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Climate extremes such as droughts and heatwaves have a large impact on terrestrial carbon uptake 31 
by reducing gross primary production (GPP). While the evidence for increasing frequency and 32 
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intensity of climate extremes over the last decades is growing, potential systematic adverse shifts in 33 
GPP have not been assessed. Using an ensemble of observationally-constrained and process-based 34 
model data, here we show that particularly northern-midlatitude ecosystems experienced a +10.6 35 
[+5.4|+14.6] % increase in negative GPP extremes in the period 2000 – 2016 compared to 1982 – 36 
1998. We can attribute this increase to a greater impact of warm droughts, which affect GPP in and 37 
after the peak growing season. The related increase in negative GPP extremes is particularly strong 38 
over grasslands (+95.0 [+46.4|+172.2] % increase) and croplands (+84.0 [+70.7|+110.4] %). These 39 
results highlight the growing vulnerability of ecosystem productivity to warm droughts, implying 40 
increased adverse impacts of these extremes on terrestrial carbon sinks and a rising pressure on 41 
global food security. 42 

Many climate extremes are projected to increase in frequency, intensity, and duration over the course 43 
of the 21st century [1,2,3]. For instance, recent studies project a significant increase in extreme heat 44 
events over most of the continents even by the year 2035 [4] and an increase in temperature-induced 45 
drought episodes over roughly half of global land for the period 2070 - 2100 [5]. These projected 46 
changes in climate extremes are consistent with observed trends. Particularly heatwaves and heavy 47 
precipitation events have already increased over the past decades [6,7,8,9]. In addition, increasing 48 
occurrences of synchronous hot and dry extremes [10], hotter droughts [11,12] and a temperature-49 
induced intensification of dry seasons [13] were observed over the course of the last century.  In this 50 
regard, the rising temperatures led to a substantial increase in the occurrence of compound warm 51 
season droughts over Europe during recent years [14]. 52 
 Presently, the terrestrial biosphere acts as a prominent sink for anthropogenic CO2 53 
sequestering on average 25-30 % of the annual CO2 emissions [15]. However, the potential for climate 54 
extremes to adversely impact ecosystems, and hence the terrestrial carbon sink, has been well 55 
documented [16]. A well-known example is the European drought and heat wave of 2003 that reduced 56 
plant productivity by 30 % thereby cancelling four years of carbon sink activity [17]. Further alterations 57 
of ecosystem functioning in forests through extreme droughts are caused by reduced growth rates 58 
with a legacy of up to four years [18] and potential stress fatigue during drought recovery [19]. The 59 
mounting evidence of more frequent and intense climate extremes and corresponding negative 60 
impacts on ecosystems in the recent past, raises the question whether such shifts in climate extremes 61 
have already led to systematic adverse shifts in plant productivity at regional and global scales. 62 
 Terrestrial gross primary production (GPP), the carbon flux entering the plants via 63 
photosynthesis, is the largest global carbon flux driving key ecosystem functions [20]. Yet, 64 
corresponding GPP estimates with global coverage are uncertain due to a lack of consistent large-scale 65 
observations and a limited understanding of the interacting drivers, processes and mechanisms that 66 
regulate GPP [21]. To account for this, the impacts of climate extremes on plant productivity were 67 
analyzed based on three global GPP ensemble data sets that are produced with different approaches 68 
in this study. These include two observationally-constrained GPP products, whereby one is based on 69 
upscaled eddy covariance flux tower measurements (FLUXCOM) [22, 23] and another is derived 70 
through a satellite-driven light use efficiency approach (LUE) [24]. The third GPP product represents 71 
an ensemble of twelve Dynamic Global Vegetation Models (DGVMs) as part of a recent model 72 
intercomparison project (TRENDYv6) [15] (see Methods for details).  73 

Changes in negative GPP extremes over the past decades  74 
To assess systematic shifts in GPP as a response to observed trends in climate extremes over the past 75 
decades, negative GPP extreme events were analyzed over the period 1982 – 2016. The detection of 76 
these events in each data set member followed a three-step procedure entailing (i), identifying local 77 
extremes at grid cell level, (ii) joining them through a flood-filling algorithm to form the negative GPP 78 
extreme events, (iii) retaining only the largest 1000 (in terms of cumulative negative GPP anomaly) of 79 
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them for further analysis. This record of negative GPP extremes was then split in two study periods 80 
(1982-1998 and 2000-2016) to analyze changes in these extremes between the two epochs (see 81 
Methods).  82 

Results showed that at regional scales, with a focus on the 26 regions designated in recent IPCC 83 
reports [25], consistent (i.e. all three data sets agree) increases in negative GPP extremes between the 84 
two study periods were found in eleven IPCC regions (Fig. 1). Hot spots of increasing negative GPP 85 
extremes, expressed as the difference in cumulative negative GPP anomaly between the two periods 86 
(ΔGPP [Pg C]), occurred in East Asia (EAS, -1.11 [-0.47|-1.51] Pg C; mean and [minimum|maximum] of 87 
the three data sets), Central North America (CNA, -0.46 [-0.20|-0.72] Pg C) and the Amazon region 88 
(AMZ, -0.85 [-0.27|-1.99] Pg C). Overall, the number of events increased in eight of these eleven 89 
regions (including CNA, EAS and AMZ; Fig. 1). A sensitivity analysis based on only the largest 100 90 
negative GPP extreme events revealed similar patterns (see Supplementary Fig. S1-S3). 91 
 At larger spatial scales, the northern midlatitudes exhibited a consistent increase in negative 92 
GPP extremes between the two periods (-1.12 [-0.80|-1.40] Pg C; Fig. 2a, corresponding to a +10.6 93 
[+5.4|+14.6] % increase; Fig. 2b). Over this broad domain, the number of extreme events did not show 94 
a consistent increase (Fig. 2c) implying a potential intensification of negative GPP extremes. Since 95 
previous studies on past climate extremes documented also pronounced seasonal changes [26, 27] 96 
that can alter GPP patterns [28], monthly and seasonal changes associated with negative GPP extremes 97 
over the northern midlatitudes were also assessed. Consistent significant (Mann-Whitney-U test, p-98 
value < 0.05) increases in negative GPP extremes were found during the boreal summer month of 99 
August, with weaker evidence for such increases also in June and July (Fig. 2d-f). In addition, the 100 
seasonal characteristics revealed a consistent shift of the peak months for negative GPP extremes from 101 
June and July during the early period (1982 – 1998) to July and August during the second period (2000 102 
– 2016; Fig. 2d-f).  103 
 Given the identified widespread regional increases in negative GPP extremes, their influence 104 
on the overall changes in climate-driven plant productivity [29] is of great interest. In this regard, an 105 
increase in negative GPP extremes can attenuate (exacerbate) a positive (negative) GPP trend. A 106 
corresponding analysis showed consistent climate-driven decreases in GPP in the period 2000 – 2016 107 
(compared to 1982 – 1998) with strong exacerbation rates of 20 - 60 % across large portions of Western 108 
and Central North America as well as the Amazon and parts of East Asia (Supplementary Fig. S4). This 109 
suggests that over these regions increases in negative GPP extremes are responsible for a substantial 110 
portion of climate-driven GPP decreases. Increases in GPP between the two periods are attenuated 111 
(due to increases in negative GPP extremes) to some extent over Eastern Canada, Eastern Europe, 112 
portions of the Tropics and Southern Australia (Supplementary Fig. S4). In addition to a changing 113 
climate, plant productivity is also affected by changes in atmospheric CO2 concentrations via CO2 114 
fertilization [30]. Because the three GPP datasets that are investigated here are not designed to 115 
capture this effect of rising CO2 on GPP (instead they are devised to capture climate-driven GPP 116 
changes), additional TRENDY simulations that consider CO2 fertilization were analyzed in a similar way 117 
(see Methods). Results based on this supplementary set of TRENDY simulations showed a spatially 118 
much more extensive pattern of positive GPP changes between the two study periods that are 119 
attenuated by the increase in negative GPP extremes (Supplementary Fig. S4). However, despite the 120 
generally beneficial effect of CO2 on GPP, a strong exacerbation of overall negative GPP changes from 121 
increases in negative GPP extremes were still evident over Western and Central North America 122 
(Supplementary Fig. S4). These results suggest that at regional scales the influence of increased 123 
negative GPP extremes on cumulative GPP may be strong enough to effectively counteract positive 124 
CO2 fertilization effects.   125 

Attribution of changes in GPP extremes to climate drivers 126 
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Which climate drivers are then responsible for the identified increases in negative GPP extremes over 127 
recent decades? To answer this question, the negative GPP extreme events were attributed to climate 128 
drivers based on coinciding significant climate anomalies (see Methods). Here, concurrent anomalies 129 
in temperature and precipitation as well as meteorological drought (assessing the cumulative water 130 
deficit over longer durations) characterized through the Standardized Precipitation Index (SPI) [31] and 131 
the Standardized Precipitation Evapotranspiration Index (SPEI) [32] were considered. While the SPI 132 
captures only the effects of cumulative rainfall deficit or surpluses over a specified period, the SPEI 133 
also includes the effect of anomalous temperatures on drought severity through the inclusion of 134 
potential evapotranspiration (i.e. atmospheric demand). Droughts inferred from the SPEI are therefore 135 
also being referred to as “warm drought” in this study (see Methods). 136 
 At global scale and over the entire data record, the majority of the 1000 largest negative GPP 137 
events could be attributed to significant climate anomalies (68.7 % of the events, corresponding to 138 
72.1 % of the total reduction in GPP; Supplementary Fig. S5). Thereby, the largest fraction (~50-60%) 139 
of the associated events and the corresponding GPP reduction could be attributed to drought 140 
conditions (estimated through SPEI and SPI) and a smaller fraction (~20%) to concurrent low 141 
precipitation (Supplementary Fig. S5). Other considered climate drivers, including concurrent high and 142 
low temperatures and concurrent high precipitation, did not show a significant association with 143 
negative GPP extremes and were thus not considered for further analysis (Supplementary Fig. S5; see 144 
Methods for details). However, a significant percentage of the identified droughts coincided with high 145 
temperatures over the second period (SPI: 26.7 [14.9|42.5] %; SPEI: 34.5 [19.9|52.4] %; 146 
Supplementary Fig. S5), implying an increased frequency of such compound events [10,14] that 147 
impacted GPP extremes over the recent decades.  148 
 In an ensuing spatially distributed analysis, the changes in negative GPP extremes (ΔGPP) 149 
associated with coinciding anomalies in any of the three significant climate drivers between the two 150 
periods were assessed.  The patterns reveal that the marked increases in negative GPP extremes over 151 
Central North America and extensive parts of Eurasia and Australia are largely associated with drought 152 
(SPEI & SPI; Fig. 3a & b). In contrast, decreases in negative GPP extremes related to drought (SPEI & 153 
SPI) can be seen over Tropical Asia, large parts of Africa and parts of tropical South America (Fig. 3a & 154 
b). For concurrent low precipitation, the identified patterns were generally less pronounced with some 155 
evidence of increased impact on negative GPP extremes over Central North America, portions of 156 
Tropical South America and Eurasia and decreased impact over large portions of Africa (Fig 3c). In 157 
addition, when considering only the most likely (main) driver for a given event (based on the largest 158 
climate anomaly) increased impact of particularly warm droughts (SPEI) on GPP extremes were 159 
observed over large spatial extents of the northern midlatitudes, South Asia, South America as well as 160 
Australia (Supplementary Fig. S6). More contrasting patterns of increased impact were found for 161 
droughts assessed through the SPI and concurrent low precipitation (Supplementary Fig. S6).  162 
 The dominant role of droughts is also evident in the eleven IPCC regions that show consistent 163 
increased negative GPP extremes between the two periods (see Fig. 1). In ten of these regions (except 164 
for AMZ) an increasing impact of droughts (SPEI & SPI) was the main driver behind the increases in 165 
negative GPP extremes (Supplementary Fig. S7). This is also reflected in the relative contribution of 166 
each climate driver to the composition of negative GPP extremes attributable to climate anomalies. 167 
Here, specifically the contribution of warm droughts (in comparison to the other climate drivers) 168 
increased strongly in the second period in seven of these regions, most pronounced for MED (+24.1 169 
%), CEU (+18.3 %) and EAS (+19.4 %; Fig. 4).  170 
 Taken together, warm droughts (SPEI) were identified as the key driver for the identified 171 
increases in negative GPP extremes (Fig. 4, Supplementary Fig. S6 and S7) over large areas of the 172 
northern midlatitudes, implying a widespread influence of warmer temperatures on exacerbating 173 
drought conditions that in turn cause increasing negative GPP extremes.  174 
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Given this substantial increased impact of warm droughts (SPEI) on GPP extremes over the 175 
northern midlatitudes, their seasonal characteristics were also examined. Results showed consistent 176 
increased impact of warm droughts across the boreal growing season months April through October 177 
in the 2000 – 2016 period compared to 1982 – 1998 (Supplementary Fig. S8). These increased impacts 178 
are statistically significant (Mann-Whitney-U test, p-value < 0.05) for July in all three data sets and from 179 
April to August for TRENDY and LUE. The boreal summer months June and July (peak months of drought 180 
impact) showed the largest increase in negative GPP response to warm drought accompanied by an 181 
intensification of drought influence in August (highest relative increase between the two periods; 182 
Supplementary Fig. S8) implying an extension of the drought season. The identified tendency of 183 
increased drought influence in the early part of the growing season could be a response to earlier and 184 
warmer springs [34, 35]. The increasing drought vulnerability during the later portion of the growing 185 
season could be due to rising water limitations as temperature constraints on plant growth diminish 186 
(due to general warming) and higher soil water is needed to support plant growth [36]. In addition, 187 
earlier springs and higher early season plant productivity can induce lagged effects that cause soil 188 
moisture depletion and increased drought impacts on GPP in the late summer months [37, 38]. 189 

Changes in GPP extremes for specific vegetation types 190 
In general, hydrometeorological extremes such as droughts can adversely impact plants in two main 191 
interconnected ways. First, the deficit of available water directly impacts plant growth and can 192 
potentially cause hydraulic failure, resulting in often irreversible desiccation of the plant [39]. Second, 193 
plants may react to soil water shortages or increased atmospheric demand [40] with stomatal closure 194 
to prevent this desiccation, leading to a decline in photosynthetic carbon uptake, a process known as 195 
carbon starvation [39]. In this regard, the vegetation type can modulate the impact of climate 196 
anomalies on GPP [41]. A corresponding analysis stratified by vegetation types revealed the most 197 
substantial consistent increases in negative GPP extremes between the two periods (ΔGPP) over 198 
northern temperate grasslands (-0.64 [-0.21|-1.15] Pg C; +34.0 [+17.8|+45.1] % increase) and 199 
croplands (-0.58 [-0.18|-0.99] Pg C; +25.1 [+12.9|+36.5] %) indicating a higher vulnerability of these 200 
land covers (Fig. 5a-b). Warm droughts (SPEI) were identified as the main driver of increased negative 201 
GPP extremes and of their occurrences across vegetation types and data sets (Fig. 5c). These changes 202 
in negative GPP extremes attributed to SPEI were significant (two-sided t-test, p-value < 0.05) for 203 
grasslands (-0.63 [-0.27|-1.04] Pg C; +95.0 [+46.4|+172.2] % increased impact of warm droughts) and 204 
croplands (-0.73 [- 0.28|-1.30] Pg C; +84.0 [+70.7|+110.4] %) in all three data sets (Fig. 5c). Overall, 205 
results using SPI to identify droughts resulted in similar but less consistent patterns (Fig. 5d). No 206 
substantial impacts of concurrent low precipitation on the increases in negative GPP extremes could 207 
be identified (Fig. 5e). The identified higher vulnerability of grasslands and croplands to 208 
hydrometeorological extremes (specifically warm droughts) may be due to a lower coping capacity in 209 
respect to water scarcity compared to woody vegetation due to shallower roots and thus more limited 210 
access to deeper soil water [42]. Consequently, these vegetation types typically show a faster and more 211 
direct response to droughts in general and a stronger GPP reduction with temperatures exceeding 212 
optimal conditions [43]. In addition, particularly intensive cropland areas were found to be vulnerable 213 
to climate variations [44] and hydrometeorological extremes as the focus on yield and growth 214 
maximization, through high stomatal conductance, decreases their acclimatization ability to adverse 215 
climate conditions [45].  216 
 The identified adverse impact of droughts on GPP over croplands can potentially be mitigated 217 
through management practices, such as irrigation [46]. However, except for the LUE data set (which 218 
indirectly captures management activities through the assimilation of satellite vegetation data; see 219 
Methods), the considered GPP data sets do not account for such land management activities. 220 
Therefore, an additional set of TRENDY DGVMs with enabled land management and land use changes 221 
was analyzed (see Methods). Results based on this supplementary analysis showed lower increases in 222 
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negative GPP extremes in the DGVMs with enabled land management compared to their climate-223 
driven model counterparts (Fig. 5f; negative GPP extremes are reduced by 0.34 [0.1|0.82 Pg C or 53.1 224 
[16.9|96.0] % in this comparison). The results further suggest that land management options such as 225 
irrigation can mitigate the impact of warm droughts (SPEI) on GPP extremes to some extent (Fig. 5f). 226 
In contrast, results based on the observationally-constrained LUE GPP data set (that captures 227 
management activities indirectly) suggest a relatively high adverse response of GPP to drought over 228 
croplands (Fig. 5c, d). Restricting the analysis to permanently irrigated areas only showed a near 229 
cancellation of warm drought impacts on GPP when irrigation is enabled (Fig. 5f). However, these 230 
regions are spatially limited to large river basins (representing 17% of the global cropland area [47]) 231 
and the DGVMs assume limitless water availability over these regions (e.g. via implicit irrigation 232 
through assumptions of zero plant water stress [48]). Taken together, these results indicate a higher 233 
vulnerability of grasslands and croplands to drought conditions and that the ability to buffer related 234 
impacts through present-day land management practices (e.g., irrigation) over croplands is limited. 235 
 In summary, the presented results showed that large portions of the continents experienced 236 
increased adverse impacts on plant productivity that can be attributed to climate extremes over the 237 
last decades. In this context, the most robust imprints were found over the northern midlatitudes, 238 
where particularly the hot spot regions Western and Central North America (WNA, CNA) and Eastern 239 
Asia (EAS) are affected by severe increases in negative GPP extremes. In agreement with the recent 240 
increase of temperature-driven droughts [14] we identified warm droughts (SPEI) as the main driver 241 
of consistent and widespread increases in negative GPP extremes over the periods 2000 – 2016 242 
compared to 1982 – 1998, particularly over the northern midlatitudes. Previous studies projected 243 
severe increases in negative GPP extremes by the end of the 21st century [49] that are attributed to 244 
drought impacts [50] over North and South America, parts of Europe and East Asia. Our results suggest 245 
that these projected increased adverse impacts on GPP related to drought extremes may already be 246 
ongoing. Furthermore, negative GPP extremes play a crucial role in the modulation of GPP trends by 247 
exacerbating climate-driven negative GPP trends as well as attenuating the positive impact of CO2 248 
fertilization, implying a rising threat to the stability of the land carbon sink [16]. This is particularly 249 
worrisome over the identified hot spot regions (WNA, CNA & and partly EAS) where the increased GPP 250 
extremes overrides a potential positive effect of CO2 fertilization. 251 
 The most severe increases in negative GPP extremes were identified over grasslands and 252 
croplands of the northern midlatitudes. Particularly the strong and consistent increases over croplands 253 
underscore the need for vast and swift deployment of adaptation measures to increase drought 254 
resilience of agricultural areas. Such adaptation measures might include the reduction of monocultural 255 
cropping [51], optimizing the use of existing resources [52] as well as societal coping capacities [53]. 256 
Additionally, biotechnological enhanced drought-resistance crop types [53, 54] might be unavoidable 257 
to increase drought resilience of agricultural areas under climate change. The presented results thus 258 
urge for societal actions to guarantee stable agricultural productivity easing potential pressures on 259 
global food security. 260 
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Methods 261 
GPP data sets  262 
Three state-of-the-science global GPP data sets spanning a 35-year period (1982 – 2016) were applied 263 
in this study. While these data sets were produced with different methodologies, they share a common 264 
meteorological input data set (CRUNCEPv8; 265 
https://vesg.ipsl.upmc.fr/thredds/catalog/work/p529viov/cruncep/V8_1901_2016/catalog.htm).  266 
 The first were GPP data produced through upscaling of local eddy covariance carbon flux tower 267 
measurements (224 sites globally distributed), that measure net carbon exchange between land and 268 
the atmosphere, to global fields using machine-learning methods with gridded climate and satellite 269 
data as inputs (FLUXCOM RS+METEO) [22, 23]. The upscaling process was performed by three machine 270 
learning methods: Artificial Neural Networks, Random Forests, and Multivariate Adaptive Regression 271 
[22, 23]. The component GPP fluxes were then derived through the estimation of the temperature 272 
sensitivity of ecosystem respiration (TER) from nighttime flux data and the resulting daytime 273 
extrapolation is used to determine GPP [55]. In the FLUXCOM RS+METEO GPP product the interannual 274 
variability and trend patterns are derived from time-varying meteorological input variables exclusively, 275 
while only the seasonal cycle of plant growth is constrained by satellite vegetation data [22]. The 276 
FLUXCOM RS+METEO GPP product hence does not include associated effects of CO2 fertilization [22] 277 
and solely captures the response of GPP to instantaneous climate variability to a large degree while 278 
not including vegetation and lagged soil moisture effects. The FLUXCOM ensemble analyzed here 279 
consisted of three different GPP estimates (members) based on the different upscaling algorithms and 280 
their spread was used as a measure of uncertainty. 281 
 Second, a satellite-driven Light Use Efficiency (LUE) model based on the MODIS GPP algorithm 282 
driven by bimonthly time varying satellite GIMMS FPAR3g (LUE-FPAR3g) [24] was used. 283 
Complementary meteorological driver data (in addition to CRUNCEPv8) required as input were derived 284 
from NCEP-DOE Reanalysis II (http://www.esrl.noaa.gov). Additional information on the GIMMS3g GPP 285 
data set can be found in the referenced studies [24, 29]. Further, the Fraction of absorbed 286 
Photosynthetic Active Radiation (FPAR), based on the Normalized Difference Vegetation Index version 287 
3g data set (NDVI3g) from NOAA-AVHRR satellites using a neural network algorithm is considered as 288 
model input [56]. Importantly for this study, the MODIS GPP algorithm assumes a temporally invariant 289 
LUE, and therefore does not capture the direct effect of atmospheric CO2 increase on GPP (via an 290 
increase in LUE) [57]. Consequently, changes in GPP based on satellite-driven LUE data are largely 291 
driven by climate variability and changes in FPAR. In contrast to FLUXCOM, vegetation memory effects 292 
are thus at least partly included (as bimonthly time varying FPAR is used) and therefore may represent 293 
an additional source of uncertainty. The LUE GPP ensemble analyzed here consisted of two GPP 294 
members derived through varied model parameters within known constraints [24] and the spread of 295 
these two members was used as a measure of uncertainty.  296 
 Third, GPP data from twelve DGVMs that were part of the TRENDYv6 multi-model inter-297 
comparison and followed a common protocol [58] were used. Models included in the TRENDYv6 298 
ensemble analyzed in this study are CABLE [59], CLASS-CTEM [60], CLM4.5-BGC [61], DLEM [62], ISAM 299 
[63], LPJ-GUESS [64], JSBACH [65], JULES [66], ORCHIDEE [67], ORCHIDEE-MICT [68], VEGAS [69], and 300 
VISIT [70]. Here, the CO2 only (S1 experiments) and Climate and CO2 (S2 experiments) simulations for 301 
the entire set of TRENDYv6 simulations were used to derive the climate-driven GPP portion in the 302 
TRENDYv6 model runs (consistent with the study aim). The CO2 only simulations were driven with time 303 
varying observed atmospheric CO2 concentrations using static meteorological data from the early 20th 304 
century (1901-1920; CRUNCEPv8), thus do not capturing changes in climate over the historical period. 305 
To derive the climate only response for each model, the exponential trend in GPP, for each month, 306 
over the analyzed 35 years (1982 – 2016) for each grid cell in these CO2 only simulations was subtracted 307 
from the corresponding Climate and CO2 simulation. This procedure thus preserved the variability 308 
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arising from climate variations but removed the influence of a potential trend in CO2 concentrations 309 
over the study period. The TRENDY GPP ensemble analyzed in this study consisted of twelve GPP 310 
estimates (members, derived from the twelve TRENDYv6 DGVMs in the presented way); the spread of 311 
these members was used as a measure of uncertainty. 312 
 It is important to note that the TRENDY simulations (CO2 only as well as climate and CO2) use a 313 
fixed preindustrial landcover distribution and the climate-driven GPP product derived from those 314 
simulations therefore did not include potential effects introduced by any recent land-use and 315 
landcover changes (LULCC). This is consistent with FLUXCOM but contrasts to some extent with the 316 
LUE GPP product that does capture LULCC effects as well as land management practices (e.g. irrigation) 317 
indirectly via the satellite-derived FPAR. Further, all three global GPP data products included were 318 
driven by surface air temperature, while only the TRENDY and FLUXCOM GPP simulations also used 319 
precipitation as a meteorological model input. In the LUE GPP estimates, a vapor-pressure deficit (VPD) 320 
scalar was used to represent moisture limitations [24].  321 
 To estimate the potential of land management activities to mitigate drought impact over 322 
croplands via irrigation, a supplementary set of TRENDY simulations driven with temporally varying 323 
climate & CO2 & land use / land management (S3 experiments) [58] was used. Here, only the three 324 
DGVMs that represent land management activities (DLEM [62], ISAM [63], LPJ-GUESS [64]) were 325 
analyzed whereby the same preprocessing procedure was applied to remove to remove the GPP trend 326 
arising from CO2 fertilization (derived from the CO2 only TRENDY simulations). Corresponding results 327 
of this supplementary analysis shown in Fig. 5f thus refer to these three DGVMs only. 328 

Analysis framework for detection of GPP extremes and attribution of climate drivers 329 
Pre-processing of the data 330 
All data sets analyzed in this study were harmonized to a common 0.5° grid. As the focus was on 331 
detecting negative GPP extremes (i.e., the cumulative GPP anomaly of a corresponding negative GPP 332 
extreme event), the linear trend was removed from all GPP data sets individually to avoid misleading 333 
results due to a regional positive (or negative) climate-induced trend that shifts the overall mean. In 334 
contrast, the meteorological data sets applied for the attribution of negative GPP extremes were not 335 
detrended to allow for a detection of potential impacts of changes in climate extremes. Additionally, 336 
as Earth observation data are characterized by distinguishable seasonality [71, 72], the seasonal cycle 337 
was subtracted from all data sets for each grid cell. Precipitation and temperature have additionally 338 
been normalized by the standard deviation, to allow for spatial comparability, when applied to address 339 
concurrent effects of temperature and precipitation. GPP was not normalized to assess the cumulative 340 
negative GPP extremes in the unit of Pg C.   341 

Detection of negative GPP extremes and characterization of events 342 
In general, “extremes” are defined as the occurrence of anomalies of a given variable (e.g. GPP) above 343 
or below a given threshold at the ends of the distribution function of observed values [73]. The 344 
assessment of negative GPP extreme events followed a three-step procedure in this study where all 345 
steps were carried out for each member of each data set individually. First, local extremes were 346 
detected using a 10th percentile threshold at grid cell level and classified according to the occurrence 347 
of anomalies below/above that threshold. Thereby, negative GPP extremes have been identified for 348 
each time step and for each grid cell. In the second step, a flood-filling algorithm was applied [74] to 349 
detect spatio-temporally connected grid cells classified as negative GPP extremes which are then 350 
joined to form the same event. The resulting 3-dimensional negative GPP extreme events, now 351 
extended in space and time, were assigned their respective cumulative GPP anomaly. Third, only the 352 
globally largest 1000 events based on their cumulative GPP anomaly were retained for all subsequent 353 
analyses presented in the manuscript, as generally few extreme events dominate the aggregated 354 
impact [72]. The detection of local extremes in the first step of our approach limits the overestimation 355 
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of high-variance regions, compared to the application of global thresholds [75] while the subsequent 356 
steps still ensure that events of global relevance are selected. Further, the data were split into two 357 
periods of equal length (1982 – 1998 and 2000 – 2016) and the cumulative negative GPP extremes 358 
were calculated for each period separately. To then assess the changes in the corresponding 359 
cumulative GPP anomalies (ΔGPP) between the two study periods, they were subtracted from one 360 
another (2000 – 2016 minus 1982 – 1998). The year 1999 was excluded on purpose to ensure periods 361 
of equal length and avoid potential temporal overlaps of events that might then occur and be counted 362 
in both periods. 363 
 Unless stated otherwise, the most robust estimates, defined as the median across all members 364 
of a given data set ensemble, were presented in the manuscript. The presented results throughout the 365 
manuscript were derived as the mean [minimum|maximum] of those medians, unless stated 366 
otherwise. The same procedure was applied to derive the figures presented in the manuscript and the 367 
supplement. To complement this, the analysis was also conducted using only the largest 100 events 368 
(Supplementary Fig. 1-3) to test the robustness of the results as the selection of a given number of 369 
events is somewhat arbitrary.  370 

Attribution of drivers 371 
Next, the identified GPP extreme events were attributed to climate drivers. In consistency with the 372 
meteorological forcing of the three GPP data sets analyzed in this study, the CRUNCEPv8 data set 373 
(https://vesg.ipsl.upmc.fr/thredds/catalog/work/p529viov/cruncep/V8_1901_2016/catalog.htm) was 374 
used. Precipitation, air temperature, and meteorological drought were considered as potential climate 375 
drivers of negative GPP extreme events. Thereby, an event was attributed to concurrent low and high 376 
temperature (precipitation, respectively) if a coinciding significant (p-value <0.1 and >0.9, respectively) 377 
temperature (precipitation) anomaly was detected over the spatial domain of the GPP extreme event 378 
[72]. While a concurrent water deficit can be at least partly considered as drought, we referred to low 379 
precipitation anomalies as concurrent low precipitation as the duration of the water deficit in case of 380 
this indicator was solely based on the time step of the meteorological data set (in our case one month). 381 
We thus followed previous studies [33,74] and considered it appropriate to distinguish between the 382 
short term, immediate and concurrent water deficit (that is “concurrent low precipitation”) and more 383 
severe and sustained drought conditions that were derived from two indicators to detect multi-month 384 
meteorological drought conditions.  385 
 First, to capture anomalies in long-term water budgets only, the Standardized Precipitation 386 
Index (SPI) [31] was applied. Negative GPP extreme events were attributed to the SPI through 387 
detection of significant (p-value 0.1 and 0.9, respectively) anomalies in the 3-, 6- or 12-month SPI 388 
values. The considered time scales in the calculation of the SPI with up to 12 months were found to 389 
allow for a robust attribution of GPP extremes. The inclusion of longer time scales (24-month SPI) did 390 
not yield additional attributions of GPP extreme events that were not already captured by the shorter 391 
calculation time scales applied. In contrast, the full recovery time of the ecosystems potentially spans 392 
a much larger time scale up to multiple years [19] however, this ecological response  was outside the 393 
study scope and not detected as part of the GPP extreme events in this study.  394 

Second, the Standardized Precipitation Evapotranspiration Index (SPEI), which estimates a 395 
climatic water balance through the difference of precipitation and potential evapotranspiration [32], 396 
derived through the Thornwaite equation [76], was used. Like SPI, GPP extreme events were attributed 397 
to SPEI through significant (p-value 0.1) anomalous 3-, 6- or 12-month SPEI values. The main difference 398 
between these two drought indicators is the inclusion (absence) of temperature information in the 399 
calculation of SPEI (SPI), respectively. Major differences in the resulting anomalies of those two 400 
indicators can thus be interpreted as a temperature imprint on the corresponding drought event 401 
through its impact on potential evapotranspiration. Thereby, coinciding higher, but not necessarily 402 
extreme, temperatures (leading to increased potential evapotranspiration) result in stronger negative 403 
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anomalies in the SPEI. Therefore, drought characterized through SPEI is also referred to as “warm 404 
drought” throughout the study.  405 
 Potentially, multiple climate drivers show anomalous behavior during a negative GPP extreme 406 
event and thus can be counted toward the attribution of that event. The findings on climate attribution 407 
and corresponding impacts on negative GPP extremes therefore included multiple countings per event 408 
(e.g., if coinciding anomalies in concurrent low precipitation and SPEI were detected, the corresponding 409 
GPP event was assigned to both). Additionally, also the climate driver showing the strongest anomaly 410 
for a given GPP extreme event was singled out and referred to as the most likely (or main) driver of a 411 
particular negative GPP extreme event.  412 
 Given the defined threshold of 10 and 90 % (assessment through the p-values) for the 413 
detection of significant climate anomalies, an attribution of 10 % of the GPP extremes to a given 414 
climate driver would be expected if no association were present. Therefore, drivers that did not show 415 
an association rate higher than 10 % were considered insignificant in the attribution of GPP extreme 416 
events. In the analysis, a consistent significant contribution of concurrent high and low temperature 417 
extremes as potential drivers of negative GPP extremes was absent (see also Supplementary Fig. S5). 418 
Thus both, concurrent high and low temperature were excluded from subsequent analysis. Similarly, 419 
positive SPI and concurrent high precipitation were excluded as potential drivers.   420 

Land Cover and land management analysis 421 
The Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Climate Modeling Grid 422 
(CMG) (MCD12C1) Version 6 data set [77] was applied to address the impacts of climate extremes on 423 
negative GPP extremes over different vegetation types in this study. This data product provides a time 424 
series of annual global land cover maps for the period 2001-2018. Thereby, the year 2001 assessed 425 
through the International Geosphere-Biosphere Programme (IGBP) classification scheme was selected 426 
as baseline for the analyses carried out in this study. This map was aggregated to a 0.5-degree grid 427 
(using a maximum area fraction approach), to match the resolution of the applied GPP and climate 428 
data sets. In addition, the aggregated MCD12C1 maps of the years 2001 – 2016 were applied to detect 429 
areas affected by land cover changes over the study period. Thereby, only a few grid cells were 430 
detected at the coarse target resolution (0.5 degrees) and were consequently masked in the final land 431 
cover map applied in this study. These masked areas have been excluded from the land cover analyses 432 
and all presented results in the manuscript. Further, only vegetated land cover classes covering at least 433 
5% of the area of the northern midlatitudes (23.5 -66.0 °N) were considered in this analysis to avoid 434 
biases in presented percentage changes introduced by a single extreme events. The resulting 435 
cumulative changes in GPP extremes were calculated as the difference of negative GPP extremes over 436 
each considered land cover class between the two periods (2000 – 2016 to 1982 – 1998) to assess 437 
changes in vulnerability. Differences presented as delta-plots were based on absolute changes in the 438 
number of events (for each climate driver and over each land cover class) and negative GPP extremes 439 
(cumulative negative GPP anomalies [Pg C]) between the two periods. Significance testing (two-sided 440 
t-test, p-value < 0.05) was performed to assess differences in the mean for monthly GPP anomalies 441 
between the two periods (for each climate driver and over each land cover class) for the median of 442 
each ensemble. 443 

To address the effectiveness of land management actions, such as irrigation, to mitigate 444 
drought impact, the corresponding simulations (climate & CO2 & land use / land management; S3 445 
experiments) [58] of the three TRENDY models that that explicitly consider management (DLEM [62], 446 
ISAM [63], LPJ-GUESS [64]) were used to derive negative GPP extreme events following the previously 447 
described procedure including removing the CO2 trend as well as seasonal effects. Only stable cropland 448 
areas in the models were considered in this specific analysis to avoid uncertainties introduced by land 449 
cover change occurring in the simulations over the study period. A stable cropland area was thereby 450 
detected if the cropland fraction within the corresponding grid cell exceeded 50% over the entire 451 
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period (1982 – 2016) in the respective TRENDY simulation. The same approach was conducted on the 452 
corresponding simulations of the three DGVMs with climate-only forcing. In this way, these two data 453 
set ensembles only differed in the inclusion of management options. Hence both ensembles allowed 454 
for a meaningful comparison and differences between those two could be interpreted as an estimation 455 
of the effectiveness of such management options to mitigate drought impact on GPP extremes. 456 
However, irrigation in DGVMs is often implicit [78], by assuming no plant water stress / zero root zone 457 
water deficit, and this may be considered optimal irrigation management, i.e. represent the maximum 458 
potential mitigation ability through elevating soil water deficit. 459 
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Figures on display 662 

 663 

 
Fig. 1: Regional changes in ecosystem productivity linked to negative GPP extreme events between the 
2000 – 2016 and 1982 – 1998 study periods over the IPCC regions. First, the cumulative GPP anomalies 
associated with negative GPP extremes were calculated for each study period separately, and then 
subtracted from one another (2000 – 2016 minus 1982 – 1998) to yield the changes in negative GPP 
extremes (ΔGPP [Pg C]). Regions that experienced a consistent increase in ΔGPP in all three data sets are 
highlighted (red regions). Associated increased ΔGPP (expressed as negative values) for the individual 
data sets (barplots) were derived from the medians over the ensemble members of the corresponding 
data set (combined bar represents mean of these medians). Uncertainties in ΔGPP for specific data sets 
were estimated from the minimum and maximum ΔGPP based on the individual ensemble members 
(uncertainties for the combined ΔGPP were calculated as the minimum and maximum ΔGPP based on the 
three GPP data sets). Numbers above the bars correspond to the change in the number of events where 
a positive (negative) value indicates an increased (decreased) number of events presented as mean of the 
three data sets (minimum | maximum | number of events in the first period).  
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 664 

 
Fig. 2: Changes in negative GPP extremes over the northern midlatitudes between the 2000 – 2016 and 1982 – 
1998 study periods. The change in negative GPP extremes was calculated as the difference in cumulative GPP 
anomalies linked to negative GPP extremes per study period (2000 – 2016 minus 1982 – 1998; ΔGPP). a-b, ΔGPP 
over the northern midlatitudes (23.5 – 66.0° N) expressed as a, Absolute [Pg C], and b, Relative [%] units. c, Changes 
in the number of corresponding events [n events] between the two periods. Associated ΔGPP and changes in the 
number of events for the individual data sets (barplots) were derived from the median over the ensemble members. 
The related uncertainties were estimated through the corresponding minimum and maximum (the combined 
information originates from the medians of the three data sets). d-f, Monthly anomalies in ΔGPP [Pg C /month] 
expressed relative to the climatological mean of the first study period for LUE (d), FLUXCOM (e) and TRENDY (f). The 
corresponding spirals start at the first entry of the time series (Jan. 1982; center) and end in December 2016 
(outside) with the year 1999 masked (grey; see Methods). Outside numbers indicate cumulative monthly GPP 
anomalies linked to negative GPP extremes over the two study periods 2000 – 2016 (first entry) and 1982 – 1998 
(second entry). Thereby, brackets denote corresponding insignificant differences between these two periods (Mann-
Whitney-U test, p-value < 0.05).  
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Fig.3: Changes in negative GPP extremes attributed to significant climate drivers between the 2000 – 2016 
and 1982 – 1998 periods. The cumulative GPP anomalies linked with GPP extremes attributed to each of the 
climate drivers were calculated for each study period and then subtracted from one another (2000 – 2016 
minus 1982 – 1998; attributed ΔGPP). a-c, The corresponding attributed ΔGPP to each of the three significant 
climate drivers SPEI (a), SPI (b) and concurrent low precipitation (c). Here, each negative GPP extreme event 
was attributed to all climate drivers that show significant coinciding anomalies thus the corresponding GPP 
anomaly potentially contributed to the balance of multiple drivers (panels). Each map was derived from the 
medians of the three data sets.   

 

Fig. 4: Regional changes in the composition [%] of negative GPP extremes attributed to climate drivers 
between the 2000 – 2016 and 1982 – 1998 study periods over the IPCC regions. First, the relative 
contribution of GPP anomalies attributed to each of the climate drivers to the overall negative GPP 
extremes was calculated for each period to yield the composition of attributed negative GPP extremes. The 
associated changes in the composition were then expressed as the difference between the two study 
periods (2000 – 2016 minus 1982 – 1998). The corresponding changes between the two periods (barplots) 
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were derived from the median of the three data sets. Uncertainties in the composition were estimated 
through the corresponding minimum and maximum of the three data sets.  
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Fig. 5: Changes in negative GPP extremes for specific land covers over the northern midlatitudes 
between the two study periods (2000 – 2016 compared to 1982 – 1998). The change in negative 
GPP extremes was calculated as the difference in cumulative GPP anomalies linked to negative 
GPP extremes per land cover class for each study period (2000 – 2016 minus 1982 – 1998; ΔGPP). 
a, ΔGPP for distinct land covers across the northern midlatitudes (23.5 – 66.0° N) expressed as 
absolute units [Pg C] and b, normalized by the areal extent of the land cover [Gg C / km²]. 
Corresponding relative changes [%] (below the bars) in ΔGPP were derived from the medians of 
the three data sets. Uncertainties in corresponding ΔGPP were estimated as the minimum and 
maximum of these three medians. c-e, Significant (two-sided t-test, p-value < 0.05) changes in 
negative GPP extremes and in the number of events [n] (x-y plots) attributed to the significant 
climate drivers SPEI (c), SPI (d) and concurrent low precipitation (e), respectively. f, ΔGPP over 
stable cropland areas for TRENDY simulations with enabled land management options (CM) 
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compared to climate only simulations (C) for all climate drivers and specifically SPEI (based on 
three DGVMs; see Methods for details). 


