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Abstract—One major functionality of force microscopes
is their ability to measure forces at a high sensitivity,
thereby, allowing understanding of vital mechanisms: for
instance, in bio-specimens. The investigation of a speci-
men’s viscoelasticity on nano-scale can have significant
scientific impact, but has been inhibited by the lack of
fast, comprehensive scanning instruments. In principle,
transverse dynamic force microscopes (TDFMs) permit the
measurement of interaction forces within delicate samples
in a non-contact manner. The force measurements are
reconstructed via complicated offline analysis in TDFMs,
therefore, they can hardly be utilised as an online force
measuring tool. This paper introduces a novel integrated
robust design for practical scanning using the TDFM sys-
tem. The digital design is implemented in fixed-point arith-
metic using Field Programmable Gate Array (FPGA) de-
vices, thereby, permitting measurement of the interaction
force at a high sampling rate. The novel digital design
tackles different implementation issues achieving fast and
robust force measuring performance. This enables a new
force-scan mode for the TDFM, realising for the first time,
online force mapping of sample-surfaces in real-time.

Index Terms—Digital filters, Mechatronics, Nanotechnol-
ogy, Observers, Parameter estimation, System dynamics,
Scanning probe microscopy

I. INTRODUCTION

THE invention of the Atomic Force Microscope (AFM) al-
lows imaging samples at nano-meter precision [1]. AFMs

play an important role in investigating physical phenomena [2],
chemical reactions [3], material properties [4] and biological
mechanisms [5] via measuring interaction-forces at a high
sensitivity. For example, the interaction force, which occurs
between cell-specimens and the cantilever-tip in a typical
AFM device, can be measured and processed for analysing
the mechanical properties, such as viscoelasticity, over sam-
ple surfaces [5]–[8]. Such techniques allow for investigating
different diseases, such as cancer, arthritis, etc., by observing
the variations in the samples’ mechanical properties, which
cause changes in the cell functionalities. Also, mechanical
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property changes can significantly contribute to an improved
understanding of virus-shell properties, thereby, giving insight
into virus assembly or disassembly mechanisms [9]. For
these reasons, there has been significant research interest in
developing and employing different approaches to measure the
interaction forces using AFMs in the last decades.

The shear force microscope (SFM) [10], employs a vertical
cantilever-probe which is excited horizontally. The vertical
probe interacts with a confined liquid layer covering the
sample-substrate without the need for directly contacting the
sample surface. This sensing mechanism allows for true non-
contact force measurement over the sample surface, thereby,
avoiding damage to samples. In contrast, for a typical AFM, an
appropriate contact force, determined by skilled experienced
users, needs to be applied to the sample surface by the
cantilever-tip, probably resulting in destructive damage to
delicate samples [5], [11].

The special feature of non-contact scanning makes SFMs
a powerful tool in force detection and sample analysis ap-
plications. For instance, SFM’s can be used to measure the
non-contact friction force between the cantilever and sample
surfaces in [12]. The non-contact friction force is then recon-
structed offline from the cantilever’s dynamic measurements,
such as displacement and velocity. Similarly, the amplitude and
frequency changes in the cantilever oscillation are measured
in [13] using a transverse dynamic force microscope (TDFM):
a specific highly force-sensitive SFM invented at Bristol.

In TDFMs, the oscillating cantilever can work as a force
sensor directly, by placing the cantilever in the sample so-
lutions [2], [14], [15]. The interaction shear-force can be re-
constructed via different numerical methods, thereby, allowing
analysis of the viscous and elastic constants of different sample
liquids. However, previously, the force measurements have
been reconstructed via offline data processing procedures in
these applications. The data analysis procedure is also time-
consuming and requires very specific expertise.

Motivated by the need to carry out rapid force measurement
in a non-contact manner, a feasible solution is to reconstruct
the interaction force in TDFMs via force estimation algo-
rithms. Although similar concepts have been applied to tapping
mode AFMs [16], [17], these algorithms have not been feasible
to be deployed in TDFMs due to the differences in the set-
up. Specifically, a TDFM probe continuously interacts with the
very top-layer of the specimen at each imaging position during
specimen scans. This interaction guarantees that the specimen
is only traversed above the surface. In contrast, a tapping mode
AFM contacts or approximates the specimen during a short
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period in each oscillation period. For TDFMs, a theoretical
framework is developed in [18], proposing a two-inputs-single-
output model of the cantilever: one of the inputs is the known
cantilever excitation, the other input is the unknown interaction
shear force at the tip of the cantilever, and the output is the
measurable cantilever oscillation motion in the complex scan
medium. In particular, a suitable solution that estimates the
interaction force using a sliding mode observer is discussed
and analysed in [18], [19]. The recent work [19] succeeds
in estimating the unknown shear-force input by processing
practical data for specific points on the specimen using a
separate data processing PC.

This paper presents a novel integrated solution for the
TDFM system achieving real-time force scans, in contrast to
the result of [19] which were obtained at fixed points on
the specimen. Developed from previous work [19], a new
implementation procedure is presented in this contribution,
considering different practical issues. As a result, this novel de-
sign can integrate the real-time force measuring function with
the multi-mode TDFM system [20]. A significant challenge is
that the TDFM is expected to excite the cantilevers at the scale
of hundreds of kilo-Hertz, which is higher than the existing
experimental force observers in other AFMs [16], [17]. There-
fore, the filters and numerical computations are implemented
using fixed-point arithmetic, allowing the implementation of
complex algorithms at Mega-Hertz level sampling frequencies
on Field Programmable Gate Array (FPGA) boards. The force
observer is modified for ease of FPGA implementation. A
novel digital FPGA programme is carefully designed and
parametrically optimised for a high numerical accuracy taking
the hardware limitations into account. Experimental results are
provided demonstrating the first real-time force-scan of nano-
particles in a non-contact manner using a TDFM.

It will be shown that the developed force-measurement func-
tionality allows the TDFM to undertake shear-force scans and
viscoelasticity analysis of samples in practice. This permits
online analysis of the sample surface rapidly, whilst other
methods compute the interaction force or the elastic/viscous
constants of the scanning surface offline [21], [22]. Such
functionality prospectively allows for online mapping the
viscoelastic properties of the surface during biological or
chemical processes of a specimen. In contrast, previously,
only topographic images have been scanned online [23], [24].
Thus, this new real-time force reconstruction function makes
the TDFM a powerful force measurement tool to detect and
measure small forces at a high speed with the sensitive TDFM-
probe, whereas rapid force changes due to physical phenom-
ena (e.g., [25]) were not directly measurable before. Such
capability contrasts and complements the force measurements
of AFMs with a horizontal cantilever design, operated in a
torsional mode [26], [27]. Specifically, in these AFMs, the
torsional vibration of the excited cantilever interacts with
the sample-substrate surface in lateral directions, when the
cantilever-tip is vertically pressed against the sample-substrate
in a contact regime. Although a carefully calibrated torsional
AFM can be used to measure the lateral interaction forces
for sample surface analysis, the lateral force is typically in the
range of a few to several dozen nNs. In contrast, the presented

TDFM interacts with the sample-substrates in a much smaller
force range (e.g. in this work, the largest force levels are at
about 0.2 nN) and extracts viscoelastic information from non-
contact interaction over the sample surfaces.

II. SHEAR FORCE RECONSTRUCTION FORMULATION

A. Shear-force interaction modelling in the TDFM

A typical sample-substrate is commonly covered by a con-
fined liquid layer in a scan medium, or a confined water layer,
due to humidity in an ambient environment. This is specifically
exploited in TDFMs. In this work, all the specimens are
in water-based scan medium. As shown in the schematic in
Fig.1, the cantilever can be assumed to be an Euler-Bernoulli
bending beam [28]. The beam is excited at the upper end of
the cantilever by a translation u(t) in the oscillation direction
at time t. Subsequently, the cantilever tip freely oscillates with
transverse displacement yc(ξ, t) in the scan medium. There is
no specific shear-force created on the cantilever tip when the
cantilever is outside the shear force interaction range, i.e., the
existing range of the confined water-layer over the sample-
substrate. Here, ξ indicates the position value, along the beam
(i.e. along the z-axis), starting from the upper end of the
cantilever. As soon as the cantilever tip penetrates the confined
water layer, the ordered water-molecule layer creates the shear
force f(t) in the opposite direction to the cantilever deflection
along the y-axis.

Fig. 1: A schematic of the cantilever oscillation modelled as
a bending beam oscillating in the y direction. The beam is
excited by u(t) at the upper end and the shear force f(t) is
created due to the interaction with the confined water layer.
The beam displacement yc is the result of u(t) and f(t)
together. The water-layer exists in a lattice structure and varies
with different factors [2]. The simplified shape of the water-
layer does not reflect any true measure in this schematic.

Based on the well known Euler-Bernoulli equation from
beam theory, the partial differential equation is given as [28]:

EI
∂4

∂ξ4
(yc + α

∂yc
∂t

) + ρAs
∂2yc
∂t2

+ γd
∂yc
∂t

= 0 (1)

where the boundary conditions of the cantilever at time t are
yc(ξ = 0) = u(t), ∂yc

∂ξ (ξ = 0) = 0, ∂2yc

∂ξ2 (ξ = L) = 0,

EI ∂3yc

∂ξ3 (ξ = L) = −f(t). Here, α is the internal damping
constant added to represent the dissipative internal damping
force, E is Young’s modulus of the cantilever material, I
indicates the second moment of area, As is the cross-sectional
area of the cantilever, ρ is its density, γ is the viscous coeffi-
cient (Nsm−3) of damping in the term γd∂yc

∂t representing the
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dissipative force caused by the surrounding environment, d is
the width of the cantilever, and L is the cantilever length.

Specifically, the force f(t) caused by the confined liquid
layer can be separated into a viscous force and an elastic force:

f(t) = −ν
∂yc
∂t

|ξ=L − κyc|ξ=L (2)

where ν is the constant of dissipative interaction (viscous
damping coefficient ν) and κ is the elastic interaction constant
(elastic spring coefficient κ) [28].

In TDFMs, the length of the cantilever is typically much
greater than its thickness. Specifically, the adopted cantilevers
are 18 µm in length in comparison with its 200 nm thickness.
Moreover, the thickness of the confined water layer just above
the specimen is commonly less than 10 nm, significantly
smaller than the length of the cantilever. Therefore, equation
(1) can be written in the given format without the need to
consider the rotatory inertia and the effect of the shear force
along a stretch of the cantilever. The cantilever deflection yc
depends on the position ξ and time t. The cantilever excitation
u(t) is a constant sine-wave oscillation provided by a dither
piezo-actuator in the TDFM (see the set-up in Fig.2).

As f(t) and u(t) are not collocated, a cantilever model
needs to be established to relate the system inputs u(t), f(t)
and the output y(t) allowing the estimation of the unknown
shear-force signal f(t) using an unknown input observer based
only on the knowledge of y(t) and u(t). Here, the method of
lines is used to approximate the partial differential equation (1)
by time-invariant ordinary differential equations as introduced
in our previous work [19]. This approach also retains some
of the versatility of the partial differential equation, as forces
and the scan-medium interferences can be modelled with
good accuracy by choosing for instance the model parameters
γ and α. Most importantly, this approach will provide an
accurate control engineering perspective on the influence of
the unknown shear force, f(t) (and also the excitation signal
u(t)) on the output y(t), and the chosen observed states of
the system. The process for obtaining this model is to first
conduct a method of lines and then to use an established model
reduction approach to obtain a good low order approximation
of the dynamic relationship.

The linear time invariant system model of the cantilever can
be written in a state space form as

ẋl = Alxl +Blu+Dlf
yl = Clxl

(3)

where xl ∈ R2(n−4)×1, Bl =∈ R2(n−4)×1, Dl ∈ R2(n−4)×1

are computed from (1) using the method of lines detailed
in [19]. Assuming n is sufficiently large (i.e. δξ → 0), the
cantilever deflection yl can be approximated by the (2n−9)th
entry of xl. Hence, the (2n− 9)th entry of Cl ∈ R2(n−4)×1 is
1 and the remaining entries are zero.

The dynamic model (3) is often expressed by a high order
state-space model, as the number of nodes n needs to be
sufficiently large. This potentially results in a high order force
estimator, that cannot be successfully implemented on digital
hardware with limited hardware resource, particularly FPGA
boards. In order to guarantee the implementability, a standard

balanced truncation method [29] is applied to the high order
state space model. Practically, it has been found an 8th order
state space model can well approximate the high-order state-
space model. The order reduced model is represented by

ẋ(t) = Ax(t) +Bu(t) +Df(t)
y(t) = Cx(t)

(4)

which will be used to design the unknown input, force f(t),
estimator. Here, the cantilever tip displacement is represented
by y(t) (= yc(ξ, t)|ξ=L). Note that the reduced model has to
be carefully calibrated to agree with the cantilever dynamics
in practice for accurate force reconstruction (see the detailed
procedure described in Section III-C).

B. Observers for force reconstruction
Here, inspired by previous results [19], a sliding mode

observer is designed for estimating the interaction shear-force
in real-time:

˙̂x(t) = Ax̂(t) +Bu(t) +Dϕ+G(y(t)− ŷ(t))
ŷ(t) = Cx̂(t)

(5)

where G is a gain matrix and x̂(t) is the estimation of x(t).
In (5), ŷ(t) denotes the estimated tip oscillation signal and ϕ
is the nonlinear injection signal defined as

ϕ =

{
−Λsign(ŷ(t)− y(t)) if |ŷ(t)− y(t)| ⩾ 1

−Λ(ŷ(t)− y(t)) if |ŷ(t)− y(t)| < 1
(6)

and the sign(·) is the mathematical operation to take the sign
of the input variable. This can be realised by multiplying the
saturated signal ŷ(t)− y(t) with a [-1,1] range, by −Λ. Here
Λ represents a positive scalar gain satisfying

max(∥f(t)∥) < Λ. (7)

The previous single-position results [19] show that, for an
appropriate choice of G and the scalar Λ, the output estimation
error ŷ(t)−y(t) is driven to a neighbourhood of zero in finite
time and a so-called pseudo sliding motion takes place [30].
Here, a practical design chooses G as a zero matrix, G = 0.
Thus, it follows the design approach as analysed in [30].

Following Section 6.2 and Proposition 6.2 in the work in
[30], necessary and sufficient conditions for the existence of
this observer are:

1) The matrix A is Hurwitz, i.e. stable, in the left half plane;
2) CD ̸= 0, i.e. the model (A,D,C) is relative degree one;
3) The invariant zeros of (A,D,C) are stable, i.e. the zeros

of the transfer function C(sI −A)−1D are stable.
Practically, the first condition is always satisfied for the
cantilever. The second and third conditions are generally guar-
anteed through the practically guided model order reduction
process, where stable zeros and a relative degree one transfer
function for C(sI −A)−1D is enforced.

Given G = 0, the force estimator is realised as
˙̂x(t) = Ax̂(t) +Bu(t) +Dϕ
ŷ(t) = Cx̂(t)

(8)

where ϕ is defined in (6). Such an implementation has two
significant advantages. The first benefit is that G is not needed.
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Otherwise, the design of G would have to be robust to changes
in the system (e.g. a slight change of the optical sensitivity),
i.e., it therefore increases the difficulties to use the TDFM
as a force measurement tool. Moreover, the absence of the
multiplication of two matrices saves significant digital design
effort and hardware computational resource.

Formally, during the sliding motion, on average, the high
frequency switching term ϕ must replicate f(t) for sliding to
be maintained. The average value of −ϕ necessary to maintain
sliding is known as the equivalent injection [30]. Since ŷ(t)−
y(t) → 0 as t → ∞ due to the convergence, the negative value
of the equivalent injection will be equal to f(t).

The successful estimation of f(t) provides information
about the viscous damping coefficient ν(t) and elastic spring
coefficient κ(t) based on the dynamics (2). Here, the mechan-
ical properties of the specimen surface, specifically ν and κ,
vary during a dynamic scan. Hence, an unknown parameter
estimation algorithm developed in [31] is selected, which gives
a robust adaptive parameter estimation performance. In detail,
equation (2) is rewritten as

f =
[
ẏ y

] [−ν
−κ

]
= Ψ(t)Θ

(9)

where Ψ =
[
ẏ y

]
and Θ =

[
−ν −κ

]T
. A simple first order

filter is introduced for each term of (9) in the form:

kḟf (t) + ff (t) = f(t), ff (0) = 0

kΨ̇f (t) + Ψf (t) = Ψ(t), Ψf (0) = 0
(10)

The application of Ψf (t) filters to y(t) for calculating yf (t)
enables obtaining ẏf (t) according to

kẏf (t) + yf (t) = y(t), y(0) = 0. (11)

This ẏf (t) is taken as ẏ(t) instead of directly computing the
derivative of y(t). The filtered version of (9) is written as
ff = ΨfΘ, assuming that the change in parameter value κ
and ν in relation to the following regressor filter operation is
slow and κ and ν can be regarded as (almost) constant.

Two filtered regressors M(t) and N(t) are formulated as

Ṁ(t) = −lM(t) + lΨT
f (t)Ψf (t), M(0) = 0

Ṅ(t) = −lN(t) + lΨT
f (t)ff (t), N(0) = 0

(12)

where l is a positive scalar, acting as a forgetting factor in this
first order filtering process. The time constant, 1/l provides an
approximate time interval during which κ and ν are estimated.
Hence, the factor l is typically selected as a large number for
a fast convergence speed, whereas an extremely large l should
be avoided, to guarantee sufficient data for the computation
of κ and ν. For instance, in practice, l is configured to be
1.885 × 104 to average the data in a relatively long period
of about 0.3 ms. In this way, sufficient data is fed into the
parameter estimator for an accurate estimation of the viscous
damping coefficient ν and the elastic spring coefficient κ,
considering the cantilever oscillation at 200 kHz and a 4 MHz
sampling rate of the force measurement (see the digital design
details in Section III). Notice that ẏ(t) and f(t) are filtered

Fig. 2: A schematic of the vertical positioning and sensing
components in the integrated TDFM system. Here, A/D and
D/A indicate analogue-to-digital and digital-to-analogue chan-
nels respectively.

and estimated from the measured and filtered value of y(t).
Thus, the estimation of Θ =

[
−ν −κ

]T
is given by

Θ̂ = M−1N. (13)

The presence of sufficient data (e.g. persistency of excitation)
within the period of length, 1/l, in the formulation of M(t)
and N(t), guarantees Θ̂ − Θ → 0 in finite time [31]. The
matrix-inversion formulation provides a lightweight and effec-
tive estimator for ν and κ, thereby, allowing the estimation of
the viscous and elastic forces. Note that the online estimation
of ν and κ can be realised using a variety of parameter
estimation algorithms. Here, it is realised by a robust, light-
effort estimation algorithm (10)-(13), motivated by the need
for low computational cost and fast computation speed.

III. INTEGRATED FPGA DESIGN AND IMPLEMENTATION

A. Real-time force observer in the TDFM System

The integrated TDFM system [20] consists of two FPGA
modules for vertical positioning control in the z-axis (as shown
in Fig.2). The x-y scanner carries the transparent sample-
holder, as it moves along a raster trajectory in the TDFM
scans. In particular, the fast and slow raster motion is along
the x-axis and y-axis, respectively.

The cantilever is excited by a dither piezo-actuator in the
TDFM. It only needs a small cantilever excitation u(t) at a
constant frequency so that the oscillation amplitude of the
cantilever tip is small enough for a high spatial resolution.
The cantilever excitation u(t) can be computed from the
sinusoid signal (generated from a signal generator) via a linear
relationship. The cantilever deflection y(t), measured by the
optical sensor (see the optical sensing mechanism in [32] and
the associated control design in [20]), is amplified before being
processed by a signal conditioning FPGA module, a National
Instrument NI-7962R FPGA. Consequently, the optical sensor
provides two vertical position measurements which are used
by the z-control FPGA, an NI-7854R, employing the vertical
positioning piezo-actuators. In detail, the system [20] allows
for measuring a relative position (the cantilever-sample in-
terdistance within the shear-force interaction range) and an
absolute position (the distance measured from the sample-
holder slide) of the cantilever.
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Here, the integrated control design includes two FPGA
modules for several practical considerations. Specifically, the
signal conditioning FPGA has a sufficiently high Input/Output
(IO) sampling rate, allowing the processing of the cantilever
oscillation measurement at a few mega-Hertz (as detailed in
the next sections). In contrast, the z-control FPGA has a less
powerful IO running at a relatively low sampling rate of 500
kHz, which is enough for the cantilever’s vertical positioning
with a control bandwidth below 10 kHz. Due to the limited
amount of hardware resource (binary gates) on each FPGA
boards, it is impossible to load the sensing functions and
the vertical positioning functions onto one FPGA module.
Therefore, the advanced digital controllers are implemented on
the NI-7854R and occupy almost all hardware resource of the
z-control FPGA [20]. On the other hand, the NI-7962R FPGA,
the signal conditioning FPGA, is adopted for implementing the
shear-force reconstruction function in addition to the vertical
position sensing function (see Fig.2). This design integrates the
real-time force-measurement function into the TDFM system,
thereby, enabling an additional force-scan mode of the multi-
mode force microscope presented in Section IV.

B. FPGA implementation using fixed-point arithmetic

In the field of AFM control, the typical method to prototype
control algorithms at high clock frequencies on FGPAs is by
implementing numerical operations in fixed-point arithmetic,
e.g., [20], [33]. A significant challenge is that the digital
programmes on FPGAs have to be carefully designed to
achieve an appropriate performance, limited by different prac-
tical constraints, such as the finite amount of FPGA hardware
resource. The real-time force estimation is implemented on the
NI-7962R, as shown in Fig.3, taking into the consideration the
following design issues.

The synchronisation of the system inputs u(t) and y(t) is
critical for an accurate force estimation performance. In partic-
ular, the sinusoid signal from the signal generator is acquired
as the Uin signal. The cantilever deflection signal is captured
as the Yin signal from the pre-amplifier. The measured Yin is
always delayed by the electronics, mainly the optical sensor
and the pre-amplifier. Hence, a delay programme is suggested
to accurately synchronise u and y. Specifically, the input A/D
channels and the delay block are configured at the highest
available sampling rates, therefore, the digitisation effect on
signals is minimised. The digital delay is manually adjustable
for the u signal subject to the minimum delay step of 5 ns.

The presence of measurement noise considerably influences
the estimation precision in practice. The noise mainly consists
of high frequency electro-magnetic noise inherent from the
electronics and the spiky noise caused by the A/D conversion
(running at the maximum rate of 100 MHz). To reduce noise,
two bandpass filters are applied to both the Uin and Yin

measurements. Then, the bandpass filtered signals are used as
the inputs to the shear force observer. It is critical to guarantee
the filtered u and y are modified by the same gain and phase.
Hence, identical filters are designed as 2nd order butter-worth
filters with 180-220 kHz bandwidths covering the oscillation
frequencies cantilever in the scan medium.

Fig. 3: The digital design of the force reconstruction function
in the signal conditioning FPGA.

Note that an adjustable gain is introduced to the filtered
Yin. In practice, the optical sensitivity slightly alters as the
optical path changes due to different experimental factors,
such as the change of the sample-holder. Therefore, the gain
for computing y is designed to be online adjustable. This
design flexibility avoids spending hours reconfiguring FPGA
programmes when the experimental condition slightly alters.
On the other hand, the use of an adjustable gain slows down
the running speed of the aforementioned bandpass filters.
Specifically, the two filters are configured to run at 4 MHz,
and that is a sufficiently high sampling rate for the shear-force
reconstruction.

Fig. 4: The digital design of the sliding mode observer to
be implemented on FPGA. The estimator in (14) is realised
in a modified Transposed Direct Form II. The injection ϕ
is computed by the inputs u and y according to the sliding
mode observer design of (8). Specifically, a single clock cycle
delay is applied to y as the ŷ is delayed by one clock-cycle
to calculate the estimation error.

The structure of the estimator has to be carefully designed
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to manage the complex digital filtering function running at a
fast sampling time. The result of [19], focussing on a single
point, used the collected data to run the algorithm in the
associated PC within a continuous-time numerical process. As
a result, the state space representation of (5) allowed matrix-
multiplication and continuous-time integration of ẋ. However,
a direct, more complete, implementation on the FPGA is
practically infeasible. Hence, the estimator in (8) is therefore
discretised by using Tustin’s method, and transformed into
observable canonical form. The estimation of y(t) in discrete
time is given as

Ŷ (z) =

∑8
k=1 bu,kz

−kU(z) +
∑8

k=1 bf,kz
−kΦ(z)

1 +
∑8

k=1 akz
−k

(14)

where Ŷ (z), U(z), and Φ(z) are the discretised z-transforms
of y(t), u(t), and ϕ(t). To implement the observer with
minimal hardware cost at a high running speed, the estimation
ŷ(t) is implemented by fixed-point arithmetic in a modified
Transposed Direct Form II (TDF-II) structure (see Fig.4).
Specifically, the value buffered in shift register 1 is added
to the delayed negative value of y. Whilst this one cycle
delay is not necessarily needed in a typical TDF-II digital
filter implementation, here it permits carrying out the fixed
point operations, the multiplication with λ and the saturation
operation for computing the nonlinear injection signal ϕ, in
parallel to other primary digital filtering computations. Also,
this implementation structure allows the digital programme to
execute the filtering computation in parallel at one clock cycle
time, which is usually implemented as a series of computa-
tional elements (including one multiplication and two addition
computations). The specific design achieves practically a 32
MHz sampling frequency, which maximises the performance
of the parallel implementation of the complex high-order
sliding mode filtering.

The fixed-point arithmetic operations of the digital filters
have to be carefully designed in order to guarantee sufficient
computational accuracy. The multiplication and addition oper-
ations implemented on the FPGA board have fixed numerical
accuracy and range. The zeros and poles of the high-order
estimator are sensitive to quantisation errors. Also, overflows
have to be avoided by enlarging the numerical range of each
arithmetic operation. Moreover, both design requirements,
reducing the quantisation error and increasing the numerical
range, need to be designed considering the limited hardware
resource of the FPGA board, for which a solution will be
discussed in the next section.

The previous single-position results of [19] demonstrate
that a simple first order low-pass filter applied to −ϕ can
provide a good force estimation f̂(t). However, the hardware
limitation, particularly, the insufficient sampling rate of the
injection, introduces quantisation errors/noise to f̂(t) over
the whole frequency range. Practically, the signal f(t) is
created by the tip oscillation determined by the excitation
u(t), i.e. f(t) mainly oscillates at the same frequency of
u(t). Hence, a bandpass filter is suggested to obtain the shear
force information at the particular frequency, and additionally
reduce the noise caused by quantisation errors. A 5th order

Butterworth bandpass filter was used in order to achieve good
estimation performance at low computational resource cost.

The design of the real-time shear force estimator is shown
as Fig.3. Each of the functional blocks are implemented to
run in parallel for maximising the overall implementation
rate of the estimation scheme. A 4 MHz data logging and
D/A output rate is chosen, due to the speed limitation of
the data streaming from the FPGA towards the host-PC. For
efficient data streaming and to avoid data loss, the data-logging
function is designed as a dual-layer mechanism: a buffer
to extract data from the FPGA’s digital cache to the host-
PC RAM at 1 kHz running rate, and a buffer to stack data
from the RAM to a data-presenting functional thread running
at a 25 Hz speed. At the host-PC side, the real-time force
measurement can be imaged as a force-scan of the sample
surface directly. Then, the force data can be processed into
viscosity and elasticity data of the sample surface, via the
proposed parameter estimation algorithm (presented as (10),
(12), and (13)).

C. Practical implementation procedure
In order to facilitate the estimator, a practical model in the

format of (4) has to be obtained taking into account various
implementation factors, e.g. the amplifiers, the electronics,
etc. The FPGA programme has to be optimised for achieving
appropriate numerical precision before being deployed onto
FPGA boards. Then, an estimator designed for the practical
model is feasible to be implemented and used for the real-
time force measurement. Here, a complete implementation
procedure is suggested as given in the following steps:
− Identify the u(t)-to-y(t) response of the cantilever oscil-

lation outside the shear force interaction range.
− Adjust the parameters of the theoretical state-space model

(3) to match the practically identified system dynamics
(so that the fitted model is a practical model for the
estimator design).

− Reduce the fitted state-space model into the low-order
format of (4) retaining the critical dynamics information
around the cantilever oscillation frequency.

− Compute the order-reduced cantilever model (4), discre-
tise it, and then transform the discrete model into (14).

− Optimise the fixed-point arithmetic in the digital pro-
gramme before deployment onto the FPGA board.

Here, an example is described with the experimental spec-
ifications in this work so as to demonstrate the whole imple-
mentation procedure. Specifically, the adopted cantilever probe
(NuNano Ltd.) is selected to be excited in the horizontal plane
along the y-axis by a sine wave of amplitude approximately 2
nm at 200 kHz, which is around its first resonance in water.

The excited cantilever oscillation dynamics of u(t)-to-y(t)
is measurable only when there is no shear force interaction
involved. Applying the swept sine method around the 200
kHz excitation frequency, the frequency response Y (s)/U(s)
(U(s) = L{u(t)}, Y (s) = L{Y (t)}) of the u(t)-to-y(t) plant
is measured when the cantilever is placed at 20 nm above
the sample-holder slide to avoid the influence of the shear
force. In practice, the identified frequency response has the
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Fig. 5: Measured Y (s)/U(s) dynamic response of the can-
tilever. The cantilever oscillation is caused by only an excita-
tion without any shear-force interaction. The Y (s)/U(s) plant
has a first significant resonance around 200 kHz, i.e., the first
resonance in water. Other mechanical components, related to
the cantilever fixture, cause resonances (at about 5 kHz, 15
kHz, etc.) at a much smaller magnitude.

input Uin (excitation from the signal generator) and the output
Yin (optical data measurement from the photo-detector and
then being amplified by the amplifier) in voltages (see Fig.5).
Hence, the practical model needs to fit the plant response
computed from the input and output signals. This guarantees
that the subsequently designed estimator can be deployed on
the hardware without extra adjustment. Note that the measured
frequency response is computed from the input and output sig-
nals that have different units in relation to the theoretical high-
order state-space model. This measured frequency response
also contains the effects of amplifications. Therefore, a scaling
factor needs to be applied to the theoretical model to ensure
that the magnitude of the model fits the measured response.

Fig. 6: The fitted high-order and the order-reduced cantilever
models are adjusted to match the measured Y (s)/U(s) fre-
quency response around the resonance frequency in detail.

After the Y (s)/U(s) response is practically measured for
the cantilever, the linear time-invariant model (in the state
space form of (3)) needs to be parametrically adjusted to fit
the practical data. After deciding a sufficiently large n, the
parameters α, γ, and the scaling factor are chosen to make sure
the high-order state-space model fits the practically measured
Y (s)/U(s) response, while the other parameters are fixed
specifications of the cantilever. Specifically, the parameters α
and γ need to be adjusted to fit the theoretical model around

the resonance (as shown in Fig.6). A two-step procedure
can be applied here. First, the internal damping constant α
is adjusted to fit the theoretical model of the cantilever to
a measured Y (s)/U(s) in an ambient environment, where
γ = 0. Then, with α confirmed, the damping coefficient
γ caused by its surroundings can be tuned by matching
the theoretical model with the measured Y (s)/U(s) in the
specific scanning medium, e.g. the water buffer in this work.
For example, this coefficient can be chosen following the
damping coefficient tuning method given in [34]. Then, the
scaling factor can be tuned (as suggested in [19]) by adjusting
the magnitude of the theoretical model to fit the measured
Y (s)/U(s) response in the low frequency range, where the
phase values are close to zero. In practice, it is possible to
calibrate the gain from the actuation signal to the optical
sensor’s measurement (see Fig.2), when the optical sensor
is optimised for a high sensitivity as a part of experimental
preparation protocol [32]. Then, this calibrated gain can be
multiplied by the known pre-amplifier gain as the overall
amplification of the measured Y (s)/U(s), i.e., the scaling
factor.

The order reduced model (4) precisely matches the high-
order state-space model as Fig.6 shows. Note that the can-
tilever only works at the excited resonance frequency in
practice. Hence, the model needs to match the magnitude and
the phase of the practical measurement around the excitation
frequency. The state-space model of (4) is determined having
the frequency response as shown in Fig.7, which is the
practical model to be used for developing the force estimator
and to be implemented in the TDF-II form of (14) on the
FPGA.

Fig. 7: The order-reduced cantilever dynamics model: Y (s),
U(s), and F (s) indicate the cantilever-tip displacement, ex-
citation, and shear-force in the Laplace domain. Here, the
dynamic models are scaled to fit the measured dynamic
response in practice.

The digital design, in Fig.3, can be then optimised via
the method introduced in [20]. Specifically, before practical
implementation, the computational accuracy can be assessed
by replicating the fixed-point design (as shown in Fig.3)
in simulation. The replicated fixed-point based simulation is
given a maximum feasible sampling rate of 32 MHz. Then,
simulated signals ũ and f̃ are given to a simulated cantilever
dynamics model, outputting a mock cantilever oscillation ỹ in
continuous time. The simulated ỹ and ũ can be used by the
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digital estimator simulation in fixed-point arithmetic to obtain
the estimated force f̃e. In the process, different fixed-point
configurations of multiplications and additions are tested in
the simulation to guarantee f̃e → f̃ . The configured digital
implementation is assessed by being compiled and deployed
on the FPGA board, i.e. the off-line optimised programme is
confirmed to be implementable considering practical hardware
resource limitations. The optimised design is meant to have
the minimal difference between f̃e and f̃ when the digital
implementation can be compiled and loaded on the NI-7962R.
As a result, the implemented force estimator provides the least
magnitude of |f̃e − f̃ |, while the overall design may consume
all hardware resources of the NI-7962R in terms of FPGA
binary gates for fixed-point arithmetic operations.

IV. FORCE RECONSTRUCTION IN PRACTICE

The effectiveness of a sliding mode algorithm has been
investigated in [19], therefore, this work focuses on demon-
strating the performance of the novel integrated FPGA im-
plementation in dynamic scanning tasks. The shear-force esti-
mator is assessed under controlled experimental conditions of
around 20◦C and 50% humidity. The experiments show the
shear-force measurement is achieved at a cantilever resonance
frequency of 200 kHz frequency in real-time. This is the first
time that a shear-force scan is carried out completely in real-
time and in practice, and permits full specimen scans. The
viscous and elastic constants of the sample-substrate surface
are analysed by the host-PC at a slower speed.

A. Dynamic force measure in real-time
To verify the practical measurement noise, there is no

sample placed on the sample-holder slide which is a grade
0 glass slide. The cantilever is placed at 20 nm away from the
sample-holder surface outside the interaction region. At this
distance, the estimator provides the real-time measurement
caused by electro-magnetic noise and Brownian motion. It
demonstrates that the system has a noise amplitude of about
0.03 nN shear force amplitude and a 0.02 nN rms (root mean
square). Applying a fast-Fourier transformation via the fft
function in Matlab, the amplitude of the noise signal at each
frequency is smaller than 0.7×10−6 nN, which is ignorable
with respect to the estimated force level of 0.001 nN.

The shear force estimator is then tested by the following
dynamic assessments. The cantilever oscillates at 200 kHz
with ∼2 nm amplitude when there is no shear-force interaction
in water. The cantilever is initialised to be at ∼6 nm above the
sample-substrate at the boundary of the shear-force interaction
range. The cantilever is then controlled to move towards the
sample-substrate following a 100 Hz square wave with a step-
size of 5 nm. The results in Fig.8 show that the shear force
estimator can measure a rapid shear-force amplitude change
(ascending or descending) between 0.03-0.12 nN. As noise is a
predominant factor in real-time measurement, the convergence
time cannot be identified clearly. Because the closed-loop
positioning system has a ∼0.25 ms settling time, an overall
convergence time of the force reconstruction in less than 0.3
ms is achieved in practice.

Fig. 8: The real-time shear-force measurement (in blue) when
the cantilever is controlled (following the trajectory in red) to
jump between 1 nm and 6 nm above the sample-holder slide
at 100 Hz frequency in water.

At the initial position of ∼6 nm over the sample-substrate,
the shear-force is measured when the cantilever continuously
moves. The cantilever is controlled following a 100 Hz sine
wave with a peak-to-peak value of 5 nm. The real-time shear-
force is measured by the force estimator is presented in Fig.9a.

The estimated force is streamed to and then processed by the
host-PC for further analysis. Applying the proposed estimator,
the viscous damping ν and the elastic spring κ coefficients can
be online measured as shown in Fig 9b. The host-PC is not
capable of running the ν and κ observer in real-time because of
the large volume of real-time data, so these results are obtained
at a slower speed within a settling time of 0.6 ms in practice.
The viscous and elastic forces are computed by the host-PC
based on the real-time force measurement as shown in Fig.9c.

(a) Real-time shear-force measurement

(b) Dynamic estimation of
viscous damping and elastic
spring coefficients

(c) Dynamic viscous and elas-
tic forces estimation

Fig. 9: Measurement results when the cantilever is controlled
to continuously move between 1 nm and 6 nm above the
sample-holder slide along a sine trajectory at 100 Hz frequency
in water: a) The real-time shear-force measurement (in blue) as
the cantilever continuously moves along the sine trajectory (in
red); b) Dynamic estimation of viscous damping and elastic
spring coefficients; c) Dynamic estimation of viscous force
and elastic force.
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B. Novel force scan mode of the TDFM
In principle, the force-scan mode enforces a constant dis-

tance between the cantilever and the sample-holder slide. The
real-time interaction shear-force is measured by the proposed
shear-force estimator as the cantilever travels over the whole
sample-substrate. The top bulges of specimens appear in the
shear-force interaction range and result in a lower cantilever-
specimen distance measurement obtained from the decreased
cantilever tip-oscillation at those points; this is caused by
an increased shear-force (see the interaction schematic in
Fig.1). Thus, the TDFM allows for imaging the cantilever
distance away from the specimen top bulges while retaining
the cantilever at a constant distance from the sample-holder,
i.e., implying the Constant Absolute Height (CAH) mode
of the TDFM [20]). Importantly, the shear-force scan mode
can be verified by comparison with a CAH scanning result
in the same area. Note that the TDFM is designed to scan
samples in a non-contact manner [20], permitting the imaging
of fragile samples without damage. Therefore, the CAH scan
mode and the presented force scan mode tend to be undertaken
at an appropriate scanning height which avoids direct contact
between the cantilever and the sample.

In experimental scans, a 20 µl nano-sphere sample solution
is prepared and dropped on a grade 0 glass slide. Specifically,
the sample solution is prepared in a pure water buffer with a 10
mM/L concentration of polymer microspheres (Fluoro-Max,
Thermo Fisher Scientific Inc.) with a nominal diameter of 50
nm and a 10 mM/L concentration of NiCl2, which creates salt
bridges, bonding the nano-spheres to the sample-holder slide.
Here, an 800 nm × 800 nm area is scanned in the CAH mode
and then the force-scan mode, each at 50 nm above the glass
slide at a resolution of 2 nm/pixel at a scanning speed of 1.6
µm/s. Hence, each pixel is measured in a period of 1.25 ms
guaranteeing enough time for precise force/viscosity/elasticity
measurement.

Fig. 10: A Constant Absolute Height scan is carried out in
an 800 nm × 800 nm area at 1.6 µm/s speed and 2 nm/pixel
resolution in water. The specimens are ∼50 nm diameter nano-
spheres. The square area is scanned by the force-scan mode
in comparison.

The CAH scan is shown in Fig.10. The nano-spheres within
the framed area are then targeted to be scanned in the real-
time force scan mode. The rms value of the force measurement
is real-time imaged for this area as shown in Fig.11a. The
interaction shear-force image in Fig.11a exactly matches with
the CAH scanning result in Fig.10. The interaction shear-force

Fig. 11: The force-scan result of scanning ∼50 nm diameter
nano-spheres in real-time: (a) is the rms of the interaction
shear-force over the target area; (b) presents the detailed force
measurement of a scanned raster (black) line during the scan.

(a) Dynamic viscous damping coefficient measurement over
the scanned area

(b) Dynamic elastic spring coefficient measurement over the
scanned area

Fig. 12: Viscous damping coefficient ν and elastic spring
coefficient κ measurement over the focused scanning area.

is stronger as the specimens’ top-parts enters more into the
relative height sensing range of the specimens. This interaction
force strength image gives an understanding of the dynamic
interaction over a scanned area, i.e. this helps to analyse the
dynamic mechanisms of biological specimen surfaces in real-
time. Also, the detailed real-time shear force measurement as
a function of time can be observed during dynamic scans. In
detail, the shear-force measurement of a scanned raster-line
can be monitored in real-time, e.g., the force measurement
of the scanned (black) line in Fig.11a is presented in Fig.11b.
This force reconstruction feature acts as a real-time shear-force
sensor giving the time transient of the shear-force information.

The shear-force scan in Fig.11a is processed by the host-
PC to analyse the elastic spring coefficient in Fig.12a and
the viscous damping coefficient in Fig.12b over the nano-
sphere top surface. The elastic and the viscous coefficient
scanning results show high similarity over the whole scanned
area with some obvious differences. Both coefficients increase
with the increasing shear-force interaction agreeing with the
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fixed single position measurement in Fig.9b. It can be seen
that the elastic constant varies with the topographic height in
a gentle manner at the sphere top in Fig.12a. In contrast, the
viscous constant changes significantly over the nano-sphere
surface, presenting a large area with high viscous coefficient
values at the top of the target sphere in Fig.12b.

The scanning results demonstrate that the force scan mode
allows online presentation of four kinds of information: a) the
shear-force interaction strength over a scan area in real-time; b)
the real-time transient shear-force measurement over a period
of time during a dynamic scan; c) an online elastic spring
constant scan of the confined hybrid layer over a specimen
top; d) the viscous damping constant over a specimen top can
be scanned online.

V. CONCLUSIONS

This paper presents an integrated design allowing real-
time force-measurement in a TDFM. The novel design is
implemented at a high-sensing bandwidth using fixed-point
arithmetic in FPGA devices. The proposed design maximises
the real-time performance of the FPGA programmes taking
into consideration various practical issues. An implementation
procedure describes the approach to configure the FPGA
programmes for optimised performance. The integrated design
permits the TDFM to measure the dynamic interaction force in
real-time. As a result, the TFDM processes a novel real-time
shear-force-scan mode, which permits the online identification
of viscous and elastic material constants from a scan across the
specimens’ top. This feature gives insight to help understand
the mechanical properties of the confined liquid layer, and
physical mechanics/properties over specimen surfaces. Future
work will focus on using the TDFM for rapid force measure-
ment, verifying visco-elastic properties over sample surfaces,
and investigating different samples in physics, chemistry, and
bio-medical research.
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