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Main Text 

Summary 
 

We are in a climate and ecological emergency, where climate change and direct anthropogenic interference 
with the biosphere are risking abrupt and/or irreversible changes that threaten our life-support systems. 
Efforts are underway to increase the resilience of some ecosystems that are under threat, yet collective 
awareness and action are modest at best. Here we highlight the potential for a biosphere resilience sensing 
system to make it easier to see where things are going wrong, and to see whether deliberate efforts to make 
things better are working. We focus on global resilience sensing of the terrestrial biosphere at high spatial and 
temporal resolution through satellite remote sensing, utilising the generic mathematical behaviour of complex 
systems – loss of resilience corresponds to slower recovery from perturbations, gain of resilience equates to 
faster recovery. We consider what subset of biosphere resilience remote sensing can monitor, critically 
reviewing existing studies. Then we present illustrative, global results for vegetation resilience and trends in 
resilience over the last 20 years, from both satellite data and model simulations. We close by discussing how 
resilience sensing nested across global, biome-ecoregion, and local ecosystem scales, could aid management 
and governance at these different scales, and identify priorities for further work.  
 
 
1. Introduction 

 
Faced with a climate and ecological emergency, we need to be able to sense where things are going wrong in our life-
support systems, to have any chance of correcting our mistakes, and we need to be able to sense where they are going 
right to know what to seek to replicate [1]. Establishing changes in the mean state of ecosystems and the biosphere are 
important to this, but they do not tell the whole story. A complex system may lose stability without its mean state 
changing, or the mean state may change without any underlying change in stability. Hence there has been half a century 
of growing scientific interest in the resilience of ecosystems [2] and the biosphere [3] – meaning here the self-regulation 
capacity of a system to recover from perturbations. Currently there is growing concern that self-regulation may be 
breaking down in some ecosystems and biomes, in response to climate change and direct human interference, potentially 

*Author for correspondence (t.m.lenton@exeter.ac.uk).  
 



leading to abrupt transitions or ‘tipping points’ [4, 5]. Consequently, there is a widespread stated desire from 
policymakers and other societal actors to increase the resilience of (social-) ecological systems in the face of global 
change stressors. In response, a growing number of scientific studies are seeking to monitor the resilience of different 
(social-) ecological systems. However, they are using disparate definitions of resilience and methods of quantifying it. 
Bringing resilience sensing efforts together in a consistent, global approach could be a valuable tool to help navigate the 
near future. A resilience sensing system for the biosphere could help quantify the resilience of different (social-) 
ecological systems, how it is changing, and whether societal efforts (e.g. policy interventions) to increase the resilience of 
particular systems are having the desired effect or not. It could raise collective awareness of the growing climate and 
ecological emergency, by ‘bringing to life’ the dynamical response of the biosphere and gathering that complex spatial 
and temporal information visually in one place. Furthermore, if ‘users’ of resilience sensing information responded by 
changing their actions that impact upon resilience, this would amount to a new type of self-aware feedback within 
ecosystems and the biosphere [1].  
 
A resilience sensing system clearly needs a consistent underlying definition of resilience and methods of quantifying it. 
To be useful – scientifically and practically – it also needs to be clear about the resilience of what to what that it seeks to 
monitor [6]. Here we focus on land-surface ecosystems, especially their vegetation component, and what remotely sensed 
data can reveal about terrestrial biosphere resilience. We consider resilience to a range of perturbations, including climate 
variability (e.g. drought), disturbance (e.g. fires), and direct human interference (e.g. deforestation). Assessing how 
resilience to perturbations changes over time, or with respect to environmental or disturbance gradients, can in turn enable 
an assessment of how resilience depends on longer-term drivers, including climate change or land-use change. Focusing 
on remotely-sensing resilience is timely thanks to the development of: (a) an established mathematical framework and 
algorithms to detect changes in resilience; (b) sufficiently long remotely-sensed products (e.g. from Landsat, MODIS) to 
apply data-hungry resilience sensing methods; (c) advances in remote sensing sensitivity and capacity that can provide 
global coverage at ever finer temporal and spatial resolution, and; (d) more efficient ways to handle the massive volume 
of data generated (e.g. through portals such as Google Earth Engine and the Microsoft Planetary Computer).   
 
Our aim in this paper is to outline key elements of a resilience sensing system for the terrestrial biosphere, which spans a 
range of scales from local ecosystems to global vegetation. We discuss the state of research in the field, critically 
reviewing existing attempts to extract measures of terrestrial ecosystem resilience from remotely-sensed data products 
(Table 1). We synthesise this with examples of analyses from our own prototype resilience-sensing system at biosphere-
to-biome scales. This effort is important because currently we lack a global, quantitative overview of which ecosystems 
are least resilient, which are losing resilience fastest, and whether localised efforts to increase resilience are working. The 
paper is novel in bringing together a synthesis of many disparate studies towards designing a biosphere resilience sensing 
system, and outlining its potential benefits. The structure is as follows: We start by clarifying our chosen definition of 
resilience and how to measure it. Then we consider what subset of biosphere resilience remote sensing allows us to 
measure. We illustrate how resilience sensing can be nested across scales from global to local. Then we outline how it 
could aid ecosystem governance and management at these different scales, and identify priorities for further work.  
 
 
2. Defining and measuring resilience 
 
A resilience sensing system requires a clear underlying definition of resilience and how to measure it. The concept of 
‘resilience’ has a long history in ecology, where different authors have adopted different definitions [2, 7-9]. Recent, 
more widespread use of ‘resilience’ in diverse contexts, including normatively (as a desired feature), has led to yet more 
disparate meanings [10, 11]. Furthermore, existing efforts to quantify ‘resilience’ from remotely sensed data use different 
definitions of resilience and different ways of measuring it (Table 1).  
 
We focus on resilience as the capacity of a system to recover from perturbations, which is a characteristic property of 
living organisms, and of a much broader class of self-regulating systems, including aspects of the biosphere as a whole 
[12]. Hence, we favour a simple, theoretically grounded definition of resilience, based on dynamical systems theory (Box 
1). This equates resilience with the rate at which a system recovers from perturbations [7], which can be quantified as the 
magnitude of the leading (negative) eigenvalue, reflecting the strength of negative feedbacks restoring a system back 
towards an initial attractor after perturbation. Some authors refer to this recovery rate more restrictively as ‘engineering 
resilience’ [13] or rename it ‘elasticity’ [8]. Ecologists usually distinguish recovery rate from ‘resistance’, which they 
relate to the inverse of the magnitude of a system’s response to perturbation [7]. However, the magnitude of response to 
perturbation also depends (in part) on the strength of negative feedback in a system (Box 1). Hence, resistance usually 
changes together with resilience, when the strength of negative feedbacks governing a dynamical system changes – as 
resilience goes up, variance goes down (and vice versa) (Box 1; Eq. (2)). 
 
The most intuitive way to measure resilience is to wait for a system to be perturbed and measure how fast it recovers [14, 
15]. Ecosystems are frequently subject to perturbations that affect their functioning. For relatively small perturbations, 



recovery should follow an exponential decay from the initial perturbation back to equilibrium, and recovery rate should 
be independent of perturbation size, following linear stability analysis (Box 1, Eq. (3)). In such cases, one can estimate 
recovery rate (dimensions [T]-1) by linearly regressing the logarithm of the data onto the decay interval. This requires that 
sampling of the system is more frequent than the inverse of the recovery rate. Other studies try to measure ‘resilience’ by 
measuring ‘recovery time’ as the time to return from the peak of a perturbation (close) to a presumed baseline equilibrium 
[16-18]. This can be used to compare response to the same event of uniform magnitude, e.g. a specific drought [17]. 
However, when comparing responses across events, for a fixed recovery rate (i.e. fixed resilience) a larger perturbation 
will take a longer time to recover to a given distance from a presumed equilibrium. Yet further studies try to deal with 
this by measuring ‘resilience’ as peak response to perturbation (‘event size’ or ‘maximum stress’) divided by ‘recovery 
time’ [19-21]. However, this assumes a linear (not exponential) recovery from perturbation, and introduces the 
dimensions of whatever is the state variable, losing generality. All these approaches require a measure of the equilibrium 
state, which in ecosystems usually changes with the seasons as well as any slower changes in forcing.   
 
Box 1. Resilience theory and leading indicators. 
 
Let us assume (preferably based on observations) that some state variable of a dynamical system, x, tends to recover from 
some range of perturbations back towards a previous state. Mathematically this suggests it may exhibit an ‘attractor’, 
which in one dimension (x) can be assumed to be a stable fixed point (i.e., an equilibrium state) x* around which the 
dynamics takes place. There may be other attractors, and boundaries to the present attractor beyond which recovery will 
not occur. That can all be described with a potential function, U(x), often sketched as a valley (sometimes with other 
hilltops and valleys), with the current state of the system (x) represented as a ball, which tends to roll back to the bottom 
of the valley (x*). The system may be subject to known perturbations, or more generally, to noise. For simplicity, let us 
consider additive white noise 𝜂𝜂 with standard deviation 𝜎𝜎. The corresponding dynamics are described by: 
 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝑈𝑈′�𝑥𝑥(𝑡𝑡)� + 𝜂𝜂(𝑡𝑡)            (1) 
 
Close to the fixed point (x*) the potential function U can be approximated by a quadratic function with minimum at x*, 
such that for some parameter 𝜆𝜆 < 0, 𝑈𝑈(𝑥𝑥) ∼ −𝜆𝜆
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𝑥𝑥2. 𝜆𝜆 (the leading eigenvalue) is the recovery rate from perturbations and 

a direct measure of the strength of negative feedback. The closer that 𝜆𝜆 is to zero, the less stable is the fixed point. At 𝜆𝜆 =
0 stability is lost. Discretizing the dynamics into timesteps 𝛥𝛥𝑡𝑡 gives an autoregressive process for which the variance and 
the autocorrelation function at n timesteps 𝛼𝛼(𝑛𝑛) are known analytically: 
 
𝑣𝑣𝑣𝑣𝑣𝑣(𝛥𝛥𝑥𝑥) = 𝜎𝜎2

1−𝑒𝑒2𝜆𝜆𝜆𝜆𝜆𝜆
∼ − 𝜎𝜎2

2𝜆𝜆𝜆𝜆𝑡𝑡
          (2) 

 
𝛼𝛼(𝑛𝑛) = 𝑒𝑒𝑛𝑛𝜆𝜆𝜆𝜆𝑡𝑡           (3) 
 
Where stability increases, and thus resilience is being gained (𝜆𝜆 is getting more negative), lag-1 autocorrelation (𝛼𝛼(1) or 
‘AR(1)’) and variance will decline. When resilience is being lost (𝜆𝜆 is approaching zero from below), both AR(1) and 
variance increase. These are the classical early warning indicators of ‘critical slowing down’ prior to a transition to an 
alternative attractor [5, 22-25]. However, whether or not an alternative attractor is known to exist, we can still quantify 
resilience (the strength of restoring negative feedback). Variance also depends on the magnitude of perturbation; here, 𝜎𝜎, 
the amplitude of the noise. AR(1) is independent of 𝜎𝜎, hence should be a more robust, generic indicator of resilience than 
variance. However, if we can diagnose the magnitude of perturbing variability (here 𝜎𝜎) and any changes in that, this can 
be controlled for, and changes in variance of response can be used to diagnose resilience. 
 
Where perturbations of a system are continuous or not well characterised, but it remains close to equilibrium and a 
sufficiently long time series is available, the recovery rate can be extracted from the temporal autocorrelation (AR(1); 
denoted α(1) in Box 1, Eq. (3)). Attributing changes in variance and autocorrelation to a change in stability assumes 
stationarity of the data. The seasonal cycle and any long-term trends therefore need to be carefully removed before 
estimating both indicators. Sufficient, evenly spaced data are also required to reliably estimate AR(1) (e.g. ~50 data 
points for monthly data in the presence of a seasonal cycle [26]). Variance depends on perturbation amplitude as well as 
recovery rate hence to isolate the recovery rate, perturbation amplitude must also be estimated (Box 1; Eq. (2)). In 
systems where the noise of perturbations is not additive (as in Box 1) but multiplicative – i.e. its effect depends on the 
state of the system – variance can become decoupled from recovery rate [27]. As well as AR(1), the whole 
autocorrelation function can be used to deduce resilience. De-trended Fluctuation Analysis (DFA) considers how 
correlations decay as a function of time lag, extracting a power law exponent which describes that decay (essentially, 
correlation increases further away in time as resilience is lost). This is equivalent to a spectral analysis, where loss of 
resilience corresponds to reddening of the response spectrum. For the approach to particular types of bifurcation, higher-
order terms (neglected in the linearization of Box 1) and additional statistical moments can be informative of the type of 
bifurcation being approached, as well as its proximity [28]. Deep learning can utilise these to distinguish the type of 



tipping point being approached and provide improved early warning [29]. For example, skewness increases prior to a 
saddle-node bifurcation, with the data skewing towards the new state. A toolbox of associated algorithms is available 
[30].  
 
To assess whether resilience of a system is changing over time, we first need to consider the rate at which a system is 
being forced (e.g. by climate change) in comparison to its recovery rate (the intrinsic timescale of the system). For the 
system to remain close to equilibrium, forcing must be considerably slower than recovery rate. For e.g. climate change 
and ecosystems, this will generally be the case, but for more rapid changes in e.g. land-use, it may not be. Then to pick up 
the effect of changes in forcing upon resilience we need to monitor the system over the forcing timescale, which may 
demand long records. Once confident in a separation of timescales, the methods described above can be repeatedly 
applied over time. If the same ecosystem is perturbed multiple times, changes in recovery rate may become detectable, 
e.g. recovery of tidal marshes from inundation events [31, 32], or recovery of forest from disturbance [33]. Statistical 
measures such as AR(1) and variance can be recalculated in a sliding window moving through a longer dataset and trends 
indicated using e.g. Kendall’s tau rank correlation coefficient (τ). Then as a sensitivity analysis, the bandwidth used for 
e.g. Gaussian de-trending and the sliding window length can be varied [30].  
 
For relatively ‘slow’ systems where the length of time we have been monitoring them (e.g. via remote sensing) is 
sufficient to quantify their resilience but not to diagnose changes in resilience, a space-for-time substitution can be made 
to look over space for variations in temporal indicators that correlate with particular environmental driving variables. For 
example, AR(1) of tropical forest greenness (NDVI) increases sharply below a critical threshold in mean annual 
precipitation [34], consistent with evidence of multiple stable states for tropical vegetation depending on rainfall [35, 36].  
 
Some ecosystems lack sufficient temporal data. However, for systems that are coupled across space with associated 
spatial feedbacks, equivalent spatial indicators of resilience exist, including spatial correlation, spatial variance, spatial 
skewness, and spatial frequency spectra [37, 38] – a gain with a toolbox of algorithms available [38]. Despite the spatial 
richness of remotely sensed data, relatively few studies have estimated spatial resilience indicators (Table 1) – notable 
exceptions being for vegetation data along rainfall gradients in the grassland–savannah-woodland systems of the Congo, 
Australia, and Serengeti [39, 40]. Where sufficient spatial and temporal data are available, a resilience indicator 
combining spatial and temporal correlations can be more reliable, and forewarn of global as well as local bifurcations 
[41]. Spatial feedbacks are not necessarily dominantly negative in sign, and they may generate irregular or regular 
vegetation patterns. In the case of regular (‘Turing’) patterns, these are a spatial manifestation of a balance of positive and 
negative feedbacks operating on different length scales, they may undergo global bifurcations, and the nature of the 
pattern itself may carry resilience information [42]. In systems that can be characterised as networks, network-based 
indicators of resilience are also available [43, 44]. 
 
To test hypotheses of changing resilience it is essential to have appropriate null models. Repeatedly bootstrapping 
temporal data to destroy their memory can provide a null model distribution for tests on temporal indicators [45, 46], but 
it is better to preserve the overall variance and autocorrelation of the underlying time series, for example by randomizing 
phases in Fourier space [47]. Bootstrapping spatial data works for spatial correlation tests, but not for e.g. spatial 
variance, for which alternative null model approaches are available [38]. However, few remote sensing studies (Table 1) 
test against a null model to establish whether signals are statistically significant/robust – a notable exception being a lake 
study using an autoregressive moving average (ARMA) null model [48]. 
 
Some studies (Table 1) purporting to measure ‘resilience’ are unrelated to recovery rate – in particular those considering 
persistence of trends in NDVI [49-52]. These trends are estimated to have lifetimes of e.g. ~5–17 y [49], whereas for the 
same biome, the correlation timescales of NDVI are estimated to be ~0.1–1.4 y [53-55]. Therefore, perturbations decay 
(much) faster than trends persist. Indeed studies using annual [49, 52] or coarser [51] resolution data will be unable to 
resolve recovery timescale. Instead, persistent NDVI trends could reflect e.g. steady forest growth, but likely also respond 
to well-known decadal climate variability.  
 
Other studies (Table 1) combine statistical indicators, including AR(1) and variance, into a composite indicator [56, 57], 
but generally without clear justification for their relative weighting, and with the drawbacks of e.g. merging aspects of 
resilience and resistance, and double-counting the effects of recovery rate. Particularly problematic is where opposing 
signals of ‘critical speeding up’ (a questionable notion) and critical slowing down (well-established) are both considered 
as indicators of resilience loss in a single composite indicator [57]. 
 
 
3. Remotely sensing resilience 
 
Remote sensing using satellite instruments provides an opportunity to globally monitor the resilience of terrestrial 
ecosystems over large spatial scales, but also poses challenges. Relatively short records, noisy data, and gaps (e.g. due to 



cloud cover, instrument failure) are familiar constraints [58], which obfuscate different statistical resilience indicators to 
varying degrees [59]. To understand what aspects of resilience remote sensing can capture key questions are: What 
biosphere state variables reflect a system’s resilience i.e. are governed by negative feedback? What remote sensing data 
products (if any) can provide an indirect proxy for these state variables, and how good/bad a proxy? What are the relevant 
temporal and spatial scales of the system and the monitoring (and do they overlap)?  
 
Evolution by natural selection tends to optimise survival and/or reproduction of organisms, including adaptively refining 
their physiological self-regulation mechanisms. For example, plants self-regulate photosynthetic activity and respiration, 
having evolved to maximise net primary production subject to environmental constraints (including avoiding damage 
from excess wind or radiation, and in the case of deciduous plants avoiding costly maintenance of leaves in winter or in 
drought). Hyperspectral indices and fluorescence are sensitive to both short-term changes in photosynthesis and 
interacting photo-protective mechanisms, and are often highly variable. The normalised difference vegetation index 
(NDVI) is a simple measure of greenness related to chlorophyll, which relates (imperfectly) to gross primary production. 
However, it is also sensitive to changes in species composition, vegetation health, and vegetation distribution [58]. 
Furthermore, it saturates in densely vegetated settings (e.g. forests). The enhanced vegetation index (EVI) has less 
saturation in such settings, but both NDVI and EVI have issues in drylands with lots of bare soil, where Soil Adjusted 
Indices (SAVI and MSAVI) retrieve more vegetation signal. Models of Net or Gross Primary Productivity (NPP or GPP) 
often use vegetation indices in combination with other datasets [60], whilst models of Leaf Area Index (LAI) are derived 
from reflectance data [61]. All these optical indices can change on relatively fast timescales as plants respond to seasonal 
change in light, temperature and water availability. Thus, for fast-responding vegetation (e.g. annual grasses), they may 
reflect whole-plant resilience.  
 
However, for slower-growing, larger, perennial plants – especially trees – the fluctuating greenness of leaves does not 
fully capture whole-plant resilience. Rather, these plants regulate their biomass, which is predominantly woody material. 
Microwave backscatter and related indices such as Vegetation Optical Depth (VOD) can be sensitive to aboveground 
biomass but also soil and vegetation moisture content, and surface and canopy roughness. LiDAR can characterise forest 
structure and thus biomass, but has relatively short duration missions, limited spatial coverage, and is insensitive at low 
biomass levels. Combining independent data products [62, 63] may reveal more about ecosystem resilience. For example, 
combining an optical vegetation index (e.g. NDVI) and a microwave-based index (e.g. VOD) may give better monitoring 
of fluctuations in aboveground biomass and associated resilience [63]. Most published attempts to monitor resilience 
(Table 1) focus on NDVI, with some using EVI, modelled GPP or LAI (Table 1). A couple of studies use VOD as a 
proxy for tropical forest biomass [34, 64] which better captures changes in forest cover than NDVI [64]. However, in 
general there needs to be greater consideration of which indexes are appropriate for monitoring resilience of the 
vegetation in question.  
 
Spatial resolution poses another fundamental issue. Individual remote sensing pixels in satellite products are rarely fine 
enough resolution to capture individual plants hence most data products sample aggregated behaviour. The implicit 
working hypothesis must be that nearby plants exhibit correlated resilience responses to larger-scale drivers (such as 
climate variability). However, pixels may mix differing resilience responses of different plants to the same driver, e.g. 
canopy trees and underlying grass in savannah responding differently to fire. Furthermore, pixels are typically aggregated 
to larger spatial scales, ranging up to ~1–10 km, before performing resilience analysis (Table 1). This amplifies the 
potential problem of different vegetation types or different ecosystems within a grid cell exhibiting different resilience 
responses. The problem will be less acute in more spatially uniform systems, e.g. the Amazon rainforest. However, for 
highly heterogeneous, densely human populated landscapes, e.g. Italy [50], it is an issue. 
 
At ecosystem scale there are multiple feedback loops involving multiple species affecting shared state variables such as 
fractional tree coverage, or resource pools e.g. nutrients or soil water, which can exhibit system-level resilience. The 
presence and strength of negative feedback on such variables – i.e. their resilience – is widely recognised, but not 
generally understood as refined by natural selection – although see [65]. As such, we may expect regulation to be weaker 
than for the productivity or biomass in individual plants, but nonetheless important to measure. Only some ecosystem 
variables are accessible to current remote sensing, e.g., ground-penetrating synthetic aperture radar (SAR) can provide a 
reliable proxy for the water table depth in peatlands, which is regulated by the ability of the bog to retain water, as well as 
incoming rainfall [17]. Multi-modality of remotely-sensed tree cover with respect to climate and other drivers has been 
used to estimate alternative ecosystem stable states and spatially locate them [35, 36, 66-68]. However, coarse spatial and 
temporal resolution limits its potential for extracting spatial or temporal resilience metrics.  
 
At the biome scale there are instances of large-scale feedback acting to regulate biome state, notably the Amazon 
rainforest recycling (and redirecting) its own rainfall [69], and boreal forests warming their winter regional climate [70]. 
Associated loss of resilience could end in large-scale forest dieback [5]. For the Amazon, modelling suggests that the 
aggregate impact of the forest on atmospheric CO2 variability could provide a (remotely sensed) proxy of resilience [71]. 
Specifically, fluctuations in forest carbon storage and hence atmospheric CO2 become more sensitive to temperature 
anomalies as the forest loses resilience [71].  



 
At the biosphere scale, the existence of negative feedbacks is now widely recognised – despite perennial debate over 
whether it can have an evolutionary explanation [12]. A key example are the land and ocean carbon sinks, which together 
remove ~55% of anthropogenic CO2 emissions [72] and thus also damp global warming. Remote sensing of spatial and 
temporal fluctuations in atmospheric CO2, make the recovery rate of CO2 fluctuations a potential target for biosphere 
resilience sensing, which might be extended to methane (CH4) and other trace gases. 
 
A biosphere resilience sensing system should ideally span and connect these different scales from local to global in a 
single software platform, whereas existing studies are scattered across spatial scales (Table 1). Taking a top-down 
approach allows one to consider the whole system and look for large-scale patterns before trying to isolate the most acute 
problems [73]. That said human agency to improve biosphere resilience is often greatest at smaller ecological scales, so 
striving to resolve what is happening to resilience at those scales is essential. 
 
 
4. Results across scales 

 
Here we synthesise new analyses and existing results (Table 1) regarding terrestrial biosphere resilience across scales. 
Biosphere scale distinctions are fuzzy, but we loosely group them into global, biome-ecoregion, and ecosystem scale 
studies. We start by trying to get a global picture of biosphere resilience and its variation across space, and over recent 
time – to begin to see if patterns emerge.  
 
(a) Global vegetation model 
 
First, we consider; what absolute values of resilience and trends in resilience should we expect across different biomes 
and ecosystems? There is remarkably little research on this. To begin to address it, we undertake an illustrative analysis 
of results from a dynamic global vegetation model with land-use (LPJmL) forced with output from a climate model 
(GFDL-ESM2M), obtained from the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP, round 2b) [74, 75]. 
We focus on the AR(1) of modelled NPP as an indicator of whole plant resilience, and the interval 2000-2019, so that we 
can then compare results to analysis of remotely sensed data. The climate input is bias corrected and follows the historical 
model run to 2005 and the RCP8.5 scenario thereafter, which most closely tracks actual emissions up to 2020 [76]. 
 
Mean AR(1) of monthly NPP (2000-2019), having removed the seasonal cycle and trend in each location, shows clear 
spatial structure (Figure 1a). AR(1) is highest (lowest resilience) in some dry regions and lowest (highest resilience) in 
some temperate ecosystems and e.g. on the wet edge of the Sahel. Negative AR(1) values, which occur across parts of the 
boreal regions and also e.g. in the eastern Himalayan plateau, suggest poor fit of an autoregressive model and should be 
ignored. Overall, there is some hint that wetter locations tend to have greater resilience of modelled NPP than drier 
locations. 
 
The trend in AR(1) of monthly NPP (2000-2019) shows a variable spatial picture (Figure 1b), with no significant global 
average trend (τ=-0.08). The spatial scatter suggests internal variability, including of the climate input, influences the 
trends. An overall anthropogenic forcing signal should bring some spatial coherence, even if manifesting through e.g. 
complex-structured changes in the hydrological cycle. There is some spatially coherent behaviour, including loss of 
resilience in e.g. southwest North America, Central America, the southeast Amazon, Caatinga, and Gran Chaco of South 
America. Some of these regions have been experiencing drought with an anthropogenic forcing component [77, 78]. 
However, internal (multi)decadal climate variability also influences drought and in one instance of a climate model, the 
timing of internal variability is unlikely to match reality.  
 
Other recent work has analysed annual GPP from a large ensemble of climate models’ future projections [79], using the 
ratio of the squared mean and variance of annual GPP as a ‘resilience indicator’, proportional to the return period of the 
largest tolerable perturbation. This assumes a multi-year timescale of recovery, when it can be sub-annual [53-55]. 
Notable is a predicted increase in inter-annual GPP variability across much of the tropics under high-end climate forcing, 
especially in the Amazon [79].  
 
(b) Global data 

 
Turning to global analysis of remotely sensed data, a benchmark study [59] considered different measures of resilience of 
NDVI (2001-2006) including AR(1), spectral entropy, spectral scaling, and their reliability to different types of noise, 
comparing to in situ observations at 1085 locations. Resilience (1 – AR(1)) was found to be high in forests and lower in 
shrubland, (woody) savannah, and grasslands. Subsequent work [80] fitted an autoregressive model for NDVI (1981-
2006) that converges in 77.5% of terrestrial pixels, with regions of poor fit in high northern latitudes, coastal, desert or 



tropical regions. In the remaining regions, AR(1) is highest (lowest resilience) in semi-arid settings across the planet with 
low tree cover and high bare soil fraction. Lowest AR(1) (highest resilience) is seen in temperate ecosystems and on the 
wet edge of the Sahel, where there is high tree cover and low bare soil fraction. Some other published global studies use 
measures of ‘resilience’ that are not directly related to recovery rate [16, 21]: LAI maximum stress/recovery time also 
shows maxima in tropical forests and minima in semi-arid regions [21], whereas GPP drought recovery time is longest in 
some tropical rainforests [16].  
 
Following [80], we have targeted NDVI at monthly resolution (here 2001-2020 from MODIS), utilising the Google Earth 
Engine (GEE) software portal and cloud compute capability as a platform, and introduced algorithms to calculate AR(1), 
having removed the mean seasonal cycle and trend in each location (Figure 2a). We filter out locations with NDVI<0.18, 
which removes ice sheets and deserts. Some boreal locations have AR(1)<0 and should be ignored. The mean AR(1) 
shows spatial patterns (Figure 2a) consistent with earlier work [80] (although we have not filtered for goodness of model 
fit). There is a positive correlation with AR(1) of modelled NPP (Figure 1a) – excluding pixels with negative AR(1) 
values; Pearson’s r=0.44, Spearman’s ρ=0.41 (both p<10-6) – despite differences in spatial pattern and NDVI being only 
indirectly related to NPP. Resilience of NDVI is lowest in semi-arid regions and highest in tropical forests, indicating a 
clear dependence on precipitation.  
 
Some existing studies have started to consider trends in ‘resilience’ over time, but do not present a mean value as a 
baseline, and use composite indicators that do not isolate recovery rate [56, 57]. Trends in a composite indicator of 
autocorrelation, standard deviation, skewness and kurtosis of NDVI over 1981-2015 hints at greatest loss of ‘resilience’ 
in the tundra [56]. A more confusing composite indicator hints at primary production showing greatest ‘resilience’ loss in 
tundra and boreal forest [57]. However, these are regions where our results and previous studies [80] suggest poor fit of 
an autoregressive model. 
 
In an attempt to isolate changes in recovery rate, we consider trends in AR(1) of monthly NDVI (MODIS) over 2001-
2020 (Figure 2b). These trends could be (partly) due to internal decadal climate variability [81] and we have not assessed 
their statistical significance. Nevertheless, in the global average, AR(1) has increased (resilience has declined); excluding 
rock/ice and desert biomes, and pixels with negative mean AR(1) values, τ=0.61. Despite a scattered spatial picture, there 
are some spatially coherent regions of consistent trends. Pronounced increases in AR(1) (resilience loss) are seen in e.g. 
the Eastern Mediterranean, Central America, and the Caatinga (northeast Brazil), all of which have been experiencing 
prolonged drought, potentially with an anthropogenic forcing component [77]. Despite no overall correlation (Pearson’s 
r=-0.024, Spearman’s ρ=-0.025) with our model predicted changes in resilience of NPP (Figure 1b), in these regions, 
there is some agreement over resilience loss.   
 
(c) Biomes-ecoregions 

 
Particular biomes or ecoregions that may be vulnerable to abrupt transitions or ‘tipping points’ [5] and are therefore 
priority targets for resilience sensing include: tropical forests and savannahs [35, 36, 71]; boreal forests, tundra and 
permafrost [82, 83]. Existing resilience studies (Table 1) span an eclectic mix of biomes including tropical forest, 
savannah, and Mediterranean ones. Sometimes they add spatial resolution to global studies (but rarely temporal 
resolution). Early work on Mediterranean forest, woodland and scrubland extracted variation in recovery rate across 
landscapes [54, 55]. Global analyses already indicate fundamental differences in resilience of NDVI across biomes 
(Figure 2a), and hint at differing trends in resilience across biomes (Figure 2b).  
 
Aggregating the AR(1) trend results (Figure 2b) by biome (excluding deserts and xeric shrub lands) reveals that the 
strongest increasing trends of AR(1) of NDVI (2000-2020) are in tropical and subtropical dry broadleaf forests (τ=0.72), 
montane grasslands and shrublands (τ=0.69), and temperate coniferous forests (τ=0.63) (although their significance has 
not been tested). Zooming into a region of South and East Asia that spans all three of these biomes, we can pick out 
example ecoregions with positive AR(1) trends (Figure 3): In India, the Central Deccan Plateau dry deciduous forests 
(τ =0.67). In western China, a group of conifer forest ecoregions, especially the Hengduan Mountains subalpine conifer 
forests (τ =0.78) and Qionglai-Minshan conifer forests (τ =0.79). Also, a large part of the Mongolian steppe appears to 
have a coherent loss of resilience, including part of the Ordos Plateau steppe montane grassland (τ =0.62). 
 
Tropical forest biomes show mixed trends in AR(1) of NDVI (Figure 2b), but typically have a low mean AR(1) (Figure 
2a). Instead, VOD can provide a better proxy for fluctuations in aboveground biomass [64]. Within tropical forests 
biomes, AR(1) of NDVI and VOD both show a general decrease in resilience as mean annual precipitation (MAP) drops 
below ~2000 mm yr-1 [34]. Recent work, focused on the Amazon shows an overall pronounced increase in AR(1) of 
VOD (decline in resilience) since the early 2000s [64]. AR(1) of NDVI shows a less consistent signal (Figure 2b), but has 
also increased [64]. Observed increases in AR(1) of VOD (and NDVI) are generally greater in drier parts of the Amazon 
and closer to human settlements and roads [64]. This is consistent with inferences from multi-modality of tree cover [35, 
36, 67] that in some locations tropical forest and savannah can represent alternative stable states under the same climate 



boundary conditions – although confounding variables need to be carefully accounted for [67]. Resilience is predicted to 
decline along gradients of decreasing rainfall for woodland/forest, or increasing rainfall for grassland/savannah. This 
hypothesis has been tested on other continents using spatial resilience indicators and leveraging high spatial resolution 
remote sensing data. Peaks of spatial variance and spatial correlation were found to correspond to regions of inferred bi-
modality of EVI along forest-savannah gradients in Australia and Congo-Gabon [40]. Increasing spatial variance, spatial 
correlation, spatial skewness, and spatial spectra are also found along spatial gradients from grassland to woodland in 
Serengeti-Mara (where bi-stability is not expected) [39, 40] – emphasising that resilience loss does not necessarily imply 
an approaching tipping point (Box 1).  
 
(d) Ecosystems 

 
The highest spatial resolution satellite remote sensing can enable zooming into resilience at ~10 m ecosystem scales, 
including resolving highly spatially heterogeneous perturbations such as fires – although our prototype global portal 
(Figures 2 and 3) is not yet set up to zoom in to this resolution. Even higher resolution is achievable with airborne remote 
sensors e.g. [31]. Existing studies (Table 1) examine just a small subset of ecosystems, but they overlap with some 
particularly vulnerable ones including Mediterranean vegetation, savannas, and California woodland. Some ecosystems 
may be particularly vulnerable to abrupt change and/or tipping points due to localised feedbacks, including forests subject 
to dieback [84], peatlands [85], and regularly patterned vegetation [86] (although see [87] on the latter). Indeed, analysis 
of Californian forests at fine spatial and temporal resolution has revealed statistical early warning signals of rising AR(1) 
of NDVI prior to forest dieback mortality events [88], increasing confidence that resilience sensing can help highlight 
where tipping points may be prone to occurring. 
 
Analysis of UK peatlands water table depth (measured with synthetic-aperture radar; SAR) at fine spatial and temporal 
resolution has revealed varying recovery time of water table depth from drought, picking up areas of greater drainage 
(both natural and anthropogenic) and of more severe erosion (gullying) as having longer recovery times (compared to 
nearby locations experiencing comparable perturbation) [17]. Varying recovery time from vegetation management – 
traditionally by fires – shows that larger and more severe management interventions (measured with difference 
Normalised Burn Ratio; dNBR) lead to longer recovery times of NDVI [18]. However, further work is needed to extract 
recovery rates from the large amounts of data. 
 
Regular patterns of dryland vegetation are a manifestation of competing positive and negative feedbacks on fine spatial 
scales of order ~10-100 m, so require fine spatial resolution satellite remote sensing to be resolved. Spatial skewness may 
track vegetation patterning along environmental gradients but at questionably coarse spatial resolution (400 m) [89]. 
Instead feature vectors applied to 10 m resolution data allow the nature of patterning to be converted to a metric [42, 90], 
which can then be tracked temporally [42]. Treating seasonal rains as a perturbation, recovery time can be directly 
extracted and compared to AR(1) estimated after the seasonal cycle has been removed [42]. They give consistent 
resilience results, including across mean annual precipitation (MAP) gradients [42]. 
 
 
5. Discussion 
 
(a) Advancing resilience governance and management 

 
Resilience sensing could inform several scales of biosphere governance and management and address a widely stated 
critical knowledge gap. Internationally, the Convention on Biological Diversity (CBD) includes, as part of Aichi 
biodiversity target 15, enhancing ecosystem resilience. However, the Intergovernmental Science-Policy Platform on 
Biodiversity and Ecosystem Services (IPBES) [91] reports that progress towards this target is “unknown” highlighting it 
as a knowledge gap and stating that: “the lack of both quantitative indicators and qualitative information means that no 
assessment of progress was possible”. As we have reviewed, quantitative indicators and qualitative information are 
available, and a resilience sensing system could help provide a regular status report on biosphere resilience that could 
form part of IPBES assessment reports. 
 
At the national level, a resilience sensing system could help provide regular national biosphere resilience assessments. 
This is particularly pertinent within the UK, which recently passed into law an Environment Act (2021) that requires 
‘local nature recovery strategies’ for all areas of England. Already, The Well-being of Future Generations (Wales) Act 
(2015) has as one of its goals a resilient Wales including “healthy functioning ecosystems that support social, economic, 
and ecological resilience”. Furthermore, The Environment (Wales) Act (2016) gives National Resources Wales (the 
national environment agency) under the Sustainable Management of Natural Resources (SMNR), the Aim 2: Ecosystems 
are Resilient to Expected and Unforeseen Change. These two Acts require that public bodies in Wales work to maintain 
or enhance ecosystem resilience but currently “a major impediment to this objective is the difficulty of practically 



measuring resilience for management purposes” [92]. A pragmatic approach currently used focuses on attributes of 
diversity, extent, condition, connectivity, and adaptability (‘DECCA’) that have previously been causally linked with 
ecosystem resilience [92]. A resilience sensing system can offer a more direct (and complementary) approach.  
 
At the regional-to-local level, a resilience sensing system could help governance authorities and land managers identify 
locations to target actions to increase resilience, and to monitor progress towards resilience goals. Particularly pertinent 
are conservation areas and their associated governance bodies, including national parks. National parks around the world 
are beginning to make increasing resilience a goal, often framed in terms of resilience to climate change – i.e. a wider 
factor not under their direct control. For example, in the UK, the Management Plan for Dartmoor National Park (2021) 
has as part of its vision to make Dartmoor “climate resilient”. Dartmoor’s blanket peat biome is particularly vulnerable to 
climate change [93], and existing resilience sensing results already suggest where recovery rate of the water table from 
drought events is slowest [17].  
 
Other studies are starting to monitor resilience within managed lands of sub-Saharan Africa (Table 1). This raises the 
critical question of how resilience sensing can become useful for land managers on the ground. A computational cloud-
based resilience sensing system/portal could empower local users seeking to enhance ecological resilience and facilitate 
international knowledge exchange. This is particularly important for those without access to local high performance 
computing power. For example, in the semi-arid rangelands of Africa, land-users and managers are increasingly seeking 
to adapt management practices to reverse long-term trends of degradation and enhance resilience of ecosystem service 
provision, and thus livelihoods. In many cases, they are already using remote sensing products to monitor ecosystem 
health and productivity, distribution of invasive species, or other key indicators to facilitate adaptive management [94]. 
To maximise its potential, a global portal needs to be interactive, allowing the user to define areas of interest and repeat 
automated analyses over time, to assess whether management interventions are having an effect.  
 
(b) Limitations and further research 

 
Our synthesis of review and research serves to illustrate the potential (and some pitfalls) of a resilience sensing system for 
the terrestrial biosphere. A practical limitation in applying resilience sensing is the potential mismatch of timescales 
between getting feedback from resilience sensing and altering actions affecting resilience. Vegetation resilience has 
timescales of order a month to a few years, although detecting statistically significant changes in resilience takes longer. 
The timescale of enacting governance and management changes depends on the spatial scale. Local management 
interventions could conceivably change resilience relatively rapidly, whereas governance of global change appears 
woefully slow, and the change itself – especially climate change – contains considerable inertia. 
 
Methodological and application limitations invite many avenues for further research and development. Among the most 
important: The most appropriate remote sensing products and method of resilience sensing depends on the ecological and 
management context (i.e. the resilience of what to what that a scientist or manager seeks to monitor) and needs to be 
deduced. Different remote sensing proxies appear better for different biomes-ecoregions-ecosystems, even when the focus 
is just on vegetation resilience. Resilience in NDVI patterns is not always equivalent to resilience in the provision of 
ecosystem services. When looking beyond vegetation to resilience of ecosystem properties (e.g. tree fraction, water table 
depth) other proxies need to be assessed. Crucial to that assessment are; consideration of how noise in remote sensing 
proxies affects resilience indicators, assessing model adequacy, and testing purported signals against null models – i.e. 
increasing the rigour of analyses.  
 
Fundamental work is needed to assess what can give rise to observed trends in e.g., AR(1) (Figures 2b, 3). Further 
dynamic global vegetation model experiments (e.g. Figure 1b), subject to observed climate variability, different climate 
forcing and land-use change scenarios, can help assess what trends in resilience to expect across different biomes and 
ecosystems under different types of forcing. The effect of ongoing land-use changes on resilience can be examined in 
remotely sensed data, e.g. comparing resilience trends in neighbouring locations with differing land-use change. 
Statistical research is warranted to assess how long a sampling interval is required to pick up significant trends in 
resilience. Automating the assessment of model fit and significance testing against null models could form a valuable 
‘screening’ part of a portal. To address how spatial scale affects resilience expectations, both fine-resolution model output 
and data can be aggregated to coarser spatial scales to assess how this affects resilience indicators. Exploiting the high 
spatial resolution of remotely sensed data by expanding and exploring the application of spatial resilience indicators 
offers a key opportunity. Theoretical work could e.g. aggregate the results of an existing spatial model [95] to larger 
‘pixel’ sizes to assess the robustness of spatial autocorrelation as a resilience indicator.  
 
Looking more broadly: There is the potential to bring other data streams into a resilience sensing system. For the 
terrestrial biosphere, this could start with e.g. existing data from the FLUXNET global network of micrometeorological 
sites, and the US long-term ecological research (LTER) network of sites. At one LTER site, a resilience indicator has 
already been shown to usefully forewarn of a grassland to shrubland state transition [96]. Remote sensing of biosphere 



resilience could be extended to marine and freshwater aquatic ecosystems, including lakes [48], where experimental 
studies show that resilience indicators work [97]. Satellite remote sensing is restricted to shallow water depths, but 
autonomous vehicle sampling can help address this. A further key opportunity is to extend resilience sensing to social-
ecological systems by integrating social and ecological data, including through social sensing [98] and citizen science 
initiatives [99]. 
 
 
6. Conclusion 

 
We have outlined how a biosphere resilience sensing system could raise collective awareness of risks to our life-support 
systems, making it easier to see where ecosystem resilience is declining, and to see whether deliberate efforts to increase 
resilience are working. We have anchored on a simple but mathematically rigorous definition of resilience as recovery 
rate from perturbations. Others will no doubt highlight other aspects of ‘resilience’ that should be considered. We simply 
ask that these are clearly defined and quantifiable, with definitions consistently applied – then they can be added to a 
resilience sensing system. We also chose to focus on the terrestrial biosphere, satellite remote sensing, and advances in 
software and cloud computing. However, we recognise that the aquatic and marine biosphere is just as important, that 
direct observations are often more accurate, and that the greatest value of technology may be to increase usability and 
accessibility. Our critical review of existing efforts to remotely sense the resilience of the terrestrial biosphere suggests a 
very mixed bag – ranging from outright failure to rigorous consideration of statistical robustness. There has been 
remarkably little consideration of what subset of biosphere resilience remote sensing allows us to monitor. Nevertheless, 
existing work and our illustrative results do show how resilience sensing can be nested across scales, could aid 
management and governance at these different scales, and can address a widely stated critical gap in quantitative 
indicators of resilience. There is clearly much room for further research and development, but the task could not be more 
salient or timely. If we can better sense where resilience is being lost then we have a better chance of correcting our 
mistakes, and if we can better sense where things are going right then we can learn something about which positive 
actions we should seek to replicate.  
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Tables 
Table 1. Remote sensing studies attempting to extract temporal or spatial indicators of terrestrial ecosystem resilience.  
 

Scale, 
location 

Year Ref. Vegetation, 
perturbation 

Index(es) 
(satellite/ 
database) 

Time- 
span 

Resolution 
(native) 

‘Resilience’ 
metric(s) 

Recovery 
rate? 

Space* Time  
Global          
World 2014 [59] 15 land cover 

types 
NDVI 
(MODIS) 

2001-
2006 

7 km 
(250 
m) 

16 d AR(1) , SD, 
CV, 
spectral 
entropy, 
spectral 
scaling 

Yes 
(AR(1)) 

World 2015 [80] AR model fit 
subset 

NDVI 
(GIMMS) 

1981-
2006 

0.072° 1 mth 
(15 d) 

AR(1) Yes 

World 2017 [16] drought GPP 
(MODIS) 

2000-
2010 

0.5°  
(1 km) 

1 mth  
(1 d) 

recovery 
time 

Not really 

World 2020 [21] drought, fire LAI 
(GLASS, 
GIMMS) 

1982-
2016 
1982-
2011 

0.05° 
0.083° 

8 d 
15 d 

max. stress 
/recovery 
time 

Problematic 

World 2021 [56]  NDVI 3 g 
(GIMMS) 

1981-
2015 

0.083° 1 mth ACF-1, 
variance, 
skewness, 
kurtosis 

Problematic 
(composite 
indicator) 

World pre-
print 

[57]  GPP, 
ecosystem 
respiration 
(ESDL) 

2001-
2018 
 

0.25° 7 d AR(1), 
variance, 
skewness, 
kurtosis  

No 
(speeding 
up 
included, 
composite 
indicator) 

Biome          
S Italy 2004 [49] forests, 

woods and 
scrub 

NDVI 
(AVHRR) 

1985-
1995 

1.1 km 1 y  
(1 d) 

trend 
persistence 

No 

S Italy 2006 [54] forests, 
woods and 
scrub 

NDVI 
(SPOT-
VEG.) 

1998-
2003 

1 km 10 d power 
spectral 
density, 
DFA 

Yes 

Sardinia 2008 [55] shrub land, 
transitional, 
forest 

NDVI, 
NDII 
(SPOT-
VEG.) 

1998-
2003 

1 km 10 d DFA Yes 

Italy 2008 [50] forests, 
woods and 
scrub 

NDVI 
(GIMMS) 

1982-
2003 

8 km 15 d trend 
persistence 

No 

Kavango-
Zambezi 

2013 [51] savannah NDVI 
(TM/MSS 
Landsat) 

1973-
2009 

30-60 
m 

22 
images 

trend 
persistence 

No 

Southern 
Africa 

2014 [52] 5 biomes NDVI 
(GIMMS) 

1982-
2006 

5 km 1 y  
(16 d) 

trend 
persistence 

No 

Tropics 2016 [34] tropical 
forests 

NDVI 
(MODIS), 
VOD 
(AMSR-E) 

2000-
2011 
 
2002-
2011 

5.6 km 
 
0.25° 

1 mth  
(8 d) 
1 mth  

AR(1) Yes 

Serengeti-
Mara 

2017  [39] savannah Woodland 
/grassland 
(ETM+ 
and ~800 
locations) 

1999-
2000 
snapshot 

30 m N/A spatial 
variance, 
spatial 
ACF-1, 
spatial 
skewness, 

Yes (spatial 
ACF-1) 



spatial 
spectra 

Congo, 
Australia 

2019 [40] forest-
savannah 

EVI 
(MODIS) 

2010 
(June-
Aug) 

250 m N/A spatial var., 
spatial 
ACF-1 

Yes (spatial 
ACF-1) 

Ireland 2020 [20] pastures EVI 
(MODIS) 

2003-
2019 

1 km 48 d  
(8 d) 

event size/ 
recovery 
time 

Problematic 

Amazon 
basin 

in 
press 

[64] rainforest VOD 
(VODCA), 
NDVI 
(AVHRR) 

1988-
2016 

0.25° 1 mth AR(1), 
variance 

Yes 
(AR(1)) 

Eco-
system 

         

N Italy 2006 [53] forest (5 
pixels), fire 

NDVI 
(SPOT-
VEG.) 

1998-
2003 

1 km 10 d DFA Yes 

Nether-
lands 

2017 [31] tidal marsh 
(2 sites), 
inundation 

Aerial 
photos, 
NDVI 

1976-
2012 

0.25 m 1 y  recovery 
rate, spatial 
variance, 
spatial 
correlation 

Yes 
(recovery 
rate) 

California 2019 [88] forests NDVI 
(Landsat 
7) 

1999-
2015 

30 m 16 d Bayesian 
DLM 
AR(1) 

Yes  

UK 2021 [17] peatland, 
drought 

SAR 
(Sentinel-
1) 

2018-
2019 

10 m 12 d recovery 
time 

Not really 

UK 2021 [18] peatland, 
management, 
fires 

dNBR, 
NDVI 
(Sentinel-
2) 

2016-
2020 

10 m 2-3 d recovery 
time 

Not really 

Sahel 2021 [42] patterned 
vegetation 
(40 sites) 

NDVI, 
‘Offset50’ 
(Sentinel-
2) 

2016-
2019 

10 m 1 mth 
(2 d) 

recovery 
rate, AR(1), 
variance 

Yes 

Sudan pre-
print 

[89] patterned 
vegetation 

EVI 
(MODIS) 

2001-
2016 

400 m 1 mth AR(1), 
variance, 
sensitivity, 
spatial 
skewness  

Yes 
(AR(1)) 

 
*Note: at the equator for longitude and for latitude anywhere 0.1° = 11.1 km. 
 
Abbreviations: NDVI = Normalised Difference Vegetation Index; GPP = Gross Primary Productivity; LAI = Leaf Area 
Index; VOD = Vegetation Optical Depth; EVI = Enhanced Vegetation Index; SAR = Synthetic Aperture Radar; dNBR = 
difference Normalised Burn Ratio; DLM = Dynamic Linear Model  
 
 
  



Figures 
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Figure 1. Global maps of modelled vegetation resilience: a. Autocorrelation function (ACF, equivalent to 
AR(1)) of modelled monthly NPP (2000-2019) from the LPJmL global vegetation model forced with bias-
corrected climate input from the GFDL-ESM2M climate model, where high ACF (AR(1)) corresponds to low 
resilience (and vice versa), and negative ACF (AR(1)) suggests poor fit of an autoregressive model. b. Trend in 
ACF (AR(1)) of monthly NPP (2000-2019) from the same model scenario, measured as Kendall τ rank 
correlation coefficient, using a 10-year sliding window. Prior to analysis, data are seasonally detrended at the 
pixel level (with seasonal and trend decomposition using Loess; ‘STL’) using the ‘bfast’ package in R [100-102]. 
Regions where NPP <10-9 kg m-2 s-1 are filtered out and shown in dark grey. 
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Figure 2. Global maps of remotely sensed vegetation resilience: a. Mean AR(1) of monthly NDVI (2001-2020 
from MODIS), where high AR(1) corresponds to low resilience (and vice versa), and negative AR(1) suggests 
poor fit of an autoregressive model. b. Trend in AR(1) (Kendall τ rank correlation coefficient) of monthly 
NDVI 2001-2020, using a 10 year sliding window. Prior to analysis, the seasonal cycle is removed by 
subtracting the 20 year monthly average, then a 25 month moving average is subtracted to remove the trend (a 
sample of 100 random pixels were analysed to confirm that this seasonal detrending approach gives 
comparable results to the method used in Figure 1). Regions where NDVI <0.18 are filtered out and shown in 
grey. 
 
  



 
 
Figure 3. Zooming into trends in AR(1) of monthly NDVI (2001-2020) in South and East Asia (from Figure 2b). 
This shows example ecoregions from the three biomes with globally the most positive AR(1) trends (montane 
grasslands and shrublands, tropical and subtropical dry broadleaf forests, and temperate coniferous forests). 
In India, the Central Deccan Plateau dry deciduous forests (τ =0.67). In Myanmar/China, a group of three 
coniferous forest ecoregions (west to east): Nujiang Langcang Gorge alpine conifer and mixed forests (τ =0.60), 
Hengduan Mountains subalpine conifer forests (τ =0.78), Qionglai-Minshan conifer forests (τ =0.79). In 
northern China: Ordos Plateau steppe montane grassland (τ =0.62). Regions where NDVI <0.18 are filtered out 
and shown in grey. 
 


