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Abstract The thalamus and cortex are interconnected both functionally and anatomically
and share a common developmental trajectory. Interactions between the mediodorsal thalamus
(MD) and different parts of the prefrontal cortex are essential in cognitive processes, such as
learning and adaptive decision-making. Cortico-thalamocortical interactions involving other
dorsal thalamic nuclei, including the anterior thalamus and pulvinar, also influence these
cognitive processes. Our work, and that of others, indicates a crucial influence of these inter-
dependent cortico-thalamocortical neural networks that contributes actively to the processing
of information within the cortex. Each of these thalamic nuclei also receives potent subcortical

This symposium review forms part of the ‘Decoding Prefrontal Cortical Physiology: Circuits of Cognition’ symposium held at Physiology 2021 in July
2021, and organized by Professor Matt Jones.
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inputs that are likely to provide additional influences on their regulation of cortical activity.
Here, we highlight our current neuroscientific research aimed at establishing when cortico-MD
thalamocortical neural network communication is vital within the context of a rapid learning and
memory discrimination task. We are collecting evidence of MD-prefrontal cortex neural network
communication in awake, behaving male rhesus macaques. Given the prevailing evidence, further
studies are needed to identify both broad and specific mechanisms that govern how the MD,
anterior thalamus and pulvinar cortico-thalamocortical interactions support learning, memory
and decision-making. Current evidence shows that the MD (and the anterior thalamus) are crucial
for frontotemporal communication, and the pulvinar is crucial for frontoparietal communication.
Such work is crucial to advance our understanding of the neuroanatomical and physiological
bases of these brain functions in humans. In turn, this might offer avenues to develop effective
treatment strategies to improve the cognitive deficits often observed in many debilitating neuro-
logical disorders and diseases and in neurodegeneration.
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Abstract figure legend Overlapping prefrontal cortex connectivity for the subdivisions of the mediodorsal thalamus
[MD: magnocellular MD (MDmc), parvocellular MD (MDpc) and lateral MD (MDI)], the anterior thalamus (ATN)
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and the pulvinar.

Background

For >120 vyears, clinical evidence has highlighted
that damage to, or dysfunction of, the mediodorsal
thalamus (MD), the prefrontal cortex (PFC) and/or
the interconnections between these two structures is
associated with cognitive deficits, particularly in the
domains of learning and memory (Kopelman, 2015;
Markowitsch, 1982; Pergola et al., 2018; Victor et al,
1971). Likewise, neuropathology and neuroimaging
reports have associated changes in MD-PFC white
matter connectivity with the cognitive impairments
found in several neurological and psychiatric disorders,
including Wernicke-Korsakoff syndrome and neuro-
degeneration related to alcoholism (Kopelman, 2015;
Segobin et al, 2019), thalamic stroke (Danet et al,
2015; Pergola et al., 2018), affective disorders (Pergola
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et al., 2018), frontotemporal dementia (Bocchetta et al.,
2020) and Parkinson’s disease (Harrington et al., 2020).
Furthermore, neurodevelopmental disorders, particularly
schizophrenia (Parnaudeau et al., 2018; Pergola et al,
2015), also involve changes in MD-PFC thalamocortical
interactions which, along with other brain changes, lead
to the observed cognitive deficits.

This clinical evidence prompted earlier neuroscientific
studies involving animal models that reaffirmed the
crucial influence of the MD in cognition (e.g. Aggleton &
Mishkin, 1983a, b; Gaffan & Parker, 2000; Isseroff et al.,
1982; Mitchell, 2015; Mitchell & Dalrymple-Alford, 2005;
Mitchell & Chakraborty, 2013). More recently, studies
using animal models have begun to capture the essence of
the contributions of the thalamus and cortex as they work
in partnership during learning, memory, decision-making
and other higher cognitive processes (Jones, 2009). For
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example, non-human primates (NHPs) with permanent
neurotoxic damage to the MD in one hemisphere and a
contralateral PFC ablation were shown to have extensive
deficits during rapid visuospatial discrimination learning
and adaptive decision-making tasks (Browning et al.,
2015; Izquierdo & Murray, 2010). Likewise, in mice,
temporary disruption of the MD or medial PFC using
optogenetics during an attentional control task caused
increased errors, especially when task parameters became
more complex (Mukherjee et al., 2021). In rats, chemo-
genetic inactivation of MD — PFC and PFC — MD
pathways using a dual viral vector strategy captured
the influence of these pathways during an instrumental
learning task (Alcaraz et al., 2018). However, only the
inactivation of the MD — PFC pathway caused deficits
in evaluating the causal relationships between actions
and outcomes. In contrast, inactivation of either pathway
impaired the re-evaluation of changing rewards. Finally,
recent neuroimaging studies in healthy volunteers support
the involvement of thalamocortical interactions involving
the MD or the pulvinar and of additional thalamic
structures in cognitive processes (e.g. Hwang et al., 2021;
Kosciessa et al., 2021).

More specifically, in the case of the pulvinar, neuro-
scientific studies involving NHPs have established its
crucial influence over interconnected cortical areas in
visuospatial attentional processes (e.g. Fiebelkorn et al.,
2019; Saalmann et al., 2012; for review, see Fiebelkorn
& Kastner, 2020), with a recent computational model
of cortico-pulvinar-cortical interactions suggesting how
this feedback and feedforward neural circuitry might
influence higher cognitive processes (Jaramillo et al,
2019). Jaramillo et al. (2019) showed that changes in
excitability of the pulvinar caused influential changes
in the computational priorities of their model, leading
to changes in behavioural outcomes. Clinical studies
have also identified the contribution of the pulvinar
to visuospatial whereabouts, orientation and movement
(Snow et al, 2009; Wilke et al, 2018). Additionally,
functional and diffusion imaging analyses has identified
distinct differences in thalamocortical connectivity of the
human pulvinar with the dorsal pulvinar interconnected
to the frontal and parietal cortex and the ventral pulvinar
interconnected to the visual cortex (Arcaro et al.,, 2015).
An interesting recent review proposes the pulvinar as
a hub for multisensory integration, given its extensive
cortico-thalamocortical connectivity (Froesel et al., 2021).
Clearly, complementary evidence from humans and
animal models is essential for the development of a
direct link that supports further testing and assessments
in neuropsychology and psychiatry (Pergola et al., 2018;
Scott & Bourne, 2022).

Neuroscience endeavours ultimately to understand the
workings of the human brain. Consequently, further
understanding of the influence of the MD, the pulvinar
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and the anterior thalamic (ATN) nuclei in cognitive
processes has the potential to lead to effective treatment
targets for many clinical populations. Although human
participants have the advantage of being easier to train
to complete many complex cognitive tasks, access to
intracranial neural recordings is very limited. Combining
such recordings with invasive brain perturbations is
not possible. Therefore, it is still crucially important
to use animal models to establish when and how
cortico-thalamocortical interactions are necessary during
many higher cognitive functions. To this end, we
need to pinpoint when thalamocortical interactions are
important for successful cognitive processes to occur. The
aforementioned evidence from animal models suggests
that MD-PFC interactions are particularly important
during associative learning of newly processed sensory
information coming from association cortex areas, when
several threads of task-relevant information need to be
bound together rapidly or as task demands increase
(requiring a need for updating of associative links) during
a testing session (Chakraborty et al., 2016; Mitchell, 2015;
Mukherjee et al., 2021; Schmitt et al., 2017), although
further studies are needed to support these proposals fully.

Why might dorsal thalamic nuclei be viable targets
for treatment in higher cognitive processes?

The nuclei of the dorsal thalamus have the advantage of
being key nodal structures, with each one interconnected
to discrete, interdependent cortico-thalamocortical
neural networks. They are themselves small enough to
be targeted in their entirety with viral vectors coding for
opsins or designer receptors and might then have the
potential to be manipulated selectively (Alcaraz et al.,
2018; Barnett et al., 2021; Courtiol et al., 2019; Mukherjee
et al., 2021; Schmitt et al., 2017).

Very recently, optogenetic theta burst stimulation of
glutamatergic neurons in the ATN restored the ability
of rats with permanent mammillothalamic tract lesions
to perform a spatial working memory task (Barnett
et al, 2021). Furthermore, ATN stimulation after
mammillothalamic tract lesions enhanced rhythmic
electrical activity and increased immediate early
gene expression across memory-related brain regions,
suggestive of wide-ranging and broad effects of thalamic
modulation (Barnett et al, 2021). The use of two viral
vectors to transfect, and subsequently manipulate, both
the soma and the terminals of neurons or glial cells was
first developed in NHPs (Kinoshita et al., 2012). In time,
with further translational cross-species advances in the
development of effective viral vectors in primates, it
seems plausible to envisage this or similar viral vector
approaches being used effectively to target structures
such as the subdivisions of the MD, the ATN or the
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pulvinar in humans based on their differences in neuro-
chemical parcellations. A similar proposal has already
been suggested for dorsal thalamic nuclei (e.g. Barnett
et al., 2018; Courtiol et al., 2019). However, additional
translational work in NHPs is essential to develop this
technology further to target these deep brain structures
without causing extensive damage to overlying structures
and to ensure robust thalamic receptor uptake of the
viruses.

Subdivisions in the MD, the ATN and the pulvinar are
proposed to be higher-order thalamic nuclei (Guillery,
1995; Halassa & Kastner, 2017; Mitchell, 2015; Perry
& Mitchell, 2019; Schwartz et al., 1991), which are
characterized by having their primary driving inputs
coming from layer V pyramidal neurons in the cortex,
rather than from peripheral or sensory structures, as
is the case for first-order thalamic nuclei (Guillery,
1995; Halassa & Sherman, 2019; Perry et al., 2021;
Sherman & Guillery, 2013). This alternative view of
cortico-thalamocortical interactions ‘leads to the under-
standing that the thalamus continues to contribute to
the processing of information within cortical hierarchies’
(Sherman, 2016) rather than being a passive relay
of sensory information. Although subdivisions of the
MD, the pulvinar and the ATN are proposed to be
higher-order thalamic nuclei, it is important to note
that each of these nuclei also receives potent subcortical
driving inputs (Sherman, 2016) that are also likely to
contribute to their respective influences within cortical
information-processing hierarchies. In particular, for the
magnocellular subdivision of the MD (MDmc), recent
electron microscopic work indicates that at least some
of these subcortical driving inputs are coming from the
amygdala (Timbie et al., 2020), confirming earlier tracer
work in NHPs (Aggleton & Mishkin, 1984; Russchen et al.,
1987). Given the computational modelling proposal of
Jaramillo et al. (2019), it seems highly likely that these
additional cortical, subcortical and neuromodulatory
inputs to higher-order thalamic structures, such as the
MD, the ATN and the pulvinar, are helping to change their
levels of excitability, leading to differential downstream
influences on behaviour.

A long road to identifying the MD influence on
higher cognitive processes

We are still far from a complete understanding of
how each thalamic nucleus contributes to the overall
neural network. For example, deep brain stimulation
of the subthalamic nucleus, the globus pallidus or the
thalamus, which form part of an extended neural circuit,
are all effective current treatments in patients with
differing symptoms in Parkinson’s disease and other
motor impairments (Lozano et al., 2002). Nevertheless,
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it is widely recognized that we do not yet understand
fully the underlying mechanisms that are supporting these
effective stimulation protocols.

Using lesion studies in animal models, neuroscientists
were initially intent on dissecting the contribution of
individual thalamic nuclei to higher cognitive processes,
because damage to these nuclei has been determined
to lead to extensive cognitive deficits (e.g. Harding
et al., 2000; Kril & Harper, 2012; Markowitsch, 1982;
Victor et al., 1971). However, the underlying systemic
dysfunction stemming from the thalamic injury can
impact on multiple brain regions and the central and
peripheral nervous systems. In the case of patients with
thalamic strokes, damage is very rarely focal and, instead,
typically involves multiple thalamic nuclei and adjacent
white matter tracts (Danet et al., 2015; Pergola et al., 2018).

Nevertheless, experimental neurotoxic lesion studies
have allowed us to delineate some of the contributions of
individual primate MD subdivisions or the pulvinar to
higher cognitive processes. Causal neurotoxic lesion
studies have identified the crucial contribution of
the MDmc during rapid learning of new visuospatial
discriminations (Mitchell, Baxter et al., 2007) and during
adaptive value-based or probabilistic decision-making
tasks (Chakraborty et al, 2016; Mitchell, Browning
et al.,, 2007). However, MDmc damage does not impair
retention of visuospatial discriminations (Mitchell &
Gaffan, 2008) or preoperatively acquired strategies for
solving decision-making tasks (Mitchell, Baxter et al.,
2007). In contrast, the adjacent parvocellular subdivision
of the MD (MDpc) is not involved in learning new
visuospatial discriminations (Chakraborty et al., 2019).
Taken together, this and other evidence from rodent
studies has been very useful in developing our under-
standing of the particular higher cognitive processes
that are disrupted after selective MD perturbations
combined with changes in the interconnected frontal
cortex (Browning et al., 2015; Izquierdo & Murray, 2010).
Likewise, many causal lesion or inactivation studies of
monkey pulvinar have highlighted its crucial influence
on visuospatial attention, cognition and sensorimotor
processes (e.g. Bridge et al., 2016; Purushothaman et al.,
2012; Wilke et al., 2010, 2013; Zhou et al., 2016). However,
as with any one method, lesion studies provide insight
about how the rest of the brain functions in the absence of
a particular structure, but are unable to indicate when or
how the structures themselves are contributing to these
processes.

Neuroimaging is another method that can provide an
understanding of which neural networks are changed
as a consequence of engaging in higher cognitive
processes. For example, researchers in our laboratory have
performed neuroimaging analyses of brain changes as a
consequence of learning the visuospatial discrimination
learning task mentioned in the above lesion studies.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Figure 1. Cortico-thalamocortical connections

Schematic representations of the main cortical and subcortical connections of the three mediodorsal thalamus
(MD) subdivisions [magnocellular MD (MDmc), parvocellular MD (MDpc) and lateral MD (MDI)] in macaque coronal
plates. Overlapping frontal and temporal cortex connections to and from the pulvinar are highlighted, but not all
neuroanatomical connectivity of the pulvinar is shown. Overlapping frontal cortex connections of the anterior
thalamus (ATN) are shown (for complete details, please refer to Perry et al., 2021). The anterior—posterior position
of each coronal section is given relative to the anterior commissure (ac) based on Paxinos, Huang and Toga (2000).
The relative position of these coronal plates in the macaque brain is indicated on the sagittal plane in the top right
illustration (A-E). The anatomical connectivity of the MD is based on the work of several laboratories (e.g. Aggleton
& Mishkin, 1984; Russchen et al., 1987; Saunders et al., 2005; Schwartz et al., 1991; Timbie et al., 2020). It is
apparent across species, but especially in the macaque, that the MDmc forms part of a distinct frontotemporal
circuit receiving inputs from the perirhinal (PRh) and entorhinal (ERh) cortex and the amygdala (basomedial [BL],
basomedial [BM], corticomedial [Co], medial [Me] and centromedial [Ce]), in addition to more ventral and ventro-
medial regions of prefrontal (areas 25, 32 and orbital periallocortex [OPAL]) and orbitofrontal cortex [areas 11, 13,
14 and 47(12)]. In contrast, the MDpc and MDI subdivisions tend to interact with more dorsolateral frontal regions
(areas 9, 45 and 46). Interestingly, in the macaque, the anterior cingulate cortex (areas 24A, B and C) and the
frontal pole (areas 10D and 10M) appear to be convergence points for connections with all three MD subdivisions,
perhaps indicating a special role for these regions in integrating thalamocortical and corticocortical information.
NB The pulvinar sends inputs to the amygdala and temporal cortex structures and has reciprocal connectivity with
layer VI of the frontal cortex (e.g. Elorette et al., 2018; Jones & Burton, 1976; Rafal et al., 2015; Shipp, 2003).
**The ATN does not connect directly to the amygdala or the perirhinal cortex. However, it is interconnected to the
entorhinal cortex (refer to Perry et al., 2021).

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Our results indicated that resting-state functional MRI
and structural connectivity changes occurred between
the dorsal medial thalamic nuclei and interconnected
cortical regions (Pelekanos et al, 2020). Interestingly,
however, not only were changes noted between the
thalamus and frontal cortex; in addition, we found
changes in structural and functional connectivity between
structures in the temporal cortex and the dorsal medial
thalamus and between the temporal cortex and the ventro-
lateral PFC (Pelekanos et al., 2020). In this context, it
is important to mention that the perirhinal cortex, in
the temporal cortex, projects to the MDmc (Russchen
et al, 1987; Saunders et al., 2005). Other studies
in monkeys and in humans have together indicated
that temporal cortex-PFC interactions are involved in
visuospatial discrimination learning and recognition
(Browning & Gaffan, 2008; Lee et al., 2005; Parker &
Gaffan, 1998), with a recent review highlighting the
importance of temporal cortex-ventral PFC interactions
in supporting visual processing in primates (Eldridge
et al.,, 2021). This neuroimaging evidence has highlighted
the crucial contributions of both cortico-thalamocortical
and cortico-cortical interactions during the learning of
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new visuospatial discriminations. However, exactly like
the lesion studies, neuroimaging studies also have some
disadvantages. For example, this method does not show
the complexity of neuron-level signalling or the milli-
second responses of neural populations.

For this precision, neurophysiological recording studies
are required. Single- and multi-unit recordings targeting
both the MD and the PFC during the execution of
cognitive tasks in rodents and NHPs have the potential
to capture the unique contributions of these structures to
cognition. However, such simultaneous recordings have
been performed in few studies so far (Perry et al., 2021).
One of them (DeNicola et al., 2020) investigated the
activity of dorsolateral PFC and lateral MD neurons
of NHPs performing a version of the AX-continuous
performance test, in which cognitive control is needed
to withhold a preponderant response. A rich interaction
between both structures was revealed, whereby the timing
and response selectivity of PFC neurons suggested a role
in context representation, whereas MD neurons coded
for the decision and response by the monkey. Inter-
estingly, the pulvinar has also been found to have a role in
decision-making, with its firing rate predicting whether or

Visuospatial discrimination task

Reward

No Reward

Reward

Reward No Reward

Examples of discriminations

Figure 2. Visuospatial discrimination task

The Journal of

Physiology

For each neurophysiological recording session, the monkeys have to learn, for each trial, which one of two small
coloured typographical characters embedded in a unique complex colourful background that includes one large
typographical character presented on a touchscreen computer leads to receiving a small amount of fruit smoothie
(correct; reward) and which one does not (incorrect; no reward). For a correct choice, the reward is delivered 1.8 s
after a screen touch, whereas for an incorrect choice nothing happens for 1.8 s. Up to 30 new, unique visuospatial
discriminations are generated for each recording session (depending on the ability of the monkey), and the monkey
has to touch the correct typographical character, which they learned by trial and error (i.e. for the first exposure of
each discrimination, the monkey has a 50/50 chance of making a correct choice). Each discrimination is presented
consecutively and is repeated 16 times within the recording session. Subsequent exposures to each discrimination
should result in rapid acquisition of the correct typographical character and a drastic reduction in errors. After the
completion of a trial, the screen goes blank, and the monkey receives a 5 s intertrial interval (ITl) for a correct choice
or 10 s for an incorrect choice. The black square at the top right-hand corner of each discrimination indicated to
a photocell monitoring light intensity that the trial had started and ended.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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not a monkey will opt out of a trial depending on its level
of confidence associated with receiving a larger reward
(Komura et al., 2013).

Given the differential connectivity between the sub-
divisions of MD and the PFC, a few studies have
probed specific neuronal subpopulations to under-
stand the underlying circuits more finely. Anastasiades
et al. (2021) showed that the MD contains two
populations of thalamocortical projection cells that
target either (vasoactive intestinal peptide) VIPT or
(parvalbumin) PV cells in the prelimbic PFC, with the
former causing an amplification of cortical functional
connectivity and the latter a suppression of cortical
activity (Mukherjee et al, 2021). These connections
proved to be particularly relevant in situations where
decisions need to be made in conditions with sparse
information (VIP*-targeting) and/or where there is a
high level of input noise (PV™-targeting). Likewise, the
PEC also contains neuronal subpopulations targeting the
MD differentially: the dorsomedial PFC preferentially
projects to the more lateral aspects of MD, whereas the
ventromedial PFC projects to the more medial MD.
Inhibition of the former population during the execution
of a five-choice serial reaction-time task in rats decreased
premature responses, and the opposite was observed
when ventromedial PFC neurons were inhibited (de
Kloet et al., 2021). Thus, these findings are revealing the
complexities of thalamocortical circuits, in which inter-
acting subpopulations complement each other to control
fine behavioural aspects.

Conclusion

We have proposed previously that the influence of the
MD interacting with the cortex contributes as a regulator
of cortical functioning when task demands require
rapid integration of visual and reward-based information
(Mitchell, 2015; Pergola et al., 2018). The inputs from peri-
rhinal cortex and amygdala that are transmitted directly to
the PFC and indirectly via the MDmc (see Fig. 1) suggest
that this dual pattern of connectivity [cortico-cortical
and cortico-thalamocortical (trans-thalamic)] allows the
MDmc to help regulate specific neural circuits within
the frontal cortex when rapid new learning or updating
is required. Likewise, dual patterns of connectivity
originate from the midbrain and brainstem, including
neuromodulatory transmitters (e.g. noradrenaline and
dopamine) and input directly to the PFC and temporal
cortex structures and indirectly via the MDmc. These sub-
cortical inputs will also help uniquely to influence and
regulate learning and updating, potentially by altering the
excitability of the MDmc during these specific aspects of
the task.

Interestingly, the pulvinar sends inputs to the perirhinal
cortex and the amygdala and has reciprocal connectivity
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with layer VI of the PFC (e.g. Bos & Benevento, 1975;
Elorette et al., 2018; Shipp, 2003; see Fig. 1). The
ATN has overlapping connectivity within the PFC and
reciprocal connectivity with the subicular complex (not
shown here; Perry et al., 2021). This overlapping PFC
connectivity highlights the complementary and inter-
dependent influences of the MD, the ATN and the
pulvinar for higher cognitive processes carried out by
these cortical areas.

In addition, the pulvinar is likely to influence the
dorsal stream of visual processing (Milner & Goodale,
1995; Ungerleider & Mishkin, 1982), given its reciprocal
connections with the lateral intraparietal cortex (Kagan
etal, 2021) and its identified contributions to visuospatial
attentional task processing, decision-making and
multisensory integration (Froesel et al., 2021; Komura
etal., 2013).

For now, we must collect and understand the neuro-
physiological responses of these cortico-thalamocortical
interactions linked to rapid visuospatial discrimination
learning, memory and decision-making. To this end,
we are currently collecting neurophysiological data from
the MD and different frontal cortical areas of NHPs
performing a visuospatial discrimination learning task
(Chakraborty et al., 2019; Gaffan, 1994; Fig. 2). This
task requires continuous rapid learning of visuospatial
discriminations and allows us to capture key parts of
the learning, memory and decision-making processes.
Our hope is that, by the analysis of single- and
multi-unit activity and local field potentials, we will gain
a deeper understanding of how and when the cortico-MD
thalamocortical interactions occur over the course of the
visuospatial discrimination task. Others (e.g. Fahy et al.,
1993) have found that neurons in the MDmc respond
to the previous occurrence of a stimulus during a visual
recognition task. Likewise, we have found that both the
frontal cortex and the MDmc contain neurons that are
tuned to different aspects of the trial, such as when the
visual scene is presented, when the monkey makes a
choice, and when the reward is delivered (or not). These
responses not only appear at crucial time points within
a trial, but also seem to evolve over the course of a
session, following the learning process of the monkey.
Our working proposal is that the MDmc is helping to
coordinate neural communication within frontal areas
that receive input from specific structures in the temporal
cortex, namely the amygdala and the perirhinal cortex,
during rapid learning of choice responses to visually
relevant (i.e. rewarding) discriminations.
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