finding optimal or ‘good’ suboptimal solutions. However, it is unclear what spe-
cific landscapes those classes contain: is it real-world problems, classical combi-
natorial optimisation problems or simple benchmark problems like leading-ones?
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Could we show a priori and systematically when a landscape belongs to any of those
classes? Answering these questions would be a major leap in the GF to formally
explain which geometric-crossover EA performs best on which problem.

To invoke ELT for an answer may seem contrived since ELT does not focus on
the analysis of globally convex functions. Nevertheless, elementary landscapes [136]
represent relevant fitness landscapes of real phenomena like spin-glass models of
magnetic materials, of software engineering like the next release problem [91], and
of various combinatorial NP-complete problems. Some of these elementary land-
scapes [138], for instance those related with TSP or graph bipartition problems,
also exhibit a big valley or globally convex structure apparently due to an under-
lying ultrametric distance [10, 46, 83]. Furthermore, because the fitness function
of elementary landscapes is an eigenfunction of a graph Laplacian or recombina-
tion P-structure Laplacian operator, valuable information about their local optima
and features like smoothness can be analytically derived from the Laplacian
spectrum [136, 139]. What still remains obscure about elementary landscapes is the
relation between their geometrical structure, spectral properties and population-
based EAs [85] as opposed to local search [56] and recombination P-structure random
walks [140].

Pursuing a classification of fitness landscapes that are both abstractly convex and
elementary would help us clarify if: (a) the abstract convex landscape classes contain
instances of interesting elementary landscapes; (b) there exist elementary landscapes
where geometric-crossover EAs potentially outperform pure random search; and,
(c) the abstract convexity of elementary landscapes can be inferred analytically from
the corresponding Laplacian spectrum. But it is far from clear if such classification is
possible at all; abstract convex landscapes and elementary landscapes, as introduced
in Chapters 9 and 10, are formally different classes of fitness landscapes for which
no unified theory has been developed yet.

The aim of this chapter is to explore, based on prior research I co-authored [48],
a mathematical characterisation of landscapes that are both abstractly convex and
elementary. That is, to develop theoretical foundations of abstract convex elemen-
tary landscapes by focusing on the following two fundamental questions framed in
Figure 11.1 below.

Question 11.1. Are the classes of elementary landscapes in ELT and abstract con-
vex fitness landscapes in the GF disjoint? If not, which specific classes do overlap?

Question 11.2. How does the abstract convexity of an elementary landscape relate
to its eigenfunction order or position in the Laplacian spectrum?
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Geometric Framework

Geometric
crossover

EAs

perform
well on

Abstract
convex

landscapes

Elementary Landscapes Theory

Elementary
landscapes

include Relevant
combinatorial
problems

Question 11.1

Question 11.2

Figure 11.1. General view of central questions and topics (highlighted in ‘black’) in
Chapter 11 with respect to the geometric framework and elementary landscapes theory.

11.1.1 Overview

This chapter proves abstract convex landscapes and elementary landscapes are not
disjoint classes, though sometimes become degenerate and include all landscapes
or flat landscapes only. Also, it proves the abstract convexity present in certain
abstract convex elementary landscapes can be directly identified by looking at the
position in the graph Laplacian spectrum. To do so, this chapter begins address-
ing Question 11.1 with the definition of various pseudo-Boolean fitness landscapes
(Section 11.2) and their classification (Section 11.3) to find which ones are abstract
convex elementary landscapes. Later, Section 11.4.1 focuses on Question 11.2 and
proves that (quasi-)convex or (quasi-)concave elementary landscapes generally have
eigenvalues of order less than two. Finally, Section 11.4.2 shows there exist approx-
imately (average or quasi) convex elementary landscapes and explains how they
relate to the Laplacian spectrum. All together will reveal important implications,
discussed in Section 11.5, concerning the viability of classifying abstract convex el-
ementary landscapes to identify the kind of combinatorial optimisation problems
where certain geometric-crossover or recombination P-structure EAs perform best.

11.1.2 Contributions

The main contributions of this chapter are:

1. A classification of pseudo-Boolean fitness landscapes, defined on finite
metric spaces with the discrete metric or Hamming metric, associated with
the following problems: one-max, needle-in-a-haystack, leading-ones, not-all-
equal 3-satisfiability, and weight partitioning. (Section 11.3.)

2. A proof that every non-constant fitness function on complete graphs belongs to
the classes of: (approximately) convex, (approximately) quasi-convex,
(approximately) average-convex, and tight Fujiyama elementary landscapes,
as well as their concave versions. (Section 11.3.1 and Section 11.4.2.)
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3. A proof that, on binary Hamming graphs, tight Fujiyama elementary land-
scapes overlap with (approximately) average-convex and (approximately) average-
concave landscapes using one-max and certain perturbed one-max fitness land-
scapes as examples. (Section 11.3.2 and Section 11.4.2.)

4. A proof that for any finite connected graph, if an elementary landscape is
(quasi-)convex or (quasi-)concave, then it corresponds to graph Laplacian
eigenfunction with an eigenvalue of order less than two. (Section 11.4.1.)

5. A proof that for the class of triangle-free graphs of vertex degree greater or
equal than two, which includes all non-trivial binary Hamming graphs, there
is no convex nor concave elementary landscape except the constant order-zero
graph Laplacian eigenfunction for eigenvalue zero. (Section 11.4.1.)

6. Characterising perturbed fitness landscapes that are elementary as well as
approximately (average or quasi) convex. (Section 11.4.2.)

Section 11.5 discusses the contributions, and Section 11.6 concludes this chapter.

11.2 Preliminaries
Pseudo-Boolean fitness landscapes must be defined before classifying them. The next
Section 11.2.1 defines pseudo-Boolean optimisation problems, and Section 11.2.2
defines pseudo-Boolean fitness landscapes associated with those problems.

11.2.1 Pseudo-Boolean Optimisation Problems

This chapter considers five pseudo-Boolean optimisation problems with distinct com-
putational complexities and characteristics, which previous studies [87, 104, 136, 137]
and one I co-authored [48] have analysed with regards to abstract convex land-
scapes and elementary landscapes: one-max, needle-in-a-haystack, leading-ones,
not-all-equal 3-satisfiability problem (NAE3SATP), and weight partitioning prob-
lem (WPP). The first three (Definitions 11.1–11.3) are benchmark problems whose
analysis can be insightful despite their simplicity and which, except for needle-in-a-
haystack, are solvable in polynomial time [3, ch. 2]. By contrast, NAE3SATP and
WPP are two of Karp's classical 21 NP-complete problems [56, 76]: the former is a
version of Boolean satisfiability restricted to three-literal clauses (Definition 11.4),
and the latter is a version of two-way number partitioning (Definition 11.5).
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Definition 11.1 (One-max problem [3]). The one-max problem is to find the n-
dimensional binary Hamming sequence, where n ∈ N, that maximises the one-max
fitness function

fOneMax : {0, 1}n → {0, . . . , n}

(x1, . . . , xn) 7→
n∑
i=1

xi .

Definition 11.2 (Needle-in-a-haystack problem [3]). The needle-in-a-haystack
problem is to find the n-dimensional binary Hamming sequence, where n ∈ N, that
maximises the needle fitness function

fNeedle : {0, 1}n → {0, 1}

(x1, . . . , xn) 7→
n∏
i=1

xi .

Definition 11.3 (Leading-ones problem [3]). The leading-ones problem is to
find the n-dimensional binary Hamming sequence, where n ∈ N, that maximises the
leading-ones fitness function

fLeadingOnes : {0, 1}n → {0, . . . , n}

(x1, . . . , xn) 7→
n∑
i=1

i∏
j=1

xj .

Definition 11.4 (Not-all-equal 3-satisfiability problem [NAE3SATP] [56]).
Let an n-dimensional sequence of binary variables x = (x1, . . . , xn) and their com-
plements x̄i = 1−xi define a set of literals L = {x1, x̄1, x2, x̄2, . . . , xn, x̄n} for n ∈ N.
An instance consists of a finite family Cx of subsets C ⊆ L called clauses such that:
each clause C has three literals, and either xi ∈ C or x̄i ∈ C not both. A clause is
satisfied if and only if at least one of its literals evaluates to 0 and another to 1. The
not-all-equal 3-satisfiability problem (NAE3SATP) is to find a (x1, . . . , xn) ∈ {0, 1}n

maximising the number of satisfied clauses, that is the NAE3SATP fitness function

fNAE3SATP : {0, 1}n → {0, . . . , |Cx|}

x = (x1, . . . , xn) 7→
∑
C∈Cx

(
1−

∏
c∈C

c

) (
1−

∏
c∈C

c̄

)
is 1 iff x satisfies C, otherwise 0

.

Definition 11.5 (Weight partitioning problem [WPP] [56]). An instance con-
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sists of an n-dimensional sequence (w1, . . . , wn) of real numbers representing ‘weights’
corresponding to ‘objects’ (o1, . . . , on) for n ∈ N. The weight partitioning problem
(WPP) is to find a (x1, . . . , xn) ∈ {0, 1}n that minimises the WPP fitness function

fWPP : {0, 1}n → R

fWPP(x1, . . . , xn) 7→
(

n∑
i=1

wi · s(xi)
)2

,

where s(xi) = −1, if xi = 0, otherwise s(xi) = 1.

11.2.2 Pseudo-Boolean Fitness Landscapes

To achieve a classification of pseudo-Boolean fitness landscapes that helps us address
Questions 11.1 and 11.2 we seek pseudo-Boolean fitness landscapes that conceivably
lie in the intersection, visualised in Figure 11.2, between the abstract convex land-
scapes, elementary landscapes and recombination P-structure elementary landscapes
classes seen in Chapters 9 and 10.

Abstract
convex

landscapes

elementary
landscapes

Recomb. P-struct.

Elementary
landscapes

Figure 11.2. Venn diagram highlighting the subclass that intersects abstract convex and
(recombination P-structure) elementary landscapes.

Because (pseudo-Boolean) fitness landscapes generally may not be in that inter-
section, we impose three minimum requisites to exclude landscapes that surely are
not in the intersection:

• To be finite. Abstract convex landscapes may be continuous or finite, but
(recombination P-structure) elementary landscapes must be finite always.

• To be associated with a metric. Abstract convex landscapes are always asso-
ciated with a metric and elementary landscapes based on neighbourhoods of
graphs too (e.g. shortest-path metric); recombination P-structure elementary
landscapes can but generally are not associated with metrics.
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• To be elementary with respect to a neighbourhood and a recombination P-
structure because elementary landscapes need not be elementary in both senses.
(The GF does not define mutation and recombination landscapes separately;
here we enforce ELT to make no formal distinction between them neither.)

The above criteria is met by restricting to fitness landscapes defined on finite and
connected backbone graphs that are homomorphically equivalent to hypergraphs of
recombination P-structures satisfying generous transitivity and backbone distance-
transitivity (see Section 10.3.1 in Chapter 10). Here Proposition 10.2 (see Corollary 1
by Stadler and Wagner [139]) guarantees that any fitness function elementary for
the neighbourhoods of such graphs is also elementary for the corresponding generous
and backbone distance-transitive recombination P-structures and vice versa.

Out of all crossovers classified in Chapters 5 and 8, the only provably known re-
combination P-structures with such properties and backbone graphs are the trivial
case of complete graphs for identity crossover and the non-trivial case of binary Ham-
ming graphs for unbiased uniform crossover (see Section 10.3.1 and [139, 150]). Other
crossovers may well be generous and backbone distance-transitive recombination P-
structures, but proving that involves research out of this chapter's scope.

Complete graphs and binary Hamming graphs are associated with the metric
spaces, neighbourhoods and geometric recombination P-structures specified in Ta-
ble 11.1 below.

Metric space
Graph Neighbourhood

function

Geometric
recombination
P-structureSet Metric

{0, 1}n discrete metric d0 complete graph K2n n-bit flip ({0, 1}n, Id)

{0, 1}n Hamming metric dH
binary Hamming
graph H(n, 2)

single-bit flip ({0, 1}n,Uniform)

Table 11.1. Two kinds of graphic metric spaces alongside associated neighbourhoods and
geometric-recombination P-structures satisfying Proposition 10.2.

Definition 11.6 (Discrete-distance metric space [34]). A discrete-distance met-
ric space, for short d0-metric space, (X, d0) consists of an arbitrary set X and the
discrete metric d0 defined ∀x, y ∈ X as: d0(x, y) = 0 if and only if x = y, otherwise
d0(x, y) = 1.

This chapter considers two families of pseudo-Boolean fitness landscapes speci-
fied in the next Table 11.2, using the pseudo-Boolean fitness functions stated earlier
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in Section 11.2.1 over d0-metric spaces and binary Hamming metric spaces. Here-
inafter, complete graphs and finite d0-metric spaces will be used interchangeably
when convenient to denote or refer to the structure of those landscapes; the same
applies to binary Hamming graphs and binary Hamming metric spaces.

Fitness landscape (family 1) Fitness landscape (family 2)

({0, 1}n, d0, fOneMax) ({0, 1}n, dH, fOneMax)
({0, 1}n, d0, fNeedle) ({0, 1}n, dH, fNeedle)
({0, 1}n, d0, fLeadingOnes) ({0, 1}n, dH, fLeadingOnes)
({0, 1}n, d0, fNAE3SATP) ({0, 1}n, dH, fNAE3SATP)
({0, 1}n, d0, fWPP) ({0, 1}n, dH, fWPP)

Table 11.2. Two families of pseudo-Boolean fitness landscapes defined on d0-metric
spaces and binary Hamming metric spaces respectively.

11.3 Pseudo-Boolean Landscapes Classification
This section classifies the two families of pseudo-Boolean fitness landscapes pro-
posed in Table 11.2 in Section 11.2. Table 11.3 below summarises the classification
resulting from the rest of this section. The details of the classes of abstract convex
landscapes and elementary landscapes classes are covered in Chapters 9 and 10.

Class ({0, 1}n, d0) ({0, 1}n, dH)
Convex All —
Concave All —
Quasi-convex All —
Quasi-concave All Needle, leading-ones
Average-convex All One-max
Average-concave All One-max
(Tight) Fujiyama EL (order p = 1) All One-max
Non-Fujiyama EL (order p > 1) — NAE3SATP, WPP
Not elementary — Needle, leading-ones
(—) None of: one-max, needle, leading-ones, NAE3SATP and WPP.
(All) All of: one-max, needle, leading-ones, NAE3SATP and WPP.

Table 11.3. Classification of pseudo-Boolean fitness functions based on d0-metric spaces
({0, 1}n, d0) and binary Hamming metric spaces ({0, 1}n, dH) with respect to classes of
abstract convex landscapes and elementary landscapes (ELs).
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11.3.1 Classification in Discrete-distance Metric Spaces

Stadler [137] proves that for every real-valued non-constant function f defined on
an arbitrary complete graph there exists some offset c ∈ R that makes f − c1
elementary. Moreover, every elementary landscape on complete graphs is tight in
the sense of Definition 10.8 according to Tlusty [145]. From these two facts and
Lemma 11.1, it follows immediately that all non-flat fitness landscapes defined on
complete graphs or finite d0-metric spaces are tight Fujiyama elementary landscapes,
that is Theorem 11.1.

Lemma 11.1. For every d0-metric space (X, d0), the identity crossover Id and the
d0-metric segment between every two parents x, y ∈ X fulfil the relation Id(x, y) =
{x, y} = [x, y]d0 .

Proof. Fix two arbitrary parents x, y ∈ X. Either x = y, so d0(x, y) = 0, or
x 6= y, so d0(x, y) = 1. If x = y, then Id(x, x) = {x} by Definition 4.4, and
[x, x]d0 = {x} by Definition 3.2 of metric segments. If x 6= y, then Id(x, y) = {x, y}
and [x, y]d0 = {z | d0(x, z) + d0(z, y) = 1} = {x, y} again by Definitions 4.4 and 3.2
respectively. Notice when z 6= x and z 6= y, d0(x, z) + d0(z, y) = 2 > 1; therefore,
z = x or z = y must hold so that: d0(x, z) = 0 and d0(z, y) = 1, if z = x, or
d0(z, y) = 0 and d0(x, z) = 1 if z = y. Hence Id(x, y) = {x, y} = [x, y]d0 .

Theorem 11.1. Let f : X → R be an arbitrary non-constant function defined on
any d0-metric space (X, d0) where |X| = n is finite. Then, there exists c ∈ R such
that f−c1 is a graph Laplacian eigenfunction with eigenvalue λp = n of order p = 1
for the complete graph Kn. That is, (X, d0, f − c1) is a tight Fujiyama elementary
landscape.

Proof. Lemma 11.1 proves [x, y]d0 = {x, y} for all x, y ∈ X. By Definition 11.6,
d0(x, y) = 1 if x 6= y, and d0(x, y) = 0 if x = y. Given |X| = n, then (X, d0) must be
isomorphic to a complete graph Kn with Spectrum(Kn) = {0[1], n[n−1]} [13]. Accord-
ing to Remark 10.1, (X, d0, f) is elementary if and only if there is an offset c ∈ R such
that f − c1 is a Kn graph Laplacian eigenfunction. Due to Stadler's Lemma 4 [137],
any non-constant function on complete graphs is a graph Laplacian eigenfunction for
some offset c. Moreover, any non-constant eigenfunction is orthogonal to the order-
zero constant eigenfunction with eigenvalue λ0 = 0 by Definition 10.2. Therefore,
f − c1 is a Kn graph Laplacian eigenfunction with eigenvalue λp = n of order p = 1,
hence (X, d0, f) is a Fujiyama elementary landscape and tight as in Definition 10.8
due to Proposition 10.7 (see Tlusty's Corollary 2.6 [145]).
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Corollary 11.1 (To Theorem 11.1). Let f be any of the one-max, needle-in-
a-haystack, leading-ones, NAE3SATP, or WPP pseudo-Boolean fitness functions.
Then, there exists an offset c ∈ R such that ({0, 1}n, d0, f − c1) is a tight Fujiyama
elementary landscape.

Proof. It follows from Theorem 11.1.

The next Theorem 11.2 and Corollary 11.2 prove that all fitness landscapes
defined on complete graphs or d0-metric spaces belong simultaneously to all these
classes: convex, concave, quasi-convex, quasi-concave, average-convex and average-
concave.

Theorem 11.2. Every function f : X → R defined on an arbitrary d0-metric space
(X, d0) is d0-metric convex and d0-metric concave. That is, (X, d0, f) is a convex
and concave fitness landscape.

Proof. According to Remark 9.4, it suffices to prove (X, d0, f) is affine to prove
(X, d0, f) is convex and concave. That is, to verify

f(z) = d0(y, z)
d0(x, y)f(x) + d0(x, z)

d0(x, y)f(y) (11.1)

holds ∀x, y ∈ X, such that d0(x, y) 6= 0, and ∀z ∈ [x, y]d0 . From Lemma 11.1, it
follows that either z = x or z = y since ∀x, y ∈ X : [x, y]d0 = {x, y}. If z = x, then
substituting in Equation 11.1 yields

f(x) = 1
1f(x) + 0

1f(y) = f(x) ;

and, if z = y, then substituting in Equation 11.1 yields

f(y) = 0
1f(x) + 1

1f(y) = f(y) .

Therefore, f is d0-metric convex and d0-metric concave because it is affine.

Corollary 11.2 (To Theorem 11.2). Every function f : X → R defined on an
arbitrary d0-metric space (X, d0) is d0-metric quasi-convex, d0-metric quasi-concave,
d0-metric average-convex, and d0-metric average-concave.

Proof. Let us begin with two observations:

(a) Theorem 11.2 proves every (X, d0, f) is a convex and concave fitness landscape,
where f is a d0-metric convex and concave function.
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(b) Lemma 11.1 proves [x, y]d0 = {x, y} for all x, y ∈ X. Hence d0-metric spaces
(X, d0) have regular metric segments: |{z : z ∈ [x, y]d0 ∧ d0(x, z) = t}| = |{x, y}|
= |{z : z ∈ [x, y]d0 ∧ d0(y, z) = t}| for all t ∈ {0, . . . , d0(x, y)}.

From (a) it follows that (X, d0, f) fulfils Definition 9.3 of quasi-convex and quasi-
concave fitness landscapes due to Proposition 9.3. From both (a) and (b) it follows
that (X, d0, f) fulfils Definition 9.6 of average-convex and average-concave fitness
landscapes due to Proposition 9.1.

Corollary 11.3 (To Theorem 11.2 and Corollary 11.2). Let f be any of the one-max,
needle-in-a-haystack, leading-ones, NAE3SATP, or WPP pseudo-Boolean fitness
functions. Then, ({0, 1}n, d0, f) is convex, concave, quasi-convex, quasi-concave,
average-convex, average-concave.

Proof. It follows directly from Theorem 11.2 and Corollary 11.2.

11.3.2 Classification in Binary Hamming Metric Spaces

Preliminary research [48] suggests that, on binary Hamming graphs, only Fujiyama
elementary landscapes (i.e. order-one graph Laplacian eigenfunctions) could belong
to the convex, quasi-convex or average-convex classes or their concave versions. This
section proves to what extent that is true for the second family of pseudo-Boolean
fitness landscapes proposed earlier in Table 11.2.

One-max

Langdon [87], Chicano and others [23] show that the zero-averaged one-max fit-
ness function fOneMax − f̄OneMax, where f̄OneMax = n

2 is the global average, is a
sum of order p = 1 Walsh functions; each of which is a graph Laplacian eigen-
function with eigenvalue λp = 2p = 2 for an n-dimensional binary Hamming graph
(see Equation 10.8). That is, ({0, 1}n, dH, fOneMax) are Fujiyama elementary land-
scapes and tight due to Proposition 10.7. In addition, one-max fitness landscapes
({0, 1}n, dH, fOneMax) are:

• Average-convex and average-concave by Theorem 11.3, which relies on Proposi-
tion 11.1 proved by Chicano and others in Theorem 2 [23], taking into account
that unbiased uniform crossover is a geometric crossover with offspring uni-
formly distributed over the Hamming metric segment between parents [100].

• Not quasi-convex nor quasi-concave by Theorem 11.4.

206



CHAPTER 11. ABSTRACT CONVEX ELEMENTARY LANDSCAPES

• Not convex nor concave by Corollary 11.4.

Proposition 11.1 (One-max: expected offspring fitness [23]). Let ({0, 1}n, dH,

fOneMax) be a one-max fitness landscape. Then, for all parents x, y ∈ {0, 1}n and
offspring z ∼ Unif([x, y]dH):

E[fOneMax(z)] = |x ∧ y|+ 1
2 |x ∧ ȳ|+

1
2 |x̄ ∧ y| , (11.2)

where |x| is the number of 1 bits of x, x̄ is the bitwise negation (NOT) of x, and
x ∧ y is the bitwise conjunction (AND) of x, y.

Theorem 11.3. One-max fitness landscapes ({0, 1}n, dH, fOneMax) are average-
convex and average-concave. That is, for all parents x, y ∈ {0, 1}n and offspring
z ∼ Unif([x, y]dH): E[fOneMax(z)] = 1

2

(
fOneMax(x) + fOneMax(y)

)
.

Proof. Since E[fOneMax(z)] = |x ∧ y|+ 1
2 |x ∧ ȳ|+

1
2 |x̄ ∧ y| due to Proposition 11.1,

it suffices to prove

|x ∧ y|+ 1
2 |x ∧ ȳ|+

1
2 |x̄ ∧ y| =

1
2
(
fOneMax(x) + fOneMax(y)

)
. (11.3)

Observe that |x⊕ y| = |x ∧ ȳ|+ |x̄ ∧ y|, where x⊕y = (x∧ ȳ)∨ (x̄∧y) is the bitwise
exclusive-or (XOR) of x and y, and fOneMax(x) = ∑n

i=1 xi = |x| counts the number
of 1 bits in x. Then, Equation 11.3 becomes Equation 11.4:

|x ∧ y|+ 1
2 |x⊕ y| =

1
2(|x|+ |y|) ,

|x⊕ y| = |x|+ |y| − 2 |x ∧ y| . (11.4)

By definition of XOR: xi ⊕ yi = 0 ⇐⇒ xi = yi, and xi ⊕ yi = 1 ⇐⇒ xi 6= yi.
Hence |x⊕ y| equals the Hamming distance dH(x, y) between x and y. It is easy
to notice dH(x, y) = |x| + |y| − 2 |x ∧ y| holds. If we count the number of 1 bits
|x| in x and those |y| of y, namely |x| + |y|, we count once the bits where x and y
differ but twice the bits shared by both. Subtracting twice the number of shared
bits 2 |x ∧ y| from |x| + |y| yields dH(x, y). Therefore, Equation 11.3 holds and so
does E[fOneMax(z)] = 1

2

(
fOneMax(x) + fOneMax(y)

)
.

Theorem 11.4. One-max fitness landscapes ({0, 1}n, dH, fOneMax) are not quasi-
convex nor quasi-concave.

Proof. Not all the sub-level sets of fOneMax are geodesically convex with respect to
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({0, 1}n, dH). Consider

L≤1(fOneMax) = {x ∈ {0, 1}n | fOneMax(x) ≤ 1}

= {(0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . (0, 0, . . . , 0, 1)} ,

comprising the n-dimensional all-zeros sequence alongside the unit vectors. Since

[(1, 0, . . . , 0), (0, . . . , 0, 1)]dH 3 (1, 0, . . . , 0, 1) /∈ L≤1(fOneMax) ,

it follows that ∀x, y ∈ L≤1(fOneMax) : [x, y]dH 6⊆ L≤1(fOneMax). Therefore, fOneMax

is not dH-metric quasi-convex, and so ({0, 1}n, dH, fOneMax) is not quasi-convex by
Definition 9.5. Likewise, not all the super-level sets of fOneMax are geodesically
convex with respect to ({0, 1}n, dH). Consider

L≥(n−1)(fOneMax) = {x ∈ {0, 1}n | fOneMax(x) ≥ n− 1}

= {(1, . . . , 1), (0, 1, 1, . . . , 1), (1, 0, 1, 1, . . . , 1), . . . , (1, . . . , 1, 1, 0)} ,

comprising the n-dimensional binary sequences diametrically opposite to those of
L≤1(fOneMax). Since

[(0, 1, 1, . . . , 1), (1, . . . , 1, 1, 0)]dH 3 (0, 1, . . . , 1, 0) /∈ L≥(n−1)(fOneMax) ,

it follows that ∀x, y ∈ L≥(n−1)(fOneMax) : [x, y]dH 6⊆ L≥(n−1)(fOneMax). Therefore,
fOneMax is not dH-metric quasi-concave, and so ({0, 1}n, dH, fOneMax) is not quasi-
concave by Definition 9.5 and Remark 9.6.

Corollary 11.4 (To Theorem 11.4). One-max fitness landscapes ({0, 1}n, dH, fOneMax)
are not convex nor concave.

Proof. Due to Proposition 9.3, all convex fitness landscapes are quasi-convex, and all
concave fitness landscapes are quasi-concave. But Theorem 11.4 proves ({0, 1}n, dH,

fOneMax) is not quasi-convex nor quasi-concave. Therefore, ({0, 1}n, dH, fOneMax) is
not convex nor concave.

Needle-in-a-haystack

Langdon [87] proves that the fitness function of the needle-in-a-haystack problem
induces an elementary landscape only when defined on complete graphs, implying
it would not be elementary for instance on binary Hamming graphs. This section
shows that needle fitness landscapes ({0, 1}n, dH, fNeedle) are:
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• Not elementary landscapes by Theorem 11.5, which provides an alternative
proof to Langdon's for binary Hamming graphs.

• Quasi-concave but not quasi-convex by Theorem 11.6.

• Not convex nor concave by Corollary 11.5 and Theorem 11.7 respectively.

• Not average-convex nor average-concave by Theorem 11.8.

Theorem 11.5. Needle fitness landscapes ({0, 1}n, dH, fNeedle) are not elementary.

Proof. According to Remark 10.1, if ({0, 1}n, dH, fNeedle) was elementary, there
would be an offset c ∈ R such that f ′Needle = fNeedle − c1 is an eigenfunction of the
graph Laplacian for the n-dimensional binary Hamming graph H(n, 2) induced by
({0, 1}n, dH). Let us prove no such offset can exist.

From Definition 11.2, the image of fNeedle is always 0 except for the all-ones bi-
nary sequence (1, 1, . . . , 1) that has image 1. So fNeedle has the vector form fNeedle =
(fNeedle(x0), fNeedle(x1), . . . , fNeedle(x2n−2), fNeedle(x2n−1)) = (0, 0, . . . , 0, 1), where
xi, 0 ≤ i ≤ 2n− 1, is the binary sequence whose decimal number representation is i.
Clearly, fNeedle is non-constant. Any non-constant graph Laplacian eigenfunction
must be orthogonal to the order-zero constant eigenfunction, thus f ′Needle should
have a non-zero eigenvalue and satisfy for some offset c

〈f ′Needle,1〉 =
∑

x∈{0,1}n

f ′Needle(x) =
∑

x∈{0,1}n

(fNeedle(x)− c) = 0 (11.5)

to be elementary. Only one c satisfies Equation 11.5:

∑
x∈{0,1}n

(fNeedle(x)− c) = 0

(−c) + (−c) + · · ·+ (−c)
2n−1 times

+(1− c) = 0

−2n · c+ 1 = 0

c = 1
2n .

Precisely, c = 1
2n = f̄Needle is the global average of fNeedle. Hence f ′Needle =

fNeedle − f̄1 = (− 1
2n , − 1

2n , . . . , − 1
2n ,

2n−1
2n ). However, it is plain to see f ′Needle is

not a H(n, 2) graph Laplacian eigenfunction: no eigenvalue λ > 0 would satisfy
(Lf ′Needle)(xi) = λ · f ′Needle(xi) for all xi. For example, one may check x0 already
yields (Lf ′Needle)(x0) = 0 using Equation 10.3 for the single bit-flip neighbourhood
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function Bitplip(1), Definition 4.1, associated with H(n, 2):

(Lf ′Needle)(x0) = |Bitplip(1)(x0)| · f ′Needle(x0)−
∑

y∈Bitplip(1)(x0)
f ′Needle(y)

= n ·
(
− 1

2n
)
−
((

− 1
2n
)

+ · · ·+
(
− 1

2n
)

n times due to n neighbours

)

= − n2n + n

2n = 0 .

That is, (Lf ′Needle)(x0) = 0 6= λ · (− 1
2n ) = λ · f ′Needle(x0) for all λ > 0.

Theorem 11.6. Needle fitness landscapes ({0, 1}n, dH, fNeedle) are quasi-concave,
but they are not quasi-convex.

Proof. From Definition 11.2, the image of fNeedle is always 0 except for the all-ones
binary sequence that has image 1. So fNeedle has two super-level sets

L≥0(fNeedle) = {0, 1}n ≡ ** · · · * ,

L≥1(fNeedle) = {1}n ≡ 11 · · · 1 ,

and two sub-level sets

L≤0(fNeedle) = {0, 1}n \ {1}n ,

L≤1(fNeedle) = {0, 1}n ≡ ** · · · * .

The super-level sets are schemas or invariant subsets (see Section 6.2 in Chapter 6),
which are geodesically convex sets for ({0, 1}n, dH) as a consequence of Proposi-
tion A.1 by Mitavskiy [98]. Therefore, fNeedle is a dH-metric quasi-concave function,
so ({0, 1}n, dH, fNeedle) is quasi-concave according to Definition 9.5 and Remark 9.6.
However, the sub-level set L≤0(fNeedle) is not geodesically convex since

[(1, 0, 1, 0 . . . , 1, 0), (0, 1, 0, 1 . . . , 0, 1)]dH 3 (1, . . . , 1) /∈ L≤0(fNeedle) ,

that is ∀x, y ∈ L≤0(fNeedle) : [x, y]dH 6⊆ L≤0(fNeedle). Therefore, fNeedle is not
a dH-metric quasi-convex function, and so ({0, 1}n, dH, fNeedle) is not quasi-convex
according to Definition 9.5.

Corollary 11.5 (To Theorem 11.6). Needle fitness landscapes ({0, 1}n, dH, fNeedle)
are not convex.
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Proof. Every convex fitness landscape is quasi-convex due to Proposition 9.3, but
Theorem 11.6 proves ({0, 1}n, dH, fNeedle) is not quasi-convex. Therefore, ({0, 1}n, dH,

fNeedle) is not convex.

Theorem 11.7. Needle fitness landscapes ({0, 1}n, dH, fNeedle) are not concave.

Proof. The following counterexample proves ({0, 1}4, dH, fNeedle) is not concave (see
Definition 9.3). Fix n = 4, two parent bit strings x = 0101 and y = 1111, and one
offspring z = 0111 ∈ [x, y]dH . Then,

0 = fNeedle(z) < dH(y, z)
dH(x, y)fNeedle(x) + dH(x, z)

dH(x, y)fNeedle(y) = 1
2 0 + 1

2 1 = 1
2 .

Therefore, needle fitness landscapes ({0, 1}n, dH, fNeedle) are not always concave.

Theorem 11.8. Needle fitness landscapes ({0, 1}n, dH, fNeedle) are not average-
convex nor average-concave.

Proof. The following two counterexamples prove ({0, 1}4, dH, fNeedle) are not average-
convex nor average-concave respectively (see Definition 9.6). For the first coun-
terexample, consider n = 4, two parent bit strings x = 1101 and y = 1110, and
one offspring random variable z ∼ Unif([x, y]dH) = Unif({1100, 1101, 1110, 1111}).
Then,

E[fNeedle(z)] = 1
|[x, y]dH|

∑
z∈[x,y]dH

fNeedle(z) = 1
4 > 0 = fNeedle(x) + fNeedle(y)

2 .

Therefore, ({0, 1}4, dH, fNeedle) is not average-convex. For the second counterex-
ample, consider two parent bit strings x = 0000 and y = 1111, and one offspring
random variable z ∼ Unif([x, y]dH) = Unif({0, 1}4). Then,

E[fNeedle(z)] = 1
|[x, y]dH|

∑
z∈[x,y]dH

fNeedle(z) = 1
16 <

1
2 = fNeedle(x) + fNeedle(y)

2 .

Therefore, ({0, 1}4, dH, fNeedle) is not average-concave. Hence needle fitness land-
scapes ({0, 1}n, dH, fNeedle) are not always average-convex or average-concave.

Leading-ones

Leading-ones fitness landscapes ({0, 1}n, dH, fLeadingOnes) are:

• Not elementary landscapes by Theorem 11.9.
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• Quasi-concave but not quasi-convex by Theorem 11.10.

• Not convex nor concave Corollary 11.6 and Theorem 11.11 respectively.

• Not average-convex nor average-concave by Theorem 11.12.

Theorem 11.9. Leading-ones fitness landscapes ({0, 1}n, dH, fLeadingOnes) are not
elementary.

Proof. It suffices to note from its Definition 11.3 that

fLeadingOnes(x) =
n∑
i=1

i∏
j=1

xj = x1 + (x1x2) + (x1x2x3) + · · ·+ (x1x2x3 · · ·xn)

is a sum of Walsh basis functions (Equation 10.7) through all orders p ∈ {1, . . . , n},
each of which is a graph Laplacian eigenfunction corresponding to a different eigen-
value λp = 2p (Equation 10.8) for the binary Hamming graph induced by ({0, 1}n, dH).
Therefore, ({0, 1}n, dH, fLeadingOnes) is not elementary.

Theorem 11.10. Leading-ones fitness landscapes ({0, 1}n, dH, fLeadingOnes) are quasi-
concave, but they are not quasi-convex.

Proof. The super-level sets of fLeadingOnes

L≥0(fLeadingOnes) = {0, 1}n ≡ *** · · · ** ,

L≥1(fLeadingOnes) = {1} × {0, 1}n−1 ≡ 1** · · · ** ,

L≥2(fLeadingOnes) = {1}2 × {0, 1}n−2 ≡ 11* · · · ** ,

... ...

L≥n−1(fLeadingOnes) = {1}n−1 × {0, 1} ≡ 111 · · · 1* ,

L≥n(fLeadingOnes) = {1}n ≡ 111 · · · 11

are schemas or invariant subsets (see Section 6.2 in Chapter 6), which are geodesi-
cally convex sets for ({0, 1}n, dH) as a consequence of Proposition A.1 by Mitavskiy [98].
Therefore, fLeadingOnes is a dH-metric quasi-concave function, so ({0, 1}n, dH, fLeadingOnes)
is quasi-concave according to Definitions 9.5–9.5 and Remark 9.6.

However, ({0, 1}n, dH, fLeadingOnes) is not quasi-convex because not all the sub-
level sets are geodesically convex. Consider, for example, L≤n−1(fLeadingOnes) =
{0, 1}n \ {1}n. Then, ∀x, y ∈ L≤n−1(fLeadingOnes) : [x, y]dH 6⊆ L≤n−1(fLeadingOnes)
since [(1, 0, 1, 0 . . . , 1, 0), (0, 1, 0, 1 . . . , 0, 1)]dH 3 (1, . . . , 1) /∈ L≤n−1(fLeadingOnes).
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Corollary 11.6 (To Theorem 11.10). Leading-ones fitness landscapes ({0, 1}n, dH,

fLeadingOnes) are not convex.

Proof. Every convex fitness landscape is quasi-convex due to Proposition 9.3, but
Theorem 11.10 proves ({0, 1}n, dH, fLeadingOnes) is not quasi-convex. Therefore,
({0, 1}n, dH, fLeadingOnes) is not convex.

Theorem 11.11. Leading-ones fitness landscapes ({0, 1}n, dH, fLeadingOnes) are not
concave.

Proof. The following counterexample proves ({0, 1}4, dH, fLeadingOnes) is not concave
(see Definition 9.3). Fix n = 4, two parent bit strings x = 0011 and y = 1111, and
one offspring z = 0111 ∈ [x, y]dH . Then,

0 = fLeadingOnes(z) < dH(y, z)
dH(x, y)fLeadingOnes(x) + dH(x, z)

dH(x, y)fLeadingOnes(y)

= 1
2 0 + 1

2 4 = 2 .

Therefore, leading-ones fitness landscapes ({0, 1}n, dH, fLeadingOnes) are not always
concave.

Theorem 11.12. Leading-ones fitness landscapes ({0, 1}n, dH, fLeadingOnes) are not
average-convex nor average-concave.

Proof. The following two counterexamples prove ({0, 1}3, dH, fLeadingOnes) are not
average-convex nor average-concave (see Definition 9.6). For the first counterexam-
ple, consider n = 3, two parent bit strings x = 010 and y = 100, and one offspring
random variable z ∼ Unif([x, y]dH) = Unif({000, 010, 100, 110}). Then,

E[fLeadingOnes(z)] = 1
|[x, y]dH|

∑
z∈[x,y]dH

fLeadingOnes(z) = 3
4

>
1
2 = fLeadingOnes(x) + fLeadingOnes(y)

2 .

Therefore, ({0, 1}3, dH, fLeadingOnes) is not average-convex. For the second coun-
terexample, consider two parent bit strings x = 000 and y = 111, and one offspring
random variable z ∼ Unif([x, y]dH) = Unif({0, 1}3). Then,

E[fLeadingOnes(z)] = 1
|[x, y]dH|

∑
z∈[x,y]dH

fLeadingOnes(z) = 7
8

<
3
2 = fLeadingOnes(x) + fLeadingOnes(y)

2 .
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Therefore, ({0, 1}3, dH, fLeadingOnes) is not average-concave. Hence leading-ones fit-
ness landscapes ({0, 1}n, dH, fLeadingOnes) are not always average-convex or average-
concave.

Not-all-equal 3-satisfiability and Weight Partitioning

Grover [56] proves that ({0, 1}n, dH, fNAE3SATP) and ({0, 1}n, dH, fWPP) are non-
Fujiyama elementary landscapes or, in other words, graph Laplacian eigenfunctions
of order p = 2 whose corresponding eigenvalue is λp = 2p = 4 as Klemm and
Stadler [85] indicate.

Proposition 11.2 (NAE3SATP,WPP: Non-Fujiyama EL [56, 85]). LetH(n, 2)
be the binary Hamming graph induced by ({0, 1}n, dH) for n > 1. Let f be any of
the NAE3SATP or WPP pseudo-Boolean fitness functions. Then, there is an offset
c ∈ R so that f − c1 is a H(n, 2) graph Laplacian eigenfunction with eigenvalue
λp = 2p = 4 of order p = 2. That is, ({0, 1}n, dH, f) is a non-Fujiyama EL.

Additionally, ({0, 1}n, dH, fNAE3SATP) and ({0, 1}n, dH, fWPP) are:

• Not quasi-convex, quasi-concave, convex nor concave by Corollary 11.7, which
follows from a more general Theorem 11.15 proved later in Section 11.4.1.

• Not average-convex nor average-concave by Theorems 11.13 and 11.14.

Corollary 11.7 (To Theorem 11.15). Let H(n, 2) be the binary Hamming graph
induced by ({0, 1}n, dH) for n > 1. Let f be any of the NAE3SATP or WPP pseudo-
Boolean fitness functions. Then, ({0, 1}n, dH, f) is not quasi-convex, quasi-concave,
convex nor concave.

Proof. It follows directly from Theorem 11.15, and the fact that the fNAE3SATP and
fWPP fitness functions are graph Laplacian eigenfunctions of order p = 2 for any
binary Hamming graph H(n, 2) with n > 1 according to Proposition 11.2.

Theorem 11.13. NAE3SATP fitness landscapes ({0, 1}n, dH, fNAE3SATP) are not
average-convex nor average-concave.

Proof. It suffices to find an instance of NAE3SATP where ({0, 1}n, dH, fNAE3SATP)
is not average-convex nor average-concave (see Definition 9.6). The following two
counterexamples prove it so for the instance given by the family of clauses

Cx = {{x1, x̄2, x̄3}, {x̄1, x3, x̄4}, {x2, x̄3, x4}}
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parametrised by a binary variable sequence x = (x1, x2, x3, x4) ∈ {0, 1}4. For the
first counterexample, let binary variable assignments be defined by the parent strings
u = (1, 0, 0, 1) ≡ 1001 and v = (1, 0, 1, 0) ≡ 1010, where w ∼ Unif([u, v]dH) =
Unif({1000, 1001, 1010, 1011}) is a uniformly random offspring. Then,

fNAE3SATP(1000) = 2 for C1000 = {{1, 1, 1}, {0, 0, 1}, {0, 1, 0}} ;

fNAE3SATP(1001) = 1 for C1001 = {{1, 1, 1}, {0, 0, 0}, {0, 1, 1}} ;

fNAE3SATP(1010) = 2 for C1010 = {{1, 1, 0}, {0, 1, 1}, {0, 0, 0}} ;

fNAE3SATP(1011) = 3 for C1011 = {{1, 1, 0}, {0, 1, 0}, {0, 0, 1}} .

Hence

E[fNAE3SATP(w)] = 1
|[u, v]dH|

∑
w∈[u,v]dH

fNAE3SATP(w) = 8
4 = 2

>
3
2 = fNAE3SATP(u) + fNAE3SATP(v)

2 .

Therefore, ({0, 1}4, dH, fNAE3SATP) is not average-convex for the instance Cx. For
the second counterexample, consider the same instance Cx but parents u′ = 1110
and v′ = 1011, such that w′ ∼ Unif([u′, v′]dH) = Unif({1010, 1011, 1110, 1111}) is a
uniformly random offspring. Then,

fNAE3SATP(1010) = 2 for C1010 = {{1, 1, 0}, {0, 1, 1}, {0, 0, 0}};

fNAE3SATP(1011) = 3 for C1011 = {{1, 1, 0}, {0, 1, 0}, {0, 0, 1}};

fNAE3SATP(1110) = 3 for C1110 = {{1, 0, 0}, {0, 1, 1}, {1, 0, 0}};

fNAE3SATP(1111) = 3 for C1111 = {{1, 0, 0}, {0, 1, 0}, {1, 0, 1}} .

Hence

E[fNAE3SATP(w′)] = 1
|[u′, v′]dH|

∑
w′∈[u′,v′]dH

fNAE3SATP(w′) = 11
4 = 2.75

< 3 = 6
2 = fNAE3SATP(u′) + fNAE3SATP(v′)

2 .

Therefore, ({0, 1}4, dH, fNAE3SATP) is not average-concave for the instance Cx. Con-
sequently, NAE3SATP fitness landscapes ({0, 1}n, dH, fNAE3SATP) are not always
average-convex or average-concave.

Theorem 11.14. WPP fitness landscapes ({0, 1}n, dH, fWPP) are not average-convex
nor average-concave.
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Proof. It suffices to find an instance of WPP where ({0, 1}n, dH, fWPP) is not average-
convex nor average-concave (see Definition 9.6). The following two counterex-
amples prove it so for n = 4 on the instance given by the sequence of weights
w = (−6, 5, −2, 1). For the first counterexample, let two-way partitions on weights
given by binary string parents x = (1, 0, 0, 1) ≡ 1001 and y = (1, 1, 1, 0) ≡ 1110,
with a uniform random variable offspring z ∼ Unif([x, y]dH) = Unif({1} × {0, 1}3).
Then,

fWPP(1000) = 100, fWPP(1100) = 0,

fWPP(1001) = 64, fWPP(1101) = 4,

fWPP(1010) = 196, fWPP(1110) = 16,

fWPP(1011) = 144, fWPP(1111) = 4 .

Hence

E[fWPP(z)] = 1
|[x, y]dH|

∑
z∈[x,y]dH

fWPP(z) = 528
8 = 66

> 40 = 80
2 = fWPP(x) + fWPP(y)

2 .

Therefore, ({0, 1}4, dH, fWPP) is not average-convex for the instance w. For the sec-
ond counterexample, consider the same instance of weights w but parents x′ = 0000
and y′ = 1010, such that z′ ∼ Unif([x′, y′]dH) = Unif(0000, 0010, 1000, 1010) is a
uniformly random offspring. Then,

fWPP(0000) = 4, fWPP(0010) = 4, fWPP(1000) = 100, fWPP(1010) = 196 .

Hence

E[fWPP(z′)] = 1
|[x′, y′]dH|

∑
z′∈[x′,y′]dH

fWPP(z′) = 304
4 = 76

< 100 = 200
2 = fWPP(x′) + fWPP(y′)

2 .

Therefore, ({0, 1}4, dH, fWPP) is not average-concave for the instance w. Conse-
quently, WPP fitness landscapes ({0, 1}n, dH, fWPP) are not always average-convex
or average-concave.
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11.4 Abstract Convex Elementary Landscapes
Proving the existence of abstract convex elementary landscapes to address Ques-
tion 11.1 has been the focus of this chapter thus far. This section considers other
aspects of abstract convex elementary landscapes not covered previously which also
concern Questions 11.1 and 11.2. First, Section 11.4.1 shows that (quasi-)convex
or (quasi-)concave elementary landscapes generally correspond to graph Laplacian
eigenfunctions of order less than two. Then, Section 11.4.2 explains what
characterises certain perturbed fitness landscapes as being elementary and approx-
imately (average or quasi) convex.

11.4.1 Quasi-convexity and Convexity

Graph Laplacian eigenfunctions of order p ≥ 2, that is non-Fujiyama elementary
landscapes, are not weakly unimodal (i.e. may not satisfy Definition 10.8). By
contrast, Fujiyama elementary landscapes (of order p = 1) are always tight (and thus
always weakly unimodal, or weakly tight, by extension) for certain classes of graphs
(see Section 10.4). This dichotomy separates quasi-convex and non-quasi-convex
elementary landscapes, as well as convex and non-convex elementary landscapes, as
implied by the next Theorem 11.15 since Lemma 11.2 proves quasi-convex functions
are always weakly unimodal on connected graphs.

Lemma 11.2. Every d-metric quasi-convex, or quasi-concave, function defined on
the vertex set of any finite connected graph, with shortest-path metric d, is weakly
unimodal.

Proof. Consider a finite connected graph G with vertex set V and shortest-path
metric d, where f : V → R is a d-metric quasi-convex function. All sub-level sets
are vertex subsets L≤`(f) ⊆ V for all ` ∈ R; and, by Definition 9.5 of d-metric quasi-
convex function, all such L≤`(f) are geodesically convex: [x, y]d ⊆ L≤`(f) for all
x, y ∈ L≤`(f) and ` ∈ R. Therefore, each subgraph G[L≤`(f)] induced on G by the
vertex subset L≤`(f) must be connected since [x, y]d = {z ∈ V | d(x, z) + d(z, y) =
d(x, y)} ⊆ L≤`(f), ∀x, y ∈ L≤`(f), implies: a (shortest) path exists between every
pair of vertices x, y ∈ L≤`(f), and all vertices z of that path lie in L≤`(f). Hence,
by Definition 10.8, f is weakly unimodal because all G[L≤`(f)] are connected. The
proof follows analogously for d-metric quasi-concave functions by showing that all
super-level sets L≥`(f) induce connected subgraphs G[L≥`(f)].
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Remark 11.1 (To Lemma 11.2). The notions of unimodality in Definition 10.8 and
quasi-convexity in Definition 9.5 allow fitness landscapes with plateaus of arbitrary
size (i.e. regions where fitness remains constant). For instance, any flat landscape
would be regarded weakly unimodal and quasi-convex.

Theorem 11.15. Let f be any (real-valued) graph Laplacian eigenfunction corre-
sponding to an eigenvalue λp ≥ 0 for any finite connected graphG with shortest-path
metric d. If f is quasi-convex, quasi-concave, convex or concave with respect to the
metric d, then the eigenvalue λp is of order p < 2.

Proof. For a general graph Laplacian eigenfunction f of order p ≥ 2 on G, the
subgraphs G[L≤`(f)] induced by all sub-level sets of f , and the subgraphs G[L≥`(f)]
induced by all super-level sets of f , need not be connected ∀` ∈ R [145]. That is,
f need not be weakly unimodal as in Definition 10.8. But Lemma 11.2 proves
that every d-metric quasi-convex or quasi-concave function on G must be weakly
unimodal always. Therefore, f need not be d-metric quasi-convex nor quasi-concave.
Due to Proposition 9.3 convex functions are quasi-convex, and concave functions are
quasi-concave, so f is not convex nor concave with respect to the metric d.

Corollary 11.8 (To Theorem 11.15). If a non-constant graph Laplacian eigenfunc-
tion f is also (quasi-)convex or (quasi-)concave, for a given arbitrary finite connected
graph, then f has exactly two weak discrete nodal domains.

Proof. It follows from Proposition 10.6 (see Corollary 3.2 in [8]), given that f corre-
sponds to a graph Laplacian eigenvalue of order p = 1 (i.e. smallest non-zero eigen-
value) since p < 2 due to Theorem 11.15 and 0 < p because f is non-constant.

Put differently, Theorem 11.15 says there are no non-flat quasi-convex elemen-
tary landscapes (nor convex ones by inclusion) corresponding to eigenvalues of order
p ≥ 2 in general. Nevertheless, it remains possible for Fujiyama elementary land-
scapes (i.e. order p = 1) to be quasi-convex or convex. In fact, we already saw
in Section 11.3.1 that all non-flat quasi-convex or convex elementary landscapes on
complete graphs are of order p = 1 (see Theorem 11.1 and Corollary 11.2).

The eigenvalue order upper-bound p < 2 in Theorem 11.15 becomes sharp p = 0
for convex (or concave) functions in the following case. There exist a class of graphs,
which includes all non-trivial binary Hamming graphs, where every convex function
(with respect to the shortest-path metric) is also a sub-harmonic function [16]. We
prove next that only flat elementary landscapes, namely order-zero graph Laplacian
eigenfunctions, can be sub-harmonic; therefore, only flat elementary landscapes can
be convex on the aforesaid class of graphs.
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Convex and Sub-harmonic Elementary Landscapes

Moraglio [101] observes that convex or concave fitness functions, with respect to
the Hamming metric, are flat when defined on binary Hamming graphs. Notably,
n-dimensional binary Hamming graphs H(n, 2) for n > 1 belong to a larger family
of finite connected graphs, that is triangle-free graphs with vertices of degree two or
higher [14]; in other words, graphs without length-three cycles (i.e. isomorphic copies
of complete graphs K3) whose vertices have two or more adjacent neighbours. The-
orem 9 by Burke and Perkins [16] (see Proposition 11.3) proves that for such family
of graphs all convex functions are sub-harmonic functions (Definition 11.7). The
next Lemma 11.3 proves that only flat elementary landscapes can be sub-harmonic
regardless of the underlying graph. Hence convex or concave elementary landscapes
are flat for such triangle-free graphs (Theorem 11.16). That is another reason why
the non-flat elementary landscapes induced by one-max, NAE3SATP and WPP on
binary Hamming graphs in Section 11.3.2 cannot be convex nor concave.

Definition 11.7 ([Sub-/super-]harmonic function [16, 84]). Let a finite con-
nected graph G with vertex set V and a function f : V → R. Then: (a) f is
harmonic, if ∀v ∈ V : (Lf)(v) = 0; (b) f is sub-harmonic, if ∀v ∈ V : (Lf)(v) ≤ 0;
(c) f is super-harmonic, if ∀v ∈ V : (Lf)(v) ≥ 0.

Proposition 11.3 (d-metric convexity =⇒ sub-harmonicity [16]). Let a finite
connected graph G with vertex set V and shortest-path metric d. If G has no
triangles (i.e. subgraphs isomorphic to complete graphs K3) nor vertices of degree
less than two, then every d-metric convex function f : V → R is sub-harmonic.

Remark 11.2. Under the same conditions in Proposition 11.3, d-metric concave
functions are super-harmonic.

Lemma 11.3. For arbitrary finite connected graphs, only flat elementary landscapes
are harmonic, sub-harmonic or super-harmonic.

Proof. Let f : V → R be a graph Laplacian eigenfunction for an eigenvalue λ on
any finite connected graph G = (V,E), so that (G, f) is an elementary landscape by
Definition 10.2: (Lf)(v) = λf(v), ∀v ∈ V . Then, either λ = 0 or λ > 0. If λ = 0,
(G, f) is trivially a flat EL. If λ > 0, f is non-constant since f must be orthogonal
to the order-zero graph Laplacian eigenfunction: 〈f,1〉 = ∑

v∈V f(v) = 0. Hence the
entries of f must oscillate between positive and negative cancelling each other to
satisfy 〈f,1〉 = ∑

v∈V f(v) = 0, for f cannot be the constant zero vector (0, 0, . . . , 0).
That is, there exists at least one positive coordinate and one negative coordinate,
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∃v1, v2 ∈ V : f(v1) > 0 and f(v2) < 0. Therefore, f is not sub-harmonic nor
super-harmonic since ∀v ∈ V : (Lf)(v) = λf(v) 6≤ 0, and (Lf)(v) = λf(v) 6≥ 0.
Consequently, f is not harmonic neither.

Remark 11.3 (To Lemma 11.3). Biggs's Proposition 10.1 [7] proves that harmonic
functions are constant on graphs, and Kiselman's Proposition 3.3 [84] shows that
sub-harmonic functions are constant on graphs. Lemma 11.3 proves the same is true
for elementary landscapes.

Theorem 11.16. Let G be any finite connected graph with vertex set V and
shortest-path metric d but no triangles (i.e. subgraphs isomorphic to complete graphs
K3) nor vertices of degree less than two. If a function f : V → R is d-metric convex
and (G, f) is an elementary landscape, then f must be a constant graph Laplacian
eigenfunction of G with eigenvalue λp = 0 of order p = 0.

Proof. From Proposition 11.3 it follows that every d-metric convex function f de-
fined on such G is sub-harmonic. But Lemma 11.3 proves only flat elementary land-
scapes are sub-harmonic, regardless of G. Therefore, by Definition 10.2, f must be
a constant graph Laplacian eigenfunction with eigenvalue λp = 0 of order p = 0.

Note Theorem 11.16 does not apply, meaning that convex elementary landscapes
need not be flat, if the graph has triangles or vertices of degree less than two as in the
case of complete graphs. So Theorem 11.16 does not contradict Theorems 11.1–11.2
proving that all non-constant functions on all complete graphs are both elementary
and convex.

11.4.2 Approximated Convexity

Let us consider perturbed fitness functions of the form f̃(x) def= f(x) + h(x) defined
for all x in some domain X, where both f and h are real-valued functions defined
on the same domain; f represents a given fitness function and h is bounded as
|h(x)| ≤ ε for ε ∈ [0,∞). (In practice, any function encoded on a digital computer
would be bounded.) The overall purpose of this section is to show and characterise
various perturbed fitness functions defined on connected graphs, or graphic metric
spaces, which are elementary and approximately (average or quasi) convex.

Recall Theorems 11.1–11.2 and Corollary 11.2 from Section 11.3.1 prove that
every non-constant fitness function defined on any complete graph, or any finite
d0-metric space (X, d0), constitutes a tight Fujiyama elementary landscape which is
convex, average-convex and quasi-convex (and their concave counterparts). Clearly,

220



CHAPTER 11. ABSTRACT CONVEX ELEMENTARY LANDSCAPES

if we add arbitrary perturbations bounded by ε, the resulting landscape is also
approximately (average and quasi) convex with tolerance ε by definition (see Sec-
tion 9.3). This is true in particular for all pseudo-Boolean fitness functions defined
earlier in Section 11.2, as Corollaries 11.9–11.10 state next.

Corollary 11.9 (To Theorem 11.1). Let f be any of the one-max, needle-in-a-
haystack, leading-ones, NAE3SATP, or WPP pseudo-Boolean fitness functions. Let
also f̃(x) def= f(x) + h(x), where h : {0, 1}n → R is any bounded function such that
|h(x)| ≤ ε for all x ∈ {0, 1}n and arbitrary ε ∈ [0,∞). Then, there exists an offset
c ∈ R such that ({0, 1}n, d0, f̃ − c1) is a tight Fujiyama elementary landscape.

Proof. It follows directly from Theorem 11.1.

Corollary 11.10 (To Corollary 11.3). Let f be any of the one-max, needle-in-a-
haystack, leading-ones, NAE3SATP, or WPP pseudo-Boolean fitness functions. Let
also f̃(x) def= f(x) + h(x), where h : {0, 1}n → R is any bounded function such
that |h(x)| ≤ ε for all x ∈ {0, 1}n and arbitrary ε ∈ [0,∞). Then, ({0, 1}n, d0, f̃)
is approximately convex, approximately quasi-convex, and approximately average-
convex with tolerance ε; and it is approximately concave, approximately quasi-
concave, and approximately average-concave with tolerance −ε.

Proof. It follows directly from Definitions 9.4, 9.7 and 9.8, given that ({0, 1}n, d0, f)
is convex, concave, quasi-convex, quasi-concave, average-convex and average-concave
due to Corollary 11.3.

In general, however, elementary landscapes do not remain elementary if their
fitness function is arbitrarily perturbed. The next example for one-max fitness land-
scapes on three-dimensional binary Hamming graphs, which are elementary when
zero-averaged, illustrates that even a slight perturbation breaks elementariness.

Example 11.1 (Perturbed one-max landscape: not elementary). Consider
the zero-averaged one-max fitness landscape ({0, 1}3, dH, f

′
OneMax), where f ′OneMax

def=
fOneMax− f̄OneMax and f̄OneMax = 3

2 is the global average, subject to a perturbation
by a bounded function h as follows:
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f̃OneMax



000 −3/2
001 −3/5
010 −1/2
011 1/2
100 −1/2
101 1/2
110 1/2
111 8/5

=

f ′OneMax



−3/2
−1/2
−1/2
1/2
−1/2
1/2
1/2
3/2

+

h





0
−1/10

0
0
0
0
0

1/10

.

Unlike the original ({0, 1}3, dH, f
′
OneMax), the perturbed one-max fitness landscape

({0, 1}3, dH, f̃OneMax) is not elementary with eigenvalue λ = 2 since

L




3 −1 −1 0 −1 0 0 0
−1 3 0 −1 0 −1 0 0
−1 0 3 −1 0 0 −1 0
0 −1 −1 3 0 0 0 −1
−1 0 0 0 3 −1 −1 0
0 −1 0 0 −1 3 0 −1
0 0 −1 0 −1 0 3 −1
0 0 0 −1 0 −1 −1 3

f̃OneMax



−3/2
−3/5
−1/2
1/2
−1/2
1/2
1/2
8/5

=

Lf̃OneMax



−29/10
−13/10
−1
1
−1
1

9/10
33/10

6= λ · f̃OneMax ,

where L is the graph Laplacian matrix of three-dimensional binary Hamming graphs.

Fortunately, it is possible to characterise a family of functions with which we can
perturb elementary landscapes while preserving their elementariness. According to
Lemma 11.4 below: any linear combination of a linear operator's eigenfunctions
(like those of graph Laplacians) with the same eigenvalue will yield another eigen-
function for that operator and eigenvalue. Therefore, any elementary landscape of
order p perturbed with any other associated graph Laplacian eigenfunction of the
same order p, or linear combination thereof, will remain elementary. The follow-
ing Example 11.2 illustrates it for one-max fitness landscapes on three-dimensional
binary Hamming graphs, which would be also approximately average-convex and
approximately average-concave according to Corollary 11.11 next.
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Lemma 11.4. Let a linear operator M : RX → RX on an inner product vector space
RX = {f : X → R} over any set X. Let ϕ1, ϕ2 ∈ RX be any two eigenfunctions of
M with identical eigenvalue λ. Then, ϕ = aϕ1 + bϕ2 is an eigenfunction of M with
eigenvalue λ for any scalars a, b ∈ R.

Proof. It follows from the additivity and scalar multiplication axioms of linear op-
erators, namely M(f + g) = Mf + Mg and c ·Mf = M(cf) for all f, g ∈ RX :

Mϕ = M(aϕ1 + bϕ2)

= M(aϕ1) + M(bϕ2)

= aMϕ1 + bMϕ2

= aλϕ1 + bλϕ2

= λ(aϕ1 + bϕ2) = λϕ .

Remark 11.4. Lemma 11.4 proves for function vector spaces the property known
as closure under linear combinations [113]. It was used by Langdon [87] several
times during the analysis of various elementary landscapes though no proof is given.

Example 11.2 (Perturbed one-max landscape: elementary). Consider the
zero-averaged one-max fitness landscape ({0, 1}3, dH, f

′
OneMax), where f ′OneMax

def=
fOneMax− f̄OneMax and f̄OneMax = 3

2 is the global average, subject to a perturbation
by a bounded function h as follows:

f̃OneMax



000 −9/2
001 −1/2
010 −1
011 3
100 −3
101 1
110 1/2
111 9/2

=

f ′OneMax



−3/2
−1/2
−1/2
1/2
−1/2
1/2
1/2
3/2

+

h





−3
0

−1/2
5/2
−5/2
1/2
0
3

such that h = 3ϕ + 1
2ϕ
′ is a linear combination of two graph Laplacian eigenfunc-

tions1 ϕ = (−1, 0, 0, 1, −1, 0, 0, 1)T and ϕ′ = (0, 0, −1, −1, 1, 1, 0, 0)T, as column vec-
tors, with eigenvalue λ = 2 for a three-dimensional binary Hamming graph. Then,
1The eigenfunctions ϕ and ϕ′ can be easily calculated with a modern computer algebra system like
Mathematica.
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({0, 1}3, dH, f̃OneMax) is elementary with eigenvalue λ = 2 since

L



3 −1 −1 0 −1 0 0 0
−1 3 0 −1 0 −1 0 0
−1 0 3 −1 0 0 −1 0
0 −1 −1 3 0 0 0 −1
−1 0 0 0 3 −1 −1 0
0 −1 0 0 −1 3 0 −1
0 0 −1 0 −1 0 3 −1
0 0 0 −1 0 −1 −1 3

f̃OneMax



−9/2
−1/2
−1
3
−3
1

1/2
9/2

=

Lf̃OneMax



−9
−1
−2
6
−6
2
1
9

= λ · f̃OneMax ,

where L is the graph Laplacian matrix of three-dimensional binary Hamming graphs.

Corollary 11.11 (To Theorem 11.3). Let ({0, 1}n, dH, f
′
OneMax) be a zero-averaged

one-max fitness landscape, where f ′OneMax
def= fOneMax− f̄OneMax and f̄OneMax = n

2 is
global average. Let also f̃OneMax(x) def= f ′OneMax(x)+h(x), where and h : {0, 1}n → R
is a bounded function such that |h(x)| ≤ ε for all x ∈ {0, 1}n and some ε ∈ [0,∞).
Then:

(a) ({0, 1}n, dH, f̃OneMax) is approximately average-convex with tolerance ε and
approximately average-concave with tolerance −ε.

(b) If h is a graph Laplacian eigenfunction with eigenvalue λ = 2 for the binary
Hamming graph H(n, 2), then ({0, 1}n, dH, f̃OneMax) is a tight Fujiyama ele-
mentary landscape also.

Proof. (a) Theorem 11.3 proves ({0, 1}n, dH, fOneMax) is average-convex and
average-concave. Therefore, by Definition 9.8, f̃OneMax is a (dH, ε)-average-
convex function and a (dH, −ε)-average-concave function. (The offset f̄OneMax

makes effectively no difference because all fitness values of f̃OneMax would shift
by the same amount.)

(b) It follows directly from Lemma 11.4 and that zero-averaged one-max fitness
landscapes ({0, 1}n, dH, f

′
OneMax) are tight Fujiyama elementary landscapes

with eigenvalue λ = 2 (see Section 11.3.2).

Lemma 11.4 showed that perturbed fitness landscapes of the form f + h, where
f is elementary and h is any linear combination of elementary landscapes for the
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same eigenvalue as f , characterises a family of elementary landscapes which can be
approximately (average or quasi) convex depending on whether f is convex, average-
convex or quasi-convex. The following Theorem 11.17 characterises such perturbed
elementary landscapes in terms of their graph Laplacian eigenvalue,
associated neighbourhood function and average fitness value of neighbours.

Theorem 11.17. Let any function f : V → R defined on the vertex set V of an
arbitrary finite connected graph G. Let also h : V → R be any bounded function,
with the same domain V as f , such that |h(v)| ≤ ε for all v ∈ V and arbitrary
ε ∈ [0,∞). Then, the function f̃(v) def= f(v)+h(v) is a graph Laplacian eigenfunction
of G with eigenvalue λ if and only if f and h satisfy:

1− λ

|N(v)| =
avg

u∈N(v)
{f(u)}+ avg

u∈N(v)
{h(u)}

f(v) + h(v) , ∀v ∈ V, (11.6)

where |N(v)| is the number of neighbours adjacent to v in G, and avg
u∈N(v)

{f(u)} and

avg
u∈N(v)

{h(u)} are the arithmetic mean values of f and h over all neighbours u of v.

Proof. Using Equation 10.3, f̃ is a graph Laplacian eigenfunction with eigenvalue λ
if and only if for all v ∈ V : (Lf̃)(v) = |N(v)| f̃(v)−∑u∈N(v) f̃(u) = λf̃(v). This is
true if and only if the following series of equalities hold:

|N(v)|
(
f(v) + h(v)

)
−

∑
u∈N(v)

(
f(u) + h(u)

)
= λ

(
f(v) + h(v)

)
,

|N(v)|
(
f(v) + h(v)

)
− λ

(
f(v) + h(v)

)
−

 ∑
u∈N(v)

f(u)
−

 ∑
u∈N(v)

h(u)
 = 0,

f(v) + h(v)− λ

|N(v)|
(
f(v) + h(v)

)
− 1
|N(v)|

 ∑
u∈N(v)

f(u)
−

 ∑
u∈N(v)

h(u)
 = 0,

(
f(v) + h(v)

)(
1− λ

|N(v)|

)
− avg

u∈N(v)
{f(u)} − avg

u∈N(v)
{h(u)} = 0,

from which Equation 11.6 follows.

Remark 11.5 (To Theorem 11.17). For D-regular graphs the number of neighbours
is constant: |N(v)| = D, ∀v ∈ V . So Equation 11.6 becomes:

1− λ

D
=

avg
u∈N(v)

{f(u)}+ avg
u∈N(v)

{h(u)}

f(v) + h(v) , ∀v ∈ V . (11.7)
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Remarkably, Stadler [137] proves that 1− λ
D

is the nearest-neighbour fitness corre-
lation of any elementary landscape with eigenvalue λ on any D-regular graph.

Remark 11.6 (To Theorem 11.17). Chicano and others [20] prove a closely related
identity: avg

u∈N(v)
{f(u)} = f(v) − λ

D
(c − f(v)), for some constant c ∈ R. But it has

not been used to characterise perturbed elementary landscapes as Equation 11.6.

Although Theorem 11.17 is an immediate consequence of the Definition 10.2 of
elementary landscapes, from Equation 11.6 it is clearer to see that not all approx-
imately (average or quasi) convex landscapes of the form f + h will be elementary
if we allow an arbitrary perturbation h because there is no guarantee f + h will
respect Equation 11.6 even if f itself is elementary. By contrast, we are guaranteed
Equation 11.6 or Equation 11.7 is fulfilled if elementary landscapes are perturbed
by linear combinations of elementary landscapes conforming to Lemma 11.4, as
illustrated in the next example.

Example 11.3. Recall from the previous Example 11.2 the zero-averaged one-max
fitness landscape ({0, 1}3, dH, f

′
OneMax) perturbed by a bounded function h, where

000 111

f ′OneMax =
(
−3

2 , −
1
2 , −

1
2 ,

1
2 , −

1
2 ,

1
2 ,

1
2 ,

3
2

)

and

h =
(
−3, 0, −1

2 ,
5
2 , −

5
2 , −

1
2 , 0, 3

)
,

both of which are elementary with eigenvalue λ = 2. Since ({0, 1}3, dH) corresponds
to a three-dimensional binary Hamming graph H(3, 2), and it is a 3-regular graph,
the left-hand side of Equation 11.7 is

1− λ

D
= 1− 2

3 = 1
3 .

For the right-hand side of Equation 11.7, recall H(3, 2) is described by the single-bit
flip neighbourhood function Bitflip(1). Then, choosing vertex 100, for instance,
we have

avg
u∈Bitflip(1)(100)

{f ′OneMax(u)}+ avg
u∈Bitflip(1)(100)

{h(u)}

f ′OneMax(100) + h(100) =

(
−1

6

)
+
(
−5

6

)
(
−1

2

)
+
(
−5

2

) = 1
3 .
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Hence Equation 11.7 holds for the vertex 100. It is not difficult to see the same is
true of other vertices.

11.5 Discussion
A major aim of unifying the GF and ELT is to know whether elementary landscapes
associated with relevant combinatorial optimisation problems correspond to any of
the abstract convex landscape classes where geometric-crossover EAs expectedly
perform well. Pursuing this aim fundamentally entails a classification of abstract
convex elementary landscapes. To investigate its viability and potential implica-
tions, this chapter developed the first theoretical foundations of abstract convex
elementary landscapes by addressing two fundamental questions:

• Are the classes of elementary landscapes and abstract convex fitness landscapes
disjoint? If not, which specific classes do overlap? (Question 11.1)

• How does the abstract convexity of an elementary landscape relate to its eigen-
function order or position in the Laplacian spectrum? (Question 11.2)

The discussion of Questions 11.1 and 11.2 alongside the results obtained in previ-
ous Sections 11.3 and 11.4 is split into: viability of fitness landscape classification
(Section 11.5.1), spectral identification of abstract convexity (Section 11.5.2), and
problem difficulty and EAs (Section 11.5.3).

11.5.1 Viability of Fitness Landscape Classification

Question 11.1 concerns three mutually-exclusive cases that may occur in a classifi-
cation based on the abstract convex landscapes and elementary landscapes classes:
(a) they are disjoint classes, thus no landscape is abstractly convex and elementary;
(b) they are the same class, thus all abstract convex landscapes are elementary and
vice versa; and (c) they are neither disjoint nor the same class, thus some but not
all landscapes are abstractly convex and elementary. Clearly, only case (c) would be
viable to develop a classification by axiomatically comparing both classes, for they
would share none or all properties in the extreme cases (a) and (b).

On finite d0-metric spaces, or complete graphs, case (b) is effectively true.
Sections 11.3.1 and 11.4.2 show every non-constant fitness function induces a tight
Fujiyama elementary landscape that is also: (approximately) convex, (approxi-
mately) quasi-convex, (approximately) average-convex as well as their concave coun-
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terparts. Obviously, flat landscapes are elementary and belong to those abstract
convex classes.

On binary Hamming metric spaces, or binary Hamming graphs, it is clear from
the summary in Table 11.3 that the extreme cases (a) and (b) are false, mean-
ing case (c) is true. The one-max fitness function induces an average-convex,
average-concave, and tight Fujiyama elementary landscape; in addition, certain
perturbed one-max fitness functions induce approximately average-convex, approxi-
mately average-concave and tight Fujiyama elementary landscapes (Corollary 11.11).
So case (a) is false. By contrast, the needle and leading-ones fitness functions
induce quasi-concave landscapes but these are not elementary; conversely, NAE3SATP
and WPP induce elementary landscapes but are not convex, quasi-convex, average-
convex nor their concave counterparts. So case (b) is false too.

However, binary Hamming graphs are not totally exempt from other extreme
situations: for the class of triangle-free graphs with vertex degree two or higher, of
which all non-trivial binary Hamming graphs are members, there is no convex nor
concave elementary landscape except a flat landscape (Theorem 11.16).

Therefore, abstract convex elementary landscapes do exist despite abstract con-
vexity and elementariness bear no relationship at first sight. But extreme cases may
occur depending on the metric space or graph; for instance, they may comprise all
fitness functions or only constant fitness functions. To find other examples of ab-
stract convex elementary landscapes, hopefully more interesting than (perturbed)
one-max, while avoiding degenerate cases, future work should then narrow down
the classes of abstract convex landscapes and elementary landscapes proposed by
Moraglio [101] and Stadler [136] respectively. (Relaxing their definitions would not
prevent degenerate cases.) The main difficulty in doing so is that ELT was not con-
ceived as a general framework to systematically classify the various types of abstract
convexity possibly occurring in elementary landscapes. The next Section 11.5.2 sug-
gests how it may be achieved.

11.5.2 Spectral Identification of Abstract Convexity

Stadler and others [5, 136, 138] classified elementary landscapes by their smoothness
(understood as correlation between fitness values) and showed that different eigen-
values determine different degrees of smoothness. Moreover, on binary Hamming
graphs, smoothness decreases as the elementary landscape's position in the Lapla-
cian spectrum moves towards higher-order eigenvalues, and Stadler conjectured the
same could be true for other graphs [137, 139]. Question 11.2 goes beyond, asking
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if some general rule relates the abstract convexity of Laplacian eigenfunctions, that
is elementary landscapes, to a specific position in the Laplacian spectrum. This
question is a stepping stone to Conjecture 11.1, discussed later in Section 11.5.3 in
connection with problem difficulty and EAs.

Conjecture 11.1. Globally convex elementary landscapes correspond to low-order
graph Laplacian eigenfunctions: the higher the order, the less globally convex.

Part of Conjecture 11.1 is shown by Theorem 11.15 indicating one general rule:
for an arbitrary finite connected graph, every non-flat elementary landscape either
convex, concave, quasi-convex, or quasi-concave, corresponds in general to an order-
one graph Laplacian eigenfunction associated with the smallest non-zero eigenvalue
in the spectrum. Of course, flat elementary landscapes are always order-zero graph
Laplacian eigenfunctions, (quasi-)convex and (quasi-)concave. This rule has the
following significant implications.

First, it shows that if we know a fitness landscape is elementary, or find it ana-
lytically with the methodology developed by Chicano, Whitley and Alba [23], then
we know straightaway whether it can be (quasi-)convex or (quasi-)concave solely
by looking at its spectrum. If the eigenvalue's order is greater than one, then such
fitness landscape is neither (quasi-)convex nor (quasi-)concave. It agrees also with
what Stadler conjectured earlier precisely because non-flat elementary landscapes
corresponding to order-one eigenvalues would be the smoothest. Even detecting
(quasi-)convexity algorithmically might be possible: although it is an NP-hard prob-
lem for general functions [1], in some cases the convexity of discrete functions can
be detected efficiently [111].

Secondly, the vast majority of elementary landscapes reported [85], including
those of NAE3SATP and WPP as well as TSP and spin-glass for typical neigh-
bourhoods, are graph Laplacian eigenfunctions of order greater or equal than two.
So the vast majority of known elementary landscapes are neither (quasi-)convex
nor (quasi-)concave. Hence, if we want to use elementary landscapes to investigate
the question, suggested by Moraglio and Sudholt [104], of which non-toy problems
have associated quasi-concave landscapes, Theorem 11.15 forces us to restrict
to weakly unimodal2 Fujiyama elementary landscapes or a subclass thereof. That
is, order-one graph Laplacian eigenfunctions satisfying Definition 10.8. One potential
example is the linear assignment problem since its fitness function induces a
2Weak unimodality is always guaranteed for Fujiyama elementary landscapes defined on graphs
resulting from Cartesian products of paths, cycles and complete graphs due to Tlusty's Corol-
lary 2.6 [145] (see Proposition 10.7). Unlike Theorem 11.16, Proposition 10.7 does not necessarily
lead to flat landscapes because quasi-convex landscapes are a superclass of convex landscapes.
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Fujiyama elementary landscape on the Cayley graph given by transpositions (i.e. swap
of two positions in a permutation) [85, 121] though no proof of quasi-convexity nor
quasi-concavity has been shown yet. This example has not been explored in this
chapter because elementary landscapes on Cayley graphs involve more specialised
mathematics from group theory [136].

It is tentative to speculate that the previous rule for identifying (quasi-)convex
elementary landscapes extends to average-convex or approximately average-convex
elementary landscapes, given that it applies in the case of one-max and certain
perturbed one-max landscapes on binary Hamming graphs (see Corollary 11.11).
To confirm if the rule is valid in other cases, further research needs to prove if there
actually exist (approximately) average-convex elementary landscapes for eigenvalues
of order greater or equal than two, taking into account:

• Unlike (quasi-)convex functions, (approximately) average-convex functions may
not be weakly unimodal nor have geodesically convex sub-level sets (see Propo-
sition 9.3), which was key for Theorem 11.15 supporting the aforesaid rule.

• Approximately average-convex landscapes of the form f̃ = f + h, where f is
an average-convex function and h is an arbitrary bounded perturbation, are
not elementary in general because (even if f is elementary) h can easily violate
Theorem 11.17 which all elementary landscapes (perturbed or not) fulfil.

11.5.3 Problem Difficulty and Evolutionary Algorithms

In spite of the outstanding efforts made by Stadler, Wagner and many others [51,
131, 139, 140, 150] to show that (recombination P-structure) elementary landscapes
have distinctive features beneficial for EAs performance, the truth is no formal
performance or runtime analysis of any specific population-based EA class has been
accomplished yet for the class of (recombination P-structure) elementary landscapes.
It should be said though Klemm and Stadler [85] emphasised that the geometrical,
spectral and statistical properties of such landscapes would play a crucial role in a
theory that predicts the performance of EAs optimising them.

The significance of this chapter's results (Sections 11.3–11.4) and discussion (Sec-
tions 11.5.1–11.5.2), which culminate in Conjecture 11.1, is they partially address
what Klemm and Stadler mentioned by proving the existence of globally convex
elementary landscapes as well as key relationships with the Laplacian spectrum
to characterise them, thanks to the abstract convex landscape classes proposed by
Moraglio [100, 101]. An underlying implication is that the order of globally ele-
mentary landscapes, namely the position of globally convex elementary landscapes
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in the spectrum ignoring eigenvalue multiplicities, might be an indicator of prob-
lem difficulty for certain geometric-crossover EAs or recombination P-structure EAs
based on the following observations.

Globally convex elementary landscapes can be defined on finite graphic met-
ric spaces with a shortest-path metric distance, conforming to the prerequisites
stated in Section 11.2.2. Every such metric space is associated with a specific class
of geometric-crossover EAs searching within it (see Section 9.1.1) and, in partic-
ular, is associated with geometric recombination P-structure EAs since these are
a subclass of the former (see Chapter 8). Moreover, geometric recombination P-
structures, as geometric crossovers, are highly local crossovers (see Chapter 5),
which Rothlauf [123, 124], Droste and Wiesmann [38] deem decisive in favouring
exploitative search to outperform pure random search. Non-geometric recombina-
tion P-structures instead are generally not associated with metrics because they are
not geometric crossovers.

Problem difficulty comes into play taking into account Goldberg [54, 55] and
Rothlauf [123, 124] show that pseudo-Boolean fitness functions which decompose
into linear combinations of low-order Walsh basis functions are usually ‘easier’ to
optimise by recombination-based EAs (without mutation) compared with higher or-
der ones. This applies to elementary landscapes, globally convex or not, defined on
binary Hamming graphs because they are Walsh functions too (see Section 10.2.2),
and it agrees with Stadler andWagner [139] in that lower-order elementary landscape
are smoother. But Goldberg and Rothlauf warn us that the order of Walsh functions
is not a general indicator of problem difficulty: it may overestimate or underesti-
mate the difficulty of some problems. However, these misestimates seem unclear for
elementary landscapes: none of the counterexamples considered by Goldberg [54, 55]
and Rothlauf [123, 124] were elementary landscapes but rather linear combinations
of elementary landscapes of different orders, specifically linear combinations of Walsh
functions.

For instance, Moraglio and Sudholt [104] prove that a geometric-crossover EA
optimises the leading-ones fitness function on n-dimensional binary Hamming graphs
in O(n log n) fitness evaluations. One may argue that the Walsh order of leading-
ones overestimates the difficulty since it is a sum of Walsh functions up to order n
(Theorem 11.9), but that is exactly why leading-ones on binary Hamming graphs
is not elementary to begin with! An extremely degenerate counterexample as to
why the order of globally convex elementary landscapes may not be a problem
difficulty indicator is that recombination-based EAs using the identity crossover,
where offspring always equal parents, would perform ‘poorly’ at optimising virtually
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any non-constant fitness function. Yet any non-constant fitness function on the
complete graph induced by identity crossover defines a globally convex Fujiyama
elementary landscape of order one (see Section 11.3.1), which is considered ‘easy’,
thereby underestimating the difficulty. Then again, identity crossover and complete
graphs are degenerate cases.

Finally, the position of (globally convex) elementary landscapes in the Laplacian
spectrum also gives upper-bounds of the total number of discrete nodal domains [8,
30], namely ‘clusters’ of candidate solutions (including local optima) either above
or below average fitness (see Section 10.4.1). This feature was deemed of central
importance by Stadler [136] and is not that far from the local optima networks
whereby Ochoa and Veerapen [109] provide a more accurate empirical view of the big
valley hypothesis. Clearly, the upper-bounds in Propositions 10.4 and 10.5 increase
with the position or order of elementary landscapes, meaning that the number of
discrete nodal domains would increase when elementary landscapes become less
globally convex in principle.

11.6 Conclusion
Past empirical studies observe certain local search algorithms and GAs yield higher
quality approximate solutions for various important combinatorial problems when
their associated fitness landscapes have a globally convex or big valley structure.
These concern ELT and the GF. On the one hand, ELT showed such landscapes
can be found in the class of elementary landscapes, even though ELT missed the
link with global convexity and population-based EAs. On the other hand, the GF
defined abstract convex landscape classes, with various notions of global convexity,
where geometric-crossover EAs expectedly perform well; however, GF left unclear
which specific problems and associated landscapes belong to those convex landscape
classes.

My original contribution is to integrate the above two separate lines of
research coming from the GF and ELT by characterising a general class of
combinatorial fitness landscapes shared between the GF and ELT. That is, abstract
convex elementary landscapes. These are always guaranteed to be elementary, unlike
the classes of abstract convex landscapes in the GF (Chapter 9), and guaranteed
to be abstractly convex at the same time, unlike elementary landscapes in ELT
(Chapter 10). Abstract convex elementary landscapes offer an opportunity to know
whether geometric-crossover EAs, including geometric recombination P-structure
EAs (Chapter 8), would perform well on certain elementary landscapes by
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proving they are globally convex. This matters because it means that abstract
convex elementary landscapes can help us better understand on which specific
combinatorial problems do certain geometric-crossover EAs perform well and, at
the same time, gain insight into the spectral properties of elementary landscapes in
relation with population-based EAs and abstract convexity. Both of which are
current open challenges in the GF and ELT respectively.

However, carrying the above research programme on abstract convex elementary
landscapes is easier said than done, for abstract convex landscapes in the GF and
elementary landscapes in ELT are significantly different classes of fitness landscapes
without any apparent similarities. This chapter establishes theoretical foundations
of abstract convex elementary landscapes through a fitness landscape classification
of well known pseudo-Boolean combinatorial problems against the classes of abstract
convex landscapes and elementary landscapes. Then it characterises the abstract
convexity of elementary landscapes more generally in terms of Laplacian eigenvalues;
in contrast with ELT, which focused on smoothness rather than convexity, and
with the GF, which never analysed elementariness as a feature of abstract convex
landscapes.

Although non-degenerate abstract convex elementary landscapes arise only under
limited circumstances, this chapter proved their existence and gave insight into
their classification to find more interesting examples. Furthermore, it justified that
abstract convex elementary landscapes mainly correspond to low-order graph
Laplacian eigenfunctions, which can also explain why some geometric-crossover
EAs would perform well on them. Put differently, this suggests abstract convex
elementary landscapes are a viable means to develop (partly based on ELT) fitness
landscape analysis within the GF which was lacking. Whether abstract convex el-
ementary landscapes are actually ‘practical’ remains questionable and calls for a
more exhaustive study about them; this chapter serves as a safe starting point.
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Conclusions

A great challenge to develop a general theory of EC, independent of specific problems
and representation of solutions, is posed by the question: why does a given class of
EAs perform better (or worse) than others on a given class of optimisation problems?
To rigorously answer this question is not simple because it concerns various
challenging aspects of EC such as analysing the population behaviour of EAs,
analysing their (runtime) performance, and analysing fitness landscapes that relate
EAs and optimisation problems. Despite being motivational and not answered in
this thesis, the aforesaid question concerns two general theories in EC which have
addressed it differently and which are central to this thesis. They are the geometric
framework (GF) of EAs and elementary landscapes theory (ELT): the former
focused on the design, population behaviour and performance of EAs, whereas
the latter focused more on the analysis of combinatorial landscapes. This thesis
explored if and how the GF and ELT can be unified; that is, how their strengths to
analyse EAs and landscapes complement each other and can be integrated within
one cohesive framework, a general theory characterising which axiomatic classes of
crossovers, evolutionary search and landscapes are shared between the GF and ELT.
As no such general theory was explored before, it remained unclear if and how it is
theoretically possible to unify the GF and ELT. Particularly, this thesis addressed
the following general research questions:

1. How can geometric crossovers, proposed in the GF, and recombination P-
structures, proposed in ELT, be unified?

2. How can geometric-crossover EAs, proposed in the GF, and recombination
P-structure random walks, proposed in the ELT, be unified?

3. How can abstract convex fitness landscapes, proposed in the GF, and

234



CHAPTER 12. CONCLUSIONS

elementary landscapes, proposed in the ELT, be unified?

4. What are the consequences of each of the previous unifications and how do
they contribute to unify the GF and ELT under a common mathematical
framework?

The original contribution of this thesis is to formally show a three-fold
unification between the GF and ELT, contributing towards question (4), and to
provide a comprehensive revision of the foundations of GF and ELT which support
the unification. That is,

• a classification of crossovers (Chapter 5) focusing on question (1);

• a qualitative framework for abstract convex search of evolutionary algorithms
(Chapter 8) focusing on question (2); and,

• abstract convex elementary landscapes (Chapter 11) focusing on question (3).

12.1 Contributions
This section discusses each of the three unifications above. Section 12.2 discusses
limitations of this thesis and concludes it with suggestions for future research.

12.1.1 A Classification of Crossovers

To unify the GF and ELT, this thesis began by introducing two general crossover
classes independent of problems and solution representations: the class GX that
includes all geometric crossovers (Chapter 3) and the class RP that includes all
recombination P-structures (Chapter 4). My first major contribution is a formal
crossover classification based on the mathematical axioms that define GX and RP
(Chapter 5). This crossover classification showed GX and RP share the subclass
RP-geometric, which includes all crossovers that are both geometric and recom-
bination P-structures. This is significant because, unlike the GF as proposed by
Moraglio [100] and ELT as proposed by Stadler [136] separately, I make provably
clear in Chapter 5 that:

• The GF and ELT share a common class of crossovers, namely RP-geometric,
which are potentially useful in practice and can be designed in a principled
manner across different representations and problems associated with shortest-
path distances based on finite connected graphs. This suggests principled de-
sign of recombination P-structures is an essential part of ELT, even though
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previous research in ELT never addressed it [18, 51, 131, 139, 150]. Principled
design of geometric crossovers was already formalised by Moraglio [100], but it
remained unclear whether principled design would be possible also for recom-
bination P-structures (as for RP-geometric) because the GF never analysed
recombination P-structures.

• There exist recombination P-structures, like geometric recombination P-
structures, which can exploit problem-specific features related with distances
such as high locality [38, 124] and abstract convexity [104, 146] to achieve
better performance than random search by avoiding NFL [93, 155].

Although Moraglio [100] distinguished between geometric crossovers and non-geometric
crossovers, an axiomatic and comprehensive crossover classification was missing in
the GF. In fact, his focus is more the formalisation of geometric crossovers than
classifying which crossovers are geometric or not. Chapter 5 not only provides a
crossover classification for the first time but also key insight into various properties
related to geometric crossovers, namely high locality and the inbreeding properties,
beyond the work of Moraglio [100, 103]. That is, without the help of the crossover
classification it would be less clear why RP-geometric should be the crossover sub-
class shared by GX and RP since the frontier between geometric crossovers and
recombination P-structures is not obvious to determine:

• Any geometric crossover, including those in RP-geometric, is highly local even
though not all highly local crossovers are geometric as shown in Chapter 5.
For example, the intersecting-Hamming-balls crossover is a recombination P-
structure that is highly local but non-geometric. In other words, geometricity
and high locality are not equivalent properties of crossovers (see Section 5.5.1).

• Any geometric crossover, including those in RP-geometric, is associated with
a metric space and fulfils the inbreeding properties [103]. But there exist a
subclass of recombination P-structures which is not defined on metric spaces
necessarily and still fulfils all the inbreeding properties of geometric crossovers.
That is, strict size-monotonic recombination P-structures (see Section 5.5.2),
which have been ignored by previous research in ELT [18, 51, 139, 150] and
are clearly outside Moraglio's scope of geometric crossovers [100].

Above all, the crossover classification is a formal system that helps us to
rigorously organise and compare the axiomatic properties of different crossovers, and
classes thereof, with respect to geometric crossovers and recombination P-structures
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across different problems and solution representations. The alternative to formal
classifications, as the one presented here, are classifications possibly based on
historical, subjective or superficial aspects of EAs [9, 122][36, ch. 9][52, ch. 17].
These are, therefore, informal classifications which can be helpful but not as a
theoretical basis to unify the GF and ELT.

12.1.2 A Qualitative Framework for Abstract Interval
Convex Search of Evolutionary Algorithms

In Chapter 8, I develop a qualitative framework for abstract interval convex
evolutionary search by extending the crossover classification I laid in Chapter 5. The
extension introduces a class of crossovers Ifin, which are described by finite interval
operators [18, 146] and need not coincide with Moraglio's geometric crossovers (Sec-
tion 3.2) nor Stadler's recombination P-structures (Section 4.2.1): Ifin is a super-
class of all (geometric or non-geometric) recombination P-structures, and it includes
other forms of crossover similar to the macro-mutations present in headless-chicken
crossover random walks [73]. This leads to a generalised class of EAs, correspond-
ing to Ifin, called formal interval EAs: an evolutionary search model common to
the GF and ELT, whereby I generalise geometric-crossover EAs (Chapter 6) and
recombination P-structure random walks (Chapter 7). As a result, Chapter 8
presents a framework that broadens but differs from related work of Moraglio [100,
101] and Stadler [140, 150] in various significant ways:

• First, abstract convex evolutionary search indeed can be generalised to a
form not necessarily limited only to geometric-crossover EAs (without mu-
tation) as the GF originally conceives (Section 6.3). That is, abstract interval
convex evolutionary search holds for any formal interval EA even if mutation
(e.g. Hamming ball-mutation segment) or non-geometric crossovers
(e.g. intersecting-Hamming-balls) in the class Ifin are used. This may seem
counter-intuitive since, according to Moraglio [101], abstract convex evolution-
ary search cannot occur if mutation or non-geometric crossovers are present.
However, Moraglio stated it for the particular case of geodesic convexities,
ignoring other abstract convexities altogether since geometric crossovers can
always be associated with geodesic convexities (Section 6.2). In Chapter 8, I
shift from Moraglio's said viewpoint by taking non-geodesic convexities into
account as well and showing consequently that: each crossover in Ifin induces
its own abstract interval convexity (Section 8.3) and need not be a geodesic
convexity as for geometric crossovers.
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• Unlike recombination P-structure random walks, which are a form of headless-
chicken crossover random walk [73, 140, 150], formal interval EAs provide ELT
with an actual population-based EA model for any choice of recombination P-
structure: recombination P-structure EAs. As shown in Section 8.4, their
abstract population behaviour is also described by abstract interval convex
evolutionary search regardless of specific problems and solution representa-
tions. This suggests a theory of recombination P-structure EAs is a conceivable
extension of ELT, in which case ELT is more than a theory of combinatorial
landscapes as proposed by Stadler [136]. However, it would not be based on
transition probability matrices associated with recombination P-structures [85,
140] (see Section 7.3) but abstract convexity as Section 8.3 explained in
relation with the extended crossover classification.

• The GF and ELT share a class of EAs without mutation (i.e. geometric
recombination P-structure EAs) where abstract interval convex evolutionary
search and Moraglio's abstract convex evolutionary search are provably
equivalent. This, however, is not evident from the work of Moraglio [101, 104]
nor Stadler [139, 140, 150] because abstract convex evolutionary search never
was analysed on any class of recombination P-structures (or generalisations
thereof). Whether the aforesaid equivalence holds or not for formal interval
EAs, other than geometric recombination P-structure EAs, depends on the
underlying crossover: Section 8.4.1 illustrated some counterexamples and an
exception for symmetric Davis's order crossover. Chapter 8 shows Ifin and
RP are more general than geometric crossovers in the sense that they include
non-geometric crossovers and can induce non-geodesic convexities (possibly
degenerate), whereas geometric crossovers induce geodesic convexities. As
shown in Section 8.4, non-geodesic convexities can lead to an abstract interval
convex evolutionary search that is clearly not Moraglio's abstract (geodesi-
cally) convex evolutionary search.

Overall, Chapter 8 presents a framework to systematically classify the abstract
interval convex evolutionary search induced by formal interval EAs depending on
different crossovers in the crossover classification. This framework not only inte-
grates the GF and ELT with each other but extends them as none of them originally
developed formal means to classify the abstract behaviour of population-based EAs
with crossover. Others [39, 63, 116] also proposed formal hierarchies, relating EAs
to their performance on fitness landscapes, but not for geometric crossovers nor
recombination P-structures. The next logical step seems, therefore, to relate EA
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classes based on geometric crossovers or recombination P-structures to performance
on fitness landscapes; that is, the following contribution in Section 12.1.3.

12.1.3 Abstract Convex Elementary Landscapes

Making meaningful statements about the performance of a class of EAs shared
between the GF and ELT, such as geometric recombination P-structure EAs,
requires a corresponding class of fitness landscapes and associated problems to be
determined. NFL [68, 155] prevails otherwise. To do so, I characterise in Chapter 11
a class of combinatorial landscapes that can be abstractly convex (Chapter 9) and
elementary (Chapter 10) simultaneously, thus shared between the GF and ELT,
across problems and representations. That is, abstract convex elementary land-
scapes. These clearly differ from Moraglio's abstract convex landscapes [101], which
need not be elementary in general, and from Stadler's elementary landscapes [136,
139], which need not be abstractly convex in general. Although the classes of
abstract convex landscapes and elementary landscapes are seemingly disjoint, for
they involve significantly different formalisations in the GF and ELT, in Chapter 11
I identified certain conditions where abstract convex elementary landscapes are
conceivable and revealed that:

• There actually exist non-degenerate examples of abstract convex elementary
landscapes. In particular, Chapter 11 showed that any one-max fitness
function on binary Hamming graphs is an average-convex and average-concave
elementary landscape. Indeed, the same holds for any one-max function that is
perturbed by (bounded) arbitrary linear combinations of elementary
landscapes with the same Laplacian eigenvalue.

This is significant because no previous theoretical research in ELT [5, 23, 35, 136,
139, 140, 150] analysed abstract convexity as a feature of elementary landscapes nor
noticed abstract convex elementary landscapes provably exist. Yet empirical stud-
ies [10, 46] did observe a globally convex (or ‘big valley’) structure [10, 83, 109] in
certain combinatorial problems associated with elementary landscapes (e.g. TSP
or graph bipartition) [56, 85], which also benefited the performance of certain
local search algorithms and GAs [10, 46]. In fact, these experiments partly motivated
Moraglio [100, 101, 104] to propose the classes of abstract convex landscapes.
However, Moraglio never analysed elementariness as a feature of abstract convex
landscapes; Chapter 11 does for the first time. Why did abstract convex elementary
landscapes pass unnoticed until now? The main reason is that abstract convex
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elementary landscapes are a more restricted class than elementary landscapes and
abstract convex landscapes. This is justified in Chapter 11 by proving:

• All convex, concave, quasi-convex or quasi-concave elementary landscapes
correspond to graph Laplacian eigenfunctions of order less than two for any
finite connected graph. It is true also for the average-convex (and average-
concave) elementary landscapes in the case of (perturbed) one-max functions
mentioned earlier, which correspond a graph Laplacian eigenvalue of order one.

The result above is relevant for two reasons. On the one hand, it reveals that
the typical elementary landscapes reported in [85] associated with combinatorial
problems like TSP, NAE3SATP or max-cut, whose Laplacian eigenvalue is of order
two or higher, are not (quasi-)convex nor (quasi-)concave. On the other hand, it
reveals the exact location in the Laplacian spectrum where potential examples can be
found since: non-constant (quasi-)convex or (quasi-)concave elementary landscapes
correspond to the smallest non-zero eigenvalue (of order one). This is useful because:

• It provides a direct and ‘sampling-free’ way, as opposed to many other fitness
landscapes analysis based on sampling [82, 92, 114, 120], to know if any given
elementary landscape belongs or not to the (quasi-)convex or (quasi-)concave
classes simply by looking at the eigenvalue order. Methodologies to find ele-
mentary landscapes analytically [20] have been proposed already, from which
the eigenvalue order would be determined as well.

Unlike related work of Moraglio [100, 101], my previous result provides the GF with
a means to decide if a given combinatorial problem associated with an elementary
landscape belongs in the convex, concave, quasi-convex or quasi-concave landscape
classes. This addresses part of future work left by Moraglio and Sudholt [104] to
develop a general runtime analysis of geometric-crossover EAs.

Abstract convex elementary landscapes being a restricted class can be an
advantage compared with the whole class of elementary landscapes because the
latter is already a heterogeneous class of landscapes associated with combinatorial
problems of varying complexity from P to NP-complete [56, 85, 121, 136]. By con-
trast, elementary landscapes of eigenvalue order one, defined on binary Hamming
graphs, correspond to (additive) linear pseudo-Boolean functions [136, 137], which
are a ‘good’ example of a class of functions with similar difficulty according to
Jansen [69]. This suggests (quasi-)convex or (quasi-)concave elementary landscapes,
and possibly other abstract convex elementary landscapes, are of similar difficulty
for certain EAs.
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In fact, a general runtime analysis by Moraglio and Sudholt [104], extending
the GF [100], showed certain geometric-crossover EAs in expectation can exponen-
tially outperform random search on subclasses of quasi-concave (or quasi-convex)
landscapes across problems and representations. What Moraglio and Sudholt [104]
did not show, which I clarify in Chapter 11, is that quasi-convex and quasi-concave
landscapes are a more restricted class than one may expect: several well-known
combinatorial problems correspond to Laplacian eigenvalues of order equal or higher
than two and thus, as mentioned earlier, cannot be quasi-concave nor quasi-convex.
Again, being a restricted class can be an advantage, even though it makes harder
to find examples other than trivial (e.g. flat landscapes).

Although the practicality of abstract convex elementary landscapes remains
questionable, they offer a potential means to address two important open challenges
in the GF and ELT pointed out by the previous discussion: to characterise for which
combinatorial problems do geometric-crossover EAs perform well [104], and, respec-
tively, to understand the relationship between population-based EAs and spectral
properties of elementary landscapes [85].

12.2 Limitations and Future Work
This thesis focused exclusively on unifying the main theoretical foundations that
support the GF and ELT. Doing so entails important limitations for this thesis:

• The unification restricts to search spaces associated with finite connected
graphs. Although the GF defines search spaces on finite or continuous metric
spaces, ELT limits to finite connected graphs, focusing mostly on undirected
and unweighted ones. Therefore, a unified theory of the GF and ELT excludes
all optimisation problems not associated with finite connected graphs,
including all continuous optimisation problems.

• It follows a non-probabilistic approach to analyse search operators, whether
mutation or crossover, and the behaviour of EAs by focusing only on the
support or parent-offspring reachability structure of search operators. Thus
the unification between the GF and ELT provides no insight on any probability
distribution associated with search operators and the behaviour of EAs.

• The unification restricts to subclasses of elementary landscapes. Therefore, it
excludes all fitness landscapes that are not elementary, also including fitness
landscapes that are superpositions of different elementary landscapes such as
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those associated with subset-sum or quadratic assignment problems for single-
bit flip neighbourhood [20]. Particularly, this thesis focuses on characteris-
ing abstract convex elementary landscapes, rather than formulating predictive
measures to estimate performance [92, 114]. Therefore, this thesis is only
qualitative regarding fitness landscape analysis.

Whether a unified theory of the GF and ELT can overcome these limitations
is out of this thesis's scope and thus remains an important part of future work.
Nevertheless, what it is worth emphasising is that, in spite of all the limitations of
this thesis, it still shows a three-fold unification between the GF and ELT concerning
three critical areas: crossovers, evolutionary search and fitness landscapes. That was
the purpose since the beginning of this thesis after all.

The rest of this section briefly recapitulates other relevant pieces of future work
from previous chapters of this thesis.

One main avenue to continue this thesis is to further develop the crossover
classification presented in Chapter 5 since it is the foundation of, and therefore
affects, subsequent parts of the thesis. Chapter 5 already provides an appropriate
methodology to do so, by classifying other examples of crossovers with respect to
the classes of geometric crossovers and recombination P-structures, or proposing
new subclasses of these. In particular, to develop the crossover classification may
clarify two questions arising from Chapter 5:

• Is the intersecting-Hamming-balls crossover the only example of a highly local
recombination P-structure that is not geometric? (see Section 5.5.1.)

• What examples of strict size-monotonic recombination P-structures are non-
geometric crossovers? Put differently, what specific examples of non-geometric
recombination P-structures fulfil all the inbreeding properties of geometric
crossovers? (see Section 5.5.2.)

The answer to these questions would contribute to a more precise understanding
of the differences and similarities between geometric crossovers and recombination
P-structures. This is important in connection with Chapter 8 because the classes
of geometric crossovers and recombination P-structures can lead to a different,
possibly degenerate and uninformative, form of abstract convex evolutionary search.
Characterising the relationship between crossover classes, their abstract convexity
and the resulting abstract convex evolutionary search across problems and
representations is an essential part of the future work in Chapter 8.

242



CHAPTER 12. CONCLUSIONS

An unexplored alternative in Chapter 8 is to consider approximated forms of
abstract convex evolutionary search as proposed by Moraglio [100]. However, this
involves extending the GF to metric measurable spaces. Moreover, it is seems unclear
how the crossover classification proposed in Chapter 5 would help since it ignores
probability distributions. Nevertheless, this line of research is worth exploring
because it is one of the challenges in the general runtime analysis of geometric-
crossover EAs [104], which should be taken into account for a general unified theory
of the GF and ELT.

Also, Chapter 8 proved that abstract interval convex evolutionary search can be
casted as a nested inclusion chain of invariant subsets or generalised schema in the
sense of Mitavskiy and He [98, 99], closely related to Vose's Boolean predicates [148]
and Hofmeyr's extension [64] of Radcliffe's forma analysis [117]. This suggests a
generalised schema theorem may be possible not only for geometric crossovers, as
Moraglio [100] pointed out, but for recombination P-structures or more general
crossovers associated with finite interval spaces like symmetric Davis's order (see
Section 8.2.1), which need not be geometric.

Regarding Chapter 11, there are several lines of future research to extend
abstract convex elementary landscapes. The first is to find more examples, besides
uniform crossover and identity crossover, of recombination P-structures fulfilling
the properties of backbone distance-transitivity and generous transitivity covered
in Chapter 10 (see Section 10.3). These properties allow Chapter 11 to conceive
abstract convex elementary landscapes precisely in the intersection between the
class of abstract convex landscapes (Chapter 9), the class of elementary landscapes
and the class of recombination P-structure elementary landscapes (Chapter 10). To
find such particular class of recombination P-structures, the crossover classification
can be a helpful resource.

A second major piece of future work in Chapter 11, is to find other examples of
non-degenerate abstract convex elementary landscapes, hopefully more interesting
than (perturbed) one-max fitness functions and for other search spaces than binary
sequences. One potential example is the fitness function of the linear assignment
problem for the Cayley graph induced by transpositions (or swaps) on permutations
[121, 136] because it is a known example of a (Fujiyama) elementary landscape
of Laplacian eigenvalue of order one [85, 121]. This is in keeping with the fact
that classes of (quasi-)convex or (quasi-)concave elementary landscapes have an
eigenvalue of order less than two, according to Chapter 11. For the approximated
versions of abstract convex elementary landscapes it is unclear if they also follow any
specific pattern in terms of their position in the Laplacian spectrum, thus remaining
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as future work. Stadler [137, 139] conjectured that elementary landscapes with low-
order eigenvalues are smoother than those with high order eigenvalues. I speculate
that (approximately) abstract convex elementary landscapes become less globally
convex for higher order eigenvalues: if present, such pattern provides a direct and
analytical way to classify abstract convex elementary landscapes based on their
eigenvalue order. This also aligns well with another unexplored feature of elementary
landscapes suggested by Stadler [136]: the total number discrete nodal domains (see
Section 10.4). They are indicative of the total number connected components of
local optima of above-average fitness, which might be useful to guide evolutionary
search, and can be upper-bounded depending on the eigenvalue order.
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Appendix A

Computer Programs

This appendix contains the source code of computer programs that contributed to
the elaboration of some examples and results in this thesis. These programs are
available online at the public repository [47]. They were developed and tested in the
GNU/Linux Ubuntu 16.04 LTS operating system, using Python 3.5 and Wolfram
Mathematica 11.2 Student Edition. The output of these programs is omitted here.

A.1 Uniform Crossover
The following Mathematica notebook implements the support function of uniform
crossover (Definition 3.5), and its recursive pre-hull operator, for binary Hamming
sequences.

1 (* file: uniform - crossover .nb *)
2

3 (* Auxiliary functions *)
4

5 hammingSeqs [dim_] := Tuples [{0 ,1} , dim ];
6 isInHammingSegment [x_ ,y_ ,z_] :=
7 HammingDistance [x,z] + HammingDistance [z,y]
8 == HammingDistance [x,y];
9 hammingSegment [x_ ,y_ ,dim_] :=

10 Select [ hammingSeqs [dim], (( isInHammingSegment )[x,y ,#] &)];
11

12 (* Uniform crossover *)
13 uniform [x_ ,y_ ,dim_] := hammingSegment [x,y,dim ];
14

15 (* Recursive pre -hull operator of uniform crossover
16 *)
17 closure [dim_ ,s_ ,0] :=
18 s;
19 closure [dim_ ,s_ ,1] :=
20 Union[ Flatten [Union @@ Table[ uniform [x,y,dim],
21 {x,s},
22 {y,s}],
23 1]];
24 closure [dim_ ,s_ ,k_] :=
25 closure [dim , closure [dim ,s,1], k -1];
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26

27 (* Test *)
28 (* example parents *)
29 x1 = {0 ,0 ,0};
30 y1 = {1 ,0 ,0};
31 (* offspring of x1 and y1 *)
32 uniform [x1 ,y1 ,3]
33 (* pre -hull operator on S = {x1 ,y1} after 2 iterations *)
34 closure [3, {x1 ,y1}, 2]

A.2 Symmetric Davis's Order Crossover
The following Python program implements the support function of Davis' order
crossover (Definition 5.2) and its symmetric version (Definition 5.3), and the corre-
sponding recursive pre-hull operator.

1 # -*- coding : utf -8 -*-
2 # file: davis.py
3

4 import itertools
5

6 ## AUXILIARY FUNCTIONS
7

8 # remove_duplicates (ls):
9 # Input: list ls

10 # Output : ls without duplicate elements
11 # Note: remove_duplicates also works if ls is a list of lists.
12 def remove_duplicates (ls):
13 # groupby needs ls to be sorted first
14 new = sorted (ls)
15 return list(key for key ,val in groupby (new))
16

17 # flatten (ls)
18 # Input: list ls
19 # Output : flattens all sublists of ls
20 # Example :
21 # ls1 = [[1 ,2] , [2 ,3]]
22 # ls2 = [[1 ,2 ,3] , [1,2,3], [[1 ,2 ,3] ,[3 ,2 ,1]]]
23 # flatten (ls1) = [1 ,2 ,2 ,3]
24 # flatten (ls2) = [1, 2, 3, 1, 2, 3, [1, 2, 3], [3, 2, 1]]
25 def flatten (ls):
26 return list( itertools .chain. from_iterable (ls))
27

28 # ls1_setminus_ls2 (ls1 ,ls2):
29 # Input: ls1 , the list we want to remove elements from.
30 # Input: ls2 , the list with elements we want to remove in ls1.
31 # Output : ls1 setminus ls2 , elements in ls1 not appearing in ls2.
32 # Examples :
33 # ls1 = [1,2,3,4], ls2 = [2,3], out = [1 ,4]
34 # ls1 = [2,3,9], ls2 = [1,2,2,4,3], out = [9]
35 # Note: ls1 and ls2 must not contain nested lists
36 # Note: removing duplicates in ls2 beforehand is harmless to the
37 # end result . All we care in ls2 is which elements appear , not

246



38 # their order or number of occurrences .
39 def ls1_setminus_ls2 (ls1 ,ls2):
40 ls2_set = set(ls2)
41 return [item for item in ls1 if item not in ls2]
42

43 ## DAVIS ORDER CROSSOVER
44 #
45 # davis_xover (x,y,i,j):
46 # Input: x, the 1st parent used as the ’cutter ’ string .
47 # Input: y, the 2nd parent used as the ’filler ’ string .
48 # Input: i, the index for the start of crossover section .
49 # Input: j, the index for the end of crossover section .
50 # Output : the offspring z of x and y that preserves relative
51 # order of symbols of the parents .
52 # * x and y are lists of the same length .
53 # * 1 ≤ i < j ≤ n.
54 # * Main steps:
55 # 1. Get fillers from y not appearing in the crossover
56 # section . Consider the fillers list as a queue.
57 # 2. For each index in 1..n do:
58 # 2.1. If index belongs to xover section then:
59 # 2.1.1. # paste x[index] to z[index]
60 # 2.2 Else: # outside xover section
61 # 2.2.1. # pull next unused filler from y
62 # 2.2.2. # paste filler to z[index]
63 #
64 def davis_xover (x,y,i,j):
65 z = []
66 length = len(x)
67 xover_sect = x[i:(j+1)] # = [i, j+1) = [i, j]
68 # Main steps
69 fillers = ls1_setminus_ls2 (y, xover_sect )
70 for at in range( length ):
71 if i <= at <= j:
72 z. insert (at ,x[at])
73 else:
74 # pop returns 1st elem and deletes it.
75 filler = fillers .pop (0)
76 z. insert (at , filler )
77 return z
78

79 # davis_xover_support (x,y):
80 # Input: x, the 1st parent used as the ’cutter ’ string .
81 # Input: y, the 2nd parent used as the filler ’ string .
82 # Output : all possible different offspring obtained using davis
83 # order crossover on parents x and y, for all possible
84 # crossover sections .
85 def davis_xover_support (x,y):
86 offspring = []
87 length = len(x)
88 for i in range (0, length ):
89 for j in range(i, length ):
90 z = davis_xover (x,y,i,j)
91 offspring . append (z)
92 return remove_duplicates ( offspring )
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93 ## SYMMETRIC DAVIS ORDER CROSSOVER
94 #
95 # symmetric_davis_xover_support (x,y):
96 # Input: parent x
97 # Input: parent y
98 # Output : all possible different offspring obtained using davis
99 # order crossover on parent pairs (x,y) and (y,x) for

100 # all possible crossover sections .
101 def symmetric_davis_xover_support (x,y):
102 offspring = []
103 length = len(x)
104 for i in range (0, length ):
105 for j in range(i, length ):
106 z1 = davis_xover (x,y,i,j)
107 z2 = davis_xover (y,x,i,j)
108 offspring . append (z1)
109 offspring . append (z2)
110 return remove_duplicates ( offspring )
111

112 ## RECURSIVE PRE -HULL OPERATOR FOR (DAVIS ORDER) CROSSOVERS
113 # closure (xover ,sett ,k):
114 # Input: xover , a binary crossover function . For instance ,
115 # davis_xover_support or symmetric_davis_xover_support .
116 # Input: sett , a set of individuals ( permutations )
117 # Input: k, a natural number ( number of recursive calls)
118 # Output : all possible descendants that can be obtained by
119 # applying xover crossover to the input set sett , and
120 # then again to the offspring set , and again to the
121 # grandchildren , for as many times as k.
122 def closure (xover ,sett ,k):
123 closed = []
124 offspring = []
125 if k == 0:
126 closed = sett
127 else:
128 for x in sett:
129 for y in sett:
130 offspring . append (xover(x,y))
131 offspring = remove_duplicates ( flatten ( offspring ))
132 closed = closure (xover ,offspring ,k -1)
133 return closed
134

135 ## MAIN
136 def main ():
137 # Parent examples
138 x1 = [1 ,2 ,3] # [1,2,3,4], [’A ’,’B ’,’C ’,’D ’]
139 y1 = [3 ,1 ,2] # [2,3,4,3], [’B ’,’A ’,’D ’,’C ’]
140

141 offspring = symmetric_davis_xover_support (x1 ,y1)
142 # closure of x1 and y1 after two iterations
143 # closed = closure ( symmetric_davis_xover_support , [x1 ,y1], 2)
144

145 print(" Parent x: " + str(x1))
146 print(" Parent y: " + str(y1))
147 print("# Different offspring : " + str(len(all1)))
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148 print(" Offspring :")
149 print(all1)
150

151 if __name__ == " __main__ ":
152 main ()

A.3 Intersecting-Hamming-balls Crossover
The following Mathematica notebook implements the support function of intersecting-
Hamming-balls crossover (Definition 5.5) for binary Hamming sequences, its recur-
sive pre-hull operator, and size-monotonicity of recombination P-structures (Defini-
tion 4.3).

1 (* file: intersecting -hamming -balls.nb *)
2

3 (* Auxiliary functions with parameters
4 dim: dimension
5 d: distance
6 c: center
7 r: radius
8 p: point
9 *)

10 hammingSeqs [dim_] := Tuples [{0 ,1} , dim ];
11 isInHammingBall [p_ ,c_ ,r_] := HammingDistance [c,p] <= r;
12 hammingBall [c_ ,r_ ,dim_] :=
13 Select [ hammingSeqs [dim], (( isInHammingBall )[#,c,r] &)];
14

15 (* Intersecting -Hamming -balls crossover *)
16 hammingIntersect [x_ ,y_ ,dim_] :=
17 Intersection [ hammingBall [x, HammingDistance [x,y], dim],
18 hammingBall [y, HammingDistance [y,x], dim ]];
19

20 (* Recursive pre -hull operator of intersecting -Hamming -balls
21 induced for a given set s for k iterations
22 *)
23 closure [dim_ ,s_ ,0] :=
24 s;
25 closure [dim_ ,s_ ,1] :=
26 Union[ Flatten [Union @@ Table[ hammingIntersect [x,y,dim],
27 {x,s},
28 {y,s}],
29 1]];
30 closure [dim_ ,s_ ,k_] :=
31 closure [dim , closure [dim ,s,1], k -1];
32

33 (* Size - monotonicity property of recombination P- structures *)
34

35 (* areMonotonic outputs true if two specific pairs of
36 individuals (a1 ,a2) and (b1 ,b2) verify size - monotonicity .
37 *)
38 areMonotonic [a1_ ,a2_ ,b1_ ,b2_ ,dim_] :=
39 Length [ hammingIntersect [a1 ,a2 ,dim ]] <=
40 Length [ hammingIntersect [b1 ,b2 ,dim ]];
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41 (* areChildrenMonotonic outputs true if for two given parents x
42 and y size - monotonicity is fulfilled : |R(x,z)| <= |R(x,y)|
43 *)
44 areChildrenMonotonic [x_ ,y_ ,dim_] :=
45 (( areMonotonic [x,#,x,y,dim ]) &)
46 /@ hammingIntersect [x,y,dim]
47 (* monotonicity verifies size - monotonicity for all pairs of
48 parents , that is binary Hamming sequences of dimension dim.
49 *)
50 monotonicity [dim_] :=
51 And @@ Flatten [Table[ areChildrenMonotonic [x,y,dim],
52 {x, hammingSeqs [dim ]},
53 {y, hammingSeqs [dim ]}]];
54 (* Test *)
55 (* example parents *)
56 x1 = {0 ,0 ,1};
57 y1 = {0 ,0 ,0};
58 (* offspring of x1 and y1 *)
59 hammingIntersect [x1 ,y1 ,3]
60 (* pre -hull operator on S = {x1 ,y1} after 4 iterations *)
61 closure [3, {x1 ,y1}, 4]
62 (* check size - monotonicity on three - dimensional binary sequences *)
63 monotonicity [3]

A.4 Hamming Ball-mutation Segment Crossover
The following Mathematica notebook implements the support function of ball-
mutation segment crossover (Definition 8.2), and its recursive pre-hull operator,
for binary Hamming sequences.

1 (* file: hamming -ball -mutation - segment .nb *)
2

3 (* Auxiliary functions with parameters
4 dim: dimension
5 d: distance
6 c: center
7 r: radius
8 p: point
9 *)

10 hammingSeqs [dim_] := Tuples [{0 ,1} , dim ];
11 isInHammingBall [p_ ,c_ ,r_] := HammingDistance [c,p] <= r;
12 hammingBall [c_ ,r_ ,dim_] :=
13 Select [ hammingSeqs [dim], (( isInHammingBall )[#,c,r] &)];
14 isInHammingSegment [x_ ,y_ ,z_] :=
15 HammingDistance [x,z] + HammingDistance [z,y]
16 == HammingDistance [x,y];
17 hammingSegment [x_ ,y_ ,dim_] :=
18 Select [ hammingSeqs [dim], (( isInHammingSegment )[x,y ,#] &)];
19 (* Hamming ball - mutation segment crossover (any radius r) *)
20 hammingBallSegment [x_ ,y_ ,r_ ,dim_] :=
21 Union[ Flatten [Table[ hammingBall [z,r,dim],
22 {z, hammingSegment [x,y,dim ]}],
23 1]];
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24 (* Recursive pre -hull operator of Hamming ball - mutation segment
25 crossover with radius 1 induced on a given set s after k
26 iterations
27 *)
28 closure [dim_ ,s_ ,0] :=
29 s;
30 closure [dim_ ,s_ ,1] :=
31 Union[ Flatten [Union @@ Table[ hammingBallSegment [x,y,1, dim],
32 {x,s},
33 {y,s}],
34 1]];
35 closure [dim_ ,s_ ,k_] :=
36 closure [dim , closure [dim ,s,1], k -1];
37

38 (* Test *)
39 (* example parents *)
40 x1 = {0 ,0 ,0};
41 y1 = {1 ,0 ,0};
42 (* offspring of x1 and y1 *)
43 hammingBallSegment [x1 ,y1 ,1 ,3]
44 (* pre -hull operator on S = {x1 ,y1} after 2 iterations *)
45 closure [3, {x1 ,y1}, 2]

A.5 Random Walk
The following Mathematica notebook implements the finite Markov chain, seen in
the example of Section 7.2.1, for the search space induced by the single-bit flip
neighbourhood on two-dimensional binary Hamming sequences.

1 (* file: markov .nb *)
2

3 (* Finite Markov chain on the mutation search space induced by
4 single -bit flip mutation on two - dimensional binary Hamming
5 sequences , that is a two - dimesional hypercube graph H(2 ,2)
6 *)
7

8 (* adjacency , diagonal and transition matrices *)
9 hyp22 = HypercubeGraph [2];

10 hyp22Adj = AdjacencyMatrix [hyp22 ];
11 hyp22Diag = DiagonalMatrix [ VertexDegree [hyp22 ]];
12 hyp22Trans = hyp22Adj . Inverse [ hyp22Diag ];
13 (* markov chain:
14 start1 : initial probability distribution over states 1..4
15 p1: markov process
16 *)
17 start1 = {1 ,0 ,0 ,0};
18 p1 = DiscreteMarkovProcess [start1 , hyp22Trans ];
19 (* display state transition diagram *)
20 Graph[p1]
21 (* key properties of the markov chain *)
22 MarkovProcessProperties [p1]
23 (* stationary distributions for the four states *)
24 (PDF[ StationaryDistribution [p1],#] &) /@ Range [4]
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A.6 Headless-chicken Crossover Random Walk
The following Mathematica notebook implements the finite Markov chain, seen in
the example of Section 7.3.2, for the recombination search space induced by uniform
crossover on three-dimensional binary Hamming sequences.

1 (* file: markov .nb *)
2

3 (* Finite Markov chain on the recombination search space defined
4 by the uniform crossover recombination P- structure on three -
5 dimensional binary Hamming sequences
6 *)
7

8 (* generalised adjacency matrix and transition matrix *)
9 masks[dim_] := Tuples [{0 ,1} , dim ];

10 unifCrossoverSmatrix [dim_] :=
11 Table [2*((3/2) ^dim)*(3^( - HammingDistance [x,y])),
12 {x,masks[dim ]},
13 {y,masks[dim ]}];
14 unifCrossoverTrans [dim_] :=
15 (1/(2*(2^ dim))) unifCrossoverSmatrix [dim ];
16 (* verify that each row of the transition matrix adds up to 1 *)
17 Total [(( unifCrossoverTrans [3][[#]] &) /@ Range [8])]
18

19 (* markov chain:
20 start3 : initial probability distribution over states 1..8
21 p3: markov process
22 *)
23 start3 = {1 ,0 ,0 ,0 ,0 ,0 ,0 ,0};
24 p3 = DiscreteMarkovProcess [start3 , unifCrossoverTrans [3]];
25 (* display state transition diagram *)
26 Graph[p3]
27 (* key properties of the markov chain *)
28 MarkovProcessProperties [p3]
29 (* stationary distributions for the eight states *)
30 (PDF[ StationaryDistribution [p3],#] &) /@ Range [8]
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Glossary

Other notations and technical terms are introduced in the relevant chapters of this
thesis as needed.

Sets and Multi-sets
N

The set of natural numbers {1, 2, 3, . . .}.

N0
The set of natural numbers including zero {0} ∪ N.

Z
The set of whole numbers or integers {. . . , −1, 0, 1, . . .}.

R
The set of real numbers.

Hn
q

The set of n-dimensional Hamming sequences for a q-ary alphabet with q ≥ 2,
namely the n-fold Cartesian product of Hq

def= {0, 1, . . . , q − 1}.

P(X)
The power set of a set X: the set of all subsets of X including the empty set
and X itself.

Y X

The set of all functions f : X → Y for arbitrary sets X and Y .

L≤c(f) def= {x ∈ X | f(x) ≤ c}
The sub-level set of a function f at an image value c. Likewise, super-level,
strict sub-level, strict super-level and level sets are defined by replacing the
relation ≤less or equal than with relations: ≥greater or equal than, <less than, >greater than
and =equal to respectively.

Multi-set
A multi-set is a pair (A,m) where A is the underlying set of the multi-set
and m : A → N is a function that indicates the multiplicity (i.e. number of
occurrences) of each element in the multi-set.
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Multi-set union
Let (A,mA) and (B,mB) be two multi-sets. Their union is the multiset
(C,mC), such that C = A ∪B and ∀x ∈ C : mC(x) = max{mA(x),mB(x)}.

Multi-set sum
Let (A,mA) and (B,mB) be two multi-sets. Their sum is the multiset (C,mC),
such that C = A ∪B and ∀x ∈ C : mC(x) = mA(x) +mB(x).

Graphs
G

def= (V (G), E(G))
A graph (undirected or directed, unweighted, without loops and multiple
edges), with vertex set V (G) and edge set E(G), respectively V and E when
the graph is clear from the context.

G1 ' G2
The graphs G1 and G2 are isomorphic.

G[S]
The induced subgraph on a given graph G by a subset S of its vertices V (G).
G[S] consists of the vertex set S and all edges in E(G) with both endpoints
in S.

Kn

The complete graph with n vertices where any two vertices are connected by
an edge.

Kn,m

The complete bipartite graph with vertex set X ∪ Y given by disjoint sets X
and Y , where |X| = n, |Y | = m, and any {x, y} ∈ X × Y is an edge.

Sn (' K1,n−1)
The star graph (or complete bipartite graph K1,n−1) is a tree with n vertices,
one of which having n − 1 neighbours and the rest of the vertices connected
only to the previous one.

H(n, q)
The Hamming graph with vertex set Hn

q where any two distinct sequences
x, y ∈ Hn

q at Hamming distance one are connected by an edge.

H(n, 2)
The hypercube graph with 2n vertices.

Vectors and Matrices
A = (ai,j) ∈ Rn×m

A n×m dimensional matrix A of real-valued entries ai,j ∈ R, indexed by the
i-th row and the j-th column, where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
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A−1

The inverse of a matrix A where AA−1 = I.

AT

The transpose of a matrix A where (A−1)T = (AT)−1.

I
The identity matrix.

1
The all-ones vector (1, 1, . . . , 1).

Probability
X ∼ P The random variable X is drawn from the probability distribution P .

Unif The uniform probability distribution, whether continuous or discrete.

E[X] The expectation (or mean value) of a random variable X.

Optimisation
Single-objective optimisation problem (Ω, f, E , I)

It is defined as:
minimise f(x)
subject to gi(x) ≤ 0, ∀i ∈ {1, . . . ,m}

and hj(x) = 0, ∀j ∈ {1, . . . , p}
where x = (x1, x2, . . . , xn) is the optimisation variable in some domain Ω, f(x)
the objective function to be optimised, gi(x) the ith-inequality constraint in
the set I, and hj(x) is the jth-equality constraint in the set E , for i, j ∈ N.

Global optimum solution
Let a single-objective optimisation problem (Ω, f, E , I), where f is the objec-
tive function defined in the domain Ω and subject to sets of constraints E and
I. An optimisation variable x is a global optimum with respect to minimisa-
tion if ∀y ∈ Ω such that y 6= x: f(x) ≤ f(y), and a strict global optimum if
f(x) < f(y) holds.

Local optimum solution
Let a single-objective optimisation problem (Ω, f, E , I), where f is the objec-
tive function defined in a metric space Ω and subject to sets of constraints E
and I. An optimisation variable x is a local optimum with respect to minimi-
sation if ∀y ∈ Nε(x) such that y 6= x: f(x) ≤ f(y), for an ε-neighbourhood
Nε(x) def= {y ∈ Ω | d(x, y) ≤ ε} induced by a metric d up to a distance ε. It is
a strict local optimum if f(x) < f(y) holds.
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