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a b s t r a c t

Currently the number of reduction methods used in practice in climate applications is vast and tends
to be difficult to access for researchers searching for an overview of the area. In this work, we review
a range of reduction methods that have been, or may be useful for connecting models of the Earth’s
climate system of differing complexity. We particularly focus on methods where rigorous reduction
is possible. We aim to highlight the main mathematical ideas of each reduction method and also
provide several benchmark examples for the reduction from climate modelling. In particular, our goal
is to provide a broad overview of available methods.
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hese cover processes at a wide variety of space and timescales
nd give rise to hierarchy of models [1,2] for various aspects
f the climate. The highest resolution and most complex Earth
ystem Models (ESMs), such as [3], underpin the science Climate
odelling Intercomparison Project (CMIP) forming the scientific
asis for the Assessment Reports of the Intergovernmental Panel
n Climate Change (IPCC) [4]. ESMs try to describe the Earth
ystem as accurately as possible and to make precise prediction of
he evolution of the Earth’s climate and its different components,
nd from these results we can make conclusions not just about
atural variability of the climate system but also about variability
hat is due to anthropogenic effects. Models that attempt to un-
erstand the atmosphere and ocean are called general circulation
odels (GCMs) [5]. Since ESMs and GCMs are of high resolution
nd include complex physics, they are very difficult to analyse.
Climate and weather models1 are typically nonlinear differ-

ntial equations that are mathematically challenging (compress-
ble Navier–Stokes equations with highly nontrivial thermody-
amics and chemistry, and topographically non-trivial boundary
onditions and a variety of forcing terms) [2]. Over very long
imescales different processes become important for the dynam-
cs [6]. Hence, they are usually simulated with a high resolution
n very powerful computers but typically only short runs can
e achieved at high resolution. For some questions that involve
onger timescales, one can consider a hierarchy of models [7]
here high resolution ESM/GCMs can be approximated using

ower resolution ESMs or Earth system models of intermediate
omplexity (EMICs). These models usually contain several sim-
lifications and a larger grid size compared to the ESMs/GCMs
nd they therefore need less computing time. However, EMICs
re still mostly too complex for analytical study without further
implification.
To have any chance of analytically understanding components

f the Earth’s climate, one has to go further down the model
ierarchy and study conceptual models such as box models or en-
rgy balance models that contain not more than a few variables,
here hidden variables may be assumed to be in equilibrium
r may be represented as noise terms [2,8–10]. It is remarkable
hat simple models can often reproduce many aspects of the
arth’s climate system [1,11] and while the similarity of the
ehaviour of complex and simple models may in some cases
ot be rigorously jusitfiable, in other cases it can be formally
inked through a rigorous reduction procedure. For example, one
f the key problems in climate science is the determination of
quilibrium Climate Sensitivity (ECS) [12]. This is defined to be
he equilibrium increase in global mean surface temperature that
esults from a doubling of CO2 in the atmosphere and as such is
used as the key scientific link between anthropogenic emissions
and climate change [13,14]. A rigorous justification of ECS would
need to span the model hierarchy as it involves reduction of
ESM runs to an equation that just considers global radiation
balance [8].

The aim of this paper to give an overview of prominent and
rigorously justifiable reduction methods that have found use in
climate modelling, and to highlight others that may find use in fu-
ture. To keep the review sufficiently brief, we focus on reduction
methods for differential equations and only comment on other
(e.g. data-driven) reduction methods for stochastic differential
equations in the outlook, though we do discuss an example
of diffusion maps in Appendix. Methods for model reduction
have become so large and diverse in recent years that getting
an overview of the main approaches for PDEs is a major chal-
lenge when entering the field. Here, we hope to alleviate this

1 We refer to both types of models simply as climate models in the
emainder.
2

by providing a relatively concise, yet sufficiently broad, entry
point to the literature. Furthermore, we point out that beyond
getting an overview of the available reduction techniques, several
additional tasks are crucial. For example, one should aim to
understand, how the dynamics of the reduced model reproduces
a more complex one, and vice versa, whether a large-scale model
correctly captures basic physical effects and avoids numerical
over-stabilization. Such types of tasks, albeit highly interesting,
are beyond the scope of this work. Here we focus on the mathe-
matical ideas underlying each reduction method to make it easier
to distinguish, as well as understanding why a reduced model has
a particular form.

1.1. Reduction of deterministic climate models

We present a survey of several major reduction methods that
can be applied to climate models. For each approach, we start
with its motivation, then present the main reduction idea, giving
some concrete examples and comments on the method. In the ab-
sence of time-dependent forcing, a climate model can described
by

ż = F (z) (1.1)

where z represents the discretized state. However, there are
slowly evolving aspects (climate/ocean) and faster (weather) vari-
ables. This splitting into climate and weather variables, proposed
by Hasselmann in [8], has proven to be a very fruitful point of
view and has been explored in many papers since; see for exam-
ple [15,16]. Indeed, the wide range of timescales from tectonic to
atmospheric processes [17], recently reviewed in [18], highlight
there is a multiscale hierarchy inherent in earth system processes.
To illustrate the weather-climate scale separation, consider a
fast–slow evolution equation of the form

ẋ = f (x, y),
˙ = εg(x, y),

(1.2)

where z = (x, y) is split into slow (climate) variables y and
the fast (weather) variables x. The separation of timescales is
indicated by a small parameter ε > 0. Some of the methods, such
as slow manifold reductions, averaging or homogenization, try to
make use of the special structure such as (1.2) with the aim of
reducing to the climate variable y only. Others, such as certain
spectral Galerkin approximations or asymptotic expansions, can
be used to formally establish (1.2) from (1.1).

In Section 2, we consider an abstract forced evolution equation
and start with direct linear projection methods, which are among
the most classical – yet quite coarse – reduction tools. There
exist many methods which can help in finding lower-dimensional
structures in high dimensional data. In the context of climate
data, a reduction via empirical orthogonal functions (EOFs), which
we discuss in Section 2.2, is among the most standard. In Sec-
tion 3, we proceed to methods motivated by asymptotic analysis
and the principle of dominant balance, where one identifies suit-
able asymptotic scales directly within evolution equations and
formally discards higher-order terms. In Section 4, we introduce
methods based upon invariant manifold theory, which can be
rigorously justified in many cases. Note that reduction of the cou-
pled system (1.1) to a system with the climate variable only does
not necessarily lead to a deterministic equation. Sometimes, the
variability of the climate system is better described by stochastic
forcing or by including a delay term. In fact, the reduction from
a deterministic equation to an equation with random forcing can
be described by averaging and homogenization techniques which
we discuss in Section 5. We consider classical moment closure
schemes in Section 6. If no direct deterministic reduction for a
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Table 1
A summary of the reduction methods discussed in this paper: the relevant Section in the paper is denoted with §X.Y. Note that
ODE/PDE/SDE/DDE refer to ordinary/partial/stochastic/delay differential equation models.
Reduction method From To

Spectral Galerkin approximations (Section 2.1) PDE ODE

Empirical orthogonal functions (Section 2.2) High dimensional data set Low dimensional data set
High dimensional ODE Low dimensional ODE

Principal interaction patterns (Section 2.3) High dimensional ODE Low dimensional ODE

Characteristic scales (Section 3) PDE PDE of lesser complexity

Inertial manifolds (Section 4.1) PDE ODE

Slow manifolds (Section 4.2) Fast–slow system of PDEs PDE with slow variable only
ODE with slow variable only

Fast–slow system of ODEs ODE with slow variable only

Centre manifolds (Section 4.3)
ODE ODE with neutral directions onlyPDE

PDE PDE with neutral directions only

Averaging (Section 5.1)

Fast–slow system of ODEs ODE with slow variable only

Fast–slow system of SDEs ODE with slow variable only
SDE with slow variable only

Fast–slow system of SPDEs PDE with slow variable only
SPDE with slow variable only

Homogenization (Section 5.2, 5.3)

PDE with strongly PDE with constant coefficientsvarying coefficients

Fast–slow system of ODEs SDE with one
with two time scales time scale

Mori–Zwanzig (Section 5.4) PDE ODE/DDEODE

Moment closure methods (Section 6) SDE ODEPDE
given evolution equation is available, one often needs (prelim-
inary) statistical/data-based tools and we include an Appendix
to introduce one instance of statistical manifold learning to point
the reader to the complementary view of primarily data-driven
approaches.

Although we do not claim to cover all possible reduction tech-
iques, we hope that laying out the general ideas via mathemat-
cally concrete examples will help the reader better understand
he (dis-)advantages of each reduction principle.

.2. Classification of reduction methods

Climate models can be described by different types of equa-
ions. They can appear as differential equations with possible
elay, spatial derivatives and/or stochastic terms. Many of the
eduction methods we want to discuss in this article start with
ne of these types of equations and transform it into another.
ne can use this to structure the myriad of reduction methods
vailable in the literature. For the few methods we treat in this
rticle, Table 1 gives a summary overview of reduction methods
xplored later in the paper.
A more precise description of the different methods follows

n the subsequent sections, together with some examples of ap-
lications to aspects of the climate system. We hope that this
rovides readers, who have concrete models in mind, a structured
iew, which methods are available and how to adapt the main
dea to their concrete context. Due to complexity of the climate
ystem and the sort of questions that need to be answered, it
s clearly too optimistic to expect a ‘‘one-catch-all method’’ for
limate model reduction.

. Linear truncation methods

If one seeks to reduce the complexity of a model or the
ize of a data set, it is a common approach to project it to a
ower-dimensional linear subspace of the state space, which is
3

believed to contain the most important interactions of the model
or the data set. The hope is that the parts that are lost during
this truncation procedure are not essential and that they can be
neglected without losing any meaningful information. Such tech-
niques can be very useful in many different situations: Galerkin
approximations can be used to derive well-posedness of partial
differential equations on an abstract level [19], finite element
methods are a standard tool in numerical applications [20], and
a principal component analysis is a well established procedure to
structure a given data set [21]. There are many different ways
to construct the linear subspace on which the model or data
set should be projected and it would be beyond the scope of
this paper to discuss all of them. Instead, we just treat three
of these methods: First, we study a Fourier–Galerkin approach
that can be used to reduce a partial differential equation to an
ordinary differential equation. It can also be used to establish a
splitting like (1.2) in a fast and a slow variable. After that, we
discuss empirical orthogonal functions (EOFs) which is a standard
technique to reduce the dimensionality of a data set. However,
when applied to a dynamical system, it usually only preserves the
statistical and not the dynamical properties of the system. There
are methods which try to address this issue, one of them being
the use of principal interaction patterns (PIPs), which is the last
method we study in this section.

2.1. A Galerkin approach

Galerkin approximation appears in different situations in the
context of partial differential equations. It is a versatile tool and
can be used for deriving the abstract well-posedness of partial
differential equations as well as for the development of numerical
algorithms. Galerkin approximations are common, and there are
many textbooks available, see for example [22,23].

Idea: In certain situations infinite-dimensional systems may
come with a natural (Schauder) basis which one can use to
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onstruct finite dimensional subspaces. For example, if one has
partial differential equation with periodic boundary conditions,
his can be the canonical Fourier basis, or if there is a self-adjoint
perator on a Hilbert space involved, then this may be the set
f eigenfunctions of this operator. This is a spectral Galerkin
ind of approach, which is often most convenient if periodic
oundary conditions in space are imposed. The idea is to ex-
and the equation into a Fourier series in space and to omit
igh frequencies. Oftentimes, such a basis comes with a natural
rder. In the case of the Fourier basis, this order is given by the
ncreasing frequencies, and in the case of eigenfunctions of a self-
djoint operator, it may be given by the order of the eigenvalues
n the real axis. The finite-dimensional approximations are then
btained by projecting the system to the linear span of a finite
umber of basis vectors.
Outline of the Reduction Procedure: A standard scenario in

hich Galerkin approximations can be applied is given by the
bstract evolution equation

tu(t) = F (t, u(t)), u(0) = u0 (2.1)

n a Hilbert space H . Let (ek)k∈N be an orthonormal basis of H .
hen one can define the n-dimensional spaces Hn := span{e1,
. . , en} (n ∈ N) and the canonical orthogonal projections Pn :H →

n. If we truncate (2.1) to Hn, we obtain the finite-dimensional
ystem

tvn(t) = PnF (t, vn(t)), vn(0) = Pnu0, (2.2)

here vn := Pnu. Let ⟨ ·, ·⟩ be the inner product of H . Then we can
ewrite (2.2) in terms of

∂t

n∑
j=1

⟨vn(t), ej⟩ej =

n∑
j=1

⟨PnF (t, vn(t)), ej⟩ej,

n∑
j=1

⟨vn(0), ej⟩ej =

n∑
j=1

⟨u0, ej⟩ej. (2.3)

ow, we define xnj (t) := ⟨vn(t), ej⟩, f nj (t, x
n
1(t), . . . , x

n
n(t)) :=

⟨PnF (t, vn(t)), ej⟩ and xn0,j := ⟨u0, ej⟩ so that (2.3) can be rewritten
as

d
dt

xnj (t) = f nj (t, x
n
1(t), . . . , x

n
n(t)), xnj (0) = xn0,j, (j = 1, . . . , n)

(2.4)

by the linear independence of (ek)k∈N. If we define

xn := (xn1, . . . , x
n
n),

f n := (f n1 , . . . , f
n
n ),

xn0 := (xn0,1, . . . , x
n
0,n),

then we obtain the more compact form

ẋn(t) = f n(t, xn(t)), xn(0) = xn0. (2.5)

This is now an n-dimensional system of ordinary differential
equations and is called a Galerkin approximation of (2.1). More-
over, under relatively mild conditions it holds that xn → x weakly
as n → ∞ in H . For more details on the precise assumptions and
statements we refer for example to [24, Theorem 2.76] or [25,
Chapter III.4].

Example: We follow [9], where the equations for barotropic
flow on a beta plane with topography and mean flow are consid-
ered:
∂q
∂t

+ ∇
⊥ψ · ∇q + U

∂q
∂x1

+ β
∂ψ

∂x1
= 0,

q = ∆ψ + h,
dU

= −

∫
h
∂ψ

.

(2.6)
dt ∂x1
4

Here, q(x1, x2, t) denotes the small-scale potential vorticity, U(t)
is the mean flow, ψ(x1, x2, t) is the small-scale stream function,
and h(x1, x2) denotes the underlying topography, whereas β ap-
proximates the variation of the Coriolis parameter. Moreover, we
use the notation ∇

⊥
:= (−∂x2 , ∂x1 ) and the integral denotes

the mean integral over the 2-dimensional torus T2. In [9], the
equation is studied with periodic boundary conditions so that
one may take the Fourier basis functions ([x ↦→ eikx])k∈Z2 as
an orthonormal basis of L2(T2). As in [9, Section 3] we choose
Λ ∈ N and define σΛ = {k ∈ Z2

: 1 ≤ |k|2 ≤ Λ}, BΛ =

{eikx : k ∈ σΛ} as well as the orthogonal projection PΛ onto
HΛ := span BΛ, where orthogonality is understood with respect
to the L2(T2)-scalar product. Moreover, we write

ψΛ(x) =

∑
1≤|k|2≤Λ

ψ̂k(t)eikx, hΛ(x) =

∑
1≤|k|2≤Λ

ĥkeikx,

qΛ(x, t) =

∑
1≤|k|2≤Λ

q̂k(t)eikx

for the truncations to HΛ and substitute uk(t) := |k|ψk(t). By the
reduction procedure described above, one obtains the system
dU
dt

= Im
∑
k∈σΛ

Hkuk,

q̂k = −|k|uk + ĥk (k ∈ σΛ),
duk

dt
= iHkU − i(kxU −Ωk)uk +

∑
l∈σΛ

Lklul

+
1
2

∑
l,m∈σΛ

k+l+m=0

Bklmulum (k ∈ σΛ),

here

Lkl =
kxly − kylx

|k||l|
hk−l,

Bklm = (lymx − lxmy)
|l|2 − |m|

2

|k||l||m|
,

Ωk =
kxβ
|k|2

, Hk =
kxĥk

|k|
.

he Fourier basis could also be used to derive a splitting in a
eather and a climate variable as in (1.2), since higher Fourier
odes have stronger oscillations which oftentimes lead to faster
ynamics. In this sense, one can introduce 1 ≤ Λ ≤ Λ and

consider uk, qk with k ∈ σΛ and U as slow climate variables and
uk, qk with k ∈ σΛ \ σΛ as fast weather variables. We refer to [9]
for further details and to Section 5 where we continue with this
example.

Comments:

• Galerkin-type methods have the advantage that they are
often easy to implement and that they provide a nice geo-
metric intuition as solutions are expanded in basis functions.
Therefore, one hopes to capture most features that can be
expressed in terms of the finite number of basis functions
left in the approximation. Numerical tests can often indicate
how many basis functions are needed in practice.

• One disadvantage is that models can become large very
quickly if a sufficient accuracy is required, which somewhat
defies the initial point of model reduction as a system of
nonlinear ordinary differential equation with very many
variables is analytically frequently not much easier than
directly analysing the initial partial differential equation,
e.g., in the context of existence and stability analysis of
patterns. Particularly for fluid dynamics, e.g., Navier–Stokes-
type equations, it is well-known that small-scale turbulence
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can spread from very high Fourier modes into low modes in
certain cases.

• Beyond global basis functions such as Fourier bases, one
can also consider compactly supported basis functions in
finite element or finite volume schemes. These methods are
numerically also extremely efficient but usually not capable
of providing a substantial reduction in model complexity as
the set of basis functions required is often much larger in
comparison to spectral Galerkin approaches.

In fact, we shall see below that the advantages and disadvan-
tages mentioned above, are quite typical not only for
Galerkin-type methods but for all methods based upon linear
projection/reduction. The next method shows another classical
example of this principle.

2.2. Empirical orthogonal functions (EOFs)

There are many different names for the method that yields
the construction of the so-called empirical orthogonal functions.
Closely related methods are also referred to as singular value
decomposition [26], principal component analysis [27] or proper
orthogonal decomposition [28]. This technique is well established
and widely used, not only for the reduction of climate models or
climate data. We refer to [29–32].

Idea: The aim is to construct a subspace of a given dimension
which carries the largest amount of variance of the given data
set. The data set is then projected orthogonally to this subspace.
If one starts with a dynamical system instead of a data set, then
one can obtain a data set by taking a certain number of snapshots
of trajectories of the dynamical system.

Outline of the Reduction Procedure: One can start with a
collection of N ∈ N points x1, . . . , xN ∈ Rd. Alternatively,
if a dynamical system in a d-dimensional state space is given,
then one can take N snapshots of a trajectory (x1, . . . , xN ) =

z(t1), . . . , z(tN )) at different times t1, . . . , tN ≥ 0 or a collection
f such snapshots of trajectories with different initial values.
ither way, one works with a matrix X = (x1 − x, . . . , xN − x) ∈

Rd×N which is given as a concatenation of the data set relative to
the mean x :=

1
N

∑N
j=1 xj. The matrix XXT

∈ Rd×d is symmetric
and positive semidefinite. Therefore, it has d eigenvalues λ1 ≥

· · ≥ λd ≥ 0 and corresponding orthonormal eigenvectors
1, . . . , vd ∈ Rd. From a statistical point of view the matrix is the
ovariance matrix of the data set multiplied N (or N−1 depending
n the convention). Thus, the eigenvalue λi can be considered as
measure of variance the direction of vi carries. Since the initial

dea was to determine the directions with the most variance, one
rojects the data set to the subspace generated by v1, . . . , vk for
ome k ≤ d. More precisely, one defines

k
l :=

k∑
j=1

⟨xl, vj⟩vj (l = 1, . . . ,N).

ere, ⟨xl, vj⟩ denotes the usual Euclidean scalar product, but note
hat also other choices of scalar products are possible, as we will
xplain later in the comments. The points xk1, . . . , x

k
N are now con-

tained in a k-dimensional subspace of Rd. The choice of k depends
on the application in mind and can also be chosen according to
the given data set. Small values of k have the advantage that
one ends up with a very low-dimensional data set. However, the
approximation gets rougher with smaller values of k. Hence, there
is a trade-off between the dimension of the reduced data set and
the quality of approximation of the original data set.

Example: There are many works that use EOFs and its ex-
tensions in a climate context, see for example [33–40]. Let us

briefly explain using the example in [35]. Therein, the authors

5

compare reductions of the Charney–DeVore model with different
basis functions, among them EOFs. The Charney–DeVore model
was derived in [41] as a 6-dimensional Galerkin approximation
of the vorticity equation for a large-scale atmospheric flow on a
β-plane channel with topography which is similar to Eq. (2.6).
The reduced equations which are considered in [35] are of the
form
ẋ1 = γ̃1x3 − C(x1 − x∗

1),
˙2 = −(α1x1 − β1)x3 − Cx2 − δ1x4x6,
˙3 = (α1x1 − β1)x2 − γ1x1 − Cx3 + δ1x4x5,
˙4 = γ̃2x6 − C(x4 − x∗

4) + η(x2x6 − x3x5),
˙5 = −(α2x1 − β2)x6 − Cx5 − δ2x4x3,
˙6 = (α2x1 − β2)x5 − γ2x4 − Cx6 + δ2x4x2,

(2.7)

here (x1, x2, x3, x4, x5, x6) are the unknown functions, x∗

1, x
∗

4 are
orcing terms and the other quantities are model parameters
aking the form

j =
8
√
2

π

j2

4j2 − 1
b2 + j2 − 1
b2 + j2

,

βj =
βb2

b2 + j2
,

δj =
64

√
2

15π
b2 − j2 + 1
b2 + j2

,

γj = γ
4j

4j2 − 1

√
2b
π
, η =

16
√
2

5π
,

γj = γ
4j3

4j2 − 1
×

√
2b

π (b2 + j2)
(j ∈ {1, 2}).

Here, b models the length–width ration of the β-channel, β
comes from the Coriolis force, γ from the topographic height
and the damping parameter C is determined by the friction in
the Ekman layer. In the vorticity equation from which (2.7) is
derived, it is assumed that the forcing term points in the zonal
direction only. During the Galerkin reduction, this leads to the
fact that there are only forcing terms in the equations for x1 and
x4. This model can show rapid and chaotic transitions between
different flow regimes. As was shown in [42], this is the case for
the parameter values

(x∗

1, x
∗

4, C, β, γ , b) = (0.95, −0.76095, 0.1, 1.25, 0.2, 0.5).

In [35] it was investigated, whether these regime transitions
would persist under an EOF reduction. As described in the outline
of the EOF reduction procedure above, the EOFs were computed
from the data set generated by a numerical integration of the full
model. The authors also used different energy metrics, i.e., dif-
ferent scalar products for the computation of the EOFs. It was
found that none of the reduced models was able to reproduce
the chaotic transition behaviour of the full model. Even though
some of the reduced models show regime transitions, they are far
too regular and of periodic type. This already indicates one of the
problems of EOF reductions. Even though reduced models usually
show the same or a similar statistical behaviour as the original
model, the dynamical behaviour might still be very different.

Comments:

• In applications, variance and distances are sometimes not
measured in terms of the Euclidean metric, but, for exam-
ple, with respect to a given energy metric determined by
a symmetric positive definite matrix M ∈ Rd×d. In this
case, orthogonality is not understood with respect to the
Euclidean scalar product, but with respect to the scalar
product
(x, y)M = ⟨x,My⟩.
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In this case, the covariance matrix is given by M1/2X
(M1/2X)⊤ and λ(M)

1 , . . ., λ(M)
N as well as ṽ(M)

1 , . . . , ṽ
(M)
N are

defined by the relation

M1/2X(M1/2X)T ṽ(M)
i = λ

(M)
i ṽ

(M)
i .

As above, the ṽ(M)
1 , . . . , ṽ

(M)
N are orthonormal with respect to

the Euclidean scalar product. Therefore, the basis defined by
v
(M)
i := M−

1
2 ṽ

(M)
N is orthonormal with respect to M , i.e.

(v(M)
i , v

(M)
j )M := ⟨v

(M)
i ,Mv(M)

j ⟩ = δi,j.

The projection of the data points is then given by

xk,(M)
l :=

k∑
j=1

(xl, v
(M)
j )Mv

(M)
j =

k∑
j=1

⟨xl,Mv
(M)
j ⟩v

(M)
j

where l = 1, . . . ,N . In the literature, it is often common to
define

v
(M)
1 , . . . , v

(M)
N

directly as the eigenvectors of the eigenvalue problem

XX⊤Mv(M)
i = λ

(M)
i v

(M)
i ,

see for example [35, Section 3] or [43, Section 4.3]. But
it is easy to see that both definitions are mathematically
equivalent. Yet, it is often natural to re-scale via an energy
metric to bring different directions onto a common scale.
In fact, introducing the matrix M into the inner product
corresponds to an an-isotropic or ellipsoidal deformation of
phase space. This is a common trick not only appearing from
a physical or geometric perspective but also in the context of
statistical techniques, where the Mahalanobis distance uses
a scaling matrix M based upon the covariance of a stochastic
process [44,45].

• In some sense, adding the energy metric M is an extension
of the usual EOF approach. However, this is not the only
possible extension. We refer the reader to [30,46] for more
content in this direction.

• EOFs are designed to reduce the dimension of a data set
while giving a good approximation of its statistical features.
However, this method does not aim to preserve the dynam-
ics of a dynamical system and indeed it has problems in
doing so. This is pointed out in several papers, e.g. [35,47]
and references therein. In particular, one cannot expect that
dynamical notions such as invariant manifolds, attractors or
bifurcations persist under an EOF-reduction.

• Furthermore, following up on the last drawback, EOFs also
struggle with providing a transparent method for parameter
tracing through the reduction. Therefore, one often has to
add back in parameters after the reduction, see e.g. [48], to
perform a bifurcation analysis.

As discussed above, EOFs cannot be expected to preserve
the dynamics of a dynamical system in general. A reduction
method via principal interaction patterns, which we discuss next,
is designed to improve on this issue.

2.3. Principal interaction patterns (PIPs)

Now we consider another choice of basis functions, namely
principal interaction patterns (PIPs). The idea behind PIPs was
introduced by Hasselmann in [49]. It was then used and further
refined in several papers, e.g. [43,50–54].

Idea: The idea is similar to that motivating the EOF-method
in the sense that one is looking for a suitable low-dimensional
subspace to which one can project a dynamical system. But in
6

contrast to the EOF-method, principal interaction patterns were
introduced with the aim of finding a reduction method which
focuses more on the dynamics instead of the statistics of a dy-
namical system. Therefore, PIPs are constructed as (approximate)
minimizers of a certain error functional which measures the
distance of the projected solutions to the original solutions.

Outline of the Reduction Procedure: The aim of this method
is to reduce a system of ordinary differential equations

ẋ(t) = F (t, x(t)), x(0) = x0 (2.8)

in the state space Rd with d ∈ N being large, to a lower-
dimensional system. Even though PIPs are constructed for
systems as (2.8), they can also be used for partial differential
equations of the form

∂tu = D(u) (2.9)

with a suitable nonlinear operator D. But in such a case, (2.9)
is approximated by (2.8) through a Galerkin approximation and
then the PIPs are constructed for (2.8).

For the construction of PIPs one needs a suitable notion of an
average or expectation of several quantities over a set of initial
values (2.8). We will use the notation ⟨·⟩ for this average. In
the literature, this average is not always made precise and may
slightly differ in different situations. The idea behind the pre-
cise definitions is however similar in most cases. In the original
paper by Hasselmann [49], in which the idea of PIPs was first
introduced, it is just described as expectation value. In [52] it
is an ensemble average over an attractor. Similarly, an ensemble
average over a finite number of such initial conditions was chosen
in [35]. Since PIPs are eventually determined numerically anyway,
we also work with a finite number of initial conditions in the
following. Therefore, let I = {x0,1, . . . , x0,N} be a set of N ∈ N
initial conditions for (2.8). Whenever V is a vector space and
f :Rd

→ V a mapping, we use the notation

⟨f ⟩ :=
1
N

N∑
j=1

f (x0,j).

But one should keep in mind that other notions of average are
also possible.

For a fixed number k ∈ N with k < d and linearly independent
vectors p1, . . . , pk ∈ Rd one defines P := span{p1, . . . , pk}. Then,
ne projects (2.8) orthogonally to the reduced system

˙P (t) = FP (t, xP (t)), xP (0) = x0P . (2.10)

ere, FP = prP ◦F where prP denotes the orthogonal projection
nto P and where orthogonality may again be understood with
espect to the scalar product ⟨x,My⟩ given by the Euclidean scalar
product and the energy metric M ∈ Rd×d.

Now, we split

x(t) = ⟨x(t)⟩ + x̃(t), xP (t) = ⟨x(t)⟩ + x̃P (t)

and work with the deviations from the mean state ⟨x(t)⟩ of the
system at time t . We define the error functional

Q (P;w) :=

⟨∫
∞

0
∥̃xP (τ ) − x̃(τ )∥2

Mw(τ ) dτ
⟩
.

Here, ∥v∥M :=
√

⟨v,Mv⟩ and w : [0,∞) → [0,∞) is a suitable
weight function. As for the definition of the average, there is some
freedom in the choice of the error functional that goes beyond
different choices of w or M . We refer the reader to [35,49,52,54],
where different choices have been made. Now, P is chosen as
an approximate minimizer of the error functional Q (P;w) and
usually determined by numerical methods. Details of the mini-
mization procedure are carried out in the appendix of [52]. The
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rincipal interaction patterns are now the basis p1, . . . , pk of P .
Obviously, they are not unique, since one can obtain a new basis
by a linear transformation on P . Thus, one usually imposes con-
straints on the choice of p1, . . . , pk so that they can be uniquely
determined, see for example [52, Section II.C].

Example: We consider again the CDV-model (2.7). In the
section on EOF reductions we discussed the reductions carried
out in [35] and how an EOF reduction could not reproduce the
chaotic transitions between different flow regimes. Since PIPs
were introduced with the intention in mind, that they should
be able to preserve the dynamical behaviour of a system, one
might ask whether they are able to do so in the case of the CDV-
model. This was also investigated in [35]. The authors carried
out various PIP reductions with different weights w and different
sets of initial conditions I . It was found that most models were
able to reproduce the chaotic regime transitions. Moreover, the
power spectra of the trajectories integrated from the reduced
models were compared to the ones from the full model and it
was found that they look very similar. Therefore, one could say
that for the CDV-model a PIP reduction would indeed yield a
more precise reduced model than an EOF reduction. However, the
dependence of the reduction on the input parameters is in some
cases counterintuitive. In particular, it was found that the chaotic
regime transitions would not persist if the set of initial values I
was too large. This shows that even if a PIP reduction can produce
very good results, but the results depend crucially on the input
parameters and it is not always clear, what choice of parameters
would be suitable.

Comments:

• The choice of w, I and the averaging procedure is crucial
for the outcome of the minimization problem. This can be
seen as an advantage of PIPs, as it provides some flexibility.
But the downside is that it has not yet been systematically
investigated which choices would yield good results for a
given model. The outcome can also be counterintuitive to
some extend. For example, as discussed above it was ob-
served in [35] that for the Charney–DeVore model PIPs have
difficulties in preserving the dynamics if the set I contains
too many initial values.

• For example [52, Section II.E] it was observed that one can
obtain EOFs as a limiting case of PIPs if w =

1
τmax

1τmax and
τmax → 0.

• The minimization of Q (P;w) resembles problems encoun-
tered in optimal control theory as for example presented
in [55]. The problem here is slightly different in the sense
that one is looking for a subspace such that the projection
error is minimized in terms of Q , whereas in optimal control
one usually looks for a control function or parameter such
that a cost functional is minimized subject to some con-
straints. But nonetheless, techniques from optimal control
also help in numerically solving the minimization task for
Q , see [52, Appendix B].

In the previous section we have seen how partial differen-
ial equations can by reduced to (finite-dimensional) ordinary
ifferential equations by projecting them to finite-dimensional
ubspaces of the phase space. The knowledge of certain patterns
r characteristic parameters may be useful for such an approach,
ut it is not essential. This is different in the next method we
re going the describe, as it is based on the utilization of the
haracteristic length scales, time scales and amplitudes of the
nderlying system.
7

3. Characteristic scales

Characteristic length or time scales can sometimes be found
in evolution equations of the form

∂tu(t, x) = F (∂x, u(t, x), ε), (3.1)

here F denotes a generally nonlinear spatial differential opera-
or and ε denotes a small parameter. The notion of characteristic
cale is not defined in a rigorous mathematical manner but is in-
tead based on certain parameters or observations of the system
escribed by (3.1).
Idea: Even very complex dynamical systems may exhibit char-

cteristic length or time scales at which interesting patterns
merge. Such characteristic scales can for example be induced
y certain parameters in the system or sometimes they are just
bserved as the system evolves. If one knows the underlying
quations of the system, then one can rescale them according
o the characteristic scales and just consider the leading order
erms which appear after the transformation. The hope is that
y restricting to the leading order terms the equations become
impler to analyse while their solutions might still show the
ame patterns whose scales were considered as characteristic.
ffectively, this idea is directly motivated by classical formal
atching techniques for differential equations [56–58], where
ne also searches for scalings such that several terms within
n equation are in a dominant balance, allowing us to discard
igher-order terms based on asymptotic analysis.
Outline of the Reduction Procedure: We suppose that (3.1) is

iven in a reference time and reference length scale in which we
enote the time variable by t the space variable by x. Moreover,
here are M ∈ N characteristic time and N ∈ N characteristic
length scales given by the coordinate transformations τ(j) = εαt,j t ,
j = 1, . . . ,M), and ξ(k) = εαx,kx (k = 1, . . . ,N), where the αt,j and
x,j are given real numbers. Let us fix j0 ∈ {1, . . . ,M} and k0 ∈

{1, . . . ,N} and suppose that we are interested in patterns that
emerge on the scales given by the variables (τ(j0), ξ(k0)). Therefore,
we rescale (3.1) according to this change of variables and obtain
an ansatz of the form

ε
αt,j0 ∂τ(j0)

u(τ(j0), ξ(k0)) = F (εαx,k0 ∂ξ(k0) , u(τ(j0), ξ(k0)), ε), (3.2)

hich is crucial for characteristic scales arguments to work. De-
ending on the exponents αt,j0 and εαx,k0 one has different leading
rder terms, i.e., terms with the lowest power in ε. At this point,
t can already be insightful to study the equation one obtains
y omitting the higher order terms. But in practice one some-
imes also has more information about the amplitudes of certain
atterns so that one can write

(τ(j0), ξ(k0)) =

P∑
l=1

εβlul(τ(j0), ξ(k0))

or certain P ∈ N, β1, . . . , βP ∈ R and potentially mutually depen-
ent functions u1, . . . , uP . Substituting this expansion into (3.2)
ay yield different leading order terms and thus also different

educed equations. Mathematically, including amplitudes is di-
ectly motivated by the theory of amplitude/modulation equa-
ions [59–61] used near bifurcations. For ODEs one can hope to
aking the scaling arguments geometrically rigorous, even near
ifurcations, via geometric desingularization [62–65].
Example: In [66], formal asymptotic analysis ideas regarding

haracteristic scales are applied to compressible flow equations
or an ideal gas with constant specific-heat capacities and includ-
ng gravity, rotation, and generalized source terms. In addition, a
angent plane approximation is used, i.e. one neglects the curva-
ure of the sphere but still takes the Coriolis force into account.
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ore precisely, the system

∂

∂t
+ v∥ · ∇∥ + w

∂

∂z

)
v∥ + ε(2Ω × v)∥ +

1
ε3ρ

∇∥p = Qv∥ ,(
∂

∂t
+ v∥ · ∇∥ + w

∂

∂z

)
w + ε(2Ω × v)⊥ +

1
ε3ρ

∂p
∂z

= Qw −
1
ε3
,(

∂

∂t
+ v∥ · ∇∥ + w

∂

∂z

)
ρ + ρ∇ · v = 0,(

∂

∂t
+ v∥ · ∇∥ + w

∂

∂z

)
Θ = QΘ

(3.3)

s considered. In this system, the subscript ∥ indicates quantities
n horizontal direction, i.e., ∇∥ = (∂x1 , ∂x2 )

T , v∥ denotes the
horizontal direction of the flow velocity v = (v∥, w) and (2Ω×v)∥
denotes the horizontal part of the Coriolis force with Ω being
the Earth’s rotation vector. (2Ω × v)⊥ in turn stands for the
vertical part of the Coriolis force and w for the vertical part
of the flow. Moreover, p denotes the pressure, ρ the density,
Θ = p1/γ /ρ the potential temperature (with γ being the ‘‘dry
isentropic exponent’’) and Q[·] some source terms. The variable z
corresponds to the vertical direction, x to the horizontal direction
and t to the time. First, the pressure p is replaced by the ‘‘Exner
pressure’’ π , i.e.

π = pΓ with Γ =
γ − 1
γ

.

Now, time and horizontal coordinates are rescaled by τ = εαt x
nd ξ = εαxx with certain αt , αx ≥ 0 which depend on the
cale one wants to consider. Fluctuations of the potential tem-
erature are expected to be of order ε, while velocities in hori-
ontal directions scale as εαx . Therefore, one may introduce the
expansions

Θ(τ , ξ, z) = 1 + εθ (z) + εαπ θ̃ (τ , ξ, z),
π (τ , ξ, z) = π (z) + εαπΓ π̃ (τ , ξ, z),
w(τ , ξ, z) = εαxw̃(τ , ξ, z).

Here, π satisfies

π (z) = 1 − Γ

∫ z

0

1
Θ(z ′)

dz ′

with Θ = 1 + θ being the horizontally averaged mean stratifica-
ion of the potential temperature. Moreover, the parameter απ
as to be chosen later to balance the pressure gradient in the
orizontal momentum equation, i.e., the first equation of (3.4).
sing these substitutions, the system (3.3) can be rewritten as(
εαt

εαx

∂

∂τ
+ v∥ · ∇ξ + w̃

∂

∂z

)
v∥ +

(2Ω × v)∥
εαx−1

+
εαπ

ε3
Θ∇ξ π̃ = Q ε

v∥
,

εαt

εαx

∂

∂τ
+ v∥ · ∇ξ + w̃

∂

∂z

)
w̃ +

(2Ω × v)⊥
ε2αx−1

+
εαπ

ε3+2αx

(
Θ
∂π̃

∂z
−
θ̃

Θ

)
= Q ε

w,(
εαt

εαx

∂

∂τ
+ v∥ · ∇ξ + w̃

∂

∂z

)
π̃ +

γπ

εαπ

×

(
∇ξ · v∥ +

∂w̃

∂z
+

w̃

γΓ π

dπ̃
dz

)
=
γπQ ε

Θ

Θ
,(

εαt

α

∂
+ v∥ · ∇ξ + w̃

∂
)
θ̃ +

ε

α
w̃

d̃θ
= Q ε

Θ .

(3.4)
ε x ∂τ ∂z ε π dz
8

For different choices of αx, αt , απ one obtains different leading
order equations. In [66], it is assumed that the order of the source
terms is high enough, so that they can be neglected.

Comments:

• In [66, Figure 1] it is shown which length and time scales
correspond to which models in the case of atmospheric
flows. Roughly speaking, a formal matching of characteristic
scales induces a hierarchy of models, where if possible it
is good to cross-check final analysis results regarding their
validity at the next lower or higher scale.

• The reduction in this section is a formal approach based
on asymptotic expansions. Although these expansions can
sometimes be made rigorous, it is often difficult to prove
that solutions of the reduced equations relate to solutions
of the original equations. Moreover, at least for atmospheric
flows there is not complete consensus that there is a natural
scale separation. We refer to [66, Section 1.4] where this is
briefly discussed. This is quite a natural point of discussion
as it is still a mathematically unsolved problem, how far one
has to track small-scale energy cascades to large scales in
geophysical fluid dynamics.

Using characteristic scales can be an intuitive and straightfor-
ward approach for a model reduction, provided that one has the
knowledge of the existence of such characteristic scales. How-
ever, there are oftentimes no direct estimates for approximation
errors, so that it can be unclear whether there is a rigorous con-
nection between the original and the reduced models. Invariant
manifold reductions, which we are going to discuss next, are
among the techniques for which this connection can indeed be
described rigorously.

4. Invariant manifolds

Invariant manifolds are a key element in the toolbox of dy-
namical systems theory. Yet, although different approaches have
been used successfully and rigorously in several applications, cli-
mate dynamics poses additional intricate problems. This pertains
crucially to the level of detail of a reduction that one aims for. If
one is just interested in the behaviour near a single equilibrium
point, stable/unstable and centre manifold theory applies to a
wide variety of differential equations. Centre manifolds [67] are
particularly useful as they isolate the slowest/neutral modes and
provide an efficient dimension reduction. At the next level of
detail, one can ask for larger invariant manifolds, which contain
non-trivial slow dynamics. This brings us to the realm of slow
manifolds [65,68,69], which are still generically local and focus
on finite time dynamics. Of course, one could even be more
ambitious and aim for a global reduction to a single effective
low-dimensional dynamical system, where manifolds are usu-
ally inertial manifolds [61,70,71]. Here we present these three
viewpoints in reverse order, going from the most global view of
inertial manifold, to the intermediate and flexible compromise
of slow manifolds, and finally we end describing classical local
centre manifold theory near a non-hyperbolic equilibrium.

4.1. Inertial manifold reduction

The concept of an inertial manifold aims for a global reduction
of a differential equation to a simple, hopefully low-dimensional,
set of ordinary differential equations. The most classical setup for
inertial manifolds occurs in the context of dissipative evolution
equations of the form
∂tu + Au = f (u), u(0) = u0. (4.1)
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n this scenario, A : H ⊃ D(A) → H is usually assumed to be
a self-adjoint operator with compact inverse on a Hilbert space
H and with domain D(A). Moreover, f : H → H is a Lipschitz
continuous nonlinearity. Technically, one may allow Lipschitz
continuous functions f :H → D(Aβ ) for β > −1, see for example
[72, Section 2.5], and this case is also important if the nonlinearity
involves derivatives of u. But for the sake of simplicity, we refrain
from giving a definition of D(Aβ ) and work with the simpler
case f : H → H instead. The dissipativity of (4.1) is understood
in the sense that there are positive constants C, α > 0 and a
nondecreasing function N : [0,∞) → [0,∞) such that solutions
of (4.1) satisfy the estimate

∥u(t)∥H ≤ N(∥u0∥H )e−αt
+ C (t ≥ 0).

An inertial manifold M is a smooth manifold in H such that

(i) M is finite-dimensional,
(ii) M is invariant, i.e., it holds that T (t)M ⊂ M, where

(T (t))t≥0 denotes the semiflow generated by (4.1).
(iii) M possesses the exponential tracking property, i.e., there

are constants C, α > 0 such that for all u0 ∈ H there exists
a v0 ∈ M such that the corresponding solutions u and v
satisfy

∥u(t) − v(t)∥H ≤ Ce−αt
∥u0 − v0∥H (t ≥ 0).

Idea: The invariance ensures that an inertial manifold is closed
under the dynamics and that the semiflow generated by (4.1) can
also be considered just on the inertial manifold instead of the
whole underlying space as a phase space. Due to the exponential
tracking property, one does not lose any long-term information
about the dynamics of (4.1) by this restriction. Nonetheless, since
an inertial manifold is finite-dimensional, the restriction of the
dynamics to it is expected to yield a much simpler dynamical
system than the one corresponding to (4.1).

Outline of the Reduction Procedure: Generally, inertial man-
ifolds are known to exist if A satisfies a certain spectral gap
condition in relation to f , see for example [72, Theorem 2.1]. More
precisely, one usually assumes that the spectrum of A consists
of a non-decreasing sequence of positive eigenvalues (λk)k∈N ⊂

(0,∞). Let (ek)k∈N be the corresponding sequence of orthonormal
eigenvectors and let Lf be the Lipschitz constant of f . If there is
an N ∈ N such that

λN+1 − λN > 2Lf , (4.2)

then there is an N-dimensional inertial manifold M given as a
graph of a Lipschitz-continuous mapping h :H+ → H−, i.e.,

M = {u+ + h(u+) : u+ ∈ H+}.

Here, H+ := span{e1, . . . , eN} and H− is the space generated by
the orthonormal system (ek)k∈N,k>N . Let prH+

: H → H+ be the
canonical projection onto H−. Similar to the procedure for slow
manifolds, one may then reduce (4.1) to

∂tu+ + Au+ = prH+
f (u+ + h(u+)), u = u+ + h(u+).

The dynamics of this system are now only finite-dimensional.
Example: After the concept of an inertial manifold was in-

troduced, there were attempts to prove the existence of in-
ertial manifolds for 2-dimensional Navier–Stokes equations in
different geometries, see for example [73,74]. However, there
is a gap in the proof in these early attempts so that the ex-
istence of inertial manifolds for the Navier–Stokes equations is
still an open problem. We refer to [75] in which the techniques
from [73,74] are discussed. Since proving the existence of an
inertial manifold for Navier–Stokes equations is a difficult prob-
lem even in the 2-dimensional case, inertial manifolds for sev-
eral regularizations have been considered in recent years, such
9

as Leray α-models [76–78], hyperviscous Navier–Stokes equa-
tions [79,80],[71, Chapter IX.4.3] or combinations of both [81].
Let us give more details on the hyperviscous case. The underlying
equation on the torus is given by

∂tu + ν(−∆)lu + (u · ∇)u + ∇p = g, (t, x) ∈ R+ × Tn,

div u = 0, u|t=0 = u0,
(4.3)

where u and p are the unknown functions, ν is a given parameter,
g a given forcing and u0 a given initial value. The parameter l
equals 1 for the classical Navier–Stokes equation and is taken
larger than 1 in the hyperviscous case. The existence of inertial
manifolds however has only been shown for an even smaller set
of exponents. But let us first bring (4.3) into the abstract form
(4.1). One may hide the incompressibility condition div u = 0 as
well as the pressure p by projecting the equation to divergence
free vector fields using the Helmholtz projection

P : L2(Tn
;Rn) → Lσ2 (T

n
;Rn),

where Lσ2 (T
n
;Rn) denotes the subspace of L2(Tn

;Rn) consisting of
he divergence free vector fields. Applying this projection to (4.3)
ields

tu + ν(−∆)lu + P(u · ∇)u = Pg, (t, x) ∈ R+ × Tn. (4.4)

ere, we used that u is divergence free and that P(−∆)lu =

(−∆)lPu = (−∆)lu. If we now choose

= Lσ2 (T
n
;Rn), D(A) := {u ∈ H : (−∆)βu ∈ H},

:H ⊃ D(A) → H, u ↦→ (−∆)lu,
(u) = −P(u · ∇)u + Pg,

hen (4.4) almost is of the form (4.1). The only additional step
s that one has to carry out a cutoff procedure for f to become
ipschitz continuous. After such a cutoff procedure, one can verify
he existence of an inertial manifold for (4.4) if l > 3

2 using a
spectral gap condition. Indeed, the eigenvalues of (−∆)l are of the
form (|k|22)

l (k ∈ Zn) and therefore, every eigenvalue will be of the
orm ml for a natural number m ∈ N0. Moreover, each of these
eigenvalues has finite multiplicity so that for every m ∈ N0 there
s an N ∈ N such that λN+1−λN = (m+1)l−ml

≥ lml−1. Using the
pectral gap condition we can obtain λ1/2lN+1 + λ

1/2l
N ≤ 2(m + 1)1/2

and so
λN+1 − λN

λ
−β/2
N+1 + λ

−β/2
N

≳ ml− 3
2 → ∞

s m → ∞ or equivalently N → ∞ if l > 3/2. This shows
hat there is an N ∈ N depending on the spatial dimension, such
hat there is an inertial manifold for the hyperviscous Navier–
tokes equation with l > 3/2 which is given as a graph over

the first N eigenfunction of (−∆)l in Lσ2 (T
n
;Rn). At least for n ∈

{2, 3} the existence of an inertial manifold has also been verified
in the critical case l = 3/2, see [80,81]. Therein a technique
called spatial averaging was used instead of the spectral gap
approach. We note that the hyperviscous Navier–Stokes example
is primarily of mathematical interest. Furthermore, it turns out
that in many applications it is not known yet, how to get good
bounds on the dimension of the reduced system.

Comments:

• To the best of our knowledge, the concept of an inertial
manifold was first explicitly introduced in [82]. However,
it is mentioned in the introduction of [82] that related
ideas have already been used before, see for example
[83–85, Chapters 6,9].

• In practice, nonlinearities are oftentimes not globally Lip-
schitz continuous but only locally. However, the asserted
dissipativity of the system allows one to use cut-off tech-
niques to circumvent this issue without changing the global
long-term dynamics.
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• The main advantage of an inertial manifold reduction is that,
if inertial manifolds exist, they yield a global reduction of an
infinite-dimensional to a finite-dimensional system without
losing any asymptotic information of the dynamics. How-
ever, the downside is that their existence can only be shown
under very restrictive conditions and for many important
examples such as Navier–Stokes equations, their existence
is still an open problem. Therefore, the number of scenarios
in which an inertial manifold reduction can be rigorously
applied at the moment in practice is rather limited.

The main idea behind an inertial manifold reduction is that
the dissipativity of a system should in some sense eventually lead
to finite-dimensional dynamics. The next reduction method we
are going to discuss uses different timescales instead of the dis-
sipativity of the underlying equation. For so-called slow manifold
reduction, on usually has a system of a fast and a slow variable
and one aims to reduce the dynamics to the ones of the slow
variable only. Let us now describe this idea in more detail.

4.2. Slow manifold reduction

Slow manifold reductions are used in systems with multiple
time scales. In their standard form such systems are given by

ε∂tuε = Auε + f (uε, vε),
∂tv

ε
= Bvε + g(uε, vε).

(4.5)

ere, 0 < ε ≪ 1 is a small parameter indicating the presence
of different time scales, A, B are linear operators, f , g are given
ipschitz continuous functions and uε, vε are the unknown func-
ions. Suppose that uε takes values in the Banach space X and
ε takes values in the Banach space Y . If (4.5) is an ordinary
ifferential equation, then the framework to reduce its dynamics
s provided by classical Fenichel–Tikhonov theory [68,86], which
urned out to be of great importance in multiple time scale
ynamics. For partial differential equations however, the theory
s much less complete. A first step as taken in [87], where suitably
egular/bounded perturbations were covered; see [88, Sec. 3] for
technical discussion of the systems where the methods apply.
urthermore, in more general cases, slow manifolds have been
onstructed for a limited number of concrete examples over the
ears. The next step to towards a rigorous justification of quite
eneral slow manifold reductions for abstract partial differential
quations of the form (4.5) was taken in [88,89].
Idea: Under appropriate conditions, and for sufficiently small

ε the fast variable uε rapidly approaches a state in which its dy-
amics are only determined by the slow variable. More precisely,
t gets attracted by a slow manifold Sε , a subset of the phase
pace which is given as a graph over the slow variable space and
n which the dynamics of the full system evolve on the slow
ime scale. The fact that trajectories are attracted by the slow
anifold is taken as a justification that one only has to consider

he flow on the slow manifold. And since the slow manifold is
iven as a graph, one can reduce the system to a self-contained,
otentially lower-dimensional equation which only depends on
he slow variable.

Outline of a Reduction Procedure: The following procedure
s more general than the above in that it allows v to have multi-
scale dynamics. However, it only works under certain conditions
[88,89]. Below, we will elaborate further, but for the moment we
just assume that we can carry out the following steps and that all
the objects we use do exist.

One starts with a fast–slow system of the form (4.5) under the
assumption that the slow system itself can have a timescale sepa-
ration ζ > 0. One splits the slow variable space Y = Y ζF ⊕Y ζS into
a B-invariant part Y ζ which decays quickly under the semiflow
F

10
(etB)t≥0 generated by the linear part B in the slow equation, and a
B-invariant part Y ζS on which the operators (etB)t≥0 are invertible
and their inverses (e−tB)t≥0 on Y ζS do not grow quickly. Which
ates of decay or growth are considered as ‘quick’ is controlled
y a parameter ζ . If ζ gets smaller, then Y ζF gets smaller and
ζ

S gets larger. Now, if ε, ζ > 0 are small enough and satisfy
< cζ for a certain c ∈ (0, 1), then there is a mapping hε,ζ =

hε,ζX , hε,ζ
Y ζF

) : Y ζS → X × Y ζF with the following properties:

(i) The so-called slow manifold Sε,ζ := {(hε,ζX (v), hε,ζ
Y ζF

(v) + v) :

v ∈ Y ζS ∩ D(B)} is invariant under the semiflow generated
by (4.5). Here, D(B) denotes the domain of B.

(ii) The slow manifold Sε,ζ attracts all solutions of (4.5) expo-
nentially quickly.

(iii) The slow manifold is close to the critical manifold S0 :=

{(x, y) : Ax + f (x, y) = 0}, where (x, y) is taken such that
Ax + f (x, y) is well-defined.

(iv) The solutions of (4.5) on the slow manifold are close to
solutions of

0 = Au0,ζ
+ f (u0,ζ , v0,ζ ),

0 = prY ζF
v0,ζ ,

∂tv
0,ζ

= Bv0,ζ + prY ζS
g(u0,ζ , v0,ζ ).

(4.6)

Here, prY ζF
: Y → Y ζF and prY ζS

: Y → Y ζS denote the

canonical projections according to the splitting Y = Y ζF ⊕Y ζS
he properties (i) and (ii) can be taken as a justification that if ε
nd ζ are sufficiently small then one may reduce (4.5) to

uε,ζ (t) = hε,ζX (vε,ζS (t)),

v
ε,ζ

F (t) = hε,ζ
Y ζF

(vε,ζS (t)),

tv
ε,ζ

S (t) = Bvε,ζS (t) + prY ζS
g(hε,ζX (vε,ζS (t)), hε,ζ

Y ζF
(vε,ζS (t)) + v

ε,ζ

S (t)).

The dynamical part of this system is only determined by the last
equation and depends only on the ‘‘super-slow’’ part of the slow
variable. It may even be finite-dimensional in many cases, even
if both X and Y are infinite-dimensional. The other components
are then uniquely determined by vε,ζS (t). Moreover, the properties
(ii) and (iv) give us information about the location of the slow
manifold and the flow on it, even if it is difficult to construct it
explicitly in certain scenarios.

The proximity of the slow manifold to the critical manifold
also motivates a simpler reduction of (4.5), namely the one to the
slow subsystem given by

0 = Au0
+ f (u0, v0),

∂tv
0

= Bu0
+ g(u0, v0).

(4.7)

This reduction is less accurate in the sense that the flow gener-
ated by (4.7) is not contained in the original one generated by
(4.5). However, the slow subsystem is still a reasonable approx-
imation of (4.5), since solutions (4.5) and (4.7) with the same
initial condition v0 for the slow variable equation approach each
other as ε > 0 on any compact time interval not containing 0. We
refer to [88, Section 4.5] for a more precise formulation of this
statement. In addition, this reduction has more advantages. Most
importantly, it does not need the existence of the above splitting
Y = Y ζF ⊕ Y ζS of the slow variable space, which is a rather restric-
tive assumption. The reduction to the slow subsystem is therefore
applicable in many more situations, even if slow manifolds do not
exist.

Example: A well-known example of a slow manifold reduction
(where we do not need to consider a splitting of v) is the one for
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he different variants of the Stommel model. Here, we take the
tommel–Cessi model given by the fast–slow system

u̇ = −(u − 1) − εu[1 + 7.5(u − v)2],

v̇ = µ− v[1 + 7.5(u − v)2],
(4.8)

ee [90,91] and [92, (6.2.27)]. Here, u denotes the temperature
ifference and v the salinity difference between a higher and a
ower latitude box in the North Atlantic. The parameter µ is pro-
ortional to the freshwater flux and can mathematically be seen
s a bifurcation parameter for the dynamics of the thermohaline
irculation in the North Atlantic. By Fenichel theory, there is a
low manifold which is a perturbation of order ε of the critical
anifold given by the constant function h0(v) ≡ 1. One may thus
pproximate (4.8) by

˙ = µ− v[1 + 7.5(1 − v)2]. (4.9)

fter this reduction, the bifurcation analysis of this equation
oils down to studying the roots of the third order polynomial
n the right-hand side. One can verify that it undergoes two
addle–node bifurcations at

± =
1
9

(
11 ± 3 ·

√
3
5

)
.

If µ < µ− or µ > µ+ there is only one stable equilibrium which
corresponds to a low salinity difference or high salinity difference,
respectively. If µ ∈ (µ−, µ+), then there are two stable states the
system may be in.

A similar reduction can be carried out in certain situations if
we add a spatial component. For example, the system

ε∂tu(t, x) = ∂xxu(t, x) − (u(t, x) − 1) − εu(t, x)

× [1 + 7.5(u(t, x) − v(t, x))2],

∂tv(t, x) = ∂xxv(t, x)µ− v(t, x)[1 + 7.5(u(t, x) − v(t, x))2],

(4.10)

on the 1-dimensional torus, i.e., with x ∈ T and periodic boundary
conditions, can be approximated by the equation

∂tv(t, x) = ∂xxv(t, x)µ−v(t, x)[1+7.5(1−v(t, x))2], u(t, x) ≡ 1.
(4.11)

One may even reduce this equation further to a system of ordi-
nary differential equations by truncating to a finite set of Fourier
modes. We refer to [88, Section 6.1] for more details on the
reduction.

Comments:

• Let us now elaborate a bit more on the necessary assump-
tions: If (4.5) is an ordinary differential equation, then it
is comparably easy to put into an abstract framework. The
functions f and g are naturally given by the application and
act on X×Y = Rm

×Rn as a phase space, i.e., uε takes values
in X = Rm and vε takes values in Y = Rn for some n,m ∈

N. If the nonlinearities are smooth enough, then the only
condition one needs for the reduction procedure is that the
linearization of u ↦→ Au+ f (u, v) does not have eigenvalues
on the imaginary axis for every v ∈ Rn. The splitting of
the slow variable space is trivial for ordinary differential
equations: One can just take Y ζF = {0} and Y ζS = Rn. The
slow manifolds Sε,ζ will then be independent of ζ so that
they only depend on ε as in classical Fenichel theory.

• However, if (4.5) is a partial differential equation, it requires
more effort to put it into an abstract form which allows
one to treat it using the setting of [88]. The main reason
is that in infinite dimensions, one has many more possible
11
choices of phase spaces and corresponding topologies. The
assumptions for the theory in [88] might not be satisfied in
some natural looking choice of phase spaces while they may
be satisfied in other phase spaces. Moreover, the functions f
and g will usually not act on the whole phase space but only
on a certain subset. If for example X = Cα(R) is the space of
α-Hölder continuous functions on R with some α ∈ (0, 1)
and f (uε, vε) = ∆uε , then one formally needs that uε is
twice differentiable and that its derivatives are α-Hölder
continuous. One is therefore forced to work with different
spaces and different topologies. Aside from the technicalities
concerning different topologies and spaces, there are two
important conditions one has to verify. Firstly, the semi-
group generated by A should have a negative growth bound
and the Lipschitz constant of f should be small enough
so that solution of the fast equation would decay without
the forcing from the slow variable. Secondly, one has to
find a splitting Y = Y ζF ⊕ Y ζS as mentioned above. The
space Y ζF contains the parts which decay quickly under the
C0–semigroup (etB)t≥0 generated by B. On Y ζS the operators
(etB)t≥0 are invertible with inverses (e−tB)t≥0 these inverses
do not grow too quickly as t → ∞. Moreover, the rates
of decay and growth of (etB)t≥0 and (e−tB)t≥0, respectively,
have to be separated well enough so that it persists even
if the nonlinearity g is taken into account. The separation
should even become stronger as ζ gets smaller for conver-
gence results to hold true. Often this means that B has to
have spectral gaps which get arbitrarily large as one moves
towards the left in the complex plane. Unfortunately, this
assumption is very restrictive. For example, if B = ∆ is the
Laplacian on the n-dimensional torus Tn, then the distance
between the eigenvalues does not get arbitrarily large unless
n ∈ {1, 2}.

• Nonlinearities in many applications are actually not Lips-
chitz continuous, but only locally Lipschitz-continuous.
Nonetheless, they can be made Lipschitz continuous by a
standard cut-off procedure. In such cases however, the slow
manifolds also only have a local meaning instead of a global
one.

• A slow manifold reduction allows one to remove the fast
variable uε from the dynamics. Moreover, this method does
not only reduce the dimension of the dynamics, but also pro-
vides a nice geometric interpretation of the reduction, since
the reduced system is contained in an attracting invariant
manifold of the original system. However, the assumptions
of a slow manifold reduction are not directly satisfied at
bifurcation points of the fast variable. Thus, many interest-
ing pattern forming problems are not accessible through a
slow manifold reduction alone and instead, one has to use
additional desingularization techniques such as the blow-up
method, see for example [93–95].

• Difficulties also arise if the equation for the slow variable
is given by a partial differential equations. In this case, the
conditions under which a slow manifold reduction can be
rigorously justified are as restrictive as the ones for an iner-
tial manifold reduction. However, one may still approximate
trajectories of the fast–slow system by the ones of the slow
subsystem under less restrictive assumptions also in the
infinite-dimensional case, see [88].

• Additional difficulties can arise if the domains become ex-
tremely large so that their scaling decreases the spectral gap.
This is a core theme in the area of amplitude/modulation
equations [96]. Recently, efforts have begun to extend geo-
metric singular perturbation theory also to PDEs formulated
on unbounded domains [97].
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While inertial and slow manifold reductions aim to describe
the dynamics of a system in a larger part of the phase space, we
are now going to discuss a reduction method which only aims to
reduce the dynamics around a non-hyperbolic equilibrium: the
so-called centre manifold reduction.

4.3. Centre manifold reduction

Another important classical reduction method using invariant
manifolds is the centre manifold reduction. It is used to simplify
the dynamics of a system of the form

ẋ = f (x) (4.12)

locally around a non-hyperbolic fixed point x0 ∈ X with X being
a Banach space. A common extension is to consider parametrized
bifurcation problems of the form

ẋ = f (x, λ) (4.13)

with λ a finite dimensional parameter set [98].
Idea: A centre manifold consists of those trajectories around

a fixed point, which are neither attracted nor repelled by it at
an exponential rate. Roughly speaking, the long-term behaviour
of the former trajectories shrinks down to the equilibrium point
itself, while the latter ones are pushed away from the fixed
point so that they are not important for the local dynamics. The
trajectories on the centre manifold in turn persist and stay close
to the fixed point. It is therefore sufficient to restrict the system
to the centre manifold in order to describe its effective dynamics
around the fixed point.

Outline of the Reduction Procedure: Assume that f is smooth
nough. As already mentioned above, centre manifolds are con-
tructed around a non-hyperbolic steady state, i.e., around an x0 ∈

X such that f (x0) = 0 and that the spectrum of the linearization
Df (x0) splits into three parts

σ (Df (x0)) = σ s
∪ σ c

∪ σ s

with σc ̸= ∅, where

σ s
:= {λ ∈ σ (Df (x0)) : Re λ < 0},

σ c
:= {λ ∈ σ (Df (x0)) : Re λ = 0}, and

σ u
:= {λ ∈ σ (Df (x0)) : Re λ > 0}

denote the stable, neutral (centre), and unstable part of the spec-
trum, respectively. In infinite dimensions one has to impose addi-
tional conditions which partly depend on the desired properties
of the centre manifold. One possibility, which is carried out
in [99], is to assume that:

(i) The linearization Df (x0) generates a C0-semigroup
(T (t))t≥0 ⊂ B(X).

(ii) The three parts of the spectrum σ s, σ c and σ u are closed
and open, and there are corresponding spectral projections
prs : X → X s, prc : X → X c and pru : X → X s, respectively.

(iii) dim X c < ∞, dim Xu < ∞.
(iv) There are constants M, c > 0 such that ∥T (t)|X s∥B(X s) ≤

Me−ct holds for all t ≥ 0.

Variations on these assumptions are for example discussed in
[100]. A more general approach is to assume there is a spectral
gap parameter p > 1 and an α > 0 such that

σ s
:= {λ ∈ σ (Df (x0)) : Re λ < −pα},

σ c
:= {λ ∈ σ (Df (x0)) : | Re λ| < α}, and

σ u
:= {λ ∈ σ (Df (x0)) : Re λ > pα}

and this is outlined for example in papers leading up to [101].
Note that one can generalize the setting so that it is not necessary
 p

12
to assume that the centre space X c is finite-dimensional, as the
conservative case in [99] shows.

One locally constructs a centre manifold C as the graph of a
mapping h : {x0} + U → X s

⊕ Xu over the centre subspace, i.e.,

C = {h(x0 + x) + x0 + xc : x ∈ U},

where U ⊂ X c is a certain neighbourhood of 0 in X c . This
is usually done by one of the standard approaches such as a
Lyapunov–Perron or a graph transform argument. Similar to the
slow and inertial manifold reductions, one can now reduce (4.12)
to a dynamical system in U ⊂ X c , more precisely to

ẋc = prc f (x
c
+ h(xc)), x = xc + h(xc)

with initial conditions in {x0} + U .
Example: A slow manifold reduction can be seen as a specific

case of a centre manifold reduction. To this end, we rescale time
by τ = εt so that (4.5) turns into

∂τuε = Auε + f (uε, vε),

τv
ε

= εBvε + εg(uε, vε).
(4.14)

ow one adds the new equation

τ ε = 0

o the system. This yields the new system

∂τuε = Auε + f (uε, vε),

τv
ε

= εBvε + εg(uε, vε),
∂τ ε = 0

(4.15)

etting ε = 0 leads to the fast subsystem

∂τuε = Auε + f (uε, vε),

τv
ε

= 0.

et now (u, v) ∈ S0 be a point on the critical manifold S0 of
4.14). Then there is an equilibrium of (4.15) of the form (u, v, 0)
here Au0 + f (u0, v0) = 0. The linearization of this at ε = 0 has
lock-matrix of the form

:=

⎛⎝A + f 0u f 0v 0
0 0 B0

v + g
0 0 0

⎞⎠
nd so if A + f 0u has no spectrum on the imaginary axis, then
u, v, 0) is a non-hyperbolic equilibrium point of (4.15) with
entre subspace {0} × Y ×R. Hence one can use centre manifold
heory to obtain a neighbourhood U ⊂ Y × R of (v, 0) and a
entre manifold S of (4.14) containing (u, v, 0) which is given as
graph over U . For a fixed ε > 0, the set Sε := S ∩ {(u, v, ε) ∈

× Y × R} now defines a slow manifold. Therefore, one could
gain take the Stommel model (4.8) as an example for a centre
anifold reduction, where the slow manifold is the perturbation
f the critical manifold that consists of steady states for the fast
ubsystem.
Comments:

• One of the advantages of centre manifold theory is
that is it well-developed and widely used, also in the
infinite-dimensional or stochastic setting. We refer to
[67,100,102–105].

• Compared to an inertial manifold reduction, a centre man-
ifold reduction usually has the drawback that it is not a
global but only a local reduction method. Hence, the reduc-
tion is only valid in a certain part of the phase space.

The main benefits of invariant manifold reductions are that
hey can be rigorously described with explicit estimates for the
pproximation error, and that they give a nice geometric inter-

retation of the reduction. However, the reduction is not always
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igorously provable, especially in systems with strong oscillations.
n such cases, one can try to use other classical reduction tech-
iques called averaging and homogenization, which we are going
o discuss in the next section.

. Averaging and homogenization

Averaging and Homogenization are important and similar
ethods of reducing systems with strong oscillations to av-
raged/homogenized systems without these oscillations. Both
ethods are particularly useful for the derivation of stochastic
limate models, as they can in certain situations characterize
n which sense solutions of (1.2) are approximated by solu-
ions of an equation with random forcing. In other words, the
ntuitive idea that small-scale nonlinear self-interactions can ef-
ectively be replaced by a random forcing can be made rigorous.
here are many works treating the mathematical ideas behind
his theory, see for example [106–110]. Other works such as
16,111–113] explain them with their importance for climate
odels in mind. Explicit applications to climate models are
ainly given by Majda and co-authors, see for example [9,15,114]
nd references therein.
We are not aware of a coherent abstract framework that

ncludes both, or a classification of the problems which can be
reated by the methods as well as a general reduction procedure
hich applies to all relevant examples. In fact, the literature is not
ven consistent about the classification of concrete examples: the
eduction of a parabolic partial differential equation with small
iffusion and strongly varying coefficients for the advection terms
uch as the one in [110, Section 14, Section 21] is referred to
s averaging by some authors and as homogenization by others.
ometimes, both names seem even to be used interchangeably,
ee for example [115,116]. The reason is that there are different
onceptions of what averaging and homogenization should mean.
One possible definition is given in [110, Section 1.3]. Therein,

he authors write that averaging and homogenization can be
pplied to perturbations of equations of the form
εuε = f

r

tuε = Lεuε

here the linear operator Lε has the form

Lε = ε−1L0 + L1 (5.1)

r
ε

= ε−2L0 + ε−1L1 + L2. (5.2)

sually, it is assumed that L0 has a non-trivial null space and it
s argued that the interesting behaviour takes place on this null
pace. The techniques treating problems with (5.1) are referred to
s averaging, while those treating problems with (5.2) are called
omogenization.
Another possibility to distinguish averaging and homogeniza-

ion is to distinguish between temporal and spatial oscillations. In
his case, averaging is usually referred to techniques which sim-
lify temporal effects, while homogenization is used to simplify
patial effects. This distinction was for example made in [106],
ven though it was not explicitly stated as a definition. One
hould note that this is not consistent with the definition above
rom [110, Section 1.3]. For this work, it is not our aim to decide
hat the best characterizations of averaging and homogenization
hould be. Instead, we just formulate the idea for both methods
t once and afterwards, we describe the two reduction methods

n scenarios in which the classification is widely accepted.

13
Idea: In systems with different spatial or temporal scales it is
not essential to study the details of the behaviour of the system
on finer scales. Instead, only the average or homogeneous part of
the high-resolution/fast effects is important for the macroscopic
behaviour. In order to make this precise, one has to derive an
averaged or homogenized version of the system and to show that
solutions of the original and the averaged or homogenized system
are close to each other in a suitable sense.

5.1. Averaging

One of the standard situations in which averaging is applied
is similar to the one in which a slow manifold reduction is used,
but with different conditions. Consider the fast–slow system of
stochastic differential equations

εduε = f (uε, vε) dt +
√
εσ1(uε, vε) dW1(t),

dvε = g(uε, vε) dt + σ2(uε, vε) dW2(t),
ε(0) = u0, vε(0) = v0.

(5.3)

ere, W1 is a k-dimensional and W2 an l-dimensional Brownian
otion which are independent and the nonlinearities f : Rm

×
n

→ Rm, g : Rm
× Rn

→ Rn, σ1 : Rm
× Rn

→ Rm×k and
2 :Rm

×Rn
→ Rn×l are assumed to be Lipschitz continuous. The

im is to reduce (5.3) to an equation of the form

v(t) = g(v(t)) dt + σ (v(t)) dW3(t), v(0) = v0, (5.4)

where g and σ are certain averaged versions of g and σ , and
W3 is a Brownian motion to be determined by the reduction.
The solution v of (5.4) is supposed to approximate vε . Formally,
the equations look similar to the ones which are suitable for
a slow manifold reduction. The main difference concerning the
assumptions compared to the setting for the slow manifold re-
duction is not only the stochastic forcing we allow. Also in the
deterministic setting the assumptions are less restrictive: While
slow manifold reductions are carried out for systems in which
the fast subsystem is normally hyperbolic in a suitable sense,
averaging treats the case in which the fast variable is assumed
to be sufficiently mixing.

Outline of the Reduction Procedure: One starts with the
fast–slow system (5.3). There are many slight variants for the
main assumption and the precise approximation results, see for
example [117, Chapter II.3], [110, Chapters 11,12, 17 and 18] or
[106, Chapter 5]. Here, we briefly summarize the approach from
[117, Chapter II.3]. Apart from smoothness and growth
assumptions on the nonlinearities f , g, σ1 and σ2 as well as
boundedness assumptions on the fast variable uε (we refer to
[117, Chapter II.3, Theorem 12] for the precise conditions), it is
crucial that (5.3) satisfies the following ergodicity condition: For
each fixed v0 ∈ Rn we consider the equation

du(t) = f (u(t), v0) dt + σ1(u(t), v0) dW1(t), u(0) = u0.

We assume that for all v0 ∈ Rn this equation has a solution uu0,v0
and an invariant ergodic distribution µv0 such that for all r > 0
and all ϕ ∈ C(Rm) the uniform ergodicity condition

lim
T→∞

sup
|u0|,|v0|≤r

E
⏐⏐⏐⏐ 1T
∫ T

0
ϕ(uu0,v0 (t)) dt −

∫
ϕ(z) dµv0 (z)

⏐⏐⏐⏐ = 0

s satisfied. In this case, one may define

g(v) :=

∫
Rn

g(u, v) dµv(u)

and σ (v) ∈ Rn×n such that

σ (v)2 =

∫
σ2(u, v)σ2(u, v)⊤ dµv(u).
Rm



F. Hummel, P. Ashwin and C. Kuehn Physica D 448 (2023) 133678

M
ε

d

h

d

a
F
f
s
t

oreover, the process vε from (5.3) converges in distribution as
→ 0 to a process v which is defined as the solution of

v(t) = g(v(t)) dt + σ (v(t)) dW1(t), v(0) = v0.

In cases where the averaged system (5.4) is not structurally stable
there will be higher order corrections; see for example [118].

Example: Similar techniques have already been applied to cli-
mate models. Let us continue with the example from Section 2.1
that we took from [9] where the equations of a barotropic flow
on a beta plane with topography and mean flow given by

0 =
∂q
∂t

+ ∇
⊥ψ · ∇q + U

∂q
∂x

+ β
∂ψ

∂x
,

q = ∆ψ + h,
dU
dt

= −

∫
h
∂ψ

∂x
.

(5.5)

ave been reduced in several steps. Here, q(x, y, t) denotes the
small-scale potential vorticity, U(t) the mean flow, ψ(x, y, t) the
small-scale stream function, h(x, y) models the topography and
β the variation of the Coriolis parameter. A couple of reduction
procedures that resemble the averaging method presented here
are carried out in [9]. Let us briefly look at one of the examples,
namely the one considered in [9, Section 7.4]. After a truncation
to finitely many Fourier modes as in Section 2.1 the mean flow U
is declared as the only climate variable and all other variables are
treated as unresolved variables. The nonlinear self-interactions of
the unresolved variables are replaced by a stochastic forcing with
drift and since one is looking for real-valued solutions, one may
impose wk = w∗

−k, (k ∈ Z2), for any of the Fourier coefficients
coming from (5.5). This way, the equations

dU =
2
ε

∑
k=(kx,ky)∈σ

Im

(
kxĥ∗

k

|k|
wk

)
dt,

wk =
ikxĥk

ε|k|
U dt −

i
ε

(
kxU −

kxβ
|k|2

)
ek dt

−
1
ε2
γk(wk − wk)dt +

σk

ε
dWk(t) (k = (kx, ky) ∈ σ )

(5.6)

re derived. Here, ĥ∗

k denotes the complex conjugate of the kth
ourier coefficients of h. γk, σk, wk, ε are real parameters coming
rom the replacement of the nonlinear self-interactions by the
tochastic forcing. The parameter γk measures the strength of
he drift to the mean wk, σk the strength of the noise and ε
denotes the scale separation parameter. Moreover, the Wk(t) are
independent Brownian motions and σ is a subset of {k ∈ Z2

:

|k|2 ≤ N} (N ∈ N) that contains exactly one of the terms k
and −k (k ∈ σ ). Except for the O(ε−1)-terms in the equations
for the unresolved variables wk, (5.6) already has the form (5.7).
And indeed, as was shown in [9, Theorem 7.9] this system can be
reduced to

dU = −γu(U − U) dt + σu dW (t),

where

γu = 2
∑
k∈σ

k2x |ĥk|
2(ĥk − |k|2wk)

|k|2γ 2
k ĥk

, U = −
2β
γu

∑
k∈σ

k2xwk|ĥk|
2

|k|2γkĥk
,

σu = 2

(∑
k∈σ

k2xσ
2
k |ĥk|

2

γ 2
k

)1/2

.

Comments:

• Averaging techniques have been further developed in the
past few decades and can also be applied to certain classes of
14
stochastic partial differential equations. We refer the reader
to [106, Section 5.2], where stochastic partial differential
equations of the form

∂tuε =
1
ε
∆uε +

1
ε
f (uε, vε) +

σ1
√
ε
∂tW1,

∂tv
ε

= ∆vε + g(uε, vε) + σ2∂tW2

are studied. Here f , g satisfy certain Lipschitz conditions
and W1,W2 are two independent trace class Brownian mo-
tions in L2(O). Similar problems have also been treated in
[119,120].

• Eq. (5.3) can also be seen as a special case of
duε

dt
=

1
ε2

f (uε, vε) +
1
ε
σ1(uε, vε)

dW1(t)
dt

,

dvε

dt
=

1
ε
g1(uε, vε) + g2(uε, vε) + σ2(uε, vε)

dW2(t)
dt

,

(5.7)

with g1 = 0. Solutions of this can be approximated by a
reduced system vε → v in many cases2 — for example
[110, Chapter 11] outline a method that works if the σ1σ⊤

1
is uniformly positive definite, if µv has a density and if the
centring condition

∫
g1(u, v) dµv(u) = 0 holds for all v. In

such a case, (5.7) can also be reduced to an equation of the
form

dv(t) = g(v(t)) dt + σ (v(t)) dW1(t),

but this time with

g(v) =

∫
g2(u, v) + (∇vΦ(u, v))g1(u, v)dµv(u)

and σ (v) given by the relation

σ (v)σ (v)T =

∫ [
σ2(u, v)σ2(u, v)T + g1(u, v) ⊗Φ(u, v)+

[g1(u, v) ⊗Φ(u, v)]T
]
dµv(u).

Here, Φ is defined as the solution of

−⟨f ,∇⟩Φ −
1
2
tr(σ T

1 σ1D
2
y)Φ = f1,

∫
Φ(u, v) dµv(u) = 0

with D2
y denoting the Hessian matrix and tr denoting the

trace of a matrix. Moreover, for two vectors x, y ∈ Rl

the tensor product x ⊗ y is defined to be the matrix x ⊗

y ∈ Rl×l such that (x ⊗ y)z = ⟨y, z⟩x for all z ∈ Rl. In
[110, Chapter 18] the reduction is studied more rigorously,
but in a more specific setting. Note however, that the reduc-
tion of (5.7) is called homogenization instead of averaging
in [110].

• Related methods, which are often referred to as fast wave
averaging, have also been applied the geophysical flows.
These methods are based on techniques that were devel-
oped in [121,122] for singular limits of quasilinear hyper-
bolic systems. For example, the systems that are treated
in [122] are of the form

A0(εUε)∂tUε +

N∑
i=1

Ai(Uε, ε)∂xiU
ε
+

M∑
j=1

(
1
ε
Kj + Dj(Uε, ε)

)
∂yjU

ε
= F (Uε, ε),

Uε(0, x, y) = U0(x, y)

(5.8)

where N,M ∈ N, A0 takes values in the set of positive
definite matrices and Ai, Kj,Dj take values in the set of

2 We discuss convergence at the end of Section 5.2.
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symmetric matrices. Moreover, it is assumed that Ai, Kj,Dj
are continuous in ε uniformly over bounded U and that they
are C s in U uniformly in ε for s− 1 ≥ s0 :=

N+M
2 . The initial

value U0 is assumed to be an element of Hs(RN
×TM ). For the

reduced equation, we introduce the C0-semigroup (S(τ ))τ≥0
generated by the system

∂τv +

M∑
j=1

Kj∂yjv = 0.

Moreover, we define the inner product

⟨u, v⟩L2([0,∞),L2(RN×TM )) :=

lim
τ→∞

1
τ

∫ τ

0

∫
RN×TM

u(s, x, y)v(s, x, y) d(x, y) ds

L∞([0,∞), L2(RN
×TM )) as well as the orthogonal projection

P with respect to this inner product to the closed subspace
generated by expressions of the form S(τ )g(x, y) for g ∈

Hs−1(RN
× TM ). With this notation at hand, we may define

the reduced equation given by

∂tV 0
+ P

(
[∂UA0(0)V 0

]∂τV 0
+

N∑
i=1

Ai(V 0, 0)∂xiV
0

+

M∑
j=1

Dj(V 0, 0)∂yjV
0
− F (V 0, 0)

)
= 0,

V 0(0, x, τ , y) = S(τ )U0(x, y).

(5.9)

This is now a reduced equation in the following sense
(see [122, Theorem 2.3]): Let V 0 be the solution of (5.9) and
suppose that there is a T > 0 such that the mapping

Ṽ 0
: t ↦→ V 0(t, ·x, t/ε, ·y)

is an element of L∞([0, T ];Hs(RN
× TM )) for small ε > 0.

Then, there are ε0, C > 0 such that for all ε ∈ (0, ε0) and all
t0 ∈ [0, T ] the solution Uε of (5.8) exists and it holds that

∥Uε − Ṽ 0
∥C([0,t0],Hs−1(Rn×TM )) ≤ Ct0.

This result can be improved under further assumptions: The
crucial assumption is that the operator that maps (τ , x, y) →

S(τ )U0(x, y) to⎛⎝∂τ +

M∑
j=1

Kj∂yj

⎞⎠−1

(1 − P)
(
∂UA0(0)V 0∂τV 0

+

N∑
i=1

Ai(V 0, 0)∂xiV
0
+

M∑
j=1

Dj(V 0, 0)∂yjV
0
− F (V 0, 0)

) ⏐⏐⏐⏐
τ=t/ε

for all t ∈ [0, T ] has to be bounded from Hs(Rn
× TM )

to Hs−1−p(Rn
× TM ) for some p ∈ R. Now, if the other

assumptions are satisfied even for s − 1 ≥ s0 + max{0, p}
and if Ai,Dj, F are continuously differentiable in ε, then it
even holds that

∥Uε − Ṽ 0
∥C([0,t0],Hs−1(Rn×TM )) ≤ Ct0ε,

see [122, Corollary 2.4]. We refer to [122, Lemma 2.5] for an
analysis of these additional assumptions.
Already in [121,122], these techniques for singular limits of
hyperbolic systems have been used to derive rigorous re-
sults for incompressible limits of fluid equations. They have
been further refined in [123]. This version of fast wave av-
eraging has been used in the literature to study the limiting
behaviour for geophysical flows with different combinations

of low or finite Froude and Rossby numbers, see [124,125].

15
5.2. Homogenization of spatially periodic structures

A standard homogenization problem which is introduced in
many textbooks is the one for elliptic partial differential equa-
tions of the form

− ∇ · (Aε∇uε) = f (5.10)

on a domain O ⊂ Rn with Dirichlet boundary conditions. Here,
Aε = A(y/ε) for some 1-periodic, Rn×n-valued function A such
that (5.10) is uniformly elliptic. f : O → R is a given forcing
term. For small values of ε > 0, the coefficients coming from Aε
have strong spatial oscillations. The aim is to reduce (5.10) to an
equation of similar type, but without the oscillating coefficients.
More precisely, the reduction allows one to derive a reduced
equation for u0, namely

−

n∑
i,j=1

ai,j∂yi∂yju0 = f ,

where the ai,j are just scalars and where u0 nonetheless is a good
approximation of uε in (5.10).

Outline of the Reduction Procedure: A popular approach is
to make the ansatz

uε(y) = u0( yε , y) + εu1( yε , y) + ε2u2( yε , y) + · · ·

= u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · ·

so that one obtains an asymptotic expansion in ε together with a
two-scale structure of the variables. Using this two-scale ansatz
one can rewrite

−∇ · (Aε∇) =: L =
1
ε2

L1 +
1
ε
L2 + L3

here

1w := −

n∑
i,j=1

∂

∂xi
ai,j(x)

∂

∂xj
w,

L2w := −

n∑
i,j=1

∂

∂xi
ai,j(x)

∂

∂yj
w +

∂

∂yi
ai,j(x)

∂

∂xj
w,

L3w := −

n∑
i,j=1

∂

∂yi
ai,j(x)

∂

∂yj
w,

with A(x) = (ai,j(x))1≤i,j,≤n. Now one plugs the expansion for uε
into (5.10) and separates the different orders in ε. This yields the
equations

0 = L1u0,

= L1u1 + L2u0,

f = L1u2 + L2u1 + L3u0.

ne obtains that the solution of L1u0 = 0 only depends on y and
s constant in x. Introducing the 1-periodic solution χi of the cell
roblem

1χi = −

n∑
j=1

∂

∂xj
ai,j(x)

allows one to derive a reduced equation for u0, namely

−

n∑
i,j=1

ai,j∂yi∂yju0 = f (5.11)

with Dirichlet boundary conditions, where

ai,j :=

∫
n
ai,j(x) −

n∑
ai,k(x)

∂χi

∂x
dx,
T k=1 k
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.e. the ai,j are just constants. Finally, one can show that uε → u0
n the L2(O)-sense as ε → 0, so that one may reduce (5.10) to
5.11).

Example: One can use homogenization to derive Darcy’s law,
hich models the laminar flow of a fluid in porous media, from
avier–Stokes type equations. There exist different variants of the
eduction procedure. We refer to [126] and references therein
or an overview of them. Here, we briefly describe the reduction
n [127]. Therein, the incompressible Navier–Stokes equation

tv
ε
+ (vε · ∇)vε + ∇pε − µ∆vε = f ε in Ωε × (0, T ),

div vε = 0 in Ωε × (0, T ),
vε = h on Γ × (0, T ),
vε = 0 on Sε × (0, T ),

vε(x, 0) = vε0(x) in Ωε

(5.12)

is studied. Here, the periodicity comes from the special shape
of the domain Ωε which is given as a smooth domain with
periodically distributed holes. More precisely, one starts with a
smooth domain Ω ⊂ Rn with Γ := ∂Ω and a second smooth
domain D ⊂ [0, 1]n. Now, one defines the set Tε := {k ∈ Zn

:

εk + [0, ε]n ⊂ Ω} as well as

Dε :=

⋃
k∈Tε

ε(k + D), Sε := ∂Dε, Ωε := Ω \ Dε,

here Dε denotes the closure of Dε . The given data is assumed
to satisfy

h ∈ C([0, T ];W 1
∞
(Ω;Rn)), ∂th = C([0, T ];W 1

6 (Ω;Rn)),
div h = 0,
ε∥vε0∥L2(Ωε;Rn) = O(1), div vε0 = 0 in Ωε,

f ε ∈ L2((0; T ) ×Ωε;Rn), ε2f ε → f as ε → 0,

for a certain f ∈ L2((0; T ) × Ωε;Rn). Note that h, which defines
the flux through the outer boundary Γ , is chosen such that∫
Γ

⟨h(x), ν(x)⟩ dS(x) = 0,

where ν denotes the unit outer normal on Γ and S denotes the
surface measure.

For the reduction to Darcy’s law, the solutions of a suitable cell
problem play again an important role. This time, it takes the form

− ∇π j
+∆wj

+ ej = 0 in [0, 1]n \ D,

divwj
= 0 in [0, 1]n \ D,

wj
= 0 on ∂D,

(5.13)

with periodic boundary conditions on ∂[0, 1]n, where ej denotes
the jth canonical unit normal vector in Rn. From the unique
solution (wj, π j) (up to constants in π ) of (5.13) one can construct
the so-called permeability tensor K = (Kj,k)1≤j,k≤n by means of

Kj,k =

∫
[0,1]n\O

(wj)k(x) dx.

This permeability tensor now appears in the homogenized equa-
tion which is given by

div v = 0 in L2(Ω × (0, T )),

v = =
K
µ
(f − ∇p) in L2(Ω × (0, T )),

v · ν = h · ν in L2((0, T );H1/2(Γ )).

(5.14)

Solutions (vε, pε) of (5.12) are defined onΩε . However, the aim of
the homogenization procedure is to average out the effect of the
holes so that (5.14) and its solutions (v, p) should be defined on
 t

16
Ω . Therefore, if one wants to compare the approximation (v, p)
to the solution of the original problem (vε, pε), one should either
restrict (v, p) to Ωε or extend (vε, pε) in a suitable way to Ω . The
latter approach, which has the advantage that the approximation
result can be formulated in terms of convergence in a fixed space
with a fixed topology, was chosen in [127]. While vε can just be
extended by 0, the adjoint of a certain restriction operator is used
to define the extension P̃ε of a time integrated version Pε of the
pressure pε . We refer to [127, Section 3] for the details of the
construction. By [127, Theorem 4.1] the extensions vε and P̃ε now
satisfy

vε → v weakly in L2((0, T ) ×Ω;Rn),

ε2∂t P̃ε → p weakly in W−1
2 ((0, T ); L0β (Ω)),

where 1 < β < n
n−1 and where L0β (Ω) := {f ∈ Lβ (Ω) :∫

Ω
f (x) dx = 0}.
Comments:

• An important concept for homogenization techniques is the
so-called two-scale convergence [110], as it is used in many
proofs related to homogenization. Let O ⊂ Rn be a domain
and Tn the n-dimensional torus. Then we say that a family
of functions (uε)ε∈(0,1) ⊂ L2(O) two-scale converges to u0

∈

L2(O × Tn) if for all ϕ ∈ L2(O; C(Tn)) it holds that

lim
ε→0

∫
O
uε(x)ϕ(x, x

ε
) dx =

∫
O

∫
Tn

u0(x, y)ϕ(x, y) dy dx.

• Homogenization techniques also exist for parabolic partial
differential equations. They are usually applied to equations
of the form

∂tuε(t, x) =
1
ε
⟨b
( x
ε

)
,∇⟩uε(t, x) + D∆uε(t, x) ((t, x) ∈ R+ × Rn),

uε(0, x) = u0(x) (x ∈ Rn),

(5.15)

where D > 0 and b : Rn
→ Rn is smooth and 1-periodic

in all directions. Such equations are for example treated in
[110, Chapter 13 & Chapter 20].

• Another approach that does not involve passing to the
ε = 0 limit is to embed the problem in a larger sys-
tem where all phase-shifts are considered; see for example
[128, Section 4].

Yet another important variant of homogenization in the con-
ext of climate dynamics are techniques reducing fast chaotic
egrees of freedom to a lower-dimensional stochastic input, re-
ulting in a reduced model.

.3. Stochastic modelling of deterministic systems via homogeniza-
ion

It is a common idea in climate dynamics that variability cor-
esponding to chaotic parts of the dynamics which happen on
fast time scale can effectively be approximated by stochastic

erms. This idea goes back to Hasselmann [8] and has since been
sed in many climate models, with significant contributions from
ajda and co-workers [9,10,15]. From a mathematical perspec-

ive, not all the reductions from multi-scale ordinary differential
quations to stochastic differential equations are rigorously justi-
ied. Nonetheless, there are mathematical techniques which can
ake the reductions rigorous. These techniques are usually also
alled homogenization, but are different from the ones in Sec-

ion 5.2. The starting point of such homogenization techniques
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re fast–slow systems of ordinary differential equations of the
orm
duε

dt
=

1
ε
f0(uε, vε) + f1(uε, vε),

dvε

dt
=

1
ε2

g0(uε, vε) +
1
ε
g1(uε, vε) + g2(uε, vε),

(5.16)

with nonlinearities f0, f1, g0, g1, g2 and uε representing slow vari-
ables forced by fast variables vε . The aim is to find reduced
equations that are stochastic differential equations of the form

dU(t) = g(U(t)) dt +Σ(U(t)) dW (t), (5.17)

with nonlinearities g and σ , and a certain noise term W which is
Brownian motion in many but not in all cases. It is important

o note that unlike in (5.7) the equations we start with are
eterministic, i.e., we do not assume that σ1σ T

1 is uniformly
positive definite. Rigorous reduction results from (5.16) to (5.17)
are much more recent than the ones for (5.7). We refer to
[107,109,129,130].

Outline of the Reduction Procedure: As already mentioned
above, a system with multiple time scales of the form (5.16) is re-
duced to a stochastic differential equation of the form (5.17) with
different choices of g , σ and W , depending on the assumptions.
In fact, one may even have to use different kinds of stochastic
integrals.

This reduction is shown in a simpler setting in [109] starting
with
duε

dt
=

1
ε
f0(vε) + f1(uε, vε),

dvε

dt
=

1
ε2

g0(vε),
(5.18)

for u ∈ Rd, with initial condition (uε(0), vε(0)) = (ξ, η), there is
an invariant measure µ for the fast dynamics vε that is assumed
uniformly or nonuniformly hyperbolic with fast decay of correla-
tions and f0 has zero mean with respect to µ. It is then possible
to show [109, Theorem 1.1] that under reasonable regularity and
dynamical assumptions there is weak convergence of solutions
uε →w U for t > 0 as ε → 0, where U satisfies an SDE on Rd

given by

U(t) = ξ +

∫ t

0
F (U(s)) ds +

√
ΣW (t)

where W is Brownian motion, Σ a covariance matrix and F
is obtained by averaging f with respect to µ. This relies on
assumptions on the fast dynamics that ensure there is a Weak
Invariance Principle (WIP) of the form

1
√
n

∫ nt

0
f0(v1(τ )) dτ →w

√
ΣW (t)

in C0([0, T ],Rd) as n → ∞ as well as a large deviation assump-
tion on the fast dynamics.

This is generalized in [107,130] to cases that include not only
additive but more general (such as multiplicative) noise, where f0
depends not just on vε but also on uε , including cases (with slow
decay of correlations) where the limiting SDE is driven by a stable
Lévy process rather than a Wiener process. Interesting further
work in this direction includes [131] who use Edgeworth expan-
sions to find corrections to asymptotic homogenization results for
small ε.

Comments:

• Although, since the work of Hasselmann [8], homogeniza-
tion has arguably been one of the most applied methods in
climate dynamics, it is also one of the methods that is most
17
difficult to justify in a rigorous manner. Results so far tend to
assume a skew product structure, quite strong assumptions
on the forcing chaos and also a timescale separation close
to an asymptotic limit. All of these assumptions cannot
be verified except in some fairly limited settings, however
the utility of the stochastic modelling approach goes well
beyond what can be rigorously justified.

• The methods discussed in Section 4.2 as well as the meth-
ods discussed in this section do rely on scale separation.
Yet, there are interesting problems, where scale separation
breaks down. For example, in the context of time scales,
classical non-autonomous dynamical systems theory [132]
provides tools to formulate and understand relevant no-
tions of attraction and attractor in the non-autonomous
context, in particular pullback notions of attraction. In cli-
mate dynamics and other applications, this has gained re-
cent attention under the theme of rate-induced instability
effects [133–136] which presents some methods for under-
standing the location where scale separation breaks, and
what happens at such rate-induced tipping points.

Related to averaging and homogenization is another classical
idea from statistical physics, where a reduction is performed
using the concept of averaging in a slightly different variant.

5.4. Mori–Zwanzig reduction

Another reduction method that can be applied to remove fast
degrees of freedom from an evolution equations is the projection
method originally developed by Mori and Zwanzig [137–139] and
for example discussed in [140]. This method has recently found
use in several climate applications [141,142]. It is unusual in
relation to the other techniques discussed in this review in that
it includes a memory term (though there are other methods that
also will have a memory term, see for example the stochastic
centre manifold approach of [111,118]).

Outline of Reduction Procedure: If we consider an evolution
equation of the form

d
dt
ϕ = R(ϕ), ϕ(0) = x

hat generates a flow ϕ(x, t), for the sake of simplicity we assume
(and therefore x) are in Rn. Suppose we would like to predict

he evolution of some observable u(x, t) = g(ϕ(x, t)). Then by
onsidering the linear PDE

∂

∂t
u(x, t) = Lu(x, t), u(x, 0) = g(x) (5.19)

where [Lu](x) =
∑

i Ri(x)∂xiu(x), L is the Liouville operator, and
he solution of (5.19) can be written

(x, t) = [exp(tL)g](x).

e aim to understand the evolution of g(ϕ(x, t)) in terms of the
volution under (5.19). Consider now a projection P of Rn onto an
-dimensional subspace, with m < n. We wish to understand the
ynamics of the observable using projection by P onto a number
f resolved variables ϕ̂ := Pϕ, noting the unresolved variables
an be written ϕ = (1 − P)ϕ (various choices for P are discussed
in [140]).

For example, if we consider g(x) = xi as projection onto
a single component then it is possible to show (for example,
[140,142]) that it evolves according to a generalized Langevin-
type equation of the form

∂
ϕ̂i(x, t) = Ri(ϕ̂(x, t)) +

∫ t

Ki(ϕ̂(x, t − s), s) ds + Fi(x, t) (5.20)

∂t 0
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here

i(x, t) = [exp(t(1 − P)L)(1 − P)Lx]i, Ki(x̂, t) = [PLF ]i(x, t).

Note that for the resolved variables, the first term on the right
hand side of (5.20) corresponds to a Markovian term that only de-
pends on the current values of the resolved variables, the second
term embodies a memory kernel while the third and final term
encapsulates the influence of the unresolved variables. Depending
on the situation, one may end up with an ODE reduction (if the
last two terms in (5.20) are small) a DDE reduction (if the last
term in (5.20) is small) or an SDE reduction (in cases where the
middle term in (5.20) is small and the last term can be understood
as a stochastic term).

Examples: The Mori–Zwanzig reduction method can be a use-
ful method to derive a delay differential equation from a more
complex PDE with hyperbolic terms. For example, [142] use this
formalism to justify a rational reduction of a PDE model of the El
Niño Southern Oscillation (ENSO) to a delay differential equation,
while [143] use the method to justify a reduction of a PDE model
of Atlantic Multidecadal Variability (AMV) to a delay differential
equation.

6. Moment closure methods

The manifold reductions as well as techniques related to av-
eraging and homogenization described in Sections 2–5 directly
work with the equations describing a certain system. However,
if a system is very complex one may prefer to only work with a
set of observables of the original system. In complex nonlinear
systems it is common that such a set of observables depends
on other observables again. If one wants to describe all the ob-
servables through a closed set of differential equations, then one
might obtain infinitely many observables with infinitely many
equations.

The following reduction method, the so-called moment clo-
sure methods, treat exactly such a kind of problems. Moment
closure methods have been used in many different scientific
disciplines, including climate [144]. They can be applied if one
works with an abstract evolution equation of the form

∂tu = N(u). (6.1)

This equation is to be understood in a formal way. For exam-
ple, we also allow the case in which N contains noise terms.
Frequently, the method is applied to stochastic differential equa-
tions [145] of the form

dxt = f (xt ) dt + F (xt ) dWt . (6.2)

But also other very important scenarios are possible such as
kinetic PDEs [146] of the form

∂tϱ + v · ∇xϱ = Q (ϱ), (6.3)

where ρ = ρ(t, x, v) can be interpreted – if normalized – as
the probability density of a single particle being located at x and
having velocity v at time t . The so-called collision operator Q
usually only depends on the velocity v. Moment closure methods
are also frequently used in network dynamics [147]. We also refer
to the references in the review [148].

Idea: An equation like (6.1) may be too complex to be studied
analytically or even numerically. However, one can still try to
describe certain quantities extracted from the full system, the so-
called moments. Usually, the moments are scalar-valued and have
a certain hierarchy in the sense that there is a natural ordering
which allows one the speak of higher order and lower order
moments. One may use (6.1) to derive new equations describing
the dynamics of the moments. These new equations are referred
to as moment equations. Technically, this step is not a reduction
18
procedure in the sense that the moment equations do not ap-
proximate the original system. Instead, only certain aspects of the
original system are considered, which in exchange are described
at full resolution and not only approximated. The approximation
procedure is contained in the next step: Often, the moment equa-
tions will be a fully coupled system of infinitely many differential
equations and such a system may be as complicated as the origi-
nal equation (6.1). In order to reduce the complexity, the moment
closure is performed, i.e., the higher order moments are assumed
to depend in a certain way on the lower order moments so that
one can derive a closed system with finitely many variables. If the
moment closure is performed in the right way, then the reduced
system should be much simpler to study while still being a good
approximation of the full system of moment equations. While
in the abstract framework one might think that it is hard to
find a good moment closure, many straightforward choices in
applications work surprisingly well.

Outline of the Reduction Procedure: The procedure usually
consists of four steps

(1) One has to determine a set of moments {mk : k ∈ N}

one wants to consider. In applications, moments are often
of the following form: One starts with a suitable solution
concept for (6.1) and a solution u :R+ → X with some state
space X . Moreover, one has a set of mappings {Mk : k ∈ N}

with Mk : X → X as well as a mapping ⟨·⟩ : X → K,
where K ∈ {R,C}, which can be interpreted as a notion
of average. One may think of ⟨·⟩ as being a tool to remove
complexity from the system, for example in the form of
randomness or spatial dependence. The mappings Mk in
turn are used to still preserve the information on certain
aspects of the system. Now, one defines the moments
mk(t) := ⟨Mk(u(t))⟩. The precise choice of {Mk : k ∈ N}

and the mapping ⟨·⟩ depends a lot on the specific problem.
The main requirement is that it should be possible to carry
out the second step, the derivation of a system of moment
equations, which we briefly explain below.
One of the most common scenarios, which also motivates
the terminology in the context of moment closure meth-
ods, is the case of a stochastic differential equation (6.2),
where one may oftentimes just use the usual moment of a
random variable. The solution to (6.2) will be a stochastic
process, and if it takes values in X =

⋂
p>0 Lp(Ω,F,P),

where (Ω,F,P) denotes the underlying probability space,
then one may define

Mk : X → X, u ↦→ uk and ⟨·⟩ : X → R, u ↦→ E[u].

Therefore, mk is just the kth moment of the solution pro-
cess.

(2) One has to derive the moment equations. The details of this
step depend a lot on the choice of moments in the first
step. But generally, the aim is to derive an infinite system
of differential equations for {mk : k ∈ N}, i.e. a system of
the form
ṁ1 = h1(m1,m2,m3, . . .),
ṁ2 = h2(m1,m2,m3, . . .),
ṁ3 = h3(m1,m2,m3, . . .),
. . . = . . . ,

(6.4)

for certain hk :KN
→ K, k ∈ N. Since we defined mk(t) =

⟨Mk(u(t))⟩, one might already guess that one would have
to combine a chain rule together with the fact that u
solves (6.1). Indeed, this approach usually leads in the right
direction, but in practice, this may cause difficulties. For
example, u might not be differentiable as in the case of a
stochastic differential equation. Fortunately, one can still
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try to use Itô’s lemma in such a situation. Further below,
we will carry out this step for the example of a stochastic
version of the Stommel–Cessi model.
Even though hk will not actually depend on all the
moments in most applications, the system of moment
equations can still be an infinite system, since the hk
usually depend on higher order moments mk+n1 , . . . ,mk+nl
for some natural numbers l, n1, . . . , nl ∈ N. The problem of
reducing this system to a closed finite systems of ordinary
differential equations will be the main task of the third
step.

(3) One has to close the system of moment equations in a
suitable way. There are many ways to do this. In general,
one looks for a mapping H :RN

→ RN with suitable N ∈ N
that determines the higher order moments through the
lower order moments, i.e.

H(m1, . . . ,mN ) = (mN+1,mN+2,mN+3, . . .).

Naive approaches which are used quite often and which
still work very well are 0 = mN+1 = mN+2 = · · · or
more generally constant higher moments. One can also use
certain assumptions coming from the application or the
expected outcome. In the case of a stochastic differential
equation, one can for example assume that one is looking
for random variables with a certain distribution such as
Gaussian random variables.

(4) Finally, one should justify that at least the lower order
moments are approximated well by the closure procedure.
However, since there are many different ways to carry out
the first three steps, there is also no general rule for the
last step.

Example: As mentioned above, the reduction of stochastic
differential equations is a standard application of moment closure
methods. An example in climate dynamics is a stochastic version
of the Stommel–Cessi model (see [90,91]) given by

dUt = µ− Ut [1 + 7.5(1 − Ut )2] dt + σ dWt . (6.5)

Here, Ut models the salinity difference between a higher and a
lower latitude box in the North Atlantic, µ models the difference
in freshwater flux, (Wt )t≥0 denotes a Brownian motion, and σ is
a small parameter which models the strength of the noise. This
equation is derived from the Stommel–Cessi model by a reduction
to the critical manifold and by adding the stochastic forcing, see
for example [92, Section 6.2.1] or [65, Example 19.9.3]. In order
to carry out a moment closure procedure, we define

Mk : X → X, u ↦→ uk and ⟨·⟩ : X → R, u ↦→ E[u].

with X =
⋂

p>0 Lp(Ω,F,P) as above. For the moment equations,
we use Itô’s Lemma and obtain

dUk
t =kUk−1

t dUt +
k(k − 1)

2
Uk−2
t d[Ut ]

=k
[
−7.5Uk+2

t + 15Uk+1
t − 8.5Uk

t + kµUk−1
t

+
(k − 1)σ 2

2
Uk−2
t dt + σUk−1

t dWt
]

or k ∈ N, k ≥ 2. Taking the expectation and differentiating with
espect to t yields

˙ k(t) =
[

−7.5mk+2(t) + 15mk+1(t) − 8.5mk(t) + kµmk−1(t)

+
(k − 1)σ 2

2
mk−2(t)

]
Using the convention m0 = 1 and m−1 = 0, this equation is valid
for all k ∈ N and yields the system of moment equations.

Comments:
19
• Formulating abstract results on the validity of moment clo-
sure methods still seems to be an open problem. However,
moment closure methods often work very well in practice,
when they are benchmarked via numerical simulations.

• In some sense, we may view moment closure methods as
related to other reduction methods. The idea to use set of
basis functions from Galerkin or the idea to use a linear
subspace from EOF could also be viewed as one choice of the
space of observables. The idea to use averaged observables
is connected to previously presented ideas on averaging
and homogenization, while selecting a suitable closure is
connected to invariant manifolds [148].

The reduction methods discussed so far aim to reduce the
complexity or dimension of a dynamical system which is given by
an explicit equation. However, nowadays large amounts of data
on the Earth’s climate system are collected so that compressing
and finding structures in large data sets can be considered as
least as important for the understanding of the Earth’s climate
as the formal reduction of dynamical systems. In principle, the
EOFs approach described in Section 2.2 fulfils this purpose very
well, but as a linear method, it may have difficulties in preserving
nonlinear structures such as lower-dimensional manifolds. Dif-
fusion maps, which we discuss in Appendix, are designed for
exactly that purpose and are just one, of the many, data-driven
reduction methods that start to permeate many applications in
climate science. They have already found quite widespread ap-
plications across numerous areas [149]. Of course, diffusion maps
are just one instance of a broader class of data-driven reduction
methods that are likely to gain more traction within climate
science applications during the next decade. In particular, we
have not attempted to cover the full range of data-driven reduc-
tion methods [150] that presumably will be of great significance
in future, including for climate model reduction; see for exam-
ple [151–153]. Nonetheless, many of the explainable data-driven
methods have their roots within reduction methods such as those
discussed here, and indeed the methods discussed here may
contribute to such methods in future.

7. Discussion

In this review we have focused primarily on reduction meth-
ods of use (or potential use) in climate science that can be
rigorously justified. This is a very diverse area and we unavoid-
ably have had to limit ourselves to an incomplete set of reduction
methods. These principles are likely to remain themes for future
research as new techniques emerge and improve on existing
reduction methods. Our brief review aims to make it easier to
compare the mathematical setup of these methods: we try to
highlight essential ideas for each method and provide references
to concrete examples that serve as test cases. Of course, a natural
next step would be to actually code all the different methods on
an even broader set of examples and provide computational com-
parisons for each ansatz. Although this is certainly worthwhile, it
is beyond this work, where we have focused on describing the
main idea and mathematical setup for each method.

Probably the most relevant omission are some reduction meth-
ods for stochastic differential equations, either SDEs or SPDEs,
and more general data-based empirical reduction methods. We
have not reviewed this area here, primarily to keep this work
sufficiently accessible across disciplines, but there are undoubt-
edly many important methods also available for the stochas-
tic case. As a basic principle, one can often generalize a re-
duction method for a deterministic differential equation to the
stochastic case, usually at the expense of considerable addi-
tional technical work. Examples are path-wise stochastic slow

manifold reductions via covariance tubes [45,154], reduction to
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arkov chain switching models via large deviation theory [155],
symptotic analysis of stochastic slow manifolds [156], centre/
low manifold reduction using a skew-product flow formalism
157–160], distribution-based approaches simplifying Fokker–
lanck equations [161], nonlocal Mori–Zwanzig type reductions
162,163], moment closure [148] and amplitude/modulation
quations [164], just to name a few.
One might conjecture that a more coherent and rigorous view

f the area will emerge within the coming years as some re-
uction methods for stochastic systems have been applied suc-
essfully in practical climate models already using numerical
pproaches [165]. It is clear that such reductions may be very
nformative, especially statistical mechanics and large deviations
pproaches to weather/climate extreme problems; see for exam-
le [166–169] as well as for multistable regimes of the climate
ystem [170]. Another area where rigorous reduction methods are
hallenged is in justifying the predominantly empirical sub-grid
arametrizations used in climate models [171–174].
It is important to acknowledge that many reduction methods

f great utility for climate models are being, and need to be,
pplied in cases where it is impossible to provide rigorous proofs
f the reduction along the lines presented here. Nonetheless, rig-
rous reduction methods are still useful in such contexts because
etter understanding of when and whether these methods are
ppropriate. In particular, these can (a) help to find an optimal
et of conditions and results such that reduction method can be
pplied and (b) help to understand the circumstances and details
f when such a reduction method fails to work, and what happens
n cases where it cannot be applied.
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ppendix. Diffusion maps

Diffusion maps are a relatively young and mainly data-driven
ethod of dimensionality reduction, which has first been in-

roduced in [175]. Formally, it can be applied whenever EOFs
an be used. But while EOFs are a linear dimensionality re-
uction method, and as such have problems in finding lower-
imensional but nonlinear structures in the data set, diffusion
aps specifically aim at finding low-dimensional structures in
igh-dimensional data and representations thereof in a low-
imensional Euclidean space.
Idea: On a set of data one defines a kernel which is then used

o construct a Markov chain with the data set as a state space.
he Markov chain can be thought of as a form of diffusion which

akes the geometry of the data set into account. The hope is

20
to get some insight on this geometry by studying the structure
of the Markov chain. This is achieved by defining the so-called
diffusion maps, which are constructed from the eigenvalues and
eigenfunctions of the Markov chain. The diffusion maps embed
the data set into Euclidean space such that the Euclidean distance
of two embedded points is close to the distance of the original
points in the geometry of the data set.

Outline of the Reduction Procedure: One starts with a mea-
ure space (X,A , µ) and a map k : X × X → [0,∞) which is
ymmetric in the sense that k(x, y) = k(y, x) for x, y ∈ X . This
ap is thought to measure the distance between two points in

he data set X: the larger k(x, y) the closer are x, y thought to be.
Technically, one has to impose further assumptions on k so that
the objects we define in the following are well-defined. But since
these assumptions are very mild and satisfied in most situations,
we refrain from being precise here. Instead, we refer to [175] for
more details on the construction.

Having chosen k one defines

(x) :=

∫
X
k(x, y) dµ(y)

hich can be interpreted as a local measure of volume. This local
easure of volume is used to renormalize k and define

(x, y) :=
k(x, y)
d(x)

.

The mapping p is not symmetric anymore, but it satisfies
∫
X p(x, y)

dy = 1. It can therefore be seen as the transition kernel of the
Markov chain ((P∗)n)n∈N given as the powers of operator

P∗
: L2(X,A , µ) → L2(X,A , µ), P∗f (y) :=

∫
X
p(x, y)f (x) dµ(x).

This operator is the adjoint of the so-called diffusion operator

P : L2(X,A , µ) → L2(X,A , µ), Pf (x) :=

∫
X
p(x, y)f (y) dµ(y).

which leaves constant functions invariant due to
∫
X p(x, y) dy = 1.

Under the right conditions on k (again we refer to [175]) there is
a unique stationary distribution of the Markov chain given by

π (x) :=
d(x)∫

X d(z) dµ(z)
.

Using this stationary distribution one can define the modified
kernel

a(x, y) :=

√
π (x)

√
π (y)

p(x, y) =
k(x, y)

√
π (x)

√
π (y)

.

his kernel is symmetric so that the corresponding operator

: L2(X,A , µ) → L2(X,A , µ), Af (x) :=

∫
X
a(x, y)f (y) dµ(y)

s self-adjoint. If
∫
X

∫
X a(x, y)2 dµ(x) dµ(y) < ∞, then A is even

ompact and there is a sequence of eigenvalues 1 = λ0 ≥ |λ1| ≥

|λ2| ≥ . . . and orthonormal eigenfunctions (ηl)l∈N0 in L2(X,A, µ)
uch that

(x, y) =

∑
l∈N0

λlηl(x)ηl(y).

f we now define

l(x) :=
ηl(x)

√
π (x)

, ϕl(y) := ηl(y)
√
π (y)

hen we have the representation

(x, y) =

∑
λlψl(x)ϕl(y).
l∈N0
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oreover, the tth powers of P are given as an integral operator
ith kernel

t (x, y) =

∑
l∈N0

λtlψl(x)ϕl(y).

ith all this notation at hand, we can define the diffusion dis-
ances Dt by

t (x, y) : =

(∫
X

(pt (x, u) − pt (y, u))2

π (u)
dµ(u)

)1/2

=

⎛⎝∑
l∈N0

λ2tj (ψl(x) − ψl(y))2

⎞⎠1/2

.

or fixed t ≥ 0 this defines a metric on the data set X . This
xpression is small if there is a large number of short paths
etween x and y, i.e. if there is a high probability that the Markov
hain ends up in y after t steps if it starts in x. In this sense, the
iffusion distance contains a lot of information on the internal
tructure of the data set X .
The reduction is now carried via the so-called diffusion maps

iven by

t : X → RN , Ψt (x) =

⎛⎜⎝λ
t
0ψ0(x)
...

λtNψN (x)

⎞⎟⎠
p to a desired dimension N . In [175] the authors include a
ertain rule of the dimensionality that should be considered. They
ake N = s(δ, t) := max{l ∈ N : |λl|

t > δ|λ1|
t
}. This way, the

iffusion maps preserve the diffusion distance to a certain extent
n the sense that

Ψt (x) − Ψt (y)∥2 =

(s(δ,t)∑
l=0

λ2tj (ψl(x) − ψl(y))2
)1/2

:= Dt,δ(x, y),

here ∥ · ∥2 denotes the usual Euclidean distance. Therefore,
he diffusion maps give a representation of the data set X in an
-dimensional Euclidean space, such that the internal notion of
istance in X is quantitatively preserved in RN with the Euclidean
istance up to a small error.
Examples of Applications: Since diffusion maps are mainly a

ata-driven method, the results one obtains from the reduction
rocedure are probably most interesting when it is applied to real
orld data. Instead of explicitly carrying out such an example, let
s briefly explain a few common scenarios. A standard situation
s if X = {x1, . . . , xK } ⊂ Rd is a finite set of points in Rd. Then
the σ -field would just be the power set P(X) of X and µ could
or example be the counting measure ζ . In this case, the integrals
ust turn into sums, i.e.

X
f (x) dµ(x) =

K∑
i=1

f (xi).

common choice for a kernel in this situation would be

ε(x, y) = exp
(

∥x − y∥2

2ε

)
for a parameter ε > 0. With these choices one could technically
apply a diffusion map reduction whenever an EOF-based reduc-
tion is also possible. As for EOFs, one can also use diffusion maps
to study dynamical systems by applying them to simulated data
from the system. As an example, we mention [176].

An interesting use case is if X := M is a compact submanifold
Rd (possibly with boundary) with its Riemannian measure ν. In
practice, X might only consist of a finite number of sample points
21
with a non-uniform distribution on M . Although we focus first
on the continuous case, i.e. X = M , instead of the discrete case,
we adopt the idea of a non-uniform distribution and introduce a
density q :M → (0,∞) on M . Then we take dµ = q dν. Obviously,
the outcome of the diffusion map reduction can depend on the
density q as well as the geometry of M . By choosing the right
kernels, one can control the effect of the density. Depending on
what is thought to be more important in a particular application,
one can choose a corresponding kernel. More precisely, the ker-
nels are constructed as follows: One starts with rotation-invariant
reference kernels

kε(x, y) := h(∥x − y∥/ε),

here h : [0,∞) → (0,∞) is an exponentially decaying function,
for example h(x) = e−x2/2 as above. An approximation of the
density is defined by

qε(x) :=

∫
X
kε(x, y)q(y) dy.

ow, a new family of kernels is constructed by

(α)
ε (x, y) :=

kε(x, y)
qαε (x)qαε (y)

(α ∈ R).

fter carrying out the above procedure with the kernel k = k(α)ε
nd the measure µ = q dν, we obtain a Markov chain Pε,α . Let
ϕl)l∈N0 ⊂ L2(M, ν) be the sequence of orthonormal eigenfunc-
ions of the Laplace–Beltrami operator ∆ on M with Neumann
oundary conditions. For K ∈ N0 let further

K := span{ϕ0, . . . , ϕK }.

t was derived in [175, Theorem 2] that the spaces EK are con-
ained in the domain of the generator of the Markov chain Pε,α .
ore precisely, for such f ∈ EK it holds that

lim
→0

Pε,α − I
ε

f =
∆(fq1−α)
q1−α

−
∆(q1−α)
q1−α

f ,

where the limit is taken in L2(M). Note that the authors of [175]
use a different convention concerning the sign of the Laplacian:
While we take ∆ =

∑n
j=1 ∂

2
j , the authors of [175] work with

∆ = −
∑n

j=1 ∂
2
j . The function u(t) := Pt,αu0 solves the equation

tu(t) =
∆(u(t)q1−α)

q1−α
−
∆(q1−α)
q1−α

u(t), u(0) = u0.

ubstituting v(t) := q1−αu(t) leads to

tv(t) = ∆v(t) −
∆(q1−α)
q1−α

v(t), u(0) = q1−αu0. (A.1)

ence, one can study the operator

↦→ ∆ψ −
∆(q1−α)
q1−α

ψ (A.2)

and the dynamics generated by it in terms of the Markov chain
Pε,α . There are three values for α which are particularly interest-
ing:

• α = 0: This case is traditionally referred to in the literature
as normalized graph Laplacian.

• α = 1: In this case (A.2) turns into the Laplace–Beltrami
operator ∆. In particular, the influence of the density q is
removed and the limit only depends on the geometry of the
manifold.

• α =
1
2 : Here we obtain ∆ −

∆(q1−α )
q1−α

. If the density is of the
form q = e−U , then (A.1) turns into

∂tv(t) = ∆v(t) −

(
∥∇U∥

2
2

−
∆U

)
v(t)
4 2
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for (A.2), where ∥∇U∥2 denotes the Euclidean norm of the
gradient of U . If we also substitute f (t, x) := e−U(x)/2v(t, x),
then we obtain the equation

∂t f (t, x) = ∇ · (∇f (t, x) + f (t, x)∇U(x)),

which is the forward Fokker–Planck equation to the stochas-
tic differential equation

dXt = −∇U(Xt ) dt +
√
2 dWt (A.3)

with reflecting boundary conditions at ∂M , where (Wt )t≥0 is
a Brownian motion on M . Hence, the Markov chain P

ε, 12
can

be used to study the probability densities of solutions of a
stochastic differential equation of the form (A.3).
In the discrete situation, the set X is not given by a whole
manifold M , but by a finite number of points sampled ac-
cording to q. In this case integrals are replaced by sums,
i.e. one works with

qε(xi) =

m∑
j=1

kε(xi, xj), d
(α)
ε (xi) =

m∑
j=1

kε(xi, xj)
qε(xi)αqε(xj)α,

pε,α(xi, xj) =
kε(xi, xj)

d
(α)
ε (xi)

, Pε,α f (xi) =

m∑
j=1

pε,α(xi, xj)f (xj)

where m denotes the number of points. It was derived
in [177] that

|Pε,α f (xi) − Pε,α f (xi)| = O(m−
1
2 ε

1
2 −

dM
4 )

with high probability, where dM denotes the dimension of
the underlying manifold. Therefore, the generators satisfy
with high probability that

|Lε,α f (xi) − Lε,α f (xi)| = O(m−
1
2 ε−

1
2 −

dM
4 ).
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