
VORONOÏ SUMMATION FOR GLn: COLLUSION BETWEEN
LEVEL AND MODULUS

ANDREW CORBETT

Abstract. We investigate the Voronöı summation problem for GLn in the level
aspect for n ≥ 2. Of particular interest are those primes at which the level and
modulus are jointly ramified, a common occurrence in analytic number theory
when using techniques such as the Petersson trace formula. Building on previous
legacies, our formula stands as the most general of its kind; in particular we
extend the results of Ichino–Templier [19]. We also give classical refinements of
our formula and study the p-adic generalisations of the Bessel transform.
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1. Developments in the Voronöı Summation Problem for GLn
The Voronöı summation formula for GLn with n ≥ 2 is a relative of the Poisson

summation formula, which describes the n = 1 case. The formula itself expresses a
sum of additively twisted Fourier coefficients of automorphic forms on GLn in terms
of a sum over corresponding dual terms. The beauty of this transformation is that
the dual side exhibits cancellation in the original summation by redistributing the
weight of the summation. This structural shift is intrinsically tied to the functional
equation for GLn×GL1-L-functions.

The Voronöı summation formula is an essential tool in the analytic theory of
automorphic forms. It features in the study of moments of L-functions and related
subconvexity results [1,26] but also in more esoteric problems, such as reciprocity
formulae for spectral averages [5–7] and bounding norms of automorphic forms
[4, 8]. Voronöı himself [36] constructed the first such prototype formulae with the
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motivation of giving beyond-trivial bounds for the error terms in both Dirichlet’s
divisor problem and Gauß’ circle problem; an entertaining history is given in [27].

Despite the ubiquity of the Voronöı summation formula, full generality in the
level aspect has previously not been addressed. This is the goal of the present work.
Our results describe such general summation formulae in the following ways:

(i) We prove a Voronöı summation formula for GLn in the most general setting,
in particular allowing the level and modulus to ramify jointly. This is
Theorem 1.1, stated in classical terms. In the adelic language, Theorem
3.4 describes general vectors in an automorphic representation.

(ii) We give two refinements of Theorem 1.1. The first utilises a convenient
choice of test vector at which we explicate the Bessel transform; the second
restricts the sum to an arithmetic progression. See Corollaries 1.2 & 1.3.

Miller–Schmid [28] prove the level N = 1 case of our formula in Theorem 1.1
with the omittance of non-archimedean test functions. They attribute the difficulty
of the level aspect to the lack of understanding of Atkin–Lehner theory for GLn-
automorphic forms when n > 2. One naturally understands new-form and old-
forms, together, as vectors which are respectively fixed by a filtration of compact
open subgroups.

Our solution to this problem is to understand the corresponding dual sum-
mands locally via a p-adic transform derived from the local functional equation
for GLn×GL1 at primes p dividing the level. Our formulae referred to in (i)
describe a general choice of vector in such transforms. We go on to give a proto-
type result for a particular choice of vector, as in (ii). This allows one to study
the Fourier coefficients away from the level in a more refined and aesthetic way.
Whilst our formula explicates, in most general terms, the structural mechanics of
such Voronöı summation formula, there are other notable and interesting works
exploring similar formulae from varying perspectives; see, for example, [2,7,29,38].

1.1. A general classical formula. An automorphic form f on SLn(R), or rather
on the adele group GLn(AQ), naturally generates an automorphic representation
of GLn(AQ), which we denote by πf = ⊗vπv. If such a form is a so-called newform
then the associated representation is irreducible.

In this work we consider Maaß cusp forms on SLn(R) of level N ≥ 1; these are
the eigenvectors in L2(Γ1(N)\ SLn(R)) of the generalised Laplacian whose constant
terms are zero. If truth be told, our study specifically concerns their Fourier
coefficients Af : Zn−1 → C, as given in Definition 5.1. The normalisation of the
Af coincides with Goldfeld’s [17, p. 260, (9.1.2)]; for example, the Ramanujan
conjecture predicts that Af (m1, . . . ,mn−1) � (m1 · · ·mn−1)ε. Evaluating Af at
integers prime to N one recovers the corresponding Hecke eigenvalues of f , a
product of Schur polynomials in the Satake parameters of πf (see Lemma 5.4).
The Af also occur as the natural L-series coefficients of the Godement–Jacquet
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L-function when normalised symmetrically about s 7→ 1− s. As we consider only
cuspidal f we have Af (m1, . . . ,mn−1) = 0 for m1 · · ·mn−1 = 0.

Let χ be a (Dirichlet) character modulo N . For f ∈ L2(Γ1(N)\ SLn(R)) we say
that f has character χ if and only if

f(γg) = χ(γn,n)f(g)

for all γ = (γi,j) ∈ SLn(Z) such that γn,i ≡ 0 (mod N) for 1 ≤ i ≤ n− 1. Without
loss of generality, we always assume this property of f . Moreover, χ determines
the parity of of a Maaß form: f is even, or respectively odd, if and only if χ is.

Theorem 1.1. Let N ≥ 1 be an integer and χ a Dirichlet character modulo N .
For n ≥ 2 let f ∈ L2(Γ1(N)\ SLn(R)) be a Maaß cusp form with character χ
and assume that f is Hecke eigenform at each prime p - N . Let M ≥ 1 be an
integer such that N | M . For each p | M choose some φp ∈ C∞c (Q×p ); also pick
φ∞ ∈ C∞c (R×). Let c := (c2, . . . , cn−1) ∈ Zn−2 such that (c2 · · · cn−1,M) = 1. For
a, `, q ∈ Z with a 6= 0, `, q ≥ 1, (a, `q) = (q,M) = 1 and ` | M∞ we have the
following Voronöı summation formula:

∑
m∈Z 6=0

e

(
am

`q

)
Af (m, c2, . . . , cn−1)

|m|n−1
2

φ∞(m)
∏
p|M

φp(m)

= qn−2
n−1∏
i=2
|ci|(n−i)(

i
2−1) ×

∑
m∈Z6=0

(m,M)=1

∑
r|M∞

∑
dn−1|qc2

∑
dn−2|

qc2c3
dn−1

· · ·
∑

d2|
qc2···cn−1
dn−1···d3

KL
(
aλ``r,m; q, c, d

)
χ

(
m̄
qc2 · · · cn−1

dn−1 · · · d2

)−1

× Af (dn−1, . . . , d2,m)

|m|n−1
2
∏n−1
i=2 d

i(n−i)
2

i

Bπ∞,φ∞
(
rm

λ`qn

n−1∏
i=2

dii
cn−ii

) ∏
p|M
B
πp,Φa/`qp

(
rm

λ`qn

n−1∏
i=2

dii
cn−ii

)
(1)

where λ` := [`,N ]`n−1Ln with L denoting the largest square-free integer dividing
M and [`,N ] := lcm(`,N); we fix inverses aā ≡ λ`λ̄` ≡ 1 (mod q) and mm̄ ≡
1 (mod N); the (n− 1)-dimensional Kloosterman sum is defined by

KL(x, y; q, c, d) =
n−1∑
j=2

∑
αj∈
(
Z/
(
qc2···cn−j+1
dn−1···di

)
Z
)× e

(
(−1)nxdn−1αn−1

q

)

× e

dn−2αn−2ᾱn−1
qc2
dn−1

 · · · e
 d2α2ᾱ3

qc2···cn−2
dn−1···d3

 e
 yᾱ2

qc2···cn−1
dn−1···d2

 (2)

for x, y ∈ Z and d := (d2, . . . , dn−1); and the functions Bπ∞,φ∞ and B
πp,Φa/`qp

are
given explicitly in (33) and (34), respectively, whilst Φa/`q

p is defined in (21).



VORONOÏ SUMMATION FOR GLn 4

The proof of Theorem 1.1 is detailed in §5.6. It is a specialisation of our more
general summation formula in Theorem 3.4.

1.1.1. The p-adic Bessel transforms. The functions B
πp,Φa/`qp

on Q×p are crucial as
they allow the explicit evaluation of the dual terms in the Voronöı formula at
primes p | N . In this work we explicate these transforms. For particular choices
of f , we show they are proportional to sums of twists of GLn-root numbers when
the the level N and modulus ` are jointly ramified (`,N) > 1; see Corollary 1.2.

• The term λ` = [`,N ]`n−1Ln is determined by a generic support condition
Proposition, 4.6, for B

πp,Φa/`qp
. In special cases, this term and the r | M∞-

sum may be greatly improved; see Corollary 1.2.
• Upper bounds are sensitive to the test functions φp and the local repre-

sentation πp attached to πp. We shall see that the size of the functions
B
πp,Φa/`qp

is related to sums of twisted GLn-epsilon constants.

1.1.2. The real Bessel transforms. If one chooses the support of φ∞ to be contained
in R>0 then Kowalski–Ricotta [25, Prop. 3.5] show that for any A > 0 we have
Bπ∞,φ∞(y)� y−A. (See Proposition 4.3 for further details.)

1.2. Refined summation formulae. Here we consider a certain family of Maaß
forms f by placing assumptions upon the local representations of πf = ⊗vπv at
primes v = p for which p | N .

Assumption 1.1. For each p | N , suppose that the twists of the local Euler factor
L(s, χπp) = 1, identically, for each character χ : Q×p → C×. Moreover suppose
that πp is twist minimal in the sense of Definition 4.2.

The first part of this assumption is satisfied, for example, by all supercuspidal
representations of GLn(Qp). A representation may be made twist minimal after
twisting by a character. For example, a supercuspidal representation whose (log)
conductor is indivisible by n is always twist minimal by [12, Prop. 2.2].

1.2.1. An explicit factor at primes dividing the level. Here we inserts a clean cut
explication of the p-adic Bessel functions. For stylistic reasons we shall assume
that ` is divisible by the squares of each of its prime divisors, in which case we
define the function

Sf (m; a
`q

) =
∑∗

χ (mod `)
χ(−1)n−1χ(māq)ε(1/2, f × χ)ε(1/2, χ−1)

where we write aā ≡ 1 (mod `) and use the notation ∑∗ to indicate that the
summation is restricted to just the primitive Dirichlet characters (mod `). An
alternative definition may be made for general ` | N∞ at th expense of a more com-
plicated expression. This is simply because the p-adic Bessel transforms vp(`) ≤ 1
depend sensitively to the underlying local representation. Nevertheless, explicit
formulas in all cases are given in Proposition 4.7.
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Corollary 1.2. Suppose that, in addition to the hypotheses of Theorem 1.1, As-
sumption 1.1 holds. Suppose too that ` is divisible by the squares of each of its
prime divisors. Then we have the following refined Voronöı summation formula:

∑
m∈Z 6=0

(m,N)=1

e

(
am

`q

)
Af (m, c2, . . . , cn−1)

|m|n−1
2

φ∞(m) = [N, `n]n−2
2 `−1/2qn−2∏

p|N(1− p−1) Sf (m; a
`q

)

×
n−1∏
i=2
|ci|(n−i)(

i
2−1) ∑

m∈Z6=0
(m,N)=1

∑
dn−1|qc2

∑
dn−2|

qc2c3
dn−1

· · ·
∑

d2|
qc2···cn−1
dn−1···d3

KL
(
a[N, `n]`,m; q, c, d

)

× χ

(
m̄
qc2 · · · cn−1

dn−1 · · · d2

)−1
Af (dn−1, . . . , d2,m)

|m|n−1
2
∏n−1
i=2 d

i(n−i)
2

i

Bπ∞,φ∞
(

m

[N, `n]qn
n−1∏
i=2

dii
cn−ii

)
. (3)

Proof. This formula follows from the explicit computation of the Bessel transforms
B
πp,Φa/`qp

under the refined hypotheses. This is executed in §4.3, specifically in
Proposition 4.7. �

The term Sf (m; a
`q

) should be thought of as a ‘ramified’ Kloosterman sum. It is
derived via a transform of a p-adic Bessel function analogue. Unpicking further,
the epsilon-factor sum may be shown to equal a Kloosterman sum dependant on
the inducing data of the representations πp for p | `. The explication of these terms
is a deep problem in the corresponding p-adic representation theory. At present,
it seems only possible to proceed in a case-by-case fashion.

1.2.2. Voronoi summation in arithmetic progressions. An amusing variant of the
Theorem 1.1 is to restrict the summation to an arithmetic progression. The for-
mula we present here is suited to applications such as in [25]. For a set S let us
define CharS(x) = 1 is x ∈ S and CharS(x) = 0 otherwise.

Corollary 1.3. With the hypotheses of Theorem 1.1 and Assumption 1.1, fix an
integer M ≥ 1 and for each p | M and define φp = Char1+MZp ∈ C∞c (Q×p ). Once
again assume that ` is divisible by the squares of each of its prime divisors. Then
the left-hand side of the equation in Theorem 1.1 becomes

∑
m∈Z6=0

(m,N)=1
m≡1 (mod M)

e

(
am

`q

)
Af (m, c2, . . . , cn−1)

|m|n−1
2

φ∞(m)

whilst, on the right-hand side the r-sum, indexing the variable r/λ` is simply re-
placed by the variable 1/r for r | [M, `]. In this case, the transforms B

πp,Φa/`qp
are

given in Proposition 4.10, taking k = vp(M).
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2. Background Representation Theory and Notation

Here we give a bite-sized recap of the theory of automorphic representations for
GLn. The main purpose of this section is to fix notation for §3. It may be referred
back to should confusion present itself. The content here may thus be sidestepped
without causing injury to our discourse on Voronöı summation.

2.1. Notable matrix groups. For a commutative ring R, with unit 1 ∈ R,
let us introduce notation for certain subgroups and elements of GLn(R). Let
Bn(R) = Tn(R) n Un(R) denote the standard Borel subgroup, consisting of upper
triangular matrices in GLn(R), given by the semi-direct product of the maximal
torus of diagonal matrices Tn(R) and the subgroup Un(R) of upper triangular
matrices whose n eigenvalues are all equal to 1. Denote the centre of GLn(R) by
Z(R) ∼= R×, which acts on GLn(R) by scalar multiplication.

Let 1n denote the n×n identity matrix. Let w = wn be the longest Weyl element
of GLn(R), defined recursively by wn = ( wn−1

1 ) and w1 = 1. Define a second Weyl
element by w′ =

(
1
wn−1

)
. We assign specialist notation to the matrices

a(y) :=
(
y

1n−1

)
∈ Tn(R) and n(x) :=

1 x
1

1n−2

 ∈ Un(R). (4)

For g ∈ GLn(R) we consider the involution gι := tg−1, noting in particular that
n(x)ι = tn(−x) and a(y)ι = a(y−1). For a function f : GLn(R) → C, denote the
right regular action of g ∈ GLn(R) by ρ(g)f(x) = f(xg) for x ∈ GLn(R).

2.2. Local and global fields. Let F be a number field. Let AF denote the ring
of F -adeles and oF ring of algebraic integers contained in F . At each place v of
F let Fv denote the completion of F at v. Let S∞ denote the set of archimedean
places of F . Suppose v 6∈ S∞. Then denote by ov the ring of integers of Fv; pv
the maximal (prime) ideal of ov; $v a choice of uniformising parameter, that is a
generator of pv; and let qv = #(ov/pv). Let | · |v denote the absolute value on Fv,
normalised so that |$v|v = q−1

v . The place v itself denotes the discrete valuation
on Fv, satisfying |x|v = q−v(x)

v for x ∈ F . At real places v ∈ S∞ set |x|v = sgn(x)x
for x ∈ R and at complex places v ∈ S∞ set |z|v = zz̄ for z ∈ C.

2.3. Additive characters. We say that an (additive) character ψ = ⊗vψv of
AF/F is unramified if ov ⊂ kerFv(ψv) for each v 6∈ S∞ and generic if ψv 6= 1 for
each v. We henceforth fix such a choice of ψ throughout. Note that the dual group
of AF/F is identified by the set {x 7→ ψ(ax) : a ∈ F}. We shall abuse notation by
letting ψ denote the following character of each subgroup H ≤ Un(AF ): if h ∈ H
is given by h = (hi,j) then define

ψ(h) = ψ(h1,2 + h2,3 + · · ·+ hn−1,n). (5)
By the F -invariance of ψ we also have (H ∩ Un(F )) ⊂ kerH(ψ).
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2.4. Multiplicative characters. Let F̂×v denote the group of unitary characters
of F×v . Suppose v is non-archimedean. For µ ∈ F̂×v we define the conductor of µ
to be the non-negative integer

a(χ) = min{r ≥ 0 : ker(χ) ⊂ o×v ∩ (1 +$r
vov)}.

Moreover define
Xv = {χ : F×v → C× |χ($v) = 1 } ⊂ F̂×.

Then Xv is a discrete group, isomorphic to the unitary dual of o×v . Considering
the ‘polar coordinates’ y = u$v(y)

v for y ∈ F×v , one identifies

F̂×v = Xv × Ẑ ∼= Xv × R/Z.

2.5. The Whittaker model. let π = ⊗vπv be an irreducible, cuspidal auto-
morphic representation of GLn(AF ), realised in a space of automorphic forms
Vπ. There is a GLn(AF )-intertwining map from Vπ into the space of functions
W : GLn(AF ) → C that satisfy W (ug) = ψ(u)W (g) for each u ∈ Un(AF ). This
carries the right regular representation ρ of GLn(AF ). Explicitly, one maps ϕ ∈ Vπ
to the element

Wϕ : g 7−→
∫
Un(F )\Un(A)

ϕ(ug)ψ(u)du, (6)

where we choose du to be the invariant probability measure on Un(F )\Un(A). Let
W(π, ψ) denote the image of Vπ under (6), another irreducible GLn(AF )-module.
One calls W(π, ψ) the ψ-Whittaker model of π. This generalises the classical
realisation of Fourier coefficients.

Similarly, at each place v of F there is the notion of a ψv-Whittaker model;
this is the space W(πv, ψv) of functions W : GLn(Fv) → C satisfying Wv(ug) =
ψv(u)Wv(g) for each u ∈ Un(Fv). It is again a GLn(Fv)-module under ρ and
one has a non-zero module homomorphism πv ∼= W(πv, ψv). The uniqueness of
Whittaker models implies that W(π, ψ) is given by the restricted tensor product
W(π, ψ) = ⊗′vW(πv, ψv). This equality is significant as it identifies W(π, ψ) as a
space of factorisable functions on GLn(AF ).

Remark 2.1. Global multiplicity one for GLn was proved by Shalika [32, Theorem
5.5]. The local multiplicity one theorem was also completed by Shalika in [32,
Theorem 3.1], who showed that the non-archimedean result of Gelfand–Každan [15]
was true for archimedean places too.

It shall be of use to speculate on the support of non-archimedean Whittaker
functions. The following lemma gives a first observation. In the unramified setting,
we can say much more; see §2.7.

Lemma 2.2. Suppose v 6∈ S∞ and let Wv ∈ W(πv, ψv) such that Wv is Un(ov)-
fixed. Then, Wv(a(y)) = 0 for all y ∈ F×v with |y|v > 1.
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Proof. Let y ∈ F×v . Then, for all x ∈ ov we have
Wv(a(y)) = W (a(y)n(x)) = W (n(xy)a(y)) = ψv(xy)W (a(y)).

If |y|v > 1, we can always find x ∈ ov such that ψv(xy) 6= 1. �

Remark 2.3. In particular, the hypothesis of Lemma 2.2 is satisfied by all new-
forms and old-forms.
2.6. The Kirillov model. The classical results of both Gelfand–Každan [15] and
Jacquet–Shalika [22, Prop. 3.8] imply that an irreducible representation of GLn(Fv)
isomorphic to πv may be realised in the restriction of the functions Wv ∈ W(πv, ψv)
to the ‘mirabolic subgroup’ Pn(Fv) of GLn(Fv), the stabiliser of (0, . . . , 0, 1) on the
right. This space of vectors is known as the Kirillov model.
Proposition 2.4. Let v be a place of F . Then the space of functions on Pn(Fv)
given by Wv|Pn(Fv), for some Wv ∈ W(πv, ψv), contains the entire space of com-
pactly supported Bruhat–Schwartz functions Φ on Pn(Fv) such that Φ (( n 1 ) p) =
ψv(n)Φ(p) for each n ∈ Un−1(Fv) and p ∈ Pn(Fv).

In the present article, it shall suffice to consider just those Bruhat–Schwartz
functions on Pn(Fv) with support on the matrices a(y) for y ∈ F×v .
Remark 2.5. If v is non-archimedean and πv is supercuspidal, then the space of
functions on Pn(Fv) given by Wv|Pn(Fv) is precisely the space of locally constant,
compactly supported functions Φ described in Proposition 2.4. In general, the
co-dimension for the containment in Proposition 2.4 is at most n.
2.7. Spherical Whittaker functionals. In [33], Shintani evaluated the (spher-
ical) Whittaker functionals on GLn(Fv) in terms of certain polynomials of the
inducing data. Let v be a non-archimedean place of v and suppose πv is unrami-
fied; that is,

πv = IndGLn(Fv)
Bn(Fv) (µ1 ⊗ · · · ⊗ µn) (7)

for unramified characters µi : F×v → C× for i = 1, . . . , n. This criterion includes all
but finitely many places of F . Such characters are determined by their value on
$v and, in turn, πv is completely determined by the n complex numbers µi($v),
its ‘Satake parameters’, for i = 1, . . . , n.

Let W ◦
v ∈ W(πv, ψv) denote the unique GLn(ov)-fixed vector with W ◦

v (1) = 1.
Then, by the Iwasawa decomposition, W ◦

v is completely determined by its values on
Tn(Fv)/Tn(ov). These values are given in terms of a Schur polynomial, or rather a
(trace) character value of an irreducible representation of GLn(C); see [14, Chapter
6] for instance. To this end we define the function

sλ(t1, . . . , tn) :=
∏

1≤i<j≤n
(ti − tj)−1 det


tλ1+n−1
1 tλ1+n−1

2 · · · tλ1+n−1
n

tλ2+n−2
1 tλ2+n−2

2 · · · tλ2+n−2
n

... ... . . . ...
tλn1 tλn2 · · · tλnn

 (8)
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evaluated on a toral element t = diag(t1, . . . , tn) ∈ GLn(C) and indexed by a
partition λ = (λ1, . . . , λn) ∈ Zn satisfying

λ1 ≥ λ2 ≥ · · · ≥ λn. (9)

Proposition 2.6 (Shintani’s formula [33]). Let λ = (λ1, . . . , λn) ∈ Zn and con-
sider the element $λ

v := diag($λ1
v , . . . , $

λn
v ) ∈ Tn(Fv). Then W ◦

v ($λ
v ) = 0 unless

λ satisfies (9), in which case

W ◦
v ($λ

v ) = q

∑n

i=1 λi(n+1
2 −i)

v sλ(µ1($v), . . . , µn($v)).

These values are equal to a certain Hecke eigenvalue of W ◦
v . We refer to [10,

Lecture 7] for wider exposition and context of Shintani’s result. Note that the
power of qv in Shintani’s formula is precisely (the square-root of) the modular
character of Bn(Fv). It comes directly from our unitary normalisation of the
unramified principal series πv.

2.8. The contragredient representation. The involution ι on GLn(AF ), given
by gι = tg−1, determines an injection of π into its contragredient representation π̃.
Explicitly by defining the functions ϕ̃ = ϕ ◦ ι for ϕ ∈ Vπ. By (6), we obtain the
ψ̄-Whittaker function Wϕ̃ which satisfies Wϕ̃(g) = Wϕ(wgι) and

W(ρ(h)ϕ)(gι) = ρ(hι)Wϕ̃(g) (10)
for g, h ∈ GLn(A). The Whittaker model W(π̃, ψ̄) (resp. W(π̃v, ψ̄v)) is then given
by the space of functions W̃ , defined by W̃ (g) = W (wgι), for each W ∈ W(π, ψ)
(resp. W(π̃v, ψ̄v)).

2.9. Euler factors and epsilon constants. Let v be a place of F . For any
character χ of F×v we can define the twist χπv = (χ ◦ det) ⊗ πv. We follow
Godement–Jacquet [16] in defining the local Euler factors L(s, χπv), epsilon con-
stants ε(s, χπv, ψv), and gamma factors

γ(s, χπv, ψv) = ε(s, χπv, ψv)
L(1− s, χ−1π̃v)

L(s, χπv)
. (11)

For v 6∈ S∞ we have the formula

ε(s, πv, ψv) = ε(1/2, πv, ψv) q
a(πv)( 1

2−s)
v (12)

in which the conductor a(πv) of πv is implicitly defined (see [16, Theorem 3.3 (4)
& (3.3.5)]). The root number ε(1/2, πv, ψv) takes its value on the unit circle. Of
course, these factors can also be reinterpreted via the local Langlands correspon-
dence for GLn (see [31, 37] for such a description); this viewpoint is useful should
one want to compute them explicitly for a given πv. One has a(πv) = 0 if and only
if πv is unramified. Thus one makes sense of the following global definition.

Definition 2.1. We call a positive integer N(π) the level (or arithmetic conductor)
of an irreducible automorphic representation π = ⊗vπv if N(π) = ∏

v 6∈S∞ q
a(πv)
v .
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Then the global L-function L(s, π) = ∏
v L(s, πv), initially defined for Re(s)

sufficiently large, has analytic continuation to all s ∈ C, is bounded in vertical
strips, and satisfies the functional equation

L(s, π) = ε(1/2, π)N(π)(1/2−s)L(1− s, π̃)

where ε(1/2, π) = ∏
v ε(1/2, πv, ψv) is independent of ψ (see [16, Theorem 13.8]).

3. Voronöı Summation via the Whittaker Model

Ichino–Templier’s recasting of Voronöı summation formulae in an adelic frame-
work is a tremendously important step in understanding the mechanisms governing
such identities. Here we prove a strengthening of their results as given in [19].

Throughout this section, fix a number field F and an unramified, generic char-
acter ψ = ⊗vψv of AF/F (see §2.3). Also fix n ≥ 2 and let π = ⊗vπv denote
an irreducible, cuspidal automorphic representation of GLn(AF ). We now pose a
Voronöı summation formula for the ‘Fourier coefficients’ in the Whittaker model
W(π, ψ).

3.1. The generalised Bessel tranformation. We now describe the key tool in
handling local ramification in the Voronöı summation formula: the generalised
Bessel tranformation. Presently we give a criterion for the existence of such a
transform. But a key feature of our work is the explication of these transforms,
for which we give full details in §4 in the general case.

Let v be a place of F . If v ∈ S∞ (resp. v 6∈ S∞) let C∞(F×v ) denote the space
of smooth (resp. locally constant) functions on F×v . In either case, let C∞c (F×v ) ⊂
C∞(F×v ) denote the subspace of functions whose support is compact.

Proposition 3.1. Let Φ: F×v → C be a function defined by Φ(y) = W (( y 1n ))
for some W ∈ W(πv, ψv); by Proposition 2.4, this includes the set C∞c (F×v ). Then
there exists a unique function Bπv ,Φ : F×v → C, the Bessel transform of Φ, such
that for all s ∈ C with Re(s) sufficiently large and for all characters χ of F×v we
have∫

F×v
Bπv ,Φ(y)χ(y)−1|y|s−

n−1
2

v d×y =

χ(−1)n−1γ(1− s, χπv, ψv)
∫
F×v

Φ(y)χ(y)|y|1−s−
n−1

2
v d×y (13)

where d×y denotes a Haar measure on F×v .

Proof. This result follows directly from the local functional for GLn×GL1 as
proved by Jacquet–Piatetski-Shapiro–Shalika [21, 23]; see also Cogdel’s notes [10,
Theorems 6.2 & 8.2]. This result is a generalisation of [19, Lemma 5.2]. We remark
that Re(s) is chosen sufficiently large to ensure the convergence of the left-hand
side and furthermore to be greater than the poles of γ(1− s, χπv, ψv). For such s,
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the integral on the right-hand side of (13) converges due to the compact support
of Φ, thus (13) holds as an identity without invoking analytic continuation. �

Remark 3.2. For Φ ∈ C∞c (F×v ), the transform Bπv ,Φ satisfies the following prop-
erties: sub-polynomial decay at infinity (for each δ > 0 we have Φ̃(y) � |y|−δv
as |y|v → ∞) and polynomial growth at zero (there exists a δ > 0 such that
Φ̃(y)� |y|δv as y → 0).

3.2. The hyper-Kloosterman sum. At a place v 6∈ S∞, denote by T 1
v ⊂

Tn−2(Fv) the set of diagonal matrices of the form t = diag(t2, . . . , tn−1) with
|ti|v ≥ 1 for each 2 ≤ i ≤ n − 1. Then ov acts (additively) on ti if |ti|v > 1,
whence we define the quotients

Λti =

tio×v /ov if |ti|v > 1
{1} if |ti|v = 1.

(14)

We shall consider a summation over the set
Λt := {0} × Λt2 × · · · × Λtn−1

containing elements of the form
x = (0, x2, . . . , xn−1) ∈ Λt.

The component {0} is to ensure that the sum is non-empty in the case n = 2, in
which case the only summand is equal to 1. Fix a ‘modulus’ ζ = (ζv) ∈ AF and
a ‘shift’ ξ = (ξv) ∈ Tn(AF ). We write ξv = diag(ξ1, · · · , ξn). Let R be a set of
places v 6∈ S∞ such that πv is unramified and either |ζv|v > 1 or ξv 6∈ Tn(ov). For
v ∈ R let t ∈ T 1

v . If |ζvξ−1
1 ξ2|v ≥ 1 then for y ∈ F×v define the (n− 1)-dimensional

hyper-Kloosterman sum by

K`v(y, t; ζ, ξ) = |ξ2ζv|n−2
v |ξ3 · · · ξn|−1

v ψv(−ξ2ξ
−1
3 )

×
∑
x∈Λt

ψv((−1)nyζ−1
v ξ−1

2 ξnx
−1
n−1 · · · x−1

2 )
n−1∏
j=2

ψv(ξn−j+1ξ
−1
n−j+2xj). (15)

If |ζvξ−1
1 ξ2|v ≤ 1 then define K`v(y, t; ζ, ξ) = K`v(y, t; ξ1ξ

−1
2 , ξ) so that

K`v(y, t; ζ, ξ) = |ξ1|n−2
v |ξ3 · · · ξn|−1

v ψv(−ξ2ξ
−1
3 )

×
∑
x∈Λt

ψv((−1)nyξ−1
1 ξnx

−1
n−1 · · ·x−1

2 )
n−1∏
j=2

ψv(ξn−j+1ξ
−1
n−j+2xj). (16)

More generally, define the product T 1
R = ∏

v∈R T
1
v , which we view embedded in

Tn−2(AF ) by extending trivially at places v 6∈ R. Moreover, for y ∈ ⋂v∈R Fv and
t = (tv) ∈ T 1

R define

K`R(y, t; ζ, ξ) =


∏
v∈R K`v(y, tv; ζ, ξ) if R 6= ∅

1 if R = ∅.
(17)
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Finally, for t = (tv) ∈ T 1
R with tv = diag(t2, . . . , tn−1), define the matrix

δR(t; ζ, ξ) = (δv) ∈ Tn(AF ) (18)

whose local factors are δv = 1 for v 6∈ R;

δv =


ζ−1
v (det t)−1ξ−1

2
t2ξ
−1
n

. . .
tn−1ξ

−1
3

ζvξ
−1
1


for v ∈ R such that |ζvξ−1

1 ξ2| > 1; and

δv =


ξ−1

1 (det t)−1

t2ξ
−1
n

. . .
tn−1ξ

−1
3

ξ−1
2


for v ∈ R such that |ζvξ−1

1 ξ2|v ≤ 1.

Remark 3.3. In practice, we only consider sums of finitely many terms in T 1
R, as

determined by the support of unramified Whittaker new-vectors on Wv(a(y)δv) for
v ∈ R (See Proposition 2.6 and Theorem 3.4). In particular we consider

|yζ−1(det tv)−1ξ−1
2 |v ≤ |t2ξ−1

n |v ≤ · · · ≤ |tn−1ξ
−1
3 |v ≤ |ζvξ−1

1 |v (19)

for ξv = diag(ξ1, . . . , ξn) and |ζvξ−1
1 ξ2|v ≥ 1. This is an artefact of the more general

notion of a Kloosterman integral as studied by Stevens [34, Def. 2.6], wherefrom
(15) and (16) are derived in the proof of Theorem 3.4.

3.3. The general Voronöı summation formula. We now state the most gen-
eral Voronöı formula for GLn(AF ), extending the results of Ichino–Templier. In
particular, what follows in Theorem 3.4 subsumes their main results, [19, Theo-
rems 1, 3, & 4], as well as generalising them to the case of joint level–modulus
ramification. We further refine this formula by later explicating the generalised
Bessel transforms; see §4.

Theorem 3.4. Let n ≥ 2 and let π = ⊗vπv be an irreducible cuspidal automorphic
representation of GLn(AF ). Let S denote a finite set of places of F which at least
contains S∞ and each place v at which πv ramifies; that is a(πv) > 0. Without
loss of generality (with respect to the present hypotheses) let ψ = ⊗vψv denote a
non-trivial, unramified additive character of AF/F . For each v ∈ S pick some
φv ∈ C∞c (F×v ). Fix a ‘modulus’ ζ = (ζv) ∈ AF and a ‘shift’ ξ = (ξv) ∈ Tn(AF )
such that ξv = 1 for v ∈ S. Denote by R the set of places v 6∈ S such that either
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|ζv|v > 1 or ξv 6∈ Tn(ov). Finally, let W = ⊗vWv ∈ W(π, ψ) such that Wv is
right-GLn(ov)-invariant for almost all v 6∈ S∞. Then

∑
γ∈F×

ψ(γζ)W
((

γ
1n−1

)
ξ

) ∏
v∈S

φv(γ) =

∑
γ∈F×

∑
t∈T 1

R

K`R(γ, t; ζ, ξ) W̃S

((
γ

1n−1

)
δR(t; ζ, ξ)

) ∏
v∈S
Bπv ,Φζvv (γ) (20)

where the hyper-Kloosterman sum K`R(γ, t; ζ, ξ) is defined in (17); δR(t, ζ, ξ) in
(18); we define W̃S(g) := ∏

v 6∈S W̃v(gv) for g = (gv) ∈ GLn(AF ) where the dual
vector is given by W̃v(g) = Wv(wngι), as in §2.8; and lastly, for v ∈ S, one defines
the function Φv on y ∈ F×v by

Φv(y) := φv(y)Wv

((
y

1n−1

))
(21)

and its twists by ζv via
Φζv
v (y) := ψv(yζv)Φv(y). (22)

Remark 3.5 (On the hypotheses). The details with which we formulate Theorem
3.4 impose no real restrictions on the generality of the result. The additional
generality in comparison to [19] may be pinpointed as follows:

• For those v 6∈ S∞ with |ζv|v > 1, we allow v ∈ S. In other words, the
denominator and level may jointly ramify.
• We make more general allowances for W ∈ W(π, ψ): we allow old forms.
• We allow a shift by a diagonal element ξ, corresponding to choosing more

general Fourier coefficients Af (m, c2, . . . , cn−1) with respect to the ci.

Proof. Our proof of Theorem 3.4 closely follows [19, §2], to which we shall refer
for the sake of concision. Here we outline the core of this argument and describe
in detail the modifications we make; in particular to [19, §2.6 & §2.7].

One starts with the following fundamental identity:

∑
γ∈F×

Wϕ

((
γ

1n−1

))
=

∑
γ∈F×

∫
An−2

W̃ϕ


γx 1n−2

1

(1
wn−1

) dx (23)

for any ϕ ∈ Vπ, letting Vπ denote the space of automorphic forms carrying the
representation π. See §2.5 for discussion on Whittaker functions. The identity
(23) follows from [19, Prop. 1.1 & Lem. 2.1]. It also features crucially in the
construction of the global functional equation for GLn×GL1. (Although, as noted
by the authors, a proof does not appear in the literature until that in [19, §4].)

The subsequent goal is to evaluate (23) for an appropriate choice of ϕ ∈ Vπ.
Typically, one synthesises the left-hand side as desired and picks up the pieces on
the right.
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To reconstruct the left-hand side of (20), we first pick a vector ϕ′ ∈ Vπ and,
without loss of generality, suppose Wϕ′ = ⊗vW ′

v. Firstly, note that the right
translate ρ(n(ζ)ξ)ϕ′ satisfies

Wρ(n(ζ)ξ)ϕ′(a(γ)) = Wϕ′(a(γ)n(ζ)ξ) = ψ(γζ)Wϕ′(a(γ)ξ). (24)

(See (4) for definitions of the matrices a(y) and n(x).) Next, recall that the element
W = ⊗vWv ∈ W(π, ψ) has been selected in the hypotheses of Theorem 3.4. We
impose our choice upon each W ′

v as follows:
• If v ∈ S, consider the function Φv(y) = φv(y)Wv(a(y)). By Proposition 2.4,

there exists W ′
v ∈ W(πv, ψv) such that W ′

v(a(y)) = Φv(y) for all y ∈ F×v .
• If v 6∈ S then directly choose W ′

v = Wv.
We thus choose the test vector ϕ := ρ(n(ζ)ξ)ϕ′. By construction, the left-hand
side of (23) is equal to the left-hand side of (20).

It remains to compute the right-hand side of (23) after applying ϕ = ρ(n(ζ)ξ)ϕ′.
As is common practice in any trace formula, one observes that the geometric
integrals factorise into local components: for y ∈ F×v define

Hv(y; ζv, ξv) =
∫
Fn−2
v

W̃v


yx 1n−2

1

(1
wn−1

)
tn(−ζv)ξ−1

v

 dx.
Then the right-hand side of (23) is equal to ∑γ∈F×

∏
v Hv(γ; ζv, ξv). We divide the

argument into two genres dependent on whether or not they are contained in S.
Suppose v 6∈ S. We first show that Hv(y; ζv, ξv) is equal to a certain hyper-

Kloosterman integral, and then refine this integral in terms of Kloosterman sums;
see also [19, Theorem 3]. Let us always denote the factors of ξ = (ξv) by

ξv = diag(ξ1, ξ2, . . . , ξn).

Note that if |ζvξ−1
1 ξ2|v ≤ 1 then Hv(y; ζv, ξv) = Hv(y; ξ1ξ

−1
2 , ξv), since

ξv
tn(−ζv)ξ−1

v = tn(−ζvξ−1
1 ξ2).

In such unramified cases the integral may be computed directly; see [19, §2.5].
However, in the spirit of austerity, we proceed by executing our computations
with the assumption |ζvξ−1

1 ξ2|v ≥ 1. For example, for almost all places v we have
ξv ∈ T (ov) and ζv ∈ ov, in which case Hv(y; ζv, ξv) = Hv(y; 1, 1).

For x ∈ F n−2
v , rewrite1

x 1n−2
1

 = σ

1n−2 x
1

1

σ−1 where σ :=

 1
1n−2

1

 .
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Changing variables from x to y−1x we obtain

Hv(y; ζv, ξv) =

|y|n−2
v

∫
Fn−2
v

W̃v

σ
1n−2 x

1
1

σ−1a(y)
(

1
wn−1

)
ξ−1
v

tn(−ζvξ−1
1 ξ2)

 dx.
Consider the commutation relations

σ−1a(y)σσ−1
(

1
wn−1

)
ξ−1

(
1

wn−1

)
σ =



ξ−1
n

. . .
ξ−1

3
yξ−1

1
ξ−1

2


and, after applying the Bruhat decomposition to tn(−ζvξ−1

1 ξ2),

σ−1
(

1
wn−1

)
n(−ζvξ−1

1 ξ2)
(

1
wn−1

)
σ =

1n−2
1 −ζ−1

v ξ1ξ
−1
2

1


×

1n−2
−ζ−1

v ξ1ξ
−1
2
−ζvξ−1

1 ξ2


1n−2

−1
1 −ζ−1

v ξ1ξ
−1
2

 ,

where the final factor above and σ−1
(

1
wn−1

)
are both elements of GLn(ov).

By the right-GLn(ov)-invariance of Wv we obtain

Hv(y; ζv, ξv) = |y|n−2
v

∫
Fn−2
v

W̃v (σA(x)) dx. (25)

where

A(x) :=

1n−2 x −yζ−1
v x

1 −yζ−1
v

1




ξ−1
n

. . .
ξ−1

3
−yζ−1

v ξ−1
2
−ζvξ−1

1

 .

Then, if n = 2 we deduce that

Hv(y; ζv, ξv) = ψv(yζ−1
v )W̃v

((
−yζ−1

v ξ−1
2
−ζvξ−1

1

))
, (26)
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noting that W̃v is invariant by the character ψ̄v. Now suppose that n ≥ 3. We
have the identity

σ

1n−2 x −yζ−1
v x

1 −yζ−1
v

1

 =

1 −yζ−1
v

1n−2 −yζ−1
v x

1

σ
1n−2 x

1
1

 . (27)

Write x = t(x1, . . . , xn−2) for x ∈ F n−2
v . Consider the integral in (25) and apply

(27), commuting the last matrix of A(x) with the last in (27). Then making the
substitution from xi 7→ −ξ−1

n+1−ixiy
−1ζxξ2 for each i = 1, . . . , n − 2 in the integral

over x ∈ F n−2
v and defining

τ :=

 1
1n−2

1




ξ−1
n

. . .
ξ−1

3
−yζ−1

v ξ−1
2
−ζvξ−1

1

 (28)

we derive the formula

Hv(y; ζv, ξv) = |ξ2ζv|n−2
v |ξ3 · · · ξn|−1

v

×
∫
Fn−2
v

ψv(−ξ2ξ
−1
3 xn−2)W̃v

τ
1n−2 x

1
1


 dx. (29)

In this form, Hv(y; ζv, ξv) is known as a ‘hyper-Kloosterman integral’ [34, Def. 2.6].
It remains to express it as a sum of (n− 1)-dimensional hyper-Kloosterman sums.
We remark that the following calculation and subsequent result is not contained
in [19]. We now refer to and amend their lemmata directly.

Starting with [19, Def. 6.2], defineK`IT(ψt, ψ′, τ) as it is there (we have appended
an additional superscript). For the following new variables: τ , as in (28); ψt(u) :=
ψv(tut−1) for u ∈ Un(Fv), t ∈ Tn(Fv); and ψ′(a) := ψv(−ξ2ξ

−1
3 a) for a ∈ Fv.

(See [34, Def. 2.10] for the original definition.) Then, [34, Theorem 2.12] implies

Hv(y; ζv, ξv) = |ξ2ζv|n−2
v |ξ3 · · · ξn|−1

v

∑
t∈Tn(Fv)/Tn(ov)

W̃v(t)K`IT(ψt, ψ′, t−1τ).

By [34, Cor. 3.11], the Kloosterman sumK`IT(ψt, ψ′, t−1τ) factorises into an (n−1)-
dimensional and a 1-dimensional term by the decomposition of

t−1τ =


−yζ−1

v ξ−1
2 t−1

1
ξ−1
n t−1

2
. . .

ξ−1
3 t−1

n−1
−ζvξ−1

1 t−1
n

 ,
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for t = diag(t1, . . . , tn) ∈ Tn(Fv)/Tn(ov), into GLn−1(Fv) × GL1(Fv)-parabolic
factors. The 1-dimensional factor (in the bottom right corner) vanishes unless
|tn|v = |ζvξ−1

1 |v, in which case it equals the constant ψv(−ξ2ξ
−1
3 ).

We pick this moment to reorder summation by exchanging the variables ti with
tiξn−i+2, for each 2 ≤ i ≤ n − 1, and t1 with ξ2t1. For the (n − 1)-dimensional
factor to be non-zero, by [34, Th. 3.12], we require the determinant to be a unit,
|t1 · · · tn−1|v = |yζ−1

v |v, and each exposed sub-determinant to be integral. Checking
the definition of an exposed sub-determinant [34, Def. 3.3]; one finds that this
condition is equivalent to that |ti|v ≥ 1 for 2 ≤ i ≤ n − 1. Collecting these
observations we obtain the refined expression

Hv(y; ζv, ξv) = |ξ2ζv|n−2
v |ξ3 · · · ξn|−1

v ψv(−ξ2ξ
−1
3 )

×
∑
t∈T 1

v

W̃v


yζ

−1
v (det t)−1

t
ζv


 1

wn−2
1

 ξ−1
v

K`IT(ψt′ , ψ′, τ ′).

where T 1
v was introduced in §3.2 and we define the variables

t′ =
(
yζ−1

v (det t)−1

t

)
ξ−1

2
ξ−1
n

. . .
ξ−1

3

 ; τ ′ =
(

− det t
t−1

)
.

The final step is to compute the terms K`IT(ψt′ , ψ′, τ ′). This is executed recursively
via [19, Prop. 6.4]. Applying [19, Cor. 6.5 & Lem. 6.6] with the parameters τ ′ and
t′ we obtain

K`IT(ψt′ , ψ′, τ ′) =
∑

xn−1∈Λtn−1

ψv(−ξ2ξ
−1
3 xn−1)K`IT(ψt′′ , ψ′′, τ ′′)

where Λti was introduced in §3.2, ψ′′(a) := ψv(−ξ3ξ
−1
4 a) for a ∈ Fv, and we define

the new variables

t′′ =


yζ−1

v (det t)−1ξ−1
2

t2ξ
−1
n

. . .
tn−2ξ

−1
4

 ;

τ ′′ =


x−1
n−1(det t)

t−1
2

. . .
t−1
n−2

 .
Note that we have multiplied the top right-hand corner of τ ′ by −x−1

n−1 to obtain
the top right-hand corner of τ ′′. Continuing recursively, terminating the evaluation
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with [19, Lem. 6.6], we deduce that

K`IT(ψt′ξ−1 , ψ′, τ ′) =
∑

xn−1∈Λtn−1

· · ·
∑

x2∈Λt2

ψv(−ξ2ξ
−1
3 xn−1)

n−2∏
j=2

ψv(ξn−j+1ξ
−1
n−j+2xj)

× ψv
(
(−1)n−1yζ−1

v ξ−1
2 ξnx

−1
n−1 · · ·x−1

2

)
,

which is equal to (|ξ2ζv|n−2
v |ξ3 · · · ξn|−1

v ψv(−ξ2ξ
−1
3 ))−1K`v(y, t; ζ, ξ), as defined in

§3.2, on the nose. (To be compared with [19, Cor. 6.7].) Note that, unlike [19, Prop.
6.4], we subsume the cases |ti|v > 1 and |ti|v = 1 into one via our definition of the
sets Λti in (14). In particular, the above equality holds for |t2|v = 1 since then we
have

|yζ−1
v ξ−1

2 ξnx
−1
n−1 · · ·x−1

2 |v = |yζ−1
v ξ−1

2 ξn(det t)−1|v ≤ 1

from the support of W̃v (see (19)); indeed, ψv is trivial on ov. As a last remark we
simply note that for all places v 6∈ R ∪ S we have

Hv(y; ζv, ξv) = Hv(y; 1, 1) = W̃v(a(y)).

Now consider the remaining places v ∈ S. Theorem 3.4 shall follow duly from
the observation that Hv(y; ζv, ξv) = Bπv ,Φζvv (y). Or argument follows [19, §2.7],
except that we identify a different element of the Whittaker model upon shifting
by the matrix n(ζv). By assumption, the function Φζv

v satisfies

Φζv
v (y) = ψv(yζv)Φv(y) = W ′

v(n(ζvy)a(y)) = W ′
v(a(y)n(ζv)).

We denote this right-translate by W ζv
v := ρ(n(ζv))W ′

v, thus defining a new element
W ζv
v ∈ W(πv, ψv) satisfying Φζv

v (y) = W ζv
v (a(y)) for all y ∈ F×v . Now [19, Lemma

2.3] applies to Φζv
v , thus determining its unique transform that satisfies

Bπv ,Φζvv (y) = Hv(y; ζv, ξv)

for all y ∈ F×v . We remark that the hypotheses of [19, Lemma 2.3] demand that
Φζv
v ∈ C∞c (F×v ); in the case v ∈ S we have Φζv

v (y) = ψv(yζv)φv(y)Wv(a(y)) is again
smooth (resp. locally constant) of compact support. However, the argument there
applies to all such functions y 7→ Wv(a(y)) for any Wv ∈ W(πv, ψv).

�

4. Explicit Bessel Transforms

Here we give an explicit description of the generalised Bessel transforms Bπv ,Φ,
as introduced in §3.1. We consider their analytic behaviour at all places and, for
non-archimedean places v, we detail the ‘joint ramification’ case with Φ = Φζv

v for
|ζv|v > 1. In this section let us retain the notation of §3.
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4.1. The Mellin inversion formula for local fields. Let v be any place of F
and consider a Bruhat–Schwartz function Φ: F×v → C. The fundamental principle
of harmonic analysis on locally compact abelian groups [30] is to study the fre-
quencies of Φ contained in the unitary dual group F̂×; this is the set of continuous
unitary characters on F×v .
Definition 4.1. Let µ ∈ F̂×v . The Mellin transform of Φ is given by

M(Φ, µ) =
∫
F×v

Φ(y)µ(y)d×y

for a Haar measure d×y on F×v . Similarly, for a Schwartz function Φ̃ : F̂×v → C,
the inverse Mellin transform of Φ̃ evaluated at y ∈ F×v is given by

M−1(Φ, µ) =
∫
F̂×v

Φ̃(µ)µ(y)−1dµ

for a Haar measure dµ on F̂×v .
Proposition 4.1 (Mellin inversion). There exist ‘self-dual’ normalisations of the
pair of Haar measures (d×y, dµ) such that

M−1 ◦M =M◦M−1 = Id .
Proof. See [30, §3] for instance. �

4.1.1. Archimedean Mellin inversion. Suppose that v is real so that Fv = R. Any
unitary character on R× is of the form µ = sgnr| · |itv ∈ R̂× for r ∈ {0, 1} and t ∈ R.
Let us normalise

M(Φ, µ) =
∫
R×

Φ(y) sgn(y)r|y|itv d×y
and

M−1(Φ̃, y) = 1
4πi

∑
r∈{0,1}

∫
R

Φ̃(sgnr| · |itv ) sgn(y)r|y|−itv dt

where d×y = sgn(y)y−1dy and dy, dt both denote the Lebesgue measure on R.
With this choice of Haar measures, Proposition 4.1 holds.
Remark 4.2 (The Mellin transform for R>0). For s ∈ C and φ ∈ C∞c (R>0) let

m(φ, s) :=
∫ ∞

0
φ(y)ys−1 dy.

Defining Φ(y) = φ(y)yσ for y > 0, with σ = Re(s) sufficiently large, and Φ(y) = 0
for y ≤ 0 we have M(Φ, sgnr| · |Im(s)

v ) = m(φ, s), constant on r ∈ {0, 1}. Proposi-
tion (4.1) implies the usual Mellin inversion formula

φ(y) = 1
2πi

∫
Re(s)=σ

m(φ, s) y−s ds. (30)

Suppose that v is complex so that Fv = C. Expressing a complex number z ∈ C×
in polar coordinates, z = |z|1/2v ei arg(z), the unitary dual of C× may be identified as
Ĉ× = R̂>0× R̂/Z ∼= R×Z. We omit the details of the complex case in this article.
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4.1.2. Non-archimedean Mellin inversion. Let v be non-archimedean and recall the
notation of §2.2. Recall that, as described in §2.4, any unitary character µ ∈ F̂×v
is of the form µ = χ| · |itv for some χ ∈ Xv and t ∈ R satisfying −π/ log qv < t ≤
π/ log qv. We normalise measures by choosing d×y to be the Haar measure on F×v
such that Vol(o×v , d×y) = 1 and suppose that dt is the usual Lebesgue measure on
R. Then

M(Φ, µ) =
∑
k∈Z

qiktv

∫
o×v

Φ(y$−kv )χ(y) d×y

and

M−1(Φ̃, y) = log qv
2π

∑
χ∈Xv

χ(y)−1
∫ π/ log qv

−π/ log qv
Φ̃(χ| · |itv )|y|−itv dt.

One may refer to Taibleson’s book [35, §II.4] for background material.

4.2. Explicating the Bessel transform via Mellin inversion. We now give a
general and explicit description of the Bessel transforms introduced in §3.1. This
expression is obtained by applying the Mellin inversion formula to the identity (13)
between Φ and its dual Bπv ,Φ. Let s = σ+it ∈ C where, as in §3.1, we assume 1−σ
is sufficiently large. The left-hand side of (13) is precisely the Mellin transform of
the function | · |σ−

n−1
2

v · Bπv ,Φ evaluated at χ−1| · |itv ∈ F̂×v . Explicitly,

M(| · |σ−
n−1

2
v · Bπv ,Φ, χ−1| · |itv ) =

χ(−1)n−1γ(1− s, χπv, ψv)
∫
F×v

Φ(y)χ(y)|y|1−s−
n−1

2
v d×y. (31)

Bifurcating according to the place v, we proceed by using Proposition 4.1 to invert
this expression: we substitute (31) into the identity

Bπv ,Φ(y) = |y|
n−1

2 −σ
v M−1(µ 7→ M(| · |σ−

n−1
2

v · Bπv ,Φ, µ), y). (32)

4.2.1. Archimedean Bessel transforms and estimates. Let v be a real-archimedean
place of F so that Fv = R. Solving (32) with (31), for all y ∈ R× we have

Bπv ,Φ(y) = 1
4πi

∑
r∈{0,1}

(−1)r(n−1) sgn(y)r
∫

Re(s)=σ
γ(1− s, sgnr πv, ψv)|y|

n−1
2 −s

v

×
∫
R×

Φ(x) sgn(x)r|x|1−s−
n−1

2
v d×x ds. (33)

To quote Kowalski–Ricotta [25, §3] on the analytic behaviour of Bπv ,Φ, we assume
that Φ is compactly supported in R>0. The Bessel transform may then be expressed
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in terms of the classical Mellin transform;

Bπv ,Φ(y) = 1
2

∑
r∈{0,1}

(−1)r(n−1) sgn(y)r

×
∫

Re(s)=σ
m
(
Φ, 1− s− n−1

2

)
γ(1− s, sgnr πv, ψv)|y|

n−1
2 −s

v ds.

Decomposing the operator Φ 7→ Bπv ,Φ into its r-summands, we find that they
are unitary with respect to the L2-norm on R>0 computed with respect to the
Lebesgue measure [25, Prop. 3.3]; this depends on the parity of n. In [25, Cor. 3.6],
estimates are given for the sum of Bπv ,Φ juxtaposed with the Fourier coefficients of
an automorphic form in an interval. Moreover, we record the following asymptotic
estimates of [25, Prop. 3.5].
Proposition 4.3 (Kowalski–Ricotta [25]). Suppose that the support of Φ is a
compact subset of R>0. Then if 0 < y ≤ 1 we have

Bπv ,Φ(y)� y
−
(

1
2 + 1

n2+1

)
.

And for all y, A ∈ R>0 we have
Bπv ,Φ(y)�A,πv ,Φ y

−A.

Remark 4.4. In the notation of [25, §3], our transform Bπv ,Φ coincides with their
function “Bα∞(f)[w]” by assigning w = Φ.
4.2.2. Non-archimedean Bessel transforms. Let v be a non-archimedean place of
F . The simultaneous solution of (31) and (32) implies that for all y ∈ F×v we have

Bπv ,Φ(y) = log qv
2π

∑
χ∈Xv

χ(−1)n−1χ(y)
∫ σ+iπ/ log qv

σ−iπ/ log qv
γ(1− s, χπv, ψv) |y|

n−1
2 −s

v

×
∫
F×v

Φ(x)χ(x)|x|1−s−
n−1

2
v d×x ds.

(34)
This is the most general description of the Bessel transform.

4.3. Non-archimedean Bessel transforms in detail. We now consider the
Bessel transforms Bπv ,Φζvv , at a non-archimedean place v. In the general case, we
give a bound for the support. However, in practice, we shall not always require
the full generality of Theorem 3.4. Making an assumption on the local factor πv,
we give a refined formula for the Bessel transform. We then show how to choose
the test functions φv to determine a Voronöı formulae on arithmetic progressions.

A natural factor occurring at places for which |ζv|v > 1 is the Gauß sum

Gv(y, χ) :=
∫
o×v
ψv(yu)χ(u) d×u (35)

for y ∈ F×v and χ ∈ Xv. Recall that a(χ) denotes the conductor of χ (see §2.4).
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Lemma 4.5. Let y ∈ F×v and χ ∈ Xv. If a(χ) = 0, or equivalently χ = 1, then

Gv(y, 1) =


1 if |y|v ≤ 1

1
1−qv if |y|v = qv

0 if |y|v > qv.

If a(χ) > 0 then Gv(y, χ) = 0 unless |y|v = qa(χ)
v , in which case

G(y, χ) = ζ(1)|y|−1/2χ(y)−1ε(1/2, χ−1).

Proof. This result is well-known. For instance, a proof is given by the author
in [13, Lemma 2.3] using [30, (7.6) & Lem. 7-4]. �

4.3.1. Support of the Bessel transforms. Let v ∈ S and let ψv, Wv, Φv, and Φζv
v

be as in Theorem 3.4. There are no additional assumptions in the following, in
particular not on πv.

Proposition 4.6. Let y ∈ F×v . If |ζv|v ≤ 1 then Bπv ,Φζvv (y) = 0 whenever |y|v >
qn+a(πv)
v . If |ζv|v > 1 then Bπv ,Φζvv (y) = 0 whenever |y|v > |ζv|n−1

v qn+max{a(πv),−v(ζv)}
v .

Proof. By Lemma 2.2 on the support of y 7→ Wv(a(y)), the inner integral becomes∫
F×v

Φ(x)χ(x)|x|1−s−
n−1

2
v d×x

=
∑
r≥0

Wv(a($r
v))

∫
o×v
ψv(ζv$r

vu)χ(u)q−r(1−s−n−1
2 )φv($r

vu)d×u.

The r-sum converges by the compact support of φv. Also note that in the special
case φv|o×v = 1 one may directly evaluate the Gauß sum Gv(ζv$r

v, χ) using Lemma
4.5. To solve the s-integral we use the formulae (11) and (12) to evaluate the terms
γ(1−s, χπv, ψv). We also write down a generic geometric series for the quotient of
L-factors. This is possible by our choice of Re(s) being larger than the real part
of any poles of L(s, χ−1π̃v). This series has no lower powers of q−sv than (q−sv )−n,
thus we incur this factor in the support bound. The estimate then follows from
bounding the conductor of a(χπv) using [12, Theorem 2.7]. �

4.3.2. An explicit formula for minimal supercuspidal representations. Let us now
enforce the following.

Assumption 4.1. Let πv satisfy L(s, χπv) = 1, identically, for all χ ∈ Xv with
a(χ) ≤ max{−v(ζv), 0}.

This assumption is satisfied, for example, by all supercuspidal representations
of GLn(Fv).

Definition 4.2. We say πv is twist minimal if a(πv) = min{a(χπv) : χ ∈ Xv}.
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Tautologically, the property of being twist minimal may always be obtained via
twisting by some χ ∈ Xv. For example, any supercuspidal representation πv such
that n - a(πv) is twist minimal by [12, Prop. 2.2]. Without loss of generality, we
further impose that, for v ∈ S, Wv(a(y)) = Charsupp(φv)(y) so that Φv = φv. This
may be chosen by Proposition 2.4.

Proposition 4.7. Assume that πv is twist minimal (Definition 4.2) and satisfies
Assumption 4.1. Let φv = Charo×. Then Bπv ,φζvv (y) = 0 if |y|v 6= qmax{a(πv),−nv(ζv)}

v .

Otherwise, suppose |y|v = qmax{a(πv),−nv(ζv)}
v . If |ζv|v ≤ 1 then

Bπv ,φζvv (y) = ε(1/2, πv, ψv)q
a(πv)n−2

2
v .

If |ζv|v = qv then

Bπv ,φζvv (y) = ε(1/2, πv, ψv)
q
a(πv)n−2

2
v

1− qv
+

q
max{a(πv),n}n−2

2 + 1
2

v

1− q−1
v

∑
χ∈Xv
a(χ)=1

χ(−1)n−1χ(ζ−1
v y)ε(1/2, χπv, ψv)ε(1/2, χ−1, ψv).

If |ζv|v > qv then

Bπv ,φζvv (y) = 1
1− q−1

v

q
max{a(πv),−nv(ζv)}n−2

2 + v(ζv)
2

v

×
∑
χ∈Xv

a(χ)=−v(ζv)

χ(−1)n−1χ(ζ−1
v y)ε(1/2, χπv, ψv)ε(1/2, χ−1, ψv).

Proof. We compute the expression (34) under Assumption 4.1 so that

Bπv ,φζvv (y) =
∑
χ∈X

Gv(ζv, χ)ε(1/2, χπv, ψv)χ(−1)n−1χ(y)qa(χπv)n−2
2

v δ(v(y),−a(χπv)).

We evaluate this expression by the explicit formula for the Gauß sum in Lemma
4.5. In particular, the assumption that πv is minimal allows us to use the formula

a(χπv) = max{a(πv), na(χ)}

given in [12, Prop. 2.2]. �

Estimating trivially we obtain the following upper bound.

Corollary 4.8. For y ∈ F×v we have

Bπv ,φζvv (y)� q
max{a(πv),−nv(ζv)}n−2

2 + 3v(ζv)
2

v .
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4.3.3. Summation in arithmetic progressions. Let us maintain Assumption 4.1 for
simplicity and fix the test function

φv = Char1+$kvov

for some k ≥ 1. Consider the following variant of the Gauß sum:

Gk
v(a, χ) :=

∫
1+$kvov

ψv(ay)χ(y)d×y. (36)

For now, to determine the support of Gk
v(a, χ) we only consider its size.

Lemma 4.9. Suppose |a|v > 1. Then Gk
v(a, χ) = 0 unless a(χ) ≤ max{k,−v(a)},

in which case

|Gk
v(a, χ)|2 = Vol(1 +$k

vov, d
×y) Vol(1 +$max{k,−v(a)}

v ov, d
×y)� qmax{2k,k−v(a)}

v .

Proof. Expanding the integral, orthogonality of additive characters implies that

|Gk
v(a, χ)|2 = Vol(1 +$k

vov, d
×y)

∫
(1+$kvov)∩(1+$−v(a)

v ov)
χ(y)d×y.

Orthogonality of multiplicative characters now verifies the lemma. �

Proposition 4.10. Under Assumption 4.1, assume φv = Char1+$kvov . Then

Bπv ,φζvv (y) =
∑
χ∈X

Gk
v(ζv, χ)ε(1/2, χπv, ψv)χ(−1)n−1χ(y)qa(χπv)n−2

2
v δ(v(y),−a(χπv)).

Proof. Unfolding definitions as before, we recover the the expression after noting
that Gk

v(ζv, χ) is supported on a(χ) ≤ max{k,−v(ζv)} by Lemma 4.9. �

Corollary 4.11. For minimal representations, Bπv ,φζvv (y) is supported on the com-
pact set defined by v(y) = max{a(πv), nr} for 0 ≤ r ≤ max{k,−v(ζv)}.

5. A Classical Formulation

In this final section, we translate our results into a more classical parlance; that
of Maaß forms on SLn(R). We apply our representation theoretic results to such
forms by considering the special case F = Q.

5.1. Specialist notation.

5.1.1. Valuations. Recall that for F = Q there is a single archimedean place and
it is denoted by∞. Here we have Q∞ = R and the absolute value is the usual one:
|y|∞ = |y| := sgn(y)y. All other places are non-archimedean and indexed by a
rational prime p, denoting this property by p <∞. For integers a, b ≥ 1, we make
the convention that a | b∞ if and only if a | bk for some k ≥ 0. For all a, b ∈ Z
define [a, b] := lcm(|a|, |b|) and (a, b) := gcd(|a|, |b|) as usual.
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5.1.2. The standard additive character. We use the notation e(z) := e2πiz for z ∈
C. Fix the character ψ : AQ/Q → C given by ψ = ⊗vψv with ψ∞(x) = e(−x) for
x ∈ R and, for xp ∈ Qp, ψp(xp) = 1 if and only if xp ∈ Zp. Explicitly, for p < ∞,
we have ψp(x) = e(frp(x)) where frp(x) ∈ Q is the ‘fractional part’ of x satisfying
0 ≤ frp(x) < 1 and frp(x)− x ∈ Zp.

Lemma 5.1. For x ∈ Q we have ∑p<∞ frp(x) ≡ x mod Z.

Proof. Note that for almost all p frp(x) = 0 as x ∈ Zp for all p not dividing the
denominator of x. We need to show x −∑p frp(x) ∈ Z. Fix primes q 6= p. Then
frp(x) ∈ Zq and (by definition) x− frq(x) ∈ Zq. Hence

x−
∑
p

frp(x) = x− frq(x)−
∑
p6=q

frp(x) ∈ Zq.

Since this is true for each prime q we must in fact have x−∑p frp(x) ∈ Z. �

Corollary 5.2. The character ψ = ⊗vψv is trivial on Q.

One may further show that all characters of AQ/Q are of the form x 7→ ψ(ax)
for some a ∈ Q.

5.2. Level structure. There is a natural right-action of the group SLn(Z) on
(Z/NZ)n, whence we introduce the congruence subgroups

Γ1(N) := StabSLn(Z)((0, . . . , 0, 1)) ⊂ SLn(Z)

for each integer N ≥ 1, thus defining a filtration of SLn(Z)-subgroups with respect
to successive multiples of N . We also introduce the following p-adic analogues: by
the right-action of GLn(Zp) on (Z/NZ)n we define

K1(N)p := StabGLn(Zp)((0, . . . , 0, 1)) ⊂ GLn(Zp)

for each integer N ≥ 1. Also define K1(N) = {1} × ∏p<∞K1(N)p ⊂ GLn(AQ).
We thus realise Γ1(N) embedded into GLn(AQ) by

Γ1(N) = GLn(Q) ∩ (GLn(R)+ ×K1(N)). (37)

These filtrations are a good choice on which to study the level structure of SLn(R)-
Maaß forms since there is a robust theory of newforms.

Remark 5.3. For n = 2, newform theory was proposed by Atkin–Lehner [3] and
later developed by Casselman [9] in the context of representation theory. For
n ≥ 2 the theory has been constructed by Gelfand—Každan [15]. Critically, in
the general case, Jacquet–Piatetski-Shapiro–Shalika [20] prove that the conductor
associated to a newform in the sense of a level structure is equal to that which
occurs in the ε-factor of the local functional equation [16, Theorem 3.3].
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5.3. Dirichlet and Hecke characters. Central characters of automorphic rep-
resentations are given by Hecke characters of A×Q. Briefly recall here the correspon-
dence between Dirichlet characters χ (mod N) and finite order Hecke characters
ω of conductor at most N . (See [24, §12.1] for a detailed reference.) Explicitly,
given χ, we define a character ω : A×Q/Q× → C× using the strong approximation
theorem A×Q = Q× · (R>0 ×

∏
p<∞ Z×p ) by

ω(y) =
∏
p|N

χ(yp) (38)

where y = (y′p) ∈ R>0 ×
∏
p<∞ Z×p and yp ∈ (Z/pvp(N)Z)× is the image of y′p for

p | N obtained via the isomorphism Z×p /(1 + NZp) ∼= (Zp/NZp)×. As for any
continuous Hecke character, we have the factorisation ω = ⊗pωp. For each p - N
and y ∈ Q×p the local factors satisfy

ωp(y) = χ(p)−vp(y). (39)

Moreover, for each integer d ≥ 1 with (d,N) = 1 we have ∏p|d ωp(d) = χ(d)−1.

5.4. Lifting Maaß forms to adele groups. The dictionary between classical
Maaß forms and automorphic forms on GLn(AQ) hinges on the following strong
approximation theorem:

GLn(AQ) ∼= GLn(Q) · (GLn(R)×K1(N)) (40)

for each N ≥ 1 (cf. [18, Prop. 13.3.3]). Explicitly, given f ∈ L2(Γ1(N)\ SLn(R)),
we define a function ϕf ∈ L2(GLn(Q)\GLn(AQ)/K1(N)) by

ϕf (γg∞k) = f(g∞) (41)

for γ ∈ GLn(Q), g∞ ∈ GLn(R) and k ∈ K1(N). Note that this definition is
well defined by (37). Then ϕf generates the automorphic representation πf of
GLn(AQ) with the central character ω := πf |Z(A). As in Theorem 1.1, without loss
of generality we assume that ω corresponds to a Dirichlet character χ (mod N).

Moreover, we now have a notion of (normalised) ψp-Whittaker function Wϕf

associated to f , as in §2.5. Under the assumption that f is a Hecke eigenform
with respect to the operators Tp (as defined in [17, (9.3.5)] for instance) for each
p - N we have that

Wϕf = W∞ ⊗
⊗
p<∞

Wp. (42)

We fix the ongoing assumption that Wp(1) = 1 for all primes p < ∞ so that
(42) imposes a constraint on the normalisation of W∞ ∈ W(π∞, ψ∞), the so-called
‘Jacquet Whittaker function’. This assumption only concerns finitely many primes
p since, by definition, Wp = W ◦

p is the unique GLn(Zp)-fixed vector satisfying
Wp(1) = 1 for almost all p - N ; see Proposition 2.6.
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5.5. Fourier coefficients and Whittaker functions. Henceforth, let us con-
sider a cuspidal Maaß form f ∈ L2(Γ1(N)\ SLn(R)) which is a Hecke eigenform
with respect to the operators Tp for each p - N . Without loss of generality, suppose
Wϕf = ⊗vWv such that ∏p<∞Wp(1) = 1, as before.

Definition 5.1. For (m1, . . . ,mn−1) ∈ Zn−1 with ∏imi 6= 0 let

Af (m1, . . . ,mn−1) =
n∏
i=1
|mi|

i(n−i)
2

∏
p<∞

Wp




m1 · · ·mn−1

. . .
mn−1

1



 .

When ∏imi = 0, we extend the definition by requiring Af (m1, . . . ,mn−1) = 0.

At least when (m1 · · ·mn−1, N) = 1, the following lemma implies that the coef-
ficients Af (m1, . . . ,mn−1) are the Hecke eigenvalues of f (cf. [11, Lecture 7]).

Lemma 5.4 (Shintani’s formula). Fix a prime p - N ; here, as in §2.7, the local
component πp of πf = ⊗pπp is an unramified principal series representation with
Satake parameters µ1(p), . . . , µn(p). Then for integers ki ≥ 0, i = 1, . . . , n− 1 we
have

Af (pk1 , . . . , pkn−1) = sλ(µ1(p), . . . , µn(p))
for the partition λ = (λ1, . . . , λn−1, 0) with λi = ki + · · ·+ kn−1 for 1 ≤ i ≤ n− 1.

Proof. The (square root of the) modular character determines the constant

p
∑n

i=1 λi(n+1
2 −i) =

n∏
i=1

pki
i(n−i)

2 .

Recalling the reciprocity of absolute values, |γ|∞ = ∏
p<∞|γ|−1

p for γ ∈ Q×, the
claim now follows immediately from Proposition 2.6. �

Remark 5.5 (Dual Maaß forms). Consider the isomorphism between πf and its
contragredient given by mapping ϕ to the function ϕι(g) := ϕ(tg−1). We define
the dual Maaß form f ι ∈ L2(Γ1(N)ι\ SL2(R)). At least for (m1 · · ·mn−1, N) = 1,
we have

Af ι(m1, . . . ,mn−1) = χ(m1 · · ·mn−1)Af (mn−1, . . . ,m1). (43)
See [17, §9.2] for corresponding discussion in the case N = 1.

Our definition of the terms Af (m1, . . . ,mn−1) coincides with that given by Gold-
feld [17, p. 260, (9.1.2)] and Kowalski–Ricotta [25, §2], whose coefficients are de-
noted by “A” and “af”, respectively; there the assumption N = 1 is enforced. In
particular, by [17, Lem. 9.1.3] we have the trivial bound

Af (m1, . . . ,mn−1)�
n−1∏
k=1
|mi|i(n−i)/2.
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We make the following additional observations.

• The Fourier coefficients are multiplicative:
Af (m1m

′
1, . . . ,mn−1m

′
n−1) = Af (m1, . . . ,mn−1)Af (m′1, . . . ,m′n−1)

whenever (m1 · · ·mn−1, m
′
1 · · ·m′n−1) = 1.

• The Fourier coefficients “arithmetically” normalised: Af (1, . . . , 1) = 1.

• The coefficients Af (m1, . . . ,mn−1) are precisely those occurring in the var-
ious L-series [16] attached to f , or rather πf . (See [25, §2] for a concise
explanation of this remark.)

5.6. Derivation of the classical summation formula. Here we give a proof
of Theorem 1.1 obtained by specialising our choices in Theorem 3.4.

5.6.1. The landscape. The integer at which the Voronöı summation problem ram-
ifies is denoted by M ≥ 1 with N |M where N is the level of f and M determines
the set of primes p | M at which we choose local test functions φp ∈ C∞c (Q×p ),
alongside φ∞ ∈ C∞c (R×). Define the modulus ζ = (ζv) ∈ AQ by first choosing
a, `, q ∈ Z with a 6= 0, `, q ≥ 1, (a, `q) = (q,M) = 1 and ` | M∞. Then we take
ζ∞ = 0 and ζp = a/`q for each p < ∞. We evaluate the additive character ψ by
Corollary 5.2 so that for each γ ∈ Q× we have

ψ(ζγ) = e(aγ/`q). (44)
Following Theorem 3.4, define the set

S = {∞} ∪ { p prime : p |M } .
For y ∈ Qp, recall the definition Φp(y) = φp(y)Wp(a(y)) for each p | M . At ∞
we use Proposition 2.4 to make the assumption that W∞(a(y)) = Charsupp(φ∞)(y),
simply so that Φ∞ = φ∞. Define the shift ξ ∈ Tn(AQ) as follows: for i = 2, . . . , n−1
make a choice of integers ci ≥ 0 such that (ci,M) = 1. Then, without loss of
generality, for p - M let the component of ξ at p equal diag(ξ1, . . . , ξn) such that
ξi = ci · · · cn−1 for 2 ≤ i ≤ n − 1, ξ1 = ξ2, and ξn = 1. Otherwise, let the
components of ξ at ∞ and p |M equal 1.

5.6.2. The left-hand side. With our specialist assumptions, the left-hand side of
(20) is equal to

∑
γ∈Q×

e

(
am

`q

) ∏
p<∞

Wp




γc2 · · · cn−1

c2 · · · cn−1
. . .

cn−1
1




∏
v∈S

φv(γ). (45)

Here we see the choice of ξ was to be contained in the support of ∏p<∞Wp.
Moreover, the summands of (45) are non-zero only for those γ ∈ Q× such that
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|γc2 · · · cn−1|p ≤ |c2 · · · cn−1|p. Thus, letting γ = m ∈ Z ∩Q× and applying Defini-
tion 5.1 we obtain that (45) is equal to

∑
m∈Z 6=0

e

(
am

`q

)
Af (m, c2, . . . , cn−1)
|m|n−1

2
∏n−1
i=2 |ci|

i(n−i)
2

φ∞(m)
∏
p|M

φp(m). (46)

5.6.3. The right-hand side. Firstly, reconsider the set R in Theorem 3.4:

R = { p prime : p | qc2 · · · cn−1 }.

Recalling that ξ1 = ξ2 by assumption, the problem bifurcates according to whether
p ∈ R satisfies p | q or not. On the right-hand side of (20), one incurs the set
T 1
R = ⊗p∈RT 1

p ; the Kloosterman sum K`R(γ, t; ζ, ξ); the Whittaker functions W̃p

at primes p - M ; and the local Bessel transforms at p | M . The support of the
T 1
p -sum is determined by the Whittaker function, according to Proposition 2.6.

In particular, the support contains only those diag(t2, . . . , tn−1) ∈ T 1
p whence we

make the following inductive change of variables

t−1
i = q

cn−i+1 · · · c2

di · · · dn−1
for some di | q

cn−i+1 · · · c2

di+1 · · · dn−1

with respect to i = n−1, . . . , 2. In this coordinate system, the Whittaker function
on the right-hand side of (20) reads

∏
p-M

W̃p


1

qc2 · · · cn−1


γ det t−1q2

qc2 · · · cn−1t2
. . .

qc2tn−1
1




= χ(qc2 · · · cn−1)−1Af ι(m, d2, . . . , dn−1)

|m|n−1
2
∏n−1
i=2 d

i(n−i)
2

i

(47)

where m ∈ Z with (m,M) = 1 and γ0 ∈ Q× such that |γ0|p = 1 for each p - M ,
together determining the change of variables

γ = γ0
md2 · · · dn−1

qn
∏n−1
i=2

(
cn−i+1
di

)i−1 .

Noting our observation (43) on the coefficients of the dual Maaß form f ι, (47) is
equal to

χ

(
qc2 · · · cn−1

mdn−1 · · · d2

)−1
Af (dn−1, . . . , d2,m)

|m|n−1
2
∏n−1
i=2 d

i(n−i)
2

i

. (48)

To unwrap the hyper-Kloosterman sums (of §3.2), first note that ξ1ξ
−2
2 = 1. We

have the following two cases p - q, so that |ζp|p = |a|p ≤ 1, and p | q, so that
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|ζp|p = |q|−1
p > 1. In either case, noting ψp(−ξ2ξ

−1
3 ) = e(−c2) = 1, we incur the

following constant
∏

p|qc2···cn−1

|ξ2q
−1|n−2

p |ξ3 · · · ξn|−1
p ψp(−ξ2ξ

−1
3 ) = qn−2∏n−1

i=2 |ci|n−i
.

Applying the Chinese remainder theorem to the product K`R(γ, t; ζ, ξ), let us make
the following inductive change of variables in the Λti-sum: xn−1 =

(
qc2
rn−1

)−1
αn−1

with αn−1 ∈
(
Z/

(
qc2
rn−1

)
Z
)×

and

xj =
(
qc2 · · · cn−j+1

rj · · · rn−1

)−1

αjᾱj+1 with αj ∈
(
Z/

(
qc2 · · · cn−j+1

rj · · · rn−1

)
Z
)×

for each n − 2 ≥ j ≥ 2, noting the congruence αj+1ᾱj+1 ≡ 1 (mod qc2···cn−j+1
rj ···rn−1

) is
well defined. The resulting sum K`R(γ, t; ζ, ξ) contains the summands

∏
p|qc2···cn−1

ψp(ξn−j+1ξ
−1
n−j+2xj) = e

cn−j+1αjᾱj+1
qc2···cn−j+1
dn−1···dj

 = e

djαjᾱj+1
qc2···cn−j
dn−1···dj+1

 ,
for n− 2 ≥ j ≥ 2; the term e

(
dn−1αn−1

q

)
; and

∏
p|qc2···cn−1

ψp((−1)nγζ−1
v ξ−1

2 ξnx
−1
n−1 · · ·x−1

2 )

= e

(−1)n γ0md2 · · · dn−1

qn
∏n−1
i=2

(
cn−i+1
ri

)i−1

`q
a

c2 · · · cn−1
qn−2

n−1∏
i=2

(
cn−i+1

ri

)i−1
ᾱ2


= e

(−1)n
mγ0

`
a
ᾱ2

qc2···cn−1
dn−1···d2

 .
Shifting each αj-variable by `γ0/a, we remove it from the above exponential and
recover it in the term e

(
ā`dn−1αn−1

q

)
. Altogether we obtain that

K`R(γ, t; ζ, ξ) = KLn−1(ā`γ0,m; q, c, d)

where aā ≡ 1 (mod q), d := (d2, . . . , dn−1), c := (c2, . . . , cn−1), and the classical
Kloosterman sum was defined in (2).

We now consider the M -part of the summands γ ∈ Q×, indexed by γ0. Let
L denote the largest square free integer such that L | M . Suppose that the
product ∏p|M Bπp,Φa/`qp

(γ) is non-zero. Then Proposition 4.6 implies that there
exists r |M∞ such that

γ0 = r

[`,N ]`n−1Ln
.
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Altogether, the right-hand side of (20) is equal to

qn−2∏n−1
i=2 |ci|n−i

∑
m∈Z 6=0

(m,M)=1

∑
r|M∞

∑
dn−1|qc2

∑
dn−2|

qc2c3
dn−1

· · ·
∑

d2|
qc2···cn−1
dn−1···d3

KL(aλ``,m; q, c, d)

× χ

(
m̄
qc2 · · · cn−1

mdn−1 · · · d2

)−1
Af (dn−1, . . . , d2,m)

|m|n−1
2
∏n−1
i=2 d

i(n−i)
2

i

Bπ∞,φ∞

 rmd2 · · · dn−1

λ`qn
∏n−1
i=2

(
cn−i+1
di

)i−1


×
∏
p|M
B
πp,Φa/`qp

 rmd2 · · · dn−1

λ`qn
∏n−1
i=2

(
cn−i+1
di

)i−1


where λ` := [`,N ]`n−1Ln, aā ≡ λ`λ̄` ≡ 1 (mod q), and mm̄ ≡ 1 (mod N). Thus
we conclude the proof of Theorem 1.1.
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VORONOÏ SUMMATION FOR GLn 33

38. F. Zhou, Voronoi summation formulae on GL(n), J. Number Theory 162 (2016), 483–495.

College of Engineering, Mathematics and Physical Sciences, University of Ex-
eter, North Park Road, Exeter, EX4 4QF, UK

Email address: A.J.Corbett@exeter.ac.uk


	1. Developments in the Voronoi Summation Problem for GL(n)
	2. Background Representation Theory and Notation
	3. Voronoi Summation via the Whittaker Model
	4. Explicit Bessel Transforms
	5. A Classical Formulation
	References

