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Abstract 

This thesis examined the aetiology of sensorimotor impairments in Autism Spectrum 

Disorder: a neurodevelopmental condition that affects an individual’s socio-

behavioural preferences, personal independence, and quality of life. Issues relating to 

clumsiness and movement coordination are common features of autism that contribute 

to wide-ranging daily living difficulties. However, these characteristics are relatively 

understudied and there is an absence of evidence-based practical interventions. To 

pave the way for new, scientifically-focused programmes, a series of studies 

investigated the mechanistic underpinnings of sensorimotor differences in autism. 

Following a targeted review of previous research, study one explored links between 

autistic-like traits and numerous conceptually-significant movement control functions. 

Eye-tracking analyses were integrated with force transducers and motion capture 

technology to examine how participants interacted with uncertain lifting objects. Upon 

identifying a link between autistic-like traits and context-sensitive predictive action 

control, study two replicated these procedures with a sample of clinically-diagnosed 

participants. Results illustrated that autistic people are able to use predictions to guide 

object interactions, but that uncertainty-related adjustments in sensorimotor integration 

are atypical. Such findings were advanced within a novel virtual-reality paradigm in 

study three, which systematically manipulated environmental uncertainty during 

naturalistic interception actions. Here, data supported proposals that precision 

weighting functions are aberrant in autistic people, and suggested that these 

individuals have difficulties with processing volatile sensory information. These 

difficulties were not alleviated by the experimental provision of explicit contextual cues 

in study four. Together, these studies implicate the role of implicit neuromodulatory 

mechanisms that regulate dynamic sensorimotor behaviours. Results support the 

development of evidence-based programmes that ‘make the world more predictable’ 

for autistic people, with various theoretical and practical implications presented. 

Possible applications of these findings are discussed in relation to recent multi-

disciplinary research and conceptual advances in the field, which could help improve 

daily living skills and functional quality of life.  
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Introduction 

Autism Spectrum Disorder (ASD; hereafter autism1) is diagnosed in 1-2% of people 

according to patterns of restricted behaviour and differences in social interaction and 

communication (American Psychiatric Association, 2013; World Health Organisation, 

2018; Baio et al., 2018). These core features are relatively well-established, having 

formed the basis of longstanding empirical and theoretical enquiry (Kanner, 1943; 

Asperger, 1944; Wing & Gould, 1979; Cashin & Barker, 2009). However, autistic 

people typically face a number of additional difficulties that can adversely impact on 

independence, health, and quality of life (Jasmin et al., 2009; Ikeda et al., 2014; Croen 

et al., 2015; Van Heijst & Geurts, 2015; Lord et al., 2018). Such outcomes represent a 

key priority for research, as highlighted by the National Institute for Health and Care 

Excellence (NICE, 2013) and the UK autism community (Pellicano et al., 2014). 

Academic studies are often perceived to overlook these aspects of day-to-day life, by 

focusing on medically-driven hypotheses in neurology, genetics and cognitive sciences 

(Pellicano et al., 2014). In particular, there is a lack of research into many ‘secondary’ 

characteristics that are fundamental to the lives of autistic people (e.g., gastrointestinal 

issues, co-occurring conditions, clumsiness, and sensory disturbances; Chaidez et al., 

2014; Lai et al., 2014; Robertson & Baron-Cohen, 2017). Research into these 

secondary features could help elucidate diverse clinical manifestations and 

neurological mechanisms of autism, whilst improving our ability to effectively diagnose 

and manage the condition (Haker et al., 2016; Robertson & Baron-Cohen, 2017). 

A prevalent aspect of daily living difficulty in autism relates to impairments in 

sensorimotor control, defined as: “the sensory, motor, and central integration and 

processing components involved in maintaining joint homeostasis during bodily 

movements” (Lephart et al., 2000). Indeed, some of the earliest accounts of autism 

recorded movement-based disturbances, with descriptions of “clumsiness” appearing 

in both Kanner’s (1943) and Asperger’s (1944; in Hippler & Klicpera, 2003) seminal 

work. Numerous first-hand reports have since supported these accounts, with 

challenges relating to movement control and skill execution often conveyed by autistic 

people (for overview, see Robledo et al., 2012). Though not yet considered essential 

for diagnosis, such features are unmistakably common in autism, with prevalence rates 

                                                           
1 To acknowledge the preferences held by many individuals within the UK autism community, the 
present work uses identity-first language and refers to ASD as “autism” (see Kenny et al., 2016). 
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estimated at 79% (Green et al., 2009). In fact, some researchers argue that 

sensorimotor differences should be treated as ‘primary’ or ‘cardinal’ features of the 

condition (Leary & Hill, 1996; Ben-Sasson et al., 2009; Fournier et al., 2010; Whyatt & 

Craig, 2013b; Mosconi & Sweeney, 2015; Coll et al., 2020). This growing consensus 

has prompted calls for substantive empirical investigations in the field. 

Research suggests that sensorimotor issues are associated with key autistic-like traits 

and clinical outcomes. Autistic-like traits represent behavioural characteristics such as 

social imperviousness, directness in conversation, lack of imagination, affinity for 

solitude, and difficulty displaying emotions (Gernsbacher et al., 2017). While present 

in all individuals, these stable characteristics are generally high in autistic populations 

and form the basis of most clinical assessment procedures (e.g., Lord et al., 2000; 

Baron-Cohen et al., 2001). They also appear related to a person’s sensorimotor 

abilities, with levels of impairment on fundamental movement skill tests predicting 

various social communicative traits and clinically-related patterns of behaviour (Sutera 

et al., 2007; MacDonald et al., 2013; Hannant et al., 2016). Some of these features 

may vary over the course of development (Coll et al., 2020), though it is clear that there 

remains a strong and persistent continuation into adulthood (Fournier et al., 2010; 

Mosconi & Sweeney, 2015; Hannant et al., 2016; Coll et al., 2020).  

From a wider perspective, autism-related sensorimotor difficulties can restrict key day-

to-day abilities that enable independent living, such as handwriting, getting dressed, or 

learning to drive (Fuentes et al., 2009; Jasmin et al., 2009; Robledo et al., 2012; Cox 

et al., 2017). They may also contribute to increased obesity rates and reduced physical 

activity levels in autistic populations (Must et al., 2015; McCoy et al., 2016; Scharoun 

et al., 2017). Nevertheless, little is known about how to effectively manage these 

movement-related issues (Colombo-Dougovito & Block, 2019). Investigation into the 

mechanisms that cause sensorimotor differences in autism is crucial for effective 

practical interventions to be developed (Fournier et al., 2010; Coll et al., 2020). 

However, such research is currently limited in scope and quality, and significant gaps 

in our knowledge remain (Mosconi & Sweeney, 2015; Colombo-Dougovito & Block, 

2019). Given the close relationships between sensorimotor abilities and wide-ranging 

daily living functions, there is a compelling rationale for well-controlled, multidisciplinary 

studies in the field. This research could provide a foundation for future interventions 

aiming to improve health, independence, and quality of life in autistic people.  
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Accordingly, the present thesis investigated the aetiology of sensorimotor differences 

in autism. To do this effectively, while addressing shortfalls in current research, a 

holistic investigative approach has been adopted. Firstly, a range of multi-disciplinary 

evidence is reviewed and evaluated (Chapter 1), using a well-established model of 

human sensorimotor control (Land, 2009).  Here, a number of potential mechanisms 

and empirically-derived hypotheses have been identified, which were subsequently 

examined in a series of novel experiments (Chapters 2-4). Initially, these experiments 

aimed to refine our understanding of why autistic people experience sensorimotor 

difficulties, through integrating methodologies from cognitive psychology, kinesiology, 

virtual-reality and applied autism research (Chapters 2-3). Thereafter, the focus of the 

work shifts onto elucidating potentially fruitful avenues for prospective research and 

practical interventions that could be pursued to help autistic people manage and/or 

overcome sensorimotor issues in their day-to-day lives (Chapters 4-5).  
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Chapter 1 

Sensorimotor difficulties are extremely common in autism and are potentially cardinal 

features of the condition (Ben-Sasson et al., 2009; Fournier et al., 2010; Donnellan et 

al., 2013; Whyatt & Craig, 2013b; Mosconi & Sweeney, 2015; Coll et al., 2020). 

However, the mechanisms that underpin these functional impairments remain unclear 

(Fournier et al., 2010; Coll et al., 2020). This literature review examines what is 

currently understood about sensorimotor control in autism. Specifically, the nature of 

movement-related impairments is first summarised (Section 1.1) and various potential 

mechanisms are considered (Section 1.2). Following a growing consensus that 

predictive processing may be atypical in autism, Section 1.3 elucidates the 

computational processes that underpin neurotypical sensorimotor control. From here, 

a set of empirically-falsifiable hypotheses for autistic sensorimotor behaviours are 

formulated, using an established conceptual framework (Land, 2009). These novel 

hypotheses are then examined from previous research studies (Section 1.4), where a 

number of consistent themes and observations emerge. Together, this synthesis of the 

literature aimed to refine the potential sources of sensorimotor impairment in autism, 

so that precise empirical scrutiny could subsequently be applied in Chapters 2-4. 

 

1.1. An Overview of Sensorimotor Differences in Autism 

In recent years, differences in autistic sensorimotor control have been empirically 

examined. Here, diverse impairments in movement efficiency, sensorimotor 

integration, and action-related task performance have all been observed (Fournier et 

al., 2010; Gowen & Hamilton, 2013; Coll et al., 2020). However, these difficulties are 

highly variable, and a number of methodological limitations must be considered. 

Numerous investigations have studied performances on standardised sensorimotor 

tests, such as the Movement Assessment Battery for Children (Henderson & Sugden, 

1992) and the Physical and Neurological Examination for Subtle Motor Signs (Denckla, 

1985). Fournier et al. (2010) identified over fifty studies utilising such assessment 

protocols, highlighting a large pooled effect size for autism-related impairments in both 

upper- and lower-limb sensorimotor functions. Lower standardised scores were 

consistently detected during these battery tests, with particular difficulties emerging for 

dynamic interception skills like throwing and catching (see Green et al., 2002; 
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Vanvuchelen et al., 2007; Whyatt & Craig, 2013a; Ament et al., 2015). These findings 

align with reports of atypical hand-eye coordination and postural control in autistic 

people (Kohen-Raz et al., 1992; Ghaziuddin & Butler, 1998; Gepner & Mestre, 2002; 

Molloy et al., 2003; Glazebrook et al., 2009; Robledo et al., 2012) and have been 

replicated in more recent empirical work (Coll et al., 2020). However, the nature and 

severity of these impairments markedly varies between studies, and such variability 

can be obscured by standardised scoring methods (Whyatt & Craig, 2013b). Indeed, 

the reported prevalence of sensorimotor deficits varies from 21% to 100% (Ghaziuddin 

et al., 1994; Manjiviona & Prior, 1995; Miyahara et al., 1997; Green et al., 2002; Pan 

et al., 2009), and many tests can overlook subtle, potentially-significant indices relating 

to the underlying process of movement (Berkeley et al., 2001; Gowen & Hamilton, 

2013). Consequently, impairments in skill performance are a significant but potentially 

variable aspect of autism that require more thorough empirical scrutiny. 

Studies that focus on action kinematics (rather than general performance outcomes) 

illustrate that autistic people show atypical movement profiles. These differences 

emerge during simple tasks like pointing, reaching and grasping (Glazebrook et al., 

2006; Cook et al., 2013; Stoit et al., 2013; Sacrey et al., 2014; Crippa et al., 2015; 

Campione et al., 2016). For example, Cook et al. (2013) found that autistic people 

utilise more jerky arm movements than neurotypical controls when making horizontal 

sinusoidal reach actions. These clinically-related motor patterns deviated from 

established velocity profiles that are said to produce smooth and efficient actions (e.g., 

the two-thirds power law and minimum jerk principles of motion; Flash & Hogan, 1985; 

Todorov & Jordan, 1998). Atypicalities have also been detected in reflexive and 

involuntary motor responses (Teitelbaum et al., 1998; Karmel et al., 2010; Torres et 

al., 2013; Torres & Denisova, 2016), with autistic ‘micro-movement’ signals showing 

excess noise and randomness (Torres et al., 2013; Torres & Denisova, 2016). 

Therefore, kinematic studies consistently highlight compromised movement control in 

autistic people. These differences appear to be inherently linked to the phenotype of 

autism, and not a secondary consequence of co-occurring developmental delays or 

conditions (e.g., Attention Deficit Hyperactivity Disorder: ADHD; Developmental 

Coordination Disorder: DCD; see Piek & Dyck, 2004). Further scrutiny of these action 

profiles could present fruitful avenues for diagnostic and therapeutic developments 

(e.g., see Anzulewicz et al., 2016; Vabalas et al., 2020). 
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Atypicalities in sensorimotor integration are also broadly prevalent in autism. Sensory 

disturbances now form part of clinical diagnostic criteria (e.g., American Psychiatric 

Association, 2013), with hyper- and hypo-sensitivities common across touch, vision, 

smell, and sound (Robertson & Baron-Cohen, 2017). Though many of these features 

specifically relate to perceptual functions, disturbances also emerge in tasks that 

contain dynamic motor elements (Hannant et al., 2016). Indeed, reported differences 

in mechanoreception and movement sensitivity may represent key sources of difficulty 

in autism (Tomchek & Dunn, 2007; Fuentes et al., 2009; Blanche et al., 2012; Siaperas 

et al., 2012), with Gowen and Miall (2005) observing pronounced impairments in 

actions that involve a high degree of multi-sensory processing. However, there is a 

clear absence of low-level deficits in autistic sensory perception (Bertone et al., 2005; 

O’Riordan & Passetti, 2006). In fact, evidence suggests that some visual, tactile and 

proprioceptive inputs may even be enhanced in autistic people (Dakin & Frith, 2005; 

Blakemore et al., 2006; Mottron et al., 2006; Tommerdahl et al., 2007; Cascio et al., 

2008). Such findings indicate that autism-related atypicalities must exist at the level of 

interpretation and/or regulation of sensorimotor information (Gowen & Hamilton, 2013). 

By deciphering which underlying mechanisms are driving these atypical processing 

functions, research could help autistic people reach their full potential in various 

practical tasks (see recommended research in Cusack & Sterry, 2016). 

In spite of the significant and widespread differences discussed above, sensorimotor 

learning abilities are often unaffected in autism (Mostofsky et al., 2004; Gidley-Larson 

et al., 2008; Haswell et al., 2009; see Gowen & Hamilton, 2013). For example, a study 

by Mostofsky and colleagues (2004) found that adaptation rates during a ball catching 

task were not significantly different in autistic children when compared to neurotypical 

controls. These results are noteworthy, as they imply that sensorimotor differences are 

unlikely to result from any broad deficits in skill acquisition. However, findings are 

inconsistent in the field, with some studies observing autism-related learning difficulties 

during procedural action-based tasks (Mostofsky et al., 2000) and fundamental motor 

competencies (e.g., riding a tricycle; Larson & Mostofsky, 2008; see Bo et al., 2016). 

These inconsistencies further highlight the task-specific nature of clinical sensorimotor 

research and reinforce the need for greater, more detailed scrutiny into the 

mechanisms that underpin movement-related difficulties.  
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Crucially, many well recognised autistic-like traits and behaviours are preceded, and 

potentially caused, by sensorimotor differences (Dyck et al., 2006; Dziuk et al., 2007; 

Boyd et al., 2010; Turner-Brown et al., 2013; Estes et al., 2015; Casartelli et al., 2016; 

Hannant et al., 2016). This is perhaps unsurprising, as movement-based competencies 

are said to provide building blocks for adaptive social and cognitive development 

(Villalobos et al., 2005; Gernsbacher et al., 2008). The theoretical implications of these 

findings are significant as they suggest that sensorimotor atypicalities are a not simply 

a secondary consequence of inherent socio-behavioural traits. Instead, researchers 

claim that they may play a more central role than previously believed (Mosconi & 

Sweeney, 2015; Z. Wang et al., 2015). Indeed, at a neurocognitive level, disruptions 

in the sensorimotor system could represent a critical ‘intermediate phenotype’ of 

autism that lead to cascading secondary effects (e.g., language delays and socio-

emotional issues; Trevarthen & Delafield-Butt, 2013; Casartelli et al., 2016). 

Furthermore, difficulties with coordinating movements and integrating contextual cues 

could limit interpersonal interactions and learning opportunities during childhood (Bhat 

et al., 2011; Hannant et al., 2016). Together, these findings emphasise the importance 

of sensorimotor differences in autism and reinforce the need for research into the 

aetiology and mechanistic underpinnings of these key features. 

 

1.2. Theories of Autism and Possible Causes of Sensorimotor Differences  

When exploring the causes of sensorimotor differences in autism, one must first 

consider the multi-disciplinary evidence that already exists in the field. Indeed, proven 

‘interdependencies’ between autistic-like traits and functional sensorimotor abilities 

(Dyck et al., 2006) suggest that these wide-ranging features may share common 

mechanistic underpinnings (Leary & Hill, 1996; Nayate et al., 2005; Trevarthen & 

Delafield-Butt, 2013). This section examines various cognitive, neurological, and 

computational atypicalities that have been identified in autism and applied onto wider 

behavioural domains (e.g., perception, learning, and social functions). The possible 

influence of these factors on sensorimotor control are initially evaluated, to elucidate 

which specific mechanisms may be involved in limiting autistic movement skill abilities.  
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1.2.1. Existing Neurobiological and Psychological Research  

A substantive proportion of previous empirical literature has focused on the biological 

underpinnings of autism, with numerous brain regions exhibiting structural and/or 

functional differences that could affect sensorimotor control (see Amaral et al., 2008; 

Ecker et al., 2015). These include, but are not limited to: the prefrontal cortex (Prior & 

Hoffmann, 1990), parietal lobes (Courchesne et al., 1993), cerebellum (Courchesne, 

1997; Fatemi et al., 2012), anterior cingulate cortex (ACC; Thakkar et al., 2008) and 

basal ganglia (Sears et al., 1999; Qiu et al., 2010). Cerebellar and fronto-striatal circuits 

are thought to play particularly critical roles in the integrative control of movement (Mori 

et al., 2001; Miall et al., 2007; Franklin & Wolpert, 2011), and autistic individuals have 

been found to display functional differences in these regions during action-based tasks 

(Mostofsky et al., 2009; Verhoeven et al., 2010). However, separate atypicalities in the 

organisation and connectivity of key cortical structures have also been observed 

(Casanova et al., 2002; Herbert et al., 2004; Rane et al., 2015), including areas of the 

motor cortex (Nebel et al., 2014). Furthermore, sensorimotor integration could be 

affected by the aberrant neuromodulatory signalling and GABAergic transmission 

patterns shown in clinical populations (Lake et al., 1977; Gillberg & Coleman, 1992; 

Cook & Leventhal, 1996; Perry et al., 2001; Lam et al., 2006; Harrington et al., 2013; 

Hannant et al., 2016). Therefore, sensorimotor differences are likely underpinned by 

heterogeneous atypicalities in neural organisation, modulation and connectivity (see 

discussions in: Fournier et al., 2010 and Mosconi & Sweeney, 2015).  

From a practical perspective, it may thus be prudent to focus on common processing 

mechanisms that account for diverse biological phenotypes (rather than single 

structures or functions). This approach is evident in many cognitive theories of autism 

(Rajendran & Mitchell, 2007), where deficits in executive functioning (Ciesielski et al., 

1990; Ozonoff et al., 1991; 1994) and top-down attention (Happé & Frith, 2006) have 

been proposed. Such global processing atypicalities not only explain socio-behavioural 

traits of autism (Pennington & Ozonoff, 1996; Russell, 1997; Turner, 1999; Happé & 

Frith, 2006), they could also underlie key sensorimotor difficulties. Indeed, impairments 

in attention and working memory are associated with suboptimal sensorimotor 

integration (Mann et al., 2007; Talsma et al., 2010; Rigoli et al., 2012). Executive 

functions shape what goal-directed actions are generated or inhibited over time and 

are controlled by the same neural structures that regulate many sensorimotor 
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operations (e.g., the prefrontal cortex and cerebellum; Diamond, 2000; Barkley, 2012). 

Moreover, differences in top-down attention can affect how certain action-related cues 

are processed in a task, with autistic people proposed to have difficulties integrating 

component parts of sensory information into a coherent global percept (Happé & Frith, 

2006). However, these psycho-cognitive features are neither universal nor specific to 

autism, and there is very little unity between the implicated mechanisms (Happé et al., 

2006). So, while their contribution to certain action-related differences should not be 

overlooked, these reductionist cognitive perspectives fail to account for some of the 

more complex and variable features of autism that define sensorimotor interactions. 

Overall, current research lacks a clear, well-defined explanation that can tie together 

the diverse neurobiological, cognitive, socio-behavioural, and sensorimotor profile of 

autism (Lai et al., 2014). Movement-related differences are particularly complex and 

heterogeneous characteristics, and the process of identifying a unifying mechanistic 

explanation is a significant challenge for autism research. Despite the growing number 

of investigations in this field, the underlying causes of sensorimotor impairments 

remain unclear (Coll et al., 2020) and wide-ranging peripheral, central, and/or 

behavioural mechanisms could be involved (see Cook et al., 2013). Given the notable 

inter-task and inter-individual variability that exists in clinical studies, it is conceivable 

that these underlying aetiologies may differ from person to person (see related 

discussion in Mosconi & Sweeney, 2015). Such a possibility is at odds with many 

traditional, biologically-focused theories of autism. However, recent frameworks have 

presented exciting avenues of investigation in this domain, by uniting the fragmented 

and diverse features of autism under computational models of the brain (e.g., Pellicano 

& Burr, 2012; Lawson et al., 2014; Van de Cruys et al., 2014). Here, shared phenotypes 

of autism are explained via empirically quantifiable differences in Bayesian inference 

and/or predictive processing (see below). Such an approach could offer promising 

implications for research and clinical practice (Haker et al., 2016), while potentially 

increasing our understanding of sensorimotor difficulties (Casartelli et al., 2016; Palmer 

et al., 2017). As such, the theoretical basis of these computational models must now 

be considered.  
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1.2.2. Bayesian and Predictive Processing Theories of Autism 

According to Bayesian Inference theory (Bayes, 1763; Helmholtz, 1867), the brain 

computes generative models of the world (belief systems) from incoming sensory 

information (likelihood distributions) and top-down expectations (prior distributions), 

which are based on previous experience and contextual knowledge. These inputs 

combine to form posterior beliefs, or causal inferences about the world, with each 

source weighted according to precision estimates (i.e., the relative reliability and/or 

uncertainty of each informational source; Gregory, 1980). The resultant models, and 

their associated prediction error (i.e., differences between predicted and observed 

sensory inputs), are proposed to guide sensory perception and learning (Knill & 

Pouget, 2004; Friston, 2008; Kiebel et al., 2009), while shaping the dynamic 

connections among attention, action and behaviour (Lee et al., 2002; Feldman & 

Friston, 2010; Friston et al., 2010). These latter functions are referred to as predictive 

processing (Friston, 2005; Hohwy, 2013; Clark, 2015a), and variations in these 

canonical, probabilistically-driven mechanisms have become a key focus for clinical 

research (see Friston et al., 2014).  

A group of theories propose that autism stems from impairments in the formation 

and/or application of these predictive models (for review, see Palmer et al., 2017). 

Supposedly, autistic people rely on prior information to a lesser extent than 

neurotypical individuals, leading to an over-dependence on ‘noisy’ incoming sensory 

cues (Pellicano & Burr, 2012). The exact source of these atypicalities is disputed, 

leading to contrasting mechanistic explanations (see Table 1.1). Initially, simple 

normative models posited that such effects may result from persistently attenuated 

Bayesian priors (Pellicano & Burr, 2012), overly-dominant likelihood distributions 

(Brock, 2012) or generic differences in detecting/learning conditional probabilities 

(Qian & Lipkin, 2011; Sinha et al., 2014). Many of these explanations have since been 

reframed using predictive processing terms and hierarchical models of the brain, with 

weaker top-down predictions (Van Boxtel & Lu, 2013), chronically elevated prediction 

errors (Van de Cruys et al., 2014), and aberrant precision modulation (Friston et al., 

2013; Lawson et al., 2014; Quattrocki & Friston, 2014; Palmer, Seth, et al., 2015) all 

proposed.  
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Table 1.1. Summary of Bayesian and Predictive Processing Theories of Autism. 

  

Domain  

 

Main Testable Hypothesis 

Simple Models   

   Pellicano & Burr (2012) Perception Chronically reduced influence of prior 
expectations in autism. 

   Brock (2012) Perception Incoming sensory information is overly-dominant 
in autism, relative to prior expectations. 

   Qian & Lipkin (2011) Cognition/ 
Learning 

Impaired ability to extract statistical regularities 
from the world and make predictions in autism. 

   Sinha et al. (2014) Cognition/ 
Learning 

Domain-general impairments in predictive 
learning in autism.  

Hierarchical Models   

   van Boxtel & Lu (2013) Perception Top-down predictions are less precise in autism, 
leading to constant sensory surprises. 

   Friston et al. (2013) Perception High-level prior precision is attenuated in autism, 
relative to sensory precision. 

   Van de Cruys et al. (2014) Perception/ 
Action 

Chronically high and inflexible weighting of 
prediction errors in autism. 

   Lawson et al. (2014) Perception/ 
Neurobiology 

Aberrant encoding of precision in autism and 
impaired context-sensitive sensory weightings. 

   Quattrocki & Friston (2014) Social/ 
Neurobiology 

Suboptimal weighting of interoceptive sensory 
signals and oxytocinergic modulation in autism 

   Palmer et al. (2015b) Social/ 
Action 

Maladaptive low-level precision weighting 
impairs higher-level predictive models in autism. 

 

In spite of their specific conceptual discrepancies, the theories in Table 1 can 

encompass multi-factorial neural, cognitive, and developmental causes of autism. 

Here, the heterogeneous neurobiological pathologies discussed in Section 1.2.1 may 

converge in common processing imbalances (Van de Cruys et al., 2021); and it is these 

computational differences that are seen to form the universal basis of autism. Indeed, 

such ‘shared phenotypes’ would account for the developmental, spectrum-like nature 

of the condition, as predictions are uniquely shaped by a person’s individual 

experiences and knowledge about the world (Palmer et al., 2017). Therefore, 

academics and practitioners are increasingly utilising such perspectives to address 

problems of diagnosis and treatment in autistic populations (see Haker et al., 2016).   
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Bayesian and predictive processing theories of autism also provide compelling 

mechanistic explanations for a host of socio-behavioural traits and primary diagnostic 

features. For example, repetitive behaviours (e.g., ‘stimming’) and an insistence on 

sameness could signify coping strategies aimed at reducing prediction errors and/or 

uncertainty in inherently ‘noisy’ sensory environments (Pellicano & Burr, 2012; Froese 

& Ikegami, 2013; Palmer et al., 2017). Similarly, suboptimal inferential modelling would 

explain difficulties in ‘Theory of Mind’ and social interactions, where an individual is 

required to predict one’s mental state or actions using ambiguous, higher-level implicit 

cues (Sinha et al., 2014; Palmer, Seth, et al., 2015). Although these normative 

rationales were initially seen to reflect convenient post-hoc fitting exercises (Maloney 

& Zhang, 2010), their notable explanatory capabilities in autism have since been able 

to unify numerous interrelated socio-behavioural traits and clinical characteristics. 

By detailing how precision-modulated error signals are transmitted across the brain, 

predictive coding frameworks provide a biologically plausible means through which 

Bayesian inference could be enacted (Rao & Ballard, 1999; Friston, 2005; Friston & 

Kiebel, 2009). Here, prediction error signals are seen to communicate physical 

differences between incoming sensory data (i.e., bottom-up neural activity relayed from 

the peripheral sensory receptors) and top-down state expectations (i.e., neural activity 

that is predicted to occur on basis of the brain’s current environmental representations; 

Mumford, 1992). Through applying these concepts into autism research, one can 

marry proposed computational differences with the established neuropathological 

factors discussed in Section 1.2.1. For instance, structural and/or functional 

abnormalities in the cerebellum could impact on crucial circuits that are involved  in the 

hierarchical integration of probabilistic sensory information (e.g., see Mori et al., 2001; 

Friston, 2005). Furthermore, modulators of cortical gain (e.g., phasic noradrenaline, 

oxytocin, serotonin) have been implicated in recent neuro-computational explanations, 

which offer novel hypotheses regarding the biochemical and genetic basis of autism 

(e.g., Lawson et al., 2014; Quattrocki & Friston, 2014; Wiggins et al., 2014; Rosenberg 

et al., 2015). Therefore, Bayesian and predictive processing theories not only support 

previous neurobiological findings, they are also stimulating new directions for future 

investigations and clinical practice (Kok & de Lange, 2015; Haker et al., 2016).   

However, these frameworks have also received notable criticism. Indeed, while the 

aforementioned proposals are entirely plausible (both from a behavioural and 
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neurological perspective), it is empirically challenging to isolate certain implicated 

mechanisms (Palmer et al., 2017). For instance, it can be difficult to distinguish 

attenuated prior beliefs from increased likelihood precisions (Brock, 2012), or aberrant 

prediction error signalling from impaired contingency learning (Cannon et al., 2021). 

Moreover, recent attempts at evaluating these models find inconsistent results 

(Karvelis et al., 2018), with many studies highlighting prediction-related functions that 

are not impaired in autism (e.g., Aitkin et al., 2013; Bedford et al., 2016; Ego et al., 

2016; Pell et al., 2016; Manning et al., 2017; Tewolde et al., 2018; Lieder et al., 2019; 

Noel et al., 2020). For example, Tewolde et al. (2018) found preserved anticipation 

abilities in autistic children during dynamic visual extrapolation and false memory 

tasks. These null effects are consistent with wider research, where prediction-related 

differences are typically consigned to more complex and/or uncertain experimental 

conditions (Bertone et al., 2003; Cannon et al., 2021). However, such context-

dependent patterns are at odds with simple Bayesian models of autism (e.g., Brock, 

2012; Pellicano & Burr, 2012), as they show that the generic processing of prior 

information is not disrupted. Instead, findings imply that these ‘one-level’ accounts may 

be inadequate to capture the demands of real-world environments, where sensory 

information is produced by complex, dynamic external causes (Palmer et al., 2017).  

Although prior beliefs may not be universally or chronically diminished in autism, 

differences could still lie in hierarchical predictive processing functions (Table 1.1). 

Inconsistent findings clearly undermine proposals that prediction errors are given 

uniformly high weighting in autism (Van de Cruys et al., 2014), but difficulties could still 

relate to suboptimal precision control systems (Friston et al., 2013; Lawson et al., 

2014). Indeed, precision estimates are shaped by context-sensitive representations of 

uncertainty that span multi-level neural networks (Yu & Dayan, 2003; Mathys et al., 

2011; 2014).  A recent study by Lawson et al. (2017) showed that autism-related 

differences in sensory receptiveness were accompanied by atypical learning rates and 

phasic pupil responses; functions which are directly proportional to cortical gain and 

precision-related noradrenergic modulation (Behrens et al., 2007; Nassar et al., 2010; 

Costa & Rudebeck, 2016). On inspection of their behavioural and physiological data, 

the authors suggest that autistic people may overestimate the volatility of sensory 

environments. Such effects may limit confidence in prior beliefs and would disrupt how 

stable expectations are learnt about the world, with precision modulation determining 
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whether unexpected outcomes are disregarded or taken seriously (Behrens et al., 

2007; Mathys et al., 2011; 2014). These more nuanced proposals correspond with 

recent clinical observations, where context-sensitive adjustments in cortical activity 

appear diminished over time (e.g., Kleinhans et al., 2009; Ewbank et al., 2017). They 

can also directly account for inconsistent research findings in the field, as precision 

control is partly-independent across sensory modalities and processing levels (e.g., 

see Yin et al., 2019). Therefore, it is possible that autistic sensorimotor control is 

underpinned by context-sensitive differences in neural gain signalling, as opposed to 

persistently ‘weightier’ prediction errors or bottom-up sensory inputs.  

Nevertheless, future research is required to decipher specifically which prediction-

related mechanisms are implicated in autism, and action-based tasks may “hold the 

greatest promise” for illuminating these mechanistic underpinnings (Palmer et al., 

2017; p.522). Here, the differential roles of top-down and bottom-up signalling can be 

isolated using objective measurement techniques, which are neither dependent on 

motivation or communication (see Haker et al., 2016). Indeed, action can be conceived 

of as a series of hierarchical predictions, which operate as a vehicle for changing 

sensory and environmental inputs (Friston et al., 2010). As such, various context-

sensitive mechanisms relating to predictions, precision, error, and uncertainty can be 

examined from an individual’s motor responses and sensory sampling behaviour 

(Palmer et al., 2017). However, before exploring these processes in autism, one must 

first establish the role of these mechanisms in neurotypical sensorimotor control. 

 

1.3. Underlying Mechanisms of Sensorimotor Control 

The human sensorimotor system is extremely complex: almost infinite movement 

degrees of freedom are underpinned by unstable and non-linear neurobiological 

activity, which must be integrated with rapidly-changing environmental information. To 

solve such complexities, actions are guided and monitored using multi-sensory cues, 

with even automated routine activities demanding high levels of continuous feedback 

(Land, 2009). This influx of sensory data is used to tune movement parameters in a 

computationally optimal and energetically efficient manner, while minimising the effects 

of noise in the motor system (Franklin & Wolpert, 2011). However, there are notable 

sources of imprecision that exist in the retrieval and processing of sensory evidence, 
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which limit the reliability and/or accuracy of feedback-driven motor control (e.g., from 

signalling delays, poor peripheral resolution etc. Faisal et al., 2008; Tong et al., 2017).  

To combat these proposed shortfalls, the nervous system is hypothesised to use 

predictive generative models, which explain and stabilise inherently noisy and 

ambiguous sensory information (Franklin & Wolpert, 2011; Clark, 2015a). In line with 

Bayesian Inference, these top-down models are said to embody probabilistic 

distributions about the world, making them critical in the planning and execution of 

goal-directed actions (see Fiehler et al., 2019). For example, when attempting to 

intercept a ball in sport, individuals will adapt their movements based on multi-level 

predictions about its likely position, speed, and trajectory. These a-priori estimations 

are shaped by recent sensory observations (e.g., information extracted from an 

opponent’s movements or from previous trial attempts; Diaz et al., 2013; Loffing & 

Cañal-Bruland, 2017) as well as long-term ‘structural’ expectations and constraints 

(e.g., implicitly-embedded representations about gravity and its influence on moving 

objects; Zago et al., 2009; Hayhoe et al., 2012; Diaz et al., 2013). Predictions are then 

iteratively refined over time, in a manner that facilitates rapid modelling adjustments 

and learning (Körding et al., 2007; Burge et al., 2008; see Figure 1.1 for illustration).  

As with perceptual inference, the brain is biased towards reliable sensorimotor cues, 

meaning that highly precise expectations will readily dominate over uncertain and noisy 

feedback information (Knill & Pouget, 2004; Vilares & Kording, 2011; Figure 1.1). 

Indeed, ‘Bayes-optimal’ strategies emerge in numerous action-related functions, 

including: multi-sensory cue combination (Jacobs, 1999; Adams et al., 2004; Körding 

et al., 2007), motion perception (Weiss et al., 2002; Stocker & Simoncelli, 2006), 

interceptive timing (Miyazaki et al., 2005; Jazayeri & Shadlen, 2010), gaze tracking 

(Deravet et al., 2018), movement planning (Hudson et al., 2007; Kwon & Knill, 2013), 

and visuomotor integration (Körding & Wolpert, 2004; Tassinari et al., 2006; Stevenson 

et al., 2009; Vilares et al., 2012; O'Reilly et al., 2013; Sato & Kording, 2014).  For 

example, Stevenson et al. (2009) found that increases in visual feedback uncertainty 

during a snowboarding simulation task led to more temporally-stable motor patterns 

that were less influenced by current proprioceptive information. By resolving sensory 

uncertainty in this manner, neurotypical individuals are theoretically able to maintain 

adaptive sensorimotor control and learning functions (Vilares & Kording, 2011). 
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Figure 1.1. Example of Bayesian Inference in tennis, copied from Körding (2007) with 

permission from American Association for the Advancement of Science (copyright 

2007). Illustrates how prior and likelihood information combine when predicting the 

bounce location of a ball (A) and how this information is dynamically adjusted (B). Note 

how prior expectations (green circles) and incoming visual feedback (red circles) are 

integrated according to their uncertainty, such that posterior beliefs (black outline) are 

biased by more precise estimations. In panel B, expectations about bounce location 

become more refined over time, meaning that their relative influence also increases.  

The computational mechanisms of sensorimotor control have been further developed 

by active inference theories (e.g., Adams et al., 2013; Shipp et al., 2013; Friston et al., 

2017). According to these frameworks, an agent will constantly seek to minimise 

prediction error through physical bodily movements. To do this, they will preferentially 

select actions that have low expected free energy (i.e., movements that are estimated 

to generate the least prediction error; Parr & Friston, 2019). In essence, this means 

that dynamic sensorimotor adjustments will aim to fulfil an individual’s predictions 

about the world. From a practical perspective, this implies a fundamental role of prior 

expectations in the control of goal-directed movements and daily living behaviours. 

Indeed, these subjective beliefs are not only seen to influence the generic planning of 

an action, they are also proposed to shape the iterative updating and online regulation 

of an ensuing sensorimotor response (Friston et al., 2010). For example, when 

attempting to make timely and accurate interceptions in tennis, anticipated changes in 
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proprioceptive inputs and upcoming ball trajectory will determine moment-by-moment 

adjustments in motor activity and swing kinematics.  

Furthermore, prior expectations will influence how an agent actively samples sensory 

information (Friston, Adams, et al., 2012). During interceptive visuomotor tasks like 

tennis, agents will frequently employ anticipatory eye movements that shift gaze 

towards predicted future ball locations (Land & McLeod, 2000; Hayhoe et al., 2002; 

2012; Diaz et al., 2013; Mann et al., 2013). Analogous ‘proactive’ gaze strategies are 

additionally shown in conventional daily living functions, such as driving (Land & Lee, 

1994; Land & Furneaux, 1997; Land & Tatler, 2001; Chattington et al., 2007), walking 

(Patla, 1998; Patla & Vickers, 2003; Moraes et al., 2004; Matthis et al., 2018), reading 

(Buswell, 1920; Land & Furneaux, 1997; Furneaux & Land, 1999), and making a cup 

of tea (Land et al., 1999; see Land, 2009). This further highlights the crucial role of 

prior expectations when controlling movements and integrating sensorimotor cues.   

Notably, superior predictive abilities are a defining characteristic of various high-skilled 

performances (e.g., medicine: Currie & MacLeod, 2017; sport: Williams et al., 2011). 

Sporting professionals, in particular, will implement strategies that increase the 

accuracy and/or precision of prior expectations while ensuring the sampling of ‘optimal’ 

sensory cues (e.g., through studying opponents, repetitive practice, or executing pre-

performance routines; Körding & Wolpert, 2004; Cappuccio et al., 2020). An example 

of this enhanced anticipatory ability was demonstrated by Runswick et al. (2020), who 

showed that professional rugby players are more accurate than novices in predicting 

the ‘seemingly-random’ future bounce of a rugby ball. Such effective anticipation would 

require extremely complex and dynamic computations of physical statistics (Cross, 

2010), which seem to be implicitly acquired in professional participants through their 

extended practice and engagement in the sport. These, expert-like predictions will 

often then coincide with more efficient gaze patterns (Williams & Davids, 1998; Mann 

et al., 2013; Murphy et al., 2016), while suboptimal visual sampling responses have 

been shown in individuals with clinically-related sensorimotor difficulties (Wilson et al., 

2013; Licari et al., 2018). Consequently, accurate prior expectations appear to be an 

integral aspect of proficient movement control and adaptive skill performances. 

However, natural environments are rarely stable or certain, meaning that predictions 

can vary in accuracy and reliability over time. In spite of these rapidly changing 
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environmental ambiguities, most sensorimotor functions remain optimal due to context-

sensitive adjustments in predictive processing. Here, the brain dynamically weighs 

prior inputs according to expected uncertainty and inferred volatility estimates, with 

unreliable sources of information less readily attended to and retained over time (Burge 

et al., 2008; O'Reilly et al., 2013; Deravet et al., 2018). Computationally, this is 

achieved through precision modulation, with top-down signals suppressed (relative to 

new bottom-up sensory evidence) under more uncertain or volatile conditions (Yu & 

Dayan, 2003; Behrens et al., 2007; Mathys et al., 2011; 2014; Yon, 2021).  

These context-sensitive mechanisms are crucial determinants of dynamic movement 

control (Adams et al., 2013; Shipp et al., 2013) and sensory sampling behaviours 

(Friston, Adams, et al., 2012), with eye movement responses proving particularly 

sensitive to environmental statistics (Vossel et al., 2014; Deravet et al., 2018; 

Domínguez-Zamora et al., 2018; Pasturel et al., 2020). According to predictive coding 

perspectives (e.g., Rao & Ballard, 1999; Friston, 2005; 2008), precision estimates are 

encoded via activity-dependent changes in synaptic gain (i.e., in cell populations that 

signal prediction error), with neuromodulators such as noradrenaline and/or 

acetylcholine likely involved (Yu & Dayan, 2003; Friston, 2008; Bland & Schaefer, 

2012; Lawson et al., 2021). These regulatory processes represent fundamental 

mechanisms in dynamic sensorimotor performance and learning operations.  

Additionally, various task-specific estimates also underpin adaptive sensorimotor 

behaviours. Probabilistic distributions of the world are combined with goal-relevant 

contextual information, such as expected rewards (Wu et al., 2009), time constraints 

(Zhang et al., 2010), energetic demands (O'Sullivan et al., 2009; Li et al., 2018), and 

attributions of error (Yin et al., 2019). Though there is much debate as to how these 

factors are neurally represented (e.g., see Friston, 2011), such dynamic modelling 

further magnifies the complex, context-sensitive nature of sensorimotor control. 

Indeed, probabilistically ‘optimal’ inferences are sometimes overridden by non-linear, 

compensatory action preferences. Elite batsmen in baseball, for instance, will often 

plan their motor responses for faster-than-expected ball pitches (Cañal-Bruland et al., 

2015), as the performance costs associated with prediction error are greater when 

speed is under- as opposed to over-estimated (Gray & Cañal-Bruland, 2018).  
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Furthermore, by viewing behaviour through the lens of prediction error minimisation, 

active inference perspectives assert that an agent will often select exploratory, 

information-seeking action responses over those with more probable expected 

outcomes (Parr & Friston, 2019). Here, one can minimise the uncertainty that is 

predicted to exist in an environment, through selective attention, sensory attenuation, 

and strategic motor adjustments (Friston et al., 2010; Friston, Adams, et al., 2012; 

Brown et al., 2013; Parr & Friston, 2019). Such epistemic active inference is a common 

feature of visuomotor behaviour (Friston et al., 2015), with more exploratory gaze 

strategies typically displayed under uncertain task conditions (Beesley et al., 2015; 

Tong et al., 2017; Domínguez-Zamora et al., 2018; Walker et al., 2019).  

In sum, sensorimotor control depends on an array of context-sensitive mechanisms, 

which regulate how an agent samples, processes, and acts upon environmental cues. 

Examination of these predictive functions could enhance our understanding of various 

clinical conditions (Behrens et al., 2007; Friston et al., 2014; Teufel & Fletcher, 2016). 

 

1.4. Sensorimotor Differences in Autism: a review of potential mechanisms 

A key implication of Bayesian and predictive processing theories of autism is that 

differences in the weighting of prior beliefs and/or prediction error will lead to impaired 

sensorimotor functions (Pellicano & Burr, 2012; Lawson et al., 2014; Van de Cruys et 

al., 2014; Palmer et al., 2017). However, movement-related difficulties in autism could 

arise from a variety of neurobiological and computational mechanisms, and it is clear 

that predictive processing atypicalities can materialise differently across tasks and 

sensorimotor functions, depending on contextual and individual factors. Consequently, 

when evaluating the precise causes of movement-related difficulties in autism, 

researchers should study action control in a holistic and systematic manner, using well-

established models of the human sensorimotor system.  

This review will conceptualise sensorimotor control using Land’s (2009) framework. 

This model provides a comprehensive overview of the processes that underlie natural 

visually-guided movements and their interactions with various brain structures and 

environmental factors. The reasons for selecting this framework were twofold. Firstly, 

it explicitly defines the contributions of four distinct biological systems and illustrates 

their relations to precise neural networks and processing pathways (see Section 1.4.1). 
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By scrutinising and triangulating evidence from each these interconnected systems, 

one can examine which mechanisms are intact and which functions are atypical in 

autism. Second, Land also describes how visuomotor integration may vary under 

different types of actions. This all-encompassing level of detail enables investigation 

into the considerable inter-task variability that has emerged in clinical sensorimotor 

research. As a result, one can systematically evaluate a number of key mechanisms, 

including those implicated in Bayesian and predictive processing theories of autism.  

Crucially, simple computational models of autism (e.g., Brock, 2012; Pellicano & Burr, 

2012; Van Boxtel & Lu, 2013) lend themselves to chronic (i.e., persistently recurring) 

prediction-related differences in action control, which should reliably emerge across 

interconnected sensorimotor networks. Conversely, any task- or system-specific 

differences in action control would be independent of these generic impairments, and 

may implicate hierarchical, context-sensitive functions (e.g., precision modulation, 

Friston et al., 2013; Lawson et al., 2014). The section below aimed to decipher between 

these possibilities, by examining the aetiology of autism-related differences in visual, 

gaze, motor and schema functions. However, before these finer mechanistic enquiries 

are addressed, a short overview of Land’s conceptual framework is provided.  

1.4.1. Conceptual Framework 

Land’s (2009) model identifies four distinct sensorimotor systems that underpin 

visually-guided actions (Figure 1.2). These systems each have unique, interconnected 

functions that facilitate natural bodily movements and daily living behaviours. 

Specifically, the visual system processes dynamic sensory cues from the surrounding 

environment and monitors action using continuous feedback information. Conversely, 

the role of the gaze system is to locate and fixate task-relevant information through 

coordinated movements of the eyes, head, and trunk. The motor system is then 

responsible for carrying out limb movements and using information supplied through 

vision and proprioception to modify actions. These interacting functions are controlled 

by the schema system: a supervisory unit which dynamically governs the flow of activity 

between sensory inputs, internal states, and motor outputs. It does this by selecting 

top-down internal models (i.e., schemas) that drive cortical activity across various 

interconnected neural pathways to specify what sensory information is required, where 

gaze should be directed, and what action(s) will ultimately be undertaken.  
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Figure 1.2. Schematic Illustration of the Conceptual Framework, copied from Land 

(2009) with permission from Cambridge University Press (copyright 2009). 

Land argues that top-down processes dominate visuomotor control; however, his 

conceptual model also illustrates the role of sensory feedback from the surrounding 

scene (Figure 1.2). Here, salient incoming information can override top-down signals 

and attract attention in a stimulus-driven manner (see Corbetta et al., 2008). Individual 

differences in these processing functions can be readily detected using empirical tools 

like eye-tracking, electromyography (EMG), and motion capture technology (see 

Section 1.6). In recognising the context-sensitive nature of these underlying control 

operations, Land stated that the role of interacting visuomotor systems will vary 

between certain task types. These included single action events (e.g., lifting an object), 

continuous production loops (e.g., steering a car), storage-action alternations (e.g., 

completing a jigsaw), and multiple action sequences (e.g., playing a game in tennis). 

From an active inference perspective, these subtle variations in movement control 

reflect context-sensitive alterations in predictive processing, with an agent’s 

sensorimotor response said to be dynamically adjusted according to current action 

preferences and top-down beliefs (see Section 1.3). So, when combined with 

computational explanations of human behaviour, Land’s model variants permit the 

formulation of new, empirically-falsifiable hypotheses for autism research (see 

Chapters 2-4).  
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In fact, much of Land’s (2009) model is congruent with active inference perspectives. 

While discrete in their theoretical proposals, both theories allude to the dynamic 

integration of top-down and bottom-up sensory information. Active inference provides 

a biologically-plausible means through which internal models can regulate visual, gaze, 

and motor operations (i.e., predictive coding). Here, corticospinal predictions based on 

high-level action representations are supposedly transmitted downstream to lower 

processing levels. The resultant ‘error’ between top-down and bottom-up signals 

should then directly modulate an agent’s dynamic sensorimotor response (via reflex 

arcs; Adams et al., 2013; Shipp et al., 2013) and visual sampling behaviours (via 

attentional adjustments; Feldman & Friston, 2010; Friston, Adams, et al., 2012). 

Importantly, these processes are said to follow Bayesian model principles; so the 

action plans that are expected to optimally minimise future prediction errors will be 

preferentially selected and performed (see Parr & Friston, 2019). On this basis, it 

seems that the two theoretical frameworks offer well-founded conceptualisations of 

sensorimotor control that can complement each other in the present analyses. The 

sections below will therefore attempt to synthesise these perspectives, by examining 

multi-system operations from both a computational and behavioural standpoint. 

Before one can develop this line of original, theory-driven empirical enquiry, it is 

prudent to first evaluate the existing literature in the field. Accordingly, this review will 

examine current autism research findings from each of the visuomotor sub-systems 

illustrated in Figure 1.2. Specifically, it will explore the degree to which visual, gaze, 

motor, and schema functions are suboptimal in autism, before identifying precisely 

which mechanisms prove intact or atypical in previous datasets. By scrutinising action 

control in this structured and theoretically-driven manner, and by considering the role 

of atypical active inference within each distinct function, one can broadly characterise 

the basis of sensorimotor differences in autism. This will aid the development of both 

empirical studies and prospective practical interventions. 

1.4.2. The Visual System 

The role of the visual system is to supply task-critical sensory information that can 

facilitate a motor action (Figure 1.2). Concerned research must not only focus on the 

retrieval of visual data, but also on how this information is processed by the brain. 
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These functions have become key topics of investigation, due to the widespread vision-

related issues that emerge in autistic people (see Bogdashina, 2003) and their 

potential impact on sensorimotor control (Hannant et al., 2016). For example, studies 

have highlighted differences in: visual search (e.g., O'Riordan et al., 2001), spatial 

attention (e.g., Wainwright-Sharp & Bryson, 1993; 1996), binocular rivalry (e.g., 

Robertson et al., 2013), gestalt processing (e.g., Brosnan et al., 2004), depth cue 

integration (e.g., Bedford et al., 2016), and perceptual adaptation (e.g., Pellicano et al., 

2007). It must be said that various counter-evidence exists in these overlapping 

domains and that methodological limitations have restricted our ability to make 

definitive conclusions (for review, see Simmons et al., 2009). Furthermore, it is clear 

that most basic low-level visual functions are unaffected in autistic people (e.g., 

contrast sensitivity, visual acuity, flicker detection; Koh et al., 2010; Tavassoli et al., 

2011). Consequently, perceptual atypicalities are unlikely to stem from any domain-

specific impairment in the visual system and its accompanying levels of sensitivity.  

In spite of these existing theoretical disputes, some areas of consensus has been 

achieved. Indeed, perhaps the most reliable findings in autism research concern those 

relating to visual search (Simmons et al., 2009). Relative to neurotypical individuals, 

autistic people consistently show superior performances in Embedded Figures (e.g., 

Shah & Frith, 1993), Block Design (e.g., Venter et al., 1992), and Feature Search (e.g., 

O'Riordan et al., 2001) tasks. Here, individuals demonstrate enhanced abilities to 

detect and process ‘target’ visual cues, which are presented among an array of 

‘distractor’ items. These functions are underpinned by well-established neurological 

pathways, such as the dorsal and ventral visual streams (Land, 2009), where autism-

related differences in functional connectivity have notably been observed (Villalobos et 

al., 2005). However, it is unlikely that the wide-ranging perceptual differences in autism 

are confined to these system-specific neural pathways (Simmons et al., 2009). As with 

the broad socio-behavioural characteristics of autism, the precise neurobiological 

origins of these unique visual traits thus remain poorly defined (Joseph et al., 2009).  

In recent years, research has started to focus on computational mechanisms of 

perception, which explain individual differences in visual functions using biologically-

plausible models of hierarchical processing networks. Studies suggest that noisy and 

ambiguous activity patterns from across retina are interpreted using predictive models 

of the world, as formalised in multiple theoretical explanations (e.g., Rao & Ballard, 
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1999; Baldi & Itti, 2010; Brown & Friston, 2012). Indeed, various neurotypical visual 

functions have proven to be ‘Bayes-optimal’ in this regard (Jacobs, 1999; Murray et al., 

2002; Weiss et al., 2002; Knill & Saunders, 2003; Adams et al., 2004; Stocker & 

Simoncelli, 2006; Sato & Kording, 2014), with incoming sensory signals weighted 

against prior beliefs according to their relative precision (see Section 1.3).  

Crucially, Bayesian theories of autism propose a reduced influence of prior models on 

autistic visual processing (Brock, 2012; Pellicano & Burr, 2012). Though evidence from 

movement-based tasks is currently lacking, such prediction-related differences have 

indeed been documented at a perceptual level. For instance, autistic people show 

atypical integration of sensory information with prior estimates in the context of time-

interval judgments (Karaminis et al., 2016), depth perception (Bedford et al., 2016), 

and visual illusions (Happé & Frith, 2006; Van der Hallen et al., 2015). In these settings, 

autistic participants appear to preferentially process bottom-up sensory information 

over non-veridical top-down cues, in a manner that supports Bayesian hypotheses 

(Pellicano & Burr, 2012). However, autism-related differences do not emerge for most  

perceptual illusions (Van der Hallen et al., 2015; Chouinard et al., 2018) or in tasks that 

implicate long-term ‘structural’ priors (Croydon et al., 2017; Lieder et al., 2019; Van de 

Cruys et al., 2021). Furthermore, biases away from top-down visual cues do not always 

manifest in autistic visuomotor behaviours (Ropar & Mitchell, 1999; Brosnan et al., 

2004). These inconsistencies challenge simple computational theories of autism (see 

Table 1.1) and highlight the importance of examining visual processing alongside other 

sources of sensorimotor information (e.g., proprioceptive and haptic cues).  

Notably, while most Bayesian perspectives predict an increased dependence on 

incoming sensory information in autism, studies suggest that autistic people may rely 

less on visual feedback than neurotypical individuals (Masterton & Biederman, 1983; 

Jones & Prior, 1985; Glazebrook et al., 2009; Haswell et al., 2009). Such findings are 

not necessarily at odds with computational models though, as agents often replace 

visual feedback with alternative sources of incoming sensory data (e.g., proprioception; 

Land, 2009). Indeed, autistic participants appear to rely almost exclusively on 

proprioceptive, rather than visual feedback in prism-induced reaching tasks (Masterton 

& Biederman, 1983). Furthermore, atypicalities in proprioceptive and vestibular 

processing have been found to co-occur in autism during visually-occluded actions, 

and are associated with impaired motor skill performances (Siaperas et al., 2012). 
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Since these low-level tactile and proprioceptive inputs appear to be intact in autistic 

individuals (Fuentes et al., 2009; Gowen & Hamilton, 2013), the above patterns of data 

likely reflect differences in the modulation of sensorimotor information (e.g., aberrant 

weighting of prediction errors: Lawson et al., 2014; Van de Cruys et al., 2014).  

Overall, it therefore appears that autism-related differences in the visual system 

implicate higher-level processing mechanisms (Gowen & Hamilton, 2013). Basic low-

level perceptual functions seem to be intact in autistic individuals, yet the integration 

of dynamic visuomotor information is often impaired during action-based tasks 

(Hannant et al., 2016). From a predictive processing perspective, these findings lend 

support for proposals of suboptimal precision control and/or error modulation in autism 

(Friston et al., 2013; Lawson et al., 2014; Van de Cruys et al., 2014; Palmer et al., 

2017). However, given the clear inconsistencies observed between studies in the field, 

thorough investigation into the specificity and generalisability of predictive control 

deficits is still required (Schuwerk et al., 2016). To do this, future research should 

assess sensorimotor control holistically, by examining the co-ordinated contributions 

of visual, proprioceptive and motor systems during active inference behaviours. 

1.4.3. The Gaze System 

The human gaze system controls the process of directing visual fixation through a 

scene in the service of ongoing perceptual, cognitive and behavioural activity 

(Henderson, 2003). Though often considered part of vision, Land (2009) advocates the 

treatment of gaze control as a separate, albeit related, operational system due to its 

distinct neurobiological underpinnings and functions. Specifically, the role of the gaze 

system is to overtly bring sensory cues onto the fovea of the eyes, not just via ocular 

movements, but also through those of the head and trunk (Land, 2009). These active 

visual sampling behaviours are underpinned by highly-distributed neurological 

networks, which reciprocally connect frontal eye fields to the parietal lobes, cerebellum, 

and (pre-) motor regions of the brainstem (Corbetta et al., 1998; Gaymard et al., 2003; 

Leigh & Zee, 2006). Structural and functional abnormalities in these circuits are well-

reported in autistic people (see Brenner et al., 2007), as are atypical head movements 

(e.g., Martin et al., 2018) and suboptimal postural control (e.g., Molloy et al., 2003; 

Chang et al., 2010). This makes gaze functions potentially valuable indicators of 

neurophysiological and/or computational dysfunction in autism. 
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Atypical foveation of visual objects and semantic stimuli have been displayed in various 

research domains. A notable study by Wang et al. (2015) examined eye-tracking 

responses to 700 natural scene images and found that autistic people show a smaller 

overall number of gaze fixations than neurotypical controls. Here, individuals not only 

focused on ‘salient objects of circumscribed interest’ (as in Sasson et al., 2008; 2011), 

they also exhibited delayed saccade latencies and stronger image centre biases (S. 

Wang et al., 2015). Such visual sampling discrepancies align with reported difficulties 

in attention (e.g., “tunnel vision”; Rincover & Ducharme, 1987; Burack, 1994) and 

exploratory gaze behaviours (e.g., Mottron et al., 2007). Crucially though, they cannot 

solely be explained by low-level saliency information (e.g., pixel- and object-based 

features; S. Wang et al., 2015), indicating that these differences may originate from 

impaired oculomotor control (see Brenner et al., 2007). Given the significant 

downstream effects on attention and movement coordination, these gaze-based 

operations are potentially crucial limiters of autistic sensorimotor behaviour. 

Nevertheless, a recent meta-analysis by Johnson and colleagues (2016) found that 

the fundamental control of fixations appears to be preserved in autistic people, and 

that there is minimal evidence for deficits in saccade initiation or gaze disengagement. 

Indeed, studies of reflexive, visually-guided eye movements suggest that the functional 

metrics of basic oculomotor control are generally typical in autism (Minshew et al., 

1999; Takarae, Minshew, Luna, Krisky, et al., 2004; Luna et al., 2007; D'Cruz et al., 

2009; Pensiero et al., 2009; Johnson et al., 2012; 2016). Furthermore, mappings of 

neuronal organisation between the frontal eye fields and central cortical regions appear 

unaffected in autism, according to clinical neuroimaging studies (e.g., Hadjikhani et al., 

2004).  

Conversely, it must be noted that that endogenous (i.e., volitional) saccade and pursuit 

eye movements are often less accurate and more variable in autistic participants 

(Goldberg et al., 2002; Takarae, Minshew, Luna, Krisky, et al., 2004; Takarae, 

Minshew, Luna, & Sweeney, 2004; Luna et al., 2007; Stanley-Cary et al., 2011; 

Johnson et al., 2012; Crippa et al., 2013; Schmitt et al., 2014), particularly when gaze 

responses require top-down internal models (see Johnson et al., 2016). For example, 

Goldberg and colleagues (2002) found autism-related impairments in generating 

anticipatory saccades, even though basic abilities to shift and disengage gaze fixations 

were preserved. When compared to neurotypical participants, autistic people were less 
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inclined to make eye movements that preceded highly-predictable changes in target 

position. They also demonstrated a comparatively reduced inhibition of reflexive, goal-

inappropriate eye movements; findings which have since been replicated in multiple 

working memory studies (e.g., Minshew et al., 1999; Manoach et al., 2004; Luna et al., 

2007; Thakkar et al., 2008; Mosconi et al., 2009). However, notable counterevidence 

exists for these effects, with autistic people showing intact predictive saccade abilities 

in various low-level gaze tracking experiments (e.g., von Hofsten et al., 2009; Aitkin et 

al., 2013; Ego et al., 2016). Together, results indicate that fundamental oculomotor 

control is not broadly impaired in autism, and that atypical gaze responses implicate 

higher-order processing networks (Neumann et al., 2006; Johnson et al., 2016). 

To study higher-level attentional mechanisms further, one should explore the links 

between perception and oculomotor control (Brenner et al., 2007). The close interplay 

between these sensory processing operations is illustrated in Figure 1.2, with both 

visual and gaze systems said to be underpinned by shared internal models (Land, 

2009; see active inference perspective: Friston, Adams, et al., 2012). Notably, studies 

have shown that autistic people fixate on atypical regions of the face during social tasks 

(Klin et al., 2002; Pelphrey et al., 2002; Dalton et al., 2005; Neumann et al., 2006; 

Jones et al., 2008; von Hofsten et al., 2009). Although such effects are inconsistent 

(Van Der Geest et al., 2002; Freeth et al., 2010; Sawyer et al., 2012; see Senju & 

Johnson, 2009), they raise the possibility that gaze-specific atypicalities are causing 

the core perceptual and/or socio-communicative difficulties exhibited in these settings 

(see Brenner et al., 2007). However, such arguments lack empirical support, as many 

autism-related perceptual differences still exist when attention and/or low-level 

saliency information is experimentally controlled (e.g., Neumann et al., 2006; Ewing et 

al., 2013). Moreover, while presenting clear differences in the interpretation of sensory 

information during visual search and illusion-based tasks, autistic participants do not 

always show atypical gaze responses in these domains (Joseph et al., 2009; 

Chouinard et al., 2018). Consequently, it appears that system-specific deficits in 

oculomotor control are unlikely to be driving wider processing biases in autistic people.  

From a neurological perspective, gaze- and vision-based differences in autism may 

still share common mechanistic origins. Indeed, the extraction and processing of goal-

relevant sensory cues could be disrupted by cerebellar, parieto‐collicular or dorsal 

stream dysfunction (Takarae, Minshew, Luna, & Sweeney, 2004; Brenner et al., 2007; 
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Johnson et al., 2016). Current gaze findings are not entirely consistent with pathway-

specific disruptions in these regions though (Mottron et al., 2007; Ego et al., 2016), and 

such precise networks are unlikely to account for the diverse range of autistic visual 

characteristics (Simmons et al., 2009). Nevertheless, imbalances in excitation-

inhibition activity (i.e., divisive normalisation: Schwartz et al., 2007) have been 

identified across cortico-cerebellar circuits (Rubenstein & Merzenich, 2003; Yizhar et 

al., 2011; Ramaswami, 2014; Rosenberg et al., 2015). These synaptic imbalances may 

disrupt the elimination of goal-irrelevant sensory signals (Beck et al., 2011), and have 

been shown to account for heterogeneous autistic gaze behaviours (Vattikuti & Chow, 

2010). However, excitation-inhibition differences are situation-specific (C. J. Palmer et 

al., 2018), and a lack studies have investigated these mechanisms in sensorimotor 

control tasks. Future studies are thus required in action-based protocols.  

According to Land (2009), internal action models will supervise the detection and 

retrieval of goal-relevant visual information (see Figure 1.2), with the role of bottom-up 

mechanisms said to be limited in volitional gaze behaviours. Such top-down processes 

have long been the focus of autism research theory (e.g., Happé & Frith, 2006; Mottron 

et al., 2006). However, traditional conceptual frameworks generally prove limited in 

explaining heterogeneous, autism-specific visual sampling behaviours (Simmons et 

al., 2009) and are increasingly being substituted by computational perspectives (see 

Section 1.2.2). Indeed, predictive processing models offer novel, empirically-supported 

hypotheses concerning autistic gaze control: namely that visual sampling behaviours 

will be more limited and detail-focused in uncertain sensory conditions (Palmer et al., 

2017). Such proposals relate to active inference models of attention (e.g., Feldman & 

Friston, 2010), which posit that humans selectively sample expected and/or uncertain 

sensory cues in an attempt to minimise prediction error. Observed autism-related 

differences in exploratory gaze behaviour (Sasson et al., 2008; 2011), divisive 

normalisation (Rosenberg et al., 2015), attentional habituation (e.g., Ramaswami, 

2014; Tam et al., 2017; Vivanti et al., 2018), and predictive eye movements (Goldberg 

et al., 2002; D'Cruz et al., 2009; Greene et al., 2019) lend initial support for these 

hypotheses. Further research is needed though, to better understand which specific 

processing functions are implicated during autistic sensorimotor operations.   

Overall, atypical gaze behaviours appear to be a pervasive feature of autism which 

coincide, and likely interact, with perceptual characteristics of the condition. Empirical 
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evidence offers notable support for predictive processing models of autism, however 

research is currently lacking from movement-based tasks. When evaluating these 

models in the future, it is crucial that investigations examine active inference 

formulations of visual sampling behaviour, with predictive gaze patterns considered an 

integral part of successful sensorimotor performances. 

1.4.4. The Motor System 

Upon receiving sensory information, the motor system is responsible for executing and 

controlling the invariant bodily movements that underpin goal-directed actions (Land, 

2009). Such functions implicate well-defined circuits in frontal premotor and motor 

cortices, as well as parietal and subcortical regions of the brain (Rizzolatti & Luppino, 

2001). Research has shown that poorer sensorimotor performances in autism are often 

driven by atypical limb kinematics (e.g., Fabbri-Destro et al., 2009; Whyatt & Craig, 

2013a; Chen et al., 2019; Foster et al., 2019), raising the possibility that movement-

based difficulties reside in these primary motor networks (Trevarthen & Delafield-Butt, 

2013). Reliable autism ‘motor signatures’ are identifiable in simple reach-and-throw 

actions (Crippa et al., 2015), object interactions (Cavallo et al., 2021), computer tablet 

gameplay (Anzulewicz et al., 2016), and movement imitation tasks (Vabalas et al., 

2020; see also: Guha et al., 2016). However, generalised movement difficulties cannot 

be entirely accounted for by basic motor system dysfunctions (Dziuk et al., 2007). 

Moreover, machine learning classifications are significantly enhanced when eye-

tracking data are also included (Vabalas et al., 2020). Therefore, evidence suggests 

that autistic motor control is impaired by non-specific neurobiological mechanisms (i.e., 

functions that also regulate perception, attention and/or learning abilities). 

When interpreting the cause of atypical action kinematics in autism, Cook and 

colleagues (2013) consider that both peripheral and central nervous functions may be 

involved. Motor impairments could conceivably stem from abnormal muscle tone 

(Maurer & Damasio, 1982), heightened neural noise (Torres et al., 2013; Torres & 

Denisova, 2016; Noel et al., 2020), aberrant autonomic regulation (Song et al., 2016; 

Patriquin et al., 2019), cortico-cerebellar neuropathology (Rogers et al., 2013; 

Trevarthen & Delafield-Butt, 2013; Jaber, 2016), and various other biological 

processes (see Torres et al., 2013). Of note here, is the growing evidence that autistic 

motor control is overpowered by signal variability and noise (Gowen & Hamilton, 2013; 
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Torres et al., 2013; Torres & Denisova, 2016). Such low-level system corruptions are 

typically minimised by predictive encoding mechanisms, which modulate sensory 

information according to statistically likely events (Teufel & Fletcher, 2020).  

Crucially, probabilistic state estimations are often represented before a movement is 

completed; however, there is increasing evidence that this prospective mode of control 

is impaired in autistic individuals. Indeed, early descriptions of an absence in 

“anticipatory postures” (Kanner, 1943) have since been validated by sophisticated 

analyses and measurement techniques, such as EMG (e.g., Schmitz et al., 2003), 

machine learning (e.g., Crippa et al., 2015; Cavallo et al., 2021), and force impedance 

analysis (e.g., David et al., 2009; 2012). For instance, autistic children have shown 

suboptimal programming of initial motor outputs and sustained fingertip force 

coordination during precision grip tasks (David et al., 2009; 2012; Mosconi et al., 2015; 

Z. Wang et al., 2015). Such motor dysfunctions seemingly derive from atypical 

feedforward control and/or a failure to flexibly adapt behaviour to changing task 

demands (see discussions in: David et al., 2012; Z. Wang et al., 2015).  Consequently, 

autism-related differences in movement execution may derive from suboptimal 

prospective control functions in the central nervous system. 

Active inference theories claim that the feedforward, context-sensitive regulation of 

neuromuscular activity occurs via spinal reflex arcs in the motor periphery, which quash 

prediction error across the nervous system (Adams et al., 2013; Shipp et al., 2013). 

Indeed, computational studies have shown that the prospective control of a motor 

response is reflective of ‘Bayes-optimal’ predictions about the world (e.g., Hudson et 

al., 2007; Vilares & Kording, 2011; Kwon & Knill, 2013). If these mechanisms are 

disrupted in autism, as proposed in predictive processing theories (see Section 1.2.2), 

then actions will be overly reliant on incoming sensory information. Such effects have 

been observed by Schmitz et al. (2003), who found that anticipatory EMG responses 

in the forearm musculature were attenuated in autistic people during voluntarily-

unloaded lifting. When compared to neurotypical controls, autistic participants 

displayed unstable action kinematics and more reactive modes of control, findings 

which have since been supported by neurological studies (e.g., Martineau et al., 2004; 

Thillay et al., 2016). Consequently, there is growing evidence that autistic people are 

less inclined to use predictions to optimise their movements (see Cannon et al., 2021). 
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Nonetheless, many of the above findings are limited by small sample sizes and high 

inter-individual variability. While this corresponds with the ‘spectrum-like’ nature of 

autism, such heterogeneity may be caused by confounding factors relating to an 

individual’s developmental trajectory, task motivation, communicative skills, and/or 

cognitive abilities (Fournier et al., 2010). Similarly, as autism is frequently accompanied 

by additional clinical diagnoses (e.g., ADHD, DCD, general anxiety disorders: Simonoff 

et al., 2008), it is likely that motor behaviours are being influenced by co-occurring 

conditions or neurodevelopmental atypicalities. These confounding variables present 

a major limitation for research in the field, and have constrained our mechanistic 

understanding to date (Whyatt & Craig, 2013b).   

To account for these sample limitations and potentially confounding factors, academics 

advocate the use of trait-based empirical approaches (Landry & Chouinard, 2016). 

Here, one can explore how specific, conceptually-driven outcome variables correlate 

with autistic-like traits across large neurotypical samples (see Section 1.6.3). Such 

non-clinical evidence has shown that higher levels of autistic-like traits correspond with 

attenuated sensorimotor predictions during object lifting (Buckingham et al., 2016) and 

reduced uncertainty-related scaling of reaching movements in the rubber-hand illusion 

(Palmer et al., 2013; 2015). Though these studies provide notable support for Bayesian 

and predictive processing theories of autism, their observed effects were statistically 

weak, and may not necessarily emerge in clinically-diagnosed populations 

(Buckingham et al., 2016). Similarly, the small magnitude of these effects are unlikely 

to explain the large performance differences that are generally observed in most 

sensorimotor studies (Coll et al., 2020). Therefore, future research is required to 

combine trait-based analyses with more traditional between-group comparisons, to 

better clarify the role of predictive motor atypicalities in autistic movement behaviours. 

Overall, studies of the motor system show clear and consistent differences in autistic 

action kinematics and prospective movement control. Though pathway-specific motor 

impairments cannot solely explain the poor praxis and daily living skill outcomes 

associated with autism, alterations in active inference present a likely candidate for 

these ‘shared’ movement difficulties. Nevertheless, limitations in previous research 

prevent decisive conclusions from being made, and future studies must aim to decipher 

precisely which regulatory mechanisms are implicated in autism.  
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1.4.5. The Schema System 

The sections above highlight clear autism-related differences in visual, gaze, and 

motor functions; but it is clear that sensorimotor difficulties do not reside from any 

system-specific impairments in these domains. Notably, Land (2009) proposes that 

these interlocking functions are governed by a central ‘supervisory’ unit, the schema 

system, which controls visuomotor operations via reciprocal top-down neural 

messaging. Supposedly, these signals convey a set of goal-directed action instructions 

(schemas), which bias the flow of activity between sensory inputs, internal states, and 

neuromuscular outputs (Norman & Shallice, 1986; Land, 2009). From a neurological 

perspective, these movement plans appear to be represented in the cerebellum and 

frontal lobes of the brain (Wolpert et al., 1998; Miller & Cohen, 2001; Cerminara et al., 

2009; Land, 2009). Given the wide-ranging atypicalities observed in these regions, and 

across interacting sensorimotor systems, it is therefore possible that the ability to 

generate and/or implement internal action models is impaired in autistic people. 

Despite presenting a largely distinctive conceptualisation of natural behaviours, most 

computational hypotheses of autism lend clear theoretical support for this notion. 

Active inference theory asserts that humans preferentially select motor plans that 

minimise future prediction error, or expected free energy, in a manner circumvents the 

need for a physical schema system altogether (Friston et al., 2006; Friston, 2011). This 

self-evidencing process is instead cast as maximising Bayesian model evidence under 

generative models of the world (Parr & Friston, 2019), and it is these mechanisms that 

are specifically proposed to be suboptimal in autistic people (see Section 1.2.2). 

Moreover, internal models will be dynamically adjusted over time, based on precision-

weighted modulation of prediction error (see Section 1.3). Predictive processing 

theories imply that these adaptive functions are aberrant in autistic people (Lawson et 

al., 2014; Van de Cruys et al., 2014; Palmer et al., 2017), meaning that action plans 

may be updated differently over the course of motor development and learning. 

Therefore, these computational processes present key candidates that could explain 

the visual, gaze, and motor differences observed in autistic populations. 

Importantly though, research suggests that the generation of internal action models is 

not chronically impaired in autism (Gowen & Hamilton, 2013). Autistic participants 

typically control and adjust movements based on prior information and experience, as 
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evidenced in numerous motor adaptation protocols (Gidley-Larson et al., 2008; 

Haswell et al., 2009; Izawa et al., 2012; Hayes et al., 2018). These findings are notable, 

as they indicate that participants can form and update action representations in a 

statistically-optimal manner. Though seemingly at odds with most computational 

theories of autism, such observations have gained support from cognitive studies, 

where typical probabilistic learning rates are displayed (Barnes et al., 2008; Brown et 

al., 2010; Manning et al., 2017). However, it must be noted that statistically-driven 

learning responses are suboptimal in some experimental settings (e.g., Mostofsky et 

al., 2000; Gordon & Stark, 2007; Jeste et al., 2015; Robic et al., 2015; Thillay et al., 

2016; Vivanti et al., 2018). Consequently, it is possible that certain context-specific 

action representations are affected.  

Indeed, it is well established that some autistic people have difficulties adjusting their 

action behaviours between different situational contexts. Adverse responses to 

unexpected environmental change and uncertainty are particularly common in autism 

(Rutter, 1978), and seemingly correlate with sensorimotor impairments (Dyck et al., 

2006; Gomot et al., 2011; MacDonald et al., 2013). Neuromodulatory responses to 

salient and repeated sensory cues are also atypical, as evidenced in numerous clinical 

studies (Courchesne et al., 1984; Kleinhans et al., 2009; Jeste et al., 2015; Thillay et 

al., 2016; Ewbank et al., 2017; Goris et al., 2018). These neurophysiological profiles 

associate with autistic-like traits in general populations (Ewbank et al., 2014) and can 

be computationally accounted for using hierarchical predictive coding models (Friston, 

2005; Garrido et al., 2009; Lawson et al., 2014; Auksztulewicz & Friston, 2016). 

Moreover, atypical surprise responses are shown in autistic motor programming 

(Nazarali et al., 2009) and gaze habituation behaviours (Vivanti et al., 2018), albeit with 

large sample heterogeneity. Therefore, the generation of context-sensitive action 

representations may be suboptimal in some autistic people.  

Context-sensitive processing mechanisms also implicate the implementation of action 

models, with the role of top-down information said to vary between tasks and 

conditions. Active inference states an individual will select motor policies that minimise 

estimates of future prediction error (Friston et al., 2010; Friston, 2011; Parr & Friston, 

2019), with expected precision modulating how sensory information is sampled, 

learned from, and acted upon (see Section 1.3). These higher-level precision estimates 

are represented in the ACC (Behrens et al., 2007; den Ouden et al., 2010; Bland & 
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Schaefer, 2012), a brain region highlighted as atypical in multiple clinical studies 

(Haznedar et al., 1997; Thakkar et al., 2008; Di Martino et al., 2009; Dichter et al., 

2009). Consequently, it is perhaps unsurprising that autistic people often have 

difficulties in action planning (see Gowen & Hamilton, 2013), especially in tasks that 

require dynamic internal modelling (e.g., tower-building and object-transfer 

procedures; Ozonoff et al., 1991; Hughes et al., 1994; Hughes, 1996).  

Recently, these dynamic active processes have been studied using double-step 

saccade paradigms (e.g., Johnson et al., 2013; Mosconi et al., 2013). In these 

oculomotor tasks, participants must shift their gaze towards a peripherally-located 

target cue, which is systematically displaced during their goal-directed eye movement. 

Such intrasaccadic target displacements are used to elicit a degree of gaze positional 

error, which is typically reduced in a progressive, prediction-driven manner over time 

(McLaughlin, 1967; Wong & Shelhamer, 2012). Importantly, autistic participants 

display atypical adaptation profiles in these tasks that correlate with levels of 

sensorimotor impairment (Johnson et al., 2013; Mosconi et al., 2013). Since these 

individuals are likely to be capable of adjusting their sensorimotor behaviours 

according to prospective, goal-relevant task information (van Swieten et al., 2010; 

Aitkin et al., 2013; Ego et al., 2016; Ansuini et al., 2018), these results lend support for 

the notion of aberrant prediction error modulation in autism (e.g., Friston et al., 2013; 

Van Boxtel & Lu, 2013; Lawson et al., 2014; Van de Cruys et al., 2014). 

Moreover, while adaptive sensorimotor learning outcomes are often displayed by 

autistic people (Gowen & Hamilton, 2013), consistent evidence suggests that these 

occur via atypical processing mechanisms (Mostofsky et al., 2000; Müller et al., 2004; 

Haswell et al., 2009; Sparaci et al., 2015; Foster et al., 2019). For instance, when 

learning new motor sequences, autistic individuals show elevated functional activity in 

the primary sensorimotor and premotor cortex (Müller et al., 2004). These neural 

regions are generally active during the early stages of neurotypical skill acquisition 

(Toni et al., 1998); however, they persist during later phases of adaptation in autistic 

individuals (Müller et al., 2004). Relatedly, autistic people display persistently elevated 

receptiveness to recent sensory information during statistical learning (Lawson et al., 

2017). In predictive processing terms, this prolonged over-reactivity to salient cues 

reflects an unusually heightened encoding of prediction errors, indicating that 

precision-modulated gain control may be aberrant in these individuals (Lawson et al., 
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2014; Palmer et al., 2017). So, while the functional ability to use internal action models 

is preserved in autism, alterations in context-sensitive predictive processing may 

prevent stable representations of the world from being built and/or updated effectively. 

Nevertheless, existing evidence is limited by a lack of data from complex and/or 

unconstrained motor skills. Indeed, most of the aforementioned studies have employed 

simple laboratory-based tasks, such as button-pressing and reaction time paradigms 

(e.g., Müller et al., 2004; Lawson et al., 2017). Due to methodological constraints, these 

protocols often necessitate restricted movements and artificially-stable external 

conditions. However, in unconstrained ‘real world’ environments, action behaviours 

must adapt to complex, interacting, and fluctuating sensory inputs (Land, 2009; Friston 

et al., 2010; Palmer et al., 2017; Hayhoe & Matthis, 2018). Consequently, the 

generalisability of current data is significantly limited, and future research is required 

in naturalistic, movement settings (Cannon et al., 2021).  

Overall, evidence supports the notion that autistic sensorimotor difficulties reside in 

context-sensitive processing mechanisms, which affect the dynamic formation and 

implementation of internal action models. Indeed, though probabilistic motor 

representations can be generated accurately in autistic people, the process by which 

this occurs and adjusts over time consistently proves atypical. However, research is 

still needed in naturalistic sensorimotor tasks. Such enquiry will not only improve our 

understanding of movement-based difficulties, but could also shed light on the 

fundamental mechanisms that underpin various autistic-like traits and behaviours. 

1.4.6. Conclusions 

Atypical sensorimotor control appears to be a core feature of autism, although the 

nature of these differences will largely depend on the task and individual involved. The 

aetiology of these functional issues is currently unclear, but researchers believe that 

atypicalities in Bayesian inference and/or predictive processing could play a causal 

role. At present, evidence for these proposals is mixed, due to inconsistencies in task 

requirements, participant characteristics, and analysis techniques. Furthermore, 

studies are limited by small sample sizes, artificial lab-based protocols, and various 

potentially confounding variables (e.g., cognitive impairments, developmental factors, 

co-occurring disorders). Nevertheless, consistent autism-related differences in visual, 

gaze, and motor functions are displayed, particularly in uncertain environmental 
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conditions. While these atypicalities are unlikely to reflect any pathway-specific 

disruptions in the visuomotor system, they may share a common computational origin, 

which impacts on the integration of sensory data and generative action models.  

On this basis, predictive processing theories offer notable promise for prospective 

research in this field. Indeed, by providing formalised and empirically falsifiable 

hypotheses that focus on shared computational phenotypes, these frameworks can 

explain the heterogeneous, multi-factorial aetiologies of autism-related daily living 

difficulties. Scientific investigations must now decipher specifically how sensorimotor 

control differs in autistic people, through examining predictive processing during 

naturalistic, unconstrained movement tasks. To account for the integrative, context-

sensitive nature of active inference, one should examine behaviour across multiple 

sensorimotor systems. This holistic, multi-systems approach will help us better 

understand and manage daily living difficulties in autistic people. 

 

1.5. Aims of the Thesis 

The aim of this project was to examine the aetiology of sensorimotor impairments in 

autism. Specifically, this thesis assesses various potential mechanisms that may 

underpin movement-based difficulties in autistic people, before considering how these 

functions can be targeted, or enhanced, in future applied practice. On the basis of the 

above literature review, this research particularly focuses on Bayesian and predictive 

processing theories of autism. These computational accounts present novel, 

practically-significant implications for sensorimotor behaviour, as they imply that daily 

living difficulties stem from atypicalities in predictive action control (i.e., impairments in 

active inference, prior beliefs, and hierarchical neural gain transmission; Table 1.1). 

Such enquiry aimed to not only further our theoretical understanding of autism, but to 

also assist in the development of effective, evidence-based practical interventions. 

Given the recent emergence of computational theories in the field (see Section 1.2.2), 

Chapter 2 investigates the relationship between autism and predictive sensorimotor 

control. Specifically, this initial work focuses on the simple daily living skill of object 

lifting, where prediction-related functions are both well-defined and empirically-

quantifiable (see Section 1.6.1). Study 1 describes a trait-based analysis of the general 

population, which was undertaken within the unique context of the size-weight illusion. 
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By integrating this established paradigm with contemporary methodologies from vision 

research and clinical neuroscience, one could explore associations between autistic-

like traits and various predictive sensorimotor functions. Any significant trait-related 

covariates were then re-inspected for accuracy and consistency in a large pre-existing 

dataset (Buckingham et al., 2016). Study 2 examined these same object lifting 

behaviours and variables within clinically-diagnosed autistic individuals. Here, one 

could decipher specifically which predictive mechanisms are intact and which appear 

atypical in autism, to evaluate the efficacy of different theoretical hypotheses. This 

combined study approach improves the generalisability of results, while circumventing 

a number of potential confounds and methodological limitations (see Section 1.6.3).  

Next, Chapter 3 considers the precise computational underpinnings of autistic 

sensorimotor impairments. Here, the autism-related processing styles highlighted in 

Study 2 are scrutinised using a naturalistic experimental approach. Specifically, Study 

3 adopted an immersive visuomotor interception task, where dynamic manipulations 

of environmental uncertainty and volatility were used to assess key active inference 

mechanisms (e.g., the use of prior beliefs and precision weighting functions). Since 

autistic people commonly struggle with performing these type of skills in the ‘real-world’ 

(Green et al., 2002; Vanvuchelen et al., 2007; Gowen & Hamilton, 2013; Whyatt & 

Craig, 2013b; Ament et al., 2015; Chen et al., 2019), this analysis refines our 

mechanistic understanding of functional daily living difficulties in this population.   

Finally, to assist in the development of future evidence-based practice, Chapter 4 

evaluates potential approaches for reducing sensorimotor difficulties in autistic people. 

This analysis explores whether the computational mechanisms highlighted in Chapters 

2-3 can be optimised through the use of systematic informational cues (e.g., advanced 

instructions or environmental manipulations). To do this, Study 4 examined differences 

in autistic sensorimotor control following the provision of explicit probabilistic cues 

within immersive virtual reality. Here, findings illustrate whether computational 

atypicalities result from dynamic, potentially malleable functions (e.g., relating to the 

extraction of goal-relevant environmental cues), or inherent, neurobiologically 

constrained mechanisms that are implicit and inflexible in nature. Such enquiry 

provides a crucial starting point for strategies aiming to combat movement-related 

difficulties in autism. From here, various evidence-based practical interventions can be 

developed (see discussion and critical evaluation of approaches in Chapter 5). 
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1.6. Methodology 

To better understand the complex and often under-studied difficulties that are faced by 

autistic people in sensorimotor tasks, a comprehensive investigatory approach is 

required. Here, lived experiences of autistic people must be integrated with specialist 

insight from neurology, psychiatry, neuroscience, education, psychology, as well as 

basic biological sciences (Robledo et al., 2012). Accordingly, this thesis will employ a 

number of novel interdisciplinary study methods, as detailed below. 

1.6.1. Object Lifting Studies 

Contrary to the reductionist approaches employed in many previous investigations, 

Chapter 2 examines predictive sensorimotor control holistically using a well-

established object lifting paradigm. In these studies, participants were presented with 

objects that varied in physical size and/or mass, which they were then required to 

grasp, lift, and hold at a comfortable height. To achieve these actions, internal 

generative models are combined with visual and haptic feedback, as discussed in 

Section 1.3. Though such integration is usually regarded ‘optimal’, it can produce a 

well-defined, non-veridical perceptual effect in this setting: smaller objects feel heavier 

than equally-weighted larger ones (the ‘Size-Weight illusion’; Charpentier, 1891).  

Importantly, these illusory effects emerge, at least partly, from an agent’s prior 

expectations (that larger objects will normally be heavier than smaller ones: Brayanov 

& Smith, 2010; Buckingham, 2014; Saccone & Chouinard, 2019). Limb movements 

and sensory sampling behaviours will also depend on these predictive action models 

(Figure 1.2). This provides a unique opportunity to study predictive processing across 

multiple interacting perceptual and sensorimotor systems, in a manner that entails 

minimal motivation and socio-communicative requirements. Such characteristics are 

particularly advantageous in autism research, and contrast with the bulk of existing 

studies in this field (Haker et al., 2016). Moreover, the ability to efficiently regulate 

fingertip motor forces is influential in various daily living skills that are known to be 

impaired in autistic people (e.g., dressing and writing; Fuentes et al., 2009). Therefore, 

findings offer significant practical implications for the autism community.  

Studies 1 and 2 systematically examined the use of prior expectations across each of 

Land’s conceptualised sensorimotor systems (2009; Figure 1.2). Specifically, prior 
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expectations based on visual cues (i.e., object size; Gordon et al., 1991) were 

assessed using numerical ratings of predicted heaviness (as in Buckingham & 

Goodale, 2013), while participants’ use of bottom-up proprioceptive information was 

derived from pre-lift hand kinematics (e.g., grasp phase dynamics; Hamilton et al., 

2007). Various prediction-related gaze (e.g., search rate behaviours) and motor (e.g., 

peak grip and load force profiles) outcomes were also examined, using mobile eye-

tracking and force transducer analysis (as in Johansson et al., 2001; Buckingham et 

al., 2016). Finally, motion capture data detailed the degree to which predictions bias 

one’s overall lifting actions (as in Johansson & Westling, 1988). If predictive processing 

is broadly impaired in autism, then clinically-related differences should have emerged 

across multiple sensorimotor modalities. Conversely, if autistic movement control is 

associated with context-sensitive processing mechanisms, then one would have seen 

inconsistencies, or independence, between these modalities (see Section 1.4.1) 

1.6.2. ‘Vision-in-Action’ Paradigms 

To examine the precise mechanisms that underpin autistic sensorimotor impairments 

(Chapter 3), Studies 3-4 focused on a complex, multi-system fundamental movement 

skill. This took the form of an interceptive visuomotor task, as autistic people generally 

have difficulties performing this type of skill (Green et al., 2002) and such actions can 

be readily ‘deconstructed’ to an individual, mechanistic level (Whyatt & Craig, 2013b). 

Although multiple sensorimotor modalities were, again, explored (with reference to 

Figure 1.2), the role of the gaze system was particularly informative as to what control 

processes were being employed. Indeed, mobile eye-tracking provides objective, 

accurate measures of visuomotor attention (Hamner & Vivanti, 2019), in a manner 

which has successfully elucidated the mechanistic basis of other neurodevelopmental 

conditions (for example from DCD research, see Wilson et al., 2013).  

Nevertheless, unconstrained whole-body movement experiments can be difficult to 

control (Farley et al., 2019) and are often performed in environments that are 

overwhelming for autistic people (Yanardağ et al., 2010). This presents significant 

methodological and ethical concerns. Therefore, based on previously-defined 

empirical approaches (e.g., Diaz et al., 2013; Binaee & Diaz, 2019; Mann et al., 2019), 

interceptive actions were performed in immersive virtual-reality (VR). This not only 

permitted precise control over task-relevant variables (e.g., ball flight trajectory, 
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background noise); it also afforded systematic, unconstrained manipulations of 

sensory and/or environmental information (e.g., uncertainty and volatility statistics). 

Furthermore, by offering a more stable ‘safe space’ for participants, this virtual setting 

could reduce potentially-overwhelming sensory and social stimuli from the surrounding 

research environment (Bradley & Newbutt, 2018). 

1.6.3. Clinical and Non-Clinical Approaches 

To avoid potential confounds relating to sensorimotor control, a combination of trait- 

and clinically-based study designs were employed. Autistic-like traits are said to be 

continuous and normally-distributed in general populations, with clinical ASD viewed 

to reside at the extreme end of this continuum (Baron-Cohen et al., 2001; Ruzich et 

al., 2015). Recent etiological approaches advocate studies that cross the diagnostic 

divide, by identifying correlates of autism that merge into the general population (e.g., 

Robinson et al., 2011). This reduces the influence of numerous extraneous variables 

(Landry & Chouinard, 2016), with rates of developmental delay, cognitive impairment, 

and many co-occurring conditions higher in autistic people (Simonoff et al., 2008).  

In this regard, the present thesis often takes a two-stage investigative approach. At 

first, relationships are explored between sensorimotor outcomes and non-clinical levels 

of autistic-like traits, as indexed using validated questionnaires (e.g., the Autism 

Spectrum Quotient, AQ: Baron-Cohen et al., 2001). Such trait-based analysis permits 

the identification of autism-specific processing mechanisms which are less influenced 

by clinically-related confounds. Thereafter, more conventional between-group 

comparisons are conducted, which examine how these specific autism-related 

mechanisms differ between autistic and neurotypical samples. This combined 

investigative approach has successfully established a number of behavioural, 

neurological, and sensory characteristics of autism in previous research projects (e.g., 

Almeida et al., 2013; Cooper et al., 2013; Poljac et al., 2013; Robertson & Simmons, 

2013; Ewbank et al., 2014). 
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Chapter 2  

Sensorimotor functions depend on various interlocking systems and processing 

pathways, which are coordinated by predictive action models (Friston et al., 2010). To 

optimally control movements, predictions are computed from prior expectations and 

incoming sensory data, before being transmitted hierarchically across the cerebral 

cortex (Shipp et al., 2013). It is proposed that autistic individuals display chronic 

attenuations in this use of prior information (Pellicano & Burr, 2012; Sinha et al., 2014; 

Van de Cruys et al., 2014). These ‘simple’ Bayesian hypotheses draw on wide-ranging 

empirical evidence, with autistic individuals having been shown to display reduced 

anticipatory postural adjustments (Schmitz et al., 2003), atypical error-based gaze 

adaptation (Mosconi et al., 2013), and impaired motor learning capabilities (Gidley-

Larson & Mostofsky, 2006). Furthermore, anatomical and functional abnormalities are 

commonly displayed by autistic participants in neural regions said to drive predictive 

control, such as the cerebellum (Courchesne, 1997; Fatemi et al., 2002; Allen & 

Courchesne, 2003; Fatemi et al., 2012), ACC (Dichter et al., 2009) and basal ganglia 

(Hollander et al., 2005). Therefore, it is proposed that sensorimotor difficulties in autism 

may be caused by generic impairments in the ability to make and/or use predictions 

(e.g., Pellicano & Burr, 2012; Sinha et al., 2014). 

However, research has shown that various prediction-dependent processes are not 

chronically impaired in autism (Gidley-Larson et al., 2008; Tewolde et al., 2018), and 

findings are often task- or context-sensitive (Palmer et al., 2017; Cannon et al., 2021). 

For example, recent object lifting studies (Buckingham et al., 2016; Arthur et al., 2019) 

have explored how sensorimotor prediction correlates with autistic-like traits in large 

neurotypical populations. These studies examined the degree to which participants 

predictively lift ‘heavy-looking’ objects (e.g. large objects) with greater fingertip force 

rates than ‘lighter-looking’ ones (e.g. small objects; Buckingham et al., 2016)—a type 

of sensorimotor prediction generated in the dorsal premotor cortex (Chouinard et al., 

2005). Here, although participants with higher autistic-like traits showed reduced 

sensorimotor prediction when interacting with different-sized objects (Buckingham et 

al., 2016), such effects did not replicate when objects differed in material properties 

(Arthur et al., 2019). These studies suggest that predictive processing atypicalities in 

autism may be driven by task- or context-specific mechanisms, rather than from any 

chronic attenuations in the use of prior knowledge.  



 

51 
 

Sensorimotor control depends on various context-sensitive mechanisms, which are 

proposed to dynamically modulate cortical gain across hierarchical neural networks 

(Friston, 2005; Adams et al., 2013; Shipp et al., 2013). Top-down signals are typically 

downregulated when uncertainty about one’s prior beliefs is high, to ensure that 

unbiased sensory cues can be processed (Yu & Dayan, 2003; Kwon & Knill, 2013). 

Notably, such context-sensitive neurobiological responses appear to be diminished in 

autistic individuals (Ewbank et al., 2017; Lawson et al., 2017), prompting suggestions 

that autism may be characterized by inflexibilities in how predictive processing is 

adjusted according to environmental statistics (Lawson et al., 2017; Palmer et al., 

2017). These arguments are supported by recent findings in the rubber-hand illusion 

(Palmer, Paton, et al., 2015) and object lifting (Arthur et al., 2019), where participants 

with higher autistic-like traits display a lower degree of uncertainty-driven adjustments 

in gaze and motor control. However, it remains unclear whether sensorimotor 

difficulties in autism are underpinned by chronic attenuations in the use of prior 

information, or context-sensitive mechanisms relating to how this prior information is 

integrated with environmental statistics.  

This chapter examines how predictive sensorimotor control differs in autistic individuals 

across two object lifting experiments. Study 1 examined a large neurotypical sample, 

exploring the correlations between autistic-like traits and various measures related to 

sensorimotor prediction. By adopting this initial trait-based approach, potential autism-

related confounds relating to differences in cognitive ability and co-occurring disorders 

can be minimised (Landry & Chouinard, 2016). This initial experiment was then 

followed by a second study, which analysed how prediction-related sensorimotor 

variables differ between neurotypical individuals and participants with a clinical 

diagnosis of ASD. In both studies, participants lifted objects that differed in physical 

size and mass (Figure 2.1), before reporting how heavy they felt on a numerical scale. 

Various multi-modal indices of perception, action, and sensory sampling behaviour 

were then assessed, to decipher which prediction-based behaviours are specifically 

impaired or intact in autism (Ego et al., 2016). This multimodal approach would permit 

examination into whether autism-related sensorimotor atypicalities reflect chronic, 

domain-general attenuations in predictive control, or context-sensitive patterns linked 

to specific neurobiological pathways.  



 

52 
 

 

Figure 2.1. The experimental set-up for object lifting trials (A), the four ‘test’ objects 

lifted by participants (B), and a schematic overview of the testing session (C) in Studies 

1 and 2. Objects were concealed by a manual clapper-board prior to each trial. 

Following an auditory tone (trial onset), participants reached and lifted objects with their 

thumb and forefinger to a comfortable height above the table. Objects were held steady 

until hearing a second auditory tone (trial offset), before being placed back on the 

platform. These procedures were repeated for ‘baseline’ and subsequent ‘test’ trials, 

with various prediction-related sensorimotor measures obtained.  

To examine predictive processing at a perceptual level, numerical heaviness ratings 

were averaged for each object. Here, prior expectancies bias perception in a non-

veridical ‘anti-Bayesian’ manner (Brayanov & Smith, 2010), with small objects typically 

perceived to feel heavier than equally-weighted larger ones (Charpentier, 1891). Any 

attenuations in the use of prior expectations would result in a reduced magnitude of 

this perceptual illusion. To examine mechanisms relating to active inference, peak grip 

(pGFR) and load (pLFR) force rate differences between the initial lifts of the large and 

smaller objects were calculated, alongside resulting action kinematics. Here, 

tendencies to underestimate and overestimate lifting force can be derived from 

unexpectedly heavy and unexpectedly light object lifts. If prior beliefs are chronically 

diminished, then similar motor profiles would be shown for the large and small objects 
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(i.e., reduced pGFR and pLFR difference scores). To supplement this multimodal 

analysis, participants’ gaze patterns were also monitored, with predictive processing 

hypotheses having direct implications for visual sampling behaviours (Palmer et al., 

2017), and shorter, more frequent fixations signalling inefficiencies or impairments in 

predictive sensorimotor control (Murray & Janelle, 2003; Wilson et al., 2013).  

The studies below have been published as: Arthur, T., Vine, S., Brosnan, M., & 

Buckingham, G. (2020). Predictive sensorimotor control in autism. Brain, 143(10), 

3151-3163. 

 

2.1. Study 1: Associations between sensorimotor prediction and non-clinical 

autistic-like traits 

2.1.1. Introduction 

The aim of Study 1 was to investigate the associations between sensorimotor 

prediction and autistic-like traits, using an exploratory, non-clinical approach that would 

be minimally affected by co-occurring disorders and cognitive ability (Simonoff et al., 

2008). Specifically, a large general population were examined, where autistic-like traits 

tend to vary in a normally-distributed manner (Baron-Cohen et al., 2001). Since co-

occurring sensorimotor conditions are far less prevalent in neurotypical samples 

(Simonoff et al., 2008), this analysis would shed light on autism-specific sensorimotor 

correlates, in a way that is unaffected by small sample sizes and clinically-related 

confounds (see discussions in: Landry & Chouinard, 2016 and Section 1.6.3). In a SWI 

paradigm akin to the present study, individuals with greater autistic-like traits proved 

less inclined to utilise prior information in their lifting movements (Buckingham et al., 

2016). However, these relationships were weak and did not replicate when objects 

differed in material properties (instead of size cues; Arthur et al., 2019). Accordingly, 

this study examined whether the observed associations between autistic-like traits and 

sensorimotor prediction transfer across different sensory modalities and conditions.  

The present study scrutinised the use of predictions at both chronic (i.e. context-

independent) and context-sensitive hierarchical levels. Tendencies to underestimate 

and overestimate lifting force are subject to distinct, situation-specific processing 

operations (Jenmalm et al., 2006). For example, when lifting a mug of tea, prior 
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uncertainty about the weight of the mug may have little effect on pGFR overestimation 

tendencies, as the consequence of prediction error is relatively minor (i.e. unnecessary 

energy expenditure, increased effort). Conversely though, as underestimation can lead 

to detrimental effects (i.e. slips or drops), it would be expected that high grip force 

‘safety margins’ are used under uncertain conditions (Hadjiosif & Smith, 2015). 

Therefore, individuals may utilise the same overall expectation (e.g. that larger mugs 

will weigh more than smaller ones) in a distinct, context-sensitive manner.  

On the basis of simple Bayesian theories (e.g., Brock, 2012; Pellicano & Burr, 2012) 

and previous research in the SWI (Buckingham et al., 2016), it was hypothesised that 

participants with higher autistic-like traits would show chronic attenuations in 

sensorimotor prediction. This would be reflected in negative correlations between 

levels of autistic-like traits and indices of the perceptual SWI, pGFR and pLFR 

differences, movement initiation velocities, and gaze fixation durations.  

 

2.1.2. Methods 

2.1.2.1. Participants 

Eighty-nine neurotypical participants (46 male, 43 female; 23 ± 3 years; 90% right-

handed; see Appendix A1), who did not report any cognitive disabilities or neurological 

disorders, were recruited to take part in this study. Participants were excluded if they 

reported any conditions known to affect sensorimotor control, including ASD, meaning 

that one individual with DCD and two with musculoskeletal injuries were excluded. To 

ensure that analyses were not influenced by ‘clinically significant’ trait characteristics, 

participants were excluded if they exhibited total scores ≥ 32 (n = 4; as recommended 

by Baron-Cohen et al., 2001). As such, the study was robust to clinically-related 

confounds (Landry & Chouinard, 2016). Remaining participants (n = 82) exhibited AQ 

scores ranging from 5–31 (mean: 15.87 ± 6.39), values which are consistent with large, 

representative neurotypical populations (Baron-Cohen et al., 2001). The study 

received approval from the School of Sport and Health Sciences Ethics Committee 

(University of Exeter) and informed consent was obtained from all participants in 

accordance with British Psychological Society guidelines. All participants were naïve 

to the study objectives and had normal or corrected-to-normal vision. 
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2.1.2.2. Apparatus and stimuli 

Participants lifted homogenous 7.5-cm tall black plastic cylinders using an aluminium 

and plastic lifting handle, which was fitted with an ATI Nano-17 Force transducer. 

Objects differed in physical diameter (small: 5 cm, large: 10 cm) and mass (light:        

355 g, heavy: 490 g), presenting a total of four ‘test’ items (Figure 2.1). An additional 

medium-sized ‘control’ object (diameter: 7.5 cm; mass: 490 g) also provided baseline 

comparisons for grip and load force outcomes, all of which were recorded at 500 Hz. 

During lifting, participants wore a Pupil Labs mobile eye gaze registration system 

(Kassner et al., 2014), which calculated gaze positions at 90 Hz (spatial accuracy: 

0.60°; precision: 0.08°). The eye-tracking system was calibrated using the 

manufacturer’s built-in screen marker routine prior to data collection and following any 

displacement of the gaze registration cameras and/or loss of data quality during 

testing. A manual clapper board concealed objects and restricted visual feedback prior 

to the onset of each trial (as in Arthur et al., 2019). To enable kinematic analysis, the 

position of rigid bodies comprised three reflective markers, attached to the lifting 

handle and to a worn glove, were tracked by an 8-camera optical motion capture 

camera system at 120 Hz (OptiTrack Flex13, NaturalPoint, Corvallis, Oregon).  

To index autistic-like traits, participants completed the 50-item adult AQ (Baron-Cohen 

et al., 2001; Appendix E), a widely used research tool which has proven both valid and 

reliable in large general populations (Woodbury-Smith et al., 2005). The AQ assesses 

five sub-traits associated with autism, namely: attention to detail, attention switching, 

imagination, communication, and social skills. Participants self-reported whether they 

‘definitely agree’, ‘slightly agree’, ‘slightly disagree’ or ‘definitely disagree’ with 50 

itemized statements that assess each of these subscales. This provides an overall 

score out of 50, whereby higher numbers reflect greater autistic-like traits. 

2.1.2.3. Procedures  

All measures of autistic-like traits were completed before the lifting protocol. 

Thereafter, participants repeated a previously described set of standardized lifting 

procedures, both for ‘baseline’ and ‘test’ trials (Figure 2.1; see Arthur et al., 2019 for 

more detail). Specifically, during both conditions, participants lifted objects from a 

seated position with the thumb and forefinger of their dominant hand, and held them 

steady at a comfortable height above the table surface. The onset and offset of each 
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trial were signalled by two computer-generated auditory tones, each separated by 4 s. 

Participants were instructed to lift objects in a ‘smooth, controlled and confident 

manner’, and to ‘gently place the object back on its starting platform’.  

Each session began with five ‘baseline’ trials, and was followed by 32 ‘test’ trials 

(Figure 2.1), where each object was lifted eight times in one of three 

pseudorandomized orders. These predetermined trial sequences presented objects in 

an uncorrelated, entropic order, but guaranteed that each ‘heavy’ item was lifted at 

least once before any ‘light’ trials. Such precautions would minimize order effects 

(Maiello et al., 2018), while ensuring initial ‘test’ lifts were unexpectedly heavy or light, 

relative to baseline trials. After each lift, participants verbally reported a numerical 

judgement about how heavy the object felt, with larger numbers instructed to represent 

heavier weights. Importantly, no constraints were placed on these values to minimise 

ratio scaling biases (as in Buckingham et al., 2016).  

2.1.2.4. Data analysis 

Perceived heaviness scores: Heaviness ratings were normalized to a z-score 

distribution to permit inter-individual analyses. To quantify the magnitude of the SWI, 

where small objects are erroneously perceived to weigh more than equally weighted 

larger ones (Charpentier, 1891), average values for the larger objects were subtracted 

from those of the smaller ones (Buckingham et al., 2016). Conversely, to quantify 

detection of real weight changes, averages for the heavy objects were subtracted from 

lighter objects. 

Force data: Extracted force data were smoothed using a 14-Hz Butterworth filter, with 

forces perpendicular to the surface of the handle defined as grip force and resultant 

vectors of the tangential forces interpreted as load force. To determine peak force 

rates, data were differentiated with a 5-point central difference equation. From here, 

broad size-related prediction errors were assessed for grip (pGFRdiff) and load 

(pLFRdiff) force rate outcomes, through subtracting values from the first ‘test’ lift of the 

smaller objects from those of the larger objects (Buckingham et al., 2016). To isolate 

more context-specific mechanisms, sensorimotor prediction for small and heavy 

objects were also assessed separately. To index underestimation of force, pGFR from 

the first test trial of the small heavy object was subtracted from that of the final baseline 

lift. Conversely, to index overestimation, pGFR exhibited during this final baseline trial 
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was subtracted from the first large heavy test trial. This analysis was conducted on 

pGFR, and not pLFR, following inspection of trial-by-trial lifting profiles, which 

suggested that prediction-related differences were more sensitive for this measure. For 

all of these outcomes, higher index values would indicate a greater degree of 

sensorimotor prediction (as in Buckingham et al., 2016; Arthur et al., 2019). 

Gaze data: Visual fixations were extracted from the gaze data using Pupil Player 

software (Kassner et al., 2014). Fixations were defined as gaze that remained on a 

location, within 1° of visual angle (as recommended by Salvucci & Goldberg, 2000). 

To illustrate participant’s visual sampling behaviours, the total number and average 

duration of fixations were recorded for baseline trials and for the first lift of each object, 

with any brief fixations (<120 ms; Williams et al., 1994) removed from analysis. As 

attention was mostly directed towards the object in this task (see Supplementary 

Videos, at https://osf.io/p52h8/), the occurrence of shorter and/or more frequent 

fixations would signal greater sampling of goal-relevant sensory cues.  

Kinematic data: Raw positional data for each infrared marker were smoothed using a 

dual-pass, zero-phase lag 10-Hz Butterworth filter (Franks et al., 1990), with hand and 

object velocity then calculated from the average position of each rigid body. These 

signals were then combined into resultant 3D vectors and differentiated with a 5-point 

central difference equation to yield velocity values. From here, reach and lift movement 

phases were segmented for each trial, using a 50mm/s movement threshold (as in 

Eastough & Edwards, 2007). Specifically, the reach phase began when hand velocity 

first exceeded a 50 mm/s for three consecutive frames and concluded upon the onset 

of grip force. The lift phase was determined from the time point where both hand and 

object velocity first exceeded 50 mm/s until the point where the object reached its 

maximum vertical position. The maximum velocity of the hand during reach (MRV) and 

lift (MLV) phases was then recorded, as were the time points where these events 

occurred (as a percentage of total movement time).  

2.1.2.5. Statistical analysis 

Statistical analyses were performed using JASP (version 0.12.2), with significance 

accepted at p < .05 and data presented ± standard deviation (SD). Outliers were 

removed from their respected analysis, with univariate outliers identified as values 

>3.29 SD above or below the mean (p < 0.001) and multivariate outliers ascertained 
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by extreme Mahalanobis distances (p < .001). To assess whether participants 

experienced the SWI and showed prediction-related motor patterns, separate 2 (small, 

large) × 2 (light, heavy) repeated-measures ANOVAs were conducted. Average 

heaviness scores, as well as pGFR and pLFR values from initial lifts, were entered as 

dependent variables. Planned t-tests using the Bonferroni correction probed any 

significant results, with effect sizes calculated using partial-eta squared (ηp
2).  

Pearson’s correlation explored relationships between AQ scores, the perceptual SWI, 

and prediction-related measures of force, movement kinematics, and visual sampling 

behaviours. Correlational analysis was favoured over between-group comparisons to 

provide greater statistical power (Mitchell & Jolley, 2013), in a manner that is consistent 

with previous studies in the field (Buckingham et al., 2016; Lawson et al., 2017). Holm-

Bonferroni corrections (Holm, 1979) were then used to adjust for multiple comparisons, 

and Bayes factors (BF10) were obtained to illustrate the strength of evidence in favour 

of the alternative/null hypotheses. In accordance with recommended statistical 

conventions (e.g., van Doorn et al., 2021), a symmetric Cauchy prior with a width 

parameter of 0.707 was selected for these analyses, with moderate support for the 

alternative model set at BF10 > 3 and strong support indicated by BF10 >10.  

There were no statistical violations relating to normality, homoscedasticity, or linearity. 

However, one participant’s heaviness ratings (remaining n = 81), and five participants’ 

force data (remaining n = 77), were excluded following detection of univariate outliers 

in the associated outcome measures (p < .001). Additionally, eight participants were 

removed from kinematic analysis (remaining n = 74) and 22 from gaze analysis 

(remaining n = 60) due to poor data quality and/or outliers.  

 

2.1.3. Results and Discussion 

A repeated measures ANOVA was conducted with average heaviness scores for each 

‘test’ object (small-light, small-heavy, large-light, large-heavy) entered as dependent 

variables. ANOVA revealed significant effects of size and mass on perceived 

heaviness (Size: F(1,81) = 1150.86, p < .001, ηp
2 = 0.93, BF10 = 3.22 × 1033; Mass: 

F(1,81) = 1395.16, p < .001, ηp
2 = 0.95, BF10 = 2.13 × 1048). Average scores for smaller 

‘test’ objects were greater than those for larger ones (p < .001, BF10 = 1.44 × 1045) and 

scores for heavier objects were greater than those for the lighter ones (p < .001, BF10 
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= 9.34 × 1048). Together, effects show that both illusory and physical differences in 

mass were detected. However, correlation analysis showed that there were no 

significant associations between AQ scores and heaviness ratings (SWI: r = 0.13, 

p = .25, BF10 = 0.27; real weight: r = −0.17, p = .14, BF10 = 0.40; Figure 2.2.A). This 

reinforces observations that prior expectations influence weight perception comparably 

across the general autism phenotype (Buckingham et al., 2016).  

 

Figure 2.2. Scatter plots highlighting associations between autistic-like traits (AQ 

scores) and the magnitude of the perceptual Size-Weight Illusion (SWI; A), prediction-

related differences in peak Grip Force Rate (pGFR; B) and peak Load Force Rate 

(pLFR; C) in Study 1. No significant relationships emerged (all p > 0.05). 
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Next, ANOVAs examined pGFR and pLFR profiles from the initial lifts of ‘test’ objects. 

These revealed no significant effects for object mass on pLFR (F(1,77) = 1.03, p = .31; 

ηp
2 = 0.01, BF10 = 0.18) and marginal effects on pGFR (F(1,77) = 4.03, p = .05, ηp

2 = 

0.05, BF10 = 1.01). However, strong effects for size emerged (pGFR: F(1,77) = 62.03, 

p < .001, ηp
2 = 0.45, BF10 = 1.10 × 109; pLFR: F(1,77) = 9.24, p = .003, ηp

2 = 0.11, BF10 

= 12.96), with force rates lower when lifting the smaller compared to larger objects 

(pGFR: p < .001, BF10 = 4.06 × 108; pLFR: p = .003, BF10 = 8.53). This indicates that 

the object lifting paradigm elicited size-related expectation biases on initial ‘test’ lifts. 

Interestingly, however, the magnitude of these predictive biases was not significantly 

related to AQ values (p’s > .37; Figure 2.2), with Bayes factors reflecting strong 

evidence for null trait-based effects (pGFRdiff: r = 0.10, p = .37, BF10 = 0.21; pLFRdiff: 

r = 0.09, p = .43, BF10 = 0.19). Furthermore, no significant correlations emerged 

between AQ scores and lifting kinematics (Table 2.1; p’s > .24, all BF10 values < 0.30). 

These results highlight a lack of relationship between autistic-like traits and the use of 

prior expectations at a motor level, a pattern of data which has now emerged in the 

context of both size- and material-based object heaviness cues (Arthur et al., 2019).  

Table 2.1. Bivariate Correlations between Autistic Quotient Scores and 
Sensorimotor Outcomes in Study 1. 

 Mean (SD) R 

Force Measures  

     pGFRdiff (N/s) 18.70 (20.95) 0.10 

     pLFRdiff (N/s) 2.61 (7.26) 0.09 

     pGFR Underestimation (N/s) 21.49 (28.62) -0.25* 

     pGFR Overestimation (N/s) 6.25 (32.30) 0.20 

Gaze Measures  

     Fixation Number  3.93 (0.55) 0.03 

     Fixation Duration (ms) 427.03 (115.47) 0.14 

Kinematic Measures 

     MRV (mm/s) 917.34 (157.83) -0.11 

     MLV (mm/s) 341.70 (82.47) 0.14 

     Time to MRV (%) 37.56 (6.39) 0.03 

     Time to MLV (%) 35.30 (7.04) -0.05 
   

pGFRdiff: differences in peak Grip Force Rate between initial lifts of the large and small ‘test’ 
objects; pLFRdiff: differences in peak Load Force Rate between initial lifts of the large and 
small ‘test’ objects; MRV: maximum reach velocity; MLV: maximum lift velocity; * denotes 

significant relationship with AQ scores. 
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Gaze patterns were markedly consistent both within- and across-subjects. Specifically, 

participants tended to fixate upon the stationary object throughout the reach and grasp 

phases, before using pursuit and saccadic eye movements to track its in-flight lift 

trajectory. Upon reaching a stable ‘hold’ position, subsequent object-directed fixations 

were then maintained until the offset of the trial, when an anticipatory saccade would 

draw gaze back towards the starting platform (i.e. final object location; see 

Supplementary Videos at https://osf.io/p52h8/ for illustration). Such gaze patterns are 

consistent with previous studies (e.g., Johansson et al., 2001), and are said to be 

‘supervised’ by top-down action models (Land, 2009). Interestingly, our data provided 

strong evidence that AQ scores were unrelated to these search rate behaviours 

(Fixation number: r = 0.03, p = .85, BF10 = 0.16; Duration: r = 0.14, p = .28, BF10 = 0.28; 

Table 2.1). This further supports the lack of associations between autistic-like traits 

and prediction-controlled sensorimotor behaviour in this task. 

To shed light on context-sensitive predictive processes, trial-by-trial variations in pGFR 

responses were examined. Specifically, correlations between AQ scores and baseline-

subtracted fingertip force profiles for the ‘small-heavy’ and ‘large-heavy’ objects were 

inspected. Here, no significant relationships were found between pGFR overestimation 

and AQ scores (r = 0.20; p = .08, BF10 = 0.62), suggesting that participants comparably 

increased force rate for larger ‘test’ objects. Results did, however, provide anecdotal 

support for an inverse relationship between AQ and pGFR underestimation values (r 

= −0.25, BF10 = 1.47), although such effects were non-significant when accounting for 

multiple comparisons (p = .03, Table 2.1).  

The fact that prediction-based effects emerge in some, but not all trials, suggests that 

autism-related movement atypicalities may originate from context-sensitive 

mechanisms. Elevated pGFR profiles for unexpectedly heavy objects (in high-AQ 

participants) could represent a strategy aimed at minimising the likelihood of task errors 

(i.e., slips or drops, Cashaback et al., 2017). Such an argument lends support for 

proposed associations between autism and volatility processing (Lawson et al., 2017), 

as these compensatory behaviours are often deployed when environmental 

uncertainty is perceived to be high (Hadjiosif & Smith, 2015). Though evidence is 

clearly inconclusive, it would therefore be premature to rule out any context-sensitive 

relationships between autistic-like traits and sensorimotor prediction at this point.   
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2.1.4. Exploratory Analysis 

Study 1 highlighted inverse relationships between AQ and pGFR underestimation, 

however these correlations were weak and inconclusive. This exploratory analyses 

evaluated the reliability and generalisability of these results, by examining whether 

such statistical associations emerge in a previously recorded dataset (Buckingham et 

al., 2016) and/or in participants’ movement kinematics (peak lifting velocities).  

2.1.4.1. Analysis of Existing Data 

First, a re-inspection of Buckingham et al.’s data (2016; retrieved from: https://osf.io/ 

2cmdu/) was undertaken. In this previous work, a comparable object lifting protocol 

and neurotypical sample were analysed (n = 88, age = 22 ± 3 years). Contrary to Study 

1, a significant relationship between AQ scores and fingertip force outcomes was 

observed. Participants with higher autistic-like traits showed reduced pGFR differences 

between small and large objects (Figure 2.3). It was concluded that these individuals 

were less inclined to incorporate prior information into their motor programmes. 

However, on closer inspection, it is unclear whether these effects reflect generic 

attenuations in the use of sensorimotor prediction, as originally believed. Indeed, 

relationships between AQ scores and anticipatory motor profiles were only significant 

for unexpectedly-heavy object lifting trials in Study 1 and such context-dependent 

effects could conceivably be driving the correlations that are presented in Figure 2.3.  

To explore this possibility, this analysis investigated whether associations between AQ 

scores and fingertip force profiles in Buckingham et al. (2016) reflect chronic variations 

in the use of prior beliefs or context-specific processing atypicalities (i.e., attenuations 

in either force under- or over-estimation). Although there were no baseline trials in this 

previous work, a 400g medium-sized object (diameter: 7.5 cm) was included in the 

SWI protocol which could be compared with equally-weighted small (diameter: 5 cm) 

and large (diameter: 10 cm) cylinders. As such, pGFR and pLFR data were extracted 

from initial trials of each object, and index scores could then be computed for 

underestimation and overestimation profiles respectively. Underestimation scores 

were calculated by subtracting ‘small’ from ‘medium’ force rates, while first-lift values 

from the ‘medium’ object were subtracted from those of the ‘large’ object to index 

overestimation. Higher values would signify greater tendencies to under- or over-

estimate force, while lower scores would highlight reductions in the use of prior beliefs. 
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Figure 2.3. Scatter plots highlighting the previously reported relationships between 

AQ scores and prediction-related differences in peak Grip Force Rate (A) and peak 

Load Force Rate (pLFR; B). Copied from Buckingham et al. (2016), with permission 

from Springer Nature (open access). 

Bayesian correlation analysis provided only anecdotal support for the previously-

reported relationships between high AQ scores and attenuated sensorimotor prediction 

(pGFRdiff: r = -.24, BF10 = 1.23; pLFRdiff: r = -.24, BF10 = 1.23). Furthermore, there 

was a lack of relationships between AQ and overestimation tendencies in this dataset 

(pGFR: r = 0.11, BF10 = 0.22; pLFR: r = 0.07, BF10 = 0.16). Interestingly, though, 

analyses highlighted strong evidence for an association between AQ scores and pGFR 

underestimation tendencies (r = -.37, BF10 = 34.89), and moderate evidence in favour 

of trait-based pLFR underestimation effects (r = -.32, BF10 = 8.73). Consequently, the 

novel context-sensitive effects that emerged in Study 1 not only replicate in this 

previous dataset; they appear to be driving the weak prediction-related associations 

that were originally recorded in this prior investigation. 
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2.1.4.2. Post-Hoc Kinematic Analysis  

To further scrutinise these context-specific motor differences, post-hoc tests examined 

their influence on participants’ movement kinematics. Any underestimation of lifting 

force should result in a marked slowing of movement (Jenmalm et al., 2006). So, using 

the same approach employed in the force analyses of Study 1, MLV values from initial 

lifts of the ‘small-heavy’ object were subtracted from those in the final ‘baseline’ trial, 

to provide an underestimation score. As expected, participants generally displayed 

slower lifting movements in this initial, unexpectedly-heavy trial (Figure 2.4.A), which 

confirmed that force underestimation impacted on participants’ action kinematics. 

These kinematic profiles were inversely related to AQ scores (Figure 2.4.B), although 

support was only anecdotal in this data (r = -.24, p = .04, BF10 = 1.14). As such, results 

provide further support for the notion that autism-related atypicalities in sensorimotor 

prediction may result from context-sensitive processing mechanisms (e.g., in precision 

weighting: see Friston et al., 2013; Lawson et al., 2014; 2017; Palmer et al., 2017).  

 

Figure 2.4. Changes in Maximum Lift Velocity (MLV; A) from the final ‘Baseline’ trial 

to the initial ‘Heavy-Small’ trial, and scatter plot highlighting the relationship between 

Autism Spectrum Quotient (AQ) scores and the magnitude of these changes (B). 

*Denotes significant difference between trials (t(73) = 6.30, p < .001, BF10 = 6.11*105); 

# shows a significant correlation between included co-variables (p < .05). 
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2.1.5. Interim Summary  

This study showed that the broad use of sensorimotor prediction during object lifting is 

not associated with autistic-like traits, either at a perceptual or visuomotor level. 

However, higher autistic-like traits consistently correspond with reduced force 

underestimation tendencies, indicating that prediction-related atypicalities are evident 

in some (but not all) task conditions. These results support links between autism and 

context-sensitive predictive processing mechanisms (e.g., precision modulation), 

which required investigation in participants with a clinical diagnosis of ASD. 

 

2.2. Study 2: Predictive sensorimotor control in autistic individuals. 

2.2.1. Introduction 

Following the novel findings presented above, Study 2 examined how predictive 

sensorimotor control manifests in individuals with a clinical diagnosis of autism. To do 

this, a conventional between-groups design was employed, whereby a number of key 

prediction-related variables were compared between autistic and non-autistic 

participants. Given the context-sensitive associations highlighted between AQ scores 

and predictive processing in Study 1, this study specifically focused on how 

participants utilise sensorimotor predictions under different environmental conditions.  

Using the same object lifting protocol as illustrated in Figure 2.1, pGFR and pLFR 

differences were again inspected, along with changes in gaze search rate between 

baseline and ‘test’ trials. Such analysis would probe the degree to which participants 

adjust sensorimotor control according to variations in environmental uncertainty. 

Indeed, previous research has shown that neurotypical participants increase gaze 

search rate when they are more uncertain about an object’s mass (Arthur et al., 2019). 

This response likely illustrates an increased sampling of ambiguous, goal-related 

visual cues (i.e., to reduce free energy: Friston, Adams, et al., 2012). However, the 

degree to which an individual adjusts these gaze behaviours is inversely related to 

levels of autistic-like traits (Arthur et al., 2019). Consequently, it was hypothesised that 

autistic participants would show reduced pGFR underestimation and diminished 

uncertainty-related changes in search rate, when compared to neurotypical controls.   
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2.2.2. Methods 

2.2.2.1. Participants 

33 participants with a clinical diagnosis of ASD, recognized according to DSM-V or 

ICD-10 criteria (WHO, 2012; American Psychiatric Association, 2013), were recruited 

for this study (see Appendix A2). Initially, four participants were removed from the 

study, after reporting co-occurring conditions known to affect sensorimotor control 

(DCD: n = 3; musculoskeletal injury n = 1). Remaining participants (n = 29: 19 male, 10 

female; 21 ± 3 years; 25 right-handed) demonstrated a broad range of autistic-like 

traits, as confirmed from Social Communication Questionnaire responses (SCQ: 

Berument et al., 1999; total scores: 18.46 ± 5.91), which correspond with previously 

reported clinical values (Schuwerk et al., 2016). Although all Social Responsiveness 

Scale scores exceeded the clinical ‘cut-off’ of 11, three participants scored below the 

recently recommended SCQ threshold of 12 (Schanding et al., 2012). However, as the 

presence of a formal ASD diagnosis was the criterion variable for group assignment, 

and none of our reported effects were altered by excluding these low SCQ cases, these 

participants were still included in the primary analysis (as in Schuwerk et al., 2016).  

To permit between-group comparisons, an individually-matched group of neurotypical 

participants (19 male, 10 female, 21 ± 3 years; 25 right-handed), selected based on 

age, gender and dominant hand, were also tested. These individuals did not report any 

conditions known to affect sensorimotor control, including ASD, and did not participate 

in Study 1. As expected, this group displayed significantly lower self-reported autistic-

like traits than their autistic counterparts (t(56) = 12.32, p < 0.001, BF10 = 2.33 × 1014), 

and there were no group differences for age or handedness. All participants were naïve 

to the study objectives and had normal or corrected-to-normal vision. The study 

received approval from the School of Sport and Health Sciences Ethics Committee 

(University of Exeter) and informed consent was obtained from all participants in 

accordance with British Psychological Society guidelines.  

2.2.2.2. Materials and Procedures 

The experimental set-up, recording equipment, and protocol were identical to Study 1 

except for a few adjustments. Firstly, as well as reporting how heavy an object felt, 

participants also verbally rated how heavy they predicted each object would be prior 

to the lifting protocol (as in Buckingham & Goodale, 2013). Once again, no constraints 
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were placed on these verbally reported scores, except that higher numbers should 

reflect heavier predicted weights. As with perceived heaviness, these values were 

subject to z-score normalisation and then compared between individuals, to illustrate 

whether prior expectations were different between groups. 

Second, to index autistic-like traits, participants completed the shortened version of the 

Social Responsiveness Scale (SRS-S), a 16-item questionnaire which has proven 

reliable and valid in clinical populations (Sturm et al., 2017; Appendix F). The SRS-S 

measures four subscales, namely: the use of language, social information processing, 

capacity for reciprocal responses, and stereotypic/repetitive behaviours. Items are 

rated from 0 (never true) to 3 (almost always true) to yield a total SRS-S score. To 

supplement these self-reported data, the SCQ (Berument et al., 1999) was completed 

by parents or guardians for the ASD group. The SCQ is a widely used and validated 

clinical assessment tool, which indexes aptitudes in social responsiveness, verbal 

communication, and restricted repetitive stereotyped behaviours. 

Finally, to reflect the refined investigative approach taken in this study, kinematic 

outcomes were not examined during the task. Instead, only force-based motor 

variables were analysed, so as to limit family-wise error rate and potential clinically-

related confounds. Kinematic markers were replaced by coloured tape, which could be 

identified from the ‘world’ eye-tracking camera footage to segment the onset and offset 

of each trial. Such procedures were undertaken using a custom algorithm in MATLAB, 

with trial onset representing the first frame in which the handle tape became visible. 

2.2.2.3. Data Analysis  

Outcome measures relating to perceived heaviness (SWI score), fingertip force 

production (pGFR and pLFR) and gaze behaviour (fixation number/duration) were the 

same as those that were assessed in Study 1. To additionally monitor context-sensitive 

gaze adjustments in this experiment, an additional index score for search rate was 

computed for baseline trials and for the first lift of each ‘test’ object. This measure was 

calculated as in previous research (Arthur et al., 2019), by dividing the total number of 

fixations across a trial by their average duration. Here, fixations were extracted and 

defined using the same process as in Study 1. As fixations are mostly directed towards 

the object in this task, higher search rate values (i.e., shorter, more frequent fixations) 

would likely illustrate greater sampling of this uncertain, goal-relevant sensory cue.  
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2.2.2.4. Statistical Analysis  

Pearson’s correlation analysis explored relationships between sensorimotor outcomes 

and autistic-like trait scores (as in Study 1); however, independent t-tests were also 

used to compare between groups in this study. As before, ANOVAs assessed the 

effects of size and mass on perceived heaviness scores and fingertip lifting forces 

(pGFR and pLFR), with main effects of group additionally examined in this context. 

Here, any significant effects were examined with planned t-tests, and non-spherical 

data were adjusted using the Greenhouse-Geisser correction. Holm-Bonferroni 

corrections (Holm, 1979) adjusted for multiple comparisons. Two autistic participants 

were unable to verbally report perceived heaviness, so they and their matched 

neurotypical controls were excluded from these analyses (remaining n = 54). Two 

participants displayed extreme pGFR and pLFR values (>3.29 SD; remaining n = 54) 

and three participants showed poor quality gaze data (remaining n = 52), leading to the 

subsequent exclusion of these cases and their matched controls. Remaining data 

showed no statistical violations relating to normality, homoscedasticity, or linearity. 

 

2.2.3. Results and Discussion 

To first assess whether groups made similar cognitive predictions about object weight 

prior to their lifting trials, participants provided numerical ratings for how heavy they 

predicted each object would be, based on their visual appearance alone. A mixed-

model ANOVA revealed a significant main effect of size for these scores, with larger 

objects predicted to be heavier than equally-weighted smaller ones (F(1.69,84.69) = 

61.03, p < .001, ηp
2 = 0.55, BF10 = 1.61 × 1021). Importantly, there were no significant 

Group × Size interactions (F(1.69,84.69) = 0.79, p = .44, ηp
2 = 0.02, BF10 = 0.26), and 

ratings were unrelated to both SCQ (r = 0.23, p = .27, BF10 = 0.44) and SRS-S scores 

(r = −0.10, p = 0.49, BF10 = 0.22). As such, results suggest that both groups had 

equivalent prior expectations of object weight prior to the lifting protocol.  

ANOVAs then assessed the degree to which these predictions influenced perceived 

heaviness ratings. As before, they revealed significant main effects of size (F(1,52) = 

537.70, p < .001, ηp
2 = 0.91, BF10 = 2.19 × 1026) and weight (F(1,52) = 426.77, p < .001, 

ηp
2 = 0.89, BF10 = 8.59 × 1021). However, no Group × Size interactions were observed 

(F(1,52) = 0.17, p = .69, ηp
2 = 0.003, BF10 = 0.18), with both groups rating small objects 
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as heavier than larger ones (Figure 2.5). Similarly, no Group × Mass effects emerged 

(F(1,52) = 1.73, p = .20, ηp
2 = 0.03, BF10 = 0.26), and relationships between autistic-

like traits and SWI scores were non-significant (SRS-S: r = −0.10, p = .49, BF10 = 0.22; 

SCQ: r = −0.16, p = .47, BF10 = 0.33). This suggests that autistic people integrate prior 

heaviness expectations with incoming sensory information in a typical, ‘anti-Bayesian’ 

manner during this task (Brayanov & Smith, 2010). 

 

Figure 2.5. Trial-by-trial averages (± SEM) for normalised perceived heaviness ratings 

(A-B), peak grip force rate (pGFR; C-D), and peak load force rate (pLFR; E-F) in Study 

2. Filled circles represent neurotypical values, empty circles represent autistic group.  
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To examine the use of these predictions at a motor level, pGFR and pLFR values from 

the first lift of each test object were compared between groups. ANOVA showed 

significant effects for both size (pGFR: F(1,52) = 61.05, p < .001, ηp
2 = 0.54, BF10 = 

2.98 × 108; pLFR: F(1,52) = 12.14, p = .001, ηp
2 = 0.19, BF10 = 8.35) and mass (pGFR: 

F(1,52) = 6.07, p = .02, ηp
2 = 0.11, BF10 = 1.30; pLFR: F(1,52) = 12.75, p < .001; ηp

2 = 

0.20, BF10 = 11.42]. However, pGFRdiff (t(52) = 0.47; p = .64; BF10 = 0.30) and pLFRdiff 

(t(52) = 0.25; p = .80; BF10 = 0.28) were not significantly different between groups 

(Table 2.2), suggesting that neurotypical and ASD groups scale fingertip forces 

equivalently according to prior expectations of object mass (Figure 2.5). Furthermore, 

analysis generally showed no significant associations between autistic-like traits and 

either pGFRdiff (SRS-S: r = −0.14, p = .31, BF10 = 0.28; SCQ: r = −0.33, p = .12, BF10 

= 0.25) or pLFRdiff (SRS-S: r = −0.002, p = .99, BF10 = 0.17). Although Bayes factors 

provided moderate evidence for an inverse correlation between pLFRdiff and SCQ 

scores (BF10 = 3.23; as in Buckingham et al., 2016), Pearson’s correlation coefficient 

was non-significant when accounting for multiple comparisons (r = −0.47, p = .02). 

Therefore, results show that both autistic and non-autistic participants scale fingertip 

forces according to prior expectations of object heaviness. 

Table 2.2 Group Averages (SD) in Study 2. 

  
 

ASD Group 

 

NT Group 
 

Demographic Measures     

     Age 21.28 (3.63) 21.31 (3.30) 

     SRS-S Total  19.03 (6.24) 3.86 (0.24)* 

Perceptual Measures     

     Predicted Weight Score 1.31 (1.07) 1.52 (0.94) 

     SWI Score 1.24 (0.41) 1.18 (0.35) 

Sensorimotor Measures     

     pGFRdiff (N/s) 29.73 (29.18) 33.54 (30.31) 

     pLFRdiff (N/s) 7.19 (16.15) 6.22 (11.80) 

     pGFR Underestimation (N/s) 16.18 (20.00) 8.84 (18.93) 

     pGFR Overestimation (N/s) 
 

4.88 (22.40) 
 

16.71 (23.23) 
 

 SRS-S: Social Responsiveness Scale- shortened; SWI: Size-Weight Illusion; pGFR: 
peak Grip Force Rate; pLFR: peak Load Force Rate; *denotes significant group 

difference (p < .05). 
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Interestingly, there were no significant group differences in either pGFR overestimation 

(t(52) = 1.91, p = .06, BF10 = 1.20) or underestimation (t(52) = 1.38; p = .17; BF10 = 

0.60; Table 2.2). These findings were perhaps unsurprising, given the inconclusive 

nature of data in Study 1, and are reinforced by null correlations between pGFR 

underestimation and SRS-S scores (r = −0.24; p = .23; BF10 = 0.48). However, analysis 

did provide moderate evidence for a correlation between pGFR underestimation and 

SCQ scores (r = −0.52, p = .01, BF10 = 6.62). It is also likely that the low neurotypical 

group underestimation values (8.84 ± 18.93 N/s) are obscuring any autism-related 

group differences that may exist in this dataset (see Jarrold & Brock, 2004 for 

discussion of ‘floor effects’ in autism research). Therefore, though it is unclear how 

autistic underestimation profiles distinguish from neurotypical values, the earlier trait-

based associations (Table 2.1) do appear to replicate in clinically diagnosed 

populations. 

Finally, changes in gaze search rate were monitored between the final four ‘baseline’ 

trials (i.e. where objects were familiar and unexpected outcomes were unlikely) and 

the first lifts of each ‘test’ object (i.e. where such environmental statistics were more 

uncertain; as in Arthur et al., 2019). ANOVA revealed a significant Group × Uncertainty 

interaction (F(1,50) = 4.62, p = .04, ηp
2 = 0.09, BF10 = 6.38). As expected, neurotypical 

participants showed significant increases in search rate between ‘baseline’ and ‘test’ 

trials (t(25) = 3.42, p = .002, BF10 = 17.48), an effect likely driven by an increase in 

short, object-driven fixations. Such visual sampling adaptations may represent a 

heightening of bottom-up attentional control under more uncertain conditions (Yu & 

Dayan, 2003; Vossel et al., 2014). Interestingly though, corresponding changes in the 

ASD group were not significantly different from zero (t(25) = 0.74, p = .47, BF10 = 0.27; 

Figure 2.6). This reduced sensitivity to uncertainty aligns with data from the rubber-

hand illusion, where autistic individuals have been shown to demonstrate inflexible 

adjustments in reaching kinematics (Palmer, Paton, et al., 2015). Nevertheless, 

changes in search rate were only marginally related to self-reported autistic-like traits 

(SRS-S scores: r = −0.30; p = .03, BF10 = 1.56) and did not significantly correlate with 

SCQ scores (r = 0.35, p = .11, BF10 = 0.89). Therefore, though data provide cautious, 

preliminary evidence for a reduced distinction between stable and uncertain conditions 

in autism, further empirical scrutiny is required. 
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Figure 2.6. Changes in gaze search rate between stable (Baseline lifts 2–5) and 

uncertain (initial ‘test’ lifts) trial conditions for neurotypical (NT) and autism (ASD) 

groups in Study 2. Bars represent group averages, lines and circles represent 

individual cases. *denotes significant difference between conditions (p < 0.01).  

2.2.4. Exploratory Analysis 

In Study 2, the ASD group appeared to display reduced uncertainty-related increases 

in gaze search rate compared to their neurotypical counterparts (Figure 2.6). Such 

gaze adjustments also correlate with levels of autistic-like traits in both the general 

public (Arthur et al., 2019) and in clinical populations (Study 2). To investigate these 

context-sensitive effects further, the raw fixation data obtained in Study 2 were re-

inspected. Here, exploratory analyses aimed to clarify whether observed changes in 

search rate resulted from: a) an increase in fixation frequency and/or b) a shortening 

of fixation durations. Separate ANOVAs were conducted, with both fixation number 

and duration entered as dependent variables. Significant group-by-condition 

interaction effects occurred for fixation number (F(1,50) = 7.73; p = .01; ηp
2 = = .13; 

BF10 = 4.03) but not duration (F(1,50) = 1.20; p = .28; ηp
2 = = 0.02; BF10 = 0.61). As 

illustrated in Figure 2.7, neurotypical participants showed significant increases in the 

number of fixations between ‘stable’ and ‘uncertain’ trials (p = .003; BF10 = 15.03), 

whereas minimal changes were displayed by autistic participants (p = .46; BF10 = 0.27).  
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Figure 2.7. Changes in gaze fixation number (A, B) and duration (C, D) between stable 

(baseline lifts 2–5) and uncertain (initial ‘test’ lifts) conditions for neurotypical (NT) and 

autism (ASD) groups. Bars represent group averages, lines and circles represent 

individual cases. *denotes significant difference between conditions (p < 0.01). 

These increases in fixation frequency likely reflect an increased sampling of the lifting 

object, as this represented a highly uncertain action stimuli. Such an assumption was 

reinforced upon visual inspection of the gaze data, which indicated that almost all 

fixations were directed towards goal-relevant cues (i.e., the object and lifting platform; 

see Supplementary Videos at https://osf.io/p52h8/). However, to specifically test this 

hypothesis, the proportion of fixations made to the object and platform were manually 

detected from each trial. This analysis was performed for the neurotypical group only, 

with any task-irrelevant fixation trials (0.02%) being excluded. As predicted, 

neurotypical subjects increased the number of object-directed fixations between stable 

and uncertain trials (t(25) = 3.32; p = .003, BF10 = 14.04), but showed null differences 

in the number of platform-directed fixations (t(25) = .23; p = .82, BF10 = 0.21). 
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2.2.5. Interim Summary  

During the task of object lifting, autistic people appear to integrate prior expectations 

and sensory information in a manner that is consistent with neurotypical individuals. 

Contrary to ‘simple’ Bayesian and predictive processing theories, autism-related 

attenuations in the use of prior knowledge were not detected in participant’s perceptual 

experiences, motor responses, or visual sampling behaviours. However, while 

neurotypical participants appear to readily adjust the sampling of goal-relevant visual 

information under different trial conditions, autistic participants did not distinguish 

between ‘stable’ and ‘uncertain’ trials in their gaze behaviour. These subtle differences 

in sensorimotor control may highlight a broader atypicality relating to the hierarchical 

modulation of environmental uncertainty and/or volatility in autism. 

 

2.3. Discussion 

This chapter investigated the aetiology of sensorimotor difficulties in autism, using a 

multimodal object lifting paradigm. Study 1 first explored associations between 

predictive sensorimotor control and autistic-like traits in a non-clinical population, then 

Study 2 assessed how specific movement-related mechanisms differ in autistic 

individuals. In both experiments, participants’ actions were strongly driven by prior 

expectations, and the generic employment of these sensorimotor predictions did not 

appear implicated in autistic people. 

Contrary to ‘simple’ Bayesian theories (e.g., Brock, 2012; Pellicano & Burr, 2012) and 

evidence of abnormal cerebellar functioning in clinical populations (Courchesne, 1997; 

Fatemi et al., 2002; Allen & Courchesne, 2003; Fatemi et al., 2012), the studies did not 

find any chronic autism-related attenuations in the use of prior information. Instead, 

autistic participants appeared to both make typical predictions about an object’s likely 

mass, and then use these predictions to control their actions. For example, when lifting 

heavy-looking objects, both autistic and neurotypical participants showed equivalent 

increases in fingertip force rates (Figure 2.5). These results align with the null trait-

based effects observed in Study 1 (Table 2.1) and in previous non-clinical object lifting 

research (Arthur et al., 2019). They also add to various studies that have shown typical, 
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or even enhanced, prediction-related functions in autistic individuals (Mostofsky et al., 

2004; Gidley-Larson et al., 2008; Ego et al., 2016; Tewolde et al., 2018). 

Such findings are noteworthy as they suggest that autism is unlikely to be 

characterised by generic impairments in the ability to make and/or use predictive action 

models. These observations are clearly at odds with proposals of chronically 

diminished priors (Pellicano & Burr, 2012) and inflexible weighting of prediction errors 

(Van de Cruys et al., 2014) in the disorder. Indeed, according to these ‘simple’ 

computational perspectives, one would have expected autism-related atypicalities to 

emerge consistently across sensorimotor systems, since predictions about object 

weight are shown to influence perception, motor activity, visual sampling behaviours, 

and action kinematics (Johansson & Westling, 1988; Gordon et al., 1991; Johansson 

et al., 2001; Buckingham, 2014). However, it was clear that such effects did not occur 

in these studies, where broad expectation-driven action and visual sampling 

behaviours were consistently displayed by autistic participants (Figure 2.5). These null 

findings may have significant applied implications, as various skill interventions rest on 

an individual’s ability to develop, refine, and automate self-generated action models 

(Körding et al., 2007; Haker et al., 2016). Given the substantive impact that 

sensorimotor difficulties are likely to have on autistic people's independence (Jasmin 

et al., 2009), social activities (Brandwein et al., 2015), and health-related behaviours 

(Scharoun et al., 2017), these findings offer potentially fruitful avenues for both 

researchers and practitioners in the field. 

Results correspond with wide-ranging clinical evidence that autism-related atypicalities 

in sensorimotor prediction are context-dependent (e.g., von Hofsten et al., 2009; 

Tewolde et al., 2018; see Cannon et al., 2021). Although no broad processing 

impairments were displayed by autistic participants in this task, anticipatory motor 

atypicalities have previously been observed in other object interaction protocols (e.g., 

bimanual lifting; Schmitz et al., 2003). Such contextual irregularities have been the 

focus of recent work, which argues that autism is characterised by atypicalities in how 

predictive processing is adjusted under different conditions (Lawson et al., 2017; 

Palmer et al., 2017). According to these perspectives, such between- and within-study 

inconsistencies would be expected, as any atypicalities are contingent upon highly 

variable environmental statistics (uncertainty, volatility; Palmer et al., 2017). This is 

cautiously supported by the present data, where autism-related tendencies to over- but 
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not underestimate pGFR were inconsistently displayed. However, given the 

inconclusive nature of these interpretations, further empirical scrutiny is required. 

Recent neurological evidence suggests that sensorimotor difficulties are caused by 

differences in the regulation, or connectivity, of neurobiological networks (Villalobos et 

al., 2005; Mostofsky et al., 2009; Fournier et al., 2010; Gowen & Hamilton, 2013). From 

a computational perspective, this research supports context-sensitive, hierarchical 

models of autism, which posit that predictive atypicalities stem from aberrant 

neuromodulatory functioning (Friston et al., 2013; Lawson et al., 2014; 2017). 

According to these perspectives, autism-related atypicalities will be more frequent 

under uncertain task conditions, where ambiguous prior information is typically 

downregulated relative to more reliable sensory evidence (e.g. from visual feedback 

and proprioception; Maloney & Zhang, 2010; Tong et al., 2017). Indeed, these ‘typical’ 

context-sensitive patterns of behaviour were apparent in Study 2, where neurotypical 

participants exhibited marked changes in gaze search rate (i.e. visual sampling) under 

more uncertain trials (Figures 2.5 & 2.6). Interestingly, such distinctions were not 

shown by the ASD group, suggesting that autistic participants display reduced, 

uncertainty-related adjustments in sensorimotor control (Palmer, Paton, et al., 2015). 

However, these findings must be interpreted with caution, as visual sampling 

atypicalities could implicate various interrelated cognitive and attentional mechanisms. 

Indeed, despite being a key tenet of predictive processing theories (Palmer et al., 

2017), it is entirely possible that the precise, context-sensitive differences in gaze 

behaviour observed in Study 2 are indicative of wider autism-related atypicalities (e.g. 

in executive functioning: Ozonoff & McEvoy, 1994; attentional styles: Happé & Frith, 

2006; anxiety: White et al., 2009). Therefore, it currently remains unclear how prior 

inputs are mechanistically integrated with sensory and environmental information in 

autism. Although data consistently showed that the use of prior information does not 

appear to be chronically attenuated (and these studies were able to qualitatively 

discern trials where prior uncertainty was relatively low or high), future studies should 

aim to statistically compute and/or experimentally manipulate the uncertainty and 

reliability of sensory cues. To do this, researchers should focus on outcomes relating 

to sensorimotor integration, as context-sensitive representations of prior and sensory 

uncertainty are said to modulate the connectivity of neurobiological action systems 

(Friston et al., 2013). Specifically, studies could use complex, multi-system movement 
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tasks, such as interceptive motor skills, where prediction-related visuomotor patterns 

are both well established and integral to successful performance (Fiehler et al., 2019). 

Overall, Studies 1 and 2 provide clear, consistent evidence that autistic individuals can 

typically control their lifting actions according to predictions about an object’s weight. 

These ‘predictive’ profiles are implemented across various sensorimotor systems (e.g. 

cognition, gaze patterns, motor control), and are shaped by an individual’s prior 

knowledge and experience. Future research is required to examine how these 

prediction-related mechanisms are integrated and altered under different probabilistic 

conditions, to help us better understand and manage sensorimotor difficulties in 

autism. Indeed, the above studies cautiously suggest that context-sensitive functions 

relating to hierarchical precision weighting and estimates of environmental uncertainty 

may be atypical. However, prospective studies must examine the role of these 

mechanisms in underpinning autistic sensorimotor impairments, using naturalistic 

tasks in which individuals typically exhibit movement-related difficulties.  
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Chapter 3 

In this chapter, the precise computational origins of autistic sensorimotor impairments 

are investigated using a novel experimental approach. Since the exploratory findings 

of Chapter 2 identified potential atypicalities in context-sensitive predictive control, this 

work focuses on key regulatory functions that modulate active inference during 

dynamic movement tasks. Specifically, analyses examine whether difficulties in hand-

eye coordination are underpinned by aberrant precision weighting and/or volatility 

processing, as proposed by recent theories of autism (Friston et al., 2013; Lawson et 

al., 2014; 2017). By studying an interceptive skill in which autistic people often display 

motor coordination issues, this chapter begins to elucidate the mechanistic 

underpinnings of various practical difficulties that are routinely faced within the autism 

community. Such empirical scrutiny develops our understanding of why autistic people 

experience these sensorimotor impairments and which specific functions could be 

targeted to optimise daily living skills in the future.  

To pursue this novel line of enquiry, it is important to examine naturalistic and 

unconstrained action responses. Indeed, studies in the field are frequently criticised for 

using artificially controlled and/or simplistic task deigns (Wulf & Shea, 2002; Stevenson 

et al., 2009; Bejjanki et al., 2016; Noel et al., 2020). However, most ‘real-world’ skills 

require dynamic processing operations to be performed, that integrate complex and 

changeable sensory cues (Körding et al., 2007; Franklin & Wolpert, 2011; Hayhoe & 

Matthis, 2018). As such, the generalisability of previous results onto applied 

interventions can often prove limited (Wulf & Shea, 2002). Although Study 1 and 2 

examined object interaction behaviours that are prevalent within numerous daily living 

operations (Ernst, 2009), this stable and controlled laboratory task involved relatively 

simplistic and constrained upper-limb movements (with limited degrees of freedom and 

multi-system coordination). As such, a paradigm shift was needed at this stage. 

Accordingly, Study 3 examined an interceptive motor skill that has been proven to rely 

on complex and dynamic information processing (Diaz et al., 2013; Binaee & Diaz, 

2019; Mann et al., 2019). Specifically, a simulated racquetball game was performed 

within VR, where a variety of context-sensitive, prediction-related measures could be 

obtained. Visuomotor responses in this task closely resemble those in ‘real-world’ 

environments (Diaz et al., 2013), so analyses could be conducted in an ecologically-
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valid manner. However, when compared to traditional methods, VR protocols afford 

unique levels of control over dynamic experimental conditions (see Section 1.3.2). As 

such, probabilistic uncertainty was systematically manipulated over time, and context-

sensitive action responses were scrutinised in an unconstrained laboratory setting. 

This innovative empirical approach required a number of new, interdisciplinary 

concepts and techniques to be developed (see below). Nevertheless, the highly 

controlled and scientifically-grounded methodologies gave rise to novel, empirically-

reliable data that advances our understanding of autistic sensorimotor difficulties.  

The study below has been published as: Arthur, T., Harris, D., Buckingham, G., 

Brosnan, M., Wilson, M., Williams, G., & Vine, S. (2020). An examination of active 

inference in autistic adults using immersive virtual reality. Scientific Reports, 11, 20377. 

 

3.1. Study 3: An examination of active inference in autistic adults using 

immersive virtual reality. 

3.1.1. Introduction 

Autism is diagnosed according to atypicalities in social interaction, communication, and 

behavioural flexibility. However, one particular source of daily living difficulty for many 

autistic people concerns impaired visuomotor coordination abilities (Jasmin et al., 

2009; Gowen & Hamilton, 2013). Performance-related difficulties on standardised 

motor assessments are commonly displayed by autistic people (Fournier et al., 2010; 

Gowen & Hamilton, 2013; Coll et al., 2020), with particular impairments shown in 

interceptive skills like catching or hitting a ball (Green et al., 2002; Whyatt & Craig, 

2013b; Ament et al., 2015; Chen et al., 2019). These differences emerge at a kinematic 

level (Glazebrook et al., 2006; Whyatt & Craig, 2013a; Chen et al., 2019), for which 

autistic people show noisy, inflexible, and uncertain movement patterns (Cook et al., 

2013; Torres et al., 2013; Torres & Denisova, 2016; Foster et al., 2019). The degree 

of impairment in motor tasks correlates with an individual’s socio-behavioural traits 

(MacDonald et al., 2013) and daily living competencies (Jasmin et al., 2009). Research 

into the source of these sensorimotor difficulties could thus develop both our scientific 

understanding of autism, and our capacity to manage its various clinical features. 



 

80 
 

Studies have shown that movement is coordinated using probabilistic models about 

the world (predictions), which are derived from incoming sensory evidence and prior 

expectations (Vilares & Kording, 2011; Adams et al., 2013). When performing an action 

like hitting a tennis ball, the brain will regulate motor responses (e.g., movement 

kinematics) and sampling behaviours (e.g., gaze responses) according to incoming 

sensory cues and prior beliefs (e.g., about gravity, ball bounciness: Diaz et al., 2013). 

Such dynamic sources of information are weighted according to their uncertainty, or 

precision, which is directly proportional to learning rate (Behrens et al., 2007). These 

precision-weighted predictions not only serve to optimise perceptual functions, they 

also represent a set point that an individual can act towards in their movements 

(Friston, Samothrakis, et al., 2012; Adams et al., 2013; Shipp et al., 2013). Any 

deviations away from near-optimal processing could result in sensorimotor impairment.  

Notably, various researchers have highlighted the role of impaired predictive 

processing in autism (see Palmer et al., 2017). Though conflicting in their precise 

explanations, most ‘simple’ computational frameworks attest to an attenuated influence 

of prior expectations on autistic perception and action (Brock, 2012; Pellicano & Burr, 

2012). These accounts can explain heterogeneous socio-behavioural traits and 

neurological abnormalities displayed in autistic people (see clinically-focused review: 

Haker et al., 2016). Furthermore, proposed differences in predictive processing  align 

with a range of autism-related sensorimotor atypicalities (Van de Cruys et al., 2014), 

including: impaired movement planning (Hughes, 1996; Nazarali et al., 2009), reduced 

anticipatory motor adjustments (Schmitz et al., 2003; Chen et al., 2019), suboptimal 

movement initiation kinematics (Glazebrook et al., 2006; Whyatt & Craig, 2013a), 

slower error-based saccade adaptation (Johnson et al., 2013; Mosconi et al., 2013), 

and atypical gaze fixation behaviours (Sasson et al., 2008; 2011). However, prediction-

related difficulties only emerge under some task conditions (see Cannon et al., 2021), 

with autistic people demonstrating intact visual motion prediction (von Hofsten et al., 

2009; Tewolde et al., 2018), anticipatory lifting forces (Study 1), and non-social ocular 

tracking abilities (Aitkin et al., 2013; Ego et al., 2016). These inconsistent findings 

undermine proposals that prior expectations are generically attenuated in autism.  

Instead, recent theories argue that autism is characterised by atypicalities in context-

sensitive processing functions, which determine how predictive control is hierarchically 

adjusted according to environmental statistics (e.g., uncertainty, volatility; Lawson et 
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al., 2014; 2017; Palmer et al., 2017). In contrast to the simple frameworks discussed 

above, these mechanisms implicate how an individual dynamically models the world, 

through precision-related modulation of cortical gain (Lawson et al., 2014). Here, 

autistic daily living difficulties are not perceived to result from ‘one-level’ attenuations 

in the use of prior expectations; they are proposed to stem from mechanisms that 

contextually regulate prediction error across multi-level neural networks. These 

hierarchical functions not only determine the precision of prior beliefs, they also model 

how environmental probabilities fluctuate over time. Indeed, estimations about 

environmental (in)stability implicate how an individual samples and learns about 

sensory information (Behrens et al., 2007; Mathys et al., 2011; 2014), with even minor 

abnormalities likely to impair the formation of stable, statistically-optimal predictive 

models (Lawson et al., 2014). As a result, autistic people may consistently interact with 

the world as if it is uncertain or volatile, a hypothesis supported by studies of 

probabilistic learning (e.g., Robic et al., 2015), neural habituation (e.g., Ewbank et al., 

2017; Goris et al., 2018), and pupil diameter responses (e.g., Lawson et al., 2017).  

When interpreted alongside active inference perspectives, these hierarchical 

frameworks present novel, empirically-falsifiable predictions about behaviour. Optimal 

sensorimotor control rests on dynamic adjustments in the sampling and weighting of 

sensory information, with physical actions said to ‘fulfil’ predictions and/or reduce their 

uncertainty (Friston, Samothrakis, et al., 2012; Adams et al., 2013; Shipp et al., 2013). 

Here, the use of generative models is seen to minimise future prediction errors (or 

Bayesian surprise), based on estimates of hidden world states. When uncertainty in 

prior expectations is high or environmental volatility increases (e.g., when conditions 

become more unpredictably-changeable), individuals tend to rely more heavily on 

incoming sensory feedback and will adjust their visual search strategies accordingly 

(Beesley et al., 2015; Walker et al., 2019; Study 1). Alternatively, when sensory 

information is more uncertain, more emphasis will be placed on longstanding prior 

expectations and ‘top-down’ attentional processes (Vilares & Kording, 2011; Tong et 

al., 2017; Helm et al., 2020). Such Bayes-optimal adjustments have been 

demonstrated in neurotypical cue combination (Stocker & Simoncelli, 2006; Körding et 

al., 2007), interceptive timing (Miyazaki et al., 2005), movement planning (Hudson et 

al., 2007; Kwon & Knill, 2013), and visuomotor integration (Körding & Wolpert, 2004; 

Stevenson et al., 2009; see Vilares & Kording, 2011 for review).  
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Though current research is limited, recent evidence from the rubber-hand (Palmer et 

al., 2015) and size-weight (Study 1) illusions suggests that autistic people display 

inflexibilities in active inference. When compared to neurotypical controls in these 

studies, autistic participants were less inclined to adjust visual search and movement 

kinematics under non-veridical, uncertain conditions. Importantly, these differences in 

context-sensitive processing were not accompanied by any generic attenuations in the 

use of prior expectations (Palmer, Paton, et al., 2015; Study 1). These results provide 

clear support for recent hierarchical frameworks of autism (Lawson et al., 2014; 2017; 

Palmer et al., 2017). However, neither study experimentally manipulated or quantified 

environmental statistics over time, meaning that causal links must be made with 

caution. Moreover, movement-related impairments were not examined in either lab-

based task, limiting their utility in the development of practical interventions.  

The present work examined how movement is dynamically controlled during multi-

sensory interceptive actions, where autistic people often display performance 

impairments (Green et al., 2002; Vanvuchelen et al., 2007; Whyatt & Craig, 2013a; 

Ament et al., 2015; Chen et al., 2019). To this end, this study adopted an immersive 

virtual racquetball task (Diaz et al., 2013; Mann et al., 2019) which monitored how 

predictive control is adjusted between different volatility conditions. Here, the use of 

VR facilitated systematic, unconstrained manipulations of environmental uncertainty, 

allowing us to decipher precisely which predictive processing mechanisms are 

implicated in autism. Specifically, VR enabled us to artificially alter whether the 

‘bounciness’ of an approaching ball remained stable or unpredictably-changeable 

(volatile) over time, before measuring how sensorimotor behaviours were adjusted. 

Atypical predictive processes usually manifest most clearly in uncertain or volatile 

conditions, as suboptimal probabilistic expectations will impair abilities to distinguish 

random sensory noise from actual environmental changes (Van de Cruys et al., 2014; 

Lawson et al., 2017). Accordingly, it was hypothesised that autistic participants would 

show impaired interceptive performances, particularly under volatile conditions.  

In this task, both the timing and location of anticipatory eye movements are affected 

by prior expectations and incoming visual information (Diaz et al., 2013; see also 

Hayhoe et al., 2012). Specifically, anticipatory saccades move gaze ahead of the ball 

to its expected future location, with the subsequent fixation point proving directly 

proportional to both its early-flight trajectory and, crucially, its predicted elasticity profile 
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(Diaz et al., 2013; Mann et al., 2019). These sampling behaviours appear fundamental 

in the retrieval of post-bounce position information, with unexpected and 

computationally ‘surprising’ changes in ball bounciness leading to poorer subsequent 

gaze pursuit (Hayhoe et al., 2002). It was hypothesised that autistic participants would 

be less inclined to use a predictive gaze strategy than their neurotypical counterparts, 

and would show later pre-bounce saccades, shorter fixations around the bounce point, 

and a reduced distinction between expected and unexpected gaze tracking responses. 

Furthermore, on the basis that autistic people may be hypersensitive to environmental 

change (Lawson et al., 2017), it was hypothesised that the ASD group would show 

greater changes in these measures between stable and volatile task conditions. 

Predictions are also used to guide an individual’s interceptive motor response (Binaee 

& Diaz, 2019; Mann et al., 2019). Typically, movement onset times are flexibly adjusted 

according to previous ball trajectories and spatiotemporal conditions (Cesqui et al., 

2015; Mann et al., 2019), via top-down signalling and precision-mediated sensory 

attenuation (Friston, Samothrakis, et al., 2012; Adams et al., 2013; Shipp et al., 2013). 

Research from constrained motor tasks indicates that movement onset kinematics are 

suboptimal in autism (Schmitz et al., 2003; Glazebrook et al., 2006; Whyatt & Craig, 

2013a), with further scrutiny required in unconstrained movement skills. Moreover, for 

dynamic and naturalistic actions, the optimal regulation of movement rests on context-

sensitive mechanisms (Adams et al., 2013). During uncertain conditions, for example, 

neurotypical adults have been shown to increase joint stiffness and restrict multi-

effector redundancy (Burdet et al., 2001; O'Sullivan et al., 2009). Though such ‘fixing’ 

of joint angles is less efficient, and would usually be associated with more novice-like 

movement profiles (i.e., reduced movement degrees of freedom; Bernstein, 1967), it 

likely represents an active attempt to reduce uncertainty from signal-dependent noise 

(O'Sullivan et al., 2009). Given that autistic people are proposed to interact with the 

world as if it is generally uncertain or volatile (Lawson et al., 2017), it was hypothesised 

that the ASD group would show greater ‘fixing’ of joint angles than the neurotypical 

group (i.e., reduced range of motion and hand displacement; see Table 3.1). In line 

with previous studies (Palmer, Paton, et al., 2015; Study 1), autistic participants were 

also expected to display inflexible motor kinematics, as evidenced by reduced 

between-condition adjustments in swing onset time and peak hand velocity.  
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Figure 3.1. The Virtual Racquetball task in Study 3. An illustration of the experimental 

set-up (A), example gameplay footage (B), and a side-view of ball trajectory 

distributions (C). Note: for all trials, virtual balls stayed fixed on the midline of the room 

and followed the same pre-bounce speed and trajectory. Differences between 

expected and unexpected trials were consigned to ball elasticity manipulations only. 

See Supplementary Videos at: https://osf.io/ewnh9/. 

3.1.2. Methods 

3.1.2.1. Participants 

Ninety participants visited the laboratory (33 female, 78 right-handed, age: 22 ± 4 

years). Thirty of these individuals had a formal diagnosis of ASD, while the remaining 

sample (n = 60) were age-matched neurotypical individuals (ASD group: 21 ± 5 years; 
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NT group: 22 ± 4 years; t(88) = .70, p = .70, BF10 = 0.25). A large neurotypical sample 

was recruited to provide sufficient power for correlational analysis (see Appendix A3). 

All autistic participants reported that they had received their diagnosis from a qualified 

clinician according to DSM-IV (American Psychiatric Association, 2013) or ICD-10 

(World Health Organisation, 2012) criteria, and completed both the 26-item Autistic 

Quotient (AQ-26; Austin, 2005) and Social Communication Questionnaire (SCQ; 

Berument et al., 1999) to corroborate clinical presentation of autistic-like traits.  

Although diagnosis status was not independently verified in this study, a broad range 

of SCQ scores were displayed by the ASD group that are consistent with normative 

clinical values (mean: 18.34 ± 5.72; see Barnard‐Brak et al., 2016). Participants self-

reported normal or corrected-to-normal vision and were excluded if they reported any 

history of musculoskeletal or neurological disorders, leading to the removal of two 

cases (ASD: n = 1; NT: n = 1). Neurotypical participants also completed the AQ-26 

(range: 37-80, mean: 55.17 ± 9.77; n = 59) to permit correlational analyses across the 

whole sample (i.e., the ‘broader autism spectrum’; Landry & Chouinard, 2016). All 

participants were naïve to the experimental aims and had no prior experience of 

playing VR-based racquet sports. Informed consent was obtained in accordance with 

British Psychological Society guidelines, and the study received approval from the 

School of Sport and Health Sciences Ethics Committee (University of Exeter, UK) and 

Department of Psychology Ethics Committee (University of Bath, UK).  

3.1.2.2. Apparatus and stimuli 

A virtual environment, simulating an indoor racquetball court, was developed using the 

gaming engine Unity (Unity Technologies, San Francisco, CA). This simulated 

environment (see Figure 3.1) spanned 15 metres in length and width, and contained a 

series of concentric circles projected onto the front wall as an aiming target. Above this 

target was an additional concentric circle, representing the starting location where 

virtual balls were launched from in each trial (launch height: 2 m). The floor resembled 

that of a traditional squash court, with participants instructed to start behind the ‘short 

line’ (located 9 m behind front wall, .75m from the midline; as in Diaz et al., 2013). To 

ensure consistency in this starting position, a 1 m2 service box was marked on the 

laboratory floor with reflective tape, and an experimenter checked that participants 

were stood in this square prior to all experimental trials.  
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The virtual environment was presented to participants on an HTC Vive head-mounted 

display (HTC Inc., Taoyuan City, Taiwan; Figure 3.1), a high-precision, consumer-

grade VR system which has proven valid for small-area movement research tasks (field 

of view: 110°, accuracy: 1.5cm, jitter: 0.5mm, latency: 22ms; Niehorster et al., 2017). 

Two ‘lighthouse’ base stations recorded movements of the headset and hand controller 

at 90Hz. The headset also included an inbuilt Tobii eye-tracking system, which uses 

binocular dark pupil tracking to monitor gaze at 120 Hz (spatial accuracy: 0.5-1.1°; 

latency: 10ms, headset display resolution: 1440 x 1600 pixels per eye). Gaze was 

calibrated over five virtual locations prior to each condition, and upon any obvious 

displacement of the headset during trials.  

Participants then attempted to hit balls towards the projected target circles using a 

virtual racquet (Figure 3.1), operated by the Vive hand controller. Virtual balls were 5.7 

cm in diameter, and resembled the visual appearance of a ‘real-world’ tennis ball. The 

visible racquet in VR was 0.6 x 0.3 x 0.01 m, although its physical thickness was 

exaggerated by 20 cm for the detection of ball-to-racquet collisions (see discussion of 

tunnelling effects: Diaz et al., 2013; Mann et al., 2019). One neurotypical participant 

was excluded from analyses following frequent loss of headset tracking during their 

session (remaining n = 86). 

3.1.2.3. Procedures  

On arrival to the laboratory, participants provided written informed consent and 

completed the autistic-like trait questionnaires. Next, they were fitted with the VR 

headset and presented with a view of the simulated racquetball court. Participants 

completed six familiarisation trials and the inbuilt VR eye-tracker was subsequently 

calibrated, before undertaking the stable and volatile conditions. During each trial, 

individuals were instructed to hit virtual balls towards the centre of the projected target. 

Balls were launched from the front wall, following 3 auditory tones, and passed exactly 

through the room’s midline, bouncing 3.5 m in front of the prescribed starting position. 

Right-handed participants started 0.75 m to the left of this midline, and left-handers 

0.75 to the right of this point, meaning that all shots were forehand swings.  

Participants were informed that the ball would bounce once, but that they were free to 

hit the ball before or after it reached them. Task instructions simply stated that they 

should aim to hit as many balls as possible to the middle of the front target. No further 
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information relating to ball elasticity, trajectory or probabilistic manipulations were 

provided. Virtual balls followed the same pre-bounce trajectory and speed (vertical 

speed: -9 m/s at time of bounce; Figure 3.1), which were both consistent with the 

effects of gravity (-9.8 m/s2). Although bounces were accompanied by auditory 

feedback, no visual, proprioceptive, or verbal feedback were provided upon making 

contact with the ball. Instead, a neutral ‘pop’ sound was incorporated, so as to minimise 

the influence of motivation and communicative requirements. 

To manipulate environmental volatility in each condition, this study systematically 

varied ball elasticity over time (Figure 3.1). Specifically, in expected trials, ball elasticity 

was congruent with its visual ‘tennis ball-like’ appearance, and set at 65%. Conversely, 

in unexpected trials, elasticity was increased to 85%, an abrupt change in ‘bounciness’ 

that is easily detectible to participants (Diaz et al., 2013). By selecting such unnatural 

ball elasticity profiles, and by adjusting these without the participant’s knowledge 

(Hayhoe et al., 2002; Diaz et al., 2013), it was anticipated that post-bounce ball 

trajectory would deviate substantially from any ‘real-world’ prior distributions. This 

would then permit unique control over participant’s experience of expected and 

unexpected events, through probabilistically contrasting order sequences (available at 

https://osf.io/ewnh9/).  

Specifically, in the stable condition, balls were presented in ‘predictable’ serial orders 

(e.g., three unexpectedly-bouncy balls would follow three expected ones, and so on), 

with the likelihood of facing a ‘normal’ ball (i.e., expected event) remaining fixed at 

66.67%. In the volatile condition, these ball probabilities were unstable, switching 

irregularly between highly- (83%), moderately- (67%) and non-predictive (50%) in 

blocks of 6, 9, or 12 trials. Importantly, conditions contained the same number of 

expected (n = 30) and unexpected (n = 15) trials in ‘high-interference, non-repeating 

schedules’ (Hebert et al., 1996), meaning that the difference between blocks was 

consigned to environmental volatility only (i.e., differences in how labile the context is 

perceived to be).  

To permit precise within- and between-condition comparisons, three expected and 

three unexpected ‘test’ trials were situated within each block. These trials had identical 

prior probability distributions (66.67% of preceding trials contained expected ball 

trajectories) and identical previous trial histories (n – 1 were all expected trials). To 
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ensure that bouncy balls remained computationally surprising in the stable condition, 

unexpected ‘test’ trials were taken from within the final nine trials, in which the order 

sequences had recently been changed.  

The experiment began with a practice set of six trials, whereby balls were projected 

from the target without a bounce (so that ball elasticity remained unknown to 

participants). Thereafter, upon calibration of the eye-tracking system, experimental 

conditions were performed in a counterbalanced order. Each condition contained 45 

trials and was separated by a short break, with a total of 96 trials performed by each 

participant.  

3.1.2.4. Data analysis 

To index task performance, the proportion of trials in which participants made contact 

between the ball and racquet (interception rate, %) were recorded. Thereafter, 

positional data for the hand controller were extracted from the Vive system, and 

smoothed using a dual-pass, zero-phase Butterworth filter (at 10 Hz; Franks et al., 

1990). The contact point between the racquet and ball (referred to as: ball contact 

frame) were derived from the last data point before ball exhibited an abrupt change in 

direction of its trajectory. Trials where participants missed the ball were also included 

in analyses. In these instances, the reference ball contact frame represented the last 

data point in which the ball’s depth position exceeded that of the racquet. Trials where 

participants used a backhand swing, as opposed to a forehand swing, were noted at 

the time of data collection and removed from kinematic analysis.  

To capture aspects of swing kinematics, a number of measures linked to motor 

proficiency were calculated, namely: swing onset time, peak velocity of the hand, 

maximum hand displacement from the head, and swing Range of Motion (ROM; see 

Table 3.1). Specifically, swing onset time was defined from the first frame at which 

forward motion of the racquet began, while swing offset corresponded with the ball 

contact frame. The foreswing, representing the forward phase of the hand movement 

before ball contact (Rodrigues et al., 2002), was defined between swing onset and 

swing offset. Velocity of the hand controller was calculated as the square root of the 

sum of squared vector differentials, where peak velocity and the timepoint of peak 

velocity (ms, relative to ball contact frame) was identified during the foreswing phase. 

Higher peak velocities, which occur close to ball contact, are indicative of more 
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proficient motor control (see Reid et al., 2013). Normalised maximum hand 

displacement from the headset denoted the span of the arm from the body during the 

swing. This was operationally defined as the distance between the headset and hand 

controller position in the transverse plane (divided by body height in meters). Swing 

ROM (°) was calculated as the angular deviation of the hand controller during the 

foreswing. Angular deviation was defined in the transverse plane, with angles of 0° 

representing minimal rotation. Reductions in maximum hand displacement and/or 

swing ROM values would signal greater ‘fixing’ of movement degrees of freedom (H. 

A. Palmer et al., 2018), a motor strategy which could be used to reduce action 

uncertainty (O'Sullivan et al., 2009). 

Table 3.1. Description of Kinematic Outcome Measures in Study 3. 

Variable General Description Operationalised Definition 

Swing Onset  
Time 

Moment when the racquet 
first started moving towards 

the ball. 

The first timeframe in which forward 
motion of the VR hand controller was 

detected (relative to trial onset). 

Peak Velocity      
of the Hand 

The highest speed that the 
hand reached when moving 

towards the ball. 

The maximum differential position of the 
VR hand controller shown between frames 
following swing onset (expressed in m/s) 

Time of Peak 
Hand Velocity 

The moment when the hand 
reached its highest speed. 

The time at which Peak Velocity of the 
Hand occurred, relative to ball contact. 

Maximum Hand 
Displacement 

The furthest distance that 
the hand deviated away from 

the body during the swing. 

The maximum distance that occurred 
between the VR headset and controller in 
the transverse plane following swing onset 

(normalised by participant body height). 

Swing Range of 
Motion 

The total arc travelled 
around the body by the hand 

during the swing action. 

The total angular deviation (°) of the hand 

controller from the VR headset that 
occurred in the transverse plane. 

A single unit vector corresponding to cyclopean gaze direction was extracted from the 

inbuilt eye-tracking system, with features defined according to head-centred, 

egocentric coordinates (i.e., vertical and horizontal coordinates). Both this extracted 

gaze vector, and the ball’s head-centric position were then plotted with respect to 2D 

direction in space, to provide relative ‘in-world’ angular orientation metrics (see gaze-
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head and gaze-ball angles: Table 3.2). Here, yaw angles represented rotation about a 

vertical axis that is in-line with gravity, and pitch values index angular deviance from a 

plane originating at eye-height that is parallel to the floor plane (Diaz et al., 2013; Mann 

et al., 2019). All trials were segmented from the moment of ball release until the time 

point corresponding to ball contact frame. Gaze values were passed through a three-

frame median filter, before being smoothed by a second-order, zero-lag Butterworth 

filter (Fooken & Spering, 2019). In line with recent recommendations (e.g., Cesqui et 

al., 2013; 2015), different cut-off frequencies were applied for saccade identification 

(50 Hz) and analysis of positional tracking features (15 Hz). Trials with >20% missing 

data, or where eye-tracking was temporarily lost (>100 ms) were excluded. 

Angular velocities (°/s) and accelerations (°/s2) of gaze-in-world vectors were 

calculated from the distance between samples of the filtered signal. Saccades were 

identified from portions of data where gaze acceleration was more than five times its 

median absolute acceleration (Mann et al., 2019). To avoid erroneous detections (e.g., 

due to pursuit or tracker-noise artefacts), gaze velocity had to exceed 40°/s for five 

consecutive frames and had to be at least 20% greater than that of the ball, with time 

periods preceded or followed by missing data also excluded. If this acceleration criteria 

failed to identify any pre-bounce saccades, trials were manually inspected using a 

30°/s velocity threshold (Cesqui et al., 2015). Onset and offset times were determined 

from these signals using acceleration minima and maxima (Fooken & Spering, 2019). 

A spatial dispersion algorithm was then used to extract gaze fixations (Krassanakis et 

al., 2014).  These were defined from portions of data where velocity was < 30°/s (Diaz 

et al., 2013), using a 3° spatial dispersion threshold and a minimum required duration 

of 100 ms (Salvucci & Goldberg, 2000). This method excluded phases of smooth 

pursuit and instead highlighted periods in which gaze became stable within a 3° area.  

Upon identification of saccades and fixation periods, various prediction-related gaze 

metrics were calculated (see Table 3.2). As we were interested in the final predictive 

saccade made before the ball had bounced, the latency (i.e., median onset time, 

relative to bounce) and amplitude (i.e., mean deviance between the final and initial 

gaze position) of this gaze event were recorded. Moreover, the fixation position at the 

moment of bounce was extracted (expressed as gaze-head pitch angle), in addition to 

the average gaze-ball pitch after this timepoint. To assess the degree of gaze tracking 

prediction error, average gaze-ball pitch was converted into z-scores for each 
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participant, with mean expected test scores subtracted from their corresponding 

unexpected test trial values. This presented a UE-E gaze tracking difference score, 

whereby higher scores would signal a greater difference between expected and 

unexpected trials (i.e., greater behavioural surprise following an unexpected event). 

Table 3.2. Description of Gaze Metrics in Study 3. 

Variable General Description Operationalised Definition 

Gaze-head 
angle 

Where gaze was being 
directed in space, relative 

to the head. 

Angular orientation of the gaze vector in 2D 
space, with respect to the VR headsets in-

world position (expressed as pitch and yaw,°) 

Gaze-ball angle Where gaze was being 
directed in space, relative 

to the ball. 

Angular deviation in 2D space between the 
gaze vector and the ball’s head-centric 

position (expressed as pitch and yaw, °). 

Anticipatory pre-
bounce saccade 
onset time 

The moment when gaze 
suddenly shifted ahead of 
the ball before it bounces. 

The median onset time of participants’ final 
pre-bounce saccade (recorded in ms, relative 

to when the ball had bounced). 

Anticipatory pre-
bounce saccade 
amplitude 

How far gaze moved 
when it was being 

suddenly shifted ahead of 
the ball (see above). 

The change in gaze-head pitch angle (°) that 

occurred between the onset and offset of 
participants’ final pre-bounce saccade. 

Bounce fixation 
duration 

How long gaze remained 
steady for, around the 
time when the ball was 

bouncing. 

The average duration of gaze fixations that 
occurred at the time of, or immediately prior 
to, the ball bouncing on a trial (expressed in 

ms). 

Bounce fixation 
location 

Where gaze was directed 
around the time when the 

ball was bouncing. 

The average gaze-head pitch angle (°) of 

fixations that occurred at the time of, or 
immediately prior to, the ball bouncing. 

Average post-
bounce gaze 
tracking error 

How much higher or 
lower gaze was from the 

ball, on average, from 
when it bounced to when 
it was hit by the racquet. 

The average gaze-ball pitch angle (°) shown 

from the first timeframe after the ball bounces 
up to the point of racquet-ball contact. 

UE-E gaze 
tracking 
difference 

How much closer gaze 
was tracking expected as 
opposed to unexpected 
balls after they bounced. 

Differences in normalised post-bounce gaze 
tracking error (see above) between expected 

and unexpected ‘test’ comparison trials. 
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Gaze and kinematic data values that were > 3.29 SD away from the mean were classed 

as univariate outliers (p < 0.001) and removed from analysis (see Osborne, 2013). 

Participants with > 20% of data identified as missing and/or outliers were excluded (n 

= 6). One performance outlier was excluded from analysis, after they failed to intercept 

the ball on any trials and showed extreme gaze values, potentially due to equipment 

error and/or a lack of task understanding. Following this case removal, a further two 

autistic participants were then identified as potential performance outliers (see Figure 

3.2).  However, since the overall pattern of results was not affected by their inclusion, 

and such extreme values are consistent with previously documented clinical 

sensorimotor impairments, these cases remained in the analysis (as recommended in 

clinical guidelines; Aguinis et al., 2013). Remaining missing data points within the 

dataset (n = 80) were deemed missing completely at random, on the basis of Little’s 

MCAR test (p > 0.05). For all variables, normality, linearity, multicollinearity, and 

homoscedasticity of data were inspected. Cleaned data were analysed using JASP 

(version 0.12.2), with significance accepted at p < 0.05 and data presented ± SD.  

Mixed-model ANOVAs assessed the effects of group and condition on all of the metrics 

relating to performance (interception rate), action kinematics (swing onset time, peak 

hand velocity, time to peak velocity, maximum hand displacement, ROM) and gaze 

behaviour (predictive saccade onset time/amplitude, bounce fixation duration/position, 

average post-bounce gaze tracking error, UE-E gaze tracking difference scores). Any 

significant differences were examined using two-tailed t-tests and all effect sizes were 

calculated using partial-eta squared. To explore the role of autistic-like traits, Pearson’s 

Correlation analysis explored relationships between all sensorimotor outcomes and 

AQ-26 scores. As data for interception rate and predictive saccade outcomes violated 

assumptions of normality, these outcomes were inspected using non-parametric t-tests 

and correlation equivalents (i.e., Mann-Whitney U for group comparisons, Spearman’s 

Rho for correlation analyses). Mixed-model ANOVAs are robust to moderate 

deviations from statistical normality (Lix et al., 1996), and were still performed for these 

measures. Non-spherical data were adjusted using the Greenhouse-Geisser 

correction, and multiple comparisons were accounted for using the Holm-Bonferroni 

method (Holm, 1979). For all tests, Bayes Factors quantified the strength of evidence 

for the alternative and null hypotheses (as in Chapter 1). 
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3.1.3. Results 

3.1.3.1. Performance Data. 

The proportion of successful interceptions revealed a negative skew due to a high 

number of participants successfully hitting the ball in all trials (n = 18; Figure 3.2). 

However, a range of interception rates were still exhibited, particularly in the autism 

group (range: 27.78-100%). A mixed-model ANOVA showed that performance levels 

statistically differed between groups (F(1,78) = 7.92, p = .01, np2 = .09, BF10 = 7.07), 

with lower interception rates evident in autistic (86.38 ± 19.20%) as opposed to 

neurotypical participants (94.69 ± 7.19%). These overall scores were not significantly 

different between stable and volatile trials (F(1,78) = 1.13, p = .29, np2 = .01, BF10 = 

0.18). However, there was a significant condition-by-group interaction (F(1,78) = 5.08, 

p = .03, np2 = .06, BF10 = 1.90), with autism-related performance impairments 

emerging under volatile conditions (Figure 3.2; W = 963.00, p < .01, BF10 = 21.50). 

Spearman’s Rho analysis supported these observations, with AQ-26 scores across the 

entire sample negatively correlating with interception rate in the volatile (Rs = -.25, p = 

.02, BF10 = 35.18) but not stable trials (Rs = -.09, p = .44, BF10 = 1.03).  

 

Figure 3.2. Performance data in Study 3. The proportion of balls successfully 

intercepted in stable and volatile conditions for each group. NT: neurotypical; ASD: 

autism spectrum disorder; *denotes significant group difference (p < .05). 
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3.1.3.2. Kinematic Data. 

Next, aspects of swing kinematics were compared between groups and conditions, 

based on the position of the VR hand controllers. Three participants (ASD: n = 1; NT: 

n = 2) were excluded from this analysis, following detection of univariate outliers or 

invalid trials (remaining n = 77). For peak velocity of the hand, ANOVAs showed a 

significant effect of group (F(1,75) = 5.18, p = .03, np2 = .07, BF10 = 2.38) but not 

condition (F(1,75) = .04, p = .84, np2 < .001, BF10 = .19), with autistic participants 

employing slower foreswings than neurotypical individuals (t(75) = 2.28, p = .03, BF10 

= 2.20). However, the timing of peak velocity was not significantly different between 

groups (F(1,75) = 1.79, p = .19, np2 = .02, BF10 = .69), and occurred close to ball 

contact in both conditions (Table 3.3). Though swing onset times occurred later in 

volatile trials (F(1,75) = 4.47, p = .04, np2 = .06, BF10 = .74; Table 3.3), no group 

differences emerged (F(1,75) = 1.82, p = .18, np2 = .02, BF10 = .76). Moreover, no 

significant interactions or correlations were present for these swing onset and peak 

velocity variables (p’s > .23; all BF10 < .50), except for peak hand velocity, which was 

inversely related to AQ-26 scores (R = -.25, p = .03, BF10 = 1.59). Therefore, autistic 

participants exhibited slow, novice-like movement kinematics in both task conditions. 

Table 3.3. Kinematic Averages (SD) during each Experimental Condition in Study 3. 

     NT Group    ASD Group 

  Stable Volatile Stable Volatile 

  Swing Onset Time#  0.59 (0.10) 0.60 (0.10) 0.55 (0.10)  0.57 (0.08) 

  Peak Velocity of the Hand*  10.15 (2.93) 9.96 (3.01)  8.41 (2.79)  8.54 (2.98)  

  Time of Peak Hand Velocity  -0.04 (0.02) -0.04 (0.03) -0.04 (0.02) -0.04 (0.02) 

  Max Hand Displacement*  0.61 (0.06)  0.61 (0.07)  0.55 (0.08)  0.55 (0.07) 

  Swing Range of Motion* #   83.06 (25.63) 79.94 (27.24) 67.31 (28.01)  65.31 (31.10)  

 
ASD: autism spectrum disorder; NT: neurotypical; *significantly groups 

differences (p < .05); #significant differences between conditions (p < .05). 

During their foreswing actions, autistic participants kept their hands closer to the body 

(Maximum Hand Displacement: F(1,75) = 13.84, p < .001, np2 = .16, BF10 = 55.09) 

and employed reduced ranges of motion (swing ROM; F(1,75) = 5.35, p = .02, np2 = 
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.07, BF10 = 1.65) compared to their neurotypical counterparts. For swing ROM, a weak 

main effect for condition also emerged (F(1,75) = 4.08, p = .047, np2 = .05, BF10 = 

1.94), with average values in both groups reducing between stable and volatile trials 

(t(76) = 2.33, p = .02, BF10 = 1.60). The condition-by-group interaction, however, was 

non-significant (F(1,75) = .19, p = .66, np2 = .003, BF10 = .37), with volatility-related 

changes in swing ROM proving similar between groups. Therefore, autistic participants 

showed higher, more uncertain-like swing ROM values in both stable and volatile 

conditions (Table 3.3). Relatedly, lower movement degrees of freedom were 

associated with higher AQ-26 scores across the whole sample, both for maximum 

hand displacement (R = -.37, p = .001, BF10 = 27.10) and swing ROM (R = -.24, p = 

.03, BF10 = 1.33). Nonetheless, changes in swing ROM were highly variable (ΔROM 

range: -31.17 – 24.08, SD: 10.36°), and there was a lack of condition-related effects 

for maximum hand displacement (F(1,75) = .07, p = .79, np2 = .001, BF10 = .20).  

3.1.3.3. Gaze Data. 

Eye-tracking data from eight participants (ASD: n = 2; NT: n = 6) were identified as 

poor quality and were excluded from gaze analyses (remaining n = 72). As described 

previously (Diaz et al., 2013; Mann et al., 2019), participants utilised a prediction-driven 

gaze strategy (Figure 3.3). Specifically, after pursuing its early-flight trajectory, gaze 

tended to shift ‘predictively’ ahead of the ball via large, anticipatory pre-bounce 

saccades. Gaze then stayed relatively still and focused on a location just above the 

ball’s future bounce position, in what is referred to hereafter as the bounce fixation 

location. This fixation was generally maintained for ~200 ms (mean: 182.16 ± 63.28 

ms) until the ball ‘caught up’; when participants would attempt to track the ball onto the 

racquet through a combination of smooth pursuit and corrective saccades.  

Interestingly, these general strategies were favoured by all participants, irrespective of 

their diagnosis status (Figure 3.3). ANOVAs showed that the timing and amplitude of 

participants’ pre-bounce saccades were not affected by condition or group (p’s > .29; 

all BF10 < 1; Figure 3.4), nor were they correlated with AQ-26 scores (p’s > .24; BF10 < 

.33). Moreover, the duration of the subsequent bounce fixation was not significantly 

affected by volatility, diagnosis status, or levels of autistic-like traits (p’s > .06; BF10 < 

1.07). Therefore, anticipatory gaze adjustments were evident in both groups, and these 

prediction-driven responses proved robust to changing environmental conditions. 
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Figure 3.3. Gaze strategies during the virtual racquetball task in Study 3. Average pitch 

of the gaze-in-world vector during stable (A) and volatile (B) conditions. Pitch 

represents the vertical angle of a vector which originates from the head at eye-height. 

Values of zero represent a vector that is parallel to the floor plane, while more positive 

values indicate that an individual is looking relatively higher in space around the 

bounce point. Bold lines are group averages, thin lines denote individual cases. NT: 

neurotypical; ASD: autism spectrum disorder. 

Notably, both groups attempted to closely pursue the balls after they had bounced on 

each trial (Figure 3.3). These tracking behaviours would presumably be impaired if any 

oculomotor deficits were present. As such, the vertical distance between participant’s 

gaze and the centre of the virtual ball was assessed on a frame-by-frame basis (in 

angular pitch coordinates), and averaged for the post-bounce portion of each trial. 

Here, greater deviation values would reflect larger average distances between gaze 

and ball vectors (i.e., high tracking error; Binaee & Diaz, 2019). However, ANOVA 

showed no significant main effects (condition: F(1,70) = .16, p = .69, np2 = .002, BF10 

= .18; group: F(1,70) = 3.63, p = .06, np2 = .05, BF10 = 1.36) or interactions (F(1,70) = 

.66, p = .42, np2 = .01, BF10 = .43) for this measure. Moreover, these gaze tracking 

profiles were unrelated to AQ scores (R = .19; p = .11; BF10 = .50). On this basis, it 

seems unlikely that sensorimotor difficulties were driven by any generic motion tracking 

deficits or oculomotor impairments in this task (see post-hoc analysis: Section 3.1.3.3). 
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Figure 3.4. The amplitude of anticipatory pre-bounce saccades (A) and subsequent 

gaze fixation locations (C) during stable and volatile conditions in Study 3. Values 

represent average angular coordinates of the gaze-in-world vector (°), with between-

condition changes illustrated in panels B and D. NT: neurotypical; ASD: autism 

spectrum disorder; *denotes statistically significant differences (p < .05). 

Potential differences in the position of participant’s final pre-bounce gaze fixation 

appeared (see time ‘0’ in Figure 3.3). Typically, people will look higher above the floor 

when they are expecting more ‘bouncy’ ball trajectories (Diaz et al., 2013; Mann et al., 

2019). Though anecdotal group differences (BF10 = 1.32) did not reach significance for 

this metric (F(1,70) = 3.47, p = .07, np2 = .05), there was a significant group-by-

condition interaction which required inspection (F(1,70) = 4.72, p = .03, np2 = .06, BF10 

= 1.51). Bounce fixations were higher in autistic than neurotypical participants, but only 

in stable trials (stable: t(70) = 2.59, p = .01, BF10 = 4.08; volatile: t(70) = 1.12, p = .27, 
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BF10 = 0.44). These context-sensitive effects were caused by volatility-related 

increases in the neurotypical group (t(47) = 2.42, p = .02, BF10 = 2.16; Figure 3.4), who 

adjusted their fixations under volatile conditions to facilitate the pursuit of bouncier ball 

trajectories. Autistic participants did not show such between-condition changes (t(23) 

= .96, p = .35, BF10 = .32, Figure 3.4), and instead showed a generally elevated gaze 

profile around the point of bounce (Figure 3.3). Therefore, as with their swing 

kinematics (ROM: Table 3.3), autistic participants appeared to display behaviours that 

are typically affiliated with more uncertain conditions. However, the pitch angle of 

bounce fixations was unrelated to AQ-26 scores (p’s > .13; BF10 < .50), and the weak 

anecdotal evidence against the null (BF10 = 1.51) must be interpreted with caution.  

Finally, this study also distinguished gaze tracking responses between expected and 

unexpected trials. Positional distances between gaze and ball vectors were averaged 

in the vertical plane for the post-bounce portion of each trial. In this case, analyses 

focused on probability-matched ‘test’ trials and subtracted normalised expected values 

from their unexpected trial equivalents (see methods). The resulting UE-E difference 

scores indexed levels of surprise to unexpected events, with higher scores signalling 

that participants had tracked expected balls more closely than the salient ‘bouncy’ 

ones. Two participants were excluded from this analysis due to missing data on ‘test’ 

trials (remaining n = 70). Manipulation checks confirmed that UE-E difference scores 

were significantly greater than zero under stable conditions (t(69) = 2.61, p = .01, BF10 

= 2.98). So, participants tracked expected balls more closely than unexpected ones for 

these trials. ANOVAs revealed a significant effect of condition on this measure (F(1,68) 

= 6.38, p = .01, np2 = .09, BF10 = 4.37), with UE-E differences decreasing under volatile 

conditions (t(69) = 2.67, p = .01, BF10 = 3.46). Crucially, there was a significant effect 

of group on these scores (F(1,68) = 5.80, p = .02, np2 = .08, BF10 = 3.22). When 

compared to neurotypical individuals, autistic participants showed generally reduced 

surprise (i.e., they were tracking unexpectedly bouncy balls with a similar level of 

accuracy to the more expected ones; Figure 3.5). There were also significant negative 

relationships between UE-E differences, AQ-26 scores (R = -.25, p =.04, BF10 = 1.19) 

and interception rates (Rs = .30, p = .01, BF10 = 3.46). However, no interaction effects 

emerged for this metric (F(1,68) = .01, p = .92, np2 < .001, BF10 = .27), illustrating that 

autistic individuals adapted behaviours typically between conditions. 
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Figure 3.5. Group differences in gaze tracking behaviours between expected (E) and 

unexpected (UE) test trials in Study 3. Higher index values signify more ‘prediction-

driven’ errors in post-bounce gaze pursuit (i.e., greater behavioural surprise when 

faced with the unexpectedly 'bouncy' balls). NT: neurotypical; ASD: autism spectrum 

disorder. *denotes significant between-group difference (p < .05); #denotes significant 

change between conditions (p < .05). 

3.1.3.3. Post-Hoc Analyses of Gaze Tracking Behaviours. 

In the results above, it was found that autistic people employ gaze patterns that are 

typically associated with high-uncertainty conditions. While neurotypical participants 

tended to pursue expected ball trajectories more closely than unexpected ones, autistic 

individuals appeared to sample both cues with similar levels of accuracy (Figure 3.5). 

These differences were not a result of any obvious gaze tracking abnormalities, nor 

were they accompanied by any alterations in the timing or amplitude of key saccadic 

eye movements (Figures 3.3 & 3.4). Instead, they likely reflect aberrant surprise 

responses. However, it is possible that atypical gaze responses stem from underlying 
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attentional and/or oculomotor impairments that determine one’s ability to engage, 

disengage, and shift attention in coordination with fast-moving sensory cues (Brenner 

et al., 2007; Johnson et al., 2016). This post-hoc analysis evaluated such a possibility, 

through a series of exploratory gaze data comparisons. 

First, the total number of saccades and fixations were assessed for each trial and 

averaged for both conditions, before being entered into separate mixed-model 

ANOVAs. Here, atypically low frequencies might indicate impaired shifting or 

disengagement of visual attention. Conversely, any inaccuracies in continuous smooth 

pursuit or goal-directed saccades would likely demand a relatively high frequency of 

corrective gaze shifts (Hayhoe et al., 2002). Neither of these data patterns emerged, 

with ANOVAs showing null group (saccades: F(1,70) = 2.10, p = .15, np2 = .03, BF10 

= .83; fixations: F(1,70) = .10, p = .75, np2 = .001, BF10 = .44), condition (saccades: 

F(1,70) = 1.13, p = .29, np2 = .02, BF10 = .37; fixations: F(1,70) = .80, p = .38, np2 = 

.01, BF10 = .25), and interaction effects (saccades: F(1,70) = .11, p = .74, np2 = .002, 

BF10 = .27; fixations: F(1,70) = .10, p = .75, np2 = .001, BF10 = .28). This suggests that 

autistic and neurotypical participants were shifting their gaze and fixating upon cues at 

a similar frequency in both conditions. 

Next, analysis explored whether autism-related gaze differences simply reflected 

impaired motion tracking abilities. If this was true, then one would expect particular 

difficulties to emerge on trials with the greatest ball velocities. As such, the average 

post-bounce distance (i.e., tracking error) between gaze and ball pitch vectors was 

extracted from ‘bouncy’ ball trials only. Here, any fundamental motion tracking 

impairments would result in generally high gaze-ball differences, regardless of whether 

the high-elasticity ball speeds are expected or uncertain. Bouncy-ball trial values were 

therefore averaged across both conditions and subsequently compared between 

groups, using an independent t-test. Group differences were not statistically significant 

in this analysis (t(70) = .41, p = .68, BF10 = .27), indicating that autistic and neurotypical 

participants had similar post-bounce tracking abilities with regards to the fast-moving 

ball cues (see related results in von Hofsten et al., 2009; Ego et al., 2016). 

Overall, this analysis finds little support for the notion that autism-related gaze 

differences result from broad impairments in attentional and/or oculomotor control. 

Instead, sensorimotor difficulties are likely related to context-sensitive mechanisms 
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(e.g., trial-by-trial predictions about ball bounciness, environmental uncertainty, and 

volatility estimations). Further empirical scrutiny is required, however, before any 

definitive conclusions can be made. 

3.1.3.4. Exploratory Analyses of Gaze Variability. 

Autistic participants predictively positioned their gaze at a higher location than 

neurotypical individuals when the virtual balls were bouncing (Figure 3.3). Such data 

patterns may be consistent with proposals that autistic people overestimate 

environmental volatility: agents who perceive that the world is more changeable will 

increasingly update their long-term predictive models according to recent (high-

elasticity) sensory information. Computationally, this would reflect an increase in 

learning rate (Behrens et al., 2007; Mathys et al., 2011; 2014), though such 

conclusions require further scrutiny (see discussion). 

To initiate this enquiry, this analysis explored the variability of participants’ gaze fixation 

behaviours. Specifically, it looked at the standard deviation of bounce fixation locations 

(pitch angles) shown during each condition. If participant’s visual sampling behaviours 

were being heavily driven by long-term prior expectations, then this trial-by-trial 

variability should be relatively low. On the other hand, larger standard deviations would 

indicate that gaze fixations are being strongly influenced by recent sensory data (i.e., 

highly changeable ball elasticity profiles from preceding trials). 

Mixed-model ANOVAs revealed a significant main effect of condition for these 

standard deviation values (F(1,70) = 5.63, p = .02, np2 = .07, BF10 = 3.03). Participants 

increased pitch variability between stable and volatile conditions (Figure 3.6), as 

indicative of an increased updating of prior models (i.e., a higher learning rate). While 

no significant interaction effects emerged for this metric (F(1,70) < .001, p = .99, np2 

< .001, BF10 = .27), the ASD group displayed generally higher trial-to-trial variability 

than their neurotypical counterparts (F(1,70) = 38.47, p < .001, np2 = .36, BF10 = 

3.11*105). This tendency to increasingly update bounce fixation locations is in line with 

proposals that autistic people are over-reactive to environmental change, and 

reinforces the potential role of aberrant precision weighting in autism (Lawson et al., 

2017). Research may wish to explore this topic further, by using sophisticated 

computational models of gaze fixation behaviours to study how volatility-based 

learning parameters change over time.  
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Figure 3.6. Trial-by-trial standard deviation values corresponding to the spatial location 

(pitch angle) of bounce gaze fixations for each condition in Study 3. NT: neurotypical; 

ASD: autism spectrum disorder. Two extreme values were identified and are 

represented as light grey circles (removal of these cases does not affected the overall 

pattern of results). 

 

3.1.4. Discussion 

This study examined how sensorimotor control is dynamically adjusted in autism, using 

a novel and immersive VR paradigm which systematically varied environmental 

volatility. Here, the frequency with which participants successfully intercepted a virtual 

bouncing ball was significantly lower in autistic individuals (Figure 3.2), confirming 

basic impairments in motor skill execution (Green et al., 2002; Vanvuchelen et al., 

2007; Whyatt & Craig, 2013a; Ament et al., 2015; Chen et al., 2019). Such performance 

difficulties were accompanied by atypical swing kinematics (Table 3.3), gaze fixation 

patterns (Figure 3.3), and levels of behavioural surprise (Figure 3.5). Results support 

active inference formulations of predictive processing (Palmer et al., 2017), and 

suggest that the dynamic regulation of sensory sampling and motor control behaviours 

is fundamentally different in autistic people. 
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In accordance with predictive processing theories of autism (e.g., Lawson et al., 2014; 

Van de Cruys et al., 2014), difficulties in sensorimotor performance were more 

pronounced under volatile conditions (Figure 3.2). Such results align with findings from 

more constrained prediction-based tasks (e.g., statistical learning and sensorimotor 

illusion paradigms: Palmer, Paton, et al., 2015; Robic et al., 2015), where autism-

related atypicalities emerge under uncertain or unstable probabilistic conditions (see 

recent review: Cannon et al., 2021). Furthermore, the observed differences in this task 

appeared specific to autism, and were not a result of any confounding clinically-

diagnosed conditions (e.g., identified co-occurring motor disorders). Therefore, this 

novel, systematic assessment of sensorimotor control extends our computational 

understanding of autism into more dynamic and unconstrained environments, where 

optimal behaviours rest on hierarchical, iterative predictive processing.  

Autistic participants employed arm swing actions that were lower in peak velocity, 

closer to the body, and more restricted in ROM (Table 3.3). These profiles are 

indicative of more novice-like swing mechanics, as actions are typically slower and 

have reduced degrees of freedom in the early stages of learning (Bernstein, 1967; Reid 

et al., 2013; H. A. Palmer et al., 2018). Autism-related sensorimotor difficulties may 

thus reside at the kinematic level (Cook et al., 2013; Torres et al., 2013; Campione et 

al., 2016; Torres & Denisova, 2016; Chen et al., 2019; Foster et al., 2019).  Indeed, 

atypical peak hand velocities have been consistently reported in clinical visuomotor 

research (Glazebrook et al., 2009; Cook et al., 2013; Takamuku et al., 2021) and could 

result from various central and/or peripheral factors, including aberrant predictive 

action modelling (Cook et al., 2013). However, contrary to the initial hypotheses (and 

previous work: Glazebrook et al., 2006; Whyatt & Craig, 2013a), kinematic group 

differences were not significant for any of the movement initiation metrics (Table 3.3). 

Therefore, when examined in isolation, it is unclear whether these atypical movement 

kinematics in autism reflect specific differences in predictive processing, or more 

general impairments in sensorimotor development.  

Accordingly, this study next sought to explore the precise mechanisms that drive 

autistic motor differences. Notably, participants’ gaze kinetics were remarkably robust 

to the highly-changeable probabilistic conditions (Figure 3.3), which reinforces 

suggestions that a prediction-driven visual sampling strategy is optimal for dealing with 

dynamic and uncertain cues for this type of task (Diaz et al., 2013; Binaee & Diaz, 
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2019). The present data shows that autistic individuals also employed this top-down 

strategy (Figure 3.3) and that they shifted their visual attention and tracked 

approaching balls similarly to neurotypical individuals. These findings undermine 

proposals of broad attentional differences (Ozonoff et al., 1991; Happé & Frith, 2006) 

and/or generic attenuations in the use of prior knowledge (Pellicano & Burr, 2012). 

Moreover, null group differences were observed in relation to participants’ anticipatory 

pre-bounce saccades, despite these eye movements being directly related to previous 

trial trajectories and task constraints (Diaz et al., 2013; Cesqui et al., 2015; Mann et 

al., 2019). Consequently, these results join varied evidence against simple Bayesian 

theories of autism, and support conclusions that predictive processing abilities are not 

generically impaired in sensorimotor tasks (Gidley-Larson et al., 2008; Ego et al., 2016; 

Tewolde et al., 2018; Cannon et al., 2021; see also Studies 1 & 2). 

Recent research suggests that sensorimotor difficulties in autism may instead stem 

from context-sensitive mechanisms relating to hierarchical precision modulation and 

volatility processing (Lawson et al., 2014; 2017; Palmer et al., 2017). In this study, 

participants displayed subtle adjustments in visual sampling behaviour that were 

qualitatively consistent with optimal active inference. Specifically, when conditions 

were more uncertain, individuals appeared to rely less on prior information and more 

on exploratory attentional cues (Beesley et al., 2015; Walker et al., 2019). This was 

illustrated in participants’ gaze data, where tendencies to track expected balls more 

closely than unexpected ones were reduced under volatile conditions (Figure 3.5). 

Participants also adjusted their fixations more variably in these trials (Figure 3.6). 

Together, such context-sensitive patterns of data match results from psychophysics 

experiments, where unexpected cues are processed more rapidly under uncertain 

conditions (e.g., Vossel et al., 2014). The changes observed here reflect volatility-

related modulation of precision and learning rate, which increases an individual’s 

responsivity to salient events (Behrens et al., 2007). 

Strikingly, the current dataset shows consistent autism-related atypicalities in this 

context-sensitive modulation of sensorimotor control. Indeed, autistic participants 

showed differences in swing ROM (Table 3.3), bounce fixation location (Figure 3.4 & 

3.6), and behavioural surprise (Figure 3.5); metrics which all appeared sensitive to 

volatility conditions. For each of these measures, the ASD group demonstrated 

behaviours that are typically associated with high environmental instability. For 
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instance, differences in gaze tracking between expected and unexpected ‘test’ trials 

were significantly reduced (Figure 3.5), indicating dampened surprise to unexpected 

events (as in recent neurological and behavioural evidence: e.g., Nazarali et al., 2009; 

Lawson et al., 2017; Goris et al., 2018). Similarly, while neurotypical participants 

reduced swing ROM during volatile conditions only, autistic participants exhibited low 

ROM scores across both conditions (Table 3.3). These atypical movement profiles can 

be explained by an increased tendency to ‘expect the unexpected’ in autism (Lawson 

et al., 2017), as a greater fixing of joint angles may serve as an active attempt at 

reducing uncertainty (i.e., through reducing signal-dependent motor noise; O'Sullivan 

et al., 2009). Therefore, this study supports proposals that autistic people tend to 

interact with the world like it is highly unstable or uncertain (Lawson et al., 2017).  

Atypical volatility processing can explain difficulties with various activities of daily living 

in autism (Palmer et al., 2017). Participants who showed poorer task performance and 

higher autistic-like traits in this study tended to sample the world in a more uncertain-

like manner. This is unsurprising, as the majority of balls bounced in an ‘expected’ way, 

so it would be suboptimal to sample cues as if they are unrelated to long-term prior 

experience. However, fixation data cautiously suggest that autistic participants 

predictively positioned their gaze at a higher, more variable location than their 

neurotypical counterparts (Figures 3.3-3.6), in a manner that benefits the sampling of 

recent high-elasticity ball trajectories (Diaz et al., 2013). Though it is currently unclear 

whether these differences resulted from atypical learning rates or compensatory, non-

linear adaptations in gaze behaviour (e.g., ‘centering’ strategies: Heinen et al., 2005), 

these results reinforce the notion that autistic participants were overestimating 

volatility, or ‘expecting the unexpected’, during the task (Lawson et al., 2017). 

Nevertheless, the exact source of aberrant uncertainty expectations and volatility 

modulation in autism remains to be explored (Lawson et al., 2014; Palmer et al., 2017). 

Contrary to the initial hypotheses, autistic and neurotypical groups appeared to 

comparably adjust visual sampling and motor kinematics according to environmental 

(in)stability. These null effects are notable, as recent computational models posit that 

autistic people are hypersensitive to environmental change, potentially due to 

dysfunctions in neural excitation and/or modulation (Lawson et al., 2014; Quattrocki & 

Friston, 2014; Rosenberg et al., 2015; Lawson et al., 2017). Though conflicting with 

these proposals, such findings align with reinforcement learning data (Manning et al., 



 

106 
 

2017), which suggest that atypicalities may be consigned to higher-level processing 

functions (see also: C. J. Palmer et al., 2018). This study was unlikely to implicate such 

mechanisms, with visual motion cues about ball-flight dynamics likely occurring in 

lower hierarchical levels. It is also possible, however, that the autistic group data do 

not highlight atypicalities in volatility processing at all, but rather a broad, psycho-

behavioural intolerance of uncertainty. Indeed, behavioural inflexibility and an 

insistence on sameness are well-defined autistic-like traits that correlate with motor 

difficulties (MacDonald et al., 2013). While these traits have been conceptually linked 

to predictive processing atypicalities (Lawson et al., 2014; Van de Cruys et al., 2014), 

statistical associations do not consistently materialise (e.g., Tewolde et al., 2018). 

Therefore, research must establish whether sensorimotor difficulties reflect 

abnormalities in neuromodulation (e.g., in noradrenergic responsivity, divisive 

normalisation) or secondary consequences of cognitive and behavioural traits.  

A number of study limitations must also be considered. For example, this study did not 

directly assess participants’ cognitive or visual abilities, nor were there any checks 

performed for undiagnosed motor conditions. Such variables could have influenced 

observed data, with autistic populations showing higher incidence rates of cognitive 

impairment, optometric issues (e.g., strabismus; Simmons et al., 2009) and 

neurodevelopmental disorders (Simonoff et al., 2008; Landry & Chouinard, 2016). 

Though participants were excluded if they reported co-occurring medical conditions, 

many of these issues can remain undetected. Levels of experience in racquet-based 

activities were also unclear and may generally be lower in clinical groups (see 

Scharoun et al., 2017). However, correlational analysis did examine relationships 

between sensorimotor control and levels of autistic-like traits across a large general 

population (i.e., the broader autism phenotype). Most participants in this analysis were 

neurotypical (68%), which reduces the influence of autism-related confounds (Landry 

& Chouinard, 2016). Notably, all but one of the between-group effects that were 

identified in the results section were accompanied by significant AQ correlations. 

These trait-based effects clearly reinforce the study’s main findings, though future 

research could explore additional co-variables in their analyses (e.g., IQ subscale 

scores, clinical questionnaires, standardised motor assessments). 

Additionally, impoverished depth cues and haptic feedback in VR tasks could influence 

action control and uncertainty expectations (Bingham et al., 2001; Harris et al., 2019), 
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thus limiting their generalisability to ‘real-world’ behaviour. Although this argument is, 

in itself, uncertain at present (Harris et al., 2019), and the use of VR affords unique 

methodological benefits, future studies may wish to manipulate probabilistic conditions 

in ‘real-world’ tasks. To do this, one may wish to select a task that is more sensitive to 

prior expectations. Indeed, though gaze strategies are evidently driven by prediction in 

the current protocol (Binaee & Diaz, 2019), time-pressed interceptive actions still rely 

heavily on incoming visual information (Zago et al., 2009; Diaz et al., 2013). Therefore, 

the addition of prior contextual cues should be considered, such as probabilistic 

sensory signals (e.g., predictive auditory tones: Lawson et al., 2017; kinematic cues 

from an opponent: Helm et al., 2020), or explicit prior information (Gray, 2015; Gredin 

et al., 2018). These contextual cues should not only enable research into more 

predictive control strategies, but they could also form the basis of future sensorimotor 

interventions (see ‘Moneyball Approach’ in sport: Gray, 2015).  

 

3.1.5. Conclusions 

In conclusion, autistic people tend to struggle with performing an interceptive motor 

skill when sensory cues are unpredictably changeable over time. These performance 

difficulties are underpinned by fundamental differences in predictive processing and 

active inference. Specifically, atypical sensory sampling behaviours and movement 

kinematics appear driven by aberrant precision modulation and volatility processing 

mechanisms. Although these results shed significant light on the potential origins of 

sensorimotor issues in autism, the exact source of these computational differences 

remains unclear. Moving forward, research should specifically examine whether 

impaired active inference behaviours relate to suboptimal neuromodulatory control 

and/or beliefs about environmental uncertainty. This would not only improve our 

scientific understanding of autism, but would also provide a theoretical basis for 

prospective interventions. Indeed, the degree to which autistic individuals benefit from 

targeted practical approaches will depend on how sensitive these precision-related 

processing atypicalities are to certain external factors (e.g., explicit contextual cues or 

individualised environmental modifications). By pursuing this line of enquiry in 

unconstrained and naturalistic daily living tasks, investigations could help develop new 

evidence-based interventions that help autistic people overcome sensorimotor 

difficulties and improve functional quality of life.  
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Chapter 4 

This final experimental chapter begins to explore prospective approaches for reducing 

sensorimotor difficulties in autism. The preceding studies found that autistic people 

show context-sensitive differences in predictive action control, with Chapter 3 

specifically highlighting a link between impaired hand-eye coordination abilities and 

suboptimal volatility modulation. These results implicate the role of aberrant precision 

weighting functions and support hypotheses that autistic people overestimate levels of 

uncertainty and/or instability in sensory environments (Lawson et al., 2017). However, 

the precise causes of these processing atypicalities remain unclear, and research must 

establish the practical means through which these functions can be augmented or 

optimised. Accordingly, this chapter examines whether explicit informational cues 

about environmental volatility can enhance sensorimotor control in autistic people. It is 

hoped that the novel study findings will assist the development of specialist evidence-

based interventions that can be applied into future practice. 

 

4.1. Study 4:  Investigating the effects of explicit contextual cues on predictive 

sensorimotor control in autistic adults.  

4.1.1. Introduction 

Autistic people can face a range of daily living difficulties which impact on levels of 

independence, wellbeing, and quality of life (Ikeda et al., 2014; Croen et al., 2015; Van 

Heijst & Geurts, 2015). Some of these outcomes are linked to impaired sensorimotor 

control, with autistic people often experiencing clumsiness, sensory disturbances, and 

issues with eye-hand coordination (Fournier et al., 2010; Gowen & Hamilton, 2013; 

Coll et al., 2020). Indeed, motor skill abilities are predictive of personal independence 

(Jasmin et al., 2009), physical health (McCoy et al., 2016), and long-term socio-

behavioural development (Sutera et al., 2007; MacDonald et al., 2013).  However, 

current sensorimotor interventions show mixed results. On one hand, positive study 

outcomes are usually reported (e.g., DeBolt et al., 2010; Duronjić & Válková, 2010; 

Bremer et al., 2015; Bremer & Lloyd, 2016; Ketcheson et al., 2017), with particular 

benefits emerging from programmes that implement direct and individualised teaching 

instructions. On the other, these studies often provide minimal insight beyond the 

generic benefits of engaging in physical activity (Colombo-Dougovito & Block, 2019). 
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Consequently, there is an absence of evidence-based programmes that are proven to 

effectively tackle autism-related sensorimotor issues and their underlying causes. 

Despite this lack of investigation, research has highlighted key mechanisms that could 

be targeted in future interventions. Studies suggest that sensorimotor impairments may 

reside in the planning or anticipatory stages of action (Hughes, 1996; Schmitz et al., 

2003; Fabbri-Destro et al., 2009; Z. Wang et al., 2015; Cannon et al., 2021). More 

specifically, autistic individuals show clear differences in how action predictions are 

dynamically adjusted according to contextual uncertainty and volatility (Palmer, Paton, 

et al., 2015; Study 2-3). A recent study by Lawson et al. (2017) found that autistic 

people overestimate levels of instability in their surrounding environment when faced 

with unpredictably-changeable task conditions. Such findings were supported by Study 

3, which highlighted a tendency in autism to interact with dynamic sensory cues as if 

they are highly uncertain or volatile. As a result, autistic individuals can be over-reactive 

to salient sensory cues and have difficulties forming stable representations about the 

world (Lawson et al., 2017, see also Palmer et al., 2017). 

From a predictive processing perspective, the above findings allude to aberrant 

precision weighting functions (i.e., processes which modulate prior beliefs and sensory 

evidence according to estimates of their reliability; Palmer et al., 2017). Higher-level 

beliefs about environmental stability are said to regulate the weighting of top-down 

predictions via precision-weighted cortical gain, as facilitated by neuromodulators such 

as acetylcholine and phasic noradrenaline (Yu & Dayan, 2003; Friston, 2008). Under 

more volatile conditions, agents will increasingly rely on sensory information obtained 

from recent experience, in a manner that facilitates context-sensitive predictions and 

learning (Behrens et al., 2007). However, these computational functions appear to be 

suboptimal in autism (e.g., Lawson et al., 2014; Van de Cruys et al., 2014). Indeed, 

though autistic individuals are able to learn implicit cue-outcome relationships and 

adapt their behaviour according to perceived volatility (Manning et al., 2017; Sapey-

Triomphe et al., 2021), such high-level representations are over-reactive to 

environmental change and aberrant sensory events (as shown in Lawson et al., 2017 

and Study 3). However, the mechanisms that cause these processing atypicalities 

remain unclear and require further investigation. 
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One possibility is that autistic people have difficulties with extracting the ambiguous 

contextual relationships that underpin complex sensorimotor interactions (Qian & 

Lipkin, 2011; Van de Cruys et al., 2014). Indeed, the dynamic integration of sensory 

signals across the brain is shaped by higher-level beliefs about whether the world is 

changing (Yon & Frith, 2021). As such, precision estimates are determined by a 

person’s ability to detect implicit statistical regularities that exist within surrounding task 

environments. From a practical perspective, this suggests that daily living skills could 

be enhanced through the provision of explicit, statistically-accurate information about 

dynamic situational probabilities. Indeed, the notion of making uncertain conditions 

‘more understandable’ is commonly advocated in the field (Haker et al., 2016) and 

studies show that autistic people can be explicitly cued or primed to process context in 

social cognition and perceptual discrimination tasks (Plaisted et al., 1999; López et al., 

2004; Balconi et al., 2012; Vermeulen, 2015; Gowen et al., 2020; Cannon et al., 2021). 

An alternative possibility is that predictive sensorimotor difficulties in autism are 

underpinned by aberrant neuromodulatory control (Lawson et al., 2014; Quattrocki & 

Friston, 2014; Van de Cruys et al., 2014). Volatility processing requires error signals to 

be integrated across various hierarchical networks, based on implicit models of the 

world (Friston et al., 2013; Yon & Frith, 2021). Such processing depends on an array 

of factors that may be affected in autism, including: phasic noradrenergic activity (Yu 

& Dayan, 2003; Lawson et al., 2021), dopamine-serotonin interactions (Friston, 

Samothrakis, et al., 2012), and signalling in the ACC and cerebellum (Behrens et al., 

2007; den Ouden et al., 2010; Palacios et al., 2021). Differences in these systems 

could lead to pathological neural gain and disproportionate receptiveness to sensory 

inputs (see Lawson et al., 2014). The provision of explicit contextual cues would be 

unlikely to outweigh these proposed signalling effects, with some prediction-related 

atypicalities appearing to persist even after individuals have been told about likely trial 

events (Thillay et al., 2016; Balsters et al., 2017; Greene et al., 2019; Cannon et al., 

2021). However, research has also shown that autistic motor programming (Nazarali 

et al., 2009) and anticipatory gaze responses (Aitkin et al., 2013) are unimpaired in 

tasks that contain prior visual cues about upcoming movement trajectories. 

Consequently, it is unclear whether sensorimotor abilities are limited by difficulties in 

extracting ambiguous cue-outcome relationships from the world or differences in 

modulating actions according to these underlying environmental contingencies. 
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Likewise, sensorimotor differences may relate to a chronic intolerance of uncertainty 

that is already documented in clinical research (Boulter et al., 2014; Vasa et al., 2018). 

Individuals with greater intolerance of uncertainty often experience adverse emotional 

reactions to unpredictable stimuli (Dugas et al., 1997). Though mechanistically distinct 

from hierarchical precision estimates (see Bervoets et al., 2021), recent data suggest 

that associated increases in anxiety could impair key predictive processing functions 

(e.g. volatility-related learning rate modulation, Lawson et al., 2021). Furthermore, 

sensory issues in autism correlate with apprehension about environmental change 

(Wigham et al., 2015; Pickard et al., 2020). Therefore, the degree to which autistic 

people benefit from explicit probabilistic information could also depend on trait 

differences in behavioural inflexibility and/or intolerance of uncertainty.  

This study examined the effects of explicit probabilistic cues on autistic sensorimotor 

control, using an adapted version of the virtual racquetball task from Chapter 3. As 

before, participants used a handheld controller to intercept balls that had either normal 

or unexpectedly-high levels of bounciness, and the likelihood of facing each outcome 

was varied irregularly over time. However, participants in this study were provided with 

advanced information about the probability of facing a normal or bouncy ball and were 

explicitly cued as to when these contingencies had changed. Research has shown that 

neurotypical individuals significantly benefit from this type of information during 

predictive action-based tasks (e.g., Navia et al., 2013; Gray, 2015; Gredin et al., 2018). 

For instance, football goalkeepers display enhanced performance when provided with 

advanced information about an opponent’s most likely shooting direction (Navia et al., 

2013). Although this type of intervention has not yet been tested in clinical populations, 

adaptive effects have been observed in autistic visual processing and motor imitation 

abilities when participants are explicitly cued to focus on goal-relevant contextual 

stimuli (López et al., 2004; Fulceri et al., 2018; Gowen et al., 2020; Soroor et al., 2021). 

As such, it was hypothesised that autistic people would show significant improvements 

in interceptive motor performance under cued (versus non-cued) conditions.  

Importantly, when a ball is about to bounce in the current task, participants will direct 

their gaze away from its existing location towards its expected future position (see 

Chapter 3). Gaze then remains steady until the ball ‘catches up’, in what is referred to 

as the predictive bounce fixation. Importantly, these unique visuomotor behaviours are 

programmed according to dynamic predictions about ball bounciness (see Mann, 
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2019). So, when ball elasticity unexpectedly rises and fluctuates erratically over time, 

participants tend to increase the height and variability of their predictive bounce 

fixations, while reducing range of motion in their swing (Arthur & Harris, 2021). Study 

3 illustrated that such changes exist in both autistic and non-autistic people, but that 

autistic people show higher, more variable fixations and reduced behavioural surprise 

to unexpected events. These profiles signal a tendency to prepare for salient and/or 

recently observed ball trajectories which seems to coincide with restricted swing 

kinematics and impaired interception performances under volatile conditions. These 

effects were hypothesised to replicate within non-cued trials in this study. However, 

the explicit cue trials conveyed statistically-optimal prior information about dynamic 

environmental probabilities, in a manner that reduces contextual uncertainty. As such, 

these conditions were expected to facilitate relatively higher swing ROM and lower 

predictive bounce fixations in autistic participants, when compared to non-cued values. 

 

4.1.2. Methods 

4.1.2.1. Participants 

A total of 44 participants took part in the study (30 male, 14 female, 40 right-handed, 

mean age: 29 ± 7 years). 22 individuals had a formal diagnosis of ASD, as provided 

by an expert clinician according to DSM-IV (American Psychiatric Association, 2013) 

or ICD-10 (World Health Organisation, 2012) criteria, while the remaining sample were 

age- and gender-matched neurotypical controls. Though analysis was primarily 

interested in assessing cue-related changes in the ASD group, these individuals could 

help elucidate any autism-related atypicalities shown between conditions. Power 

calculations indicated that this sample size would be sufficient to detect any moderate 

statistical effects in the regard (see Appendix A4), as estimated based on previous 

data in Study 3 and findings presented by Lawson et al. (2017).  

Participants did not report any history of musculoskeletal or neurological disorders and 

were naïve to study aims. They also had no prior experience of playing VR-based 

racquet sports. All individuals in the ASD group scored above the clinical ‘screening 

cut-off’ of 26 on the 50-item Autistic Quotient (AQ; Baron-Cohen et al., 2001), with 

levels of autistic-like traits proving highly consistent with previous clinical values (mean 

score: 35.57 ± 5.43; for normative data, see AQ; Baron-Cohen et al., 2001; Woodbury-
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Smith et al., 2005). Informed consent was obtained ahead of all study procedures, in 

accordance with British Psychological Society guidelines. The study received approval 

from the School of Sport and Health Sciences Ethics Committee (University of Exeter, 

UK) and the Department of Psychology Ethics Committee (University of Bath, UK). 

 

Figure 4.1. The Virtual Racquetball task in Study 4. Participants were required to 

intercept balls that bounced with either normal or unexpectedly-high levels of elasticity. 

Gameplay footage of the virtual racquet, ball, and target is illustrated in panel A. During 

control trials, participants received no explicit information about levels of ball 

bounciness and changing task conditions. However, three additional pieces of 

information were provided ahead of cued trials. Firstly, changes in task conditions were 

signalled using ‘game level’ transitions (B), which notified participants that they were 

about to enter a new environmental context. The proportion of normal and bouncy balls 

in each level were then projected in space using visual ‘hawkeye’ cues (C). A simulated 

‘bounceometer’ on the front wall (shown in D) also confirmed whether a bouncy ball 

was ‘low’, ‘medium’, or ‘high’ in likelihood ahead of each trial. Together, these cues 

explicitly informed participants about dynamic task probabilities and environmental 

volatility. Supplementary Videos of the protocol can be found at: https://osf.io/5y48g/. 



 

114 
 

4.1.2.2. Apparatus and Stimuli 

The virtual racquetball environment was developed on the gaming engine Unity (Unity 

Technologies, San Francisco, CA) and is described in Chapter 3. It was presented to 

participants on an HTC VivePro head-mounted display at 120 Hz (HTC Inc., Taoyuan 

City, Taiwan). This consumer-grade, high-precision VR system comprises two 

‘lighthouse’ base stations, which record movements of the headset and hand controller 

at 90 Hz. The headset also contains an inbuilt eye-tracking system, which monitors 

user’s gaze at 120 Hz with a spatial accuracy of 0.5-1.1. Participants were presented 

with a simulated 15 x 15 m racquetball court, which contained a circular target on its 

front wall (Figure 4.1A). They were required to position themselves 9 m behind this 

location before attempting to hit virtual balls towards the middle of the target using a 

VR hand controller. This controller was displayed as a 0.6 x 0.3 x 0.01 m virtual 

racquet, and the balls resembled the appearance and size of those in ‘real-world’ tennis 

(Figure 4.1A). All balls were launched from a height of 2m, following three auditory 

tones, and would bounce 3.5m in front of participant’s prescribed starting position. 

Their trajectory passed through the midline of the room, which was 0.75 m to the right 

(for right-handers) or left (for left-handers) of this predetermined starting position. 

For this study, the virtual environment was further adapted for the cued experimental 

condition. In these trials, participants would transition between six game ‘levels’, which 

provided explicit information about ball bounciness and environmental probabilities 

(Figure 4.1). Level changes were signalled by an auditory tone and brief ‘loading 

screen’ (see Supplementary Video at: https://osf.io/5y48g/). Following this transition, 

participants would be transported into a new virtual room, to signal that their 

surrounding environment had changed. The front wall was visually identical for all 

levels, as were any ball bounciness- or goal-related action cues (e.g., the ball, floor, 

target and racquet). However, to emphasise that the underlying contextual probabilities 

had changed with each level transition, participants were presented with visual 

‘hawkeye’ cues immediately after the loading screen (Figure 4.1C). These illustrations 

projected the upcoming trajectory and ratio of normal and bouncy balls in each game 

level. Such ‘hawkeye’ cues were presented for 10 seconds and accurately represented 

the probabilistic ‘ground truth’ of a given level. They were accompanied by a visual 

indicator (referred to as the ‘bounceometer’), which explicitly stated whether the 

likelihood of getting a bouncy ball was low, medium, or high (Figure 4.1D). Although 
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this probabilistic information only reflected the statistical structure of a given level (i.e., 

they were not varied on trial-by-trial basis), they were presented for 3 s ahead of each 

trial in the cued condition. Together, these explicit contextual cues directly conveyed 

to participants that the underlying ball bounciness probabilities had changed in the 

volatile task environment. Such advanced information was not available in the practice 

or control conditions, nor in the final nine trials (i.e., game level) of the cued block. 

Participants also completed the 50-item AQ (Baron-Cohen et al., 2001) and the 

Intolerance of Uncertainty Scale–shortened version (IUS-S; Carleton et al., 2007; see 

Appendix G). The AQ indexed five key autistic-like traits, namely: communication, 

imagination, social skills, attention switching, and attention to detail. Each subscale 

was scored out of ten and combined into an overall total (possible range: 0-50). The 

IUS-S is a 12-item questionnaire measuring intolerance of uncertainty, defined as “the 

tendency of an individual to consider the possibility of a negative event occurring 

unacceptable, irrespective of the probability of occurrence” (Carleton et al., 2007). 

Itemised statements are rated from 1 (not at all characteristic of me) to 5 (entirely 

characteristic of me) and then combined into a total out of 60. Higher scores reflect 

greater intolerance of uncertainty, as is commonly reported in autistic populations 

(Boulter et al., 2014; Wigham et al., 2015; Vasa et al., 2018; Pickard et al., 2020). 

4.1.2.3. Procedures 

After providing written informed consent, participants were fitted with the head-

mounted display and familiarised with the virtual environment. At this stage, the eye-

tracker was calibrated over five gaze locations using the manufacturer’s built-in routine. 

Calibration was repeated before each experimental condition and upon any obvious 

displacement of the VR headset. Once familiarised with the virtual environment, 

participants then completed thirty baseline racquetball trials. Throughout this initial 

block, all virtual balls followed the same pre- and post-bounce trajectory, which were 

consistent with the effects of gravity (-9.8 m/s2). Their speed remained fixed at -9 m/s 

in the vertical plane (at the time of bounce), and elasticity was set at standard tennis 

ball levels (65%).  

Participants were instructed to hit balls towards the centre of the target, but that they 

would not be able to see or feel where they go after hitting them. This lack of feedback 

was used in all experimental trials to minimise confounding effects relating to 
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motivation, communication skills, and task reward/error. Instead, a neutral ‘pop’ sound 

signalled when balls had made contact with the racquet, and any subsequent auditory 

and visual ball information was removed after this event.  

Following the initial baseline trials, participants performed two counterbalanced 

experimental conditions. In both of these blocks, ball bounciness was systematically 

varied over time to create unstable trial order sequences (illustrated in Figure 4.2). 

While two-thirds of trials would contain ‘normal’ balls that were the same as those faced 

at baseline (and in real-world environments), a third contained ‘bouncy’ balls with 

unexpectedly high levels of elasticity (85%). This discernible change in post-bounce 

ball trajectory occurred without participant’s knowledge and would likely deviate away 

from any prior experiences obtained during ‘real-world’ actions (see Chapter 3). The 

pre-bounce ball speeds and trajectories were always the same as in baseline, meaning 

that the different type of balls were impossible to tell apart until they had made contact 

with the floor. Importantly, the probability of facing a normal ball changed every 6, 9 or 

12 trials (between 83%, 67% and 50% likely). These unpredictably changeable post-

bounce ball trajectories created a volatile environment, in which autistic people 

displayed impaired interceptive performances in Study 3.  

Participants were randomly allocated one of three possible trial order sequences 

(available at https://osf.io/5y48g/) which would be presented to them in both 

experimental conditions. For the control block, individuals did not receive any 

probabilistic information about likely ball bounciness and trials were presented as one 

continuous sequence (Figure 4.2A). Instead, they were simply told that some balls may 

be more bouncy than others and that they should aim to hit as many of them as 

possible to the middle of the target.  

Conversely, explicit information about situational probabilities were provided in the 

cued block. Here, visual cues indicated to participants both when ball bounciness 

probabilities were switching and how likely they were to face a ‘normal’ or ‘bouncy’ ball 

at any given time (see Figure 4.2B). This direct provision of contextual priors has been 

proven to enhance visuomotor control in various neurotypical performance domains 

(e.g., Navia et al., 2013; Gray, 2015; Gredin et al., 2018). Participants were told that 

these visual cues would help show them where the balls are going to go and how likely 
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they are to get a bouncy ball during each game level. They were not informed that the 

trial order sequences would be exactly the same in each experimental block.  

The laboratory protocol generally lasted ~30 minutes in total. The two experimental 

conditions contained 45 trials each and were separated by a short break. The final 9 

trials of each block contained identical visual information (i.e., no ‘hawkeye’ or 

‘bounceometer’ cues) and thus provided a set of order-matched ‘catch’ trials for further 

examination (see Figure 4.2). 

 

Figure 4.2. Schematic Illustration of the Experimental Protocol in Study 4. Participants 

were presented with a series of balls that bounced with either normal (blue circles) or 

unexpectedly-high (red circles) levels of elasticity. Though trial order sequences were 

the same in each condition, Cued trials were separated into six game levels. Upon 

entering a new game level, participants received projected ‘hawkeye’ cues (see 

arrows). Each subsequent trial was then preceded by a visual indicator, which stated 

whether the likelihood of facing a bouncy ball was ‘low’ (17%), ‘medium’ (33%), or ‘high’ 

(50%) for this level. Conversely, balls in the non-cued condition were presented as one 

continuous sequence of trials, with no additional visual information. *Note that both 

blocks ended with nine catch trials that contained no explicit probabilistic cues. 
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4.1.2.4. Data Analysis 

This study focused on the context-sensitive variables relating to motor performance, 

swing kinematics, and gaze behaviour that proved responsive to volatility estimates in 

Chapter 3. Specifically, task performance was evaluated based on interception rate, 

which reflected the percentage of trials in which participants successfully hit the ball 

with their racquet. Kinematic variables were assessed using the positional data of the 

VR hand controller, which were extracted and then smoothed using a dual-pass, zero-

phase Butterworth filter (frequency: 10 Hz; Franks et al., 1990). Specifically, analysis 

focused on the foreswing phase of interceptive actions, which started when the racquet 

first began to move forward and ended when it first made contact with the ball. In trials 

where participants failed to hit the ball, foreswing offset represents the final data point 

in which the ball’s depth position exceeded that of the racquet.  

Peak velocity of the hand controller was recorded from participants’ foreswing 

movements, as autistic participants displayed slower, more novice-like swing actions 

than neurotypical individuals in Study 3. Additionally, ROM was assessed during this 

trial period to capture context-sensitive aspects of motor control. This outcome 

highlighted the maximum angular deviation between the VR headset and hand 

controller, as defined in the tranverse plane. Higher values would indicate that the hand 

had rotated to a greater degree around the body during the foreswing action. 

Conversely, decreases in ROM may signify that participants were ‘fixing’ movement 

degrees of freedom, a response which is typically prominent under volatile conditions 

and in autistic populations (see Study 3; Arthur & Harris, 2021). 

Eye tracking data were converted into ‘in-world’ angular vectors, as defined according 

to head-centred egocentric coordinates. Yaw and pitch values were smoothed using a 

three-frame median filter and then a second-order Butterworth filter (at 15 Hz; Cesqui 

et al., 2015). Since autistic participants employed anticipatory saccades in a similar 

manner to neurotypical individuals in Study 3, analysis only focused on predictive 

fixations. To extract this information, cleaned data were entered into a spatial 

dispersion algorithm (Krassanakis et al., 2014), which identified periods where gaze 

remained steady within a 3° area for a minimum of 100 ms. Trials where eye-tracking 

was temporarily lost (>100 ms) or where there were >20% of missing data were 

excluded. Subsequent analyses focused on the median onset time, mean duration, 
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and average vertical position (mean pitch angle) of fixations that occur during (within 

0.1s), or immediately prior to, ball bounces in each trial. This bounce fixation is elevated 

when an individual predicts that ball elasticity likely to be higher (Diaz et al., 2013; 

Mann et al., 2019). Furthermore, trial-to-trial variability in this bounce fixation location 

is typically increased under volatile conditions (see Study 3; Arthur & Harris, 2021).  

All variables were inspected for missing data, outliers, normality, sphericity, and 

homogeneity of variance. They were then entered into separate mixed-model 

ANOVAs, which studied main effects of condition (cued vs control) and group (ASD vs 

neurotypical), as well as any group-by-condition interactions. Effect sizes were 

quantified using partial-eta squared and significant observations were followed up 

using Bonferroni-corrected t-tests. Prior to running the ANOVAs, manipulation checks 

examined whether predictive bounce fixations were sensitive to dynamic 

environmental probabilities. Specifically, dependent t-tests examined changes in 

bounce fixation pitch angles between baseline and control conditions, to see whether 

unexpected and volatile manipulations of ball bounciness led to significant adjustments 

in predictive gaze positions. To explore relationships with autistic-like traits and 

intolerance of uncertainty, Pearson’s Correlation analysis examined associations 

between AQ, IUS-S, and all sensorimotor outcomes. These statistical tests were 

conducted with alpha set at p < .05 and are reported alongside a Bayes Factor 

computation (as in Chapters 2-3). Procedures were undertaken using JASP 0.12.2, 

with the full dataset available at https://osf.io/5y48g/. 

 

4.1.3. Results 

4.1.3.1. Preliminary Analysis  

Poor motion tracking led to missing hand position data for one autistic participant. As 

such, they and their matched neurotypical counterpart were excluded from kinematic 

analyses only (remaining n = 42). A separate pair of matched participants were 

removed from gaze analyses, due to frequent loss of eye-tracking signal (remaining n 

= 42). Data were deemed missing completely at random (Little’s MCAR test: p > 0.05). 

Two autistic participants were identified as potential outliers in the interception rate 

data, but their observed scores (45.56% and 54.44%) were consistent with previous 

values and the overall pattern of results was not affected by their inclusion. In these 
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instances, conventions recommend that extreme values are not removed (Aguinis et 

al., 2013), as case exclusion may disregard important information relating to clinical 

sensorimotor difficulties. Consequently, no data were excluded for this variable.  

Notably, interception rate data were positively skewed, with 10 participants intercepting 

100% of balls from experimental trials. This outcome therefore deviated from normality, 

along with peak swing velocity, fixation onset time, and fixation duration (all p < .05 for 

Shapiro-Wilk test). Mixed-model ANOVAs are robust to moderate deviations from 

statistical normality (Lix et al., 1996) and were still performed. However, Mann-Whitney 

U tests were used for follow-up comparisons and Spearman’s Rho for assessing their 

correlations with AQ and IUS-S scores. Levene’s Test highlighted significantly different 

levels of variance for bounce fixation pitch measures (p < .05). No further statistical 

assumptions were violated in relation to normality, sphericity, and homogeneity of 

variance.  

Manipulation checks showed a significant change in the height of predictive bounce 

fixations between baseline and control conditions (average pitch angle: t(39) = 6.73, p 

< .001, BF10 = 2.76×105). As expected, volatile fluctuations in ball bounciness caused 

both groups to cast their gaze at a higher spatial location than at baseline, despite their 

being no explicit informational cues in either block of trials. These results confirm 

assumptions that participants would elevate their predictive bounce fixations when 

faced with unexpectedly bouncy balls and volatile trial conditions.  

4.1.3.2. Task Performance and Swing Kinematics  

For task performance, analysis revealed a significant main effect of group (F(1,42) = 

8.44, p = .01, ηp
2 = 0.17, BF10 = 7.41), with average interception rates significantly 

lower in autistic (87.75 ± 14.78%) compared to neurotypical participants (97.22 ± 

3.91%; W = 379.50, p = .001, BF10 = 13.23; Figure 4.3). However, there were no 

significant condition effects (F(1,42) = .08, p = .78, ηp
2 < 0.01, BF10 = 0.23) or group-

by-condition interactions (F(1,42) = .06, p = .81, ηp
2 = 0.001, BF10 = 0.28). AQ scores 

negatively correlated with interception rate in both control (Rs = -.34, p = .02, BF10 = 

2.69) and cued (Rs = -.41, p = .01, BF10 = 13.67) conditions. Conversely, IUS-S values 

were not significantly associated with task performance in either block of trials (control: 

Rs = -.16, p = .42, BF10 = 0.28; cued: Rs = -.17, p = .26, BF10 = 0.41).  
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Figure 4.3. Task Performance in Study 4. The proportion of balls successfully 

intercepted in control and cued conditions for each group. NT: neurotypical; ASD: 

autism spectrum disorder. 

There were no significant main effects of group (F(1,40) = 1.47, p = .23, ηp
2 = .0.04, 

BF10 = 0.70) or condition (F(1,40) = 0.13, p = .73, ηp
2 < .01, BF10 = 0.23) for peak swing 

velocity, nor were there any significant group-by-condition interactions for this metric 

(F(1,40) = 3.82, p = .06, ηp
2 = .09, BF10 = 0.97). In terms of ROM, there was a significant 

main effect of group (F(1,40) = 7.58, p = .01, ηp
2 = 0.16, BF10 = 4.43) and a significant 

group-by-condition interaction (F(1,40) = 8.88, p = .01, ηp
2 = 0.18, BF10 = 7.50). Autistic 

participants exhibited lower ROM values than neurotypical participants, as shown in 

Figure 4.4. However, while these individuals generally decreased ROM between 

control and cued conditions (Mean difference: -6.50 ± 12.38°; t(20) = 2.41, p = .03, 

BF10 = 2.30), neurotypical values remained relatively stable (Mean difference: 5.50 ± 

13.68°; t(20) = 1.84, p = .08, BF10 = 0.95). ROM significantly correlated with AQ scores 

in the cued (R = -.39, p = .01, BF10 = 4.38) but not the control trials (R = -.25, p = .11, 

BF10 = 0.66). Moreover, ROM values were negatively associated with IUS-S scores in 

both conditions (control: R = -.42, p = .01, BF10 = 8.40; cued: R = -.42, p = .01, BF10 = 

7.32). Peak swing velocities did not significantly correlate with AQ or IUS-S scores 

during either condition (p’s > .06, all BF10 < 2). 
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Figure 4.4. Average peak hand velocities (A) and range of motion (C) during foreswing 

actions in control and cued blocks. Between-condition changes are illustrated in panels 

B and D. NT: neurotypical; ASD: autism spectrum disorder; * denotes significant 

difference (p < .05). 

4.1.3.3. Gaze Data 

Groups exhibited similar gaze profiles during the task. ANOVAs revealed no significant 

group differences or group-by-condition interactions in relation to the onset and 

duration of predictive bounce fixations (p’s > .30; all BF10 < 0.67). Participants 

maintained slightly longer fixations during the cued trials (Figure 4.5), with a significant 

effect of condition emerging for this metric (F(1,40) = 6.72, p = .01, ηp
2 = 0.14, BF10 = 

3.49). However, this main effect did not emerge in relation to onset time (F(1,40) = 

1.56, p = .22, ηp
2 = 0.04, BF10 = 0.44), and there were no significant AQ or IUS-S 

correlations for either fixation metric (p’s > .18; all BF10 < 0.67). 



 

123 
 

 

Figure 4.5. The average onset times (A), durations (C), and pitch angle locations (E) 

of predictive bounce fixations during control and cued blocks in Study 4. Between-

condition changes are illustrated in panels B, D, and F. NT: neurotypical; ASD: autism 

spectrum disorder; * denotes statistically significant differences (p < .05). 

Next, the average pitch angle (i.e., vertical position) of participant’s predictive bounce 

fixation was examined. Here, both a significant main effect of condition (F(1,40) = 6.39, 

p = .02, ηp
2 = 0.14, BF10 = 2.10) and a significant group-by-condition interaction 

emerged (F(1,40) = 7.92, p = .01, ηp
2 = 0.17, BF10 = 5.32). Average pitch values 

generally increased from control to cued trials, however these changes were group-
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dependent (see Figure 4.5). Specifically, neurotypical participants elevated the height 

of their bounce fixations after receiving explicit probabilistic cues (Mean difference: 

1.96 ± 1.93°; t(20) = 4.64, p < .001, BF10 = 184.36), whereas autistic participants 

showed minimal changes between blocks (Mean difference: 0.11 ± 2.75°; t(20) = .18, 

p = .86, BF10 = 0.23). Surprisingly though, no statistical relationships emerged between 

bounce fixation pitch angles and scores on the AQ or IUS-S (p’s > .19; all BF10 < 0.50). 

Finally, the trial-to-trial variability in participant’s predictive bounce fixation location (i.e., 

pitch angle) was examined. This analysis revealed a significant main effect of group 

(F(1,40) = 6.99, p = .01, ηp
2 = 0.15, BF10 = 4.63). Generally, autistic participants showed 

significantly higher pitch angle SD values than their neurotypical counterparts (Figure 

4.6). However, these variability scores did not significantly differ between conditions 

(F(1,40) = 1.69, p = .20, ηp
2 = 0.04, BF10 = 0.46), and there were no significant group-

by-condition interactions (F(1,40) = 1.75, p = .19, ηp
2 = 0.04, BF10 = 0.57). Furthermore, 

no statistical associations emerged between pitch angle SD, AQ totals, and IUS-S 

scores (p’s > .12, all BF10 < 0.67).  

 

Figure 4.6. Trial-by-trial standard deviations in the pitch angle of predictive bounce 

fixations during control and cued blocks in Study 4. NT: neurotypical; ASD: autism 

spectrum disorder; * denotes statistically significant differences (p < .05). 
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4.1.3.3. Exploratory Analysis of Gaze Fixation Data 

Follow-up tests explored whether group-dependent changes in gaze behaviours derive 

from altered volatility processing or whether they are simply reflecting participants’ 

ability to use prior probabilistic information. For instance, the cued block contained 

periods of 6-12 trials where the likelihood of facing a bouncy ball was described as 

‘high’ to participants. Thus, it is possible that higher pitch averages in cued versus 

control trials are being driven by data from these specific datapoints. Conversely, 

autistic participants may have difficulties interpreting these cues, leading to non-

significant changes between conditions. In the analysis that follows, data from selected 

trials are scrutinised within each condition, with two participants and their matched 

counterparts excluded due to missing outcome values (remaining n = 40). 

Firstly, gaze data from trials that immediately followed a ‘high’ probabilistic cue were 

extracted for each participant. Prior to these trials, participants viewed a ‘hawkeye’ 

illustration which projected an equal probability of facing a normal or bouncy ball (see 

Figure 4.1). This was accompanied by an indication that the current likelihood of facing 

a bouncy ball was relatively ‘high’. If these probabilistic cues were being readily used 

by participants, then one would expect subsequent predictive bounce fixations to be 

higher than control values. Indeed, a mixed-model ANOVA found a significant effect of 

condition on the extracted fixation data (F(1,38) = 50.15, p < .001, ηp
2 = 0.57; BF10 = 

2.67×105), with both groups exhibiting increases in the height of their predictive gaze 

fixations (Wilcoxon Signed-Rank test: Z = 5.51, p < .001, BF10 = 4.76×105). Importantly, 

no significant interaction effects were recorded (F(1,38) = 2.99, p = .09, ηp
2 = 0.07; 

BF10 = 0.91).    

Next, mixed-model ANOVAs were repeated using data from catch trials only. In these 

trials, no probabilistic information about likely ball bounciness was provided; 

participants were simply cued that their surrounding environment had changed (see 

methods). Notably, the significant interaction effects observed in the main analyses 

were replicated in this data (F(1,38) = 5.24, p = .03, ηp
2 = 0.12), albeit with weaker 

statistical evidence against the null (BF10 = 2.40). Together, results suggest that group-

dependent changes in visual sampling behaviour were not due to differences in the 

interpretation or understanding of prior probabilistic cues. Instead, they appear related 

to expectations about environmental change and/or stability. 
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4.1.4. Discussion 

This study examined dynamic sensorimotor behaviours in autistic and neurotypical 

individuals following the provision of explicit veridical information about environmental 

volatility. Previous research has shown that contextual cues about likely task outcomes 

can enhance neurotypical action responses (Navia et al., 2013; Gray, 2015; Gredin et 

al., 2018), and it has been suggested that such an approach could help autistic 

individuals in uncertain task conditions (Qian & Lipkin, 2011; Haker et al., 2016). 

Results generally found no significant effects of these cues on interceptive motor 

performance and visual sampling behaviours. Lower interception rates and more 

restricted swing kinematics were evident in autistic sensorimotor responses, 

irrespective of any prior cue conditions. Overall, findings highlight fundamental 

differences in how prior information and environmental cues are dynamically 

modulated over time in autism. It is likely that sensorimotor difficulties are affected by 

these aberrant neural mechanisms, rather than from any broad inaccuracies or 

intolerances with appraising contextual uncertainty. 

In line with outcomes reported in Chapters 2-3 and previous research (Palmer, Paton, 

et al., 2015; Robic et al., 2015; Lawson et al., 2017), autistic participants showed 

atypical context-sensitive adjustments in sensorimotor behaviour and volatility 

modulation. When compared to neurotypical individuals, they directed predictive 

bounce fixations towards higher spatial locations (Figures 4.4) and updated these 

behaviours more variably from trial to trial (Figure 4.6), in a manner that suggests they 

were more uncertain about upcoming ball trajectories. These atypicalities do not reflect 

any impairments in the ability to detect changing environmental probabilities (Manning 

et al., 2017; Sapey-Triomphe et al., 2021). Indeed, when the likelihood of facing a 

bouncy ball increased between baseline and control conditions, autistic people readily 

adjusted the height of their fixations (see manipulation checks). Instead, experimental 

data imply that autistic people show a heightened responsivity to recent, unexpectedly 

bouncy ball trajectories. This increased tendency to prepare for probabilistically-salient 

trial events replicates findings from Study 3 and Lawson et al. (2017) and is consistent 

with proposals of impaired precision weighting in autism (e.g., Friston et al., 2013; 

Lawson et al., 2014; Van de Cruys et al., 2014; Palmer, Seth, et al., 2015).  
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Studies suggest that these predictive processing differences are linked with over-

estimations of environmental volatility and inflexible surprise responses (Lawson et al., 

2017; Study 3). Accordingly, virtual cues in this experiment were designed to provide 

dynamic, statistically-accurate information about contextual probabilities and stability. 

While neurotypical participants used these explicit cues to adjust their gaze fixation 

behaviours (i.e., they directed them to higher spatial locations in the cued block: Figure 

4.5), autistic individuals showed minimal between-condition changes in their visual 

sampling and motor responses (Figure 4.3-4.6). Results indicated that there were no 

generic difficulties in understanding the contextual cues. Indeed, it has already been 

demonstrated that autistic people can use explicit situational information to guide 

perceptual and motor abilities (Balconi et al., 2012; Vermeulen, 2015; Thillay et al., 

2016; Fulceri et al., 2018; Gowen et al., 2020; Sapey-Triomphe et al., 2021; Soroor et 

al., 2021), and the height of participants’ predictive fixations increased following 

indications that a bouncy ball was highly likely (see Section 4.1.3.3). Instead, the null 

findings suggest that autistic people simply did not benefit from the explicit, 

probabilistic information that was afforded to them in this task. Though surprising, 

these results align with observations that certain prediction-related atypicalities in 

autism persist in the face of accurate visual cues about likely trial outcomes (Thillay et 

al., 2016; Balsters et al., 2017; Greene et al., 2019; Cannon et al., 2021). 

According to predictive processing perspectives, precision weighting functions are 

enacted via alterations in synaptic neural gain, with phasic monoaminergic and 

cholinergic signalling said to facilitate rapid, context-sensitive adjustments in the 

integration of top-down expectations and bottom-up information (Yu & Dayan, 2003; 

Feldman & Friston, 2010). Lawson et al. (2014) propose that these neuromodulatory 

systems are aberrant in autism, leading to pathologically high levels of postsynaptic 

gain in the sensory cortex. As a result, autistic people show disproportionate 

receptiveness to sensory inputs and are over-reactive to environmental change 

(Lawson et al., 2017). The present data support these proposals, with autistic 

participants updating their bounce fixation positions more variably on a trial-to-trial 

basis than neurotypical controls (Figure 4.6; see also Study 3). Moreover, the autism 

group appeared to restrict swing ROM under cued conditions (Figure 4.4), a response 

which generally coincides with heightened uncertainty estimates (Arthur & Harris, 

2021). Results therefore imply that autistic people were over-reactive to both implicit 
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and explicit cues about environmental volatility, causing them to employ visuomotor 

behaviours that are typically affiliated with imprecise higher-level beliefs.   

Nonetheless, there was substantial inter-individual variability observed in the dataset. 

Figures 4.3-4.6 illustrate diverging responsivity to contextual cues and levels of task 

performance, with such heterogeneity proving particularly prominent in autistic 

individuals. These wide-ranging data patterns are consistent with clinical research 

(Fournier et al., 2010; Coll et al., 2020), and suggest that sensorimotor difficulties may 

bear varied aetiologies and neurobiological underpinnings. This notion is not at odds 

with computational frameworks, as aberrant precision encoding is theoretically 

underpinned by a myriad of interacting networks and modulatory systems (Lawson et 

al., 2014). Future work must consider these heterogeneous individual aetiologies when 

attempting to reduce sensorimotor difficulties through applied interventions. 

Interestingly, relationships between sensorimotor control and intolerance of 

uncertainty were mostly trivial in this study. Although previous research has 

established links between anxiety and autism-related sensory processing issues 

(Wigham et al., 2015; Pickard et al., 2020), IUS-S scores did not significantly correlate 

with task performance or visual sampling responses in the current task. These null 

results are perhaps unsurprising, as associations between intolerance of uncertainty 

and anxiety are mechanistically distinct from those concerning hierarchical precision 

estimates and active inference behaviours (Bervoets et al., 2021). Indeed, the IUS-S 

indexes an individual’s chronic disposition to appraise uncertain outcomes as aversive 

(Carleton et al., 2007). These durable appraisal tendencies sit in stark contrast to the 

highly dynamic and context-sensitive visuomotor responses that were assessed in this 

task. Nevertheless, intolerance of uncertainty may affect key moderators of 

sensorimotor development in the ‘real-world’, such as an individual’s affective state, 

attention, confidence, and participation in active behaviours (e.g., Robinson & 

Freeston, 2015; Del Popolo Cristaldi et al., 2021). As such, one must not overlook the 

potential contribution that the construct plays in more applied daily living skills. 

The findings above offer important practical implications. Many autism research 

frameworks advocate the provision of explicit contextual information about the 

underlying statistical properties of a task (e.g., Qian & Lipkin, 2011; Gomot & Wicker, 

2012; Vermeulen, 2015; Haker et al., 2016). Though clearly beneficial in many settings, 
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the present data suggest that such an approach is not necessarily appropriate for 

developing sensorimotor skills that are inherently changeable and unpredictable in 

nature. Instead, results support strategies that address the implicit, heterogeneous 

difficulties that many autistic people have when processing dynamic and volatile 

sensory cues. Environmental accommodations that make the world feel more 

predictable for autistic people could be prioritised, like reducing external sensory 

‘noise’, developing individualised task routines, or increasing the number of blocked 

learning repetitions (see Haker et al., 2016). Similarly though, practitioners should also 

look to help individuals deal with volatile and unpredictable elements of sensorimotor 

skills. Indeed, personalised task modifications may not always be possible, and so 

future work could focus on developing habitual behaviours that facilitate the sampling 

of ‘optimal’ sensory cues (e.g., see feedforward gaze training: Wilson & Vine, 2018; 

environmental scaffolding: Van de Cruys et al., 2014).  

Nevertheless, there are some key limitations that should be considered when 

developing future practice. First, there was no direct measure of volatility beliefs in the 

study. Conclusions are instead based on carefully designed experimental 

manipulations and subsequent changes in sensorimotor behaviour. While exploratory 

analyses attempted to decipher volatility estimates from lower-level expectations, 

future work could incorporate self-rating methods that index confidence in task 

predictions (e.g., as in Pasturel et al., 2020). Moreover, studies could monitor changes 

in these functions over a higher number of trials. Evidence suggests that changes in 

prior contextual beliefs can occur within ten repetitions (Verstynen & Sabes, 2011), 

however investigations may wish to examine longer-term adaptations in sensorimotor 

control and volatility-related learning (as in Vossel et al., 2014; Lawson et al., 2017). 

Finally, despite being unconstrained and naturalistic in design, the racquetball task was 

performed under tightly-controlled virtual conditions. On one hand, these features 

permitted the examination of various implicit predictive processes. However, some 

potentially significant factors that contribute to sensorimotor issues may have been 

overlooked (e.g., access to support, social/developmental differences; Colombo-

Dougovito & Block, 2019). Therefore, future research must explore how ‘real-world’ 

daily living skills can be optimally developed in autistic people, especially in activities 

that are deemed most important or challenging for neurodivergent  populations (e.g., 

driving, occupational skills, healthcare operations; see Robledo et al., 2012). 
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4.1.5. Conclusions 

In sum, autistic people display interceptive action responses that are typically 

associated with unstable and uncertain task conditions. Although these profiles 

indicate that volatility beliefs are suboptimal, they persist after an individual has 

received explicit and statistically-accurate information about whether an environment 

is changing or not. As such, sensorimotor issues are unlikely to reflect any generic 

difficulties in extracting likely task outcomes from this setting. Instead, results lend 

indirect support for proposals of aberrant neuromodulatory control in autism. It is 

recommended that practitioners look to help autistic people build stable action 

predictions through the use of individualised, evidence-based techniques.  
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Chapter 5 

Sensorimotor issues in autism can negatively impact on personal independence and 

quality of life (Jasmin et al., 2009; Gowen & Hamilton, 2013); however, little is known 

about what causes these daily living difficulties or how they can be managed at a 

practical level. Accordingly, the present work aimed to identify the mechanisms that 

underpin sensorimotor differences in autistic people. At first, a comprehensive 

examination of existing research was conducted (Chapter 1), which highlighted 

possible associations between autism and predictive action control. This initial link was 

then empirically scrutinised within two object lifting experiments (Chapter 2) and a 

uniquely designed virtual racquetball paradigm (Chapter 3). Context-sensitive 

differences in active inference were identified in these investigations that are both 

consistent with previous evidence and directly related to sensorimotor impairments. 

Possible approaches for enhancing these sensorimotor functions were then explored 

in Chapter 4, to initiate the development of evidence-based interventions. Together, 

this research offers key insight into why autistic people experience sensorimotor 

difficulties and how these issues could be managed within applied practical settings.  

 

5.1. Summary of Key Findings 

Chapter 1 indicated that autistic sensorimotor difficulties may be linked to atypical 

predictive action control. Indeed, a thorough and conceptually-guided evaluation of 

previous research demonstrated that autism-related differences in predictive control 

are evident across visual, gaze, and motor systems. These results align with recent 

Bayesian and predictive processing frameworks by suggesting that the dynamic 

integration of prior expectations and sensory information may be suboptimal in autistic 

people. However, research findings are often inconsistent in this field and can depend 

on task requirements, participant characteristics, and various study design features. 

Therefore, questions remained about the precise mechanisms that underpin clinical 

sensorimotor differences. 

Studies 1-4 indicated that autism-related movement differences are not caused by any 

broad impairments (or attenuations) in the use of prior expectations. Chapter 2 found 

that autistic people use pre-lift predictions about object heaviness to guide their 

perceptual, motor, and sensory sampling responses. As a result, goal-relevant visual 
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cues are retrieved in advance of dynamic bodily movements and heavier-looking 

objects are lifted with higher initial fingertip forces, in a manner that is consistent with 

neurotypical sensorimotor behaviour. These profiles were displayed across study 

populations, irrespective of an individual’s clinical diagnosis status or levels of autistic-

like traits. They were also apparent in participants’ interception responses in Studies 3 

and 4, with expectations about upcoming ball trajectories influencing both when and 

where gaze was shifted during virtual racquetball conditions. As such, the present 

research provides compelling evidence that autistic people do not possess any generic 

impairments in the ability to make and/or use goal-relevant action predictions.  

Notably though, results suggest that autistic people do not adjust their predictions in a 

typical manner during dynamic sensorimotor tasks. Specifically, Chapter 2 illustrated 

that autistic participants show atypical context-sensitive adjustments in gaze control 

when sampling objects with uncertain weight properties. Chapter 3 extended these 

findings into interceptive visuomotor actions, with autistic people exhibiting significant 

performance difficulties when required to adjust to volatile fluctuations in ball 

bounciness. Chapter 4 showed that these difficulties persisted in spite of explicit 

informational cues about likely probabilistic outcomes and environmental change. 

Together, these results consistently indicated that autistic people may have issues with 

modulating action predictions in a dynamic, context-sensitive manner.  

Building on these results, Chapter 3 found that autistic sensorimotor control is 

characterised by a tendency to interact with the world as if it is highly uncertain or 

volatile. Such atypicalities were reflected in both visual sampling and kinematic motor 

variables. Specifically, while neurotypical individuals elevated their predictive gaze 

fixations and reduced movement degrees of freedom in volatile trials, autistic 

participants showed more uncertain-like responses in both stable and volatile 

conditions. These participants also demonstrated reduced behavioural surprise when 

responding to highly bouncy ball trajectories within the virtual environment, illustrating 

an increased affinity to ‘expect the unexpected’. Overall, the data from Study 3 suggest 

that differences in volatility modulation and/or precision weighting may cause autistic 

individuals to sub-optimally integrate sensory information and action predictions over 

time.  
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Although autistic visual sampling responses and kinematic profiles were sensitive to 

underlying cue-outcome relationships across each of the presented studies, Chapter 

4 found that explicit information about probabilistic uncertainty and volatility did not 

influence these behaviours. Specifically, autistic participants continued to interact with 

their surrounding sensory environment as if it was uncertain and/or unstable, even after 

receiving statistically-accurate information as to what task outcomes were more likely 

and when these contingencies were changing. These results implicate key modulatory 

systems in the brain, as they suggest that autistic individuals are pathologically over-

reactive to environmental variability. 

In summary, the present research suggests that sensorimotor difficulties in autism are 

underpinned by subtle differences in predictive action control that are context-sensitive 

in nature. Autistic people exhibit action behaviours that are typically associated with 

uncertain or volatile environments, indicating that the modulation of dynamic sensory 

information and hierarchical generative models is suboptimal in these individuals. Such 

atypicalities are shown across multiple experimental tasks, participant groups, and 

sensorimotor processing systems. The potential implications of these results and their 

accordance with previous research must now be considered, before any novel practical 

applications can be made. 

 

5.2. Theoretical Implications 

Relationships between autism and predictive sensorimotor atypicalities are relatively 

well-documented within research. Previous studies have found autistic individuals to 

have compromised movement planning abilities (Hughes, 1996; Rinehart et al., 2001; 

Fabbri-Destro et al., 2009; Foster et al., 2019), impaired anticipatory postural 

adjustments (Schmitz et al., 2003; Martineau et al., 2004), atypical feedforward grasp 

control (David et al., 2009; 2012; Mosconi et al., 2015; Z. Wang et al., 2015), reduced 

perceptual adaptation (Pellicano et al., 2007; 2013; Turi et al., 2015), and suboptimal 

integration of prior information and sensory feedback (e.g., Karaminis et al., 2016; 

Skewes & Gebauer, 2016). Such findings align with observations from Studies 1-4, 

where tendencies to predictively underestimate object lifting forces, sample uncertain 

visual cues, and distinguish between expected and unexpected events were all 

associated with autistic sensorimotor profiles. They also explain why many individuals 
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might experience impairments in applied movement skills, with performance expertise 

said to be contingent on dynamic, context-appropriate action predictions (Williams et 

al., 2011; Müller & Abernethy, 2012; Loffing & Cañal-Bruland, 2017; Cappuccio et al., 

2020). Consequently, autism-related differences in predictive control may have 

deleterious effects on the performance of various sensorimotor skills and behaviours. 

Recently, mechanistic links between autism and predictive control have been 

described using computational models of the brain. Here, daily living difficulties have 

been proposed to result from attenuations in the use of prior beliefs (Pellicano & Burr, 

2012; Van Boxtel & Lu, 2013), overly-dominant likelihood distributions (Brock, 2012), 

chronically inflexible error signalling (Van de Cruys et al., 2014), aberrant precision 

weighting (Friston et al., 2013; Lawson et al., 2014), and general difficulties with 

making/learning predictions (Qian & Lipkin, 2011; Gomot & Wicker, 2012; Sinha et al., 

2014). Despite these contrasting assumptions, much of these computational accounts 

lend themselves to the same overall hypothesis: that autistic people will be less 

influenced by prior expectations (relative to incoming sensory feedback) at a 

perceptual and behavioural level. However, findings from Studies 1-4 offer little support 

for this notion, with autistic participants showing neurotypical-like anticipatory motor 

profiles and visual sampling behaviours across both object lifting and interceptive 

visuomotor tasks. These null group differences align with results from eye tracking 

experiments (von Hofsten et al., 2009; Aitkin et al., 2013; Ego et al., 2016), motor 

adaptation studies (Gidley-Larson et al., 2008; Brown et al., 2010), dynamic social 

cueing paradigms (Pell et al., 2016; Tewolde et al., 2018), and action–perception 

integration tasks (Noel et al., 2020). They also corroborate with clinical neuroimaging 

studies, which have shown little evidence for any single or uniform abnormality in 

prediction-related regions of the brain (see Qian & Lipkin, 2011). On this basis, it 

appears increasingly unlikely that autistic sensorimotor difficulties result from any 

chronic differences in Bayesian inference and/or prediction error signalling. 

Instead, findings suggest that sensorimotor difficulties may reside from dynamic, 

context-sensitive aspects of action control. For instance, Study 1 showed that 

associations between autistic-like traits and anticipatory grip force rates were only 

significant when lifting objects that were unexpectedly-heavy and not unexpectedly-

light. Moreover, Study 3 revealed that autism-related difficulties with hand-eye 

coordination depend on levels of environmental uncertainty and/or stability. Here, 
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between-group differences in interceptive task performance were consigned to volatile 

conditions, with autistic participants increasingly struggling when goal-relevant sensory 

cues were probabilistically unstable over time. Indeed, autism-related processing 

atypicalities are usually more pronounced in complex and/or ambiguous task 

environments (see Bertone et al., 2003; Tewolde et al., 2018; Cannon et al., 2021). 

So, while the ability to make and use predictions does not appear to be chronically 

affected in autistic people, individuals may have difficulties adjusting sensorimotor 

actions to uncertain and dynamic task conditions (e.g., during social interactions or 

complex movement skills; Palmer, Paton, et al., 2015; 2017; Cannon et al., 2021).   

Active Inference frameworks outline a number of mechanisms that are involved in the 

context-sensitive control of sensorimotor behaviours. According to these perspectives, 

bodily movements continuously seek to resolve future prediction errors (or Bayesian 

surprise; Friston et al., 2010; Adams et al., 2013; Shipp et al., 2013; Friston et al., 2017; 

Parr & Friston, 2019). This minimisation of ‘free energy’ is achieved by selecting action 

models that either directly fulfil context-sensitive predictions (i.e., pragmatic actions) or 

reduce their associated uncertainty (i.e., epistemic actions; see Friston et al., 2015). 

So, in relatively predictable environments, an agent might select familiar movement 

strategies that are heavily driven by prior beliefs about future outcomes (Parr & Friston, 

2019). Conversely, under more uncertain conditions, agents may implement more 

exploratory actions and sensory sampling behaviours (e.g., see Friston, Adams, et al., 

2012; Beesley et al., 2015; Walker et al., 2019). Such ‘exploitation vs exploration’ 

trade-offs were shown in Study 2, where neurotypical participants increased the 

number of disambiguatory, object-driven fixations before lifting items with unfamiliar 

weight properties. Here, agents are controlling their actions according to the reliability 

of prior beliefs and sensory cues – the more uncertain objects elicited imprecise 

predictive models about required lifting forces, leading to greater epistemic visual 

sampling responses. These context-sensitive gaze adjustments illustrated dynamic 

precision weighting functions, which regulate both how sensory information is passed 

between hierarchical networks and how it is retained over time (see Yon & Frith, 2021).  

By examining these dynamic aspects of active inference, the present work provides 

clear insight into which predictive processes might be atypical in autistic sensorimotor 

operations. For example, Study 2 found that autistic participants demonstrated 

significantly diminished changes in visual sampling behaviour between stable and 
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uncertain trials. So, in contrast to the context-sensitive gaze adjustments shown by 

their neurotypical counterparts (described above), autistic individuals appeared to 

sample familiar and unfamiliar objects in a non-discriminant way. These effects are 

consistent with recent proposals that precision weighting is aberrant in autistic people 

(e.g., Friston et al., 2013; Lawson et al., 2014). Specifically, Lawson et al. (2014) posit 

that suboptimal hierarchical encoding of precision could represent a single underlying 

neuropathology of autism, which can account for a diverse array of perceptual and 

action-based characteristics. These claims have received wide-ranging support from 

behavioural and neurological experiments (e.g., Palmer, Paton, et al., 2015; Robic et 

al., 2015; Thillay et al., 2016; Lawson et al., 2017; Goris et al., 2018; Noel et al., 2020). 

They also explain the context-dependent effects observed in Studies 1 and 3, as 

precision-related differences in prediction error minimisation are argued to be more 

pronounced in uncertain environments (Lawson et al., 2014; Palmer et al., 2017). 

Therefore, atypical responses to unexpected object lifting outcomes and ball 

bounciness trajectories may reflect subtle differences in precision weighting functions, 

as opposed to chronically impaired predictive action modelling. 

According to Lawson et al. (2014), aberrant precision control may underlie some of the 

key traits that are used to characterise and/or diagnose autism. Social and 

communicative difficulties, for example, are hypothesised to result from imbalances in 

the weighting ascribed to certain sensory evidence, which impairs the mapping of 

ambiguous contextual cues (see also Palmer, Seth, et al., 2015). Moreover, restrictive 

and repetitive patterns of behaviour are viewed as coping strategies for reducing 

sensory prediction errors (through the self-generation of highly predictable action 

cues). In support of these proposals, Studies 1-4 identified frequent correlations 

between autistic-like traits and sensorimotor prediction. As in the main group 

comparisons, associations rarely converged on any chronic attenuations in the use of 

prior knowledge; instead, significant effects were consigned to context-sensitive 

measures of behaviour (e.g., pGFR underestimation in Study 1, visual search rate in 

Study 2, and swing ROM in Study 3). Indeed, relationships between autistic-like traits 

and predictive abilities have been reported in multiple empirical observations (e.g., 

Palmer et al., 2013; Palmer, Paton, et al., 2015; Buckingham et al., 2016; Karvelis et 

al., 2018; Arthur et al., 2019), but are likely to depend on task-specific factors (e.g., 

complexity and uncertainty: see Palmer et al., 2017). Therefore, it appears that 
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context-sensitive atypicalities in active inference and precision weighting are a 

common covariate of autistic behavioural traits and daily living abilities.  

Hierarchical precision estimates will also determine how internal action models are 

updated over time (Friston et al., 2009; Yon, 2021). Individuals will dynamically revise 

their predictions according to perceived stability and reliability in their environment, with 

sensory evidence assigned larger weightings when estimates of uncertainty or volatility 

are high (Yu & Dayan, 2003; Behrens et al., 2007; Mathys et al., 2011; 2014). These 

learning rate adjustments ensure that agents build optimal expectations about the 

world that are impervious to probabilistically salient outcomes. They also enable 

agents to respond to unstable conditions, as demonstrated in Study 3. Here, neuro-

typical gaze fixations were directed to higher, more variable predictive locations during 

volatile trial periods (when ball bounciness changed irregularly over time). As a result, 

participants tracked unexpectedly-bouncy balls in a similar manner to those with 

standard tennis-like elasticity profiles in these trials, despite their being clear 

distinctions in visual sampling during the stable baseline block. These findings show 

that individuals were less surprised by probabilistically salient events when they 

predicted that their environment is unstable (see also Vossel et al., 2014). Autistic 

participants exhibited little distinction between expected and unexpected ball outcomes 

in either block of trials (i.e., dampened surprise responses; Nazarali et al., 2009; 

Lawson et al., 2017; Goris et al., 2018). As with gaze findings in Study 2, these results 

indicated that precision weighting functions may be suboptimal in autistic individuals. 

Although results point towards a common, autism-related atypicality in precision 

control, this computational function likely encompasses a variety of neural processing 

systems. Mechanistically speaking, prediction error signals that are encoded in 

superficial pyramidal cells are said to be passed between connecting layers of the 

cortical hierarchy (Feldman & Friston, 2010; Bastos et al., 2012; Adams et al., 2013; 

Shipp et al., 2013). The post-synaptic gain that is ascribed to these signals is 

determined by their precision, in a process facilitated by dynamic monoaminergic and 

cholinergic activity (Yu & Dayan, 2003; Friston, 2010). Crucially, these precision 

estimates are influenced by a complex array of interacting operations, ranging from 

subjective meta-cognitive beliefs about the world to subcortical brain pathways and 

implicit error feedback (Palacios et al., 2021; Yon & Frith, 2021). From an anatomical 

perspective, neuroimaging studies implicate the ACC and dorsolateral prefrontal cortex 
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in the processing of environmental uncertainty (Behrens et al., 2007; den Ouden et al., 

2010; Bland & Schaefer, 2012), while the frontal lobes and cerebellum appear involved 

in the building of internal action models (Mori et al., 2001; Ding et al., 2009).  

Given the notable variability observed between individuals in the present work, it 

seems unlikely that autism-related sensorimotor issues derive from any singular 

abnormality in these aforementioned neural networks (see related discussions in: 

Fournier et al., 2010; Mosconi & Sweeney, 2015). Indeed, Studies 2-4 showed that 

autistic people display heterogeneous performance abilities and diverse patterns of 

predictive action control. That said, the absence of a single neurobiological origin 

aligns with consensus in clinical research (see Section 1.2). In fact, by unifying multiple 

possible causes under one ‘functional umbrella’ (Lawson et al., 2014), computational 

explanations accommodate a wide range of phenotypes and underlying aetiologies 

(Brock, 2014). As a consequence, novel targeted interventions and individualised 

practical approaches can be developed (Haker et al., 2016; see Section 5.3).  

Nevertheless, it can be assumed that these prediction-related sensorimotor 

atypicalities are unlikely to result from any global deficits in working memory or top-

down attentional processing. A mechanistic independence between cognitive and 

sensorimotor abilities has been proposed in previous research (e.g., van Swieten et 

al., 2010; Wunsch et al., 2016; Ansuini et al., 2018; Chouinard et al., 2018) and findings 

from Studies 1-4 indirectly support these claims. During both object lifting and 

interceptive racquetball experiments, autistic and non-autistic individuals fixated on 

overwhelmingly similar sensory cues that were goal-directed and future-orientated in 

nature. In fact, when attempting to track dynamic virtual ball trajectories in Studies 3 

and 4, autistic participants utilised a top-down attentional strategy which has been 

widely associated with visuomotor expertise (e.g., Land & McLeod, 2000; Hayhoe et 

al., 2012; Mann et al., 2013; Mann, 2019). Despite this, they still exhibited poorer 

overall interception abilities, a finding which has been consistently observed in clinical 

studies (Green et al., 2002; Vanvuchelen et al., 2007; Whyatt & Craig, 2013a; Ament 

et al., 2015).  So, in contrast with traditional cognitive perspectives (e.g., Ciesielski et 

al., 1990; Ozonoff et al., 1991; Happé & Frith, 2006; Rajendran & Mitchell, 2007), 

autistic visuomotor behaviours did not appear to be accompanied by any discernible 

executive dysfunctions or global attentional biases.  
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Moreover, Study 4 implies that sensorimotor issues are unlikely to reflect any broad 

deficits in extracting hidden environmental probabilities from the world. Here, explicit 

information about likely task outcomes were provided to participants prior to each trial, 

in a manner that should alleviate any difficulties with understanding implicit contextual 

relationships (see Qian & Lipkin, 2011; Gomot & Wicker, 2012; Sinha et al., 2014). 

However, autistic people showed no significant changes in interceptive visuomotor 

control following the provision of these statistically-veridical cues. So, impaired action 

performance levels persisted in the absence of any broad deficits in meta-learning or 

cognition (as in Manning et al., 2017; Sapey-Triomphe et al., 2021). 

Instead, Studies 3-4 were suggestive of autism-related differences in neuromodulatory 

gain control. Autistic participants tended to predictively position their gaze in a manner 

that facilitates the sampling of recent, probabilistically-salient trial outcomes (i.e., 

bouncy ball trajectories). This increased tendency to ‘expect the unexpected’ typically 

occurs when a context is perceived to be uncertain or unstable (i.e., when higher-level 

precision estimates are low; Yon & Frith, 2021). In keeping with this idea, Lawson et 

al. (2017) found that autistic people overestimate environmental volatility and are 

disproportionately receptive to sensory inputs during associative learning. Study 4 

demonstrates that these processing features remain even after participants have been 

explicitly cued about dynamic task probabilities and occurrences of contextual change. 

Null data findings are perhaps unsurprising here, as precision estimates regulate 

behaviour implicitly, via hierarchical adjustments in postsynaptic gain (Feldman & 

Friston, 2010; Adams et al., 2013; Shipp et al., 2013). Such dynamic error signalling is 

coordinated by classic neuromodulators like noradrenaline, acetylcholine, dopamine, 

and serotonin (Yu & Dayan, 2003; Friston, 2008; Bland & Schaefer, 2012; Lawson et 

al., 2021). Many of these systems have been reported to be atypical in autistic 

populations (e.g., Lake et al., 1977; Perry et al., 2001; Lam et al., 2006; Harrington et 

al., 2013; Wiggins et al., 2014; Lawson et al., 2017). In fact, Lawson et al. (2017) 

showed that aberrant precision weighting functions correlate with heightened phasic 

noradrenergic responsivity. Therefore, atypical active inference behaviours in autism 

could emerge from neuromodulatory differences in the brain, which impair abilities to 

form stable, statistically-optimal predictions about dynamic sensory environments. 

Overall, the present work offers unique theoretical insight into the mechanistic 

underpinnings of autistic sensorimotor difficulties. In contrast to various cognitive 
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theories and simple Bayesian frameworks, the ability to make predictions and use top-

down information does not appear to be chronically impaired in autism. Instead, 

movement-related difficulties correspond with subtle, context-sensitive differences in 

predictive action control. From a computational perspective, findings highlights the role 

of aberrant precision weighting functions in autistic people. Although these processing 

atypicalities do not necessarily reflect any single biological or environmental 

mechanism, they do implicate key neuromodulatory circuits that regulate synaptic 

activity across the brain. It is hoped that these novel results will influence future practice 

and be used to enhance clinical sensorimotor interventions for the autism community. 

As such, various potential applications of this work must now be explored. 

 

5.3. Applications and Future Research 

Sensorimotor impairments in autism can bring about various daily living issues, by 

constraining levels of personal independence, wellness, and overall quality of life 

(Jasmin et al., 2009; Robledo et al., 2012; Gowen & Hamilton, 2013; Coll et al., 2020). 

However, current motor skill interventions are lacking in scientific rationale and rarely 

produce any functional benefits beyond those already associated with gross physical 

activity (Colombo-Dougovito & Block, 2019). Significant questions remain as to how 

sensorimotor difficulties can be reduced or managed at a practical level, and the 

paucity of research in this topic has done little to actually improve the lives of autistic 

people. As such, there is a serious need for evidence-based research that focuses on 

why autistic people experience sensorimotor impairments and how these underlying 

processes can be enhanced through targeted practical interventions. 

A key finding for future practice is the observation that movement-related issues are 

associated with context-sensitive processing differences and not any chronic predictive 

impairments. Indeed, despite being underpinned by subconscious generative beliefs 

and hierarchical neural networks, active inference in the sensorimotor system proves 

to be highly responsive to situational factors (e.g., task preferences, estimations of 

uncertainty, expected risk; Friston et al., 2017). Applied specialists should therefore 

aim to provide the optimal conditions for helping autistic people perform daily living 

skills and behaviours. Since the broad ability to make and use predictions does not 

appear to be impaired in autism, practitioners should specifically be looking to facilitate 



 

141 
 

the formation of stable, contextually-accurate internal models. Such an approach 

would align with self-advocacy perspectives of autism, as it puts the emphasis on 

transforming non-inclusive environments to better accommodate neurodivergent 

individuals and populations (for recent discussion, see Leadbitter et al., 2021).  

To combat difficulties associated with processing environmental uncertainty, it has 

been suggested that practitioners could teach individuals about the hidden probabilistic 

regularities that underlie complex daily living tasks (Qian & Lipkin, 2011; Haker et al., 

2016). Prior situational information can enhance various neurotypical performances 

(McRobert et al., 2011; Navia et al., 2013; Gray, 2015; Gray & Cañal-Bruland, 2018; 

Gredin et al., 2018; Wang et al., 2019) and autistic people have been shown to benefit 

from explicit contextual cues or priming during social and perceptual tasks (Plaisted et 

al., 1999; López et al., 2004; Balconi et al., 2012; Vermeulen, 2015; Gowen et al., 

2020; Soroor et al., 2021). Although supporting evidence exists in some applied 

settings (e.g., Hallett et al., 2021), the present work indicates that such an approach 

may have limited efficacy in dynamic sensorimotor domains. Indeed, autism-related 

performance impairments in Study 4 were not alleviated by veridical prior information 

about current task likelihoods and environmental stability. In fact, swing kinematics 

appeared less efficient under cued trials than during non-cued conditions. In line with 

these observations, previous research has found that autism-related differences in 

anticipatory gaze behaviours, neural activity, and perspective-taking remain when 

individuals are informed about probable trial events (Thillay et al., 2016; Balsters et al., 

2017; Greene et al., 2019; Cannon et al., 2021). As such, approaches that attempt to 

explicitly make uncertain environments ‘more understandable’ for autistic people have 

received limited empirical support in the context of dynamic sensorimotor skills. 

Nonetheless, there are various alternative methods through which everyday 

environments could be made more predictable and/or less uncertain for autistic people. 

For example, Haker and colleagues (2016) advocate the use of step-by-step learning, 

high-repetition teaching methods, and proactive efforts to minimise surrounding noise. 

When viewed through the lens active inference, these strategies could help individuals 

build stable, statistically-optimal action models, while limiting exposure to salient 

sensory information. In line with this approach, researchers have previously supported 

the use of structured task environments that change in highly lawful or unsurprising 

ways (e.g., Rapin, 1997; Qian & Lipkin, 2011; Robic et al., 2015; Lieder et al., 2019). 
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Indeed, Study 3 showed that autism-related difficulties in hand-eye coordination are 

less prominent under stable, as opposed to volatile, task conditions. Moreover, 

adaptive sensorimotor outcomes have been displayed in interventions that utilise direct 

and progressive teaching instructions (Colombo-Dougovito & Block, 2019) or blocked 

practice schedules (Foster et al., 2020). Therefore, the concept of making the world 

more predictable and stable for autistic people holds significant promise in the context 

of sensorimotor control.  

Furthermore, evidence from high-performance industries present new and alternative 

techniques through which dynamic sensorimotor control could be improved. Sporting 

professionals, for example, will frequently implement strategies that reduce future 

uncertainty, through overlearning key skills and executing familiar pre-performance 

routines (Boutcher, 1990; Hardy et al., 1996; Cotterill, 2010; see Cappuccio et al., 2020 

for active inference perspective). Similarly, aviation pilots regularly undertake 

prescribed ‘flow’ procedures that ensure the regular sampling of safety-critical 

information, while closely simulating a range of possible events in training to reduce 

future surprise (Landman et al., 2017). Though some of these exact approaches may 

not readily translate onto more rudimentary daily living activities, the general principles 

of nurturing goal-relevant action models and preparing for potentially-unexpected 

sensory events could be incorporated within applied autism practice. For instance, 

when teaching movement skills like throwing and catching, professionals may wish to 

use instructions that aim to facilitate the sampling of optimal contextual cues. An 

example of this could be feedforward gaze training, where individuals are taught where 

to direct their gaze during key phases of their action responses (see Wood et al., 2017; 

Wilson & Vine, 2018). Alternatively, service providers could implement familiar routine 

procedures or simulations that help autistic people prepare for computationally ‘noisy’ 

sensory environments (e.g., in healthcare settings: Nicolaidis et al., 2015; Boada & 

Parellada, 2017; Bradshaw et al., 2019; or when learning to drive: Cox et al., 2020). It 

must be stressed here that skilled practitioners and members from within the autism 

community will often be best placed to design targeted and effective sensorimotor 

interventions. However, it is hoped that these specialists will look beyond traditional 

clinical conventions and consider novel methodological approaches. 

What is clear is that prospective sensorimotor interventions should be individualised 

and modified according to contextual factors. Aberrant precision weighting functions 
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could stem from a myriad of mechanisms that differ from person to person (Lawson et 

al., 2014). As such, the present work exercises caution against the use of pre-

packaged, ‘one size fits all’ practical approaches. Indeed, previous studies suggest 

that personalised teaching methods can be particularly beneficial for developing 

autistic movement skills (Bremer et al., 2015; Bremer & Lloyd, 2016) and computational 

analyses tools could help shape this adaptive learning process (Rosenberg et al., 

2015; Haker et al., 2016). Though primarily used for experimental purposes in the 

present work, technological aids like VR offer notable promise for applied interventions 

due to their unique ability to customise user experience and simulate immersive ‘real-

world’ interactions (Farley et al., 2019). These methods can serve as a means for 

making sensory environments more predictable for autistic people, while ensuring that 

training is conducted in a safe and engaging way (Bradley & Newbutt, 2018). VR also 

presents a novel means through which training methods can be adapted according to 

personal preferences or levels of progress in a task (see Zahabi et al., 2020). Whether 

such sophisticated technological tools are incorporated or not, practitioners should 

ultimately be looking to foster conditions that are tailored to specific individual needs 

and adjusted with ongoing skill development (Colombo-Dougovito & Block, 2019).  

Moving forward, future research should investigate how context-sensitive predictive 

control can be enhanced in autistic people to improve their day-to-day lives. The 

present work offers initial foresight in this line of enquiry, and the focus must now shift 

onto examining novel approaches for combatting sensorimotor difficulties. Specifically, 

studies should explore how active inference mechanisms like precision weighting and 

volatility modulation can be optimised at a practical level, and whether adaptive daily 

living abilities can be improved through targeted skill interventions. Importantly, 

evidence has shown that many autistic people struggle in terms of employment 

opportunities (Knapp et al., 2009; Lounds-Taylor et al., 2015), functional independence 

(Jasmin et al., 2009), health status (Croen et al., 2015), and general wellbeing (Ikeda 

et al., 2014; Van Heijst & Geurts, 2015). These practical issues are considered a key 

priority of research by individuals and policymakers within the autism community 

(Pellicano et al., 2014; Cusack & Sterry, 2016).  

The present work incorporated this practical focus into the design of each study, by 

centring analyses on naturalistic and unconstrained action behaviours. Indeed, 

precisely regulated object interactions underpin various daily living skills, like writing, 



 

144 
 

dressing, or making a cup of tea (Land et al., 1999; Hayhoe & Ballard, 2005; Land, 

2009). Similarly, impaired hand-eye coordination abilities can limit participation in 

physical activity (Must et al., 2015; Scharoun et al., 2017) and contribute to autism-

related health and social issues (Sutera et al., 2007; MacDonald et al., 2013; McCoy 

et al., 2016). It is hoped that future work will continue to pursue these practically-

focused outcomes, through developing new evidence-based methodologies that relate 

to functional quality of life. In particular, research may need to study tasks that are not 

conventionally assessed in the laboratory but are limited by sensorimotor difficulties 

(e.g., driving; healthcare experiences; occupational skills; Robledo et al., 2012). By 

linking such ‘real-world’ outcomes with data-driven empirical scrutiny, one can both 

improve the scientific understanding of autism and the daily lives of autistic people.  

When conducting this future work, there are some key theoretical issues that require 

consideration. First, studies should establish the degree to which subtle enhancements 

in active inference translate onto meaningful ‘real-world’ effects. Indeed, while 

sensorimotor expertise is frequently bracketed with optimal predictive control (e.g., 

Williams et al., 2011; Loffing & Cañal-Bruland, 2017; Fiehler et al., 2019), no studies 

have formally documented how computational functions are refined during motor 

learning and applied skill interventions. Researchers are hopeful that autism-related 

difficulties can be reduced through targeting these underlying mechanisms (Qian & 

Lipkin, 2011; Sinha et al., 2014; Haker et al., 2016), but future investigations must 

empirically scrutinise these claims. When doing so, researchers should pay attention 

to unique inter-individual variability that exists within their datasets. Such enquiry does 

not necessitate any new ‘types’ or ‘subtypes’ of autism to be identified (note: this could 

be ethically harmful: Marchant & Robert, 2008). Instead, it could simply be recognised 

that the efficacy of interventions might differ between individuals, and that it is their 

responsibility to avoid ‘averaging out’ any potentially-significant responses in their 

analyses. Autism-related processing differences likely result from a myriad of neuro-

biological and situational factors (Lawson et al., 2014), and the development of 

effective and personalised clinical programmes may thus depend on a study’s ability 

to accommodate for diverse sensorimotor responses and individual phenotypes.  

Secondly, research needs to further examine links between anxiety and sensorimotor 

issues in autism. Previous clinical work has shown that self-reported levels of trait 

anxiety correlate with sensory sensitivities (Wigham et al., 2015; Neil et al., 2016) and 
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predictive action responses (Amoruso et al., 2019). These associations are said to be 

mediated by intolerance of uncertainty (Boulter et al., 2014; Pickard et al., 2020), 

however Study 4 found no significant relationships between this key personality 

construct and measures of visuomotor control. Such results reinforce proposals that 

intolerance of uncertainty is distinct from hierarchical precision estimates in the brain 

(Bervoets et al., 2021). From an active inference perspective, it could even be argued 

that all individuals are ‘intolerant’ of uncertainty, since we are constantly attempting to 

minimise it from our surrounding sensory environment (Clark, 2015b; Bervoets et al., 

2021). In fact, data from Lawson et al. (2017) and Studies 3-4 imply that aberrant 

prediction error responses are likely to create a greater sense of uncertainty in autism. 

Together, it seems that it is these context-sensitive representations of uncertainty (or 

precision) that affect autistic sensorimotor operations, and not the stable, psycho-

behavioural traits reported in intolerance of uncertainty frameworks (e.g., Dugas et al., 

1997; Boulter et al., 2014; South & Rodgers, 2017). 

Nevertheless, the potential influence of anxiety on autism-related daily living difficulties 

must not be overlooked. Indeed, many autistic people experience adverse reactions to 

uncertain environments (e.g., social settings, unfamiliar events; Rutter, 1978) and 

there are overlapping neuromodulatory systems involved in the regulation of predictive 

processing and autonomic stress responses (Paulus & Stein, 2006; Blier & El Mansari, 

2007; Lawson et al., 2021). The negative effects of anxiety on goal-directed 

sensorimotor control have been well documented in sport psychology research 

(Baumeister, 1984; Beilock & Gray, 2007; Wilson, 2008; Gray, 2011; Vine et al., 2016) 

and have recently been linked with mechanisms of active inference (see Cappuccio et 

al., 2020). It is also possible that anxiety is a potential outcome of aberrant precision 

weighting operations (Bervoets et al., 2021; Stark et al., 2021), with predictive learning 

functions seen to shape whether aversive environmental outcomes are perceived to 

be likely and/or avoidable in the future (Browning et al., 2015). Therefore, anxiety may 

still contribute to (or interact with) sensorimotor differences in autism, and future work 

should aim to improve our mechanistic understanding of these relationships (e.g., 

through the use of pupillometry and cardiovascular analysis: Lawson et al., 2021).  
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5.4. Limitations of the Thesis 

It must first be acknowledged that the current work provides only indirect evidence for 

the role of aberrant precision weighting in autistic sensorimotor functions. Although 

Studies 1-4 show a consistent pattern of context-sensitive results, no formal 

estimations of model parameters were computed. Furthermore, a number of the 

observed effects were small in magnitude and should be generalised with caution. 

Nevertheless, computational studies are often criticised for post-hoc model fitting 

exercises and a lack of ‘real-world’ data observations (Maloney & Zhang, 2010; Palmer 

et al., 2017).  In contrast to this, the unconstrained and hypothesis-driven methods 

from Studies 1-4 provide unique experimental insight into predictive processing 

atypicalities during natural movement tasks. Both object lifting and interceptive motor 

actions were selected for this reason, having previously been shown to follow Bayes-

optimal principles in neurotypical populations (Körding & Wolpert, 2004; Battaglia & 

Schrater, 2007; Arthur & Harris, 2021). Consequently, the present work ties together 

an array of clinical, sensorimotor, and computational investigatory approaches. Future 

research should integrate these perspectives further, by examining how clinically-

significant action behaviours can be optimised through innovative, evidence-based 

practical interventions.  

When conducting this applied research, it is imperative that investigations are 

sufficiently powered to detect complex, potentially subtle differences in individual 

behaviour. Previous studies are often based on limited sample sizes and display a lack 

of population generalisability (see Gowen & Hamilton, 2013; Whyatt & Craig, 2013a; 

Coll et al., 2020). To circumvent these issues, the present experiments were designed 

using a-priori sample size calculations (Appendix A). Specifically, Studies 1-4 were 

powered to identify any moderate or large statistical effects that existed within the data, 

in accordance with previous empirical reports (e.g., Z. Wang et al., 2015; Buckingham 

et al., 2016; Lawson et al., 2017; Arthur et al., 2019) and meta-analyses (e.g., Fournier 

et al., 2010; see also Coll et al., 2020). These studies may have therefore been unable 

to detect sensorimotor differences that were small in magnitude. However, such weak 

statistical effects would be unlikely to highlight any mechanisms that meaningfully 

contribute to autistic daily living difficulties. While such an argument is also true for 

intervention-based research, this line of enquiry is unlikely to benefit from the high 

levels of experimental control that were afforded in the lab-based protocols of Studies 



 

147 
 

1-4. As such, practically meaningful differences in sensorimotor behaviour could be 

moderated by additional factors that are pertinent in ‘real-world’ clinical programmes 

(e.g., levels of communication, attention, and required motivation; Haker et al., 2016). 

Linked to the point above, a final limitation of the present research is the possible role 

of extraneous variables. Evidence suggests that autism-related sensorimotor 

difficulties may be influenced by cognitive abilities, socio-communicative preferences, 

and co-occurring clinical conditions (e.g., DCD, ADHD: Piek & Dyck, 2004; Fournier et 

al., 2010; Whyatt & Craig, 2013b). Studies 1-4 did not employ any IQ subscales, clinical 

observation techniques, standardised diagnostic checks or motor assessment 

batteries, and so the effects of these potentially confounding variables remain unclear. 

Nevertheless, the procedures of Studies 1-4 were specifically designed to minimise 

high-level cognitive demands and communicative requirements (as recommended in 

Haker et al., 2016). Moreover, it has been suggested that these issues can be reduced 

using non-clinical methodological approaches, which examine associations between 

autistic-like traits and hypothesis-driven data outcomes across the broader autism 

phenotype (see Landry & Chouinard, 2016). Indeed, much of the context-sensitive 

differences that were displayed by autistic participants in this work were also 

accompanied by complementary trait-based correlations. The fact that these effects 

replicated in large, mostly neurotypical samples is important, as it implies that clinically-

related confounds were not driving the key between-group study results. However, as 

researchers begin to translate these findings into applied practice, they should 

consider the role of cognitive abilities, communication skills, and co-occurring 

conditions on any intervention-based sensorimotor outcomes. 

 

5.4. Conclusions 

This thesis aimed to investigate the aetiology of sensorimotor differences in autism. 

Empirical assessment of object lifting and interceptive visuomotor behaviours indicated 

that autistic movement control is underpinned by context-sensitive differences in 

predictive action modelling. Specifically, the hierarchical integration of prior information 

and dynamic sensory cues appears to be atypical in autistic people, which causes 

difficulties in the processing of uncertain and volatile task conditions. Though likely to 

vary from person to person, results support proposals of aberrant neuromodulatory 
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functions in autism. Moving forward, applied specialists should account for these 

context-sensitive processing differences when developing novel, evidence-based 

practical interventions. At the same time, researchers must evaluate the most effective 

methods for developing predictive action models that are both stable and contextually 

appropriate. Together, this approach could help autistic people improve sensorimotor 

skills, in a manner that fosters independence and enhances overall quality of life. 
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Appendix A. Power Calculations. 

A-priori power analyses were performed to determine sample size in each of the 

studies presented in Chapters 2-4. These calculations were conducted using G*Power 

3.1 (Faul et al., 2007), with alpha set at p = 0.05 and power (1 − β) at 0.80.  

A.1. Determination of Sample Size in Study One 

An effect size of r = .30 was anticipated for Study 1, based on an aggregation of 

statistical relationships that have previously been observed between autistic-like traits 

and predictive sensorimotor outcomes (Palmer et al., 2013; Z. Wang et al., 2015; 

Buckingham et al., 2016). To detect this anticipated effect, it was estimated that 84 

participants would be required. However, to account for potential data loss in the study, 

a total sample of 91 were recruited. 

A.2. Determination of Sample Size in Study Two 

An moderate effect size of d = 0.67 was estimated for between-group comparisons in 

Study 2, in accordance with statistical differences previously documented in clinical 

motor control research (Schmitz et al., 2003; David et al., 2012; Palmer, Seth, et al., 

2015; Z. Wang et al., 2015).  Analysis indicated that an overall sample of 56 would be 

sufficiently powered to detect this effect (α = .05 and 1 – β = 0.80) and the study 

therefore aimed to recruit at least 28 individuals in each participant group.  

A.3. Determination of Sample Size in Study Three 

Medium-to-large group differences (d = .78) were initially estimated for Study 3, based 

on an array of between-group and between-condition differences reported in meta-

analyses (Fournier et al., 2010) and volatility-based studies (Vossel et al., 2014; 

Lawson et al., 2017). On the basis of this anticipated effect size, and the proportion of 

gaze data that was excluded in Study 1 (24%, due to poor quality and/or missing 

cases), it was determined that each group should contain at least 26 participants. 

However, a larger overall sample was necessary for the correlational analyses in this 

study (α = .05 and 1 – β = 0.80), as relationships between autistic-like traits and 

sensorimotor measures are generally more moderate in magnitude (see Section A.1 

above). Therefore, it was deemed that an overall sample of at least 72 participants 

would be required to detect medium-sized correlations (r = .32) akin to those observed 

in Arthur et al. (2019) and in Section 2.1.4.1 (re-analysis of Buckingham et al., 2016). 
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A.4. Determination of Sample Size in Study Four 

For the mixed 2x2 design of Study 4, a moderate statistical effect was anticipated (f = 

.47). This effect was observed in relation to volatility-related sensorimotor adjustments 

during Study 3, and was consistent (albeit slightly smaller) than the medium interaction 

effects for reaction time observed in Lawson et al. (2017). Though there were no 

previous data from autistic populations, neurotypical research has demonstrated that 

the use of explicit cues leads to relatively large improvements in predictive 

sensorimotor performances (McRobert et al., 2011; Navia et al., 2013; Gredin et al., 

2018). So, based on the moderate effect size reported in Study 3, and the 8.79% of 

gaze data excluded from this previous analysis, a sample size of 44 was targeted in 

this study (i.e., 22 autistic and 22 neurotypical individuals).  
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Appendix B. Certificates of Ethics Approval.  
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Appendix C. Example Informed Consent Form.  

 

 

Participant Identification Number:  

CONSENT FORM 

Title of Project: How does predictive control differ in Autism Spectrum Disorder during interceptive 

motor tasks?  

Name of Researcher: Tom Arthur          Please initial box 

1. I confirm that I have read the information sheet dated 23rd January 2019 (version no    1.0) 

for the above project. I have had the opportunity to consider the information, ask         

questions and have had these answered satisfactorily.  

2. I understand that my participation is voluntary and that I am free to withdraw at any time     

without giving any reason and without my legal rights being affected.  

3. I understand that relevant sections of the data collected during the study, may be looked       

at by members of the research team, and individuals from the University of Exeter and            

Bath, where it is relevant to my taking part in this research. I give permission for these    

individuals to have access to my records.  

4. I understand that taking part involves having my hand-eye movements measured, wearing      a 

virtual reality headset and answering some questions 

5. I understand that my anonymised data may be used in future reports, articles or         

presentations by the research team. 

6. I give consent for my anonymised data to be uploaded to an online repository for future  

secondary analysis. 

7. I understand that my name will not appear in any reports, articles or    

presentations. 

8. I agree to take part in the above study.  

 

             

Name of Participant  Date    Signature 

 

            

Name of researcher  Date    Signature 
taking consent 

When completed: 1 copy for participant; 1 copy for researcher/project file.  
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Appendix D. Example Participant Information Sheet.  

 

 

Participant Information Sheet: 
How does predictive control differ in Autism Spectrum Disorder 
during interceptive motor tasks? 

 
Researcher name: Mr Tom Arthur 

 

Invitation and brief summary:  
We are inviting people aged 16+ to take part in our research. The aim of this study is to explore 

how hand-eye co-ordination is used differently between autistic and non-autistic people. 

Taking part in the study is entirely up to you, so before you decide, it is important for you to 

understand why the research is being done and what it will involve. Please take the time to 

read the following information and to discuss it with other people to decide whether you wish 

to take part or not. Thank you for taking the time to read this information. 

 

Purpose of the research:   
This research study is part of a PhD research project funded by the South West Doctoral 

Training Partnership. Its main purpose is to understand the differences in how autistic people 

control their movements during interception tasks (e.g., racquet sports, throwing and catching). 

To do this, we will use scientific and virtual-reality (VR) technology to track your hand and eye 

movements during a computerised racquetball game. We hope to develop our findings into a 

coaching strategy that can help overcome movement-related difficulties. 

 

Why have I been approached? 
You are being approached about taking part because we are looking for both autistic and non-

autistic people (aged 16+) to take part in this study. 

 

What would taking part involve?  
If you agree to take part you will be asked to complete one session, lasting around 30 mins. 

This visit will involve two quick movement tasks. Firstly, you will be asked to lift a small number 

of small objects and say how heavy they feel (by giving a number). During these trials, we will 

measure the forces that you use for each lift. Next, you will be asked to put on a VR headset 

and given a game controller (this will be your ‘racquet’ in the virtual game). Then, after making 

sure that you feel comfortable with the equipment, we will show you the VR task, which involves 

hitting bouncing balls with your controller towards a target. After some practice, you will 

complete your test trials, to see how many times you can hit this target. During all trials, we will 

measure your eye and hand movements using technology that is built into the VR equipment. 

You will be offered breaks throughout the session and can rest whenever you like (although 
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this might increase the time required to complete testing). Prior to the movement tasks we will 

also ask you to fill a questionnaire, which measures autistic traits, to help with our analysis. 

 

What are the possible benefits of taking part?  
The main benefits of the proposed research are educational. We hope our results will be able 

to guide future coaching and teaching strategies that help autistic people overcome some 

movement-related difficulties. However, we hope that you will enjoy spending time in our labs 

and will find the session interesting.  

 

What are the possible disadvantages and risks of taking part?  
The majority of the disadvantages and risks associated with this study resemble those found 

in a typical office environment. Some people do have feelings of motion sickness during VR 

tasks, but you will be able to stop immediately if you experience any of these effects at any 

point. You will also be offered regular breaks throughout the session- there’s no rush. 

 

What will happen if I don't want to carry on with the study? 
You have the right to withdraw yourself and your data from the study at any point. You do not 

have to give a reason for doing this and you will be able to stop testing immediately. Data will 

remain anonymous and, if requested, can be destroyed from our analysis.  

 

How will my information be kept confidential? 
The University of Exeter processes personal data for the purposes of carrying out research in 

the public interest. The University will endeavour to be transparent about its processing of your 

personal data and this information sheet should provide a clear explanation of this. If you do 

have any queries about the University’s processing of your personal data that cannot be 

resolved by the research team, further information may be obtained from the University’s Data 

Protection Officer by emailing dataprotection@exeter.ac.uk or at www.exeter.ac.uk/dataprotection 

 

If you consent to take part in this study you have a right to privacy. Your name will not appear 

in any reports, articles or presentations. Instead your data will be linked to an ID number on a 

password protected database and only these IDs will be used as labels during analysis. All 

anonymised data will be stored securely and only made available to our research team 

members, with online files password-protected and hard data (e.g., questionnaires) locked and 

destroyed once no longer necessary. Your contact details will not be kept for future research 

projects and will be deleted upon completion of testing.  

 

If you give consent for your data to be uploaded to an online repository, we will aim to publish 

anonymised data on Open Science Framework for future secondary analysis. Your name will 

not appear in any of this future work and will be linked to a non-identifiable ID number. 

 

Will I receive any payment for taking part? 
If the testing requires you to travel to the University, we can compensate you £5 for your time 

spent travelling and taking part. 

 

What will happen to the results of this study? 
The results will increase our understanding of how movements are controlled differently in 

autistic people. We will aim to publish the findings in research journals and to present them at 

conferences in the UK or abroad. Data will always remain anonymous and your name will not 

appear on any results. 

 

mailto:dataprotection@exeter.ac.uk
http://www.exeter.ac.uk/dataprotection/


 

210 
 

Who is organising and funding this study? 
The project is affiliated with the South West Doctoral Training Partnership (SWDTP) and 

funded by the Economic and Social Research Council (ESRC). The SWDTP brings together 

academics from the Universities of Bath, Bristol, Exeter, Plymouth and West of England (UWE) 

to further social sciences research and practice. For more information, please visit their 

website: https://www.swdtp.ac.uk/ 

 

Who has reviewed this study? 
All research activity at the University of Exeter and University of Bath is examined and 

approved by ethics committees to protect your interests. This study has been approved by the 

Ethics Committee of Sport and Health Sciences, College of Life and Environmental Sciences, 

University of Exeter and Psychology Ethics Committee, Faculty of Humanities & Social 

Sciences, University of Bath.  

 

Further information and contact details 
If you would like more information or if you have any further questions about the study please 

contact the investigators using the details below: 

 

Tom Arthur, Principal Investigator 

tga202@exeter.ac.uk 

 

Dr Samuel Vine, Project Supervisor (University of Exeter) 

S.J.Vine@exeter.ac.uk, 01392 722892 

 

Prof Mark Brosnan, Project Supervisor (University of Bath) 

M.J.Brosnan@bath.ac.uk, 01225 386081 

 

Gail Seymour, Research Ethics and Governance Manager 

g.m.seymour@exeter.ac.uk, 01392 726621 

 

 

  

https://www.swdtp.ac.uk/
mailto:tga202@exeter.ac.uk
mailto:S.J.Vine@exeter.ac.uk
mailto:M.J.Brosnan@bath.ac.uk
mailto:g.m.seymour@exeter.ac.uk
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Appendix E. The 50-item adult Autism Spectrum Quotient (AQ). 

  Definitely  Slightly Slightly Definitely 

  agree agree disagree disagree 

1. I prefer to do things with others rather than     
on my own.     

2. I prefer to do things the same way over and     
over again.     

3. If I try to imagine something, I find it very     
easy to create a picture in my mind.     

4. I frequently get so strongly absorbed in one     
thing that I lose sight of other things.     

5. I often notice small sounds when others do     
not.     

6. I usually notice car number plates or similar     
strings of information.     

7. Other people frequently tell me that what I've     
said is impolite, even though I think it is     
polite.     

8. When I'm reading a story, I can easily     
imagine what the characters might look like.     

9. I am fascinated by dates.     

10. In a social group, I can easily keep track of     
several different people's conversations.     

11. I find social situations easy.     

12. I tend to notice details that others do not.     

13. I would rather go to a library than to a party.     

14. I find making up stories easy.     

15. I find myself drawn more strongly to people     
than to things.     

16. I tend to have very strong interests, which I     
get upset about if I can't pursue.     

17. I enjoy social chitchat.     

18. When I talk, it isn't always easy for others to     
get a word in edgewise.     

19. I am fascinated by numbers.     

20. When I'm reading a story, I find it difficult to     
work out the characters' intentions.     

21. I don't particularly enjoy reading fiction.     

22. I find it hard to make new friends.     

23. I notice patterns in things all the time.     

24. I would rather go to the theater than to a     
museum.     

25. It does not upset me if my daily routine is     
disturbed.     

26. I frequently find that I don't know how to     
keep a conversation going.     

27. I find it easy to 'read between the lines' when     
someone is talking to me.     

 

  



 

212 
 

 Definitely Slightly Slightly Definitely 

 agree agree disagree disagree 

28. I usually concentrate more on the whole     
picture, rather than on the small details.     

29. I am not very good at remembering phone     
numbers.     

30. I don't usually notice small changes in a     
situation or a person's appearance.     

31. I know how to tell if someone listening to me     
is getting bored.     

32. I find it easy to do more than one thing at     
once.     

33. When I talk on the phone, I'm not sure when     
it's my turn to speak.     

34. I enjoy doing things spontaneously.     

35. I enjoy doing things alone.     

36. I find it easy to work out what someone is     
thinking or feeling just by looking at their     
face.     

37. If there is an interruption, I can switch back     
to what I was doing very quickly.     

38. I am good at social chitchat.     

39. People often tell me that I keep going on and     
on about the same thing.     

40. When I was young, I used to enjoy playing     
games involving pretending with other     
children.     

41. I like to collect information about categories     
of things (e.g., types of cars, birds, trains,     
plants).     

42. I find it difficult to imagine what it would be     
like to be someone else.     

43. I like to carefully plan any activities I     
participate in.     

44. I enjoy social occasions.     

45. I find it difficult to work out people's     
intentions.     

46. New situations make me anxious.     

47. I enjoy meeting new people.     

48. I am a good diplomat.     

49. I am not very good at remembering people's     
date of birth.     

50. I find it very easy to play games with children     
that involve pretending.     
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Appendix F. The Social Responsiveness Scale- shortened version. 

Please indicate by placing one tick after each of the 11 statements below, how true you think 

each statement is true of you. If you are unsure about which answer to give- it is hard to pick 

an answer- please choose the one that seems nearest or most appropriate. This can often 

be the first thing that comes into your mind. There are no right or wrong answers. Please be 

as honest as you can and do not leave out any questions. 

  

not TRUE 
sometimes 

TRUE 
often 
TRUE 

almost 
always 
TRUE 

1 
I avoid eye contact with other 
people. 

    

2 
I have difficulty making friends, 
even when trying my best. 

    

3 
I am sometimes regarded by 
other people as odd or weird. 

    

4 
I have trouble keeping up with 
the flow of a normal 
conversation. 

    

5 
I have difficulty relating to 
peers. 

    

6 
Compared to others I have a 
restricted or unusually narrow 
range of interests. 

    

7 

I have trouble understanding 
the meaning of other people’s 
tone of voice and facial 
expressions. 

    

8 

I have trouble concentrating 
too much on parts of things 
rather than seeing the whole 
picture.  

    

9 
I would rather be alone than 
with others. 

    

10 
I have more difficulty than 
others do with changes in 
routine. 

    

11 
I am (or used to be) overly 
sensitive to sounds, textures or 
smells. 
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Appendix G. The Intolerance of Uncertainty Scale – shortened version.  

Please circle the number that best corresponds to how much you agree with each statement.  

 

 

 

Not at all 

characteristic 

of me 

 

A little 

characteristic 

of me 

 

Somewhat 

characteristic 

of me 

 

Very 

characteristic 

of me 

 

Entirely 

characteristic 

of me 

1. Unforeseen events upset me 
greatly. 

1 2 3 4 5 

2. It frustrates me not having all 
the information I need. 

1 2 3 4 5 

3. Uncertainty keeps me from 
living a full life. 

1 2 3 4 5 

4. One should always look ahead 
so as to avoid surprises. 

1 2 3 4 5 

5. A small unforeseen event can 
spoil everything, even with 
the best of planning. 

1 2 3 4 5 

6. When it’s time to act, 
uncertainty paralyses me. 

1 2 3 4 5 

7. When I am uncertain I can’t 
function very well. 

1 2 3 4 5 

8. I always want to know what the 
future has in store for me. 

1 2 3 4 5 

9. I can’t stand being taken by 
surprise. 

1 2 3 4 5 

10. The smallest doubt can stop 
me from acting. 

1 2 3 4 5 

11. I should be able to organize 
everything in advance. 

1 2 3 4 5 

12. I must get away from all 
uncertain situations. 

1 2 3 4 5 

 

 


