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Abstract: This paper aims to introduce a construction technique of set-theoretic solutions of the Yang–Baxter
equation, called strong semilattice of solutions. This technique, inspired by the strong semilattice of semi-
groups, allows one to obtain new solutions. In particular, this method turns out to be useful to provide
non-bijective solutions of finite order. It is well-known that braces, skew braces and semi-braces are closely
linked with solutions. Hence, we introduce a generalization of the algebraic structure of semi-braces based
on this new construction technique of solutions.
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1 Introduction
The quantum Yang–Baxter equation appeared in the work of Yang [49] and Baxter [2]. It is one of the basic
equations in mathematical physics, and it laid the foundations of the theory of quantum groups [33]. Solu-
tions of the Yang–Baxter equation are instrumental in the construction of semisimple Hopf algebras [23, 43]
and provide examples of coloring invariants in knot theory [41]. More recently, the Yang–Baxter solution
popped up in the theory of quantum computation [34, 50], where solutions of the Yang–Baxter equation pro-
vide so-called universal gates. One of the central open problems is to find all solutions of the Yang–Baxter
equation. Let V be a vector space over a field K. Then a solution of the Yang–Baxter equation is a linear map
R : V ⊗ V → V ⊗ V for which the following holds on V⊗3:

(R ⊗ idV )(idV ⊗R)(R ⊗ idV ) = (idV ⊗R)(R ⊗ idV )(idV ⊗R).

The simplest solutions are the solutions R induced by a linear extension of a mapping r : X × X → X × X,
where X is a basis for V, satisfying the set-theoretic version of the Yang–Baxter equation, i.e., satisfying the
following on X3:

(r × idX)(idX ×r)(r × idX) = (idX ×r)(r × idX)(idX ×r).
In this case, r is said to be a set-theoretic solution of the Yang–Baxter equation (briefly, a solution). Drin-
fel’d, in [22], posed the question of finding these set-theoretic solutions. Denote for x, y ∈ X the element
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r(x, y) = (λx(y), ρy(x)). One says that a set-theoretic solution r is left non-degenerate if λx is bijective for every
x ∈ S, right non-degenerate if ρy is bijective for every y ∈ S, and non-degenerate if r is both left and right non-
degenerate. If a solution is neither left nor right non-degenerate, then it is called degenerate. The first papers
on set-theoretic solutions are those of Etingof, Schedler and Soloviev [24] and Gateva-Ivanova and Van den
Bergh [27]. Both papers considered involutive solutions, i.e., solutions r where r2 = id. Rump [44] introduced
a new algebraic structure, braces, that generalizes radical rings and provides an algebraic framework. We
provide the equivalent definition formulated by Cedó, Jespers and Okniński [12]. A triple (B, +, ∘) is called
a left brace if (B, +) is an abelian group and (B, ∘) is a group such that for any a, b, c ∈ B it holds that

a ∘ (b + c) = a ∘ b − a + a ∘ c. (⬦)

This new structure showed connections between the Yang–Baxter equation and ring theory, flat manifolds,
orderability of groups, Garside theory, and regular subgroups of the affine group; see, for instance, [5, 6,
14, 15, 21, 25, 46]. Lu, Yan, and Zhu [38] and Soloviev [47] started the study of non-degenerate bijective
solutions, not necessarily involutive. Almost all of the ideas used in the theory of involutive solutions can be
transported to non-involutive solutions. We also mention Gateva-Ivanova and Majid [26] who studied and
characterized most general set-theoretic solutions (braided sets) (X, r) in terms of the induced left and right
actions of X on itself, and in terms of abstract matched pair properties of the associated braided monoid
S(X, r). The algebraic framework now is provided by skew left braces [28]. Let (B, +) and (B, ∘) be groups on
the same set B. If, for any a, b, c ∈ B, condition (⬦) holds, the triple (B, +, ∘) is called a skew left brace. Skew
left braces and some of their applications are intensively studied; see, for instance, [8, 13, 20, 35, 45].

In [37], Lebed drew the attention on idempotent solutions. Indeed, using idempotent solutions and
graphical calculus from knot theory, she provides a unifying tool to deal with several diverse algebraic
structures such as free monoids, free commutative monoids, factorizable monoids, plactic monoids and
distributive lattice. Examples and classifications of these solutions have been provided by Matsumoto and
Shimizu [39] and by Stanovskỳ and Vojtěchovskỳ [48]. Moreover, Cvetko-Vah and Verwimp [19] provided
cubic solutions with skew lattices. A cubic solution r is a solution such that r3 = r; hence, this class includes
both involutive and idempotent solutions. More generally, a more systematic approach to the study of solu-
tions with finite order can be found in the recent [9–11]. Catino, Colazzo, and Stefanelli [7] and Jespers and
Van Antwerpen [32] introduced the algebraic structure called left semi-brace to deal with solutions that are
not necessarily non-degenerate or that are idempotent. Let (B, +) be a semigroup and let (B, ∘) be a group.
Then (B, +, ∘) is called a left semi-brace if, for any a, b, c ∈ B, it holds that

a ∘ (b + c) = a ∘ b + a ∘ (a− + c),

where a− denotes the inverse a in (B, ∘). If (B, +) is a left cancellative semigroup, then we call (B, +, ∘) a left
cancellative left semi-brace. This was the original definition by Catino, Colazzo and Stefanelli [7]. It has been
shown that left semi-braces, under somemild assumption, provide set-theoretic solutions of the Yang–Baxter
equation. Moreover, the associated solution is left non-degenerate if and only if the left semi-brace is left
cancellative.

Out of algebraic interest, Brzeziński introduced left trusses [4] and left semi-trusses [3]. A quadruple
(B, +, ∘, λ) is called a left semi-truss if both (B, +) and (B, ∘) are semigroups and λ : B × B → B is a map such
that a ∘ (b + c) = (a ∘ b) + λ(a, c). Clearly, the class of left semi-trusses contains all left semi-braces, rings,
associative algebras and distributive lattices. This entails that it will prove difficult to present deep results
on this class. However, one may examine large subclasses. In particular, Brzeziński [4] focused on left semi-
trusses with a left cancellative semigroup (B, +) and a group (B, ∘), and showed that such a left semi-truss is
equivalent with a left cancellative semi-brace, and thus providing set-theoretic solutions of the Yang–Baxter
equation, albeit known ones. In [40], Miccoli introduced almost left semi-braces, a particular instance of
left semi-trusses, and constructed set-theoretic solutions associated with this algebraic structure. In [18],
Colazzo and Van Antwerpen continued this study focusing on the subclass of brace-like left semi-trusses,
i.e., left semi-trusses in which the multiplicative semigroup is a group and which includes almost left semi-
braces. Concerning solutions, they showed that the solution one can associate with an almost left semi-brace
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is already the associated solution of a left semi-brace. In particular, this shows that brace-like left semi-trusses
will not yield a universal algebraic structure that produces set-theoretic solutions.

In this paper,we focus onanewalgebraic structure that includes left semi-braces and is an instance of left
semi-trusses, which is on a different path with respect to brace-like left semi-trusses, called generalized left
semi-brace. A triple (S, +, ∘) is called a generalized left semi-brace if (S, +) is a semigroup, (S, ∘) is a completely
regular semigroup (or union of groups), and such that, for any a, b, c ∈ S, it holds

a ∘ (b + c) = a ∘ b + a ∘ (a− + c),

where a− denotes the (group) inverse of a in (B, ∘). We prove that, under some mild assumptions, general-
ized left semi-braces provide solutions. In particular, elementary examples of generalized left semi-braces
produce cubic solutions that cannot be obtained by skew lattices and left semi-braces. Also, we introduce
a construction technique that provides generalized left semi-braces called the strong semilattice of general-
ized left semi-braces. This technique is inspired by the description of semigroups which are unions of groups
due to Clifford [16].

Furthermore, we introduce a construction technique for solutions called the strong semilattice of solu-
tions. This technique takes a family of disjoint sets {Xα | α ∈ Y} indexed by a semilattice Y and solutions
defined on these sets. Then, under some assumptions of compatibility, it allows one to construct a solution
on the union of the sets Xα. We prove that the solutions provided by the strong semilattice of left semi-braces
are a particular instance of a strong semilattice of solutions.

Finally,we prove that the strong semilattice of solutions is a useful tool to provide solutions of finite order.
Indeed, the strong semilattice of solutions of finite order is a solution of finite order.Moreover, a solution r is of
finite order if there exist a non-negative integer i and a positive integer p such that rp+i = ri, and the minimal
integers that satisfy such relation are said to be index and period, respectively. We show that it is possible
to determine the index and the period of the semilattice of solutions {rα | α ∈ Y} as a function of the indexes
and periods of rα. As a corollary of this result, we prove that solutions associated with strong semilattices of
left semi-braces are not bijective, so they are clearly different from solutions obtained by left semi-braces.

2 Basic tools on left semi-braces
Let us briefly present some basic background information regarding left semi-braces. Most of the content of
this section appears in [32]. In particular, we provide a different proof of [32, Corollary2.9] based on a result
in semigroup theory due to Hickey [29] that gives a clear description of completely regular semigroups with
middle units. Moreover, we add further information on the behavior ofmiddle units of the additive semigroup
of a left semi-brace. Finally, we present concrete examples of left semi-braces.

Let us start by recalling the definition of left semi-braces.

Definition 2.1. Let B be a set with two operations + and ∘ such that (B, +) is a semigroup and (B, ∘) is a group.
Then (B, +, ∘) is said to be a left semi-brace if

a ∘ (b + c) = a ∘ b + a ∘ (a− + c)

for all a, b, c ∈ B, where a− is the inverse of a in (B, ∘).

Throughout, 0 denotes the identity of the group (B, ∘). Moreover, we call (B, +) and (B, ∘) the additive semi-
group and themultiplicative group of the left semi-brace (B, +, ∘), respectively. Furthermore, if the semigroup
(B, +) has a pre-fix, pertaining to some property of the semigroup, we will also use this pre-fix with the left
semi-brace. Hence, the left semi-braces introduced in [7], where one works under the restriction that the
semigroup (B, +) is left cancellative, will be called left cancellative left semi-braces.

Now, we recall that an element u of an arbitrary semigroup (S, +) is amiddle unit of S if a + u + b = a + b
for all a, b ∈ S. Thus, u + u is idempotent, but u itself need not be idempotent (see [17, p. 98]). This is not the
case for the element 0 in the additive semigroup of a left semi-brace: the following proposition shows that 0
is an idempotent middle unit.
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Proposition 2.2. Let B be a left semi-brace. Then the following assertions hold:
(i) 0 is a middle unit of (B, +).
(ii) 0 is an idempotent of (B, +).
(iii) B = B + B.
(iv) B + 0 is a subgroup of (B, ∘).
(v) 0 + B is a subsemigroup of (B, ∘).

Proof. (i) See [32, Lemma 2.4 (1)].
(ii) Since, by (i), 0 + 0 + 0 = 0 + 0, we have that

0 = (0 + 0)− ∘ (0 + 0)
= (0 + 0)− ∘ 0 + (0 + 0)− ∘ (0 + 0 + 0)
= (0 + 0)− + (0 + 0)− ∘ (0 + 0)
= (0 + 0)− + 0.

Thus, since 0 is a middle unit, we obtain

0 + 0 = (0 + 0)− + 0 + 0 = (0 + 0)− + 0 = 0.

(iii) If b ∈ B, by (ii) we have that

b = b ∘ 0 = b ∘ (0 + 0) = b ∘ 0 + b ∘ (b− + 0) ∈ B + B.

(iv) By (ii), it is clear that B + 0 is not empty. Moreover, if a, b ∈ B then, using (i), we get the equalities

(a + 0)− ∘ (b + 0) = (a + 0)− ∘ b + (a + 0)− ∘ (a + 0 + 0)
= (a + 0)− ∘ b + (a + 0)− ∘ (a + 0)
= (a + 0)− ∘ b + 0 ∈ B + 0.

(v) See [32, Lemma 2.6 (iii)].

To show the following theorem, let us recall that an arbitrary semigroup (S, +) is said to be a rectangular group
if it is isomorphic to the direct product of a group and a rectangular band. For more background and details
on this topic, we refer the reader to [17].

Theorem 2.3. Let B be a completely simple left semi-brace. Then the additive semigroup (B, +) of B is a rectan-
gular group.

Proof. The thesis follows by [29, Corollary 3.5], which states that any completely simple semigroup with
a middle unit is a rectangular group.

A special case in which the additive semigroup is completely simple is when 0 + B is a subgroup of (B, ∘) (see
[32, Theorem 2.8]). For instance, this is the case when B is finite.

The set of idempotents of a semigroup S will be denoted by E(S). As a consequence of Theorem 2.3, we
have that the additive semigroup (B, +) can be written as

B = I + G + Λ,

that is, the direct sum of the left zero semigroup I := E(B + 0), the group G := 0 + B + 0, and the right zero
semigroup Λ := E(0 + B). Moreover, the set of idempotents is E(B) = I + Λ and it is a rectangular band.

For the sake of completeness, let us introduce a further property of middle units of left semi-braces that
holds without restrictions on the additive semigroup. At first, we recall that the additive semigroup of a left
semi-brace B does not contain a zero element if B has at least two elements (see [32, Lemma 2.3]).

In the following, we prove that middle units of the additive structure of an arbitrary left semi-brace are
idempotents.
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Proposition 2.4. Let B be a left semi-brace. Then every middle unit e ∈ B is an idempotent of the semi-
group (B, +).

Proof. Since 0 is idempotent, we have that

e = e ∘ 0 = e ∘ (0 + 0) = e ∘ 0 + e ∘ (e− + 0) = e + e ∘ (e− + 0).

Since e is a middle unit, it follows that

e + e = e + e + e ∘ (e− + 0) = e + e ∘ (e− + 0) = e,

which is our assertion.

Following Ault’s paper [1, Theorem 1.8], by Proposition 2.4, we have that the additive semigroup of any left
semi-brace contains a subsemigroup MB, called the semigroup of middle units of B, that is explicitly given by

MB = {x | x ∈ B, x has inverse x󸀠 with x + x󸀠, x󸀠 + x middle units},

where the inverse x󸀠 of x means that x󸀠 = x󸀠 + x + x󸀠 and x = x + x󸀠 + x.
Then MB is a subsemigroup of (B, +) that is a rectangular group. This is an interesting substructure of

a left semi-brace, which is beyond the purpose of this paper and shall be studied elsewhere.
Now, having as reference [7, Example 2], we provide the following class of examples of completely simple

left semi-braces that allow one to obtain solutions.

Example 2.5. Let (B, ∘) be a group with identity 0, and let f, g be idempotent endomorphisms of (B, ∘) such
that fg = gf . Let us consider the following operation:

a + b := b ∘ fg(b−) ∘ f(a)

for all a, b ∈ B. It is easy to check that (B, +, ∘) is a completely simple left semi-brace. Now, observe that the
map ρ is an anti-homomorphism from the group (B, ∘) into the monoid BB, where BB denotes the monoid of
the functions from B into itself. Indeed, ρb is given by

ρb(a) = (a− + b)− ∘ b = (b ∘ fg(b−) ∘ f(a−))− ∘ b = f(a) ∘ fg(b).

Moreover,
ρbρa(c) = ρb(f(c) ∘ fg(a)) = f 2(c) ∘ f 2g(a) ∘ fg(b) = f(c) ∘ fg(a ∘ b) = ρa∘b(c)

for all a, b, c ∈ B. Thus, by [32, Proposition 2.14], the semigroup (B, +) is completely simple.
In addition, since ρ is ananti-homomorphismof the group (B, ∘),weobtain that themap r : B × B→ B × B

defined by r(a, b) = (λa(b), ρb(a)) in [32, Theorem 5.1] is a solution. Note that λa(b) = a ∘ b ∘ fg(b−) ∘ f(a−).
Therefore, r is explicitly given by

r(a, b) = (a ∘ b ∘ f(g(b−) ∘ a−), f(a ∘ g(b)))

for all a, b ∈ B.

Let us examine special cases of the previous class of examples. Firstly, observe that if f ̸= id and g is not the
constant map of value 0, then the semigroup (B, +) is neither left nor right cancellative. Moreover, note the
following three cases:

Case 1. If g is the constant map of value 0, then

a + b = b ∘ f(0) ∘ f(a) = b ∘ f(a)

for all a, b ∈ B, i.e., B coincideswith the left cancellative left semi-brace provided in [7, Example 2].Moreover,
the solution associated to B is given by

r(a, b) = (a ∘ b ∘ f(a−), f(a)).
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Case 2. If f = id, then
a + b = b ∘ g(b−) ∘ a

for all a, b ∈ B. In this case, the semigroup (B, +) is right cancellative. Indeed, if a + b = c + b, it follows that
b ∘ g(b−) ∘ a = b ∘ g(b−) ∘ c, and so a = c.Moreover, it is easy to check thatB is botha right and left semi-brace.
In addition, note that the solution associated to B is given by

r(a, b) = (a ∘ b ∘ g(b−) ∘ a−, a ∘ g(b)).

Case 3. If f = g, then
a + b = b ∘ f 2(b−) ∘ f(a) = b ∘ f(b−) ∘ f(a)

for all a, b ∈ B. Note that if a ∈ B, it holds

a + a = a ∘ f(a−) ∘ f(a) = a,

i.e., every element is idempotent with respect to the sum. In this case, the semigroup (B, +) is a rectangular
band where ker f = 0 + B and im f = B + 0. Moreover, the solution r associated to B, given by

r(a, b) = (a ∘ b ∘ f(b− ∘ a−), f(a ∘ b)),

is an idempotent solution, consistently with [32, Theorem 5.1] in the case in which G = {0}.
The following is a class of examples of completely simple left semi-braces that, under suitable assump-

tions, give rise to solutions.

Example 2.6. Let G, H be two groups, let B := G × H and consider the group (B, ∘) where

(a, u) ∘ (b, v) = (aub, ubv)

for all (a, u), (b, v) ∈ G × H, i.e., the classical Zappa–Szép product of G and H (see [36]) that has iden-
tity (1, 1). Let φ be a map from G into H such that φ(1) = 1 and define the following operation on B:

(a, u) + (b, v) = (a, uφ(b)v)

for all (a, u), (b, v) ∈ G × H. It is easy to check that the structure (B, +, ∘) is a left semi-brace. Let us note
that (B, +) is a left group. Moreover, (a, u) in G × H is idempotent with respect to the sum if and only if
φ(a) = u−1. In addition, if (a, u), (b, v) ∈ E(B), we have that

(a, u) + (b, v) = (a, uφ(b)v) = (a, u).

Hence E(B) is a sub-semigroup of (B, +) and it is also a left zero semigroup. Note also that

(a, u) + (1, 1) = (a, uφ(1)1) = (a, u),

i.e., (1, 1) is a right identity with respect to the sum. Furthermore, we have that

ρ(b,v)(a, u) = ((φ(b)v)
−1
(aub), (((φ(b)v)−1)au)bv)

for all (a, u), (b, v), (c, w) ∈ B. One can check that ρ is an anti-homomorphism if and only if it holds

φ(b)vφ(c) = φ(bvc)vc (2.1)

for all a, b ∈ G and u ∈ H. Moreover, by the characterization [10, Theorem 3], one can verify that the map r
in [32, Theorem 5.1] associated to the left semi-brace B is a solution if and only if

φ(a)uφ(b) = φ(b)vφ((φ(b)v)−1 (aub))(((φ(b)v)−1)au)b (2.2)

holds for all a, b ∈ G and u, v ∈ H. On the other hand, note that, if a, b ∈ G and u ∈ H, considering v = φ(b)−1

in (2.2), we obtain

φ(a)uφ(b) = v−1vφ((v−1v)−1 (aub))(((v−1v)−1)au)b = φ(aub)ub .

Hence (2.1) is satisfied.
Now, let G be the cyclic group C2 of 2 elements, let H be the cyclic group C3 of 3 elements, and let φ be

the constant map of value 1 from G into H. Hence, if (B, ∘) is the cyclic group C2 × C3, then condition (2.1)
trivially holds, and hence r is a solution. Instead, if (B, ∘) is the symmetric group C2 ⋉ C3, then (2.1) is not
satisfied; equivalently, (2.2) does not hold, and hence r is not a solution.
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3 Definitions and examples
Braces, skew braces, and semi-braces were introduced to study set-theoretic solutions of the Yang–Baxter
equation. The followingdefinition generalizes these structure to the case inwhich themultiplicative structure
is no more a group.

At first, we recall that a semigroup (S, ∘) is completely regular if for any element a of S there exists
a (unique) element a− of S such that

a = a ∘ a− ∘ a, a− = a− ∘ a ∘ a−, a ∘ a− = a− ∘ a. (3.1)

Conditions (3.1) imply that a0 := a ∘ a− = a− ∘ a is an idempotent element of (S, ∘).

Definition 3.1. Let S be a set with two operations + and ∘ such that (S, +) is a semigroup (not necessarily
commutative) and (S, ∘) is a completely regular semigroup. Then we say that (S, +, ∘) is a generalized left
semi-brace if

a ∘ (b + c) = a ∘ b + a ∘ (a− + c) (3.2)

for all a, b, c ∈ S. We call (S, +) and (S, ∘) the additive semigroup and themultiplicative semigroup of S, respec-
tively.

A generalized right semi-brace is defined similarly, replacing condition (3.2) by

(a + b) ∘ c = (a + c−) ∘ c + b ∘ c

for all a, b, c ∈ S.
A generalized two-sided semi-brace is a generalized left semi-brace that is also a generalized right semi-

brace with respect to the same pair of operations.

Let us note that if S is a generalized left semi-brace and a ∈ S, then the map

λa : S → S, b 󳨃→ a ∘ (a− + b),

is an endomorphism of the semigroup (S, +) and λa∘b(x) = (a ∘ b)0 + λaλb(x) for all a, b, x ∈ S. Indeed, if
a, b, x, y ∈ S, we have that

λa(x + y) = a ∘ (a− + x + y) = a ∘ (a− + x) + a ∘ (a− + y) = λa(x) + λa(y)

and

λa∘b(x) = (a ∘ b) ∘ ((a ∘ b)− + x)

= a ∘ (b ∘ (a ∘ b)− + b ∘ (b− + x))

= a ∘ b ∘ (a ∘ b)− + a ∘ (a− + λb(x))

= (a ∘ b)0 + λaλb(x).

Of course, left semi-braces [7, 32] are examples of generalized left semi-braces. Moreover, a generalized
left semi-brace can be obtained from every completely regular semigroup.

Example 3.2. If (S, ∘) is an arbitrary completely regular semigroup and (S, +) is a right zero semigroup (or
a left zero semigroup), then (S, +, ∘) is a generalized two-sided semi-brace.

Unlike left semi-braces, a generalized left semi-brace S can have a zero element even if S has more than one
element. Examples of such generalized left semi-braces can be easily obtained by any Clifford semigroup.

Example 3.3. If (S, ∘) is a Clifford semigroup, which is a completely regular semigroup where all idempotent
elements are central, then (S, +, ∘), where a + b = a ∘ b for all a, b ∈ S, is a generalized two-sided semi-brace.

More generally, theprevious generalized left semi-braces canbeobtained through the following construction.
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Proposition 3.4. Let Y be a (lower) semilattice, let {Sα | α ∈ Y} be a family of disjoint generalized left semi-
braces. For eachpair α, β of elements of Y such that α ≥ β, let ϕα,β : Sα → Sβ beahomomorphismof generalized
left semi-braces such that the following conditions hold:
(i) ϕα,α is the identical automorphism of Sα. for every α ∈ Y.
(ii) ϕβ,γϕα,β = ϕα,γ for all α, β, γ ∈ Y such that α ≥ β ≥ γ.
Then S = ⋃{Sα | α ∈ Y} endowed by the addition and the multiplication defined by

a + b = ϕα,αβ(a) + ϕβ,αβ(b),
a ∘ b = ϕα,αβ(a) ∘ ϕβ,αβ(b)

for any a ∈ Sα and b ∈ Sβ, is a generalized left semi-brace. Such a generalized left semi-brace is said to be the
strong semilattice Y of the generalized left semi-brace Sα and is denoted by S = [Y; Sα , ϕα,β].

Proof. First note that (S, +) is a semigroup and (S, ∘) is a completely regular semigroup. Now, let a ∈ Sα,
b ∈ Sβ, and c ∈ Sγ. Set δ := αβ, ε := βγ, ζ := αγ, and η := αβγ. It follows that

a ∘ (b + c) = a ∘ (ϕβ,ε(b) + ϕγ,ε(c))
= ϕα,η(a) ∘ ϕε,η(ϕβ,ε(b) + ϕγ,ε(c)) (since αε = η)
= ϕα,η(a) ∘ (ϕε,ηϕβ,ε(b) + ϕε,ηϕγ,ε(c))
= ϕα,η(a) ∘ (ϕβ,η(b) + ϕγ,η(c)) (by (ii))
= ϕα,η(a) ∘ ϕβ,η(b) + ϕα,η(a) ∘ ((ϕα,η(a))− + ϕγ,η(c)),

where the last equality holds since Sη is a generalized left semi-brace. Moreover,

a ∘ b + a ∘ (a− + c) = ϕα,δ(a) ∘ ϕβ,δ(b) + a ∘ ((ϕα,ζ (a))− + ϕγ,ζ (c))
= ϕα,δ(a) ∘ ϕβ,δ(b) + ϕα,ζ (a) ∘ ((ϕα,ζ (a))− + ϕγ,ζ (c))
= ϕδ,η(ϕα,δ(a) ∘ ϕβ,δ(b)) + ϕζ,η(ϕα,ζ (a) ∘ ((ϕα,ζ (a))− + ϕγ,ζ (c))) (since δζ = η)
= ϕα,η(a) ∘ ϕβ,η(b) + ϕα,η(a) ∘ ((ϕα,η(a))− + ϕγ,η(c)) (by (ii)).

Therefore, S is a generalized left semi-brace.

Remark 3.5. If S = [Y; Sα , ϕα,β] is a strong semilattice Y of left semi-braces Sα, then (S, ∘) is a strong semilat-
tice of groups, and hence, by [30, Theorem 4.2.1], (S, ∘) is a Clifford semigroup.

4 Solutions related to generalized left semi-braces
This section is devoted to provide a sufficient condition to obtain solutions through a generalized left semi-
brace. To this end, we recall that if S is a left cancellative left semi-brace, then themap r : S × S → S × S given
by

r(a, b) := (a ∘ (a− + b), (a− + b)− ∘ b) (4.1)

for all a, b ∈ S is a solution. Moreover, [32, Theorem 5.1] gives a sufficient condition to obtain that the map
in (4.1) is still a solution for a left semi-brace, not necessarily left cancellative. In addition, in [10, Theorem3],
we state a necessary and sufficient condition to ensure that r is a solution.

Specifically, if (S, +, ∘) is a left semi-brace, then the map r : S × S → S × S, defined by

r(a, b) := (a ∘ (a− + b), (a− + b)− ∘ b) for all a, b ∈ S,

is a solution if and only if
a + λb(c) ∘ (0 + ρc(b)) = a + b ∘ (0 + c) (4.2)

holds for all a, b, c ∈ S.
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Let us remark that if S is a generalized left semi-brace with (S, +) being a right zero semigroup, then
the map r as in (4.1) is a solution if and only if (a ∘ b)0 = (a0 ∘ b)0 holds for all a, b ∈ S. Observe that semi-
groups (S, ∘) satisfying such a condition lie in the wide class of right cryptogroups; see [42]. In this way,
we get new idempotent solutions that are of the form r(a, b) = (a0, a ∘ b), different from those obtained in
[19, 37, 39, 48].

Moreover, note that if (S, +, ∘) is the generalized left semi-brace of Example 3.3, we obtain that

r(a, b) = (a0 ∘ b, b− ∘ a ∘ b)

is a solution. In particular, if (S, ∘) is commutative, clearly r(a, b) = (a0 ∘ b, b0 ∘ a) and it is easy to verify that r
is a cubic solution, i.e., r3 = r.

Our aim is to show that if S = [Y; Sα , ϕα,β] is a strong semilattice of generalized left semi-braces such that
every Sα satisfies condition (4.2), then the map in (4.1) is a solution. This result is a consequence of a more
general construction technique on solutions we introduce in the following theorem.

Theorem 4.1. Let Y be a (lower) semilattice, let {(Xα , rα) | α ∈ Y} be a family of disjoint solutions indexed by Y
such that for each pair α, β ∈ Y with α ≥ β there is a map ϕα,β : Xα → Xβ. Let X be the union

X = ⋃{Xα | α ∈ Y}

and let r : X × X → X × X be the map defined by

r(x, y) := rαβ(ϕα,αβ(x), ϕβ,αβ(y))

for all x ∈ Xα and y ∈ Xβ. Then (X, r) is a solution if the following conditions are satisfied:
(i) ϕα,α is the identity map of Xα for every α ∈ Y.
(ii) ϕβ,γϕα,β = ϕα,γ for all α, β, γ ∈ Y such that α ≥ β ≥ γ.
(iii) (ϕα,β × ϕα,β)rα = rβ(ϕα,β × ϕα,β) for all α, β ∈ Y such that α ≥ β.
We call the pair (X, r) a strong semilattice of solutions (Xα , rα) indexed by Y.

The proof of Theorem 4.1 is technical, and for the sake of clarity, we present it in the next section. Now, as
a consequence of this theorem, we obtain the following result.

Theorem 4.2. Let S = [Y; Sα , ϕα,β] be a strong semilattice of generalized left semi-braces. Then, if Sα satis-
fies (4.2) for every α ∈ Y, then the map rS : S × S → S × S defined by

r(a, b) := (a ∘ (a− + b), (a− + b)− ∘ b)

for all a, b ∈ S is a solution.

Proof. For any α ∈ Y, let rα : Sα × Sα → Sα × Sα be the solution associated to the left semi-brace Sα, i.e., the
map defined by rα(x, y) = (x ∘ (x− + y), (x− + y)− ∘ y). Since S is a strong semilattice of left semi-braces, by
Proposition 3.4, ϕα,α is the identical automorphism of Sα and ϕβ,γϕα,β = ϕα,γ for all α, β, γ ∈ Y such that
α ≥ β ≥ γ. Hence, conditions (i) and (ii) in Theorem 4.1 are satisfied. Moreover, let a, b ∈ Y such that α ≥ β.
Since, ϕα,β is a homomorphism of left semi-braces, for all x, y ∈ Sα it follows that

(ϕα,β × ϕα,β)rα(x, y) = (ϕα,β(x ∘ (x− + y)), ϕα,β((x− + y)− ∘ y))

= (ϕα,β(x) ∘ ((ϕα,β(x))− + ϕα,β(y)), ((ϕα,β(x))− + ϕα,β(y))− ∘ ϕα,β(y))

= rβ(ϕα,β(x), ϕα,β(y))

= rβ(ϕα,β × ϕα,β)(x, y).

Hence Theorem4.1 (iii) holds. Therefore, according to Theorem4.1,we shall consider the strong semilattice Y
of solutions rα, i.e., the map r defined by

r(x, y) = rαβ(ϕα,αβ(x), ϕβ,αβ(y))
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for all x ∈ Sα, y ∈ Sβ. Finally, note that, by Proposition 3.4,

r(x, y) = (ϕα,αβ(x) ∘ ((ϕα,αβ(x))− + ϕβ,αβ(y)), ((ϕα,αβ(x))− + ϕβ,αβ(y))− ∘ ϕβ,αβ(y))
= (x ∘ (x− + y), (x− + y)− ∘ y)

for all x ∈ Sα, y ∈ Sβ.

5 Strong semilattices of set-theoretical solutions
This section aims to provide a proof of Theorem 4.1 and to give some examples of strong semilattices of
solutions. Furthermore, we analyze strong semilattices of solutions with finite order.

Proof of Theorem 4.1. At first, note that if λ[ω]x and ρ[ω]y are the maps from Xω into itself that define every
solution rω, i.e., rω is written as

rω(x, y) = (λ[ω]x (y), ρ
[ω]
y (x))

for all x, y ∈ Xω, then condition (iii) is equivalent to the following equalities:

ϕω,ιλ[ω]x (y) = λ
[ι]
ϕω,ι(x)ϕω,ι(y), (5.1)

ϕω,ιρ[ω]y (x) = ρ
[ι]
ϕω,ι(y)ϕω,ι(x) (5.2)

for all ω, ι ∈ Y such that ω ≥ ι and x, y ∈ Xω. In addition, let us observe that if x ∈ Xω and y ∈ Yι, then the
two components of the map r, i.e.,

λx(y) = λ[ωι]ϕω,ωι(x)ϕι,ωι(y), ρy(x) = ρ[ωι]ϕι,ωι(y)ϕω,ωι(x),

lie in Xωι, consistently with the second part of the subscript of themaps ϕ. To avoid overloading the notation,
hereinafter we will write the previous elements as

λx(y) = λϕω,ωι(x)ϕι,ωι(y), ρy(x) = ρϕι,ωι(y)ϕω,ωι(x).

Now, we verify that r is a solution proving that the relations

L1 := λxλy(z) = λλx(y)λρy(x)(z) =: L2,
C1 := λρλy (z)(x)ρz(y) = ρλρy (x)(z)λx(y) =: C2,

R2 := ρρy(z)ρλz(y)(x) = ρzρy(x) =: R1

are satisfied for all x, y, z ∈ X. For this purpose, let x, y, z be elements of Xω, Xι, Xκ, respectively, and assume
ν := ωικ and

X := ϕω,ν(x), Y := ϕι,ν(y), Z := ϕκ,ν(z) (in Xν).

Setting
U := ρϕι,ωι(y)ϕω,ωι(x), V := λϕω,ωι(x)ϕι,ωι(y) (in Xωι),

we have that

L2 = λλx(y)λρy(x)(z)
= λVλU(z)
= λVλϕωι,ν(U)ϕκ,ν(z) (ν = ωικ)
= λϕωι,ωιν(V)ϕν,ωινλϕωι,ν(U)(Z)

= λϕωι,ν(V)ϕν,νλϕωι,ν(U)(Z) (ωιν = ν)
= λϕωι,ν(V)λϕωι,ν(U)(Z) (ϕν,ν = idXν ).
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Since

ϕωι,ν(V) = λϕωι,νϕω,ωι(x)ϕωι,νϕι,ωι(y) (by (5.1))
= λϕω,ν(x)ϕι,ν(y) (ϕωι,νϕω,ωι = ϕω,ν , ϕωι,νϕι,ωι = ϕι,ν)

= λX(Y)

and

ϕωι,ν(U) = ρϕωι,νϕι,ωι(y)ϕωι,νϕω,ωι(x) (by (5.2))
= ρϕι,ν(y)ϕω,ν(x) (ϕωι,νϕι,ωι = ϕι,ν , ϕωι,νϕω,ωι = ϕω,ν)

= ρY(X),

it follows that

L2 = λλX(Y)λρY(X)(Z) (in Xν)

= λXλY(Z) (rν is a solution).

Moreover, it holds

L1 = λxλy(z) = λxλϕι,ικ(y)ϕκ,ικ(z)
= λϕω,ν(x)ϕικ,νλϕι,ικ(y)ϕκ,ικ(z) (ν = ωικ)
= λXλϕικ,νϕι,ικ(y)ϕικ,νϕκ,ικ(z) (by (5.1))
= λXλϕι,ν(y)ϕκ,ν(z) (ϕικ,νϕι,ικ = ϕι,ν , ϕικ,νϕκ,ικ = ϕκ,ν)

= λXλY(Z).

Hence we obtain that L1 = L2. Now, setting

W := ρϕκ,ικ(z)ϕι,ικ(y), Z := λϕι,ικ(y)ϕκ,ικ(z) (in Xικ),

observe that

C1 = λρλy (z)(x)ρz(y)

= λρλϕι,ικ (y)ϕκ,ικ (z)(x)ρϕκ,ικ(z)ϕι,ικ(y)

= λρZ(x)(W)
= λρϕικ,ν (Z)ϕω,ν(x)(W) (ν = ωικ)

= λϕν,νικρϕικ,ν (Z)(X)ϕικ,νικ(W)

= λϕν,νρϕικ,ν (Z)(X)ϕικ,ν(W) (νικ = ν)

= λρϕικ,ν (Z)(X)ϕικ,ν(W) (ϕν,ν = idXν ).

Since

ϕικ,ν(Z) = λϕικ,νϕι,ικ(y)ϕικ,νϕκ,ικ(z) (by (5.1))
= λϕι,ν(y)ϕκ,ν(z) (ϕικ,νϕι,ικ = ϕι,ν , ϕικ,νϕκ,ικ = ϕκ,ν)

= λY(Z)

and

ϕικ,ν(W) = ρϕικ,νϕκ,ικ(z)ϕικ,νϕι,ικ(y) by (5.2))
= ρϕκ,ν(z)ϕι,ν(y) (ϕικ,νϕκ,ικ = ϕκ,ν , ϕικ,νϕι,ικ = ϕι,ν)

= ρZ(Y),
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it follows that
C1 = λρλY(Z)(X)ρZ(Y) (in Xν).

Furthermore, since U and V lie in Xωι, we have

C2 = ρλρy (x)(z)λx(y)

= ρλρϕι,ωι (y)ϕω,ωι (x)(z)λϕω,ωι(x)ϕι,ωι(y)

= ρλU (z)(V)
= ρλϕωι,ν (U)ϕκ,ν(z)(V) (ν = ωικ)

= ρϕν,ωινλϕωι,ν (U)(Z)ϕωι,ωιν(V)

= ρϕν,νλϕωι,ν (U)(Z)ϕωι,ν(V) (ωιν = ν)

= ρλϕωι,ν (U)(Z)ϕωι,ν(V) (ϕν,ν = idXν ).

As seen before, ϕωι,ν(U) = ρY(X) and ϕωι,ν(V) = λX(Y). Thus

C2 = ρλρY(X)(Z)λX(Y) (in Xν).

Consequently, since rν is a solution, we obtain that C1 = C2.
Finally, sinceW and Z lie in Xικ, note that

R2 = ρρy(z)ρλz(y)(x)
= ρρϕκ,ικ (z)ϕι,ικ(y)ρλϕι,ικ (y)ϕκ,ικ(z)(x)

= ρWρZ(x)
= ρWρϕικ,ν(Z)ϕω,ν(x) (ν = ωικ)
= ρϕικ,νικ(W)ϕν,νικρϕικ,ν(Z)(X)

= ρϕικ,ν(W)ϕν,νρϕικ,ν(Z)(X) (νικ = ν)
= ρϕικ,ν(W)ρϕικ,ν(Z)(X) (ϕν,ν = idXν ).

As seen before, ϕικ,ν(W) = ρZ(Y). In addition, we have

ϕικ,ν(Z) = λϕικ,νϕι,ικ(y)ϕικ,νϕκ,ικ(z) (by (5.1))
= λϕι,ν(y)ϕκ,ν(z) (ϕικ,νϕι,ικ = ϕι,ν , ϕικ,νϕκ,ικ = ϕκ,ν)

= λY(Z).

It follows that

R2 = ρρZ(Y)ρλY(Z)(X) (in Xν)

= ρZρY(X) (rν is a solution).

Moreover, it holds

R1 = ρzρy(x) = ρzρϕι,ωι(y)ϕω,ωι(x)
= ρϕκ,ν(z)ϕωι,νρϕι,ωι(y)ϕω,ωι(x)
= ρZρϕωι,νϕι,ωι(y)ϕωι,νϕω,ωι(x) (by (5.2))
= ρZρϕι,ν(y)ϕω,ν(x) (ϕωι,νϕι,ωι = ϕι,ν , ϕωι,νϕω,ωι = ϕω,ν)

= ρZρY(X),

and hence R1 = R2. Therefore, the map r is a solution.

One can use strong semilattices of solutions (X, r) with rα’s of finite order to produce examples of new solu-
tions with finite order.
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Examples 5.1. (i) Let X be a semilattice of sets indexed by Y such that conditions (i) and (ii) of Theorem 4.1
are satisfied and let rα be the twist map on Xα for every α ∈ Y. Then, if α ≥ β, we have that

ϕα,βλx(y) = ϕα,β(y) = λϕα,β(x)ϕα,β(y),
ϕα,βρy(x) = ϕα,β(x) = ρϕα,β(y)ϕα,β(x)

for all x, y ∈ Xα, i.e., condition (iii) of Theorem 4.1 holds. Hence, the strong semilattice of solutions (X, r) is
such that r3 = r. Indeed, if x ∈ Xα and y ∈ Xβ, assuming ν := αβ, we have that r(x, y) = rν(ϕα,ν(x), ϕβ,ν(y)).
Hence r2(x, y) = (ϕα,ν(x), ϕβ,ν(y)), and so

r3(x, y) = rν(ϕα,ν(x), ϕβ,ν(y)) = r(x, y).

Consequently, r3 = r.
(ii) Let X := Xα ∪ Xβ be a semilattice of sets such that α > β, let c be a fixed element of Xβ, and let

ϕα,β(x) = c for every x ∈ Xα. Let rα be the twist map on Xα and let rβ be the idempotent solution on Xβ
defined by rβ(x, y) := (x, c) for all x, y ∈ Xβ. Then, if x, y ∈ Xα, we have that

ϕα,βλx(y) = c = ϕα,β(x) = λϕα,β(x)ϕα,β(y),
ϕα,βρy(x) = c = ρϕα,β(y)ϕα,β(x).

Hence the assumptions of Theorem 4.1 are satisfied. Moreover, the strong semilattice of solutions (X, r) is
such that r3 = r. Indeed, if x ∈ Xα and y ∈ Xβ, since r(x, y) = rβ(ϕα,β(x), y) = rβ(c, y) = (c, c), it follows that

r2(x, y) = rβ(c, c) = (c, c) = r(x, y).

Therefore, we obtain that r3 = r.
(iii) Let X := Xα ∪ Xβ be a semilattice of sets such that α > β, let c be a fixed element of Xβ, and let

ϕα,β(x) = c for every x ∈ Xα. Let f be an idempotent map from Xβ into itself, f ̸= idXβ , and let rα be the map
from Xα × Xα into itself defined by rα(x, y) := (f(x), x) for all x, y ∈ Xα. Thus, rα is a solution such that r3α = r2α.
Let rβ be the idempotent solution defined by rβ(x, y) = (x, c) for all x, y ∈ Xβ. Then, if x, y ∈ Xα, we obtain
that

ϕα,βλx(y) = c = ϕα,β(x) = λϕα,β(x)ϕα,β(y),
ϕα,βρy(x) = c = ρϕα,β(y)ϕα,β(x).

Thus the hypotheses of Theorem 4.1 are satisfied. Moreover, the strong semilattice of solutions (X, r) is such
that r3 = r2. Indeed, if x ∈ Xα and y ∈ Xβ, since r(x, y) = rβ(ϕα,β(x), y) = rβ(c, y) = (c, c), it follows that

r2(x, y) = rβ(c, c) = (c, c) = r(x, y),

and clearly r3(x, y) = r2(x, y). Therefore, r3 = r2.

To investigate strong semilattices of solutions with finite order, we need the notions of the index and the
period of a solution r that are

i (r) := min{j | j ∈ ℕ0, there exists l ∈ ℕ such that rj = rl , j ̸= l},
p (r) := min{k | k ∈ ℕ, ri (r)+k = ri (r)},

respectively. These definitions of the index and the order are slightly different from the classical ones (cf.
[31, p. 10]), but they are functional todistinguishbijective solutions fromnon-bijective ones. Formoredetails,
we refer the reader to [10].

In the following theorem, we show that, given a semilattice Y of finite cardinality, the strong semilattice
of solutions (X, r) indexed by Y is of finite order if and only if solutions rα are. Furthermore, it allows for
establishing the order of the strong semilattice of solutions (X, r) if the index and the period of solutions rα are
known. Conversely, the index and the period of a strong semilattice of solutions (X, r) give us upper bounds
of the indexes and periods of solutions rα.
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Theorem 5.2. Let (X, r)bea strong semilattice of solutions indexedbyafinite semilattice Y. Then rα is a solution
with finite order on Xα for every α ∈ Y if and only if r is a solution with finite order. More precisely, the index of r
is

i (r) = max{1, i (rα) | α ∈ Y}

and the period is
p (r) = lcm{p (rα) | α ∈ Y}.

Proof. At first, suppose that rα is a solution with finite order for every α ∈ Y. Let n := lcm{p (rα) | α ∈ Y} and
i := max{i (rα) | α ∈ Y}. If x ∈ Xα and y ∈ Xβ, setting ν := αβ, we have that

rn+i(x, y) = rn+iν (ϕα,ν(x), ϕβ,ν(y)) = riν(ϕα,ν(x), ϕβ,ν(y)).

Consequently, if i = 0, i.e., rα is bijective for every α ∈ Y, we obtain that

rn+1(x, y) = rν(ϕα,ν(x), ϕβ,ν(y)) = r(x, y).

Therefore, rn+1 = r and clearly the index of r is 1 by the assumption on i. Now, assume that i ̸= 0 and that
i = i (rγ) for a certain γ ∈ Y. If rn = rh, for a positive integer h, in particular, we have that rnγ = rhγ . Since
n = p (rγ)q + i for a certain natural number q, it follows that

rp (rγ)+iγ = riγ = r
p (rγ)q+i
γ = rnγ = rhγ .

Hence i ≤ h, and so i (r) = i.
Now, we proceed to determine the period of r. If rm = ri (r) for a natural number m, then rmα = r

i (r)
α for

every α ∈ Y. Consequently, p (rα) divides m − i (r) for every α ∈ Y. Thus lcm{p (rα) | α ∈ Y} divides m − i (r),
i.e., n − i (r) divides m − i (r). Therefore, n − i (r) ≤ m − i (r), and hence p (r) = n − i (r). Conversely, suppose
that the solution r is with finite order and set i := i (r) and p := p (r). If α ∈ Y, since ϕα,α = idXα×Xα , we obtain
that rp+iα = riα. Therefore, rα is a solution with finite order. Clearly, we have that i (rα) is less than i and p (rα)
divides p.

Let us note that if (X, r) is a strong semilattice of non-bijective solutions rα such that i (rα) = i and p (rα) = n
for every α ∈ Y, then r is still a solution of index i and period n, also in the case of an infinite semilattice Y.
Indeed, one can prove this statement by similar computations used for the non-bijective case in the proof of
Theorem 5.2.
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[48] D. Stanovskỳ and P. Vojtěchovskỳ, Idempotent solutions of the Yang–Baxter equation and twisted group division, preprint
(2020), https://arxiv.org/abs/2002.02854.

[49] C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction,
Phys. Rev. Lett. 19 (1967), 1312–1315.

[50] Y. Zhang, L. H. Kauffman and M.-L. Ge, Yang–Baxterizations, universal quantum gates and Hamiltonians, Quantum Inf.
Process. 4 (2005), no. 3, 159–197.

https://arxiv.org/abs/2002.02854

	Set-theoretic solutions to the Yang–Baxter equation and generalized semi-braces
	1 Introduction
	2 Basic tools on left semi-braces
	3 Definitions and examples
	4 Solutions related to generalized left semi-braces
	5 Strong semilattices of set-theoretical solutions


