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There is uncertainty in how tropical forest carbon stocks might alter in response to 46	
  

changes in climate and atmospheric composition. Existing studies1-3 demonstrate large 47	
  

differences due to alternative representations of vegetation processes. Others4 48	
  

investigate more the impact of ranges in climate projections of adjusted patterns of 49	
  

temperature and rainfall. Carbon loss has importance for the efficacy of Reducing 50	
  

Emissions from Deforestation and Degradation (REDD). Here we present a systematic 51	
  

exploration of these sources of uncertainty and that associated with different emissions 52	
  

scenarios, for all three major tropical forest regions: (i) Americas, i.e. Amazonia and 53	
  

Central America, (ii) Africa and (iii) Asia. Using driving data from 22 climate models 54	
  

and the MOSES-TRIFFID land surface scheme, only one5 of these simulations projects 55	
  

biomass loss by the end of the 21st Century, and then only for the Americas. However 56	
  

when comparing to alternative models of plant physiological processes1,2 we find the 57	
  

latter to be a larger uncertainty, the next largest related to future emissions scenario, 58	
  

with uncertainties in climate projection being significantly smaller. Despite this, there is 59	
  

evidence of forest resilience for the three regions. 60	
  

 61	
  

Tropical forests store approximately 470 billion tonnes of carbon in their biomass and soil6, 62	
  

are responsible for about one-third of global terrestrial primary productivity7, regulate local 63	
  

meteorology and house a disproportionate amount of global biodiversity8. A number of 64	
  

previous analyses have investigated potential vulnerability of tropical forests under climate 65	
  

change (Table A1, Supp Info). Some, based on future projections by the HadCM3 climate 66	
  

model e.g. Ref5, suggest anthropogenically-induced climate change across Amazonia could 67	
  

cause catastrophic losses of forest cover and biomass (‘die-back’). This is true when using 68	
  

outputs from that climate model to drive a number of vegetation models1. More recently, 69	
  

multiple climate models have been used to force particular vegetation models, hence utilising 70	
  

an ensemble of climate forcings4. In other analyses, alteration of the biogeographical extent 71	
  

of tropical forests is estimated solely by predicting regions that will have meteorological 72	
  

conditions similar to those of present day and where forest exists (bioclimatic envelope 73	
  

modelling)9,10. When forced by General Circulation Models (GCMs) other than HadCM3, 74	
  

vegetation models have usually simulated lower or even no losses of Amazonian forest cover. 75	
  

There are far fewer assessments of possible climate change impacts on tropical regions 76	
  

outside of Amazonia.  Two existing studies10,11 suggest significant parts of tropical Africa 77	
  

and Asia may be less sensitive to climate change.  78	
  

 79	
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We study projected uncertainty of biomass stocks for the three major tropical forest regions 80	
  

of:  the Americas (i.e. Central America and the Amazonia Basin sensu lato), Africa and Asia, 81	
  

and with initial emphasis on a version of the land surface model (MOSES-TRIFFID) similar 82	
  

to Ref5 (Methods). This is forced with bias-corrected climate change projections for the 83	
  

tropics based on the 22 climate models used by the IPCC 4th Assessment. We isolate 84	
  

meteorological drivers and hence the relationship between biomass and changes in 85	
  

temperature3, precipitation and direct “fertilisation” influence of raised [CO2]. Simulations 86	
  

are compared to recent measurements of tropical forest biomass stocks, by extrapolating 87	
  

forest plot networks12,13.  88	
  

 89	
  

Figure 1 shows the geographical distribution of rainforest cover predicted for the initial 90	
  

contemporary state of our land surface model (Methods) forced with Climate Research Unit 91	
  

(CRU) climatology. We find general agreement between the modelled rainforest distribution 92	
  

and the observed distribution. Figure 2 presents simulated terrestrial vegetation carbon 93	
  

content defined as the carbon in above ground biomass and live roots, Cv (Mg ha-1). This is 94	
  

for the three tropical regions, to year 2100 and driven with atmospheric [CO2] concentrations 95	
  

and non-CO2 radiative forcing pathways representative of the Special Report on Emissions 96	
  

Scenarios (SRES) A2 “business-as-usual” anthropogenic emissions scenario. These 97	
  

predictions have been constructed by emulating the changes in surface meteorology predicted 98	
  

by the 22 climate models, all in the combined climate and land surface impacts system 99	
  

IMOGEN14 (Methods). Such changes of climate are added to the CRU climatology, taken as 100	
  

representative of pre-industrial conditions and removing significant model biases (Figure S1). 101	
  

For the contemporary period, Cv increases in all simulations and regions, and is compared to 102	
  

normalised forest inventory data (Methods) as the three short black curves for Americas and 103	
  

Africa. The three curves correspond to changes at the 97.5% confidence level, mean change 104	
  

and 2.5% level (Refs12,13). There is agreement tropical forests are gaining biomass, although 105	
  

the observational data suggest the increases have been larger than that modelled for the recent 106	
  

period. The magnitude of the increase in tropical forest biomass from plot networks is the 107	
  

subject of some debate15. However the contemporary increase in tropical forest biomass is 108	
  

consistent with the large and increasing carbon sink on Earth’s land surface derived from the 109	
  

mass-balance implications of fossil fuel CO2 emissions and atmospheric CO2 measurements, 110	
  

along with the global role of woody tissue as the location of a large fraction of the terrestrial 111	
  

carbon sink6. 112	
  

 113	
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Forest biomass carbon stocks in Asia and Africa are projected to be greater in year 2100 than 114	
  

at the present-day, in all simulations. This is true for the Americas/Amazon, except for the 115	
  

HadCM3 climate model. There is however a decreasing ability to sequester carbon in 116	
  

biomass; many pathways have a Cv peak towards the end of the 21st Century. Figure 2 grey 117	
  

columns are “commitment” simulations where climate forcing (here that predicted for 2100) 118	
  

is maintained at that level for a sufficient period that terrestrial ecosystems fall in equilibrium 119	
  

with that amount of climate change. Generally this increases the spread of simulations, where 120	
  

those with higher vegetation carbon at the end of the 21st Century show an even higher uptake 121	
  

for the committed period, and simulations peaking earlier in the century show a further 122	
  

reduction. Particularly large differences between the final year of the transient simulations 123	
  

and committed values of Cv are, for Americas: (i) major biomass loss for HadCM3 124	
  

(confirming the analysis of Ref16); and (ii) the MPI ECHAM 5 model predicts less Cv than 125	
  

that estimated in pre-industrial times. 126	
  

 127	
  

We perform sensitivity simulations where only single patterns of meteorological change are 128	
  

added to the CRU climatology. This aids understanding of the mechanisms responsible for 129	
  

the changes in Cv. Figure 3 shows these changes, years 1860 to 2100, for the 130	
  

Americas/Amazon region, and decomposes them into the individual effects of temperature, 131	
  

rainfall and atmospheric [CO2]. Predictions are most sensitive to changes in temperature and 132	
  

atmospheric [CO2], with a lower sensitivity to precipitation alteration (Figure S4 shows the 133	
  

small sensitivity to other drivers e.g windspeed change). Future changes in temperature 134	
  

would lead to reduced Cv, if not for our modelled positive response of vegetation to elevated 135	
  

atmospheric carbon dioxide17,3. Hence the likelihood of die-back could be altered depending 136	
  

on the future balance of raised greenhouse-gas concentrations, with non-CO2 gases such as 137	
  

methane having no fertilisation effect18. Identical plots (Figures S2 and S3) for African and 138	
  

Asian forests show again a balance predominantly between the effects of CO2-fertilisation 139	
  

and increased temperature, although there the temperature-only changes are generally smaller 140	
  

in magnitude.  141	
  

 142	
  

To place our analysis in the broader context of uncertainty in ecosystem description, we 143	
  

extract changes in biomass for the same three regions from ecological Parameter Perturbation 144	
  

Experiments (PPE) which use the HadCM3C climate model2, and from a Dynamic Global 145	
  

Vegetation Model (DGVM) inter-comparison study1. The latter includes inter-DGVM 146	
  

structural differences (and different CO2-fertilisation responses), also with climate change 147	
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drivers from HadCM3. Figure 4 (a-c) presents these changes in Cv by 2100, compared to 148	
  

1860, for our 22-GCM simulations (values could be inferred from Figure 3; red bars are 149	
  

HadCM3 model), then for PPE (forced with SRES A1B emissions, a scenario with strong 150	
  

similarities to SRES A2), and finally the DGVM inter-comparison study (five models, four 151	
  

SRES scenarios). The red bars in the DGVM values are for MOSES/TRIFFID, and these and 152	
  

the PPE simulations are for “fixed-Q10” representation of maintenance respiration. This 153	
  

corresponds to lower year 2100 biomass contents, particularly for the Americas and HadCM3 154	
  

driving model (Figure SI-5). Figure 4d shows “vectors” of uncertainty, comparing estimates 155	
  

of Standard Deviation (SD) in climate uncertainty and SD between SRES scenarios, both 156	
  

plotted against SDs due to DGVM differences. The DGVM response uncertainty dominates 157	
  

over variation between climate models and emission scenarios. Limited but illustrative 158	
  

overall statistics are based on combining these three SDs to estimate uncertainty, and a 159	
  

calculated mean of the DGVM/SRES simulations offset by the HadCM3 difference from 22-160	
  

GCM mean (from first columns, Figure 4a-c). Fitting a normal distribution, this returns 161	
  

across ecosystem model, scenario and climate model probabilities of biomass decrease by 162	
  

year 2100 of 40% for the Americas, and 7% for both Africa and Asia (Methods). An 163	
  

alternative statistic, SRES A2 only, is to adopt the MOSES-TRIFFID simulation from our 22-164	
  

GCMs simulations (red bar, first columns of Figure 4a-c) to replace that from the DGVM 165	
  

intercomparison (red bar, A2 DGVM column). Then the probabilities of biomass decrease by 166	
  

year 2100, after similar mean offset, become 16% for the Americas, 2% for Africa and 4% 167	
  

for Asia (Methods). 168	
  

 169	
  

With the largest uncertainty being land surface description, then the timing and magnitude of 170	
  

any projections of tropical forest cover will depend strongly on modelled response to higher 171	
  

temperatures, elevated [CO2] concentrations and changes in precipitation regimes. Figure 4 172	
  

complements other studies; for instance the LPJ ecosystem model predictions of Amazon die-173	
  

back forced across climate models4 includes one configuration showing less resilience19. 174	
  

Reducing this ecological uncertainty requires many parameters to be refined and possibly 175	
  

new process depiction. Free Air CO2 Enrichment (FACE) experiments artificially maintain 176	
  

carbon dioxide at raised concentrations20, and do demonstrate a CO2-fertilisation effect in 177	
  

temperate post-disturbance forests. However, at present there are no such experiments in 178	
  

tropical forests. Other studies20 indicate that productivity may eventually become constrained 179	
  

by nutrient limitation, which could therefore increase vulnerability to climate change.  For 180	
  

tropical ecosystems there is good evidence that soil phosphorus is the dominant limiting 181	
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nutrient (more limiting than nitrogen)21,22. However the magnitude of this constraint remains 182	
  

uncertain, with several mechanisms potentially allowing extra phosphorus to be taken up 183	
  

from the soil to support at least some increased rates of plant growth at higher [CO2]23.  184	
  

 185	
  

Uncertainty exists in physiological response to elevated temperatures3,17. We describe 186	
  

vegetation maintenance respiration as following a roughly “bell”-shaped response to 187	
  

temperature (or a “declining- Q10”24), and peaking around 32°C. Other versions of MOSES-188	
  

TRIFFID have assumed an exponential “fixed-Q10” increase with increasing temperatures 189	
  

and existing Amazon studies3,25 show this process representation has a large effect on future 190	
  

modelled carbon stocks. Figure S5 plots Cv for both and re-iterates that future values are 191	
  

significantly lower for a “fixed-Q10” increase. Our peak temperature of 32°C is lower than 192	
  

some reports24, and as such Figure S5 can be regarded as providing upper and lower bounds 193	
  

on biomass implications due to this uncertainty in respiration response. There is also 194	
  

increasing evidence that the long-term temperature response of respiration is dynamic, 195	
  

capable of thermal acclimation26. Generally acclimation, again not yet included in any major 196	
  

land surface model, is believed to mitigate the rate of increase in respiration rates in the event 197	
  

of a transition to warmer temperatures. There are suggestions that photosynthesis can also 198	
  

acclimate to rising temperatures27 although the extent to which this might occur in tropical 199	
  

forest species remains unknown. Although our sensitivity simulations suggest that elevated 200	
  

temperature could be more detrimental to forest biomass than any climate model-predicted 201	
  

decrease in rainfall, recent field data suggests that tropical forest function may be impeded in 202	
  

unusually dry years due to strong seasonal moisture deficits. Using a basin-wide plot network 203	
  

in Amazonia12 an increased mortality was observed in areas affected by the year 2005 204	
  

Amazon drought28. More details expanding on current uncertainties are presented in 205	
  

Supplementary Information.    206	
  

 207	
  

We find the possibility of climate-induced (i.e. not direct deforestation) damage to tropical 208	
  

rainforests in the period to year 2100, even under SRES A2 “business-as-usual” emissions 209	
  

scenario, might be lower than some earlier studies suggest. For instance, our MOSES-210	
  

TRIFFID model configuration predicts undisturbed tropical forests as always sequestering 211	
  

carbon to mid 21st Century, and possibly beyond for most climate models. Such a result has 212	
  

implications for the United Nation’s Reducing Emissions from Deforestation and 213	
  

Degradation+ (REDD+) scheme, which has previously been questioned due to concerns over 214	
  

the resilience of the carbon stored in tropical forests. Physiological processes, rather than 215	
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differences amongst climate projections, dominate uncertainties in the amount of future 216	
  

carbon accumulation in undisturbed tropical forests, but we anticipate that emerging data and 217	
  

ecological understanding will reduce this substantially in the next generation of land surface 218	
  

models.  219	
  

 	
  220	
  

Methods 221	
  

Our land surface model for assessing climate uncertainty effects only is the Met Office Surface Exchange 222	
  

Scheme 2.2 (MOSES) coupled to DGVM Top-down Representation of Interactive Foliage and Flora Including 223	
  
Dynamics (TRIFFID); now part of the JULES model29. MOSES-TRIFFID has been used in previous ‘Amazon-224	
  

dieback’ investigations3,5,25, but here are two differences. First soil parameterisations include new values 225	
  

reported. Second dark respiration has the same temperature response as the maximum rate of carboxylation, 226	
  

Vc,max.  This is the Rd term of Eqn (13) in Ref29 and its influence on the canopy level plant respiration fluxes is in 227	
  

Eqn (39)-(42), also Ref29. For broad-leaved trees, we used the JULES formulation for Vc,max, peaking at leaf 228	
  

temperature around 32°C. Many earlier studies set leaf respiration monotonically increasing with temperature 229	
  

following an exponential Q10 function, where Q10 = 2.0. Respiration peaking in temperature is more appropriate 230	
  

because (in photosynthetic and non-photosynthetic organs) it is known to ultimately decline as temperatures 231	
  
increase.24  Data on peak temperature of tropical tree leaf respiration is limited. Our relatively low peak value 232	
  

versus the Q10 = 2.0 formulation, may provide bounds on this uncertainty. 233	
  

MOSES-TRIFFID is forced by a common base climatology plus patterns of changing meteorological conditions 234	
  

fitted against the 22 CMIP3 climate models. We employ “pattern-scaling” to calculate change, where regional 235	
  

and seasonal changes are assumed linear in global warming30. An energy balance model calculates global 236	
  
warming amount, also fitted to the CMIP3 ensemble. Precipitation patterns however are normalised against the 237	
  

CRU dataset. For geographical position, month and a unit of global warming, each climate model predicts a 238	
  

percentage change in rainfall compared to its estimate of pre-industrial rainfall values. We then calculate the 239	
  

anomaly pattern as that percentage change applied to the CRU climatology estimate of precipitation. This 240	
  

combined impacts system, IMOGEN14, is forced with historical followed by a standard pathway in atmospheric 241	
  

CO2 concentrations associated with “business-as-usual” SRES A2 emissions scenario, reaching 867ppm in 242	
  

2100. For non-CO2 greenhouse gases and aerosols, an additional radiative forcing change is prescribed to the 243	
  

energy balance model. The modelling system is operated with a disturbance fraction for each gridbox 244	
  
appropriate for end of the last Century. This is assumed invariant in to the future, and hence we do not take in to 245	
  

account any future potential direct deforestation. 246	
  

 247	
  

Adding anomalies of change to the CRU dataset removes model biases. We estimate pre-industrial state as 248	
  

averaged monthly CRU values for 1960 to 1989, recognising these include anthropogenically-induced climate 249	
  

change up to that date. We assumed this error to be smaller than errors through using much earlier years in the 250	
  

CRU climatology, due to the presence of many more contributing tropical meteorological measurements. This 251	
  
discrepancy is certainly much smaller than the large biases removed from the climate models (Figure S1). For 252	
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the Americas, all 22 climate models have rainfall predictions that are too low. These biases can be as large as 253	
  

predicted change in climate (compare to temperature and rainfall magnitudes, left side Figure 3).  254	
  

 255	
  

Biomass inventory data are from the RAINFOR network across South America12 (measurements from 123 256	
  
plots) and from the AfriTRON network across Africa13 (79 plots). Geographical spread of measurements for 257	
  

South America is not as large as the Americas region depicted in Figure 1. There are only a few plots in the 258	
  

Central Congo basin for the African dataset. These datasets are relatively sparse compared to the extent of 259	
  

tropical forest, but are currently the most geographically widespread measurements of tropical biomass 260	
  

available. To compare with model outputs, corrections were applied to include stems smaller than those 261	
  

measured in each plot (< 100 mm diameter). We do not consider necromass (coarse woody debris). For South 262	
  

America, measurements used are 1980 to 2005; measurements following the 2005 drought indicate a reduced 263	
  

rate of sequestration6,12 but it is unknown if this is a short-term perturbation or the beginning of a lower rate of 264	
  
net carbon uptake. African measurements used are 1987 to 1997, the mean start and end census dates of the 79 265	
  

plots. We normalise spatially-averaged inventory numbers to equal mean Cv across the 22 simulations in years 266	
  

1980 (South America) and 1987 (Africa). Yearly percentage changes in mean, and 97.5% and 2.5% confidence 267	
  

levels equal those measured, and these normalised changes are plotted in Figure 1.   268	
  

 269	
  

Variance of changes in Cv between DGVMs (square of SDs in Figure 4d) is the average of, for each SRES 270	
  

scenario, expected variance across the five models. Similarly variance between SRES scenarios is calculated by 271	
  

averaging, for each DGVM, the variance across scenarios. Adding these two values to the additional variance 272	
  
across the 22-GCM simulations gives total variance. An overall mean is calculated across the 20 DGVM 273	
  

simulations (5 models, 4 scenarios). We account for the HadCM3 climate model only being used in the DGVM 274	
  

intercomparison study by offsetting the overall mean by the difference between the mean of the 22 climate 275	
  

simulations and the HadCM3 simulation (red bar versus mean value of the “22-GCM” columns; Figure 4a-c). 276	
  

These mean and variance provide the first illustrative probabilities of biomass loss under an assumption of 277	
  

normal distribution. The second set of probabilities are similarly calculated, with our HadCM3-forced MOSES-278	
  

TRIFFID simulation replacing that in the DGVM-study for SRES A2. Now the mean is calculated across the 279	
  
SRES A2 DGVM simulations, and offset as above. Variance is the sum of variance across SRES A2 DGVMs 280	
  

combined with that across the 22-GCM runs. 281	
  

 282	
  

Supplementary Information gives additional discussion of methods and ecological uncertainties. 283	
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 405	
  

Figure Legends 406	
  

 407	
  

Figure 1: Map of tropical forest. Shown are tropical land regions and model gridboxes predicted to 408	
  

have more than 85% cover of forest for pre-industrial climate (continuous and dashed black outlines). 409	
  

The green dots are from satellite retrievals of where there is mainly evergreen tropical forest, based on 410	
  

the GLC2000 land cover map. The gridboxes used in our analysis have continuous black outlines. The 411	
  

15 gridboxes outlined with dashed lines were not included in our analysis as these areas contain little 412	
  

(<10%) observed forest cover, despite the model predicting higher coverage.  413	
  

 414	
  

Figure 2: Tropical forest biomass predictions for (a) Americas, (b) Africa and (c) Asia by the 415	
  

MOSES-TRIFFID model forced by 22 climate models. Climate models emulated are colour-coded, 416	
  

from dark blue to dark red for decreasing year 2100 values of Cv. Grey regions are “committed” Cv 417	
  

values with climate constant at year 2100 values, and small dashes link back to same model in 418	
  

transient predictions. Committed equilibrium values are year-independent, hence the “x”-axis break 419	
  

(small vertical bars). Normalised estimates of Cv from inventory data (2.5%, mean and 97.5% 420	
  

confidence levels) are the short black curves for Americas and Africa. Horizontal lines (large dashes) 421	
  

are estimated pre-industrial values, year 1860.   422	
  

 423	
  

Figure 3: Sensitivity of changes in biomass of Americas to different climate model drivers. Plot of 424	
  

changes to Cv for year 2100 minus 1860, for each climate model emulated. Included are sensitivity 425	
  

simulations for temperature change only, rainfall change only, CO2 change only, and for comparison 426	
  

against these, for all forcings. Also presented, as numbers on the plot, are the average yearly changes 427	
  

across the Amazon in the climatology associated with each sensitivity simulation.	
  	
  428	
  

 429	
  

Figure 4: Contributions of model uncertainties. For the three regions (panels a-c), spread of changes 430	
  

in Cv, 2100 value minus 1860. “22-GCM” the transient simulations presented in Figure 2 with the 431	
  

HadCM3 climate model in red. Similar calculations for the Perturbed Parameter Experiments with 432	
  

HadCM3C (“PPE”) 3C and the HadCM3-forced DGVM intercomparison simulations (“DGVMs”; 433	
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SRES scenarios as marked and MOSES/TRIFFID red). “PPE” and MOSES/TRIFFID for “DGVMs” 434	
  

are fixed Q10 maintenance respiration. Panel (d) presents for all three regions, estimates of standard 435	
  

deviations between climate models (cyan axis) and between SRES scenarios (blue axis), plotted 436	
  

against standard deviations between the DGVM models. 437	
  

 438	
  


