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Abstract

A wide range of fluid flows occur within astrophysical bodies such as stars and

planets. In particular, convective flows are dominant throughout a significant portion of

the structure of these objects, playing a key role in the transport of heat throughout their

interiors. In a steady state, this convection must be maintained against any viscous and

Ohmic dissipation that is present. Prior numerical studies on the nature of this dissipa-

tion have often lacked key physical components of the convection, such as the influence

of rotation and stratification. Additionally, in planetary atmospheres the influence of the

underlying interior convection zone on the resulting surface circulation has historically

been underrepresented. This thesis examines idealised convective systems in an attempt

to understand some of these influences. We present the first systematic numerical study

of viscous dissipation and convection in a Cartesian layer in the highly stratified, rotat-

ing regime, and mixed fixed-entropy and fixed-flux boundary conditions. We find that

while the influence of rotation does not affect the total amount of dissipation within the

layer, the spatial distribution varies considerably as a result of the change in dynamical

structure in the rotationally constrained cases. The obtained heat transport scalings show

good agreement with those obtained in prior Boussinesq calculations and we define a new

parameter 𝑧𝑑𝑖𝑠𝑠 which quantifies the spatial distribution of the dissipation and appears to

provide a good indicator for whether a given system follows the rotationally constrained

scalings or not. We also use the globally averaged value of dissipative heating to place

constraints on the maximum (negative) value of the kinetic energy flux. Lastly, this the-

sis presents preliminary results on the influence of more physically motivated convective

parameterisations on the atmospheric circulation of highly irradiated tidally locked exo-

planets. Initial results show a significant weakening of the eastward equatorial jet, with an

accompanying acceleration of the westward midlatitude jets. The thesis then concludes

with a discussion of future work, along with accompanying proof-of-concept results.
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Chapter 1

Introduction

This chapter will introduce some of the fundamental background of fluid flows in as-

trophysics, specifically those found within stars and planets. Section 1.1 will begin by

giving an overview of the types of fluid flows present in astrophysics, specifically those

relevant to this thesis such as interior convection (relevant to Chapters 4 and 5) and large

scale atmospheric circulation (relevant to Chapter 6). It will then provide an overview of

some of the outstanding puzzles that are present within these fields both in theory, and

in observations. There will be a particular focus on interior stellar convection, as well as

the observed anomalously high radius of many close orbiting, tidally-locked, gas giant

planets. Lastly Section 1.2 will provide a breakdown of the overall structure of this thesis.

1.1 Fluid flow in Stars and Planets

Fluid dynamical flows are ubiquitous within astrophysics, ranging from the large scale

outflows from active galactic nuclei (King and Pounds 2015), to the collapse of giant molec-

ular clouds into densely interacting star forming regions (Girichidis et al. 2020), down to

the study of cryolava fluid flows on the surface of Saturn’s moon Titan (Bodin and Cordier

2022). Direct observation of these flows is difficult, in some cases impossible, and so to

study these fluid dynamical phenomena we must turn to numerical simulations and to

theory.
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Figure 1.1: A cartoon schematic of a possible zeroth, first, and second order approximations of star or planet.
Under the most simple approximation, these bodies are large spheres of fluid. To a higher degree of detail,
there may exist a solid surface or a fluid layer with a considerably different structure.

In the case of stars and planets, to a most basic zeroth order approximation, they are

large spheres of fluid. In the case of terrestrial planets, an ever-so-slightly more complex

first order approximation might include a solid boundary, or surface, at some point on the

planet, and then a second order approximation might include a solid inner core of some

radius (see Figure 1.1). Using the Earth as an example, as much as 75% of the planetary

radius can be described and studied as a fluid. While this might seem trivial with the

zeroth, first, and second order distinctions being somewhat arbitrary, the purpose of this

figure is to emphasis how much of these objects can be treated as a fluid, and as such can

be studied by some extension of the governing equations of fluid dynamics (see Chapter

2). The different regions in these objects are distinctly different, that is, the Earth’s in-

terior mantle is clearly physically different to the Earth’s atmosphere, however they are

still both describable as fluids, and often exhibit the same dynamical phenomena. See,

for example, the study of convection in the Earth’s mantle (Ricard et al. 2022), its oceans

(Kovalevsky et al. 2020), and its atmosphere (Stevens 2005). The physical properties such

as viscosity, density, and temperature vary considerably between these three different re-

gions resulting in distinctly different fluids, but they all exhibit convection. We shall see in

our study of interior convection that as the typical flow velocities are sufficiently subsonic,

certain approximations can be made to filter out sound waves and simplify the governing

equations that describe the fluid flow (see Ogura and Phillips (1962), Gough (1969) and
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discussion in Section 2.1.2). In some other regimes, for example, high in planetary atmo-

spheres, these approximations may break down, leading many authors to turn to fully

compressible models instead. Both of these fluid regimes exist within a hot Jupiter for

example.

The following two sections will delve deeper into the sorts of fluid flows that are

present in stars (Section 1.1.1) and planets (Section 1.1.2) building towards introducing

some of the current problems.

1.1.1 Convection in Stars

The two primary forms of heat transport within stars are via radiation and convection.

Which of these dominates the heat transport at a given radius is dependent on the overall

mass of the star. As can be seen in Figure 1.2, low mass stars with 𝑀 ≲ 0.35𝑀⊙ where

𝑀 is the stellar mass, and 𝑀⊙ is the mass of the Sun, are fully convective throughout

their interiors, stars with mass 0.35𝑀⊙ ≲ 𝑀 ≲ 1.5𝑀⊙ have radiative cores and convective

envelopes, and those with 𝑀 ≳ 1.5𝑀⊙ have convective cores and radiative envelopes

(Kippenhahn et al. 2013). Considering that fully-convective low-mass stars make up> 70%

of the stellar population of the Milky Way (Chabrier and Baraffe 1997), and convective

motions dominate the majority of their interiors, it is clear that understanding convection

is of crucial importance to understanding these objects.

1.1.1.1 Surface granulation

Observations of our closest star, the Sun, reveal a surface covered in convective granules

that are present within the Sun’s photosphere (see Figure 1.3). This granular convection

is believed to be driven primarily by the the non-adiabatic radiative cooling of the fluid

within a thin thermal boundary layer (Stein and Nordlund 1998). This is formed by the

strongly superadiabatic region that exists at the depth where the optical depth of the fluid

is unity (Nordlund et al. 2009). Above this point, the fluid is optically thin and therefore

radiative cooling from the surface becomes important. Doppler measurements of the Sun

also reveal a larger scale cellular flow structure of order 30 Mm known as supergranulation

(see Figure 1.4). These structures have much longer dynamical timescales when compared
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Figure 1.2: The typical structure of stellar interiors as a function of mass (𝑀) in units of solar mass (𝑀⊙). Stars
with a mass, 𝑀 ≲ 0.35𝑀⊙ are fully convective throughout their entire interior, those with mass 0.35𝑀⊙ ≲
𝑀 ≲ 1.5𝑀⊙ have radiative cores and an overlying convective envelopes, and those with 𝑀 ≳ 1.5𝑀⊙ have
convective cores and radiative envelopes. Image credit: https://en.wikipedia.org/wiki/File:Star_types.svg

to typical surface granulation (existing for somewhere in the order of 1-2 days) and they

consist of strong horizontal flows with rms velocities in the range of 300-400 ms−1, an order

of magnitude larger than their vertical components. This can again be seen clearly in Fig-

ure 1.4 where the Doppler signal at the center of the disc is at a minimum, representative

of a primarily horizontal flow pattern.

This surface convection is of particular interest to those wishing to detect long-

period, low-mass exoplanets through radial velocity measurements. These convective

motions produce their own radial velocity signals as a result of the asymmetries in the

granular structure. The wide, upwelling, motions produce a larger signal than the nar-

row downwelling intergranual lanes. This is further enhanced by the flux difference due

to the larger upwelling signal being hotter, and therefore brighter, than the narrow down-

welling fluid (Liebing et al. 2021). The suppression of convective motions as a result of

magnetic activity results in a decrease in the observed convective blueshift and introduces

variability to the observed radial velocity measurements (Dravins et al. 1981). This is one

of the main obstacles facing the detection, confirmation, and characterisation of Earth-

and Neptune-mass planets in long-period orbits via the radial velocity method (Crass et

al. 2021), although recent progress has been made in removing the noise from such sig-
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Figure 1.3: An image of the surface of the Sun taken by the Swedish 1m Solar Telescope in 2017 showing
distinct convective cells of order 1-2Mm in width. These structures develop on a typical timescale of order
10 minutes. Image credit: Institute for Solar Physics, Sweden.

Figure 1.4: Doppler imaging of the sun obtained by MDI instrument onboard the SOHO satellite. Image
credit: SOHO/MDI/ESA (Rincon and Rieutord 2018)
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nals through the use of surface activity proxies (Haywood et al. 2022) or deep learning

algorithms (de Beurs et al. 2022). Of more interest to the work contained in this thesis

however, is the study of giant cell convection in the interiors of these objects.

1.1.1.2 Convective interiors

As previously mentioned, direct observations of these types of astrophysical fluid flows

are difficult. As a result, large scale numerical simulations are regularly employed to

study the convective interiors of stars. One stellar interior that can be observationally

constrained however, is the Earth’s closest star, the Sun. It has been known for more than a

century that the surface of the Sun rotates differently at different latitudes, with the equator

experiencing a rotating rate of ∼ 25 days, and the mid-latitudes experiencing a period

of ∼ 33 days (Miesch and Toomre 2009). The advent of helioseismology allowed for the

investigation of the solar interior by studying the oscillations of sound waves (known as p-

modes) as they propagate through Sun (Gough and Toomre 1991). Such methods resulted

in direct observations of angular velocity (Ω) profiles of the Sun’s interior, and revealed

features such as a uniformly rotating deep interior (below ∼ 0.7𝑅⊙, the boundary known

as the tachocline between the radiative interior and the convective envelope). Above the

tachocline lines of near constant Ω with respect to radius for a given latitude can be seen,

and a radial shear layer is visible at the surface (see Figure 1.5). To study these regions

further, we are required to turn to numerical simulations.

All global numerical simulations of sufficient depth develop large scale convective

flows, commonly referred to as giant-cell convection (Rast 2020). Despite neglecting the

surface granulation and instead evoking more simplistic impermeable upper boundary

conditions, these simulations have had remarkable success at reproducing the gross fea-

tures of the solar differential rotation profile (Brun and Toomre 2002, Karak et al. 2015

and others) and studying components of dynamo action (Browning et al. 2006, Nelson

and Miesch 2014 for example). Figure 1.6 from Miesch et al. (2008) demonstrates the typ-

ical convective structure formed within the upper portion of the convective regime at two

radial heights of 𝑟 = 0.98𝑅⊙ and 𝑟 = 0.95𝑅⊙, where 𝑟 is the radius and 𝑅⊙ is the solar ra-

dius. Large asymmetries between the hot, upward and cold, downward flows can be seen
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Figure 1.5: Angular velocity profiles of the sun as a function of radius from helioseismology. (a) Shows the
full latitude and radial dependence of Ω from Schou et al. (1998) (b) Shows radial cuts of the Ω profile for a
range of latitudes from Miesch and Toomre (2009).

as a result of the density stratification and are a known feature of compressible convection

(Stein and Nordlund 1989).

However, as modellers moved to more higher resolution, and thus more resolved

turbulent convection, they have encountered what is referred to as the convective conun-

drum. Simulations by Brun and Toomre (2002) had produced results in reasonable agree-

ment with helioseismic measurements, that is, a fast rotating equator with a corresponding

angular velocity drop of ∼ 30% from the equator to the pole. The higher resolution mod-

els (which resolved more of the previously unresolved turbulence) explored in Miesch

et al. (2008) showed a reduced contrast in the latitudinal differential rotation – specifically

50% lower than that observed in the lower resolution case of Brun and Toomre (2002).

When the diffusivities were lowered even further at fixed rotation rate, often the simula-

tions were found to ”flip” to an anti-solar differential rotation profile. Gastine et al. (2013),

following the pioneering work of Gilman (1977) links this transition from strong solar-like

differential rotation to anti-solar behaviour (rapidly rotating poles and a slow equator) to

a transition in the relative strengths of the inertial and Coriolis force (encapsulated by the

Rossby number, Ro). Similar results have been shown by Featherstone and Miesch (2015)

in which rotationally constrained flows (low Ro) correspond to solar-like rotation pro-

files, whereas weakly rotationally constrained flows develop anti-solar rotation as a result

of angular momentum transport by convective Reynolds stresses establishing single cell
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Figure 1.6: Figure taken from Miesch et al. (2008), Figure 1. Numerical outputs of the radial velocties for giant
cell convection at (a) 𝑟 = 0.98𝑅⊙ , and (b) 𝑟 = 0.95𝑅⊙ , where 𝑟 is the radius and 𝑅⊙ is the solar radius. The
figure uses a Mollweide projection such that all 360◦ of longitude can be seen. The dashed lines represent
constant latitude of 0◦ ,±30◦ , and ± 60◦ , and lines of constant longitude of 0◦and ± 90◦.
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meridional circulations.

Furthermore, disagreement between helioseismic measurements, numerical sim-

ulations and theory regarding the amplitude and structure of the convection still exist.

Hanasoge et al. (2012) demonstrated that helioseismic observations of the convective am-

plitudes that are present in the Sun are much smaller (several orders of magnitudes lower)

than those obtained in numerical simulations. Greer et al. (2015) apply a different helio-

seismology method (ring-diagram, instead of time-difference in Hanasoge et al. (2012)) to

recover convective amplitudes considerably closer to those produced by numerical simu-

lations. This disagreement remains unresolved. Vasil et al. (2021) propose that the solar

convective zone is rotationally constrained almost everywhere beneath the near-surface

sheer layers and that this rotation acts to decrease the length scale at which the convec-

tion occurs and suppress giant cell convection. They also argue that the observations of

Hanasoge et al. (2012) are due to a scale effect and not due to an actual small velocity.

In conclusion, there is considerable evidence that our knowledge of the large-scale

convective flows that occur within the solar interior is incomplete. Current numerical

models do not accurately predict the convective velocities we observe via helioseismology

and therefore it is entirely possible that we are similarly getting other key mechanisms,

such as the treatment of dissipation, wrong. Many authors have previously pointed to

various key components of the convection that are missing from our numerical simula-

tions, with the influences of rotation and stratification arguably chief among them (Vasil

et al. 2021). By considering idealised convective systems, as done in Chapters 4 and 5 we

aim to explore the influence of rotation and stratification on the resulting dissipation, heat

transport, and overall dynamics of the convection.

1.1.2 Planetary atmospheres

As discussed in 1.1, to a zeroth order approximation a planet is largely just a large sphere

of fluid. This picture is somewhat distorted in the case of terrestrial planets, however

with the exception of this chapter these planets will not be discussed within this thesis.

The focus of this work will be on gas giant planets, and while physically these are clearly

different objects from stars, they are analogous in that they can be treated largely as fluids.
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Figure 1.7: The gas giant Jupiter (a) and its Earth-sized storm, the Great Red Spot (b). Image credits: NASA’s
Hubble Space Telescope on Aug. 25, 2020 (a) and NASA’s Juno orbiter on Jul. 10, 2017 (b).

1.1.2.1 Atmospheric dynamics

The most studied gas giant to date is Earth’s own neighbour, Jupiter (see Figure 1.7). Due

to its proximity and long term study (with the naked eye from as early the 8th century

BCE, and telescope observations from the 17th century) it has received a considerable

amount of attention and is without a doubt the most heavily studied example of a gas

giant planet. Its banded structure and Great Red Spot were observed as early as the 17th

century and Giovani Cassini measured its differential rotation in 1692 (Beebe 1996). These

dynamical features are abundant in Jupiter’s atmosphere, with large-scale zonal jets ex-

tending around its entire circumference generating many turbulent eddies at the inter-

faces between counter-rotating jets as a product of Kelvin-Helmholtz instabilities (formed

by velocity shear in two adjacent regions of fluid). Recent observations of Jupiter’s po-

lar regions by the Juno spacecraft also revealed stable and long-lasting cyclone structures

(Mura et al. 2022).

Extending outwards towards gas giant exoplanets it is not unreasonable to expect

a similar abundance of dynamical features. This is especially the case for ”hot Jupiters”,

which are Jupiter mass planets in extremely close and short orbits of their host star. These

planets are so close that they are in fact tidally locked, meaning their rotation period is

equal to their orbital period. Such planets have one side of the planet in permanent day

and the other in permanent night. This results in two distinct regions, a very heavily
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Figure 1.8: Figure taken from Louden and Wheatley (2015), Figure 1. Model of how the relative flux of the
leading and trailing limbs of a transiting hot Jupiter exoplanet can be separated.

irradiated and hot side, and a dark, cold side. This establishes a significant temperature

gradient across the day-night terminators and is believed to establish considerable zonal

jets. It is these types of planets that are the focus of Chapter 6.

The closest hot Jupiter to Earth is HD 189733 b, and at a distance of 64.5 light years

away, it is of order 106 times further away than Jupiter. It understandable then that these

objects are much harder to observe in detail, and so use of numerical simulations is impor-

tant to try and understand the dynamics of the atmospheres of these objects. As previously

mentioned, one of the commonly predicted dynamical features of these types of exoplan-

ets is a strong equatorial zonal jet established due to the day-night temperature gradient.

Attempts to measure such dynamical features have been ongoing with the detection of a

net blue shift of sodium absorption signals in the transmission spectra of the hot Jupiters

HD 209458 b (Snellen et al. 2010), and HD 189733 b (Wyttenbach et al. 2015). The work

presented by Louden and Wheatley (2015) (see Figure 1.8) however managed to spatially

resolve and isolate excess velocity shifts to the leading and trailing limbs of HD 189733

b. After assuming the exoplanet is rotating at a fixed rate for a tidally locked orbit of 2.22

days, and adjusting for the resulting systematic red and blue shifts on the leading and



12 CHAPTER 1. INTRODUCTION

Figure 1.9: Panel (a) shows the predicted decay profile of Jupiter’s 1 bar zonal flows as a function in depth as
presented in Kaspi et al. 2018, Figure 4a. This profile is obtained from a minimum cost optimisation process
using high resolution gravity measurements from Juno. Panels (b) and (c) show the zonal and temporal mean
profiles of the zonal wind (𝑚𝑠−1) as a function of latitude 𝜙 and pressure.

trailing limbs respectively, a net blue shift is observed on the trailing limb, suggestive of

an eastward equatorial zonal jet. From this excess Louden and Wheatley (2015) proceed

to measure the wind velocities of such a jet, and thus produce the first spatially resolved

measurement of the atmospheric dynamics of an exoplanet.

Another prominent dynamical feature is the presence of deep planet-wide zonal

flows that extend down towards the interior of these planets. Juno observations of Jupiter’s

gravitational field indicate that the observed zonal flows present at its "surface" extend

thousands of kilometers deep into the interior of the planet as seen in Figure 1.9 from

Kaspi et al. 2018. While still only a small fraction of Jupiter’s radius, this is consider-
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Figure 1.10: Figure taken from Hammond and Lewis (2021), Figure 10. A schematic of the three main com-
ponents of the circulation present in a hot Jupiter atmosphere. An overturning circulatory pattern (blue) can
be seen rising at the substellar point, diverging almost isotropically towards the night side before descending.
Rotational circulation is then divided into a large-scale zonal jet and a stationary wave component.

able deeper than most numerical simulations resolve. Similar measurements have been

made in the study of Saturn, in both planets these supposed higher depth flows exist in

a regime where the magnetic field is large enough that Ohmic effects will play a key role

in damping such flows (Kaspi et al. 2020). Numerical models of hot Jupiters also suggest

that their large scale zonal flows extend the full vertical extent of the simulated domain

(as seen and discussed in Chapter 6). Another way to view the various components of

the atmospheric circulation is presented in Figure 1.10 from Hammond and Lewis (2021).

They show the total flow structure can be decomposed into rotational (divergence-free)

and divergent (vorticity-free). For a numerical simulation of a hot Jupiter, Hammond and

Lewis (2021) demonstrate that the divergent flow can be responsible for up to ∼ 50% of

the heat transport between the day and the night side.
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Figure 1.11: Figure taken from Baraffe et al. (2010), Figure 2. A mass-radius diagram for transiting exoplanets.
The black line represents theoretical predictions of radius as a function of mass from a 1D stellar evolution
with solar metallicity values (Baraffe et al. 2008). The full black circles labeled, J, S, and N, represent the solar
system objects Jupiter, Saturn, and Neptune respectively.

1.1.2.2 Radius inflation and the interior heat flux

A long standing problem in the field of exoplanet studies since the discovery of HD 209458

b (Brown et al. 2001) is the anomalously inflated radii of highly irradiated, tidally locked

gas giant planets. As can be seen Figure 1.11, a significant fraction of transiting exoplan-

ets appear to have inflated radii compared to theoretical values obtained from 1D stellar

evolution calculations (Baraffe et al. 2010).

Several mechanisms have been proposed in an attempt to explain the inflation of

these exoplanets radii (see Baraffe et al. 2010; Baraffe et al. 2014; Fortney and Nettelmann
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2010 for reviews) however as of now there does not appear to be a satisfactory resolu-

tion to the problem. A promising mechanism is in the form of an additional source of

energy being deposited within the planet’s interior resulting in a hotter interior adiabat

and therefore a larger planetary radius. Both Lubow et al. (1997) and Bodenheimer et

al. (2001) propose mechanisms for this missing energy in the form of tidal synchronisa-

tion and circularisation of an eccentric orbit, however also acknowledge the inadequacies

of these explanations. Specifically, the timescales on which these processes are likely to

occur (∼ 105 years in Lubow et al. (1997), 108 in Bodenheimer et al. (2001)) are too short to

provide the answer.

Observational evidence of a correlation between the observed inflated radii, and

stellar irradiance that these planets receive (Demory and Seager 2011; Laughlin et al. 2011;

Weiss et al. 2013 for example) suggest that this missing energy source is in fact the high lev-

els of incident stellar flux absorbed by these planets. Numerical work provided by Show-

man and Guillot (2002) showed that only a fraction of this incident flux (∼ 1%) needs

to be dissipated within the interior to reproduce the observed radius of HD 209458 b.

Complimentary numerical evidence appears to provide a robust mechanism for this en-

ergy transport in the form of the vertical advection of potential temperature (Tremblin

et al. 2017; Sainsbury-Martinez et al. 2019; Sainsbury-Martinez et al. 2021).

If, as outlined above, these inflated radii are the result of additionally interior heat-

ing due to the planets increased irradiance, then on some timescale (potentially as short

as tens of megayears Thorngren and Fortney 2018) the interior will achieve some thermal

equilibrium with this incident flux. Then what is the effect of these hotter interiors on the

typical atmospheric circulation patterns of these hot Jupiters?

1.2 Structure of the thesis: Flow from Stars to Planets

This chapter has provided an introduction to the types of fluid flow that exist in stars and

planets. Particular interest has been given to interior convection, and the atmospheric cir-

culation of highly irradiated and tidally-locked, gas giant planets, and some of the current

puzzles and open questions within the study of these fields have been discussed. The rest
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of this thesis will be dedicated towards trying to help answer these questions.

Chapter 2 will begin by providing the mathematical framework and theory that un-

derpins the study of astrophysical fluid dynamics, and introducing the governing equa-

tions of fluid dynamics. After detailing the process by which convective instabilities arise,

and introducing the array of non-dimensional parameters used to study them, it will finish

with an overview of the current literature of convective theory, focusing on how such non-

dimensional parameters influence and scale with one another. Chapter 3 will then provide

an overview of the numerical methods required, and that are subsequently used through-

out this thesis. In particular it will outline the development of a "proof-of-concept" linear

convection code for the purpose of calculating the point of convective onset, before intro-

ducing the Python framework Dedalus and detailing how it has been used to construct

both a linear solver for the critical Rayleigh number, Ra𝑐 , and a 2.5D compressible, rotating,

non-linear convection code. Lastly the chapter will introduce the UK Met Office’s Unified

Model (the UM), highlighting parts of particular interest. These first three chapters will

have provided the motivation, mathematical rigour, and numerical methods required for

the study of an astrophysical fluid dynamical system. Chapter 4 will then utilise these to

present a suite of convective simulations using the non-linear, anelastic, and rotating con-

vection code detailed in the previous chapter. Features of interest that will be discussed

here are the breaking of vertical symmetry in response to the introduction of stratification,

and the stabilising effects of rotation against convection.

Chapter 5 will then provide an introduction to dissipation in a convective layer, giv-

ing an overview of the existing literature. The chapter will then continue by characterising

the dynamics of the flow in both the non-rotating, and rotationally constrained regimes,

before discussing how these different dynamical regimes affect both the magnitude, and

spatial distribution of the viscous dissipation. This will be followed by a discussion of the

energy balances that occur within these different regimes and will lead into a comparison

of the resultant vertical entropy profiles that develop. Non-dimensional measures of the

heat transport and convective flow amplitudes will then be compared to the various lit-

erature scalings introduced in Chapter 2, before exploring how the boundary layers vary

with stratification and turbulent forcing. Lastly the chapter finishes with a discussion of
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how the viscous dissipation can be used to constrain the resulting kinetic energy flux.

The thesis will then conclude with Chapter 6 investigating the effects of introducing

hotter, shallower, and more physically realistic convective parameterisations on the bottom

boundary of numerical simulations of hot Jupiter atmospheres. Specifically it will present

preliminary results of the effects on the developed atmospheric circulation. Chapter 7 will

then conclude by summarising the main results of this work, and outline relevant future

work.
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Chapter 2

Theoretical Background

This chapter will provide an overview of much of the mathematics and theory behind

the study of astrophysical fluid dynamics, with a specific focus on the process of devel-

oping convective instabilities and the study of the resulting flow. Considering a range

of non-dimensional parameters representing the relative influence of particular compo-

nents of the fluid flow and the forces involved allows for particular "regimes" to be defined

and studied. In particular, the way these parameters influence and scale with one another,

specifically how the heat transport, and velocity amplitudes scale with the buoyancy driv-

ing, forms a significant part of convective theory and will form the main conclusions of

this chapter.

2.1 Fundamentals of Fluid Flow

2.1.1 The continuity equation

Consider first, a parcel of fluid of fixed volume𝑉 that is contained within some surface 𝑆.

Any net fluid flow into this parcel must be matched by either a corresponding flow out of

the parcel or by a change in the density of the fluid remaining. In the case where there is

a net gain or loss of fluid inside the fixed volume the density must change to compensate.

Mathematically this is expressed as,
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∫
𝑆

𝜌 · 𝒖 d𝑺 =

∫
𝑉

−
𝜕𝜌

𝜕𝑡
d𝑉, (2.1)

where 𝜌 is the density, 𝒖 is the fluid velocity, 𝑡 is time, and 𝑺 is the enclosing surface.

As we have assumed a fixed volume (and thus does not vary in time), we can move the

time derivative inside the volume integral. When the left-hand side (LHS) of equation

(2.1) is positive, it represents a net outward fluid flow from the fixed volume, 𝑉 , and

corresponds to a decrease in the density. Applying the divergence theorem to the LHS

and then rearranging the following is obtained,

∫
𝑉

[
𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒖)

]
d𝑉 = 0, (2.2)

and as this applies to any arbitrary volume 𝑉 , the integrand must also be equal to zero,

that is,

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒖) = 0. (2.3)

This is the continuity equation, one of the primary governing equations included in the

study of fluid dynamics. It encapsulates the nature of mass conservation inside a fixed

volume. Any fluid flow into such a volume must be matched by either some equal outward

flow or a corresponding change in density. When appropriate, various approximations

can be applied to this equation to simplify the terms that are contained within it, making

such fluid systems easier to study both analytically and numerically.

In the simplest case where the density is taken to be constant, then 𝜕𝜌
𝜕𝑡 = 0, and

∇ · (𝜌𝒖) = 𝜌(∇ · 𝒖), resulting in simply,

∇ · 𝒖 = 0. (2.4)

That is, for an incompressible fluid any flow into a fixed volume is matched exactly by a
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corresponding fluid flow outwards. This is the form the equation takes under the Boussi-

nesq approximation, which in essence ignores any and all density perturbations with the

exception of those that are multiplied the gravitational acceleration, 𝒈 , e.g. in the buoy-

ancy term of the momentum equation (see section 2.1.3). Applying such an approximation

however does, by necessity, result in an unstratified system. Many astrophysical flows, and

in particular flows that this thesis is interested in studying, that is, stellar convection, span

multiple density and temperature scale heights and as such the Boussinesq approximation

falls short at encapsulating their complete nature. Note that the scale heights defined here

(and used again in our discussion in Section 2.2.4) is the distance at which the relevant

quantity has dropped by a factor of 𝑒. A solution to this comes in the form of the anelastic

approximation.

2.1.2 Anelastic approximation

The anelastic approximation was first proposed by Ogura and Phillips 1962 in order to

filter out sound waves of a fluid system without assuming hydrostatic balance. It is an ap-

proximation of the fully-compressible equations of motion that is valid provided flows are

sufficiently sub-sonic and is analogous to sound-waves traveling at an infinite speed, that

is, any perturbation in density is known at all points within the domain instantaneously.

Additionally, it requires that all deviations to thermodynamic variables are sufficiently

small when compared to their nearly adiabatic background reference state (a case often

realised in stellar convection). This is of particular importance in the application of the

Lantz-Braginsky-Roberts (LBR) approximation (Lantz 1992; Braginsky and Roberts 1995)

which makes further assumptions regarding the buoyancy term in obtaining equation

3.50. Put more practically, the anelastic equation set neglects the time derivative of den-

sity within the continuity equation, that is equation (3.51) reduces to,

∇ · (𝜌𝒖) = 0. (2.5)

One of the main advantages of the anelastic approximation is that it is computationally

much faster and therefore cheaper than solving for fully-compressible flows. This is due
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to the fact that by removing the need to resolve sound waves it allows for considerably

larger timesteps. When calculating the size of the timestep that can be used for numerical

stability, one measure that must be considered is the CFL criterion, that is,

∇𝑡𝑚𝑎𝑥 =
∇𝑥

𝑢 𝑓
(2.6)

where ∇𝑥 is our grid spacing, and 𝑢 𝑓 is the fastest relevant velocity that is present in our

system. In the case of fully compressible flows the presence of sound waves requires us

to consider the speed of sound in the context of the CFL criterion. For typical convective

flows, the speed of sound is a factor of 105 larger than the fluid velocity and so would

require us to constrain the timestep to be a factor of 105 smaller than it would otherwise

need to be. There are methods to avoid limiting the timestep as heavily as this in fully

compressible flows, such as ramping up the luminosity with a "boost factor" to lessen the

difference between the fluid velocity and the speed of sound, however such methods are

outside the scope of this work (see Baraffe et al. 2021 for a discussion of this method).

2.1.3 The momentum equation

Consider a given fluid mass of arbitrary volume 𝑉 . The momentum per unit volume is

given by 𝜌𝒖 and so it follows that the total momentum is given by this quantities volume

integral. The rate of change of the total momentum for this fluid mass is then given by

its material derivative, and from Newton’s second law this is balanced by the force acting

upon it. That is,

D
D𝑡

∫
𝑉

𝜌𝒖 d𝑉 =

∫
𝑉

𝑭 d𝑉, (2.7)

where D
D𝑡 is the material derivative of a fluid, and 𝑭 is the force per unit volume acting

upon said mass. That material derivative is defined as

D𝐴
D𝑡 =

𝜕𝐴

𝜕𝑡
+ (𝒖 · ∇𝐴), (2.8)
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where 𝐴 is some fluid property, and represents a Lagrangian view of the fluid, that is, the

change in 𝐴 following some fluid parcel. It considers the fact that the fluid property 𝐴

at a given position can change both as a result of a local change in 𝐴 with time, 𝜕𝐴
𝜕𝑡 , and

as a result of some contribution due to neighbouring fluid motions, namely advection,

(𝒖 · ∇)𝐴. Using the following expression,

D
D𝑡

∫
𝑉

𝜌𝐴 d𝑉 =

∫
𝑉

𝜌
D𝐴
D𝑡 d𝑉, (2.9)

(see, for example, Vallis 2006 for more details on the origin of this equality, and for more on

the material derivative in general) for the fluid velocity 𝒖, substituting this into equation

(2.7) and expanding the material derivative out using equation (2.8) it follows that,

∫
𝑉

𝜌
D𝒖
D𝑡 d𝑉 =

∫
𝑉

𝜌

(
𝜕𝒖
𝜕𝑡

+ 𝒖 · ∇𝒖
)

d𝑉 =

∫
𝑉

𝑭 d𝑉. (2.10)

Once again the choice of volume is arbitrary, and so with a final bit of rearranging the

following momentum equation can be obtained,

𝜕𝒖
𝜕𝑡

+ 𝒖 · ∇𝒖 =
1
𝜌

(
−𝒈 − ∇𝑃 + ∇ · 𝜏𝑖 , 𝑗 − 2𝛀 × 𝒖 + 𝒋 × 𝑩

)
, (2.11)

where 𝑭 has been expanded to show the various forces acting upon the fluid parcel. Those

included here are gravity, 𝒈 , pressure, ∇𝑃 where 𝑃 is the fluid pressure, viscosity ∇ · 𝜏𝑖 , 𝑗 ,

where 𝜏𝑖 , 𝑗 is the viscous stress tensor, rotation, 2𝛀×𝒖 where 𝛀 is the angular velocity, and

magnetism, 𝒋 × 𝑩, where 𝒋 is the electric current and 𝑩 is the magnetic field strength.

2.1.4 An energy equation

The last addition required to complete this description of a general hydrodynamical sys-

tem (along with specifying an appropriate equation of state) is obtained by considering

the internal energy of the fluid.

For the work contained within Chapters 4 and 5, the anelastic equations under
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the Lantz-Braginsky-Roberts approximation (LBR) are used (Lantz 1992; Braginsky and

Roberts 1995). The resulting system therefore diffuses entropy instead of temperature and

the energy equation takes the form,

𝜌̄𝑇̄

(
𝜕𝑆

𝜕𝑡
+ (𝒖 · ∇)𝑺

)
= ∇ · (𝜅𝜌̄𝑇̄∇𝑆) + 𝜏𝑖 , 𝑗

𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝑗2

𝜎
+ 𝐻, (2.12)

where 𝑆 is the entropy of the fluid, 𝜅 is the thermal diffusivity, 𝜎 is the conductivity, and

𝐻 is the rate of internal heat generation. The bar terms represent the nearly adiabatic ref-

erence state. Entropy diffusion is commonly used in numerical simulations of anelastic

convection (see Jones et al. 2011 for example). More on the differences between tempera-

ture and entropy diffusion can be seen in Lecoanet et al. 2014.

The LHS of equation (2.12) is similar to equation (2.11) in that it has two terms

describing the change in the entropy of fluid at a given point as a result of local heating

(that is, as a result of the terms on the RHS) and advection. The RHS terms correspond

(from left to right respectively) to entropy diffusion, viscous heating, Ohmic heating, and

any internal energy generation.

2.1.5 The induction equation

We have so far retained a magnetic field in our equations. For a charged fluid (or plasma)

in the presence of a magnetic field the momentum equation (2.11) and energy equation

(2.12) depend on the field strength 𝑩 in the form of the Lorentz force and Ohmic dissi-

pation respectively. Additionally the motion of a plasma results in the generation of a

magnetic field via induction. To incorporate this evolving magnetic field into the system

the following equation is used,

𝜕𝑩
𝜕𝑡

= ∇ × (𝒖 × 𝑩) + 𝜂∇2𝑩, (2.13)

where 𝜂 is the magnetic diffusivity. This is the induction equation and encapsulates the

balance between the generation of magnetic fields via induction, verses their decay via
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diffusion (Kulsrud 2005). The work contained within this thesis however is isolated to

the hydrodynamical case where 𝑩 = 0 and therefore both the Lorentz force and Ohmic

dissipation are identically zero (apart from a proof-of-concept calculation as described in

Section 7.2.1).

2.1.6 Convective instability

Convection is the process by which energy is transported through fluid motions due to the

presence of a supercritical vertical temperature gradient. Consider first a layer of fluid in

hydrostatic equilibrium, meaning the weight of the fluid as a result of some downward-

pointing gravitational field is balanced by the pressure force. Now consider a parcel of

fluid that is perturbed vertically upwards in such a way that no heat transfer occurs - i.e. it

moves adiabatically, however still remains in pressure equilibrium with the surrounding

fluid. The parcel will now find itself at a lower pressure than it began. For an ideal gas

where𝑃 ∝ 𝜌𝑇, with the parcel pressure equal to fluid pressure, 𝑃𝑝 = 𝑃 𝑓 , if the temperature

of the parcel now finds itself lower than the surroundings, 𝑇𝑝 < 𝑇𝑓 , then the parcel will

be over-dense compared to the surroundings, 𝜌𝑝 > 𝜌 𝑓 , and as such will experience a

negative buoyancy force causing the parcel to accelerate back towards its initial position

(see panel a of Figure 2.1). The parcel will then pass its initial position, find itself with

𝑇𝑝 > 𝑇𝑓 and 𝜌𝑝 < 𝜌 𝑓 , and experience a buoyancy force to once again accelerate it towards

its initial position. This oscillatory behaviour is known as an internal gravity wave and

is a common feature of convectively stable layers of fluid. These oscillations occur if the

vertical temperature gradient of the fluid being such that it is less steep than the adiabatic

temperature profile,

𝜕𝑇𝑓

𝜕𝑧
<

𝜕𝑇

𝜕𝑧

����
𝑎𝑑

, (2.14)

or in terms of entropy,

𝜕𝑆 𝑓

𝜕𝑧
> 0. (2.15)
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Figure 2.1: Figure adapted from Glatzmaier 2013, Figure 1.1 and Figure 1.2. The top panel (a) demonstrates
the effect on a parcel of fluid raised from position (1) to position (2) adiabatically in a fluid with a subadabatic
vertical profile. The bottom panel (b) shows the same process however for a superadabatic vertical profile.
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If, however, the temperature gradient is steeper than the adiabatic gradient, that is,

𝜕𝑇𝑓

𝜕𝑧
>

𝜕𝑇

𝜕𝑧

����
𝑎𝑑

, (2.16)

or in terms of entropy,

𝜕𝑆 𝑓

𝜕𝑧
< 0, (2.17)

then after the initial perturbation and resulting temperature and density changes the par-

cel will find itself at still a higher temperature and therefore lower density than its sur-

roundings, 𝑇𝑝 > 𝑇𝑓 and 𝜌𝑝 < 𝜌 𝑓 , and as such will feel a positive buoyancy force that will

act to accelerate the parcel further onwards from its initial position (see panel b of Figure

2.1). This is the essence of convective instability, that is, the formation of buoyancy driven

vertical motions as a result of a superadiabatic temperature gradient.

2.2 Non-dimensional numbers

Throughout this thesis, and specifically in the work contained within Chapters 4 and 5 the

governing equations are non-dimensionalised and as a result a variety of non-dimensional

numbers appear in the equations. This section will first briefly detail the non-dimensionalisation

that has been applied and will then provide an overview of these non-dimensional num-

bers and their physical representations.

2.2.1 Non-dimensionalisation

The convective system studied here is non-dimensionalised in time by the viscous timescale,

𝑡 ∼ 𝑑2/𝜈, and in distance by the depth of the convective layer 𝑑. This leads to the following

substitutions that are used to non-dimensionalise equations (2.5), (2.11), and (2.12),

𝜕

𝜕𝑡
=

𝜈

𝑑2
𝜕

𝜕𝑡
∇ =

1
𝑑
∇̂ 𝒖 = 𝑈 𝒖̂ =

𝜈
𝑑
𝒖̂ 𝑝̃ =

𝜈2

𝑑2
ˆ̃𝑝. (2.18)
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Additionally, the thermodynamic quantity of choice, entropy, is non-dimensionalised by,

𝑠 =
𝐹𝑑

𝜅𝜌0𝑇0
𝑠, (2.19)

where 𝐹 is the flux passing through the layer and 𝜌0 and 𝑇0 is the density temperature at

the bottom of our domain. Theˆnotation indicates a non-dimensional version of the given

variable. For cases that include them, the angular velocity and magnetic field strength are

non-dimensionalised by,

𝛀 = Ω𝛀̂ 𝑩 = 𝐵0𝑩̂, (2.20)

whereΩ and 𝐵0 are appropriate angular velocity and magnetic field strength scales. Upon

applying these non-dimensionalisations a collection of non-dimensional numbers appear

as factors to various terms which can then be used to quantify various flow regimes. For

example, the Prandtl number Pr as will be discussed in section 2.2.3 quantifies the relative

strengths of viscous to thermal diffusivities. In the regime of very high Pr the viscous

timescale is much smaller than the thermal timescale, and so for fluid regimes in which

this is the case, a Pr ∼ ∞ approximation can be used to simplify the equation set (Jarvis

and McKenzie 1980).

The resulting equation set is discussed in more detail in Section 4.1.2.1, however

for completeness, the fully non-dimensionalised equations for a non-rotating, stratified

system in the absence of a magnetic field is given by,

𝜕𝒖̂

𝜕𝑡
+ (𝒖̂ · ∇̂)𝒖̂ = −∇̂ ˆ̃𝑝 + Ra

Pr 𝑠 𝒆̂𝑧

+
[

1
ˆ̄𝜌

𝜕

𝜕𝑥 𝑗

(
ˆ̄𝜌
(
𝜕𝑢̂𝑖
𝜕𝑥̂ 𝑗

+
𝜕𝑢̂𝑗

𝜕𝑥̂𝑖

))
− 2

3 ˆ̄𝜌
𝜕

𝜕𝑥̂𝑖

(
ˆ̄𝜌
𝜕𝑢̂𝑗

𝜕𝑥̂ 𝑗

)]
, (2.21)

∇̂ · ( ˆ̄𝜌𝒖̂) = 0, (2.22)
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Pr ˆ̄𝜌 ˆ̄𝑇
(
𝜕𝑠

𝜕𝑡
+

(
𝒖̂ · ∇̂

)
𝑠

)
= ∇̂ · ( ˆ̄𝜌 ˆ̄𝑇∇̂𝑠) + Pr2𝜃

Ra 𝜏̂𝑖 𝑗
𝜕𝑢̂

𝜕𝑥̂ 𝑗
, (2.23)

where 𝜏𝑖 , 𝑗 is the non-dimensional viscous stress tensor. The following sections will de-

fine the resulting non-dimensional parameters Ra, Pr, and 𝜃, and discuss their physical

interpretations.

2.2.2 Rayleigh number

A key parameter in the study of convection or buoyancy driven flow is the Rayleigh num-

ber, Ra. The Rayleigh number represents the ratio of the destabilising effect of the buoy-

ancy force to the stabilising effects of viscosity (Kundu 1990). Thus for a fluid with a

sufficiently high Rayleigh number buoyancy driven flow can develop. For a system in

which the negative entropy gradient across a fluid layer provides the forcing (consider a

slab of fluid heated from below and cooling on its surface), the Rayleigh number may be

defined as,

Ra =
𝑔𝑑3Δ𝑆

𝑐𝑝𝜈𝜅
, (2.24)

where 𝑔 is the gravitational acceleration, Δ𝑆 is the entropy difference across the fluid

layer, 𝑑 is the depth of the layer, 𝑐𝑝 is the specific heat capacity at constant pressure, 𝜅 is

the thermal diffusivity, and 𝜈 is the viscous diffusivity (Duarte et al. 2016). Similarly, for

a Boussinesq fluid the Rayleigh number can be expressed in terms of temperature, as will

be used in Section 3.1,

Ra =
𝛼𝑔𝑑3Δ𝑇

𝜈𝜅
, (2.25)

where𝛼 is the coefficient of thermal expansion, and Δ𝑇 is the temperature drop across

the convective layer. For the scenario where the forcing for this buoyancy driven flow

is provided by some supplied flux at the bottom of the fluid layer instead of an entropy

difference, it is often more helpful to define a flux-based Rayleigh number. Typically this
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is given as

Ra𝐹 = RaNu, (2.26)

where Nu is the Nusselt number, a measure of the relative strength of the heat transport

terms, given in this case as the ratio of the total flux to the conductive flux, that is

Nu =
𝐹𝑑

𝜅𝜌𝑇Δ𝑆
. (2.27)

where 𝐹 is the flux passing through the layer, 𝜌 is the density, 𝑇 is the temperature, and

Δ𝑆 is once again the entropy drop across the layer. As a result, the flux-based Rayleigh

number can be expressed as,

Ra𝐹 =
𝑔𝐹𝑑4

𝜅𝜈2𝜌𝑇𝑐𝑝
. (2.28)

This thesis will primarily use the flux based Rayleigh number, Ra𝐹, as our measure of

buoyancy driving and so unless otherwise stated it should be assumed that all future

references to Ra in the context of the numerical simulations are of this form. An exception

to this is Section 2.3.

2.2.3 Prandtl Number

As briefly discussed at the start of this section, the Prandtl number, 𝑃𝑟 is defined simply

as the ratio of the viscous and thermal diffusivities, that is,

Pr = 𝜈
𝜅

(2.29)

Thus it clearly follows that for 𝑃𝑟 << 1 the thermal diffusivity dominates while for

𝑃𝑟 >> 1 viscous diffusion dominates. For the majority of the work contained within

this thesis, specifically in Chapters 4 and 5, Pr is simply taken as 1 to allow for a more
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direct comparison to prior work. That is, the diffusivities are equal.

Similarly, a magnetic Prandtl number, Pm, can be defined from the ratio of the vis-

cous to magnetic diffusivities,

Pm =
𝜈
𝜂
, (2.30)

where 𝜂 is the magnetic diffusivity,

2.2.4 Stratification

Another commonly used parameter within this thesis is the measure of the degree of

stratification for the given fluid layer. In this work this is encapsulated by the number of

density scale heights across said layer,

𝑁𝜌 = −𝑚 ln (1 − 𝛽𝑑), (2.31)

where𝑚 is the polytropic index and 𝛽 is the inverse temperature scale height, where again

a scale height is the distance at which the given quantity has decreased by a factor of 𝑒.

The parameter 𝜃 is a non-dimensional version of this and frequently appears in the form,

𝜃 = 𝛽𝑑 =
𝑔𝑑

𝑐𝑝,0𝑇0
. (2.32)

Note that to satisfy the conditions of the anelastic approximation, our background refer-

ence state is taken to be a polytropic atmosphere with 𝑚 = 1.5.

2.2.5 Taylor Number

When rotational effects are included the Taylor number appears as a factor to the Coriolis

force term that appears in equation (2.11). The Taylor number, Ta, (and the directly re-

lated Ekman number, Ek) is a relevant non-dimensional number in the context of a fluid

dynamical system that is undergoing rotation. It is a measure of the strength of the Cori-
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olis force due to rotation about a given axis compared to viscous effects. Considering first

these two terms and their respective dimensional scalings, that is u ∼ 𝜈
𝑑
, where 𝜈 is the

viscous diffusivity and 𝑑 is the layer depth,

2𝛀 × 𝒖 ∼ 2Ω𝜈
𝑑
, (2.33)

1
𝜌
∇ · 𝜏𝑖 , 𝑗 ∼

𝜈2

𝑑3 . (2.34)

Taking the ratio of these, that is, dividing through equation (2.34) by equation (2.33) gives

the following,

1
𝜌∇ · 𝜏𝑖 , 𝑗
2𝛀 × 𝒖

∼ 𝜈2/𝑑3

2Ω𝜈/𝑑 =
𝜈

2Ω𝑑2 = Ek (2.35)

The Ekman number is directly related to the Taylor number by simply Ta = Ek−2, and so

we obtain the following expression for Ta which will appear frequently in the discussion

of Chapter 5,

Ta =
4Ω2𝑑2

𝜈2 . (2.36)

Large values of 𝑇𝑎 are indicative of rapidly rotating systems whereas Ta = 0 defines a

non-rotating system.

2.2.6 Rossby Number

Another non-dimensional number of particular interest to rotating regimes, is the Rossby

number. This is the ratio of inertial to Coriolis forces. For some flow of velocity scale 𝑈 ,

the inertial and Coriolis terms scale as 𝒖 · ∇𝒖 ∼ 𝑈2/𝑑 and 2𝛀 × 𝒖 ∼ 2Ω𝑈 , therefore the

resulting ratio is,

Ro =
𝑈

2Ω𝑑 . (2.37)
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Flows with 𝑅𝑜 << 1 can be considering rotationally constrained whereas those with

𝑅𝑜 >> 1 can be considered to be dominated by inertial forces. A useful version of the

Rossby number in the study of convective flows is that first proposed by Gilman (1977),

the convective Rossby number,

Ro𝑐 =
√

Ra
PrTa , (2.38)

which is a measure of the buoyancy driving to the Coriolis force. For the model established

and described in Chapters 3, 4, and 5, Ro𝑐 depends only upon the given input parameters

and so it serves as a useful prior estimate of the degree of rotational constraint. The dis-

cussion at the end of Chapter 4 discusses the differences between these various rotational

parameters in more depth.

2.2.7 Reynolds Number

The Reynolds number,𝑅𝑒, is defined as the ratio of the inertial and viscous forces operating

within our fluid. That is, for some flow of velocity scale𝑈 , the inertial and viscous terms

scale as, 𝒖 · ∇𝒖 ∼ 𝑈2/𝑑 and 1
𝜌∇ · 𝜏𝑖 , 𝑗 ∼ 𝑈𝜈

𝑑2 ,

Re =
𝑈𝑑

𝜈
. (2.39)

It is a measure of how turbulent the fluid is with low Reynolds numbers resulting in highly

viscous flows and high Reynolds numbers resulting in small scale turbulent eddies.

2.2.8 Magnetism

When considering magnetism, a moving, charged fluid has an associated current that

interacts with the underlying magnetic field, and generates a Lorentz force given by 𝒋×𝑩.

The Chandrasekhar number, Q is defined as the ratio of this Lorentz to any viscous forces

present. That is, for some magnetic field of scale 𝑩 ∼ 𝐵0, the Chandrasekhar number is

defined as,
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Q =
𝐵2

0𝑑
2

𝜇0𝜌𝜈𝜂
. (2.40)

In the absence of a magnetic field this parameter is identically zero and the problem re-

duces to a non-magnetic system. Much like the Prandtl number and Reynolds number

discussed in Sections 2.2.3 and 2.2.7 respectively, there are accompanying "magnetic" ver-

sions of these parameters, suitably named the magnetic Prandtl number, Pm, and mag-

netic Reynolds number, Rm, that are measured relative to the magnetic diffusivity, 𝜂. That

is,

Pm =
𝜈
𝜂
, (2.41)

and

Rm =
𝑈𝑑

𝜂
. (2.42)

2.3 An overview of convective scaling relations

The array of non-dimensional numbers presented in the previous section provide a useful

way of quantifying a variety of features of the resulting dynamics present in a convective

system. A primary motivation of convective theory is to understand how the temperature

forcing across a convective layer is related to the heat transport. This relationship in terms

of non-dimensional parameters is encapsulated in the so called Nusselt-Rayleigh scaling,

Nu(Ra), that is, how the ratio of the total flux to the conductive flux, Nu, changes in relation

to a measure of the buoyancy forcing, Ra. A few things are worthy of note here. Firstly,

the simulations contained with Chapters 4 and 5 are done using a flux-based Rayleigh

number, Ra𝐹 = RaNu, as discussed in Section 2.2.2. As such, quoted scalings in terms of

Ra differ from those expected in this this thesis. However, the relationship between the

two is straightforward, that is, if Nu ∼ Ra𝛾, this implies



34 CHAPTER 2. THEORETICAL BACKGROUND

Nu ∼ Ra
𝛾

𝛾+1
𝐹
. (2.43)

Additionally, there is often some variation as to whether Nu or Nu−1 is presented. In the

simple case of Boussinesq convection, the total heat flux is given by 𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑐𝑜𝑛𝑑 + 𝐹𝑐𝑜𝑛𝑣 .

The Nusselt number can then be written as,

Nu =
𝐹𝑡𝑜𝑡𝑎𝑙
𝐹𝑐𝑜𝑛𝑑

=
𝐹𝑐𝑜𝑛𝑑 + 𝐹𝑐𝑜𝑛𝑣

𝐹𝑐𝑜𝑛𝑑
= 1 + 𝐹𝑐𝑜𝑛𝑣

𝐹𝑐𝑜𝑛𝑑
(2.44)

Nu − 1 =
𝐹𝑐𝑜𝑛𝑣

𝐹𝑐𝑜𝑛𝑑
. (2.45)

It is convenient however that this difference is negligible in sufficiently turbulent convec-

tion where Nu >> 1.

This Nu(Ra) scaling has been a significant area of interest in the development of

convective theory throughout the past century and this section will give a brief overview

of the history of these so called scaling laws and the resulting dynamical regimes that

are proposed to exist. The introduction contained within Grossmann and Lohse 2000

provides a review of the earlier development of these various scaling laws however for

completeness a similar review will be presented here.

2.3.1 Early convective experiments

As summarised in Davis (1922), early studies of convection in enclosed air cells, covering

the parameter space of Prandtl number, Pr ∼ 1, and Rayleigh number, Ra ≲ 108 demon-

strated a power-law scaling between the Nusselt number, Nu, and Ra, of Nu ∼ Ra𝛾 where

𝛾 = 1/4. Later experiments presented by Malkus (1954a) on convection in distilled water

(Pr ∼ 7) noted that there is a transition that occurs from a "laminar boundary layer" regime

to a "turbulent boundary layer" regime with increasing Ra. An accompanying theoretical

investigation into the scaling of heat transport, Malkus (1954b), established this scaling as

the classical Malkus scaling,
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Nu ∼ Ra1/3. (2.46)

Further experiments by Heslot et al. (1987) at Pr ∼ 1 observed three convective regimes

relating to boundary layer formation and dynamics. These were referred to (in order of

increasing Ra) as an initial "chaotic" state, a middle "soft-turbulence" state, and then a

high Ra "hard-turbulence state". The scaling law found in this soft-turbulence regime

was characterised by the formation of a laminar boundary layer with the transition to the

hard-turbulence regime relating to the formation of a turbulent boundary layer. These two

scaling regimes corresponded to 𝛾 ∼ 1/3 and 𝛾 ∼ 2/7 respectively. Interestingly, there

was a disparity between the classical Nu ∼ Ra1/3 scaling law for the turbulent boundary

layer regime and the Nu ∼ Ra2/7 scaling presented by Heslot et al. (1987). This is discussed

further in Castaing et al. (1989) in which the difference is attributed to the their individual

treatment of the boundary layer stability, specifically the inclusion of the destabilising

effect of shear flows in the case of the Nu ∼ Ra2/7 scaling. Extension of the Castaing et

al. (1989) theory to incorporate a Pr dependence is provided by Cioni et al. (1997), along

with a corresponding scaling law for the Reynolds number, Re, that is,

Nu ∼ Ra2/7Pr2/7 , (2.47)

Re 𝑓 ∼ Ra3/7Pr−4/7. (2.48)

Note that the Re scaling in equation 2.48 is for the velocity fluctuations (denoted by the

subscript 𝑓 ) and not the large scale flow. Shraiman and Siggia (1990) proposed an alter-

native theory in the form of a nested thermal boundary layer lying within the turbulent

boundary layer. These produce,

Nu ∼ Ra2/7Pr−1/7 , (2.49)
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Re ∼ Ra3/7Pr−5/7. (2.50)

They recover the same dependence on Ra however obtain different dependencies on Pr.

It is of note that while the two theories provide different Pr scalings, it has been shown

that equation 2.47 is appropriate for small Pr whereas equation 2.49 is more appropriate

in the large Pr regime (Zaleski 2000).

Further study of the Pr dependence on Nu revealed multiple points in which the

established value of the Rayleigh numbers exponent, 𝛾 = 2/7, began to break down. A

particularly significant finding was that 𝛾 itself appeared to have a slight Pr dependence

as demonstrated in Figure 2.2 where a range of exponents between 1/2 and 1/3 have been

found. In multiple studies (Cioni et al. 1997 for example) the 𝛾 = 2/7 scaling also broke

in the regime of very high Ra.

Alternatively, Spiegel (1963) applied mixing-length theory (MLT) arguments by

considering a convective layer consisting of plumes that transport energy at nearly the

buoyancy free-fall speed. In this regime they showed that an "ultimate" scaling of,

Nu ∼ (RaPr)1/2 , (2.51)

was followed. Kraichnan (1962) similarly obtained this 𝛾 ∼ 1/2 MLT, albeit with an addi-

tional factor of ln(Ra)− 3
2 , and this scaling is often referred to as the asymptotic Kraichnan

regime. It corresponds to a regime in which the convective heat flux is not limited by trans-

port across the thermal boundary layers as in the classical Malkus scaling but by transport

across the bulk of the fluid (Doering 2020).

Grossmann and Lohse 2000 used these arguments to motivate a re-evaluation of

the various scaling laws of thermal convection and the parameter regimes in which they

operated. They suppose that by simply considering whether the bulk or the boundary

layers dominate the thermal and viscous dissipation (denoted by labels 𝐼 through 𝐼𝑉) and

whether the given Pr is small or large (denoted by subscripts 𝑙 and 𝑢 respectively) it can
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Figure 2.2: Figure taken from Grossmann and Lohse 2000, Table 1. Power-law exponents 𝛾 for Nu ∼ Ra𝛾 for
a range of convective experiments at different Ra and Pr.

be seen which scaling law the convection follows. The phase diagram shown in Figure 2.3

shows these different regimes in Ra and Pr space.

The work of Grossmann and Lohse 2000 and others discussed above have been pri-

marily developed for non-stratified, Boussinesq convection with no-slip boundary con-

ditions. This is a system quite physically distant from the desired regime of stellar-like

convective zones. Additionally the parameter regimes in Ra-Pr space that are currently

able to be probed by both experiments and numerical simulations are significantly dis-

tant from those likely to exist within the Sun’s convection zone. This is clearly therefore

an unfinished, and ongoing field of study.

2.3.2 The influence of rotation

Rapidly rotating regimes (Ro < 1) in which the dynamics of the flow are significantly

influenced by rotation are common within the field of astrophysical fluid dynamics. In

particular, a particularly prevalent and immediate effect on the resulting dynamics of the

fluid is the Taylor-Proudman effect in which the fluid motions become aligned with the

rotation axis (Taylor 1923). This acts to change the nature of the heat transport across the

thermal boundaries and convective bulk, and results in Nu ∼ Ra𝛾 scalings with consider-
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Figure 2.3: Figure taken from Grossmann and Lohse 2000, Figure 2. A phase diagram in Ra−Pr space show-
ing the different scaling regimes that exist depending on where the boundary layers or the bulk dominate
the global thermal or viscous dissipation. Regimes 𝐼 and 𝐼𝐼 are those in which the thermal dissipation is
boundary-layer dominated with viscous dissipation dominating in the boundary and the bulk for 𝐼 and 𝐼𝐼

respectively. Regimes 𝐼𝐼𝐼 and 𝐼𝑉 therefore represent bulk dominated thermal dissipation with again bound-
ary and bulk dominated viscous dissipation in 𝐼𝐼𝐼 and 𝐼𝑉 respectively. Subscripts 𝑙 and 𝑢 denote the lower
and upper Pr regimes.
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ably different values of 𝛾 than the non-rotationally constrained cases (Ro > 1). There is still

some debate as to what form these scaling laws will take. King et al. (2012) present similar

arguments to those used to obtain the classical Malkus scaling for non-rotating convec-

tion of 𝛾 = 1/3. They consider the stability criterion of two boundary layers across which

most of the temperature drop occurs (Δ𝑇 ≈ 2Δ𝑇𝛿, where 𝛿 is the width of the boundary

layer and Δ𝑇𝛿 indicates the temperature change across said boundary layers) and obtain

the scaling relation,

Nu ≈
(

Ra
Ra𝑐

)3
≈ 0.0023Ra3Ek4 , (2.52)

where Ra𝑐 = 7.6Ek−4/3 Chandrasekhar (1961). Figure 2.4 shows the scalings found for

both new and old experiments (Rossby 1969) and supporting numerical simulations of

Boussinesq convection with no-slip boundary conditions. They show reasonable agree-

ment with this proposed scaling in the rotationally influenced regime before transitioning

onto the previously seen Nu ∼ Ra2/7 scaling with increasing Rayleigh number as the sys-

tem transitions towards a non-rotating system. Additionally, the delayed onset of convec-

tion at increasing rotation rates, that is, the dependence of Ra𝑐 on Ek can be seen clearly

by noting the point where Nu = 1 at each value of Ek.

Numerical work on rotating convection with stress free boundary conditions (Schmitz

and Tilgner 2009) find instead that while Nu does scale more steeply with Ra than the non-

rotating cases, it does so more in line with Nu ∼ Ra6/5Ek8/5. Julien et al. 2012 demonstrate

in the, inviscid, low Ekman number regime (highly rotationally constrained), that the ef-

ficiency of the bulk turbulence determines the Nu(RaEk) scaling and present,

Nu − 1 ≈ 𝐶1Pr−1/2Ra3/2Ek2 , (2.53)

where 𝐶1 is a constant prefactor given as 𝐶1 = 0.04 ± 0.00025. Once again, for a given

Ek the scaling law breaks down in the high Ra regime at the point in which the local

Rossby number of the thermal boundary layer becomes approximately unity and loses its

rotational constraints. At this point the scaling law once again transitions to nonrotating
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Figure 2.4: Figure taken from King et al. 2012, Figure 3. Nusselt number plotted against Rayleigh number
for a range of Ekman number taken from both laboratory experiments (solid symbols) and direct numerical
simulations (open symbols) of no-slip, Boussinesq convection. Symbol size corresponds to Pr value, whereas
the shape and colour correspond to Ekman number, Ek (smaller Ek means faster rotation rate). The dashed
black line demonstrates a Nu ∼ Ra2/7 scaling whereas the solid blue line shows the Nu ∼ Ra3 scaling for
Ek = 10−5. Lastly the ’+’ and ’x’ symbols correspond to non-rotating and rotating laboratory experiments
from Rossby (1969), respectively.
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Figure 2.5: Figure taken from Julien et al. 2012, Figure 2. (Nu − 1)𝑅−3/2 as a function of 𝑅, where 𝑅 =

RaEk4/3 ∼ Ra/Ra𝑐 . The horizontal dashed lines at constant (Nu − 1)𝑅−3/2 correspond to regime paths in
which the scaling law in equation (2.53) is valid.

result of 𝛾 ∼ 2/7, that is, the regime in which the efficiency of the heat transport is being

determined by the boundary layers and not the bulk turbulence. As can be seen in Figure

2.5, taken from Julien et al. 2012, their numerical simulations show a good agreement with

the 3/2 scaling to within 6% in the rotational constrained regime.

2.3.3 Compressible convective theory

Expanding in complexity towards a compressible, anelastic regime comes with a number

of crucial differences in the resulting dynamics. These will be explored in more depth in

Chapter 4 however to briefly summarise here, the two main developments are the breaking

of vertical dynamical symmetry and the resulting sizes of the convective upflows and

downflows, and the relative contributions of the viscous heating and buoyancy work to

the overall heat transport through the system. Jones et al. (2022) extends the study of

these convective scalings numerically to the anelastic regime by exploring the validity of

the previously established non-compressible scalings provided by the Grossman & Lohse

theory (GL theory) in anelastic convection with no-slip boundary conditions. They focus

specifically on the cases where the thermal dissipation is boundary-layer dominated (GL
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regimes 𝐼 and 𝐼𝐼) as these are regimes in which current numerical capabilities are likely

to be able to probe. The cases in which the thermal dissipation is bulk dominated (GL

regimes 𝐼𝐼𝐼 and 𝐼𝑉) occur at significantly higher 𝑅𝑎 values, and as such are numerically

inaccessible.

Under the basis that fully evolved turbulent convection produces a well mixed, isen-

tropic interior with thin boundary layers, they derive scaling relations for Nu and Re.

Much the same as the Boussinesq GL theory, Jones et al. (2022) find different scaling laws

for both the high and low Pr regimes, depending on whether the viscous dissipation is

primarily bulk, or boundary layer dominated. Equations 6.13 and 6.14 in Jones et al. (2022)

provide scaling laws for Nu(RaPrΓ) where Γ is defined as the ratio of the temperatures at

the top and bottom boundaries, and provides a measurement of the fluid stratification.

As discussed in section 2.2.4, in the following chapters the degree of stratification will be

quantified by 𝜃 =
𝑔𝑑

𝑐𝑝,0𝑇0
, a non-dimensionalised inverse scale height and 𝑁𝜌, the number

of density scale heights across the fluid layer. These are related to Γ by,

Γ =
𝑇𝐵

𝑇𝑇
=

1
1 − 𝜃

= 𝑒𝑁𝜌/𝑚 , (2.54)

where 𝑇𝐵 and 𝑇𝑇 and the temperature at the top and bottom boundaries respectively. The

regime of Γ → 1 (𝑁𝜌 → 0) is the Boussinesq limit and in this limit the scaling relations of

Jones et al. (2022) recover those of GL regime 𝐼. They similarly recover the scaling of GL

regime 𝐼𝐼 for the bulk-dominated viscous dissipation regime in the theory presented in

their Appendix B.

A primary difference in the stratified regime is that the vertical asymmetries in-

troduced by the presence of stratification develop considerably different upper and lower

boundary layers. In particular, the upper boundary layer becomes increasingly thick com-

pared to the lower boundary with increasing stratification as a result of this asymmetry.

The scaling laws proposed by Jones et al. (2022) are dependent on the assumption that the

boundary layers are sufficiently thin, and so as the system becomes increasingly stratified

it is required that the convection is similarly increasingly turbulent (that is, at higher val-

ues of Ra) to ensure the upper boundary is sufficiently narrow that the derivation of these
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scalings is still valid.

2.4 Chapter summary

In this chapter, we have aimed to provide a brief overview of some of the basic theory,

terminology, and prior work that underpins our investigations in Chapter 5. Section 2.1

provided an overview of the fundamental mathematical equations required for the study

of a fluid system, and in particular it describes the basic physics involved in the devel-

opment of a convective instability and the resulting formation of turbulent convection.

Section 2.2 then defined a range of non-dimensional numbers that are used to quantify

the importance and relative strengths of different fluid properties / forces. The chapter

finished with a brief introduction to the prior and current understanding of convective

theory (and its resulting scaling laws) in Section 2.3.

Chapter 3 will move on to introducing the various numerical methods utilised within

this thesis and the study of convection and fluid dynamical phenomenon more generally,

which will then be applied to the study of rotating, stratified convection in Chapters 4 and

5.
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Chapter 3

Numerical Modelling

Now that Chapter 2 has established the underlying mathematical framework needed for

the study of astrophysical fluids, this chapter will concern itself with detailing the numeri-

cal methods required, which are utilised extensively throughout the proceeding chapters.

Section 3.1 begins by detailing the development of a proof-of-concept linear convection

code largely following that of Glatzmaier (2013), introducing the numerical methods in-

volved, and ending with the calculation of the critical Rayleigh number Ra𝑐 indicating

convective onset. Section 3.2 then provides an initial overview of the python framework

Dedalus, before detailing how this can be utilised to solve both an initial value problem

(which is later used for a rotating, stratified, convective code as presented in Chapters 4

and 5) and an eigenvalue problem (for the purpose calculating the required Ra𝑐 values).

Lastly, Section 3.3 introduces the UK Met Office’s Unified Model (UM), and highlights

parts of particular interest and relevance to the work in Chapter 6.

3.1 Linear convection code

As discussed in Chapter 2, in the study of convection an important parameter to know a

priori is the point of convective onset. This is best described by the critical Rayleigh num-

ber, 𝑅𝑎𝑐 . To reiterate, this is the Rayleigh number (equation (2.25)) at which an instability

occurs such that a small perturbation of a parcel of fluid would result in said parcel expe-

riencing a buoyancy force that would cause the perturbation to exponentially grow with
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time. Knowledge of such a parameter in advance allows one to perform calculations of

known supercriticalities, often a more informative metric of the resulting turbulent nature

of the fluid flow.

3.1.1 Model setup

Consider a layer of fluid contained between a hot bottom boundary and a cold upper

boundary where 𝐿 is the horizontal extent of our box, and 𝑑 is the depth of the fluid layer.

The aspect ratio is then defined as 𝑎 = 𝐿/𝑑. All boundaries are taken to be impermeable.

The Boussinesq equations of motion that describe the fluid are as follows:

∇ · 𝒖 = 0, (3.1)

𝜕𝒖
𝜕𝑡

+ (𝒖 · ∇) 𝒖 = −∇𝑝

𝜌0
+ 𝛼𝑔𝑇𝑧̂ + 𝜈∇2𝒖 , (3.2)

𝜕𝑇

𝜕𝑡
+ (𝒖 · ∇)𝑇 = 𝜅∇2𝑇, (3.3)

where 𝒖 is the fluid velocity, 𝑝 is the pressure perturbation, 𝜌0 is the density, 𝛼 is the

coefficent of thermal expansion, 𝑔 is gravity, and 𝜈 and 𝜅 are the viscous and thermal

diffusivities respectively. As discussed more extensively in Spiegel and Veronis 1960, the

buoyancy term of equation 3.2 is an essential part of the convective system. 𝑇 is the temper-

ature perturbation and its presence in this term results from the fact that the contribution

of pressure perturbations to the buoyancy are insignificant compared to thermal contri-

butions (to order 𝑑/𝐻, where 𝑑 is the depth of the fluid, and𝐻 is the scale height, recalling

that for Boussinesq cases 𝑑 >> 𝐻.)

This model setup is as shown in Glatzmaier (2013) and a full derivation can be seen

there. The length, time, and temperature are scaled by the depth of the box (𝑑), the thermal

diffusion time (𝑑2/𝜅), and the temperature difference between our two boundaries (Δ𝑇)

respectively, and the pressure scale is defined as 𝜌0𝜅2/𝑑2. Multiplying (3.2) by 𝑑2/𝜅 and
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(3.3) by 𝑑2/𝜅Δ𝑇, non-dimensional forms of the equation set above can be obtained:

∇ · 𝒖 = 0, (3.4)

𝜕𝒖
𝜕𝑡

+ (𝒖 · ∇) 𝒖 = −∇𝑝 + RaPr𝑇𝑧̂ + Pr∇2𝒖 , (3.5)

𝜕𝑇

𝜕𝑡
+ (𝒖 · ∇)𝑇 = ∇

2𝑇, (3.6)

Non-dimensionalising the system in this way yields two of the non-dimensional num-

bers previously introduced in Chapter 2, the Rayleigh and Prandtl numbers (equations

(2.25) and (2.29) respectively). It is convenient for a system such as this to use a vorticity-

streamfunction formulation which can be obtained by taking the curl of equation (3.5)

with 𝜔 ≡ ∇ × 𝒖. At this stage we assume a 2D geometry such that 𝑢𝑦 = 0 and 𝜕/𝜕𝑦 = 0

and as a result the vorticity equation only has a component in the y-direction. The two

components of the momentum equation (3.5) for the velocity components, 𝑢𝑥 and 𝑢𝑧 , are

replaced by a single scalar equation for the y-component of the vorticity,

𝜕𝜔

𝜕𝑡
+ (𝒖 · ∇)𝜔 = −RaPr𝜕𝑇

𝜕𝑥
+ Pr∇2𝜔. (3.7)

We then define a streamfunction 𝜓, such that it obeys,

𝒖 ≡ ∇ × (𝜓 𝑦̂) = −𝜕𝜓

𝜕𝑧
𝑥̂ + 𝜕𝜓

𝜕𝑥
𝑧̂, (3.8)

from which the individual velocity components can be recovered,

(𝑢𝑥 , 𝑢𝑧) =
(
−𝜕𝜓

𝜕𝑧
,
𝜕𝜓

𝜕𝑥

)
, (3.9)
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that itself is obtained from the definition of the vorticity,

𝜔 = −∇2𝜓. (3.10)

It may not be immediately clear why this reformulation is advantageous. To start, by

utilising a streamfunction we automatically satisfy the mass conservation equation (3.1),

as ∇ · (∇ × 𝑨) = 0 for any vector 𝑨. Additionally contours of 𝜓 act as streamlines for the

fluid flow. This is because,

• ∇𝜓 · 𝒖 = 0, and therefore 𝜓 contours are tangential to the velocity.

• ∇𝜓 has the same amplitude as 𝒖 and so 𝜓-contour density is proportional to the

amplitude of velocity.

Lastly, and somewhat more importantly, it is computationally more efficient as instead

of needing to apply a time integration scheme to two momentum equations (the x and

z-components of the fluid velocity), instead only a single equation for the y-component of

vorticity needs to solve evolved. The streamfunction can then be calculated at each new

timestep from the Poisson equation (3.10) using a tridiagonal solver. While an additional

equation was also added in the form of equation (3.10), there is no longer the need to

solve for the mass continuity equation (3.1) as this is automatically satisfied by the use of

a streamfunction, 𝜓.

To summarise, the system is therefore fully described by the set of prognostic equa-

tions (3.7), (3.10), and (3.3). The boundaries are taken to be impermeable, and so require

that the vertical component of velocity, 𝑢𝑧 vanishes at 𝑧 = 0, 𝑑 and that the horizontal

component of velocity, 𝑢𝑥 , vanishes at 𝑥 = 0, 𝐿. These boundaries are also taken to be

stress-free, such that parallel flows are uninhibited by viscous forces from said boundary.

Mathematically this translates to perpendicular gradients of this flow vanishing at these

boundaries. That is, 𝜕𝑢𝑥/𝜕𝑧 = 0 at 𝑧 = 0, 𝑑 and 𝜕𝑢𝑧/𝜕𝑥 = 0 at 𝑥 = 0, 𝐿. For our ther-

mal boundary conditions we define them such that temperature perturbations are fixed

to be zero and Δ𝑇 at the 𝑧 = 0, 𝑑 respectively and the horizontal boundaries are taken

to be insulating. As there can be no advective heat flux due to their impermeability, it is
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then simply required that the horizontal gradients in temperature, 𝜕𝑇/𝜕𝑥 vanish at these

boundaries. Note that these are different boundary conditions to those used in the calcu-

lations performed in Chapters 4 and 5. Now that the geometry and governing equations

of our system have been sufficiently defined, we will now discuss the numerical methods

used to solve these equations.

3.1.2 Spectral method

We utilise spectral methods to evaluate spatial derivatives with the aid of Fourier series

expansions. This is advantageous for a number of reasons. Firstly, by treating these func-

tions as periodic the discrete horizontal variable 𝑥𝑖 , which is defined only on a finite set of

horizontal grid points, 𝑖, can be converted to a generalised function defined for all values

of x. Additionally, the computational error in calculating the derivatives decreases expo-

nentially with 𝑁 , the number of periodic terms used in the expansion, and so for large

values of 𝑁 spectral methods become considerably more accurate than traditional finite

difference methods. Note that such Fourier expansions are orthogonal, that is to say,

∫ 𝑎

0
sin

(𝑛1𝜋𝑥
𝑎

)
sin

(𝑛2𝜋𝑥
𝑎

)
𝑑𝑥 =


±𝑎/2 if 𝑛1 = ±𝑛2

0 if |𝑛1 | ≠ |𝑛2 |

 (3.11a)

∫ 𝑎

0
cos

(𝑛1𝜋𝑥
𝑎

)
cos

(𝑛2𝜋𝑥
𝑎

)
𝑑𝑥 =


𝑎/2 if 𝑛1 = ±𝑛2

0 if |𝑛1 | ≠ |𝑛2 |

 (3.11b)

Expanding the temperature, vorticity, and streamfunction as a series of cosine and sine

periodic functions, the following is obtained,

𝑇(𝑥, 𝑧, 𝑡) =
𝑁∑
𝑛=0

𝑇𝑛(𝑧, 𝑡) cos
(𝑛𝜋𝑥
𝑎

)
, (3.12)

𝜔(𝑥, 𝑧, 𝑡) =
𝑁∑
𝑛=1

𝜔𝑛(𝑧, 𝑡) sin
(𝑛𝜋𝑥
𝑎

)
, (3.13)
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𝜓(𝑥, 𝑧, 𝑡) =
𝑁∑
𝑛=1

𝜓𝑛(𝑧, 𝑡) sin
(𝑛𝜋𝑥
𝑎

)
. (3.14)

Note that due to the specified horizontal boundary conditions the temperature is only

defined by cosine expansions and the vorticity and streamfunction are only defined by sine

expansions. Additionally the 𝑛 = 0 mode vanishes for sine expansions and so expansions

for 𝜓 and 𝜔 begin from the 𝑛 = 1 mode.

We can then substitute these expressions into equations (3.6), (3.7), and (3.10), calcu-

lating the various spatial derivatives of equations (3.12), (3.13), and (3.14) and then apply

the orthogonality rules in equation (3.11) to obtain the following,

𝜕𝑇𝑛
𝜕𝑡

+ [(𝒖 · ∇)𝑇]𝑛 =

(
𝜕2𝑇𝑛

𝜕𝑧2 −
(𝑛𝜋
𝑎

)2
𝑇𝑛

)
, (3.15)

𝜕𝜔𝑛

𝜕𝑡
+ [(𝒖 · ∇)𝜔]𝑛 = RaPr

(𝑛𝜋
𝑎

)
𝑇𝑛 + Pr

(
𝜕2𝜔𝑛

𝜕𝑧2 −
(𝑛𝜋
𝑎

)2
𝜔𝑛

)
, (3.16)

𝜔𝑛 = −
(
𝜕2𝜓𝑛
𝜕𝑧2 −

(𝑛𝜋
𝑎

)2
𝜓𝑛

)
. (3.17)

A clarification of note is that while the non-linear advection terms in equations (3.15) and

(3.16) are labelled with a subscript 𝑛, theres terms are actually made of up interactions

between multiple modes (see Glatzmaier (2013) for more on this). We now have a system

of equations of which the solutions are the 𝑧 and 𝑡 dependent coefficents to the Fourier

expansions seen in (3.12), (3.13), and (3.14). To solve this system, a finite-difference method

can be applied.
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3.1.3 Finite difference method

The system of a equations outlined above depend upon on the vertical coordinate, 𝑧, and

time, 𝑡. We approximate the vertical derivatives within these equations by discretisating

the vertical domain into 𝑁𝑧 grid points, with a constant grid-spacing of Δ𝑧 ≡ (𝑁𝑧 − 1)−1.

Using the vorticity, 𝜔, as an example, let the subscripts denote the value of 𝜔 at each

vertical grid-point, that is 𝜔𝑖 represents the value of 𝜔 at the 𝑖-th gridpoint 𝑧𝑖 , 𝜔𝑖+1 at 𝑧𝑖+1,

and so on. The Taylor expansion of 𝜔 at 𝑧 = 𝑧𝑖+1 is given by,

𝜔(𝑧𝑖+1) = 𝜔(𝑧𝑖) + Δ𝑧

(
𝜕𝜔

𝜕𝑧

)
𝑖

+ (Δ𝑧)2 1
2

(
𝜕2𝜔

𝜕𝑧2

)
𝑖

+ ... . (3.18)

This shows that continuous derivatives can be approximated by discrete values by con-

sidering only the first two terms of the above equation, and disregarding terms of order

(∇𝑧)2 and higher),

(
𝜕𝜔

𝜕𝑧

)
𝑖

=
𝜔(𝑧𝑖+1) − 𝜔(𝑧𝑖)

Δ𝑧
. (3.19)

This method is the most basic explicit numerical integration method for solving differen-

tial equations and is known as the Euler-forward scheme (Iserles 1996). It is a first-order

method with an accompanying global truncation error of orderΔ𝑧. By considering instead

the Taylor series expansion at 𝑧 = 𝑧𝑖−1,

𝜔(𝑧𝑖−1) = 𝜔(𝑧𝑖) − Δ𝑧

(
𝜕𝜔

𝜕𝑧

)
𝑖

+ (Δ𝑧)2 1
2

(
𝜕2𝜔

𝜕𝑧2

)
𝑖

+ ... , (3.20)

then a similar approximation for the first derivative can be obtrained,

(
𝜕𝜔

𝜕𝑧

)
𝑖

=
𝜔(𝑧𝑖) − 𝜔(𝑧𝑖−1)

Δ𝑧
. (3.21)

This is also a first-order numerical method and is known as the Euler-backward scheme. A

more sophisticated numerical method can be obtained by utilising both the Taylor expan-
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sions about 𝑧 = 𝑧𝑖+1 and 𝑧 = 𝑧𝑖−1, specifically subtracting equation (3.20) from equation

(3.18). Doing so obtains a first-order scheme numerical scheme,

(
𝜕𝜔

𝜕𝑧

)
𝑖

=
𝜔(𝑧𝑖+1) − 𝜔(𝑧𝑖−1)

2Δ𝑧 . (3.22)

This method of utilising Taylor expansions at different grid points can be generalised and it

is easy to see how one can extend this formulation to higher orders by simply considering

more neighbouring grid points to increase the accuracy of the scheme. By considering

the expansions of 𝜔(𝑧𝑖−2), 𝜔(𝑧𝑖−1), 𝜔(𝑧𝑖+1), and 𝜔(𝑧𝑖+2), a fourth-order accurate central

difference scheme with a truncation error of (Δ𝑧)4 can be obtained,

(
𝜕𝜔

𝜕𝑧

)
𝑖

=
−𝜔(𝑧𝑖+2) + 8𝜔(𝑧𝑖+1) − 8𝜔(𝑧𝑖−1) + 𝜔(𝑧𝑖−2)

12Δ𝑧 . (3.23)

For the aforementioned work a second order scheme is sufficient. We can similarly ap-

proximate the second derivative by considering this time the sum of equations (3.18) and

(3.20) and disregarding terms of order (∇𝑧)3 and higher),

(
𝜕2𝜔

𝜕𝑧2

)
𝑖

=
𝜔(𝑧𝑖+1) − 2𝜔(𝑧𝑖) + 𝜔(𝑧𝑖−1)

(Δ𝑧)2 . (3.24)

Using the above in conjunction with equation (3.22) we have obtained a way to approxi-

mate the first and second derivatives in equation (3.16) using only the values of the func-

tion at the two closest grid points. Ordinarily we would be required to modify this scheme

at the top and bottom grid points as here grid points 𝑧𝑖+1 and 𝑧𝑖−1 respectively would be

undefined. However due to our choice of boundary conditions fixing the values of 𝜔 at

these grid points such a modification is not required. The same arguments apply for the

temperature and the streamfunction.

3.1.4 Tridiagonal solver

The methods outlined in the previous section allow for the calculation of𝑇(𝑧, 𝑡) and𝜔(𝑧, 𝑡),

leaving only equation (3.17) left to be solved so that the streamfunction can be updated
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at each timestep. Using the finite-difference method outlined in Section 3.1.3 to calculate

the second derivative we can rewrite equation (3.17) as

𝜔𝑖 = −
(
𝜓𝑖+1 − 2𝜓𝑖 + 𝜓𝑖−1

(Δ𝑧)2
−

(𝑛𝜋
𝑎

)2
𝜓𝑖

)
. (3.25)

To reiterate, at this point in the calculation at some time 𝑡, time derivatives of 𝑇𝑡 and 𝜔𝑡 ,

have been expressed as a function of known quantities, with the exception of the stream-

function. We obtain this by way of a tridiagonal matrix algorithm, that is, for system such

that,

𝑎𝑖𝑥𝑖−1 + 𝑏𝑖𝑥𝑖 + 𝑐𝑖𝑥𝑖+1 = 𝑑𝑖 , (3.26)

then a matrix equation of rank 𝑁𝑧 where 𝑁𝑧 is the number of vertical gridpoints used in

our system can be defined as,



𝑏1 𝑐1

𝑎2 𝑏2 𝑐2
. . .

. . .
. . .

𝑎𝑖−1 𝑏𝑖−1 𝑐𝑖−1

𝑎𝑖 𝑏𝑖





𝑥1

𝑥2
...

𝑥𝑖−1

𝑥𝑖


=



𝑑1

𝑑2
...

𝑑𝑖−1

𝑑𝑖


(3.27)

rewriting then equation (3.25) in the form of equation 3.26,

(
−1

(Δ𝑧)2

)
𝜓𝑖−1 +

[(
𝑛𝜋
𝑎

2
)
+ 2

(Δ𝑧)2

]
𝜓𝑖 +

(
−1

(Δ𝑧)2

)
𝜓𝑖+1 = 𝜔𝑖 , (3.28)

from which,

𝑎𝑖 = 𝑐𝑖 =

(
−1

(Δ𝑧)2

)
, (3.29)
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𝑏𝑖 =

[(
𝑛𝜋
𝑎

2
)
+ 2

(Δ𝑧)2

]
. (3.30)

The details of how this algorithm works in practice can be seen in Glatzmaier (2013), how-

ever in short the value of 𝜓 at each gridpoint can be calculated given the values of 𝜔. We

now have all the tools required to take a system of with known variable 𝑇𝑡 , 𝜔𝑡 , and 𝜓𝑡 and

calculate their values at some point Δ𝑡 later have now been shown. The following section

will outline how we do this.

3.1.5 Timestepping

We have outlined in Section 3.1.2 how spectral methods can be used to reduce the problem

down to one where the functions being solved for only depend on the vertical and temporal

coordinates, such as 𝑇(𝑧, 𝑡). Section 3.1.3 demonstrates how we approximate the spatial

derivatives in 𝑧 that remain, and how we recover the value of𝜓 from equation (3.17) using

a tridiagonal matrix formulation in section 3.1.4. The only remaining step is to evolve the

system forward in time.

There are multiple different methods and timestepping schemes that can be used;

here we employ an Adams-Bashforth second-order technique (Iserles 1996). We start with

equation 3.15 which has been rearranged to leave the temporal derivative of 𝑇 alone on

the left-hand side,

𝜕𝑇𝑛
𝜕𝑡

= − [(𝒖 · ∇)𝑇]𝑛 +
(
𝜕2𝑇𝑛

𝜕𝑧2 −
(𝑛𝜋
𝑎

)2
𝑇𝑛

)
. (3.31)

Dropping the 𝑛 notation for clarity, and instead using the subscripts 𝑡 − 𝛿𝑡, 𝑡, and 𝑡 +

𝛿𝑡 to indicate the the value of the variable at the previous, current, and future timestep

respectively, we can approximate the time derivative as,

𝑇𝑡+Δ𝑡 − 𝑇𝑡
Δ𝑡

=
3
2 𝑓𝑡 −

1
2 𝑓𝑡−Δ𝑡 , (3.32)

where 𝑓 is the right hand side of equation (3.31). By some simple rearranging, we can
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then calculate 𝑇𝑡+Δ𝑡 using values from the current, and previous timestep. That is,

𝑇𝑡+Δ𝑡 = 𝑇𝑡 +
Δ𝑡

2 (3 𝑓𝑡 − 𝑓𝑡−Δ𝑡) . (3.33)

As this is a second-order timestepping scheme information is required from both the

current and previous timesteps. Analogous to how higher order numerical schemes for

approximating the spatial derivatives require more neighbouring information to achieve

higher accuracy, higher order time-stepping techniques require more prior timesteps. This

obviously cannot be used for the very first time step as there exists no "previous" step and

so for the very first iteration a lower accuracy first-order method must be used, that is,

𝑇𝑡+Δ𝑡 = 𝑇𝑡 + Δ𝑡 𝑓𝑡 . (3.34)

It is worth noting that this is the same as the Euler method briefly introduced in Section

3.1.3. After this initial step we then use equation (3.33) for the rest of our timestepping.

3.1.6 Linear reduction

In the previous sections we have used the non-linear form of the governing equations,

however, to achieve the initial goal of calculating the critical Rayleigh number, Ra𝑐 , it is

easier to first consider the linear versions of equations (3.15), (3.16), and (3.17) as opposed

to their full non-linear versions. Completely neglecting the [(𝒖 · ∇)𝑇]𝑛 and [(𝒖 · ∇)𝜔]𝑛
terms however results in a rather uninteresting and trivial result. The resulting linear

thermal equation would become independent of 𝜔 and 𝜓 and so any initial temperature

perturbation, and then with it any 𝜔 and 𝜓, would decay away to zero.

For our linear problem then, the horizontally averaged temperature is taken to be

some time-independent background temperature, 𝑇(𝑧) (Chandrasekhar 1961). To achieve

this we take the 𝑛 = 0 mode of the Fourier expansion of temperature, 𝑇0(𝑧), so the linear

thermal equation simply becomes,
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𝜕2𝑇0

𝜕𝑧2 = 0, (3.35)

and recalling our boundary conditions we obtain both,

𝜕𝑇0
𝜕𝑧

= −1, (3.36)

and

𝑇0(𝑧) = 1 − 𝑧. (3.37)

For the linear problem this background conductive temperature gradient is assumed to be

large relative to any 𝑛 > 0 perturbations and so can approximate the non-linear advection

term [(𝒖 · ∇)𝑇]𝑛 to be a linear term dominated by the 𝑛 = 0 temperature gradient (equation

(3.36)). That is,

[(𝒖 · ∇)𝑇]𝑛 =

[
𝑢𝑧

𝜕𝑇0(𝑧)
𝜕𝑧

]
𝑛

= (−𝑢𝑧)𝑛 , (3.38)

and utilising equation 3.9,

[(𝒖 · ∇)𝑇]𝑛 =

(
𝜕𝜓

𝜕𝑥

)
𝑛

=

(𝑛𝜋
𝑎

)
𝜓𝑛 . (3.39)

Note that these above equations are technically incorrect. They do not equal [(𝒖 · ∇)𝑇]𝑛
exactly, but instead they equal the coefficents of its cosine expansion. The cosines then

drop upon substitution back into the original equation. With this approximation we can

then obtain a linear set of equations,
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𝜕𝑇𝑛
𝜕𝑡

=

(𝑛𝜋
𝑎

)
𝜓𝑛 +

(
𝜕2𝑇𝑛

𝜕𝑧2 −
(𝑛𝜋
𝑎

)2
𝑇𝑛

)
, (3.40)

𝜕𝜔𝑛

𝜕𝑡
= RaPr

(𝑛𝜋
𝑎

)
𝑇𝑛 + Pr

(
𝜕2𝜔𝑛

𝜕𝑧2 −
(𝑛𝜋
𝑎

)2
𝜔𝑛

)
, (3.41)

𝜔𝑛 = −
(
𝜕2𝜓𝑛
𝜕𝑧2 −

(𝑛𝜋
𝑎

)2
𝜓𝑛

)
, (3.42)

with the associated boundary conditions

𝑇𝑛 = 𝜔𝑛 = 𝜓𝑛 = 0 for 𝑧 = 0 and 1. 𝑛 > 0 (3.43)

Finally some initial conditions are required for the system. A simple choice is for the

fluid to be taken as initially at rest, that is 𝜔𝑛 = 𝜓𝑛 = 0, with a prescribed temperature

perturbation that is zero at the boundaries 𝑇𝑛 = sin(𝜋𝑧).

3.1.7 Finding the critical Rayleigh number

For a given Ra, Pr, and 𝑎 we can now solve this linear system of equations numerically.

These solutions approximate the initial growth that occurs when a convective instability

is present. Once this initial growth has occurred in a full nonlinear case, the amplitudes of

the solutions quickly become large enough that the nonlinear advection terms act to stop

the exponential growth caused by the instability. The purpose of excluding these terms

is to perform a linear stability analysis on this initial growth (or decay) that occurs at the

start of the simulation.
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To do this we select values of Pr and 𝑎 for which we wish to calculate the critical

Rayleigh number, Ra𝑐 , and then calculate solutions for a range of Ra values. For cases

where Ra > Ra𝑐 the solution will be supercritcial (see Section 2.1.6) and 𝑇𝑛(𝑧, 𝑡), 𝜔𝑛(𝑧, 𝑡),

and 𝜓𝑛(𝑧, 𝑡) will exponentially grow with time. Cases where Ra < Ra𝑐 are referred to

as subcritical and will result in solutions that decay to zero. We then calculate solutions

for a range of Ra values and find the values of Ra where the solution transitions from

subcritical to supercritical. These two values are now the new upper and lower limits for

Ra𝑐 and a new range of solutions can be obtained for Ra values between these two limits.

This method can then be continued to further bracket the Ra𝑐 until we obtain the desired

level of accuracy.

With the benefit of knowing the solution ahead of time (as some formulations of this

type of system can be solved analytically) the following is a typical workflow for finding

the value of Ra𝑐 for a case of 𝑎 =
√

2 (Chandrasekhar 1961). Ra𝑐 is independent of Pr for

this system. Beginning with a range of 10 Ra values of 100, 200, ... 900, 1000, the solutions

for the first 6 cases (up to and including Ra = 600) would be subcritical and decay away to

zero. For the cases of Ra = 700 and higher the solutions would be supercritical and would

exponentially grow. See Figure 3.1 for an example of this. Thus we know 600 < Ra𝑐 < 700.

We can then repeat this for another range of Ra values between our new limits. Doing so

would eventually tend towards the known value of Ra𝑐 = 657.5. The limiting factor here

is that as the precision of Ra𝑐 is increased, each solution must be run for longer before it

can be determined whether it is in fact growing or decaying. Typically we would repeat

the above calculation for a few iterations and then once a sufficient level of accuracy has

been obtained, take an average of the final two limits as the approximate Ra𝑐 value.

What has been outlined in this section is a numerical solver for approximating the

value of Ra𝑐 in a 2D Boussinesq fluid, contained within four impermeable and stress free

boundaries, with fixed temperature perturbations at 𝑧 = 0, 𝑑 and that are insulating ( 𝜕𝑇𝜕𝑥 =

0) at 𝑥 = 0, 𝐿. The disadvantage of such a method is that this calculation is inflexible. That

is, we have made considerable assumptions throughout the derivation of this numerical

code which while are appropriate to the system defined here, may not be appropriate for

a different set of boundary conditions. In short, the code that we have just discussed does
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Figure 3.1: Values of the globally averaged temperature perturbation as a function of time for a range of
Rayleigh number, Ra, for a given Prandtl number, Pr and aspect ratio 𝑎. These cases are initialised with
a globally averaged temperature perturbation of 0.5, and so initially present a decay before subsequently
growing (or decaying further).

an excellent job at solving the system that was defined, however may require significant

changes for a comparatively slight change in the problem setup.

An alternative, and more flexible method would be to employ a numerical setup to

solve for arbitrary fluid flows and boundary conditions. To this end, in the next section

we turn to the Python framework Dedalus.

3.2 Dedalus

3.2.1 Introduction to Dedalus

The Dedalus Project is an open-sourced computational framework for solving partial dif-

ferential equations. By utilising symbolic equation entry, the code can parse plain text

equations and boundary conditions from which a numerical solver is then constructed.

The same framework can also be used to create custom analysis tasks and outputs. The

work contained in Chapters (4) and (5) have all been performed using version 2 of the
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psuedo-spectral code Dedalus (Burns et al. 2020). A beneficial feature of Dedalus is that

it is heavily parallelisable with minimal input from the user. As a result all calculations

shown within this thesis that have utilised Dedalus have been run across multiple cores.

3.2.1.1 Writing a Dedalus code

While a more full and rigorous tutorial of how to setup and run an initial Dedalus code can

be found within the Dedalus Project documentation, in this section I will briefly outline

the key points and walk through how an initial value problem (IVP) solver can be setup.

Generally Dedalus supports N-dimensional problems where N-1 domains employ spec-

tral methods (see Section 3.1.2) and the final dimension utilises Chebyshev methods (see

Iserles 1996). Given however, that the context of this work is the study of applied fluid dy-

namics, and specifically, the study of convection, the problem dimensions will be limited

to 3D, corresponding to our spatial domain. Spectral bases are used for the horizontal

coordinates with Chebyshev polynomials representing being the vertical coordinate, 𝑧.

This domain can be established easily with the following setup,

x_basis = de.Fourier(’x’, nx, interval=(0,Lx), dealias=3/2)

y_basis = de.Fourier(’y’, ny, interval=(0,Ly), dealias=3/2)

z_basis = de.Chebyshev(’z’, nz, interval=(0,Lz), dealias=3/2)

domain = de.Domain([x_basis, y_basis, z_basis], grid_dtype=np.float64)

Here "de" is the Dedalus library import, "nx", "ny", and "nz", is the domain resolution,

and "Lx", "Ly", and "Lz" is the physical extent of each base. The x and y dimensions use

the "Fourier" basis which utilise cosine and sine expansions, whereas our z dimension

uses the "Chebyshev" basis which makes the vertical coordinate into a discrete grid. The

Chebyshev grid is not equidistant, and instead grid point density increases quadratically

closer to the boundaries 𝑧 = 0, 𝐿𝑧. An example of such spacings can be seen in Figure 3.2).

Once domain has been defined, the problem type needs to be chosen. Dedalus can

solve initial value, eigenvalue, and boundary value problems however we will only be

covering the first two in this thesis. To initialise an initial value problem the following is

done,
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Figure 3.2: Figure taken from the Dedalus project tutorial pages showing the grid-spacing of Chebyshev
polynomials with multiple scalings. Image credit: https://dedalus-project.readthedocs.io

variables=[’u’,’v’,’w’,’T’,’uz’,’vz’,’wz’,’Tz’]

problem = de.IVP(domain, variables)

where we need to provide the domain and any variables we are solving for. In this example

these are the three components of the velocity, "u", "v", and "w", and the temperature, "T".

The additional variables of "uz", "vz", "wz", and "Tz" represent their vertical derivative.

We have established our "problem" object and now the process is straightforward

for adding our boundary conditions and governing equations. For example, the lines

problem.add_bc("left(u) = 0")

problem.add_bc("right(u) = 0")

add boundary conditions to "u" where the functions "left" and "right" apply to the first

and last values of our Chebyshev coordinate, which in this case is the bottom and top of

our vertical domain. We enter our governing equations in much the same way utilising

the symbolic equation entry that Dedalus provides. For example, implementation of the

equation (3.3) into the Dedalus solver as one of our governing equations would require

the following. Fully expanding out the advection and diffusion terms we obtain,

𝜕𝑇

𝜕𝑡
+ 𝑢 𝜕𝑇

𝜕𝑥
+ 𝑣 𝜕𝑇

𝜕𝑦
+ 𝑤 𝜕𝑇

𝜕𝑧
= 𝜅

(
𝜕2𝑇

𝜕𝑥2 + 𝜕2𝑇

𝜕𝑦2 + 𝜕2𝑇

𝜕𝑧2

)
. (3.44)

To add this equation to our Dedalus solver we enter the following python code,

problem.add_equation( "dt(T) - kappa*( dx(dx(T))

+ dy(dy(T)) + dz(Tz) ) =
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- u*dx(T) - v*dy(T) - w*Tz" )

where "problem" is a python class used by Dedalus. The second derivatives of 𝜕2𝑇
𝜕𝑥2 and

𝜕2𝑇
𝜕𝑦2 are represented by "dx(dx(T))" and "dy(dy(T))" while 𝜕2𝑇

𝜕𝑧2 is represented by "dz(Tz)".

This is because our Dedalus solver requires our equations to be reduced to first-order in

the Chebyshev domain. This is why the additional "uz", "vz", "wz", and "Tz" variables are

included in the initial problem declaration. These are then defined as additional equations

in the form,

problem.add_equation("uz - dz(u) = 0")

problem.add_equation("vz - dz(v) = 0")

problem.add_equation("wz - dz(w) = 0")

problem.add_equation("Tz - dz(T) = 0")

An issue with this current implementation of the temperature diffusion equation is that

we have not at any point in told Dedalus what 𝜅 is. This can be achieved by creating a

parameter object,

problem.parameters["kappa"] = K

where the "K" on the right hand side of the equation is simply a previously defined python

variable for our thermal diffusivity. If instead of a constant we wanted a non-constant

coefficent, we can use the same process of defining a parameter object along with a few

extra steps. Let us assume some arbitrary linear function for our thermal diffusivity such

that its value drops by up to 20% across our vertical domain starting from a maximum

value of 𝐾 at the bottom boundary, that is 𝜅 = 𝐾(1 − 0.2𝑧),

kappa = domain.new_field(name="kappa")

kappa["g"] = K*(1 - 0.2*z)

kappa.meta["x","y"]["constant"]

problem.parameters["kappa"] = kappa

where we have defined a new field, given it values, set some additional meta-data telling

Dedalus the value is constant in the horizontal, and then finally constructed the parameter

object. Alternatively an equivalent result can be obtained by doing a simple substitution,
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problem.substitutions["kappa"] = K*(1 - 0.2*z)

which is telling Dedalus to "replace all instances of ’kappa’ with ’𝐾 ∗ (1 − 0.2 ∗ 𝑧)’". These

parameter and substitution definitions should be done prior to adding any equations or

boundary conditions.

Another important detail is about how Dedalus interprets and then solves our equa-

tion set. In the problem.add_equation() command, the advection and diffusion terms

have switched which side of the equals sign they are on. This is because all of our diffu-

sion terms are linear (they only depend on a singular variable, 𝑇) whereas our advection

terms are non-linear (they depend on both a component of the velocity, 𝑢, 𝑣, and 𝑤, and

the temperature, 𝑇). The left-hand side is then parsed into a sparse matrix formulation

whereas the non-linear right-hand side is evaluated explicitly (see Burns et al. 2020 for

more detail on the numerical methods used by Dedalus).

Finally we can choose a time-stepping regime and build our solver object,

ts = de.timesteppers.RK443

solver = problem.build_solver(ts)

where "RK443" refers to a third-order Runge Kutta integration scheme (details of which

can be seen in Ascher et al. 1997, section 2.8). Other timestepping regimes like the Adams

Bashforth scheme outlined in section 3.1.5 are also available for use. Additionally, as dis-

cussed in Section 2.1.2 we are required to limit our time step based on the magnitude of

our velocities, that is, we need to adjust our timestep in accordance with the CFL criterion

(see (2.6)). To do this we use a part of Dedalus called flow_tools.

CFL = flow_tools.CFL(solver, initial_dt=dt, cadence=10, safety=0.5,

max_change=1.5, min_change=0.5, max_dt=rpf.max_dt)

CFL.add_velocities((’u’, ’v’, ’w’))

A useful feature of Dedalus is the ability to create custom built analysis tasks that will be

performed and outputted at varying frequencies, for example,

snapshots = solver.evaluator.add_file_handler("snapshots", iter=100)
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snapshots.add_system(solver.state)

This has created a snapshots output which with the solver.add_system(solver.state)

command has then added the entire state of the problem at that point in time to the output.

The parameters iter defines how often to output (in number of iterations) the data.

analysis = solver.evaluator.add_file_handler("analysis", iter=5)

analysis.add_task(" integ( integ( integ(

0.5*(u*u + v*v + w*w),

’x’)/Lx, ’y’)/Ly, ’z’)/Lz",

layout=’g’, name=’KE’)

This has created an analysis output where we have used the add_task command to write

a custom built analysis task, in this case, the globally averaged kinetic energy making use

again of the symbolic equation entry. These custom built analysis tasks allow for the

user to easily add and remove new analysis tasks as easily as they declare the governing

equations and boundary conditions.

Lastly the code is then iterated over until the given stop condition is met, in this

example we use a simple maximum number of iterations.

solver.stop_iteration = 5000

while solver.ok:

dt = CFL.compute_dt()

solver.step(dt)

where the CFL.compute_dt() function calculates the new timestep size as previously de-

scribed.

3.2.2 Calculating the critical Rayleigh number (EVP)

As discussed in Chapter 2 and reiterated at the start of Section 3.1, it is advantageous

to have knowledge of the critical Rayleigh number prior to performing a full convective

calculation. The linear calculation outlined in 3.1 is a perfectly valid method for obtaining

Ra𝑐 , however is not a particularly flexible method. The code we outlined is very specific to
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the problem setup and somewhat rigid to any larger changes we might wish to implement.

This is one of the significant advantages to Dedalus. If we instead turn to solving an

eigenvalue problem for the value of Ra𝑐 using Dedalus it can then be adapted with relative

ease to include additional physics such as rotation, magnetism, etc. The following is a

outline of how to build such a code for a 2D convective simulation. Much like with the

initial value example outlined above, a more thorough tutorial can be found within the

Dedalus Project documentation.

The initial setup is largely the same as with an IVP however there are some signif-

icant changes. Firstly when constructing the domain object we only need to provide a

vertical basis, that is,

z_basis = de.Chebyshev(’z’,Nz, interval=(0, Lz))

d = de.Domain([z_basis],comm=MPI.COMM_SELF)

z = z_basis.grid()

We also need to provide a parameter space grid over which we which are going to search.

What the code will do is produce an output which informs us where for a given horizontal

mode, 𝑘𝑥 , at which value of Ra the perturbation switches from decaying to growing. That

is, at a given 𝑘𝑥 at what Ra does a convective instability occur. To setup such a grid we do

the following,

Ra_vals, kx_vals = 60, 60

mins = np.array((18000, 2))

maxs = np.array((35000, 13))

nums = np.array((Ra_vals, kx_vals))

where Ra_vals and kx_vals represent the resolution of our parameter grid and mins and

maxs are the minimum and maximum values of 𝑅𝑎 and 𝑘𝑥 respectively.

Next we setup a problem object similar to the IVP case with the addition of defining

what our eigenvalue is called,

variables = [’p’, ’s’, ’u’, ’v’, ’w’, ’sz’, ’uz’, ’vz’, ’wz’]

problem = de.EVP(d, variables, eigenvalue=’omega’)
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When defining our initial problem parameters we are required to provide values for 𝑅𝑎

and 𝑘 however these will be overwritten once the solver begins producing our growth rate

grid. This "eigenvalue" input is then used in some important substitutions; along with any

other problem parameters that are needed, we require the following,

problem.parameters[’Ra’] = 1000

problem.parameters[’k’] = 1

problem.substitutions[’dt(A)’] = ’omega*A’

problem.substitutions[’dx(A)’] = ’1j*k*A’

The values of Ra and 𝑘 here are largely irrelevant, and we can simply choose something

sensible. The rest of the problem setup, defining non-constant coefficents, defining the

governing equations, and adding the boundary conditions, follows the same method as

the IVP. Once this is done we utilise the "eigentools" Dedalus package to create an Eigen-

problem object,

from eigentools import Eigenproblem, CriticalFinder

EP = Eigenproblem(rayleigh_benard, sparse=True)

We use this in conjuncture with the CriticalFinder function to generate a grid of growth

rates,

cf.grid_generator(mins, maxs, nums)

The results of this calculation can be seen in Figure 3.3 where the colour indicates the

value of the growth rate as a function of Ra and 𝑘𝑥 . If required this grid can be saved as a

.h5 data file and similarly, previously calculated growth rates can be loaded. We can then

use two more eigentools functions to find 𝑅𝑎𝑐 for a given wavenumber, 𝑘𝑥 , and then find

the overall 𝑅𝑎𝑐 for all 𝑘𝑥 . These are,

cf.root_finder()

crit = cf.crit_finder()

The first function cf.root_finder() simply interpolates the growth rates in Ra space

and finds the value of Ra at which the growth rate is equal to zero. At this point we
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Figure 3.3: Grid of calculated growth rates from the EVP solver in the given Ra, 𝑘𝑥 space. This is for a case of
stratified, anelastic convection with 𝑁𝜌 = 1, Pr = 1 using the governing equations and boundary conditions
as described in Section 4.1.

have the values of Ra𝑐 for each discrete 𝑘𝑥 . The second function cf.crit_finder() then

interpolates across 𝑘𝑥 space to find an overall minimum value of Ra𝑐 and returns the crit-

ical wavenumber, 𝑘𝑥,𝑐 , and the corresponding critical Rayleigh number, Ra𝑐 . The output

of these two functions can be seen more clearly in Figure 3.4 which shows the previously

shown calculated growth rates overplotted with the critical Rayleigh number as a function

of 𝑘𝑥 .

Lastly we need to consider the horizontal extent of our domain. Note that previously in

Section 3.1 we used 𝑎 to indicate the horizontal extent of the domain to remain consistent

with that of Glatzmaier (2013). However, for the work contained in later chapters, in

particular that of Chapter 5, 𝐿𝑥 and 𝐿𝑦 are instead used. For consistency with the rest of

this thesis the latter notation will now be adopted. For a given horizontal extent 𝐿𝑥 , only

wavenumbers equal to 𝑘𝑥,𝑟 can fit in our domain, where 𝑘𝑥,𝑟 is defined as,

𝑘𝑥,𝑟 = 𝑛
2𝜋
𝐿𝑥
. (3.45)
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Figure 3.4: Calculated growth rates grid from the EVP solver in the given Ra, 𝑘𝑥 space as shown in Figure
3.3, overplotted with the critical Rayleigh number Ra𝑐 as a function of 𝑘𝑥 space.

We can then extract the value of Ra𝑐 for the allowed 𝑘𝑥,𝑟 values corresponding to the

horizontal extent of our domain.

3.2.3 Convection modelling (IVP)

With the understanding of how to build our convective code from Section 3.2.1.1, and the

ability to calculate the relevant values of Ra𝑐 from Section 3.2.2, we can proceed to lay out

the governing equations that define the convective code used extensively in Chapters 4

and 5.

Consider first a volume of convective fluid, V, enclosed between two impenetrable,

stress-free boundaries with an associated magnetic field B. By local conservation of energy,

the rate of change of total energy is equal to the sum of the net inward flux of energy, and

the rate of internal heat generation (by radioactivity, nuclear reactions etc.) This implies,
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𝜕

𝜕𝑡

(
𝜌𝑒 + 1

2𝜌𝑢
2 + 𝐵2

2𝜇0
− 𝜌𝜓

)
= −∇ ·

(
𝜌

(
𝑒 + 1

2𝑢
2 − 𝜓

)
𝒖 + (𝑬 × 𝑩)

𝜇0
+ 𝑃𝒖 − 𝝉 · 𝒖 − 𝑘∇𝑇

)
+𝐻

(3.46)

where 𝜌 is the fluid density, 𝑒 is the internal energy of the fluid, 𝜓 is the gravitational

potential that satisfies 𝒈 = ∇𝜓, P is the pressure, 𝜏𝑖 𝑗 is the contribution to the total stress

tensor from irreversible processes, 𝑘 is the thermal conductivity, 𝑇 is the temperature, 𝐻

is the rate of internal heat generation, and 𝑬×𝑩
𝜇0

is the Poynting flux (𝑬 is the electric field,

and 𝜇0 is the permeability of free space).

We can also consider the internal energy equation:

𝜌

(
𝜕𝑒

𝜕𝑡
+ (𝒖 · ∇) 𝑒

)
= ∇ · (𝑘∇𝑇) − 𝑃 (∇ · 𝒖) + 𝜏𝑖 𝑗

𝜕𝑢𝑖
𝜕𝑥 𝑗

+ 𝑗2

𝜎
+ 𝐻 (3.47)

where 𝜎 is the conductivity of the fluid. We examine only cases where there is no internal

heat generation, and thus 𝐻 = 0, and instead drive convection by imposing a fixed flux,

𝐹 at the bottom boundary. Integrating over V, assuming a steady state, and recalling that

our boundaries are impermeable, equation 3.47 becomes,

∫
𝑉

(𝒖 · ∇)𝑃𝑑𝑉 +Φ = 0 (3.48)

where here,

Φ =

∫
𝑉

𝜏𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

+ 𝑗2

𝜎
𝑑𝑉 (3.49)

is the total dissipative heating rate including viscous and Ohmic heating teams.

For the case of no magnetic field (that is B, and therefore j, equal to zero), our gov-

erning equations are as follows:
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𝜕𝒖
𝜕𝑡

+ (𝒖 · ∇) 𝒖 = −∇𝑝̃ + 𝑔𝑠

𝑐𝑝
𝒆̂𝑧 + 𝜈

[
1
𝜌̄

𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

))
− 2

3𝜌̄
𝜕

𝜕𝑥𝑖

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)]
(3.50)

∇ · (𝜌̄𝒖) = 0 (3.51)

𝜌̄𝑇̄

(
𝜕𝑠

𝜕𝑡
+ (𝒖 · ∇) 𝑠

)
= ∇ ·

(
𝜅𝜌̄𝑇̄∇𝑠

)
+ 𝜏𝑖 𝑗

𝜕𝑢𝑖
𝜕𝑥 𝑗

(3.52)

where 𝒖 is the fluid velocity, 𝑝̃ =
𝑝

𝜌̄ is the modified pressure, 𝑔 is the acceleration due

to gravity, 𝑠 is the specific entropy, 𝑐𝑝 is the specific heat capacity at constant pressure,

𝜈 is the kinematic viscosity, and 𝜅 is the thermal diffusivity. The system is anelastic and

we have applied the LBR approximation so that we are diffusing entropy as opposed to

temperature (see discussion in Section 2.1.2). Barred variables denote the polytropic ideal

gas reference state described in more detail in Section 4.1.2.1. In short, the LBR approx-

imation is valid when the reference state is approximately adiabatic, and so by defining

our reference state as a𝑚 = 1.5 polytrope (where𝑚 is the polytropic index) we satisfy this

condition. We also assume a constant 𝜈 and 𝜅. Additionally,

𝜏𝑖 𝑗 = 𝜈𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3𝛿𝑖 𝑗∇ · 𝒖
)

(3.53)

is the viscous stress tensor.

Taking our vertical boundaries to be stress-free and assuming fixed entropy and

fixed flux boundary conditions at the top and bottom respectively, we can begin to input

this into Dedalus. A more detailed coverage of this system can be seen in Chapter 4 and the

full version of equations expanded into a Dedalus-compatible format (e.g. the reduction

to first order and reorganisation between the left and right hand sides) can be seen in

Appendix A.
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The numerical methods outlined above in Sections 3.2.2 and 3.2.3 will be used ex-

tensively in the following chapters, namely Chapters 4 and 5. For the study of the at-

mospheric circulation of exoplanets in Chapter 6 we turn to a fully global, 3D general

circulation model developed by the UK Met Office, the Unified Model.

3.3 Global Circulation Models: The Unified Model

The Unified Model (UM) is a 3D general circulation model (GCM) that simulates atmo-

spheric flows that has been in continued development by the UK Met Office for the past

three decades (Walters et al. 2019). While originally developed for weather and climate

forecasting it has recently been applied to the study of a variety of exoplanet atmospheres

such as hot Jupiters (Mayne et al. 2014a; Amundsen et al. 2016; Tremblin et al. 2017; Drum-

mond et al. 2020; Zamyatina et al. 2023), mini-Neptunes/super Earths (Drummond et

al. 2018; Lines et al. 2019), and terrestrial planets (Mayne et al. 2014b; Boutle et al. 2017;

Sergeev et al. 2020; Eager-Nash et al. 2023). The dynamical core at the heart of the UM,

ENDGame (Wood et al. 2014), numerically solves the fully compressible, non-hydrostatic

equations of motion with semi-Lagrangian advection and semi-implicit time stepping. A

variety of smaller scale processes such as convection and radiation are included in the

form of sub-grid scale parameterizations.

3.3.1 Governing equations of the dynamical core

The UM models a spherical shell of atmosphere of height ℎ, situated above an unsimu-

lated planetary interior of radius𝑅𝑝 , visualised in figure 3.5. The governing equations that

are solved by the ENDGame dynamical core are the momentum equations for the zonal,

meridonal, and vertical wind velocities, the continuity equation, and then the thermody-

namic equation. This equation set is then fully closed with an equation of state. These are

as follows,

𝜕𝑢

𝜕𝑡
+ 𝑢

𝑟 cos 𝜙
𝜕𝑢

𝜕𝜆
+ 𝑣

𝑟

𝜕𝑢

𝜕𝜙
+𝑤 𝜕𝑢

𝜕𝑟
=
𝑢𝑣 tan 𝜙

𝑟
− 𝑢𝑤

𝑟
+ 𝑓 𝑣 − 𝑓 ′𝑤 −

𝑐𝑝𝜃

𝑟 cos 𝜙
𝜕Π

𝜕𝜆
+𝐷(𝑢) (3.54)
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Figure 3.5: Schematic of UM’s geometric domain. A simulated atmospheric spherical shell of height ℎ sit-
uated on top of an unsimulated convective interior of radius 𝑅𝑝 . The influence of the convective interior is
then parameterised by an internal heat flux as detailed in Section 3.3.2.

𝜕𝑣

𝜕𝑡
+ 𝑢

𝑟 cos 𝜙
𝜕𝑣

𝜕𝜆
+ 𝑣

𝑟

𝜕𝑣

𝜕𝜙
+ 𝑤 𝜕𝑣

𝜕𝑟
= −

𝑢2 tan 𝜙

𝑟
− 𝑣𝑤

𝑟
− 𝑓 𝑢 −

𝑐𝑝𝜃

𝑟

𝜕Π

𝜕𝜙
+ 𝐷(𝑣) (3.55)

𝜕𝑤

𝜕𝑡
+ 𝑢

𝑟 cos 𝜙
𝜕𝑤

𝜕𝜆
+ 𝑣

𝑟

𝜕𝑤

𝜕𝜙
+ 𝑤 𝜕𝑤

𝜕𝑟
=
𝑢2 + 𝑣2

𝑟
+ 𝑓 ′𝑢 − 𝑔(𝑟) − 𝑐𝑝𝜃

𝜕Π

𝜕𝑟
(3.56)

𝜕𝜌

𝜕𝑡
+ 𝑢

𝑟 cos 𝜙
𝜕𝜌

𝜕𝜆
+ 𝑣
𝑟
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𝜕𝜙
+𝑤 𝜕𝜌

𝜕𝑟
= −𝜌

[
1

𝑟 cos 𝜙
𝜕𝑢

𝜕𝜆
+ 1
𝑟 cos 𝜙

𝜕
(
𝑣 cos 𝜙

)
𝜕𝜙

+ 1
𝑟2

𝜕
(
𝑟2𝑤

)
𝜕𝑟

]
(3.57)

𝜕𝜃

𝜕𝑡
+ 𝑢

𝑟 cos 𝜙
𝜕𝜃

𝜕𝜆
+ 𝑤 𝜕𝜃

𝜕𝑟
=
𝑄

Π
+ 𝐷(𝜃) (3.58)
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Π
𝑅̄
𝑐𝑝
−1

=
𝑅̄𝜌𝜃

𝑃0
(3.59)

Where as before 𝜌 is our density and 𝒖 is the velocity vector with components 𝑢, 𝑣, and

𝑤, in the longitudinal (𝜆), latitudinal (𝜙), and radial (𝑟) directions respectively. 𝑐𝑝 is the

specific heat capacity, 𝑅̄ is the specific gas constant, 𝑄 is fluid heating rate, 𝐷 is our diffu-

sion operator. Rotation is included by defining two Coriolis parameters 𝑓 and 𝑓 ′ that are

functions of the rotation rate Ω and the latitude 𝜙. These are given by,

𝑓 = 2Ω sin 𝜙

𝑓 ′ = 2Ω cos 𝜙, (3.60)

In the case when the mass of the atmosphere 𝑀𝑎𝑡𝑚𝑜(𝑟) = 𝑀(𝑟) − 𝑀(𝑅𝑝), is insignificant

compared to the mass of the interior, a height-dependent gravity can be obtained such

that,

𝑔(𝑟) = 𝑔𝑝

(
𝑅𝑝

𝑟

)2
, (3.61)

where 𝑔𝑝 is the surface gravity. However, this may not be the case in gas giant planet

simulations. More formally,

𝑔(𝑟) = 𝐺𝑀(𝑟)
𝑟2 , (3.62)

therefore the gravitational acceleration at the bottom boundary is given by,

𝑔𝑝 =
𝐺𝑀𝑝

𝑅2
𝑝

, (3.63)
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𝑔(𝑟) = 𝐺

𝑟2

[
𝑀𝑝 +𝑀𝑎𝑡𝑚𝑜(𝑟)

]
, (3.64)

𝑔(𝑟) = 𝑔𝑝

(
𝑅𝑝

𝑟

)2
+ 𝐺𝑀𝑎𝑡𝑚𝑜(𝑟)

𝑟2 , (3.65)

which approximates to equation 3.61 if at a given radial height 𝑟, 𝑀𝑎𝑡𝑚𝑜(𝑟) << 𝑀𝑝 . Lastly,

we define a potential temperature and a non-dimensional pressure known as the Exner

pressure, and these are given by,

𝜃 = 𝑇

(
𝑝0

𝑝

) 𝑅̄
𝑐𝑝

, (3.66)

and

Π =

(
𝑝

𝑝0

) 𝑅̄
𝑐𝑝

=
𝑇

𝜃
(3.67)

The potential temperature is a type of "dynamical temperature". It is the temperature a

parcel of fluid would have if it was displaced from a pressure 𝑝 to some reference pressure

𝑝0. As a result this is a good measure of vertical stability. In the UM, both 𝜃 and Π are

prognostic variables. The gradient of potential temperature is analogous to the gradient

of specific entropy as seen in Section 2.1.6, where

𝜕𝜃

𝜕𝑧
> 0 (3.68)

results in a stability stratified atmosphere which acts to suppress vertical motions whereas

𝜕𝜃

𝜕𝑧
< 0 (3.69)

results in an unstable atmosphere and convection. It is worth specifying that planetary
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atmosphere cases presented here consider dry atmospheres, that is, neglect the presence

of water vapour and the influence of its resulting phase transitions. On Earth for example,

water vapour can play a significant role in atmospheric convective energy transport. In

temperature regimes more applicable to say hot Jupiters, the evaporation and formation of

silicate clouds have similar influences (Gao et al. 2020). This condensation and evaporation

acts analogously to ’sources’ and ’sinks’ of energy as a result of the latent heat required for

such phase changes. Subsequent advection of these substances can then act as a form of

energy transport via. the mechanism of ’removing’ energy from the atmosphere as a result

of evaporation, and then ’supplying’ it upon condensation. Considering the presence of

convection is heavily influenced by other competing energy transport terms, the inclusion

(or omission) of such phase changes are of note.

3.3.2 Internal heat flux

As briefly discussed in Section 1.1.2.2 highly irradiated tidally-locked exoplanets are likely

to have hotter interiors than those predicted from 1D structural evolution models as a re-

sult of the increased incident stellar flux that they receive. However Figure 3.5 shows that

the interior is not resolved in the simulations performed using the UM. The section will in-

troduce the vertical boundary conditions used by the UM and detail the parameterisation

of the convective interior.

Both vertical boundaries are taken to be rigid and impermeable to conserve energy

and mass (Wood and Staniforth 2003). A nonphysical side effect of these rigid boundaries

is that any vertically propagating waves such as gravity or sound waves can be artificially

reflected back into the domain. This is typically only significant during the spin-up period

of the simulation where the initial adjustment of the atmospheric mass generics a signif-

icant gravity wave activity. This is mitigated at the upper boundary by the introduction

of a sponge layer which acts to dampen any vertical velocity perturbations (see Melvin

et al. 2010). At the lower boundary the density of the fluid is high enough to not require

any additional dampening. In the hot Jupiter cases this sponge layer extends low enough

that it has the potential to alter the atmospheric flow, however tests performed in Mayne

et al. (2017) demonstrated that this does not significantly effect the dynamics.
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Figure 3.6: Schematic of the energy balance present at the planetary "surface". The "SW" and "LW" labels
represent the radiative heating from shortwave and longwave radiation respectively, while the 𝜎𝑇4

𝑖𝑛𝑡
repre-

sents the internal heating from the convective heat flux. From the energy balance of these components we
then calculate a surface temperature 𝑇𝑠 .

For terrestrial planets the lower boundary is simply defined as our physical surface,

however for gaseous planets such as hot Jupiters there exists no convenient solid surface

and so instead we impose a frictionless inner boundary at the planetary radius 𝑅𝑝 . The

UM uses a fixed surface temperature, 𝑇𝑠 , that radiates as a black-body, however as previ-

ously mentioned gas giant planets do not have a clearly defined surface, and so also do

not have a convenient surface temperature to select. Therefore, in order to explore the

impact of the interior convection regions on the outer atmosphere we require a more so-

phisticated boundary convection, more realistically capturing the energy released. The

UM (along with other GCMs) achieve this by introducing an intrinsic temperature, 𝑇𝑖𝑛𝑡 ,

an effective temperature in the absence of radiation. This intrinsic temperature captures

the residual heat that remains from the initial gravitational collapse of the planetary for-

mation stages that is then typically supplied to our atmosphere from the interior via the

convective motions that lie beneath the simulated domain.

In the absence of any convective heat flux from the interior (consider 𝑇𝑖𝑛𝑡 = 0), the

surface temperature can be calculated from a radiative balance calculation of the surface

fluxes, that is,

𝜖𝜎𝑇4
𝑠 = 𝐹 = 𝜖𝐿 + 𝑆, (3.70)
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where 𝜖 is the emissivity of the surface, a value between 0 and 1 describing how like a

black-body the emitter is, 𝜎 is the Stefan-Boltzmann constant, 𝐹 is the total flux absorbed at

the surface, and lastly 𝐿 and 𝑆 are the downwelling longwave and net absorbed shortwave

fluxes respectively. Hence

𝑇𝑠 =

[
𝜖𝐿 + 𝑆
𝜖𝜎

]1/4
. (3.71)

With the addition of an intrinsic convective heat flux we can obtain a new expression for

𝑇𝑠 as follows, beginning with the intrinsic flux at the top of the atmosphere we have,

𝐹𝑖𝑛𝑡 = 𝜎𝑇4
𝑖𝑛𝑡 , (3.72)

and so the total energy output at the top of the atmosphere is,

𝐿𝑖𝑛𝑡 = 4𝜋(𝑅𝑝 + ℎ)2𝜎𝑇4
𝑖𝑛𝑡 , (3.73)

where 𝑅𝑝 is the radius of the planet up to the bottom of our domain, and then ℎ is the

additional height of the atmosphere that we are directly simulating. If we then consider

the energy transport through the surface, 𝐿𝑠 = 4𝜋𝑅2
𝑝(𝐹+𝑠 − 𝐹−𝑠 ), where the subscript 𝑠

denotes surface values, and the superscripts + and − denote upwelling and downwelling

fluxes respectively. Assuming radiation is the primary mechanism for vertical energy

transport (that is, there is no advection of energy across the boundary), equate this to 𝐿𝑖𝑛𝑡

we obtain the following,

4𝜋(𝑅𝑝 + ℎ)2𝜎𝑇4
𝑖𝑛𝑡 = 4𝜋𝑅2

𝑝(𝐹+𝑠 − 𝐹−𝑠 ) (3.74)

which with some tidying becomes,
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𝐹+𝑠 =
(𝑅𝑝 + ℎ)2

𝑅2
𝑝

𝜎𝑇4
𝑖𝑛𝑡 + 𝐹

−
𝑠 (3.75)

where 𝐹−𝑠 = 𝜖𝐿 + 𝑆. Typically the radius of the planet is multiple orders of magnitude

larger than the height of our atmospheric shell, that is 𝑅𝑝 >> ℎ. We can therefore obtain

an equation for 𝑇𝑠 of the form,

𝑇𝑠 =

(
𝑇4
𝑖𝑛𝑡 +

𝜖𝐿 + 𝑆
𝜎

)1/4
(3.76)

In many previous studies 𝑇𝑖𝑛𝑡 has been set at the value assumed for Jupiter itself, that is,

𝑇𝑖𝑛𝑡 = 100K (Amundsen et al. 2016) however as will be shown in Section 6 this is likely

to be incorrect. In the context of young gas giant planets or brown dwarfs their interiors

are likely to be much hotter and therefore have higher values of 𝑇𝑖𝑛𝑡 . Additionally there

has been increasing observational evidence to suggest a correlation between inflated plan-

etary radii and stellar irradiation (Demory and Seager 2011; Laughlin et al. 2011; Weiss

et al. 2013). As will be discussed more in Section 6, we can derive an equilibrium relation

between the effective temperature (a function of stellar irradiance) and this intrinsic tem-

perature𝑇𝑖𝑛𝑡 (see Thorngren et al. 2019 for details). This suggests that values of𝑇𝑖𝑛𝑡 > 100K

are more physically realistic.

3.3.3 Latitude dependence

In real planets this interior convection likely does not supply a homogeneous convective

heat flux at all latitudes and longitudes, and is not constant with time. Some prior work

has explored the differences in the resulting circulation between a hot and cold interior

(Komacek et al. 2022), and others have explored spatial and temporal effects of a "plume-

like" overshooting convective boundary in a reduced, "shallow-water" system (Zhang and

Showman 2014), however no extensive study has yet been performed in the fully com-

pressible regime. Let this additional heat flux being supplied to our atmospheric layer at

its bottom boundary be given by the parameter 𝑄𝑖𝑛𝑡 such that currently,
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𝑄𝑖𝑛𝑡 = 𝜎𝑇4
𝑖𝑛𝑡 (3.77)

We can introduce an initial latitude dependence to the parameterised internal heat flux in

two ways:

This latitude dependence can be introduced to the parameterised internal heat flux

in two ways:

• Case A: Allow 𝑄 to decrease with distance from the equator,

𝑄𝑖𝑛𝑡 = 𝜎
[
𝑇𝑖𝑛𝑡

(
1 − 𝛼[1 − cos(𝜙)]

) ]4
. (3.78)

• Case B: Allow 𝑄 to increase with distance from the equator,

𝑄𝑖𝑛𝑡 = 𝜎
[
𝑇𝑖𝑛𝑡

(
1 − 𝛼 cos(𝜙)

) ]4
. (3.79)

where 𝛼 is a scaling factor for the extent at which Q varies with latitude.

3.4 Chapter summary

This chapter has provided an overview of the numerical methods that will be used through-

out the remainder of this thesis. The numerical methods introduced in Section 3.2 will

be utilised extensively in Chapters 4 and 5. Chapter 6 will then use the Unifed Model

described in Section 3.3 to explore variations on the interior convection parameterisations

and their influence on the atmospheric dynamics.
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Chapter 4

Simulations of stellar convection:

Basic setup and diagnostics

With the theoretical background discussed in Chapter 2, and the numerical frameworks

laid out in Chapter 3, this chapter will now present some examples of stellar convection

simulations. An eigenvalue solver much like the one detailed in Section 3.2.2 has been

used to find values of the critical Rayleigh number (𝑅𝑎𝑐) for given stratification (𝑁𝜌) and

rotation rate (𝑇𝑎). These values can then be used to inform choices of the input Rayleigh

number (𝑅𝑎) to achieve a desired supercriticality (𝑅𝑎/𝑅𝑎𝑐).

4.1 Model Setup

4.1.1 Domain Geometry

In this chapter we will explore convection in a Cartesian box on the surface of a rotat-

ing sphere (see 4.1). This is known as a tilted f-plane. Our coordinate system is such

that the horizontal coordinates, 𝑥 and 𝑦, correspond to the longitudinal and latitudinal

directions respectively. The vertical coordinate, 𝑧, then corresponds to the radial direc-

tion. The domain is bounded by two impermeable and stress-free boundaries located

at 𝑧 = 0 and 𝑧 = 𝑑. The rotation vector, 𝛀, is identically perpendicular to the longi-

tudinal coordinate, 𝑥, and so Ω𝑥 = 0. This means the rotation vector takes the form
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Figure 4.1: A schematic view of the location of our cartesian layer on a rotating sphere.

𝛀 = (0,Ω𝑦 ,Ω𝑧) = (0,Ω cos 𝜙,Ω sin 𝜙), where Ω is the magnitude of the rotation vector

and 𝜙 is the latitude. The resulting Coriolis term then takes the form,

2𝛀 × 𝒖 = 2Ω

©­­­­­«
𝑤 cos 𝜙 − 𝑣 sin 𝜙

𝑢 sin 𝜙

−𝑢 cos 𝜙

ª®®®®®¬
, (4.1)

where 𝑢, 𝑣, and 𝑤, are the 𝑥, 𝑦, and 𝑧, components of the fluid velocity, 𝒖 respectively.

4.1.2 2.5D approximation

Consider first a two-dimensional system. As we are studying convective motions we re-

quire our vertical coordinate, 𝑧, and so we have a choice of which horizontal direction to

model and which to exclude. If we adopted an x-z plane then our rotation vector would be

pointing out of the plane of our domain. This would result in any Taylor-Proudman-like

features being suppressed (see discussion in Chapter 2 on Taylor-Proudman theorem).

Therefore if we wish to study the effects of rotation in a two-dimensional system it would

be better to model the y-z plain and exclude our x-coordinate. This isn’t as straightfor-
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ward as one might expect however. Consider for a moment the y- and z-components of

the Coriolis term, ®𝑓 in the momentum equation (equation 5.11),

𝑓𝑦 = 𝑢, sin 𝜙

𝑓𝑧 = −𝑢 cos 𝜙 (4.2)

If we exclude the x-coordinate, then 𝑢 = 0 and so 𝑓𝑦 = 𝑓𝑧 = 0. Despite selecting our domain

such that we include rotational effects, the lack of any zonal velocity means by definition

we have no Coriolis effect. To counter this, we assume "2.5D" geometry in that we take

our x-coordinate to be essentially one grid-point in depth. Our domain is now of the

shape 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 = (1, 𝑁𝑦, 𝑁𝑧), allowing for three-dimensional vectors but assuming

our x-axis to be axisymmetric. That is,

𝒖 = 𝑢 𝒙̂ + 𝑣𝒚̂ + 𝑤 𝒛̂

𝜕𝑥 = 0. (4.3)

Consider now the x-component of the momentum equation 3.50 with the addition of the

rotational Coriolis term 2𝛀 × 𝒖 on the left-hand side expanded fully, that is,

𝜕𝑢

𝜕𝑡
+𝑢 𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
+ 𝑤 𝜕𝑢

𝜕𝑧
+ 2Ω(𝑤 cos 𝜙 − 𝑣 sin 𝜙) = −1

𝜌̄
𝜕𝑃

𝜕𝑥

+ 𝜈

[
4
3
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2 + 𝜕2𝑢

𝜕𝑧2 + 1
3

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 1

3
𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 1

𝜌̄

𝜕𝜌̄

𝜕𝑧

(
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤

𝜕𝑥

)]
. (4.4)

We then simply neglect any 𝜕𝑥 terms, giving us a much simpler
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𝜕𝑢

𝜕𝑡
+ 𝑣 𝜕𝑢

𝜕𝑦
+ 𝑤 𝜕𝑢

𝜕𝑧
+ 2Ω(𝑤 cos 𝜙 − 𝑣 sin 𝜙) = 𝜈

[
𝜕2𝑢

𝜕𝑦2 + 𝜕2𝑢

𝜕𝑧2 + 1
𝜌̄

𝜕𝜌̄

𝜕𝑧

𝜕𝑢

𝜕𝑧

]
. (4.5)

This then allows the x-component of the velocity to evolve with time, and therefore yields

non-zero values for our Coriolis force in the y- and z-directions.

4.1.2.1 Equation set

Building on the work outlined in Chapters 2 & 3, and specifically leading on from section

3.2.3 we can go on to define our main set of governing equations. In short, the model setup

largely follows that of Currie and Browning (2017) with the addition of the Coriolis term

and the corresponding 2.5D geometry. We take a polytropic ideal gas reference state such

that,

𝑇̄ = 𝑇0(1 − 𝛽𝑧),

𝜌̄ = 𝜌0(1 − 𝛽𝑧)𝑚 , (4.6)

𝑝̄ = 𝑅𝜌0𝑇0(1 − 𝛽𝑧)𝑚+1 ,

where 𝑚 the polytropic index and 𝑅 is the ideal gas constant. The inverse temperature

scale height 𝛽 is a measure of the stratification and is given by 𝛽 =
𝑔

𝑐𝑝,0𝑇0
, where g is the ac-

celeration due to gravity and 𝑐𝑝 is the specific heat capacity. From here onwards however,

we will almost exclusively refer to the number of density scale heights across our layer,

𝑁𝜌, when quantifying the degree of stratification within our domain. 𝑁𝜌 is defined as,

𝑁𝜌 = −𝑚 ln (1 − 𝛽𝑑) (4.7)

We use the anelastic equation set under the Lantz-Braginsky-Roberts (LBR) approxima-

tion (Lantz 1992, Braginsky and Roberts (1995)) and as a result diffuse entropy instead of
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temperature (Lecoanet et al. 2014). This approximation is valid when fluid flows are suffi-

ciently subsonic and the reference state is nearly adiabatic. Both conditions are satisfied in

the interiors of typical stellar convection zones. Additionally, we fix the polytropic index

as 𝑚 = 1.5, such that the ratio of specific heat capacities is equal to 5/3, appropriate for

adiabatic processes within a monatomic gas. We also consider only the hydrodynamical

problem, such that the electric current, 𝒋, is zero, and so we have no Lorentz contribution

to our momentum equations and all of our dissipation is purely viscous.

Our equation set therefore takes the form,

𝜕𝒖
𝜕𝑡

+ (𝒖 · ∇) 𝒖 + 2𝛀 × 𝒖 = −∇𝑝̃ + 𝑔𝑠

𝑐𝑝
𝒆̂𝑧

+ 𝜈

[
1
𝜌̄

𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

))
− 2

3𝜌̄
𝜕

𝜕𝑥𝑖

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)]
, (4.8)

∇ · (𝜌𝒖) = 0, (4.9)

𝜌̄𝑇̄

(
𝜕𝑠

𝜕𝑡
+ (𝒖 · ∇) 𝑠

)
= ∇ ·

(
𝜅𝜌̄𝑇̄∇𝑠

)
+ 𝜏𝑖 𝑗

𝜕𝑢𝑖
𝜕𝑥 𝑗

, (4.10)

where

𝜏𝑖 𝑗 = 𝜈𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3𝛿𝑖 𝑗∇ · 𝒖
)
, (4.11)

is the viscous stress tensor. Note again that when we are considering two-dimensional

cases we still evolve a three-dimensional velocity field and simply consider 𝜕𝑥 = 0. We

fully non-dimensionalise our system by the viscous timescale, 𝜏𝜈 = 𝑑2/𝜈, and the domain

depth, 𝑑, and define the following non-dimensional parameters
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Pr = 𝜈
𝜅
, Ta =

4Ω2𝑑4

𝜈2 , Ra =
𝑔𝑑4𝐹

𝜈𝜅2𝜌0𝑐𝑝,0𝑇0
, 𝜃 =

𝑔𝑑

𝑐𝑝,0𝑇0
, (4.12)

where Pr is our Prandtl number, Ta is our Taylor number, Ra is our flux-based Rayleigh

number (Duarte et al. 2016), and 𝜃 is a non-dimensionalised version of the our thermal

scale height 𝛽. More detailed coverage of these non-dimensional parameters can be seen

in Section 2.2. This allows us to fully define our parameter space by our polytropic index,

𝑚, and equations (4.7), and (4.12). Applying our non-dimensionalisation to equations

(4.8), (4.9), and (4.10), our governing equations become

𝜕𝒖̂

𝜕𝑡
+ (𝒖̂ · ∇̂)𝒖̂ = −∇̂ ˆ̃𝑝 + Ra

Pr 𝑠 𝒆̂𝑧

+
[

1
ˆ̄𝜌

𝜕

𝜕𝑥 𝑗

(
ˆ̄𝜌
(
𝜕𝑢̂𝑖
𝜕𝑥̂ 𝑗

+
𝜕𝑢̂𝑗

𝜕𝑥̂𝑖

))
− 2

3 ˆ̄𝜌
𝜕

𝜕𝑥̂𝑖

(
ˆ̄𝜌
𝜕𝑢̂𝑗

𝜕𝑥̂ 𝑗

)]
, (4.13)

∇̂ · ( ˆ̄𝜌𝒖̂) = 0, (4.14)

Pr ˆ̄𝜌 ˆ̄𝑇
(
𝜕𝑠

𝜕𝑡
+

(
𝒖̂ · ∇̂

)
𝑠

)
= ∇̂ · ( ˆ̄𝜌 ˆ̄𝑇∇̂𝑠) + Pr2𝜃

Ra 𝜏̂𝑖 𝑗
𝜕𝑢̂

𝜕𝑥̂ 𝑗
, (4.15)

Our lower boundary condition is taken to be fixed flux, where we state that the flux given

at the bottom boundary (𝑧 = 𝑧̂ = 0) is purely conductive and therefore,

𝐹
��
𝑧=0 = −𝜅𝜌0𝑇0

𝜕𝑠

𝜕𝑧

����
𝑧=0
, (4.16)

which when non-dimensionalised becomes,
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𝐹
��
𝑧̂=0 = −𝜅𝜌0𝑇0

1
𝑑

(
𝜕

𝜕𝑧̂

[
𝐹𝑑

𝜅𝜌0𝑇0
𝑠

] ) ����
𝑧̂=0

𝐹
��
𝑧̂=0 = −𝜅𝜌0𝑇0

1
𝑑

𝑑

𝜅𝜌0𝑇0
𝐹
��
𝑧̂=0

𝜕𝑠

𝜕𝑧̂

����
𝑧̂=0

(4.17)

and so,

𝜕𝑠

𝜕𝑧̂

����
𝑧̂=0

= −1, (4.18)

We take the upper boundary (𝑧 = 𝑑, and therefore 𝑧̂ = 1) to be fixed entropy, and set this

equal to zero.

𝑠
��
𝑧̂=1 = 0, (4.19)

Additionally we assume these boundaries to be impermeable,

𝑤̂
��
𝑧̂=0,1 = 0 (4.20)

and stress free,

𝜕𝑢̂

𝜕𝑧̂

����
𝑧̂=0,1

= 0

𝜕𝑣̂

𝜕𝑧̂

����
𝑧̂=0,1

= 0 (4.21)

Note that for the rest of this chapter we will simply drop the hat notation ( ˆ ) and assume

all variables to non-dimensionalised, unless otherwise specified.

Using the methods outlined in section 3.2, the equations (4.13), (4.14), and (4.15)
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can then be solved using Dedalus (Burns et al. 2020). A full expansion of the equations in

a Dedalus compatible format can be viewed in Appendix A.

4.2 Fluxes

One way to examine the heat transport is to examine how the luminosity 𝐿 varies with

height. An expression for 𝐿 at some given depth 𝑧 = 𝑧′ can be obtained by integrating ei-

ther the internal energy equation (3.47) or the total energy equation (3.46) over the volume

enclosed between the bottom boundary and 𝑧 = 𝑧′. As we are supplying the system with

a total luminosity 𝐿 at our bottom boundary, the subsequent integrals of these equations

are equal to 𝐿. Starting with the internal energy, integration results in,

𝐿 =

∫
𝑉𝑧′

∇·
(
𝜌̄𝑇̄𝑠𝒖

)
𝑑𝑉+

∫
𝑉𝑧′

−∇·
(
𝜅𝜌̄𝑇̄∇𝑠

)
𝑑𝑉+

∫
𝑉𝑧′

−𝑠𝜌̄(𝒖 · ∇)𝑇̄𝑑𝑉+
∫
𝑉𝑧′

−𝜏𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

𝑑𝑉. (4.22)

The divergence theorem can then be applied to the first two integrals, transforming them

from volume to surface integrals,

𝐿 =

∫
𝑆𝑧′

𝜌̄𝑇̄𝑠𝑤𝑑𝑆 +
∫
𝑆𝑧′

−𝜅𝜌̄𝑇̄ 𝜕𝑠

𝜕𝑧
𝑑𝑆 +

∫
𝑉𝑧′

−𝑠𝜌̄(𝒖 · ∇)𝑇̄𝑑𝑉 +
∫
𝑉𝑧′

−𝜏𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

𝑑𝑉, (4.23)

where the four terms represent the convective (𝐿𝑐𝑜𝑛𝑣), conductive (𝐿𝑐𝑜𝑛𝑑), buoyancy (𝐿𝑏𝑢𝑜𝑦),

and dissipative (𝐿𝑑𝑖𝑠𝑠) luminosities respectively. That is,
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𝐿𝑐𝑜𝑛𝑣 =

∫
𝑆𝑧′

𝜌̄𝑇̄𝑠𝑤𝑑𝑆, (4.24)

𝐿𝑐𝑜𝑛𝑑 =

∫
𝑆𝑧′

−𝜅𝜌̄𝑇̄ 𝜕𝑠

𝜕𝑧
𝑑𝑆, (4.25)

𝐿𝑏𝑢𝑜𝑦 =

∫
𝑉𝑧′

−𝑠𝜌̄(𝒖 · ∇)𝑇̄𝑑𝑉, (4.26)

𝐿𝑑𝑖𝑠𝑠 =

∫
𝑉𝑧′

−𝜏𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

𝑑𝑉. (4.27)

Note that 𝑇̄ = 1 − 𝜃𝑧, therefore 𝜕𝑇̄
𝜕𝑥 = 0 and so,

(𝒖 · ∇)𝑇̄ = 𝑢
𝜕𝑇̄

𝜕𝑥
+ 𝑤 𝜕𝑇̄

𝜕𝑧
= 𝑤

𝜕𝑇̄

𝜕𝑧
, (4.28)

thus we can express 𝐿𝑏𝑢𝑜𝑦 as follows,

𝐿𝑏𝑢𝑜𝑦 =

∫
𝑉𝑧′

−𝑠𝜌̄𝑤 𝜕𝑇̄

𝜕𝑧
𝑑𝑉. (4.29)

Now to calculate these luminosities using the outputs from our simulations, we need to

non-dimensionalise the expressions in (4.23),

𝐿𝑐𝑜𝑛𝑣 = 𝜌0𝑇0
𝐹𝑑

𝜅𝜌0𝑇0

𝜈
𝑑
𝑑2𝐿̂𝑐𝑜𝑛𝑣 = 𝐹𝑑2 𝜈

𝜅
𝐿̂𝑐𝑜𝑛𝑣 , (4.30)

𝐿𝑐𝑜𝑛𝑑 = 𝜅𝜌0𝑇0
1
𝑑

𝐹𝑑

𝜅𝜌0𝑇0

1
𝜅
𝑑2𝐿̂𝑐𝑜𝑛𝑣 = 𝐹𝑑2𝐿̂𝑐𝑜𝑛𝑑 , (4.31)

𝐿𝑏𝑢𝑜𝑦 =
𝐹𝑑

𝜅𝜌0𝑇0
𝜌0

𝜈
𝑑

𝑇0
𝑑
𝑑3𝐿̂𝑏𝑢𝑜𝑦 = 𝐹𝑑2 𝜈

𝜅
𝐿̂𝑏𝑢𝑜𝑦 , (4.32)

𝐿𝑑𝑖𝑠𝑠 =
𝜌0𝜈2

𝑑2
𝜈

𝑑2 𝑑
3𝐿̂𝑑𝑖𝑠𝑠 =

𝜌0𝜈3

𝑑
𝐿̂𝑑𝑖𝑠𝑠 , (4.33)
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where,

𝐿̂𝑐𝑜𝑛𝑣 =

∫
𝑆𝑧′

ˆ̄𝜌 ˆ̄𝑇𝑠𝑤̂𝑑𝑆̂, (4.34)

𝐿̂𝑐𝑜𝑛𝑑 =

∫
𝑆𝑧′

− ˆ̄𝜌 ˆ̄𝑇 𝜕𝑠

𝜕𝑧̂
𝑑𝑆̂, (4.35)

𝐿̂𝑏𝑢𝑜𝑦 =

∫
𝑉𝑧′

−𝑠 ˆ̄𝜌𝑤̂ 𝜕 ˆ̄𝑇
𝜕𝑧̂
𝑑𝑉̂ , (4.36)

𝐿̂𝑑𝑖𝑠𝑠 =

∫
𝑉𝑧′

−𝜏̂𝑖 𝑗
𝜕𝑢̂𝑖
𝜕𝑥̂ 𝑗

𝑑𝑉̂ , (4.37)

and additionally note that we can non-dimensionalise the total luminosity 𝐿 by 𝐿 = 𝐹𝑑2𝐿̂.

Dividing through by 𝐹𝑑2, dropping the hat notation, and assuming all variables are now

their non-dimensional versions,

𝐿 =
𝜈
𝜅
𝐿𝑐𝑜𝑛𝑣 + 𝐿𝑐𝑜𝑛𝑑 +

𝜈
𝜅
𝐿𝑏𝑢𝑜𝑦 +

𝜌0𝜈3

𝐹𝑑3 𝐿𝑑𝑖𝑠𝑠 , (4.38)

or rather,

𝐿 = 𝑃𝑟𝐿𝑐𝑜𝑛𝑣 + 𝐿𝑐𝑜𝑛𝑑 + 𝑃𝑟𝐿𝑏𝑢𝑜𝑦 +
𝑃𝑟2𝜃
𝑅𝑎

𝐿𝑑𝑖𝑠𝑠 . (4.39)

Alternatively, if we consider the total energy equation (3.46), we can obtain a different (but

equivalent) flux decomposition.

𝐿 =

∫
𝑆𝑧′

𝜌̄𝑐𝑝𝑤𝑇
′𝑑𝑆 +

∫
𝑆𝑧′

−𝜅𝜌̄𝑇̄ 𝜕𝑠

𝜕𝑧
𝑑𝑆 +

∫
𝑆𝑧′

1
2 𝜌̄

��𝒖2��𝑤𝑑𝑆 +
∫
𝑆𝑧′

−(𝜏𝑖 𝑗𝑢𝑖) · 𝒆𝒛𝑑𝑆 (4.40)

where the four terms represent the enthalpy (𝐿𝑒), conductive (𝐿𝑐𝑜𝑛𝑑), kinetic energy (𝐿𝐾𝐸),

and viscous (𝐿𝑣𝑖𝑠𝑐) luminosities. 𝑇′ is defined as,

𝑇′ =
1
𝑐𝑝

(
𝑇̄𝑠 + 𝑃̃

)
. (4.41)
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This allows us to express 𝐿𝑒 as follows,

𝐿𝑒 =

∫
𝑆𝑧′

𝜌̄𝑇̄𝑠𝑤𝑑𝑆 +
∫
𝑆𝑧′

𝜌̄𝑤𝑃̃𝑑𝑆, (4.42)

(4.43)

where the first integral is our previously encountered 𝐿𝑐𝑜𝑛𝑣 , and the second integral is the

pressure dilatation, 𝐿𝑝 , (see Viallet et al. 2013). The new luminosities are therefore,

𝐿𝑝 =

∫
𝑆𝑧′

𝜌̄𝑤𝑃̃𝑑𝑆, (4.44)

𝐿𝐾𝐸 =

∫
𝑆𝑧′

1
2 𝜌̄

��𝒖2��𝑤𝑑𝑆, (4.45)

𝐿𝑣𝑖𝑠𝑐 =

∫
𝑆𝑧′

−(𝜏𝑖 𝑗𝑢𝑖) · 𝒆𝒛𝑑𝑆, (4.46)

which after applying a similar non-dimensionalisation as before can be written as,

𝐿𝑝 = 𝜌0
𝜈
𝑑

𝜈2

𝑑2 𝑑
2𝐿̂𝑝 =

𝜌0𝜈3

𝑑
𝐿̂𝑝 , (4.47)

𝐿𝐾𝐸 = 𝜌0
𝜈2

𝑑2
𝜈
𝑑
𝑑2𝐿̂𝐾𝐸 =

𝜌0𝜈3

𝑑
𝐿̂𝐾𝐸 , (4.48)

𝐿𝑣𝑖𝑠𝑐 =
𝜌0𝜈2

𝑑2
𝜈
𝑑
𝑑2𝐿̂𝑣𝑖𝑠𝑐 =

𝜌0𝜈3

𝑑
𝐿̂𝑣𝑖𝑠𝑐 , (4.49)

where the non-dimensional luminosities are defined as,
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𝐿̂𝑝 =

∫
𝑆𝑧′

ˆ̄𝜌𝑤̂ ˆ̃𝑃𝑑𝑆̂, (4.50)

𝐿̂𝐾𝐸 =

∫
𝑆𝑧′

1
2
ˆ̄𝜌
��𝒖̂2�� 𝑤̂𝑑𝑆̂, (4.51)

𝐿̂𝑣𝑖𝑠𝑐 =

∫
𝑆𝑧′

−(𝜏̂𝑖 𝑗 𝑢̂𝑖) · 𝒆𝒛𝑑𝑆̂. (4.52)

Dividing out the factor of 𝐹𝑑2 from 𝐿 = 𝐹𝑑2𝐿̂ and once again dropping our hat notation

and assuming all variables to be non-dimensional, we have,

𝐿 =
𝜈
𝜅
𝐿𝑐𝑜𝑛𝑣 +

𝜌0𝜈3

𝐹𝑑3 𝐿𝑝 + 𝐿𝑐𝑜𝑛𝑑 +
𝜌0𝜈3

𝐹𝑑3 𝐿𝐾𝐸 +
𝜌0𝜈3

𝐹𝑑3 𝐿𝑣𝑖𝑠𝑐 , (4.53)

𝐿 = 𝑃𝑟𝐿𝑐𝑜𝑛𝑣 +
𝑃𝑟2𝜃
𝑅𝑎

𝐿𝑝 + 𝐿𝑐𝑜𝑛𝑑 +
𝑃𝑟2𝜃
𝑅𝑎

𝐿𝐾𝐸 +
𝑃𝑟2𝜃
𝑅𝑎

𝐿𝑣𝑖𝑠𝑐 . (4.54)

4.3 An aside on timescales

An important question to ask is, what is a relevant timescale for particular features to

evolve? The governing equations outlined in Section 4.1 have been non-dimensionalised

by our viscous timescale. That is,

𝜏𝜈 =
𝑑2

𝜈
, (4.55)

where 𝑑 is the fluid depth and 𝜈 is the viscous diffusivity as before. This is the unit of

time. An example of a quantity that evolves on this timescale in non-rotating cases is the

dissipative flux, 𝐿𝑑𝑖𝑠𝑠 , given by equation (4.27). As seen in Figure 4.2 the vertical profile

of 𝐿𝑑𝑖𝑠𝑠 converges to an equilibrium at simulation times of 𝑡 ≃ 𝜏𝜈.

Another relevant timescale is instead the thermal timescale, defined as,
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Figure 4.2: Vertical profiles of 𝐿𝑑𝑖𝑠𝑠 taken from a typical non-rotating convective simulation, with Ra = 1e5,
Pr = 1, Ta = 0, 𝑁𝜌 = 1. Each is averaged over 0.2 𝜏𝜈 at a range of points during the simulation. The plot is split
across two panels for ease of x-axis scaling.

1 0 1 2 3 4 5 6
Lcond

0.0

0.2

0.4

0.6

0.8

1.0

z

0.0  0.2 
0.2  0.4 
0.4  0.6 
0.6  0.8 
0.8  1.0 

0.0 0.2 0.4 0.6 0.8 1.0
Lcond

0.0

0.2

0.4

0.6

0.8

1.0
z

1.0  1.2 
1.2  1.4 
1.4  1.6 
1.6  1.8 
1.8  2.0 

Figure 4.3: Vertical profiles of 𝐿𝑐𝑜𝑛𝑑 taken from a typical non-rotating convective simulation. Ra = 1e5, Pr =
1, Ta = 0, 𝑁𝜌 = 1. Each is averaged over 0.2 𝜏𝜅 at a range of points during the simulation. The plot is split
across two panels for ease of x-axis scaling.

𝜏𝜅 =
𝑑2

𝜅
. (4.56)

where 𝜅 is our thermal diffusivity. As introduced in Section 2.2.3 the ratio of these two

timescales is given by the Prandtl number Pr, which for the majority of this work fixed

at unity, however Section 4.5.1 will demonstrate how varying this parameter can result

in certain features and quantities of the flow evolving on different timescales. A quan-

tity that typically evolves on the thermal timescale is the conductive flux, 𝐿𝑐𝑜𝑛𝑑, given by

equation (4.25). This can be seen in Figure 4.3 where the vertical profiles of 𝐿𝑐𝑜𝑛𝑑 converge

at simulation times of 𝑡 ≃ 𝜏𝜅.

Another relevant timescale in this work is the convective turnover time, which physically
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Figure 4.4: An example plot of a equilibrated flux plot is shown for non-rotating convection with, Ra/Ra𝑐 =
103, 𝑁𝜌 = 1.4, and Pr = 1.

is defined as the time it takes for parcel of convecting fluid to rise from across our domain.

Explicitly, this is,

𝜏𝑐𝑜𝑛𝑣 =
𝑑

𝑈
, (4.57)

where𝑈 is a typical velocity scale. Recalling the Reynolds number, Re, from the previous

discussion in Section 2.2.7, specifically equation (2.39), the convective turnover time, 𝜏𝑐𝑜𝑛𝑣 ,

can expressed in terms of the viscous timescale 𝜏𝜈. That is,

𝜏𝑐𝑜𝑛𝑣 =
𝑑

𝑈
=

𝜈
𝑑𝑈

𝑑2

𝜈
=

𝜏𝜈
Re . (4.58)

This states that for a more turbulent flow, and therefore higher Re, the convective turnover

time is significantly smaller than the our viscous timescale.

4.4 Flux balance

As the systems dynamical and thermal structures evolve on different timescales, we must

define an appropriate point at which a simulation can be classified as sufficiently evolved.

For the calculations presented in Chapters 4 and 5, this point is typically taken as being

when the simulation has achieved flux balance. That is, when averaged over a sufficiently

large time period both equation (4.23) and equation (4.40) equal unity. As demonstrated
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in the previous section the required length of time varies based upon the parameter space,

especially with the Prandtl number. Qualitatively flux balance is achieved when the black

line representing 𝐿𝑡𝑜𝑡 is vertically straight at unity. Quantitatively, a measure that can be

used is |Δ𝐿𝑡𝑜𝑡 | = |𝐿𝑡𝑜𝑡 − 1|𝑚 , where the subscript 𝑚 indicates the maximum value in the

vertical domain and so |Δ𝐿𝑡𝑜𝑡 | represents the largest deviation that occurs anywhere in

the simulated domain of 𝐿𝑡𝑜𝑡 from 1. Values of |Δ𝐿𝑡𝑜𝑡 | ≤ 10−2 are taken to be sufficiently

equilibrated. This is shown schematically in Figure 4.4. It is worth noting that due to

having two equations for our total flux, (4.23) and (4.40), we have two ways of calculating

|Δ𝐿𝑡𝑜𝑡 |. As they are composed of different fluxes which themselves may evolve on different

timescales, they can result in different values of |Δ𝐿𝑡𝑜𝑡 | however the constraint for flux

balance is set on both formulations.

4.5 Convective structure

As shown in Section 4.1 the system is fully described by the collection of non-dimensional

parameters, Ra, Pr, N𝜌, and Ta, and the polytropic index, 𝑚. The rest of this chapter will

be dedicated towards exploring this parameter space and discussing the various effects

these parameters have on convection. In particular we will focus on the Rayleigh number,

Ra, the Taylor number, Ta, and the degree of stratification, N𝜌. The polytropic index will

be held at 𝑚 = 1.5, and with the exception of Section 4.5.1 the Prandtl number, Pr, will be

fixed at unity.

Once a simulation has achieved sufficient equilibrium the dynamical structure of

the convection can be clearly seen (see Figure 4.5). The first panel shows the total en-

tropy of the fluid whereas the second and third panels show the horizontal and vertical

velocities respectively. The fluid has formed into a singular convective cell (common for

2D geometry, see Hepworth 2014 for one example) where the velocity fields show typi-

cal convective structures in the form of rising hot flows and descending cold flows with

connecting horizontal motions at the top and bottom boundaries.

As seen in Section 2.2.7, the Reynolds number, Re, is a measure of the turbulent

nature of the flow. It quantifies the relative strength of the inertial and viscous forces.
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Figure 4.5: A snapshot of the convective structure for a non-rotating, unstratified fluid with Ra/Ra𝑐 = 102,
𝑁𝜌 = 0, and Pr = 1. The first panel shows the total entropy structure of the fluid domain with the direction
of the fluid motion indicated with streamline arrows. The second and third panels show the individual hori-
zontal and vertical components of the velocity fields respectively. As the horizontal boundaries are periodic,
the plots have been horizontally re-scaled so that the main features of the convection are centralised.
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Figure 4.6: Values of mean Reynolds number for a range of non-rotating (Ta = 0), unstratified (𝑁𝜌 = 0,)
convective simulations at Pr = 1 and a range of Ra/Ra𝑐 . Increasing the supercriticality shows a clear trend
in increasing the resulting Reynolds number, that is, the flow becomes less laminar and more turbulent in
nature.
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Figure 4.7: Vertical profiles of the horizontally averaged total entropy (top), the convective flux (middle), and
conductive flux (bottom), in non-rotating (Ta = 0), unstratified (𝑁𝜌 = 0,) convective simulations at Pr = 1 and
a range of supercriticality. The convective and conductive flux profiles have been overplotted (black dotted)
with the bulk values expected from sufficiently stratified convection (1 and 0 respectively).
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Generally low values of Re correspond to slow moving, viscous motions whereas larger Re

tends towards more turbulent and faster fluid motions. It follows then, that for increasing

Ra/Ra𝑐 (that is, increasing the buoyancy forcing provided to the system relative to the

dissipative effects present and scaled by a measure of its convective stability, Ra𝑐), the

value of Re would also increase. This is seen clearly in Figure 4.6. The Re-Ra scaling

observed in Figure 4.6 is in good agreement with the scaling Re ∼ Ra1/2 arising from the so-

called "VAC" (viscous-Archimedean-Coriolis) balance (see discussions in Hepworth 2014,

Gastine et al. 2016, for examples).

It is worth noting that in unstratified cases where 𝑁𝜌 and therefore 𝜃 are zero, the

flux equations (4.39) and (4.54) reduce to,

𝐿𝑡𝑜𝑡 = Pr𝐿𝑐𝑜𝑛𝑣 + 𝐿𝑐𝑜𝑛𝑑 . (4.59)

Therefore, once the system is sufficiently equilibrated the flux balance is entirely between

the conductive and convective heat fluxes. The effect of increasingly turbulent convection

can be seen in Figure 4.7. As the fluid becomes more thoroughly mixed through more

efficient convection the fluid bulk becomes more and more isentropic. This can be seen

in the horizontally averaged total entropy profiles shown in the first panel of Figure 4.7.

Additionally, this increase in convective efficiency results in more of the energy transport

being performed provided by convective motions rather than conductive effects. This

change can be seen in the second and third panels. It can also be seen from equation

(4.59) that this balance is dependent on the Prandtl number.

4.5.1 Varying Prandtl number

Recall that the Prandtl number, Pr, is the ratio of viscous to thermal diffusivities, that is,

Pr = 𝜈
𝜅
. (4.60)

It has long been established in prior literature that Ra𝑐 is independent of Pr (Chandrasekhar
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Figure 4.8: Values of mean Reynolds number for a range of non-rotating convective simulations with Ra =
1e5, 𝑁𝜌 = 1, Ta = 0, for a range of Pr. Increasing Prandtl number shows a clear trend away from turbulent
flows and towards more laminar convection.

1961). This means that for a given stratification (𝑁𝜌) or rotation rate (Ta), the supercriti-

cality of the flow remains unchanged. Increasing Pr for a fixed supercriticality results in

a larger viscous diffusivity relative to thermal diffusivity and can be viewed as essentially

increasing the viscosity of our fluid and resulting in more laminar flows (note that in the

infinite Pr limit, the inertial term is identically zero). This is quantified in our Reynolds

number and can be seen in Figure 4.8.

One way to view these relationships is that by increasing the supercriticality the

result is to increase the typical velocity scale, 𝑢, whereas increasing Pr has the effect of

increasing 𝜈. Their relationships with Re then follow from equation (2.39) and can be

seen in Figures 4.6 & 4.8. Much like how increasing the supercriticality results in more

efficient convection and a shift in the flux balance towards convective heat transport, in-

creasing Pr results in a more viscous, and laminar fluid flow that swings the balance back

towards stronger conductive energy transport. This can be seem more quantitatively by

rearranging (4.59) at 𝐿𝑡𝑜𝑡 = 1,
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𝐿𝑐𝑜𝑛𝑣 =
1 − 𝐿𝑐𝑜𝑛𝑑

Pr , (4.61)

where 𝐿𝑐𝑜𝑛𝑣 ∝ Pr−1.

4.5.2 Stratification

This section will discuss the effects of introducing density stratification to the fluid. As

discussed in Section 4.1, the degree of stratification is given by the number of density scale

heights across the fluid layer, 𝑁𝜌. This is given by the equation (4.7). Another quantity

used to measure this same degree of stratification and that is commonly used in this work

is𝜃, a non-dimensional thermal scale height which is directly related to𝑁𝜌 by the equation

𝑁𝜌 = −𝑚 ln (1 − 𝜃). Importantly, the system reduces to an unstratified one at 𝑁𝜌 = 𝜃 = 0.

One thing to immediately note is that by the inclusion of stratification, a number of

additional energy transport terms are now present in the overall flux balance equations

(4.39) and (4.54). In the internal energy flux decomposition, (4.39), there is now a buoyancy

term, 𝐿𝑏𝑢𝑜𝑦 representing the work done against the stratification, and a dissipative term

𝐿𝑑𝑖𝑠𝑠 , that represents the portion of the overall viscous forces that act to deform and heat a

fluid parcel. In the unstratified case, there is no background stratification to work against,

𝜃 = 0 and so 𝑇̄ = 1, and it follows from equation (4.26) that,

𝐿𝑏𝑢𝑜𝑦 = Pr
∫
𝑉𝑧′

−𝑠𝜌̄𝑤 𝜕𝑇̄

𝜕𝑧
𝑑𝑉 = Pr

∫
𝑉𝑧′

−𝑠𝜌̄𝑤 𝜕(1)
𝜕𝑧

𝑑𝑉 = Pr
∫
𝑉𝑧′

−𝑠𝜌̄𝑤(0)𝑑𝑉 = 0. (4.62)

Additionally 𝐿𝑑𝑖𝑠𝑠 contains a factor of 𝜃 and so is identically zero. For stratified cases

where 𝜃 ≠ 0, 𝐿𝑏𝑢𝑜𝑦 and 𝐿𝑑𝑖𝑠𝑠 must cancel when averaged over the entire domain. To see

this, take the internal energy equation (3.47), assume a steady state, and integrate over the

volume 𝑉 . This yields,

∫
𝑉

(𝒖 · ∇)𝑃𝑑𝑉 +Φ = 0, (4.63)
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where,

Φ =

∫
𝑉

𝜏𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

+ 𝑗2

𝜎
𝑑𝑉, (4.64)

is the total dissipative heating. Note for the cases in this chapter the electric current, 𝑗 is

taken to be zero and only hydro-cases are considered. Then using the first law of thermo-

dynamics,

𝑇𝑑𝑠 = 𝑑𝑒 − 𝑃

𝜌2 𝑑𝜌, (4.65)

and mass continuity in a steady state,

∇ · (𝜌𝒖) = 0, (4.66)

we can rewrite equation (4.63) as,

∫
𝑉

𝜌𝑠(𝒖 · ∇)𝑇𝑑𝑉 +
∫
𝑉

𝜏𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

𝑑𝑉 = 0. (4.67)

These two integrals are equivalent to 𝐿𝑏𝑢𝑜𝑦 and 𝐿𝑑𝑖𝑠𝑠 evaluated at 𝑧′ = 𝑑, that is, equations

(4.26) and (4.27) respectively. While these two energy transport terms must cancel globally,

they do not necessarily cancel at individual fluid layers, and so can affect the balance

between 𝐿𝑐𝑜𝑛𝑣 and 𝐿𝑐𝑜𝑛𝑑 that is present in unstratifed convection.

In the total energy flux decomposition (4.54) there are three additional integrals

to consider in the regime of 𝜃 > 0. These are the kinetic energy flux 𝐿𝐾𝐸, the viscous

flux 𝐿𝑣𝑖𝑠𝑐 , and a "pressure flux" 𝐿𝑝 which itself is the difference between the enthalpy

flux 𝐿𝑒 and 𝐿𝑐𝑜𝑛𝑣 . Note that 𝐿𝑣𝑖𝑠𝑐 differs from 𝐿𝑑𝑖𝑠𝑠 in that 𝐿𝑑𝑖𝑠𝑠 represents the total work

done by all surface forces whereas 𝐿𝑣𝑖𝑠𝑐 is only the portion of this that acts to deform the

fluid. Deconstructed in this way, there is an equivalency between the "other" fluxes that

are present in the overall energy balance from both the internal energy and total energy
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Figure 4.9: A comparison plot of the flux balance for four different non-rotating convective simulations with
Ra/Ra𝑐 = 1.78×103, Pr= 1, and values of𝑁𝜌 = 0.5, 1.0, 1.4, and 2.0. The solid colour, dotted, and dashed lines
represent the convective, conductive, and "other" energy transport terms where 𝐿𝑜𝑡ℎ𝑒𝑟 is given by 𝐿𝑜𝑡ℎ𝑒𝑟 =

𝐿𝑑𝑖𝑠𝑠 + 𝐿𝑏𝑢𝑜𝑦 = 𝐿𝑝 + 𝐿𝐾𝐸 + 𝐿𝑣𝑖𝑠𝑐 and encapsulates the additional transport terms present due to the influence
of stratification. The solid black line represents the overall sum of all energy transport terms, 𝐿𝑡𝑜𝑡 .

decomposition’s, in that,

𝐿𝑏𝑢𝑜𝑦 + 𝐿𝑑𝑖𝑠𝑠 = 𝐿𝑝 + 𝐿𝐾𝐸 + 𝐿𝑣𝑖𝑠𝑐 . (4.68)

As can be seen in Figure 4.9 as the stratification of the system increases (increasing𝑁𝜌) the

energy transport shifts away from the balance between 𝐿𝑐𝑜𝑛𝑑 and 𝐿𝑐𝑜𝑛𝑣 that is present in the

unstratified cases and due to the increasingly larger influence of 𝐿𝑜𝑡ℎ𝑒𝑟 results in primarily

changing the profile of the convective flux. The conductive flux profile also varies however

this is mainly concentrated in the boundary layers and 𝐿𝑐𝑜𝑛𝑑 remains approximately zero

throughout the bulk of the fluid.

The horizontally averaged entropy structure of the fluid is similarly affected by the

introduction of stratification as can be seen in Figure 4.10. As 𝐿𝑐𝑜𝑛𝑑 ∝ 𝜕𝑠
𝜕𝑧 the general

structure is largely unchanged much like 𝐿𝑐𝑜𝑛𝑑. The profile in the bulk appears largely

unchanged, remaining mostly isentropic throughout the layer, however there are some

important features to note. Firstly, increasing 𝑁𝜌 appears to lead to "less efficient" trans-
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Figure 4.10: A comparison plot of the horizontally averaged entropy profiles for four different non-rotating
convective simulations with Ra/Ra𝑐 = 1.78 × 103, Pr = 1, and values of 𝑁𝜌 = 0.5, 1.0, 1.4, and 2.0.

port, that is, a somewhat larger Δ𝑠 across the layer, the majority of which is confined to

the upper boundary layer, which itself has also grown in size. Near the bottom bound-

ary layer however a sub-adiabatic layer has formed the extent of which appears to depend

upon the stratification. This feature has previously been seen in a variety of settings (Korre

et al. 2019, Käpylä et al. 2019).

Another feature of introducing stratification is the change to the shape of the con-

vection itself. There is a resulting broadening of the upwelling plumes of hot fluid, which

due to the stratification expands into the surrounding less dense medium. Similarly, the

cold downward directed plumes contract as they descend. For increasingly stratified sys-

tems this results in broad upflows which dominate the horizontal extent of the domain,

and returning narrow downflows. Additionally there is a similar change in the height at

which the horizontal motions experience a sign change (approximately corresponding to

the ”midplane” of a convective celll). That is, the horizontal motions in the upper portion

of the of our domain have broadened vertically (they extend across more of the vertical

domain) and those in the deeper portion have narrowed. These changes can be seen in Fig-
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Figure 4.11: A comparison of the full fields of the total entropy, vertical component of the velocity, and
horizontal component of the velocity (top, middle, and bottom rows respectively) for non-rotating convective
simulations with Ra/Ra𝑐 = 1.78 × 103, Pr = 1, and values of 𝑁𝜌 = 0.5 (left column) and 1.0 (right column).
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Figure 4.12: A comparison of the full fields of the total entropy, vertical component of the velocity, and
horizontal component of the velocity (top, middle, and bottom rows respectively) for non-rotating convective
simulations with Ra/Ra𝑐 = 1.78 × 103, Pr = 1, and values of 𝑁𝜌 = 1.4 (left column) and 2.0 (right column).
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ures 4.11 and 4.12 where the entropy field is shown along with the vertical and horizontal

components of velocity for a range of increasing values of 𝑁𝜌.

Along with the shape of these flows changing, so too have the strength of these

flows. The top panel of Figure 4.13 shows relative difference between the velocities of the

upwelling and downwelling fluids whereas the bottom panel shows a similar difference

for the horizontal motions. The broadening and narrowing of these convective motions

can also be seen in Figure 4.13.

4.5.3 Varying Taylor number

The rotation rate can be varied by changing the Taylor number, Ta, which as shown in

2.2.5 is defined as,

Ta =
4Ω2𝑑4

𝜈2 . (4.69)

Recall from Section 2.2.5, the Taylor number Ta is analogous to the Ekman number, Ek, an-

other commonly used dimensionless quantity for characterising the strength of rotational

forces to viscous effects. This relation is given by Ek = Ta−1/2. Another important relation

of Ta is its effect on the critical Rayleigh number, Ra𝑐 . It follows from linear theory (see

Chandrasekhar 1961 for more details) that Ra𝑐 ∝ Ta2/3. This result was used to verify the

validity of the solutions from the linear stability code that produced the Ra𝑐 values. As

can be seen in Figure 4.14, there is a clear Ra𝑐 ∝ Ta2/3 relation.

As discussed in Chapter 2 for significantly high values of Ta the fluid flow becomes

rotationally constrained and forms Taylor-Proudmann-like features. These are where the

convective cells become tilted and align themselves with the rotational axis, instead of

with the direction of gravity. To understand whether a given system is rotationally con-

strained we turn to the Rossby number (see 2.2.6). The Rossby number characterises the

importance of rotation in a fluid by measuring the ratio of inertial forces to Coriolis ones,

more explicitly,
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Figure 4.13: A two panel plot showing different velocity profiles for four different non-rotating convective
simulations with Ra/Ra𝑐 = 1.78 × 103, Pr = 1, and values of 𝑁𝜌 = 0.5, 1.0, 1.4, and 2.0. The first panel shows
the column averaged vertical component of the velocity fields. The solid lines represent the actual values of
𝑤 whereas the dashed lines represent the peak value and its negative mirror for the purpose of highlighting
the asymmetry in the peak velocity values of the upflows and downflows. The second panel shows a slice of
the horizontal component of the velocity, 𝑣, taken at the middle of a convective cell (𝑦 = 1) with the dashed
black line representing zero horizontal motion.
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Figure 4.14: Results of the EVP outputs of Ra𝑐 for increasing Ta at 𝑁𝜌 = 0, 1, 2 in blue, red, and green
respectively. The circles are the exact outputs from the EVP with the lines representing linear regression fits
with corresponding Pearson correlation coefficients of 0.9998, 0.9998, and 0.9999 for 𝑁𝜌 = 0, 1, 2 respectively.

Ro =
(𝒖 · ∇)𝒖
|2𝛀 × 𝒖 | . (4.70)

However, for the model setup described in Section 4.1 this is an output of a simulation,

and so cannot be used to inform the initial parameter choice of the simulation if a spe-

cific degree of rotational influence and supercriticality is desired. The Taylor number is

unsuitable here as it itself interacts with the critical Rayleigh number (as seen in Figure

4.14) and in turn varies the supercriticality. A commonly used proxy for characterising

the degree of rotational influence is instead the convective Rossby number, Ro𝑐 (Gilman

1977). This is given by,

Ro𝑐 =
√

Ra
PrTa . (4.71)

As will be explored in the subsequent section, the degree of rotational constraint has a

significant impact on not only the resulting structure of convection, but the distribution of

dissipation throughout the convective layer, which in turn appears to influence the overall
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heat transport.

4.6 Chapter summary

This chapter presented a suite of convection simulations produced using the non-linear,

anelastic, and rotating convective code introduced in Chapter 3. It began with the in-

troduction of the the 2.5D geometry required for incorporating rotation in a 2D domain,

before going on to detailing some of the typical outputs of the flow used to quantify the

energy transport and flow regime. We discussed how these properties vary with the inclu-

sion of stratification, setting the scene for the inclusion of rotation in Chapter 5. Particular

features of note that are highlighted here are the breaking of vertical symmetry as a re-

sult of the system’s stratification, and the stabilisation of the system by rotation (higher

rotation rate resulting in a higher Ra𝑐 .
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Chapter 5

Viscous Dissipation and Dynamics in

Rotating, Stratified Convection

Chapter 1 introduced some of the astrophysical flows that are present within stars and

planets, and highlighted some of the currently outstanding puzzles that remain in these

fields. Chapter 2 then proceeded to outline some of the theoretical background relevant

to the study of these flows. This was built upon in Chapter 3 where some numerical ap-

proaches to studying these fluids were presented, and then Chapter 4 used these preced-

ing methods to establish a numerical code for studying stratified convection in a rotating

Cartesian box, as well as presenting some typical results. With this groundwork estab-

lished, this Chapter will now look at the magnitude and effects of viscous dissipation in

highly stratified convection using a range of 2D simulations on rotating planes at various

latitudes.

5.1 Introduction

The convection that occurs within the interiors of every main-sequence star and planet

must, in a steady state, be maintained against viscous and Ohmic dissipation. In a steady

state, the dynamics and the dissipation are therefore intrinsically linked, and constraints

on one yield constraints on the other.
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Many authors have explored this link. For example, the widely-employed theory of

Rayleigh-Benard convection developed by Grossmann and Lohse (2000) and discussed in

Section 2.3, relies on the exact relationship between viscous dissipation and heat transport.

In their model the heat transport depends crucially on whether the viscous and thermal

dissipation occurs primarily in the bulk of the convective domain or in the boundary layers

that form at its top and base. Jones et al. (2022) have recently explored an extension of

this theory to the density-stratified case, with the spatial distribution of the dissipation

again playing a vital role. In the stellar context, Anders et al. (2022) have shown that the

magnitude of the dissipation within a convection zone strongly influences the amount of

convective overshooting that occurs into adjacent stable layers. The form and magnitude

of the dissipation is likewise crucial in a variety of efforts to go “beyond mixing length

theory” (Canuto et al. 1996, Meakin and Arnett 2010, Viallet et al. 2013, Arnett et al. 2015,

Kupka et al. 2022). In the Sun, where the form and magnitude of convective flows in

the deep convection zone are currently the subject of much debate (see Vasil et al. 2021),

the total dissipation may provide important constraints on the flows (Ginet 1994). More

broadly, Ohmic dissipation in particular is thought to limit the depth of zonal winds in

Jupiter (Liu et al. 2008, Kaspi et al. 2020) and Saturn (Galanti et al. 2019), may constrain

magnetism in the interiors of low-mass stars (Browning et al. 2016), and could influence

the radii of hot Jupiters (Batygin and Stevenson 2010).

Astrophysical codes such as 1D stellar evolution models often neglect this dissi-

pation (Chabrier and Baraffe 1997) however it is not clear that its contribution is in fact

negligible. In this Chapter we investigate this issue within one of the simplest possible

systems that captures convection, rotation, and stratification, by conducting a series of hy-

drodynamic simulations of stratified (anelastic) convection in a rotating Cartesian domain,

situated at a fixed latitude. These simulations are "2.5D" in which we assume axisymmetry

in the third spatial dimension, and many elements that are important in real stars (includ-

ing, crucially, magnetic fields) are absent here. This setup is advantageous however in

that it allows us to sample parameter regimes that would be computationally difficult or

impossible to probe in equivalent detail in a full 3D spherical geometry.

In particular, we are able to assess how the dissipation scales with luminosity, rota-
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tion rate, and stratification in the astrophysically-interesting limit where the diffusivities

are very small (i.e., when the convective supercriticality is very high). In what follows, we

show that in this limit the dissipation rate (integrated over the convection zone) becomes

independent of the rotation rate or the diffusivities, and depends only on the luminosity

and the stratification. However, the spatial distribution of this dissipation, (and as a result,

many other aspects of the dynamics) do depend on rotation as detailed below.

5.1.1 Prior work - Energetics of dissipation

In the interior of a star, the microphysical diffusion of momentum, heat, or magnetic fields

is typically very small compared to inertia, buoyancy, or magnetic induction. That is, the

Reynolds, Rayleigh, and magnetic Reynolds numbers are usually very large (e.g., Kul-

srud 2005, Brun and Browning 2017). This need not imply, however, that viscous and

Ohmic dissipation are negligible. Indeed, in a steady state the total rate of dissipation

must balance the rate of energy injection (typically on large scales), as realised for exam-

ple in the famed Kolmogorv model of the turbulent cascade (Frisch 1995); in this picture,

what changes as the viscosity is reduced is the scale on which energy is dissipated, not its

magnitude.

Although such dissipation is not explicitly included in classical mixing length the-

ory (Gough and Weiss 1976), many authors have discussed its effects and implications for

stellar convection (Arnett et al. 2009, Canuto et al. 1996). On energetic grounds, we might

generally expect the total dissipation to be of order the luminosity 𝐿 in a region where con-

vection dominates the heat transport. For example, in the Kolmogorov theory the viscous

dissipation rate (per unit volume per unit time) is 𝜖𝑢 ∼ 𝜌𝑢3/𝑙, with 𝑙 a damping length and

𝑢 a velocity scale, so that the total dissipation within a volume 𝑑3 is ∼ 𝑑3𝜌𝑢3/𝑙 ∼ 𝑑2𝜌𝑢3 if

the dissipation length 𝑙 is of order the largest possible eddies in the system (i.e., the depth

of the layer) (see, Arnett et al. 2015). Likewise the convective flux is, either by MLT or on

dimensional grounds, 𝐹 ∼ 𝜌𝑢3, so 𝐿 ∼ 𝑑2𝐹 ∼ 𝑑2𝜌𝑢3 as well. Of course this is only an order

of magnitude estimate, but it demonstrates that the total (viscous plus Ohmic) dissipation

might plausibly be a) independent of the actual value of the diffusivities and b) of order

the stellar luminosity.
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When strong background temperature and density variations are also present, as

they are for example in the envelope convection zones of Sun-like stars (or the convec-

tion zones of some gaseous planets), estimating the dissipation becomes more complex.

Previous work however has shown that the total dissipative heating rate when integrated

over the convecting volume is not bounded by the luminosity 𝐿, but by 𝐿𝑑/𝐻𝑇 , with 𝑑 the

depth of the layer and𝐻𝑇 a suitably defined temperature scale height. This means that for

larger stratifications in which 𝑑 >> 𝐻𝑇 , the dissipative heating can exceed the luminos-

ity being supplied to the layer (Hewitt et al. 1975). This is thermodynamically permitted

because the energy dissipated does not escape from the system; it goes back into the inter-

nal energy of the layer and may in turn drive flow elsewhere. By comparison, under the

conditions usually assumed in deriving the Boussinesq approximation, 𝑑 is restricted to

be much smaller than 𝐻𝑇 ; so in this limit the dissipative heating remains small compared

to the luminosity.

The result of Hewitt et al. (1975) is only an upper bound, but in certain circumstances

convection can approach a version of this bound. Hewitt et al. (1975) demonstrated that

for the specific case of a Boussinesq liquid without magnetism, the integrated dissipation

approached a value of order the bound at high enough Rayleigh numbers, Ra (measur-

ing the ratio of buoyancy driving to viscous and thermal dissipation, see Section 2.2.2).

Jarvis and McKenzie (1980) expanded on this by investigating the case of compressible

convection in the infinite Prandtl number, Pr, (defined as the ratio of viscous to thermal

diffusivities, 𝜈/𝜅, see Section 2.2.3) regime, appropriate for convection within the Earth’s

mantle where Pr ≈ 1022. They performed a suite of numerical simulations (presented here

in Figure 5.1) that provided further confirmation that the total viscous heating is bounded

by 𝑑
𝐻𝑇

, and provided the first example of a published simulation in which the total dissi-

pation exceeded 𝐿 (labelled D1). Much later, Currie and Browning 2017 extended these

results to a gas at finite Pr, as appropriate for convection in stellar interiors. In a series of

2D hydrodynamic simulations without rotation, they found many more numerical exam-

ples in which the total viscous heating exceeded 𝐿, but remained below the upper bound

of Hewitt et al. (1975). They also provided a tighter bound obeyed by the total dissipa-

tive heating in their calculations, specifically (defining 𝐸 ≡ Φ/𝐿, with Φ the total viscous

heating and 𝐿 the luminosity)
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Figure 5.1: Plot taken from Jarvis and McKenzie (1980), Figure 15. This shows the values of viscous dissi-
pation normalised by the flux passing through the layer as a function of supercriticality for infinite Prandtl
number. The solid black lines represents the thermodynamical upper limit provided by Hewitt et al. 1975.
The simulation D1 is of particular note due to having a value of 𝐸 = Φ

𝐿
> 1.
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𝐸 =
𝑑

𝐻̂𝑇
, (5.1)

where

𝐻̂𝑇 =
𝐻𝑇,0𝐻𝑇,𝑢
𝐻𝑇,𝑧∗

, (5.2)

is a modified thermal scale height involving the scale height at the top and bottom bound-

aries, and some vertical height 𝑧∗, defined such that half of the fluid mass lies above and

below 𝑧∗. They showed that for sufficiently high supercriticalites, that is, once most of

the energy passing through the fluid layer was transported by convection, the value of 𝐸

appeared to approach equation 5.1 asymptotically. A significant aim of this study is to

investigate how the inclusion of rotational effects changes this proposed upper limit.

Finally, we note that not all convective systems appear to approach these upper

bounds, even when convection is extremely vigorous. Recently Alboussière et al. (2022),

studying 2D convection with an unusual equation of state in which entropy is solely de-

pendent on density found significantly lower levels of dissipation in most cases, even at

asymptotically high Ra. They attributed the difference in part to the different boundary

conditions adopted in their work, and in particular showed that for their equation of state,

very high levels of dissipation (approaching the bound in equation 5.1) were only realised

in cases with rigid walls as were employed in Currie and Browning (2017), and not in

those with periodic boundary conditions. Clarifying whether this result also holds for a

more astrophysically-relevant equation of state (namely an ideal gas) is another goal of

our work.

While the magnitude of the dissipation is important, it has been shown extensively

that the location of the dissipation is also of crucial importance. As discussed in Section 2.3,

in Boussinesq convection Grossmann and Lohse (2000) present various scaling regimes in

the Ra − Pr parameter space that are defined based primarily on whether the dissipation

is dominantly produced in the bulk, or in the boundary layers. These scaling relations

provide information on how parameters such as the the Nusselt number, Nu, or Reynolds
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number, Re varying inside the Ra − Pr parameter space. That is, simply knowing where

the dissipation is occurring within the domain can provide significant information on the

overall dynamics of the flow such as the efficiency or turbulent nature of the convection.

Another facet of this work therefore is to explore the spatial distribution of the dissipation

and its effects of the resulting dynamics and heat transport.

5.1.2 Bounds and constraints on dissipative heating

To place our discussion on a firmer footing, and to highlight some of the aims of our work,

we briefly describe the thermodynamic constraints on the dissipation here. More com-

plete discussions can be found in Hewitt et al. (1975), Backus (1975), Currie and Browning

(2017), Alboussière and Ricard (2013), and Alboussière et al. (2022).

Consider a volume 𝑉 of convecting fluid with an associated magnetic field 𝑩, en-

closed by some surface 𝑆. Assume this surface is impenetrable and either stress-free or

no-slip, so that the normal component of the fluid velocity 𝒖, and either all components

of 𝒖 or the tangential stress vanish on 𝑆. The local rate of change of total energy can be

expressed by

𝜕

𝜕𝑡

(
𝜌𝑒 + 1

2𝜌𝑢
2 + 𝐵2

2𝜇0
− 𝜌Ψ

)
= −∇ ·

(
𝜌

(
𝑒 + 1

2𝑢
2 −Ψ

)
u

+(E × B)
𝜇0

+ 𝑃u − 𝜏 · u − 𝑘∇𝑇
)
+ 𝐻, (5.3)

with 𝑒 the fluid’s internal energy, 𝜌 its density, Ψ the gravitational potential satisfying

g = ∇Ψ, 𝑃 the pressure, 𝜏𝑖 𝑗 the contribution to the total stress tensor from irreversible

processes, 𝑘 the thermal conductivity, 𝑇 the temperature, 𝐻 the rate of internal heat gen-

eration (e.g., by nuclear fusion or radioactive decay), and E×B

𝜇0
the Poynting flux (involving

the electric field E and 𝜇0 the permeability of free space). Physically, the rate of total en-

ergy change at a point is given by the sum of the net inward flux of energy (the divergence

terms in eqn. (5.3)) and the rate of internal heat generation.

The most obvious global constraint is that the total energy be conserved, but this
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turns out not to yield much insight into the magnitude of the dissipative heating. Inte-

grating (5.3) over 𝑉 gives

∫
𝑆

𝑘
𝜕𝑇

𝜕𝑥𝑖
𝑑𝑆𝑖 +

∫
𝑉

𝐻 𝑑𝑉 = 0, (5.4)

assuming both a steady state and that the electric current, j, vanishes everywhere outside

𝑉 . Equation (5.4) implies that the net flux out of 𝑉 is equal to the total rate of internal

heating. But dissipative terms do not appear in this equation; viscous and ohmic heating

do not contribute to the overall heat flux.

To constrain the magnitude and form of the total dissipation, we turn instead to the

internal equation, which can be written as:

𝜌

(
𝜕𝑒

𝜕𝑡
+ (𝒖 · ∇)𝑒

)
= ∇ · (𝑘∇𝑇) − 𝑃(∇ · 𝒖) + 𝜏𝑖 𝑗

𝜕𝑢𝑖
𝜕𝑥 𝑗

+ 𝑗2

𝜎
+ 𝐻. (5.5)

where 𝜎 is the electrical conductivity and 𝒋 is the electric current. Integrating over the fluid

volume V, assuming a steady state, and recalling that our boundaries are impermeable, it

can be shown that

∫
𝑉

(𝒖 · ∇)𝑃d𝑉 +Φ = 0, (5.6)

where the total dissipative heating rate, Φ, is defined as

Φ =

∫
𝑉

𝜏𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

+ 𝑗2

𝜎
d𝑉. (5.7)

The first and second terms inside the integral represent the contributions due to viscous

and Ohmic effects. This equation implies that the total dissipative heating, integrated over

the volume, is exactly balanced by the work done against the background stratification.

In Hewitt et al. (1975) the entropy diffusion equation is used along with thermodynamic

constraints to derive an upper limit on the total amount of dissipative heating that can
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occur in a convective layer. For classical Rayleigh-Bénard convection in a plane layer this

is given by

𝐸 ≡ Φ

𝐿
<
𝑇𝑙 − 𝑇𝑢
𝑇𝑢

, (5.8)

where the subscripts 𝑢 and 𝑙 denote the upper and lower boundary values of the labeled

variable respectively. 𝐸 is therefore the total dissipative heating rate normalised by the

luminosity passing through the convective layer. As discussed in the previous section,

the work performed by both Jarvis and McKenzie (1980) and Currie and Browning (2017)

numerically show that under high stratification the total dissipative heating can exceed

the total flux passing through the layer, that is, 𝐸 > 1. Additionally the extension to the

stratified regime by Currie and Browning (2017) provided a tighter bound in the form of

equation 5.1. It is not clear then, that heating due to viscous dissipation can be ignored.

5.1.3 Convective penetration

Throughout the bulk of the convective regions in stars and planets, the heat transport is

dominated by convection, however the behaviour at the boundaries is still not entirely

understood and remains an active area of research.

The convective overshooting that occurs at these boundaries can have significant ef-

fects on a star’s evolution. One example of this is through chemical mixing. In post main

sequence evolution, namely on the red giant and asymptotic giant branches, the observed

surface abundances can be altered via the dredging up of material from nuclear burning

regions and transported up through the fully mixed layers regions by overshooting sur-

face convection (Salaris and Cassisi 2005). It is clear therefore that stellar models need to

include some form of representation of the convective penetration to be effectively com-

pared to any chemical abundances inferred from spectroscopic observations. This chem-

ical mixing can also alter the overall evolution of the star by extending its lifetime (Salaris

and Cassisi 2017).

Convective overshooting may additionally influence the establishment of the over-
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all magnetic field and differential rotation profiles. A study by Beaudoin et al. (2018)

shows that the inclusion of a stably-stratified layer underlying the convective zone in a set

of global numerical simulations allows for the development of a latitudinal temperature

gradient beneath the convective region as a result of penetrative convection, and leads to

a subsequent breaking of Taylor-Proudmann constraints. This constraint has previously

been broken by the use of such latitudinal temperature gradients in the form of bound-

ary conditions (Miesch et al. 2006); however the inclusion of a stably-stratified region into

which the convection can then penetrate allowed this gradient to naturally develop as a

result of overshooting. Korre et al. 2021 turns to overshooting as a mechanism for the

confinement of large scale magnetic fields to the underlying radiative zone in the Sun. In

the presence of less turbulent convection the initially seeded large scale field decreases in

strength as a a result of diffusion, whereas in the highly turbulent region, the effects of

turbulent pumping leads to a confinement of the magnetic field beneath the overshooting

region. These results are of particular interest for understanding the development of the

uniform rotational profile of the Sun’s radiative zone, for which a confined poloidal field

is a proposed requirement (Gough and McIntyre 1998).

The reason for highlighting the above points is to stress the importance that the phe-

nomenon of convective overshooting has on the overall evolution and dynamics of stars.

The question remains however, what influences the strength and presence of penetrative

convection? Anders et al. (2022) frame the formation of these overshooting or "penetrative"

zones by the balance, or lack thereof, between the globally averaged buoyancy work and

dissipation (see Anders et al. (2022) equation 9, as well as the discussion around equation

4.67 in the previous section). They present the following equation,

∫
𝐶𝑍

B̄𝑑𝑧 =

∫
𝐶𝑍

Φ̄𝑑𝑧 +
∫
𝑃𝑍

Φ̄𝑑𝑧 −
∫
𝑃𝑍

B̄𝑑𝑧, (5.9)

where 𝑧 is the radial coordinate, B̄ and Φ̄ are the horizontally averaged buoyancy energy

generation and viscous dissipation, and the subscripts 𝐶𝑍 and 𝑃𝑍 denote the unstable

convective region, and the stably stratified penetrative region respectively. They then de-

fine the ratio,
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Figure 5.2: Plot taken from Anders et al. (2022) showing how the depth of the penetrative region, or rather,
specifically the 50% departure point 𝛿0.5 varies with increasing values of 𝑓 , the fraction of the buoyancy work
that is being dissipated within the convective region.

𝑓 =

∫
𝐶𝑍

Φ̄𝑑𝑧∫
𝐶𝑍
B̄𝑑𝑧

, (5.10)

as the fraction of buoyancy work generated in the convective layer that is then being dis-

sipated there. The case where this fraction, 𝑓 , is equal to unity is equivalent to the case

where there is no convective overshooting and therefore the dissipation completely bal-

ances the buoyancy work. They proceed to measure the depth of penetrating fluid by

so-called departure points, 𝛿, which is the fractional value of how far the realised temper-

ature gradient has evolved away from the adiabatic one. As can be seen in Figure 5.2 the

depth of the penetrative zone has a clear dependence on the amount of viscous dissipation

present. This also makes physical sense. For a given fluid parcel that has generated some

amount of buoyant energy within a convectively unstable layer, increasing 𝑓 corresponds

to more of that energy being dissipated. As a result, such a parcel would have less mo-

mentum remaining to penetrate into a stably stratified region, and therefore would result

in thinner penetrative regions. Quantifying the magnitude of the viscous dissipation, and
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alongside it the amount of buoyancy energy generation present in a convective layer, is

therefore an important feature in quantifying the convective penetration that occurs in

stars.

5.2 Model Setup

The model setup used here is as described in Section 4.1 and a more detailed description

can be seen there, however this section will provide a brief overview of the key elements.

5.2.1 Domain Geometry

The domain consists of a layer of fluid contained between two impermeable, stress-free

boundaries at 𝑧 = 0 and 𝑧 = 𝑑. To investigate the effects of rotation on such a convective

layer a tilted f-plane is considered where the coordinate system is such that the horizontal

coordinates, 𝑥 and 𝑦, correspond to longitudinal and latitudinal directions respectively,

and the vertical coordinate, 𝑧, corresponds to the radial axis. As a result the rotation vector

takes the form 𝛀 = (0,Ω𝑦 ,Ω𝑧) = (0,Ω cos 𝜙,Ω sin 𝜙), and the resulting Coriolis term is,

2𝛀 × 𝒖 = 2Ω

©­­­­­«
𝑤 cos 𝜙 − 𝑣 sin 𝜙

𝑢 sin 𝜙

−𝑢 cos 𝜙

ª®®®®®¬
(5.11)

where 𝑢, 𝑣, and 𝑤, are the 𝑥, 𝑦, and 𝑧, components of the fluid velocity, 𝒖, Ω is the mag-

nitude of the rotation vector, and 𝜙 is the latitude.

To sample the broadest possible parameter space with finite computational resources

simulations are performed in largely 2D geometries. For two-dimensional geometries

there is a choice available for which horizontal coordinate to model, and which to sup-

press. A more detailed discussion of this can be seen in Section 4.1.2; in summary, choos-

ing a x-z plane results in a rotational vector tilted out of the domain and thus suppressing

any rotational features, whereas choosing a y-z plane results in our Coriolis terms being

identically zero in the momentum equation. In our the simulations a "2.5D" geometry

is adopted, where the x, y, and z-components of the fluid velocity are solved for, but all
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variables are taken to be constant in the x-direction. That is, 𝜕𝑥 = 0.

5.2.2 Governing equations

The fully non-dimensionalised equation set takes the form

𝜕𝒖
𝜕𝑡

+ (𝒖 · ∇) 𝒖 + 2𝛀 × 𝒖 = −∇𝑝̃ + 𝑔𝑠

𝑐𝑝
𝒆̂𝑧

+ 𝜈

[
1
𝜌̄

𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

))
− 2

3𝜌̄
𝜕

𝜕𝑥𝑖

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)]
, (5.12)

∇ · (𝜌̂𝒖) = 0, (5.13)

𝜌̄𝑇̄

(
𝜕𝑠

𝜕𝑡
+ (𝒖 · ∇) 𝑠

)
= ∇ ·

(
𝜅𝜌̄𝑇̄∇𝑠

)
+ 𝜏𝑖 𝑗

𝜕𝑢𝑖
𝜕𝑥 𝑗

, (5.14)

where

𝜏𝑖 𝑗 = 𝜈𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3𝛿𝑖 𝑗∇ · 𝒖
)
, (5.15)

is the viscous stress tensor, and the relevant non-dimensional parameters are

Pr = 𝜈
𝜅
, Ta =

4Ω2𝑑4

𝜈2 , Ra =
𝑔𝑑4𝐹

𝜈𝜅2𝜌0𝑐𝑝,0𝑇0
, 𝜃 =

𝑔𝑑

𝑐𝑝,0𝑇0
. (5.16)

These equations are then solved using the psuedo-spectral code Dedalus (Burns et al. 2020)

with mixed boundary conditions such that the flux is fixed at the bottom of the domain

and entropy is fixed at the top. Only the hydrodynamical case is considered (𝒋 = 0) and

therefore the total dissipative heating rate, 𝚽, is composed purely of viscous effects and

given by,
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𝐸 =
Φ

𝐿𝑢
=

Pr2𝜃
Ra

∫
𝑉

𝜏̂𝑖 𝑗
𝜕𝑢̂𝑖
𝜕𝑥̂ 𝑗

𝑑𝑉̂. (5.17)

5.3 Overview of resulting dynamics

The convective flows in this system are influenced by rotation, by stratification, and by

the amount of energy passing through the system. A series of simulations have been

conducted that sample a wide variety of possible states within this multi-dimensional

parameter space. In all of these cases we fix the polytropic index, m to be equal to 1.5,

and the Prandtl number, Pr, to 1. Unless otherwise specified, the aspect ratio of the box

is taken to be 2, and the resolution ranges from 256 horizontal gridpoints by 128 vertical

gridpoints, to 1024 by 512 for the more turbulent cases. We quantify the degree of strat-

ification by 𝑁𝜌, and consider cases ranging from the nearly-Boussinesq limit (𝑁𝜌 = 0.2,

with a density contrast from top to bottom of 8.2 × 10−1) up to strong stratifications with

𝑁𝜌 = 5 (density contrast 6.7× 10−3). The energy passing through the system is quantified

by the Rayleigh number Ra, specifically for this work (and for that presented in Currie and

Browning (2017)), a flux based Rayleigh number Ra𝐹 will be used, as defined in Section 2.

The simulations shown sample both highly viscous, laminar flows that are near convec-

tive onset with Ra𝐹 values close to the critical Rayleigh number Ra𝑐 , as well as much more

turbulent states that have Ra𝐹 ∼ 106Ra𝑐 . The rotation rate in the simulations is quantified

by the Taylor number (as defined above) which varies from non-rotating cases between

Ta = 0 and Ta = 1011 with both polar and tilted boxes being considered (latitudes 45◦ and

90◦). It can be assumed that the latitude is taken to be 90◦ (e.g. vertically aligned rota-

tion vector) unless otherwise specified. It is worth noting that the Ekman number is also

commonly used to measure the importance of rotation in fluid dynamics and has a direct

relationship with Ta = 0 given by Ek = Ta−1/2. The rotational parameter space explored in

Ekman number is between Ek = 3.16×10−1 and Ek = 3.16×10−6. One of the drawbacks of

using Ta or Ek to measure the degree of rotational influence on a system can be seen by the

relationship between Ta and Ra𝑐 , previously discussed in Chapter 4, and shown in Figure

4.14. In short, increasing rotation rate stabilises the system against convection, increasing

the value of Ra𝑐 , that is Ra𝑐 ∝ Ta2/3, and therefore inhibiting convection. In practice it is
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more useful to assess the influence of rotation relative to some property of the realised con-

vection, as a way of gauging whether Coriolis forces play any dynamical role. One such

measure is the fluid Rossby number Ro = |∇ × u|/Ω, which quantifies the local vorticity

relative to rotation; rapidly rotating cases thus have 𝑅𝑜 << 1 (see section 2.2.6). Another

way to quantify the degree of rotational influence in relation to the buoyancy forcing is

through the convective Rossby number, Ro𝑐 , which again is discussed in more detail in

Chapter 4. The convective Rossby number is a function only of the non-dimensional in-

put parameters Ra, Pr, and Ta. A discussion of the various Rossby numbers can be seen in

Anders et al. (2019). The parameter space explored includes rapidly rotating systems that

are heavily influenced by rotational forces (Ro𝑐 ∼ 0.03) as well as those of which have little

to no rotational influence and for all intents and purposes can be considered non-rotating

(Ro𝑐 ∼ ∞). It is however of note that due to the nature of a stratified system, the inter-

pretation of these numbers is complicated. As shown in section 4.5.2, the introduction of

stratification can lead to large variations in convective velocities throughout the domain

and to strong asymmetries between upflows and downflows. As a result the rotational

influence may vary throughout the domain and spatial differences and subtleties are often

lost when using global descriptive quantities such as the convective Rossby number.

Many different types of flow are possible within this parameter space. For illustra-

tive purposes, a few of these different examples can be seen in Figure 5.3, which shows

from left to right the entropy, and the vertical and horizontal velocity components of the

fluid for four different 2D cases. The top two rows show non-rotating cases at Ra = 104Ra𝑐

at a low and moderate density stratification (𝑁𝜌 = 0.2 and 1.4 respectively) demonstrat-

ing the symmetry breaking that occurs between the upflows and downflows. The bottom

two rows show rotating cases at a moderate stratification of 𝑁𝜌 = 1.4, with the third and

forth rows showing two cases at different degrees of rotational influence, Ro𝑐 = 1.25 and

Ro𝑐 = 0.29 respectively in an even more rapidly rotating, strongly stratified regime (bot-

tom panels).

In the non-rotating, stratified cases shown in the upper half of Fig. 5.3, the con-

vection tends to be steady except at very high 𝑅𝑎 (as discussed in CB17; examples of the

higher-Ra regime can be seen in Rogers et al. 2003 among others); typically it consists of a
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Figure 5.3: Example dynamics of four cases sampling different parameter regimes. Shown are entropy 𝑠,
vertical velocity 𝑤, and horizontal velocity 𝑣 for four different cases. The top two rows are for non-rotating
cases at 𝑅𝑎 = 104𝑅𝑎𝑐 showing both lightly and heavily stratified regimes with 𝑁𝜌 = 0.2 and 1.4 respectively.
The bottom two rows show rotating cases at two different degrees of rotational influence where 𝑁𝜌 = 1.4,
𝑇𝑎 = 108, 𝑅𝑎 = 1.78 ∗ 102𝑅𝑎𝑐 and 𝑁𝜌 = 1.4, 𝑇𝑎 = 1011, 𝑅𝑎 = 100𝑅𝑎𝑐 . Note the bottom case has a different
aspect ratio of 1.075.
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small number of convective cells as shown here. When rotation is present however, as is

shown in the bottom half of the figure, the convective patterns tend to align with the axis of

rotation in accordance with the Taylor-Proudman theorem (Taylor 1923). The Boussinesq

(𝑁𝜌 = 0) limit possesses an exact symmetry between upward and downward motions, so

in weakly stratified cases the flow consists of upflow-downflow pairs that align with the

local rotation axis (which here is tilted at 45 degrees with respect to the vertical). However,

when stratification is strong, the downflows (which contract as they descend) tend to be

stronger and narrower than upflows (which expand as they ascend). The variance in the

velocities and spatial scales of these ascending and descending flows results in different

degrees of rotational constraint (see equation 2.37). At high Ra and high Ta, as sampled in

the bottom panels, the flow is structured on much smaller horizontal scales (see discus-

sions in, e.g., Currie and Tobias (2020)) but still aligns with the local rotation vector.

5.4 The magnitude and spatial distribution of viscous dissipa-

tion

5.4.1 The maximum value of viscous dissipation at high Ra

As discussed in Section 5.1.2, prior theory has shown that there exists a thermodynamic

upper bound on the volume-integrated viscous dissipation dependent only on the lumi-

nosity 𝐿 and the thermal scale height (that itself depends only on the layer depth and the

stratification of the system). This upper bound can exceed unity for sufficiently stratified

systems (see, Hewitt et al. (1975), Backus (1975), Jarvis and McKenzie (1980)). Prior 2D

simulations of the non-rotating convection in an ideal gas demonstrated that the dissipa-

tion actually approached a similar bound (equation 5.1) when the convection was suffi-

ciently vigorous (i.e., at high enough 𝑅𝑎). On the other hand, recent 2D simulations with

a different equation of state (Alboussière and Ricard 2013) found significantly lower levels

of dissipation in most cases, and attributed the difference in part to the different boundary

conditions adopted; in their simulations, high levels of dissipation (that is, approaching

the bound presented in equation 5.1) were realised only in cases with rigid horizontal

boundary conditions such as those present in Currie and Browning (2017) rather than

periodic boundary conditions.
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Figure 5.4: Calculated values for E at a range of stratifications and supercriticalities for some non-rotating
(black) and rotating cases (blue). Values of 𝑁𝜌 = 0.5 (circles), 1.4 (stars and squares), and 2.0 (pluses) are
used. The horizontal black lines represent the value of equation 5.1 for a given value of 𝑁𝜌. It is of note that
due to the effect of rotation on the critical Rayleigh number, the rotating cases have considerably larger values
of Ra for a given stratification.

This work examines whether the high levels of dissipation found in Currie and

Browning (2017) are realised in the rotating case. We find that they are, and that the

rotating simulations appear to approach the same dissipative upper bound as the non-

rotating ones. Additionally, the models here were conducted with different boundary

conditions (here periodic, impermeable in Currie and Browning 2017) and demonstrate

that these results are, at least for an ideal gas equation of state, not directly dependent on

rigid boundaries. We also present simulations with a different aspect ratio. The horizontal

extent of our domain is double that of the layer depth, whereas in Currie and Browning

(2017) they are taken to be equal. We show therefore that while the apparent upper bound

in equation 5.1 depends on the depth of the fluid layer, it appears to be independent of

the corresponding horizontal extent.
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We calculate the magnitude of dissipative heating that occurs in our simulations

over a range of𝑁𝜌, Ra, and Ta. Figure 5.4 shows𝐸 for a selection of cases at different Ra and

Ta, shown here for three different stratifications as a function of 𝑅𝑎/𝑅𝑎𝑐 . At high enough

supercriticalities, both the rotating and non-rotating cases appear to approach the same

limiting value, equation (5.1), which is dependent on the layer depth and stratification but

independent of Ra (and likewise also independent of viscosity or diffusivity).

It is clear from Figure 5.4 that this upper bound on dissipative heating is approached

only for sufficiently high 𝑅𝑎/𝑅𝑎𝑐 , and that the value of 𝑅𝑎/𝑅𝑎𝑐 needed to reach the upper

bound is higher for larger 𝑁𝜌. An alternate view of this bound can be see in Figure 5.5.

Note that the larger 𝑁𝜌 cases have not yet reached the asymptotic upper limit as they have

not been performed at a high enough supercriticality.

A complementary view but instead focused on the influence of rotation is pro-

vided by Figure 5.6, which shows 𝐸 for a selection of cases at fixed supercriticality (here

𝑅𝑎 = 102𝑅𝑎𝑐) and two different 𝑁𝜌 but varying 𝑇𝑎 (i.e., with varying rotational influence

relative to viscous effects). In the regime probed here, it is clear that in the limit of very

vigorous convection (high enough supercriticality), the presence of rotation does not di-

rectly alter the volume-integrated magnitude of viscous dissipation despite an evident

change in dynamical structure. As can be seen in Figure 5.7 which shows two 𝑁𝜌 = 1

cases at Ta = 105 and 109 (Ro𝑐 = 3.81 and 0.703 respectively), the influence of rotation

dramatically alters the flows.

It is useful here to be reminded of the influence that rotation has on the onset of

convection. As previously shown both in this work and in many other prior studies, rota-

tion stabilises a system against the onset of convection, that is, Ra𝑐 ∝ Ta
2
3 (Chandrasekhar

1961). Therefore cases with fixed supercriticality often have considerable difference in

their values for Ra. For example, cases with Ta = 1011 will require values of Ra that are

107 times larger than those needed in their non-rotating counterparts in order to achieve

the same Ra/Rac. As shown in both Figures 5.3 & 5.7, even lightly rotationally constrained

cases demonstrate considerably more complex flow fields consisting of vigorous and time-

dependent flows. In the rotating regime these operate on multiple spatial scales and are

aligned to the rotation axis of the system. Non-rotationally influenced cases however con-
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Figure 5.5: The maximum value of E achieved for a given 𝑁𝜌. The blue line represents the upper bound limit
presented in equation 5.1. The values of E for 𝑁𝜌 = 3 and 4 appear much lower than the asymptotic limit
having not yet been performed at the required supercriticality.
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Figure 5.6: The values of E for a range of rotation rates. All cases have a fixed supercriticality of 𝑅𝑎/𝑅𝑎𝑐 = 102,
and are shown at two different stratifications of 𝑁𝜌 = 0.5 and 1. The black labels at the highest and lowest
values of Ta for each stratification show the value of the convective Rossby number 𝑅𝑜𝑐 .
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Figure 5.7: Comparison snapshots demonstrating the different dynamical flows present in two simulations
of Ra = 102Ra𝑐 , 𝑁𝜌 = 1, at Ta = 105 ,Ro𝑐 = 3.81 (top row) and at Ta = 109 ,Ro𝑐 = 0.703. From left to right the
plots show the total entropy of the fluid, and the vertical and horizontal velocities.
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sistently produce singular, large scale, steady convective cells. It is therefore interesting

that despite such drastically different dynamical regimes that the viscous dissipation ap-

pears to asymptote towards the same limit.

The following sections show that while the amount of dissipative heating remains

the same, the spatial distribution of the dissipation varies as a result of the changing dy-

namics due to the increase in fluid shearing that occurs in the rotationally constrained

cases.

5.4.2 The spatial distribution of dissipation

In the previous section, we established that in both rotating and non-rotating cases, the

total viscous dissipation at first increases with increased buoyancy driving (higher 𝑅𝑎)

and then plateaus at a fixed value (5.1) that depends on the layer height and stratification

but is independent of the rotation rate or diffusivities. Here, we establish how this arises.

We present the spatial distribution of the dissipation within in the simulations, and show

by examination of a so called "dissipation half-height" (that is, the height by which half of

the total dissipation has already occurred) that the cases at high 𝑅𝑎 which approach the

CB17 upper bound correspond to situations in which much of the dissipation occurs close

to the bottom of the domain and there is negligible entropy generation by conduction in

the bulk.

A first, qualitative look at the locations where dissipation occurs is provided by Fig-

ure 5.8. The left-hand side shows the natural log of the dissipative heating 𝜏𝑖 , 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

alongside

snapshots of the vertical velocity for four cases sampling different parameter regimes. The

topmost case is non-rotating (with 𝑅𝑎 = 106𝑅𝑎𝑐); the others are all rotating (𝑇𝑎 = 108) but

are situated at different latitudes (at the pole in second row, and at 45 degrees in the bottom

two rows) and sample different levels of turbulent driving (𝑅𝑎 = 103𝑅𝑎𝑐 in second and

third rows, 𝑅𝑎 = 104𝑅𝑎𝑐 in bottom row) and as such probe different degrees of rotational

constraint.

Some immediate observations can be made. Firstly in the bulk of the convection

zone it is clear that areas in which the viscous dissipation is particularly strong are often
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Figure 5.8: Local dissipative heating and vertical velocities in a sample of cases. Left panels show𝑄𝑑𝑖𝑠𝑠 , right
panels 𝑤. Top row shows a non-rotating case at 𝑅𝑎 = 106𝑅𝑎𝑐 ; the other rows all consider cases at 𝑇𝑎 = 108,
at varying supercriticalities (𝑅𝑎 = 1.78 × 102𝑅𝑎𝑐 in the middle two rows; 𝑅𝑎 = 104𝑅𝑎𝑐 in the bottom row)
and latitudes (at the pole in the first rotating example; at 45 degrees in the bottom two).
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closely correlated to the boundaries between the upflows and downflows. For example,

in the non-rotating case (top row of Figure 5.8) when the convection consists of a large

single cell, the strongest bulk dissipation is found along the edges of the single upflow.

This is also the case in the more complex dynamics that are shown in the rotationally

constrained cases. In the rotationally constrained cases, specifically the middle two rows

where the convective flow has aligned itself with the axis of rotation, there is once again a

correlation between the edges of the fluid flow and the regions of high dissipative heating.

As previously mentioned this is as expected. The stress tensor on which 𝑄𝑑𝑖𝑠𝑠 depends is

largest in regions where the flow changes strength over a short distance, that is in regions

of high shear flows. The bottom case shown in Figure 5.8 has much more irregularly

distributed dissipation throughout its bulk, however this dissipation still tracks closely

with so called velocity "fronts" (in particular this case strongly follows the horizontal flow

features, although these are not plotted here.)

Additionally Figure 5.8 shows that there is a significant amount of dissipative heat-

ing occurring near the boundaries. Once again this tracks with the notion that the dissipa-

tive heating is largest where the velocity changes quickly. Vertical flows that are impinging

on the boundaries are deflected horizontally and as such would correspond to high levels

of dissipation. This can be seen clearly in the non-rotating case. The middle two rows

show comparable dissipation in both the bulk and the boundaries, whereas the complex

flow structure in the bottom row appears to result in a bulk-dominated dissipation regime.

It seems that there is an overall shift from boundary to bulk dissipation with increasing

rotational influence.

To examine the distribution between bulk and boundary dissipation more quanti-

tatively we can turn to the horizontally-averaged quantities in Figure 5.9, that is, 𝐿𝑑𝑖𝑠𝑠(𝑧) =∫ 𝑧
0 𝑄𝑑𝑖𝑠𝑠𝑑𝑧 and 𝐿𝑏𝑢𝑜𝑦(𝑧) =

∫ 𝑧
0 𝑄𝑏𝑢𝑜𝑦𝑑𝑧 as introduced in Chapter 4. 𝐿𝑑𝑖𝑠𝑠 is the total dissi-

pative heating that has occurred between the bottom boundary and the height it is eval-

uated at. Therefore at 𝑧 = 𝑑, the result is simply the volume integrated dissipation, 𝐸.

For the case where the heating is uniformly distributed throughout the domain (that is,

𝑄𝑑𝑖𝑠𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) then 𝐿𝑑𝑖𝑠𝑠 would simply be a linear function with height. 𝐿𝑏𝑢𝑜𝑦 is the

integrated buoyancy work, again, up to the height at which it has been evaluated. These
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Figure 5.9: Dissipative heating integrated from 0 to 𝑧, 𝐿𝑑𝑖𝑠𝑠 (𝑧), and integrated buoyancy work 𝐿𝑏𝑢𝑜𝑦 for a sam-
ple of non-rotating cases (top panel) and rotating ones. Solid lines represent 𝐿𝑑𝑖𝑠𝑠 and 𝑄𝑑𝑖𝑠𝑠 in the left and
right columns respectively, whereas dashed lines represent 𝐿𝑏𝑢𝑜𝑦 and𝑄𝑏𝑢𝑜𝑦 The non-rotating cases sample a
range of 𝑅𝑎; the rotating cases are those shown in the previous figure. As can be seen in the rotationally con-
strained cases in the bottom right panel, the more dynamically complex flow structure requires significantly
longer time averages to smooth out.
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two quantities must cancel globally, that is when evaluated at the top of the domain, how-

ever they are not required to do so locally (see Figure 4. of Currie and Browning 2017).

The left-hand panels of Figure 5.9 show these two quantities as a function of height for

a non-rotating (top) and rotating (bottom) case at a range of supercriticalities. The right-

hand side shows the horizontally integrated values of𝑄𝑑𝑖𝑠𝑠 and𝑄𝑏𝑢𝑜𝑦 . The rotating cases

are at Ta = 108.

For the non-rotating cases we can see that 𝐿𝑏𝑢𝑜𝑦 increases approximately linearly

with depth up to 𝐸. The more supercritical the convection is the more pronounced this

effect appears to be, however even in the laminar case of Ra = 10Ra𝑐 the trend is still largely

linear. This is not the case with 𝐿𝑑𝑖𝑠𝑠 . As was observed in Figure 5.8, the majority of the

dissipation occurs at the bottom boundary, and after approximately 𝑧 = 0.25 the profile

is approximately linear up to the value of 𝐸. This effect is considerably more pronounced

in the horizontally-averaged profiles of 𝑄𝑑𝑖𝑠𝑠 and 𝑄𝑏𝑢𝑜𝑦 shown on the right-hand side.

𝑄𝑑𝑖𝑠𝑠 has a particularly sharp peak near the bottom boundary before leveling back out,

whereas𝑄𝑏𝑢𝑜𝑦 is approximately linear throughout the whole interior. The rotational cases

are largely similar in their profiles of 𝐿𝑏𝑢𝑜𝑦 and have also have an approximately linear

profile. The behaviour of 𝐿𝑑𝑖𝑠𝑠 however appears much more linear, again mirroring the

observations made in the discussion of Figure 5.8 in that the dissipation is much more

uniformly distributed throughout the fluid bulk and not necessarily concentrated at the

boundaries.

As discussed previously these differences are reflective of the dynamical structure

of the rotating and non-rotating systems. We can use simple scaling arguments to reinforce

this as well. Looking at 𝑄𝑑𝑖𝑠𝑠 we have,

|𝑄𝑑𝑖𝑠𝑠 | = 𝜏𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

, (5.18)

where both 𝜏𝑖 𝑗 and 𝜕𝑢𝑖
𝜕𝑥 𝑗

scale like 𝑈/𝛿, and 𝑈 and 𝛿 are characteristic velocity and length

scales for the flow. That is,
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Figure 5.10: Vertical profiles of 𝐿𝑑𝑖𝑠𝑠 and 𝐿𝑏𝑢𝑜𝑦 for a non-rotating stratified case with 𝑁𝜌 = 1.4, and Ra =

104Ra𝑐 .

|𝑄𝑑𝑖𝑠𝑠 | ∼
(
𝑈

𝛿

)2
. (5.19)

In the non-rotating case, there is a single large-convective cell of order the box size, that

is 𝛿 ∼ 𝑑 whereas in the rotationally constrained cases we have much narrower convective

cells and therefore 𝛿 is some fractional value of 𝑑. It follows therefore that we would

expect values of 𝑄𝑑𝑖𝑠𝑠 in the bulk of the fluid to be larger in the rotationally constrained

cases. Notably, as can be seen in the bottom panels of Figure 5.3, the more rotationally

constrained a system is, the finer the convection motions are, and so the smaller 𝛿 we

have.

Another way to evaluate the distribution of the dissipation is by looking at a newly

defined 𝑧𝑑𝑖𝑠𝑠 , termed the dissipation half height. The dissipation half height is defined

as the point at which the absolute value of 𝐿𝑑𝑖𝑠𝑠 is equal to half of its maximum value, 𝐸.

That is,
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|𝐿𝑑𝑖𝑠𝑠(𝑧𝑑𝑖𝑠𝑠)| =
∫ 𝑧𝑑𝑖𝑠𝑠

0
𝑄𝑑𝑖𝑠𝑠𝑑𝑧 =

𝐸

2 . (5.20)

In the case of 𝑄𝑑𝑖𝑠𝑠 = 𝑐𝑜𝑛𝑠𝑡. and the resulting 𝐿𝑑𝑖𝑠𝑠 profile being a linear function of 𝑧

from 0 to 𝐸, then 𝑧𝑑𝑖𝑠𝑠 would simply be 0.5. Similarly if the dissipation is skewed towards

the bottom boundary (as from our previous analysis we would expect in the non-rotating

cases) then the value for 𝑧𝑑𝑖𝑠𝑠 would be < 0.5. This can be seen schematically in 5.10

which shows some vertical profiles of 𝐿𝑑𝑖𝑠𝑠 and 𝐿𝑏𝑢𝑜𝑦 for a stratified case, with the point

at which 𝐿𝑑𝑖𝑠𝑠 is equal to half of 𝐸 labelled. Figure 5.11, which shows values for 𝑧𝑑𝑖𝑠𝑠 at a

for a range of both non-rotating and rotating cases at a number of different stratifications,

demonstrates this further.

Both the rotating and non-rotating cases display a decrease in the value of 𝑧𝑑𝑖𝑠𝑠 with

increasing supercriticality, implying more of the dissipation occurs deeper in the domain,

closer to the bottom boundary. This tracks with the ideas of heavily forced convection

resulting in the interior heat transport being almost entirely driven by convective flows

and essentially negligible dissipation contributions. For sufficiently turbulent convection

the value of 𝑧𝑑𝑖𝑠𝑠 tapers out to a nearly constant value. This is in contrast to the thermal

boundary layer which gets continually narrower for increasing values of Ra as discussed

below.

Much like with our initial qualitative analysis of the full 𝑄𝑑𝑖𝑠𝑠 distribution in Fig-

ure 5.8, and the subsequent analysis of the horizontally averaged 𝐿𝑑𝑖𝑠𝑠 and 𝑄𝑑𝑖𝑠𝑠 vertical

profiles, the values of 𝑧𝑑𝑖𝑠𝑠 in the rotational cases suggest a much more even distribution

of dissipation throughout the convective layer. The rotational cases also appear to show a

downwards trend with increasing supercriticality, however this is influenced by our adop-

tion of a fixed Ta with increasing supercriticality. As previously discussed this results in

an increasing Rossby number, Ro, that is, a decrease in the rotational influence on the

dynamics of the fluid at higher 𝑅𝑎. For cases with fixed supercriticality but increasing

Ta, that is, increasing rotational influence we see a clear trend in shifting towards more

bulk dissipation (as previously discussed). This is seen in Figure 5.12 where we see a clear

trend in increasing 𝑧𝑑𝑖𝑠𝑠 with increasing Ta. The 𝑁𝜌 = 1.4 cases with Ta < 104 that lie at
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Figure 5.11: Values of 𝑧𝑑𝑖𝑠𝑠 for a range of non-rotating and rotating simulations at a range of stratifications,
𝑁𝜌.
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Figure 5.12: Values of 𝑧𝑑𝑖𝑠𝑠 for a range of simulations at fixed supercriticality, Ra = 102Ra𝑐 for stratifications
of 𝑁𝜌 = 0.5 (red circles) and 1.4 (blue crosses) and a range of Ta.

low 𝑧𝑑𝑖𝑠𝑠 are in the non-rotationally constrained regime of 𝑅𝑜 >> 1 and as such appear

as the non-rotating cases do with values of 𝑧𝑑𝑖𝑠𝑠 representing negligible bulk dissipation

and significant dissipation near the lower boundary layer.

5.5 Links between dynamics, heat transport, and dissipation

In a steady state, dissipation and dynamics are linked, and so insight into one yields con-

straints on the other. In this section we will how systematic variations in the governing pa-

rameters of this problem (namely Ra𝐹, Ta, and𝑁𝜌) lead to changes in the energy transport

and in the flow fields, and we explore how these are related to changes in the magnitude

and spatial distribution of the dissipation. Our discussion here is also intended to help

place our work in context with a large body of previous research on heat transport in both

non-rotating and rotating convection.

As discussed in Section 2.3, one of the main purposes of a convective theory in the

context of stellar astrophysics is to provide estimates of the entropy gradient that is re-

quired to carry a given luminosity outwards (e.g. Gough and Weiss 1976). For example,
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in standard stellar evolution theory, the radius of a star depends on its specific entropy,

and how this varies with depth (see discussions in Ireland and Browning 2018 for exam-

ple). There is also substantial astrophysical interest in properties of the flow itself, such

as its magnitude at each depth, as these in turn will affect mixing, the transport of heat

and angular momentum, and the generation of magnetic fields. Hence, we focus our dis-

cussions here on the heat transport, on the related question of how entropy varies with

height in our simulations, and on the magnitude of the flows themselves. We conclude

this section by demonstrating that a quantity of particular interest, the kinetic energy flux,

can be estimated given knowledge of the dissipative heating.

5.5.1 Energy balances and transport

Section 4.2 introduced two complimentary decompositions for quantifying the heat trans-

port within a given convective simulation by considering integrals of the total energy (3.46)

and internal energy (3.47) equations over the convective volume. For completeness they

are reiterated here. Integrating the total energy equation over the volume, and applying

the divergence theorem produces

𝐿 = 𝐹𝐴 =

∫
𝑆𝑧′

𝜌̄𝑐𝑝𝑤𝑇
′ 𝑑𝑆︸            ︷︷            ︸

𝐿𝑒 = 𝐴𝐹𝑒

+
∫
𝑆𝑧′

−𝜅𝜌̄𝑇̄ 𝜕𝑠

𝜕𝑧
𝑑𝑆︸              ︷︷              ︸

𝐿𝑐𝑜𝑛𝑑 = 𝐴𝐹𝑐𝑜𝑛𝑑

+
∫
𝑆𝑧′

1
2 𝜌̄|𝑢

2 |𝑤 𝑑𝑆︸             ︷︷             ︸
𝐿𝐾𝐸 = 𝐴𝐹𝐾𝐸

+
∫
𝑆𝑧′

−(𝜏𝑖 𝑗𝑢𝑖) · ez 𝑑𝑆︸                  ︷︷                  ︸
𝐿𝑣𝑖𝑠𝑐 = 𝐴𝐹𝑣𝑖𝑠𝑐

,

(5.21)

in which we define the enthalpy flux (𝐹𝑒), the conductive flux (𝐹𝑐𝑜𝑛𝑑) the kinetic energy

flux (𝐹𝐾𝐸), and the viscous flux (𝐹𝑣𝑖𝑠𝑐). Similarly, instead integrating over the internal

energy equation yields,

𝐿 = 𝐹𝐴 =

∫
𝑆𝑧′

𝜌̄𝑇̄𝑠𝑤 𝑑𝑆︸          ︷︷          ︸
𝐿𝑐𝑜𝑛𝑣 = 𝐴𝐹𝑐𝑜𝑛𝑣

+
∫
𝑆𝑧′

−𝜅𝜌̄𝑇̄ 𝜕𝑠

𝜕𝑧
𝑑𝑆︸              ︷︷              ︸

𝐿𝑐𝑜𝑛𝑑 = 𝐴𝐹𝑐𝑜𝑛𝑑

+
∫
𝑉𝑧′

−𝑠𝜌̄(u · ∇)𝑇̄ 𝑑𝑉︸                   ︷︷                   ︸
𝐿𝑏𝑢𝑜𝑦 = 𝑉𝑄𝑏𝑢𝑜𝑦

+
∫
𝑉𝑧′

−𝜏𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

𝑑𝑉︸             ︷︷             ︸
𝐿𝑑𝑖𝑠𝑠 = 𝑉𝑄𝑑𝑖𝑠𝑠

, (5.22)

defining the convective flux (𝐹𝑐𝑜𝑛𝑣). Recall from Section 5.4.2 that the total dissipative heat-
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ing (𝑄𝑑𝑖𝑠𝑠) and the work done against the background stratification (𝑄𝑏𝑢𝑜𝑦) must exactly

balance when integrated over the entire convective volume, but do not have to balance at

each depth. If they do not, those regions will begin to experience a net heating or cool-

ing. In a steady state the flux of energy out of each layer must adjust to compensate via

transport terms that would otherwise be absent. In practice this means that the fluxes

of enthalpy and of kinetic energy are different in highly stratified, dissipative convection

than in unstratified cases. Our goal here is to quantify these differences, and to show that

consideration of the dissipation can yield insight into the spatial form and magnitude of

the various transport terms (or vice versa).

Figure 5.13 presents theses various transport terms defined by equation 5.21 in the

left-hand column, and equation 5.22 in the right-hand column for a range of stratifica-

tions, supercriticalities, and non-rotating and rotating cases. With an imposed flux at the

bottom boundary and in the absence of any internal heating terms, the sum of the various

transport terms must equal the total luminosity 𝐿 and remain constant throughout the

layer (regardless of which flux decomposition we consider). This is used as an indicator

for when our simulations have achieved thermal equilibrium and can be seen as the solid

blue line in Figure 5.13. All cases have been averaged over at least 0.1 viscous timescale

(𝜏𝜈), and the calculations themselves have been evolved over an average of several 𝜏𝜈 (cor-

responding to hundreds or thousands of convective overturning times) to reach a steady

state. The rotating cases that have been presented in this chapter required considerably

more time to achieve a steady state (typically > 10𝜏𝜈).

We note first that as the Rayleigh number increases, the conductive transport be-

comes increasingly confined to narrow thermal boundary layers at the top and bottom of

the domain as seen between the top two rows. In the top row (the non-rotating, weakly

stratified, Ra𝐹 = 50Ra𝑐 case) these conductive layers extend over about the bottom and top

twenty percent of the domain whereas at higher Ra𝐹 (as sampled in the panels in the sec-

ond row) they are much narrower. Convective transport (encapsulated mainly by either 𝐿𝑒

in the total energy decomposition, or by 𝐿𝑐 in the internal energy decomposition) always

dominates in the bulk whereas the corresponding conductive transport (encapsulated by

𝐿𝑐𝑜𝑛𝑑) is approximately zero. At high Ra𝐹, near the bottom of the domain there are also
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Figure 5.13: Fluxes of energy provided by different transport terms in the total energy equation (left panels)
and internal energy equation (right panels), for example 2D cases at varying Ra, 𝑁𝜌, and Ta.
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substantial contributions to the transport from viscous effects (𝐿𝑣𝑖𝑠𝑐), and the conductive

transport becomes inward-directed there. This arises because of the development of small

regions of stable stratification, discussed more below.

The effects of stratification are also evident. In non-rotating cases at sufficiently high

Ra𝐹, the enthalpy flux exceeds the total flux in magnitude and this excess is compensated

largely by a negative (inward-directed) kinetic energy flux. This behaviour is visible for

example in the third row, where 𝐿𝑒 reaches more than four times the total luminosity

(𝐿𝑡 = 1). Broadly similar transport, and in particular the presence of a large inward-

directed kinetic energy flux, has been observed in simulations of stratified convection

for decades (see, Hurlburt et al. 1984 in 2D; Stein and Nordlund 1989; Featherstone and

Hindman 2016 for examples). Dynamically, the inward-directed KE flux arises because

downflowing plumes contract in the background density stratification; they are faster and

narrower than upflows, and occupy a smaller filling factor. This asymmetry, which does

not exist in Boussinesq convection, is a key feature of the stratified cases considered here.

By contrast, in the rotating cases (bottom row) the kinetic energy flux remains small

even at high Ra𝐹. The enthalpy flux is approximately equal to the total luminosity, and

the conductive transport small outside the boundary layers. At this particular Ra𝐹, the

boundary layers are still relatively large, and there is evident asymmetry between the

top and bottom boundary layers. This asymmetry will be discussed further in Section

5.5.4. For comparison, despite the widely different supercriticalities, the non-rotating case

shown in the second row has a comparable Ra𝐹 to the rotating case on the bottom row

(3.99 × 107 compared to the rotating case of 1.57 × 107) due to the stabilising effect of

rotation on convection.

The connection between this transport and the viscous dissipation is made clearer

by comparison to the right-hand column of Figure 5.13, which considers the internal en-

ergy decomposition for the same cases. As discussed in Section 5.4.2 above, in all cases

the buoyancy work is fairly evenly distributed throughout the domain, that is, outside of

the bottom boundary layer 𝐿𝑏𝑢𝑜𝑦 rises linearly towards the top domain. This implies that

𝑄𝑏𝑢𝑜𝑦 (the local rate of buoyancy working) is constant with depth. In the non-rotating

cases, the dissipative heating 𝑄𝑑𝑖𝑠𝑠 is much less uniform and much of the dissipation is
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occurring near the bottom boundary. Rotating cases, by contrast have much more uniform

dissipative heating, with 𝐿𝑑𝑖𝑠𝑠 also linear (that is, 𝑄𝑑𝑖𝑠𝑠 is constant) outside the boundary

layers. At the upper boundary, both 𝐿𝑏𝑢𝑜𝑦 and 𝐿𝑑𝑖𝑠𝑠 must approach ±𝐸, respectively as

globally these must balance, and they do so in both the rotating and non-rotating cases.

What is different in the rotating and non-rotating cases however is the spatial distribution

of 𝐿𝑑𝑖𝑠𝑠 . These results are in agreement with those presented in Section 5.4.2 (see dis-

cussion of 𝑧𝑑𝑖𝑠𝑠). In the non-rotating cases the convective luminosity is often larger than

𝐿𝑡𝑜𝑡 (considerably so in the high stratification case) in accordance with the fact that 𝐿𝑑𝑖𝑠𝑠

is consistently greater in magnitude than 𝐿𝑏𝑢𝑜𝑦 throughout the convective zone. In these

cases much of the dissipative heating occurs at the bottom of the layer and so the local

difference between these two heating terms is made up for by an increase in the convec-

tive luminosity. In the rotating cases, where there is approximate local balance (as well

as exact global balance) between the dissipative heating and the “cooling” by buoyancy

work, the convective luminosity is closer to unity. In both cases the conductive transport is

again small in the bulk of the convection zone, but carries all the flux at the top and bottom

boundaries. Note that perfect knowledge of 𝐿𝑏𝑢𝑜𝑦 would allow prediction of the spatial

form and magnitude of 𝐿𝑐𝑜𝑛𝑣 : specifically, it can be shown that 𝐿𝑐𝑜𝑛𝑣/𝑇 = (1/𝜃)𝑑𝐿𝑏𝑢𝑜𝑦/𝑑𝑧.

We consider links between the “transport” and “heating/cooling” terms more carefully

in section 5.5.5 below.

5.5.2 Entropy profiles and Nusselt number scalings

In the previous section, we saw that the energy transport in our simulations, specifically

the relative contributions of conduction and convection, varied in response to changes in

the key controlling parameters 𝑁𝜌, Ra𝐹, and Ta. Here we explore how these variations

arise, and in particular how they are linked to the entropy gradients established by the

convection.

Before analysing these in detail, it is helpful to consider what entropy profiles we

expect for the slightly unusual setup described here; for a more thorough review, see Go-

luskin (2015). In our work entropy is fixed (to zero) at the upper boundary whereas at the

lower boundary its gradient is fixed. Recall also that we have employed the LBR approx-
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imation, in which the conductive transport is proportional to entropy gradients (rather

than temperature gradients). Together, these imply that in the absence of convection, we

would expect a linear specific entropy profile, extending from 𝑠 = 0 at the top to some

value 𝑠𝑐𝑜𝑛𝑑 at the bottom, with a total entropy variation across the domain Δ𝑠𝑐𝑜𝑛𝑑 = 𝑠𝑐𝑜𝑛𝑑.

For the models considered here, Δ𝑠𝑐𝑜𝑛𝑑 can be determined analytically,

Δ𝑠𝑐𝑜𝑛𝑑 =
𝐹

𝜅𝜌0𝑇0

1
𝛽𝑚

[(1 − 𝛽𝑑)−𝑚 − 1], (5.23)

where all symbols are as defined above.

Convection transports the heat more efficiently than the static conduction state, and

so a smaller total Δ𝑠 is required to carry the same imposed 𝐹. We have imposed impen-

etrable top and bottom boundary conditions, so within some distance of the boundary

we expect little convective transport and all the flux to be carried by conduction resulting

in a relatively steep entropy gradient in this region. By contrast, we expect a smaller en-

tropy gradient in the bulk. As the convection becomes increasingly efficient (as we expect

it should do as the diffusivities are made lower, or Ra𝐹 made higher) the value of 𝑠 at

the bottom boundary should thus become closer to its (fixed) value at the top boundary.

Similarly, the value of 𝑠 in the middle of the convection zone should tend towards the

top boundary value (here 𝑠 = 0) at high 𝑅𝑎. In short, we expect efficient and turbulent

convection to develop isentropic entropy profiles.

In Figure 5.14 we examine the realised entropy profiles in our simulations and com-

pare them to our expectations outlined above. The top panel shows non-rotating cases at

𝑁𝜌 = 1.4 at varying supercriticalities, the middle panel shows non-rotating cases at fixed

supercriticality (104Ra𝑐) but varying 𝑁𝜌, and the bottom panel shows rotating cases at

fixed Ta = 108 but varying Ra𝐹. Note that as discussed above, due to the stabilising effects

of rotation Ra𝑐 is considerably higher in the rotating cases than the non-rotating ones. For

example, at Ta = 108, Ra𝑐 ≈ 6.7 × 105, whereas in the non-rotating cases at the same strat-

ification Ra𝑐 ≈ 227. A useful comparison here is that the rotating case of Ra𝐹 = 17.8Ra𝑐

shown in the bottom panel has Ra𝐹 comparable to that of the non-rotating 104Ra𝑐 case in

the top panel.
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Figure 5.14: Specific entropy, 𝑠, as a function of depth in a variety of non-rotating and rotating cases at
a range of stratifications, and Ra𝐹 . The top panel shows non-rotating cases with 𝑁𝜌 = 1.4 at a range of
supercriticalities, the middle panel shows non-rotating cases at fixed supercriticality but varying 𝑁𝜌, and the
bottom panel shows rotating cases with Ta = 108 and 𝑁𝜌 = 1.4 at varying supercriticality.
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In the non-rotating cases (top) it is clear that increasing 𝑅𝑎 implies a smaller total

Δ𝑠 across the domain, with both the bottom boundary value of 𝑠 and the value at mid-

layer approaching 𝑠 = 0 (the value fixed at the top of the domain). This is in keeping with

our expectation that lower-diffusivity, more efficient convection should transport the same

flux with greater ease resulting in a smaller entropy contrast across the convective layer.

At high enough Ra𝐹 the interior is nearly isentropic, but there are boundary layers at top

and bottom. One striking feature is that these are clearly asymmetric, with the top thermal

boundary layer substantially thicker than the bottom one. Another noticeable feature is

that at some sufficiently high Ra𝐹, the interior is actually on average slightly subadiabatic

(that is, has a positive slope and would imply local stability to convection). The latter

feature has been seen in a variety of settings (Korre et al. (2019), Käpylä et al. (2019)). We

discuss the asymmetry of the boundary layers in more detail below (see Section 5.5.4), but

note that it was anticipated theoretically (Jones et al. 2022).

At fixed supercriticality (middle panel), increasing 𝑁𝜌 appears to lead to "less effi-

cient" transport, that is, a somewhat largerΔ𝑠 across the layer, and interior profiles that are

less isentropic. The extent of the aforementioned subadiabatic regions appears to depend

on the stratification as well. At the Ra𝐹 shown here these regions are essentially absent in

the nearly-Boussinesq calculations (𝑁𝜌 = 0.2) but are clearly present in the more stratified

cases.

In the rotating cases sampled in the bottom panel, the cases at very high 𝑅𝑎 are

not dynamically influenced by rotation (Ro𝑐 > 1) and as a result their entropy profiles re-

semble those of the non-rotating cases at high Ra𝐹. Like those cases, they possess narrow

thermal boundary layers and nearly isentropic interiors. When rotation plays a significant

role, however, the entropy profile is quite different. Comparing the rotating simulation at

Ra𝐹 = 17.8Ra𝑐 (blue line in the bottom panel) to the 104Ra𝑐 non-rotating case (red line in

the top panel), which has a comparable Ra𝐹, we see that the rotating case requires a larger

Δ𝑠, that is, the presence of rotation has made the convection less efficient. The interior

entropy profile is, for this and other cases in which rotation is dynamically important, no

longer nearly isentropic and there is a pronounced negative slope implying superadia-

baticity at all depths within the bulk.
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To analyse the trends detailed above more quantitatively we turn now to an average

measure of the heat transport over the domain (rather than to its spatial variation). In

studies of Rayleigh-Benard convection, it is customary to encapsulate this via the Nusselt

number Nu, a dimensionless measure of the heat transport relative to that provided by

conduction (see Section 2.2.2). Additionally, this will help us frame the results observed

here in the context of prior studies of convective theory as discussed in Section 2.3. There

is no universally-accepted definition of Nu that makes sense for all boundary conditions,

stratifications, and with/without rotation, but it is sensible to define it such that the value

is large for efficient convection, and unity for fully conductive transport. For the mixed

fixed-flux, fixed-entropy boundary conditions used here, we therefore to adopt

Nu =
Δ𝑠𝑐𝑜𝑛𝑑
Δ𝑠

, (5.24)

as our definition of Nu. This is a global measure of the efficiency of the convective flow and

the resulting entropy contrast that is established, normalised to the Δ𝑠𝑐𝑜𝑛𝑑 that would be

required to carry the imposed flux in the absence of any convection. Efficient convection

should result in a small Δ𝑠 across the layer and therefore a higher 𝑁𝑢. It is of note that the

normalisation is irrelevant when comparing cases that vary Ra𝐹 for a fixed 𝑁𝜌 (as Δ𝑠𝑐𝑜𝑛𝑑

depends only on the stratification), but is necessary for comparing simulations of differ-

ent 𝑁𝜌. This definition of the Nusselt number is analogous to that used for Boussinesq

convection by Kazemi et al. (2022).

The resulting measures of Nu are plotted for a sample of cases with varying Ra𝐹,𝑁𝜌,

and Ta in Figure 5.15. We have also overplotted several scaling relations that have been

previously proposed in the literature (again, see Section 2.3 for a review of those relevant

to this discussion). As Ra𝑐 varies so much across the simulations sampled here we have

chosen here not to normalise each case by Ra𝑐 . In general, each "track" of simulations

shown begins with Ra𝐹 of order ten times critical at the given 𝑁𝜌 and Ta. Note that Ra

and Ra𝐹 are related by equation (2.26), that is Ra𝐹 = RaNu, and extensive use of this

relation will be used throughout this section when comparing to prior literature.

First, consider the non-rotating, weakly-stratified cases at 𝑁𝜌 = 0.5. These are well-
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Figure 5.15: Calculated values of the Nusselt number, Nu, as a function of Ra𝐹 for a wide sample of both
non-rotating and rotating calculations at a range of different 𝑁𝜌 and latitudes.

matched by the power law 𝑁𝑢 ∝ Ra1/4
𝐹

, equivalent to the classic Nu ∝ Ra1/3 scaling pro-

posed by Malkus (1954b). This scaling is expected if transport within the bulk is entirely

by convection, transport within narrow thermal boundary layers is by conduction, and

the width of the boundary layers is set by the requirement that they be marginally stable

against convection. The scaling at other 𝑁𝜌 appears to be slightly different. For com-

parison, we have overplotted Nu ∝ Ra2/9
𝐹

, which is equivalent to the Nu ∝ Ra2/7 scaling

that has often been reported in non-rotating experiments and simulations (see discussions

in Grossmann and Lohse (2000), Shraiman and Siggia (1990) for example). None of our

calculations are consistent with the so-called "ultimate regime" scaling Nu ∝ (𝑅𝑎𝑃𝑟)1/2,

which has been conjectured to apply at very high Ra, and forms the basis for astrophysical

mixing length theory.

The rotating cases exhibit different scalings. Figure 5.15 shows a series of rotating

cases at fixed Ta = 108 (situated at both the pole, and 45◦) and a smaller number of cases

at Ta = 1011. A transition in scaling relations is observed as the simulations increase in

Ra𝐹 due to the relative decrease in the dynamical influence of rotation, that is, as they

move from a regime in which Ro𝑐 < 1 to one where Ro𝑐 > 1. Those cases with Ro𝑐 < 1 –

are therefore considered to be rotationally constrained – show good agreement with the

much steeper rotational scaling of Nu ∝ RaF
3/5. As the level of turbulent driving increases

and the rotational cases transition towards a regime in which the influence of rotation on
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the dynamics becomes negligible, the cases begin to follow the non-rotating 2/7ths power

law scaling. This behaviour is exhibited in both tracks of the Ta = 108 cases, however we

do not have enough points at Ta = 1011 to draw reliable conclusions there.

This behaviour is consistent with a wide array of prior results in different settings

such as 3D simulations in both local and global geometries, Boussinesq calculations in 2D

and 3D, and lab experiments, but to our knowledge has not previously been demonstrated

for the setup described here (namely 2D anelastic convection with rotation and an imposed

flux). The general trends described here, including the transition from a steep "rotating"

Nu(Ra) relation to a shallower "non-rotating" one, have been the subject of considerable

recent interest (King et al. (2012), Aurnou et al. (2020)). Interestingly, the results from our

rotating cases are in accord with the expectations of rotating mixing-length theory (Currie

and Tobias 2020, Barker et al. 2014, Stevenson 1979). The same scaling law also arises in

the classical "CIA balance," which supposes a dynamical balance between Coriolis, iner-

tial, and buoyancy ("Archimedan") terms in the momentum equation (Aurnou et al. 2020,

Vasil et al. 2021) and in asymptotic theories of convection at low Rossby number (Julien

et al. 2012). Unlike the non-rotating scalings exhibited here, this relation is diffusion-free,

indicating that in the rapidly-rotating limit the diffusive boundary layers are playing a less

significant role in the heat transport. In dimensional terms, this scaling implies that the

entropy gradient in the bulk of the convection zone should become steeper when rotation

is more rapid, scaling as 𝑑𝑠/𝑑𝑧 ∝ Ω4/5, with Ω the angular velocity, in this limit. The

finite negative slope of the entropy profiles at mid-layer in our low-Rossby cases that we

observe (Figure 5.14, bottom panel, 𝑅𝑎𝐹 = 17.8𝑅𝑎𝑐) is therefore consistent with this limit.

5.5.3 Flow amplitudes

Another quantity of keen astrophysical interest is the amplitude of convective motions,

as these proceed to influence the mixing, the transport of angular momentum, and the

generation of magnetic fields within astrophysical objects. Here we briefly analyse the

amplitude of motions encapsulated by the Reynolds number, Re (see Section 2.2.7) in our

simulations as the key parameters are varied. Figure 5.16 shows the non-dimensional

velocity (the Reynolds number) as a function of both the supercriticality Ra𝐹/Ra𝑐 (top)
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and Ra𝐹 alone (bottom). We sample a variety of 𝑁𝜌 and include both non-rotating cases

and rotating ones at 𝑇𝑎 = 108. We have overplotted the scaling Re ∝ Ra1/2
𝐹

to help guide

our discussion.

All the non-rotating data appear to be well-matched by the illustrated Re ∝ Ra1/2
𝐹

scaling. The rotating data also appear to lie close to this, but exhibit a slightly steeper

dependence on Ra𝐹 in some parameter regimes (namely when Ra𝐹 is still low enough

that the Rossby number is small). The data at 𝑁𝜌 = 1.4 and 𝑁𝜌 = 2 lie essentially on top of

one another in this plot, suggesting that the modest differences in stratification between

these two cases have little effect on the volume-integrated flow speeds. The calculations at

an even weaker stratification (𝑁𝜌 = 0.5) appear somewhat offset from these in the bottom

panel – at fixed Ra𝐹, the weakly-stratified cases have a higher Reynolds number – but

this difference disappears if plotted in terms of the supercriticality of the convection (top

panel) where the data for all three non-rotating stratifications are indistinguishable from

one another. At any fixed Ra𝐹, it also clear (from the bottom panel) that the rotating cases

have weaker flows (lower Re).

A few other aspects of these scalings are noteable. One is that our simulations have

evidently not attained a "diffusion-free" limit for the flow velocities. Such a limit would

correspond (since Re = 𝑢𝑙/𝜈 and at 𝑃𝑟 = 1, Ra ∝ Δ𝑆/𝜈2) to Re ∝ Ra1/2, not Ra1/2
𝐹

. Thus

dissipation within the domain is continuing to influence the flow even at the highest Ra𝐹

probed here. Similar scalings have been reported in a variety of non-rotating Boussinesq

calculations in both 2D and 3D (see discussions in Hepworth (2014), Gastine et al. (2016)),

and arises for example if the so-called "VAC balance" (involving the viscous, Coriolis, and

buoyancy forces) holds.

It is also striking that the rotating and non-rotating cases here exhibit similar trends,

despite their heat transport being quite different as shown in the previous section. In ei-

ther "rotating mixing length theory" (as described in Currie and Tobias (2020), Barker et

al. (2014), Stevenson (1979)) or equivalently in CIA balance (Aurnou et al. (2020), Vasil et

al. (2021), Gastine et al. (2016)), typical velocities in the rapid-rotation limit are expected to

scale as 𝑢 ∝ Ra2/5
𝐹

, which is slightly less steep than shown here. If anything, our rotating

calculations exhibit a somewhat steeper scaling than the non-rotating ones. Prior calcula-
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Figure 5.16: Values of the non-dimesionalised velocity (the Reynolds number, Re) as a function of Ra𝐹 for a
wide sample of both non-rotating and rotating calculations at a range of different 𝑁𝜌 and latitudes. The top
panel is plotted against Ra𝐹/Ra𝑐 whereas the bottom panel is plotted against Ra𝐹 .
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tions in 3D (e.g., Gillet and Jones (2006), Schmitz and Tilgner (2009)) and in 2D (Hepworth

(2014)) have likewise noted this discrepancy, and suggested various reasons why it occurs.

Broadly, the discrepancy is linked to the continuing role of viscous and thermal boundary

layers in both our rotating and non-rotating calculations. This motivates our discussion

of these layers in section 5.5.4 below.

5.5.4 Boundary layers and the link to dissipation

The trends explored above arise partly from the varying influence of viscous and thermal

boundary layers in our simulations. In this section, we briefly explore how the widths (or

rather, depths) and other properties of these boundary layers vary as the supercriticality

of the convection, the density stratification, and the rotational influence are changed. We

also discuss the manner in which the boundary layers, heat transport, flow amplitudes,

and dissipation are linked, and then demonstrate explicitly that knowledge of some of

these aspects constrains the others.

Many different definitions of the boundary layers have been employed in the liter-

ature on Boussinesq convection, but our inclusion of rotation, our use of a fixed-flux ther-

mal boundary condition at the bottom boundary, and our adoption of stress-free velocity

boundary conditions together implies that some of these definitions are not relevant (see

discussion in Long et al. (2020)). We choose here to adopt the simple method suggested by

Long et al. (2020), that is, by defining the width of these layers (near the top and bottom

of the domain) to be the points at which the advective and conductive contributions to

the heat transport are equal. As discussed in Section 5.5.1, inside the boundary layer con-

duction dominates the heat transport whereas in the bulk convection dominates. Long

et al. (2020) demonstrate that this method gives sensible results in a variety of Boussinesq

settings (with and without rotation), though to our knowledge it has not been previously

employed to study anelastic convection simulations.

At the top and bottom boundaries conduction must carry all the energy (because

in our simulations the vertical convective velocity goes to zero there). The value of the

entropy gradient 𝜕𝑆/𝜕𝑧 at the bottom boundary is therefore determined by the energy flux

entering the domain. At the top boundary, the entropy is fixed (rather than its gradient),
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but in a steady state the simulation must still develop a sufficiently large entropy gradient

to carry the same energy flux out the top boundary. As we have assumed that conduction

diffuses entropy, we must have

𝐹𝑡𝑜𝑡 = 𝐹 = 𝜅𝜌̄𝑇̄∇𝑆 (5.25)

at both the top and bottom boundaries. Because we are considering stratified convection,

the top and bottom densities can be very different (as discussed recently in both Sections

5.5.1 and 5.5.2), so we expect the entropy gradients ∇𝑆 that develop will in general be

different at the two boundaries.

We now suppose that within the conductive boundary layers 𝜕𝑆/𝜕𝑧 is approxi-

mately uniform, and equal to
𝜕𝑆

𝜕𝑧
≈ Δ𝑆𝑏𝑙

𝛿𝑏𝑙
≈ 𝐹

𝜅𝜌̄𝑇̄
(5.26)

where Δ𝑆𝑏𝑙 is the entropy jump across the boundary layer and 𝛿𝑏𝑙 is its depth, and where

we have assumed conduction carries all the flux within the boundary layer (as opposed

to just the majority of the flux, which must be true given our definition of the boundary

layer).

In the top panel of Figure 5.17 we compare the resulting predictions for Δ𝑆𝑏𝑙/𝛿𝑏𝑙 to

measurements in example simulations. We show the ratio ofΔ𝑆𝑏𝑙/𝛿𝑏𝑙 in the top boundary

layer to that in the bottom (the latter is order unity for our setup at all Ra𝐹, by design). The

agreement between the measured values and the estimated value is good at high Ra𝐹 for all

stratifications shown, in both rotating and non-rotating cases. At low Ra𝐹 the agreement

is less exact. With increasing 𝑁𝜌 the boundary layers become increasingly asymmetric, so

that for example in cases with 𝑁𝜌 = 2, Δ𝑆/𝛿 is more than twenty five times larger in the

top boundary layer than in the bottom. This, again, is a consequence of the much smaller

densities and temperatures at the top of these stratified domains, which then require a

much larger entropy gradient to carry the imposed flux out the top boundary.

A corollary to the above is that at all Ra studied, we must have Δ𝑆𝑏𝑙 ∝ 𝛿𝑏𝑙 across
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both boundary layers. That is, although the boundary layers grow thinner at high 𝑅𝑎, Δ𝑆

across the boundary layer must drop in the same way.

In the bottom panel of Figure 5.17 we show how the top and bottom boundary layer

depths vary with Ra𝐹 for example cases at 𝑁𝜌 = 1.4. As expected, the boundary layers

grow thinner at higher Ra𝐹. However, interestingly the top and bottom boundary layers

appear to follow slightly different trends. We have overplotted two scaling relations which

we have found to fit the data well, specifically 𝛿 ∝ Ra−1/4
𝐹

for the top boundary layer, as

well as Ra−1/3
𝐹

, which matches the bottom boundary layer well. This asymmetry in the

scaling behaviour of the two boundary layers has not to our knowledge previously been

predicted. In principle, it could be a consequence of our different boundary conditions

on the two surfaces (fixed entropy at the top, fixed 𝜕𝑆/𝜕𝑧 at the bottom), though we note

that prior work such as that presented in Long et al. (2020) has not, in the Boussinesq case,

observed different scaling behaviour in the boundary layers for mixed boundary calcu-

lations. It is also possible that this behaviour arises from the different flows that prevail

in the top and bottom of the domain, and which influence the boundary layer depth. In

Boussinesq convection this "wind of turbulence" plays a significant role (Grossmann and

Lohse (2000)), and the anelastic equivalent need not be the same at the top and bottom

of the domain because the symmetry that exists about midplane, which is present in un-

stratified convection, is absent in the stratified regime.

These findings are consistent with, and aid in understanding, our findings for the

dynamics and heat transport (such as the Nu(Ra𝐹) scalings) in previous sections. In the

non-rotating cases at high Ra𝐹 the interior is nearly isentropic, so nearly the entire Δ𝑆

across the whole domain occurs in the top and bottom boundary layers. As a result their

depth determines the overall Nusselt number for the entire domain. These boundary lay-

ers act to form a "thermal bottleneck" that inhibits the transport and the top boundary

layer is (in our stratified calculations) probably the more restrictive of these because it is

thicker. We expect that in these calculations the Nusselt number should scale approxi-

mately as the total depth of the domain, 𝑑, divided by the depth of this layer, 𝛿𝑏𝑙 , e.g.

𝑑/𝛿𝑏𝑙 . This implies that Nu should scale as Ra1/4
𝐹

. This is broadly in agreement with many

of our findings in Section 5.5.2 above. However, as the total behaviour is likely to be a
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combination of what is occurring in the bulk and in both boundary layers, so it is perhaps

not surprising that the Nu(Ra𝐹) scaling deviates slightly from this in some regimes.

It is clear then, that the rotating cases must exhibit different heat-transport scalings.

Prior discussions in 5.4.2 on the value of 𝑧𝑑𝑖𝑠𝑠 showed that simulations of rotationally

constrained convection have more of their dissipation occurring in the bulk. This has been

demonstrated in prior Boussinesq calculations in both 2D and 3D (Gastine et al. (2016)), but

not for the setup investigated here. It arises, fundamentally, because the dissipation and

the work done against the background stratification must balance; this balance gives rise to

the exact relationship in Boussinesq convection between the Nu(Ra) relationship and the

viscous dissipation (Shraiman and Siggia 2000), and to a more complex analogue of this in

the anelastic case (as shown recently by Jones et al. 2022). Changes in where the dissipation

occurs, which themselves arise because the convective velocities and lengthscales change

in the presence of rotation (as discussed above), thus also give rise to changes in the heat

transport (as quantified by the Nu(Ra) relation).

In particular we find that cases that fall on the rotating scaling relation systemati-

cally have larger 𝑧𝑑𝑖𝑠𝑠 than those which follow the non-rotating heat transport scaling. In

our simulations the threshold between these two regimes (the high 𝑧𝑑𝑖𝑠𝑠 , rotating cases,

and the low 𝑧𝑑𝑖𝑠𝑠 , non-rotating cases) occurs around 𝑧𝑑𝑖𝑠𝑠 ∼ 0.5. It is striking that knowl-

edge of 𝑧𝑑𝑖𝑠𝑠 alone appears sufficient to determine whether our simulation will follow the

rotating or non-rotating scaling law.

5.5.5 Predicting the kinetic energy flux from the viscous dissipation

The transport revealed here differs in some important ways from that envisioned in mixing

length theory (MLT), and some of these differences are connected to where the viscous

dissipation occurs. In this section we consider, in particular, the kinetic energy flux, which

is not present in classical MLT but is a robust feature of stratified convection in stellar

environments. Generally we (like many authors in a variety of settings, in both 2D and

3D) find that the enthalpy flux exceeds the total luminosity by a considerable amount, and

is compensated for by the inward-directed (negative) KE flux. However, prior work has

not clearly established what sets the amplitude of these fluxes. Might it be possible, for
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example, for a star like the Sun to have a thousand solar luminosities moving outwards

in the enthalpy flux, and 999 moving inwards via the KE flux? In this section we show

that knowledge of the viscous dissipation can answer this question, and more generally

provide constraints on the magnitude and spatial form of the kinetic energy flux.

Following Currie and Browning (2017), we define 𝐹𝑜𝑡ℎ𝑒𝑟 =
∫ 𝑧′

0 (𝑄𝑏𝑢𝑜𝑦 +𝑄𝑑𝑖𝑠𝑠)𝑑𝑧,

so that if conduction is negligible (as it is in the bulk of our simulations) the total flux

𝐹 ≈ 𝐹𝑐𝑜𝑛𝑣 + 𝐹𝑜𝑡ℎ𝑒𝑟 . Physically, 𝐹𝑜𝑡ℎ𝑒𝑟 gives the local difference between heating (by dissi-

pation) and cooling (by work against the stratification). Once again, these quantities must

balance when integrated over the entire domain, but they do not have to balance at each 𝑧.

Equivalently, 𝐹𝑜𝑡ℎ𝑒𝑟 = 𝐹𝑝 + 𝐹𝐾𝐸 + 𝐹𝑣𝑖𝑠𝑐 , where 𝐹𝑝 = 1
𝐴

∫
𝑆𝑧′
𝑤𝑝 𝑑𝑆 is the difference between

the enthalpy flux 𝐹𝑒 and the convective flux 𝐹𝑐𝑜𝑛𝑣 (sometimes called the “pressure dilata-

tion” flux, e.g. Viallet et al. (2013)). Hence 𝐹𝑜𝑡ℎ𝑒𝑟 is equivalent to the steady-state transport

associated with processes other than the convective flux as defined above. Outside of the

boundary layers, we find that 𝐹𝐾𝐸 is always larger in magnitude than 𝐹𝑝 or 𝐹𝑣𝑖𝑠𝑐 , so that

in the bulk 𝐹𝑜𝑡ℎ𝑒𝑟 ≈ 𝐹𝐾𝐸.

If the local heating and work terms do balance at each depth, then 𝐹𝑜𝑡ℎ𝑒𝑟 is zero. This

in turn implies negligible kinetic energy flux. This is approximately the state attained in

many of our rotating cases as discussed in Section 5.5.1 where both 𝐿𝑑𝑖𝑠𝑠 and 𝐿𝑏𝑢𝑜𝑦 are

linear in 𝑧, and of similar magnitude, such that 𝐹𝑜𝑡ℎ𝑒𝑟 << 𝐹𝑡𝑜𝑡 .

In our non-rotating 2D cases, by contrast, the concentration of much of the dissipa-

tive heating near the bottom boundary implies a substantial mismatch between heating

and cooling throughout much of the bulk, so 𝐹𝑜𝑡ℎ𝑒𝑟 is no longer negligible. This in turn

requires that there be a substantial kinetic energy flux. Physically, if viscous dissipation is

preferentially occurring in part of the convection zone, that area will tend to heat up, and

in a steady state, fluxes must develop that carry the excess heat away from this region.

We can use these ideas to place simple bounds on the magnitude and spatial form of

the kinetic energy flux. Consider the extreme case in which none of the viscous dissipation

occurs in the bulk (i.e., it is all in a comparatively narrow bottom boundary layer). At

some depth just above this boundary layer, then, nearly all the integrated viscous heating
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will have occurred, but very little of the integrated work (which is distributed over the

whole domain) will have. In the notation employed here, 𝐿𝑏𝑢𝑜𝑦 will be close to zero, while

𝐿𝑑𝑖𝑠𝑠 will be nearly equal to its value at the top of the domain. The latter is bounded by

𝐸 = 𝑑/𝐻𝑇 , as discussed in Section 5.4.1, so we have 𝐿𝑜𝑡ℎ𝑒𝑟 ≈ 𝐸. Hence, if the “other”

transport is dominated by the KE flux (rather than 𝐿𝑝 or 𝐿𝑣𝑖𝑠𝑐) we expect the maximum

value of 𝐿𝐾𝐸 to be bounded by the value of 𝐸 at each stratification.

We examine this prediction in Figure 5.18, which shows (top panel) the maximum

value of the kinetic energy flux in a series of calculations at varying𝑁𝜌 but fixed supercrit-

icality 𝑅𝑎𝐹 = 104𝑅𝑎𝑐 , along with the limiting value of 𝐸 predicted by equation 5.1 and the

actual value of 𝐸 attained in the simulation. For cases at 𝑁𝜌 of two or less, the measured

𝐸 values adhere closely to the limiting value (indicated by the black line); at the highest

𝑁𝜌, the measured values are lower than the theory, which (as discussed above) we think

occurs because even higher 𝑅𝑎𝐹 would be required to reach the "dissipative asymptote."

The KE flux closely tracks the measured value of 𝐸 at each stratification (lying slightly

below it), in keeping with the simple model described above.

These results suggest that at high enough Ra the maximum amplitude of the kinetic

energy flux may be reasonably well-estimated simply by calculating 𝐸 = 𝑑/𝐻𝑇 (equation

(5.1). We suggest that non-rotating (or very weakly rotating) systems may approach this

limit. However (as noted in Section 5.5.1) in the rotating cases the dissipative heating

appears to almost completely balance the buoyancy work at each height, leading to signif-

icantly smaller kinetic energy fluxes. Predicting the spatial form of the kinetic energy flux

is more difficult, and we have not found a reliable way to do so at all𝑁𝜌 and Ra considered

here.

5.6 Chapter summary

We have presented the first systematic investigation of viscous dissipation in a rotating,

stratified plane layer of convection, studied here within the anelastic approximation for

an ideal gas. We have shown that the dissipative heating in rotating and non-rotating

cases appears to approach a similar upper bound when the convection is vigorous enough
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Figure 5.18: A plot of KE flux magnitudes for varying𝑁𝜌 at asymptotically high𝑅𝑎𝐹 , compared to simulations
at finite 𝑅𝑎𝐹 .
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(i.e., at high enough supercriticalities Ra/Ra𝑐) as seen in Currie and Browning (2017) for

the non-rotating case with different boundary conditions and box size. However, as in

prior Boussinesq calculations, the spatial distribution of the dissipation does vary with

rotation rate, and this has a number of important consequences for the dynamics and heat

transport. We have investigated these in some detail, and recapitulate some of our main

findings below, before commenting on their possible astrophysical implications.

First, we recall that the upper bound on the volume-integrated dissipative heating,

as approached in our cases, scales with the vertical depth of the layer divided by a version

of the local scale height. This means that in deep, stratified layers the total dissipation

can exceed the luminosity passing through the layer, a result not possible in Boussinesq

systems. This upper bound does not depend directly on the diffusivities or on rotation

rate.

We have shown that in rotating cases the viscous dissipation is much more uni-

formly distributed throughout the layer than in corresponding non-rotating cases. In the

non-rotating simulations, much of the dissipation occurs near the bottom of the compu-

tational domain, so that although there is a global balance between dissipation and work

done against the background stratification, these quantities do not balance at each depth.

We defined a new quantity 𝑧𝑑𝑖𝑠𝑠 , the height at which half the total viscous dissipation has

occurred, which encapsulates the spatial distribution of the dissipation in a simple way,

and used it to characterise our simulations in different regimes.

We have noted that the heat transport properties of the rotating and non-rotating

cases are different. We have shown in particular that the heat transport scalings (Nu(Ra))

in our rotating cases appear to be consistent with theoretical diffusion-free predictions

arising from either "rotating mixing length theory" (Stevenson 1979; Barker et al. 2014;

Currie et al. 2020) or, equivalently, from a conjectured balance between Coriolis, inertial,

and buoyancy forces (Aurnou et al. 2020; Gastine et al. 2016; Vasil et al. 2021). Prior work

has shown this in other settings (mainly Boussinesq), but not for the specific system stud-

ied here (namely, a 2.5D anelastic gas with an imposed heat flux and stress-free bound-

aries). We have also explored how the entropy profiles and flow speeds in our simulations

vary with stratification, rotation rate, and convective supercriticality.
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We have shown that these changes in heat transport are linked to where in the do-

main the dissipation occurs. This is similar to the case in Boussinesq convection, where

prior work (such as Grossmann and Lohse (2000)) has established that the Nu(Ra) heat

transport relation varies depending on whether the dissipation is "bulk" or "boundary"

dominated, and broadly in line with very recent theoretical predictions for the anelastic

case (Jones et al. 2022). Here, the situation is more complex because of the background

stratification, but the same basic trends appear to hold. In particular, we find that cases

which follow the "rotating" heat transport relation are those for which 𝑧𝑑𝑖𝑠𝑠 is especially

high (namely 𝑧𝑑𝑖𝑠𝑠 > 0.5), indicating that more than half the dissipation occurs in the

upper convection zone.

We also established that for the setup examined here, the thermal boundary layers

in our simulations are asymmetric as a result of the stratification (the top one being con-

siderably larger than the bottom) and that the thicknesses of the top and bottom boundary

layers scale differently with Ra. To our knowledge, this has not previously been demon-

strated. In the non-rotating cases, knowledge of the boundary layer width suffices to

determine the overall heat transport scaling, as there is little dissipation and a negligible

entropy gradient within the bulk of the convection zone.

Finally, we have explored the link between dissipation and the kinetic energy flux.

We developed a simple model of the kinetic energy flux in our non-rotating cases based

on the idea that dissipation approaches the upper bound at high enough Ra, and that

much of the dissipation occurs near the lower boundary. This model provided a reason-

ably accurate prediction of the maximum (negative) kinetic energy flux attained in our

simulations for each stratification at high enough Ra.

There are many limitations and caveats to our work. Perhaps the most severe of

these is that almost all of our simulations were conducted within a "2.5D" approximation

(Section 5.2.1), assuming axisymmetry in one dimension. It may well be that the dissipa-

tive properties in the full 3D problem are very different. Additionally we have neglected

magnetism meaning all the dissipation here is viscous. In real stars most of the dissipa-

tion is likely to be Ohmic (Brandenburg 2014). At a more basic level, we have not explored

how variations in the equation of state, or in other properties like the fluid Prandtl num-
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ber, affect our results; there is evidence that very different results can be obtained for other

equations of state (Alboussière et al. 2022).

Nonetheless it is interesting to speculate about what implications our findings might

have, if similar results are obtained in real stars.

One conclusion is that rotating stars should likely exhibit less convective overshoot-

ing into adjacent stably-stratified regions. From the perspective adopted here, this is be-

cause the buoyancy work at each depth is more nearly balanced locally (rather than just

globally) by dissipation. Equivalently, the rotating cases have more dissipation per unit

volume in the bulk (all else being equal). For a fixed stratification, this will imply (fol-

lowing the discussion in Anders et al. 2022) that convective motions in rotating cases will

have less momentum "left over" as they reach the boundary of the convectively-unstable

region, and so they will penetrate less deeply into the adjacent layers.

Similarly, we expect a smaller kinetic energy flux in rotating stars and planets than

in non-rotating ones. The dynamical consequences of this are not yet clear – the kinetic

energy flux is not even present in standard 1D models of the convection, though it is of

similar magnitude to the enthalpy flux – but we intend to explore this issue in the future.

We have also noted that heat transport in our most highly stratified, non-rotating

cases is less efficient, that is, has a lower Nusselt number at any fixed Ra than in weakly-

stratified cases. In the context of stellar astrophysics, this might be observable in the form

of a different effective "mixing length" being required to match data for stars with different

stratifications. We hope to examine these predictions in future work.
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Chapter 6

Influence of the interior convective

heat flux on planetary atmospheres

The previous chapters of this thesis have been focused on the study of convection in ide-

alised fluids, and by necessity in parameter regimes that are often very distant from those

more representative of a real star. This chapter will take a step closer towards the study

of more physically realised fluids, that is, the study of their atmospheres of young hot

Jupiters and brown dwarfs. In particular it will focus on the relatively unexplored and

somewhat nonphysical bottom boundary conditions commonly used in numerical studies

of these objects. The work presented in this chapter is still very much ongoing, and as a

such the results presented here are to be viewed as preliminary.

6.1 Basic simulations of hot Jupiters and brown dwarfs

Due to the large distances between the Earth and these hot Jupiter exoplanets, observa-

tional constraints on the atmospheric circulation and dynamics are almost impossible

to obtain with some exceptions (Louden and Wheatley 2015) (see discussion in Section

1.1.2). Instead, we turn to numerical simulations such as those performed using the Unifed

Model, or UM (see Section 3.3), to study the development of their dynamics. In particular,

the focus is on developing the nonphysical treatment of the radiative-convective bound-

aries that lie at the bottom of these planetary atmospheres. It is reasonable to believe that
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in a real hot Jupiter this boundary is not a impermeable layer with a constant heat flux

across it but a dynamical region enables exchange between the convective interior and the

overlying atmosphere.

6.1.1 An introduction to radius inflation in hot Jupiters

The anomalously inflated radii of highly irradiated, tidally locked gas giant planets (known

as hot Jupiters) has been a long standing problem in the field of exoplanet studies since

the discovery of HD 209458 b (Brown et al. 2001).

Several mechanisms have been proposed in an attempt to explain the inflation of

these exoplanet’s radii (see Baraffe et al. 2010; Baraffe et al. 2014; Fortney and Nettelmann

2010 for reviews) however as of now there does not appear to be a satisfactory resolution

to the problem. One promising mechanism is through some additional energy dissipation

in the planet’s interior leading to a warmer internal adiabat and thus inflating their radii.

Lubow et al. (1997) showed that tidal synchronisation of these hot Jupiters could give rise

to a large heat flux however this mechanism is constrained to the planet’s early evolu-

tion and so would quickly become negligible as the timescales on which this mechanism

operate are considerably shorter than the ages of these hot Jupiter planets. In a similar

vein Bodenheimer et al. (2001) argued that this internal heating could result from tidal

circularisation of the orbits eccentricity, however again, this is a transient process would

last ∼ 108 years and so unless the planet had a massive companion capable of exciting the

eccentricity then this heating source is inappropriate for. These two potential sources of

this "missing energy" are therefore not convincing.

Showman and Guillot 2002 demonstrated that if a small fraction (∼ 1%) of the in-

cident stellar flux is transformed into kinetic energy in the planetary atmosphere and

carried down to the interior where it is then subsequently dissipated as thermal energy

then the observed radius of HD 209458 b could be reproduced. Growing observational

evidence of a correlation between inflated radii and incident stellar flux (Demory and Sea-

ger 2011; Laughlin et al. 2011; Weiss et al. 2013 for example) further supports the proposal

that this missing energy source is in fact the high levels of irradiance that these planets

receive. Additionally, more recent numerical work presents the vertical advection of po-
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Figure 6.1: A latitude-longitude global map of the temperature at the top of the atmosphere for an evolved
HD 209458 b atmosphere at 𝑡 = 1150days. The white star marker indicates the position of the sub-stellar
point.

tential temperature as a robust mechanism for the transport of this additional heating

to the internal adiabat (Tremblin et al. 2017; Sainsbury-Martinez et al. 2019; Sainsbury-

Martinez et al. 2021). These motions are formed as a result of the large scale circulations

established by the non-uniform surface heating.

6.1.2 A typical numerical simulation of a hot Jupiter atmosphere

The simulations presented in this thesis are performed using The Unified Model (UM)

developed by the UK Met Office and introduced in more detail in Section 3.3. It is a

3D general circulation model (GCM) that was originally developed for simulating the

weather and climate of the Earth and has since been adapted to study of atmospheric

flows present on exoplanets. It solves the fully compressible, non-hydrostatic equations

of motion detailed in Section 3.3.1 in a spherical shell (see Figure 3.5).

This chapter will focus on numerical simulations of HD 209458 b, a commonly stud-

ied hot Jupiter. A list of the key parameters used in this model can be seen in Table 6.1.
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Parameter Value
Radius, 𝑅𝑝 9 × 107 m
Mass, 𝑀𝑝 1.31 × 1027 kg

Specific heat capacity, 𝑐𝑝 1.3 × 104 J kg−1K−1

Specific gas constant, 𝑅̄ 3556.8 J kg−1K−1

Intrinsic temperature, 𝑇𝑖𝑛𝑡 100 K or 500 K
Rotation rate, Ω 2.06 × 10−5s−1

Lower boundary pressure, 𝑃𝑏𝑜𝑡𝑡𝑜𝑚 200bar or 10bar
Upper boundary height 9.0 × 106 m
Horizontal resolution 144 (longitude), 90 (latitude)

Vertical resolution 66
Dynamical timestep 30 s
Radiative timestep 150 s

Table 6.1: Table of key parameters for simulations of HD 209458b. These are largely similar to those seen in
Amundsen et al. 2016 with differences in the bottom boundary pressure, 𝑇𝑖𝑛𝑡 , and the vertical extent of the
atmosphere as explained in this chapter.

Due to their short period orbits, hot Jupiters are tidally locked resulting in permanent day

and night sides. This uneven heating develops large longitudinal and latitudinal temper-

ature gradients which establish the large scale circulation patterns so commonly seen in

studies of these objects. These features can be seen in Figure 6.1 which shows a global

temperature map from a typical simulation of HD 209458 b’s atmosphere. There is a clear

temperature gradient between the day side and night side of the planet is present, with

terminators at longitude values of 90◦ and 270◦. Additionally, there is a temperature hot

spot near the sub-stellar point as would be expected for a tidally locked planet. Interest-

ingly however, this is offset not insignificantly from the longitudinal position of the true

sub-stellar point (180◦).

The reason for this can be seen in Figure 6.2. As previously mentioned the large

scale temperature differential established as a result of the uneven surface irradiation es-

tablishes large scale circulation patterns. In particular, these large scale equatorial jets as

seen in Figure 6.2 are characteristic of these hot Jupiter simulations, and they act to off

set the hot spot from the sub-stellar point due to the horizontal advection of temperature.

Similar flows and structures such as the off-set hotspot and large scale zonal flows can

be seen in simpler dynamical systems such as the shallow water treatment presented in

Showman and Polvani 2011, see Figure 6.3. This feature of hot Jupiter atmospheres was

first predicted by Showman and Guillot (2002) and then observed by Knutson et al. (2009).
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Figure 6.2: A latitude-longitude global map of the zonal wind at the top of the atmosphere for an evolved HD
209458 b atmosphere at 𝑡 = 1150days. The white star marker indicates the position of the sub-stellar point.

Figure 6.3: Figure taken from Showman and Polvani 2011, Figure 12. A latitude-longitude global map of
the temperature (colour scale, K) and wind speed (arrows) at 30 mbar pressure of the shallow-water solar-
metallicity model of HD 189733b.
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Figure 6.4: Vertical profiles of the latitudinally averaged temperature plotted against atmospheric height (first
panel) or pressure (second panel) at 4 different longitudes corresponding to the sub-stellar point (green), the
anti-sub-stellar point (blue), and the two terminators (yellow and red)

As for the vertical features of these objects, Figure 6.4 presents the latitudinally

averaged vertical temperature profiles at the sub-stellar point, the two terminators, and

the anti-sub-stellar point. The temperature gradient persists in the upper portion of the

atmosphere as the optical depth is still sufficiently small, such that the uneven surface irra-

diation is able to penetrate down and heat the atmosphere. At increasing depths however

the temperature becomes invariant in longitude and the temperature profiles connect to

the interior adiabat. The influence of the dominant equatorial jet can be seen on the tem-

perature values at the top of the atmosphere of the two terminators. In the absence of

circulation it would be expected that the temperature of these two terminators (yellow

and red lines in Figure 6.4) would be equal at the top of the atmosphere. Instead, advec-

tion as a result of the equatorial jet brings hot, day-side fluid across the 270◦ terminator,

and cold, night-side fluid across the 90◦ terminator providing a temperature difference.

The vertical structure of the large eastward equatorial jet, and the relatively weaker

counter-rotating westward jets at the mid-latitudes can be seen in the top panel of Figure

6.5. These extend almost the full extent of the atmosphere with stronger counter rotating

jets in the deep mid-latitudes. The bottom panel shows the meridional (poleward) circu-

lation, which shows flow away from the equator and towards the mid-latitudes. These

circulation patterns are driven by angular momentum transport from the poles and from

the deep interior, and are typical features of hot Jupiter atmospheres. One of the primary

questions being asked in the following section is how these circulation patterns change
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Figure 6.5: Zonal (top panel) and meridional (bottom panel) wind profiles averaged in longitude, and plotted
as a function of latitude and atmospheric height (first panel) or pressure (second panel). The simulation is of
an evolved HD 209458 b atmosphere at 𝑡 = 1150days.
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with variation to the internal heating.

6.2 Varying the magnitude of the internal heat flux

6.2.1 Motivation

While the UM provides us with a way to simulate the atmosphere of these exoplanets one

thing it does not explicitly include is the planet’s interior convection and the corresponding

heat fluxes that are associated with such convective motions. In fact, this is an element of

current atmospheric GCMs which is significantly under represented in the literature. As

described in Section 3.3.2, this radiative-convective boundary (RCB) is often parameterised

in some way at the bottom of the domain by the inclusion of some boundary condition. In

the the case of the UM, this convective heat flux is parameterised by an upwards heat flux at

the bottom boundary of the form 𝜎𝑇4
𝑖𝑛𝑡

where typically𝑇𝑖𝑛𝑡 = 100K (Amundsen et al. 2016).

This value for 𝑇𝑖𝑛𝑡 is largely inspired by "Jupiter-like" values however observations of the

the inflated radii of hot Jupiters implies a hotter interior and thus it is reasonable to assume

that 𝑇𝑖𝑛𝑡 may in fact be considerably higher.

Similarly, the pressure at which the RCB occurs at is also largely unknown and has

historically been taken as "Jupiter-like" of 1 kbar. At such depths however the exact choice

is somewhat inconsequential on the resulting evolved atmospheric flow. The timescales on

which the deep domain evolve are much slower than the upper atmosphere, and typically

are not sufficiently resolved in most simulations (see the bottom of the vertical temperature

profiles of our 200 bar simulations in Figure 6.4). However, it follows that the inflated

radii suggests hotter and more luminous interiors (higher𝑇𝑖𝑛𝑡), and so implies a shallower

radiative-convective boundaries than the historical 1kbar. These "truncated" atmospheres

have appeared in some previous literature (Komacek and Youdin (2017) as one example)

however have not been extensively studied. Thorngren et al. (2019) derive an equilibrium

relation between𝑇𝑒𝑞 , a simple function of the planets irradiance, and the internal heat flux

𝑇𝑖𝑛𝑡 . They suppose that if the mechanism responsible for inflating these hot Jupiters is in

fact a result of depositing surplus heat into the interior, then eventually they will achieve

some thermal equilibrium where 𝐸𝑖𝑛 = 𝐸𝑜𝑢𝑡 on some timescale potentially as short as tens

of megayears (Thorngren and Fortney 2018). Upon reaching equilibrium, the intrinsic
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temperature is given by,

4𝜋𝑅2𝜎𝑇4
𝑖𝑛𝑡 = 𝜋𝑅2𝐹𝜖(𝐹), (6.1)

𝑇𝑖𝑛𝑡 =

(
𝐹𝜖(𝐹)

4𝜎

) 1
4

𝑇𝑒𝑞 , (6.2)

where 𝑅 is the radius of the planet, 𝜎 is the Stefan-Boltzmann constant, 𝐹 is the incident

flux on the planet, and 𝜖 is the fraction of flux that heats the interior. 𝜖 itself is a function of

the incident flux and by matching model planets with an observed hot Jupiter population

in, they infer,

𝑇𝑖𝑛𝑡 ≈ 0.39𝑇𝑒𝑞 exp
(
−
(log(𝐹) − 0.14)2

1.095

)
(6.3)

where 𝑇𝑒𝑞 is the equilibrium temperature, that is, the temperature a planet would be if it

was in radiative equilibrium for a given incident flux. Values of 𝑇𝑖𝑛𝑡 as calculated from

equation (6.2) are shown in Figure 6.6. Additionally, Thorngren et al. (2019) go on to

present calculated values for the RCB pressure as a function of 𝑇𝑒𝑞 as can be seen in Figure

6.6. For HD 209458 b -like values of 𝑇𝑒𝑞 and surface gravity, this suggests RCB pressures

as shallow as 1-2 bar. In fact, no hot Jupiter with a surface gravity less than 25ms−2 with

at least solar-like metallicity should be expected to have an RCB as low as 1 kbar.

6.2.2 Numerical simulations

As detailed in the previous section, it is physically possible that these highly irradiated and

inflated hot Jupiter exoplanets have much hotter and much shallower radiative-convective

boundaries than those that have been previously studied. This section will present some

preliminary results on the effects of increasing intrinsic heat flux on the overlying atmo-

sphere, specifically in the case of a truncated atmosphere (RCB pressures ∼ 10bar) where

the "deep" atmosphere evolves on sufficiently quick time scales that its influence on the

overlaying dynamics can be sufficiently resolved.
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Figure 6.6: Figure adapted from Thorngren et al. 2019, Figure 1 & 4. The top panel (a) shows intrinsic temper-
atures calculated from equation (6.2) using two different heating models Thorngren and Fortney 2019. For
the "HD 209458 b"-like planet being studied within this chapter, such a relation yields 𝑇𝑖𝑛𝑡 values in excess of
500K. The bottom panel (b) shows radiative-convective boundary pressures as a function of 𝑇𝑒𝑞 for a range
of surface gravies. HD 209458 b has a surface gravity of 9.4ms−2



6.2. VARYING THE MAGNITUDE OF THE INTERNAL HEAT FLUX 173

80 60 40 20 0 20 40 60 80
Latitude

100

101

102

103

104

105

Pr
es

su
re

 / 
Pa

80 60 40 20 0 20 40 60 80
Latitude

100

101

102

103

104

105

Pr
es

su
re

 / 
Pa

80 60 40 20 0 20 40 60 80
Latitude

100

101

102

103

104

105

Pr
es

su
re

 / 
Pa

80 60 40 20 0 20 40 60 80
Latitude

100

101

102

103

104

105

Pr
es

su
re

 / 
Pa

80 60 40 20 0 20 40 60 80
Latitude

100

101

102

103

104

105

Pr
es

su
re

 / 
Pa

80 60 40 20 0 20 40 60 80
Latitude

100

101

102

103

104

105

Pr
es

su
re

 / 
Pa

1267

844

422

0

1917

3835

5752

Zo
na

l w
in

d 
sp

ee
d 

m
s

1

455.0

303.3

151.7

0.0

148.5

297.0

445.5

M
er

id
on

al
 w

in
d 

sp
ee

d 
m

s
1

1267

844

422

0

1917

3835

5752

Zo
na

l w
in

d 
sp

ee
d 

m
s

1

455.0

303.3

151.7

0.0

148.5

297.0

445.5

M
er

id
on

al
 w

in
d 

sp
ee

d 
m

s
1

2821

1881

940

0

108

215

323

Ch
an

ge
 in

 zo
na

l w
in

d 
sp

ee
d 

m
s

1

73.3

48.9

24.4

0.0

24.5

49.1

73.6
Ch

an
ge

 in
 m

er
id

on
al

 w
in

d 
sp

ee
d 

m
s

1

Figure 6.7: Longitudinally averaged zonal (left) and meridonal (right) flow profiles for a 𝑇𝑖𝑛𝑡 = 100K (top)
and 𝑇𝑖𝑛𝑡 = 500K (middle) case. The bottom row shows the difference between these two cases ((𝑢, 𝑣)𝑇=500𝐾 −
(𝑢, 𝑣)𝑇=100𝐾).
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Figure 6.8: The top two planels show zonal wind profiles for both the𝑇𝑖𝑛𝑡 = 100𝐾 (left) and𝑇𝑖𝑛𝑡 = 500𝐾 (right)
cases as a function of longitude and latitude. These are accompanied by longitudinally averaged zonal profiles
for both cases (middle) and the difference between them (bottom). These profiles are for a horizontal slice at
𝑝 = 3.68 × 104 Pa which encapsulates both the eastward equatorial jet and the westward mid-latitude jets at
a moderate atmospheric depth.
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Zonal and meridonal wind profiles for two simulations one with 𝑇𝑖𝑛𝑡 = 100K (top

row), and one with 𝑇𝑖𝑛𝑡 = 500K (middle row) can be seen in Figure 6.7. The left hand col-

umn shows the zonal wind, and the right hand column shows the meridonal winds, with

the bottom row showing the differences between the "hot" and "cold" cases, ((𝑢, 𝑣)𝑇=500𝐾−

(𝑢, 𝑣)𝑇=100𝐾). Focusing first on the left hand column with the zonal flows, in some regions

the circulation is considerably slower by almost 50% of the global zonal wind speed. Ad-

ditionally, the variations are also not only isolated to the bottom of the domain where the

change in internal heat flux would be expected to make an immediate effect. At the top

of the atmosphere the flanks of the large scale zonal jet in the mid-latitudes appear to be

similarly slowed. What is perhaps clearer in the horizontal slice shown in Figure 6.8 at

a pressure depth of 3.68 × 104Pa, is that this increase in convective interior heat flux has

acted to decrease eastward zonal flows at all latitudes. Comparing this to the full zonal

flow profiles of both the cases in Figure 6.7, the higher interior heat flux acts to gener-

ally weaken and narrow the eastward jet at the equator, however it acts to enhance the

pre-existing westward flowing jets at the mid-latitudes. One potential question of interest

here is whether higher but still physically realistic values of 𝑇𝑖𝑛𝑡 can be significant enough

that its influence on the deep zonal flows is able to shut-down or flip the direction of the

jet itself?

6.3 Latitudinal dependence of the internal heat flux

As previously discussed the additional heat flux being supplied to our atmospheric layer

at its bottom boundary due to the assumed effects of convection is given by the parameter

Q, defined as,

𝑄 = 𝜎𝑇4
𝑖𝑛𝑡 , (6.4)

where 𝑇𝑖𝑛𝑡 is a constant intrinsic temperature. Much like the "Jupiter-like" values of 𝑇𝑖𝑛𝑡

and RCB pressure, the lack of spatial variation in this interior heat flux is an oversimpli-

fication. It implies the strength of the convection occurring within the interior is constant

at all latitudes and it is well known that spherical shell rotating convection varies signif-
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icantly between the polar regions (in which rotationally aligned Taylor-columns become

aligned with the radial axis) and the low latitudes (Busse and Cuong 1977; Gastine and

Aurnou 2023 and others). Furthermore, it is also clear from simulations of deep convec-

tion that in some regimes even very small latitudinal variations in temperature or heat

flux can result in significant changes in the resulting flows (Miesch et al. 2008).

This latitude dependence can be introduced to the parameterised internal heat flux

in two ways:

• Case A: Allow 𝑄 to decrease with distance from the equator,

𝑄 = 𝜎
[
𝑇𝑖𝑛𝑡

(
1 − 𝛼[1 − cos(𝜙)]

) ]4
. (6.5)

• Case B: Allow 𝑄 to increase with distance from the equator,

𝑄 = 𝜎
[
𝑇𝑖𝑛𝑡

(
1 − 𝛼 cos(𝜙)

) ]4
. (6.6)

where 𝛼 is a scaling factor for the extent at which 𝑇𝑖𝑛𝑡 varies with latitude. The profiles

of this sort of boundary condition parameterisation can be see in Figure 6.9 which shows

the profiles of the effective 𝑇𝑖𝑛𝑡 (such that the heat flux is of the form 𝑄 = 𝜎𝑇4
𝑖𝑛𝑡

) for the

spatially invariant case, and the latitude dependent cases A and B.

Preliminary simulations have been performed for case A, equation (6.5), at initial

values of 𝑇𝑖𝑛𝑡 = 100K, 𝛼 = 0.2 and can be seen in Figure 6.10. These initial results show

some significant variations in the flow speeds at high pressure (∼ 10%) with more minor

(but not negligible) variations at lower pressures. Motivated by Thorngren et al. 2019 and

the preliminary results discussed Section 6.2, future work will involve further investigat-

ing this latitude-dependant forcing at higher initial values of𝑇𝑖𝑛𝑡 , as well as increasing the

strength of the latitudinal variation by changing 𝛼.
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Figure 6.9: Latitudinal profiles of the bottom boundary intrinsic heat flux 𝑇𝑖𝑛𝑡 for the original spatially in-
variant case, and the two latitude dependent cases.
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Figure 6.10: Longitudinally averaged zonal (left) and meridonal (right) flow profiles for a constant surface
temperature forcing with𝑇𝑖𝑛𝑡 = 100K (top) and variable forcing as given by equation 6.5, with𝑇𝑖𝑛𝑡 = 100K, 𝛼 =

0.2 (middle). The bottom row shows the difference between these two cases (constant flux minus variable
flux).
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6.4 Chapter summary

The preliminary results contained within this chapter seem to suggest that for larger values

of intrinsic heat fluxes appropriate for highly irradiated hot Jupiters, the deep zonal jet

structure and overall circulation of the atmosphere can be significantly altered. A general

westward acceleration has been observed in simulations of𝑇𝑖𝑛𝑡 values up to 500K, resulting

in both a deceleration and narrowing of eastward equatorial jet with a corresponding

increase in strength of the westward mid-latitude jets. It is possible that for sufficiently

high intrinsic heat fluxes, the eastward zonal jet (a ubiquitous feature of prior numerical

simulations) could break down, or even reverse direction.

Initial simulations exploring the spatial variation of this intrinsic heat flux in the

form of a simple latitude dependence yielded minimal change in the wind structure, how-

ever these initial cases were restricted to "Jupiter-like" values for𝑇𝑖𝑛𝑡 and further study with

more appropriate, "hot", interiors may present more of an influence. Lastly, prior work

has been performed using a more physically realised "plume-like" boundary condition,

more representative of convective overshooting (Zhang and Showman 2014). Incorporat-

ing a similar plume-like boundary condition to the UM would be a logical next step in

developing more physically motivated convective parameterisations.
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Chapter 7

Conclusions and discussion of future

work

7.1 Conclusion

This thesis has concerned itself largely with the study of convection and fluid flows within

astrophysical systems. The effects of stratification and rotation have been studied using

2.5D numerical simulations of anelastic, rotating convection on tilted f-planes, with par-

ticular interest in their influence on the dissipation and overall heat transport that occurs

within such a system. In particular, we provided the first systematic study of dissipation,

in rotating, stratified convection in a plane layer. Preliminary work on the effects of more

physically motivated interior convective heat flux parameterisations on highly irradiated

and tidally-locked gas giant planets (hot Jupiters) in full 3D general circulation models

has also been presented.

Chapter 1 provided a broad overview of the types of fluid flow that are prevalent in

stars and planets, looking at convection both on the stellar surface, and in the deep inte-

riors of stars and planets, as well as giving an overview of the typical flow structures that

are observed in the atmospheres of hot Jupiters. The chapter continues on to detail some

of the outstanding puzzles that exist in such systems, like the anomalously inflated radii

of aforementioned hot Jupiters, and the so called "convective conundrum" in which helio-
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seismic measurements of the Sun suggest convective velocity amplitudes that are much

smaller than those predicted by global convective models. Chapter 2 goes on to supply

the mathematical rigour that underpins the study of such fluid dynamical systems, pro-

viding the background for the governing equations that are subsequently used to study

such a system numerically. It then defines various non-dimensional parameters that are of

significant use in quantifying the relative strengths of different dynamical processes, and

that are used at length in subsequent chapters of the thesis. Lastly the chapter finishes by

providing a brief summary of current state of convective theory, specifically detailing the

various scaling laws that these parameters appear to follow in a variety of fluid regimes

and parameter spaces. Chapter 3 then provides an overview of the numerical methods

involved, beginning with an initial derivation of a linear Boussinesq convection code, in-

troducing the various numerical steps involved, and detailing more explicitly the point of

convective onset in a numerical context. The chapter then continues on to introduce the

computational framework Dedalus (Burns et al. 2020), and outlines the method involved

for developing a code for solving a full initial value problem (as is done for the convective

code used in Chapters 4 and 5) as well as for an eigenvalue problem (as is done for calcu-

lating the relevant values of Ra𝑐). Lastly this chapter outlines some of the core numerical

methods involved in the UK Met Office’s Unifed Model (UM) (Mayne et al. 2014b), as well

as the governing equations that it solves. This is the primary code used within Chapter 6.

These first three chapters have provided the scientific motivation, the relevant un-

derlying mathematics of fluid dynamics, and established the numerical methods that will

be utilised throughout the rest of the thesis. Chapter 4 makes use of these and presents

a suite of convection simulations produced using the non-linear, anelastic, and rotating

convective code detailed in the previous chapter. It begins by introducing the 2.5D geom-

etry required for rotation in 2D, before detailing some of the typical outputs of the flow

used to quantify the energy transport and flow regime, and discussing how these vary in

the anelastic and compressible regime. Particular features of interest that are highlighted

here are the breaking of vertical symmetry as a result of the system’s stratification, and

the stabilisation of the system by rotation.

In Chapter 5, which forms the bulk of this thesis, we present the first systematic
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study of heat transport and dissipation in stratified, rotating convection. Beginning with

an introductory discussion on the study of dissipation in convection, in particular high-

lighting its absence in many astrophysical codes, and its potential links to the development

of convective overshooting.

The chapter then proceeds to present the full set of governing equations for the

rotating, anelastic convection model with stress-free boundaries, based on that used in

Currie and Browning 2017, and provides the first systematic numerical study of viscous

dissipation and convection in a Cartesian layer, in the highly stratified, rotating regime,

and mixed fixed entropy and fixed flux boundary conditions. A wide range of parameter

regimes were probed, the number of density scale heights across the domain, 𝑁𝜌, varying

from the near Boussinesq limit of 𝑁𝜌 = 0.2 (with a corresponding density contrast from

top to bottom of 8.2 × 10−1) to significantly strong stratifications with 𝑁𝜌 = 5 (density

contrast 6.7×10−3). The buoyancy driving of the convection was quantified by a flux-based

Rayleigh number, Ra𝐹, with simulations sampling both the highly viscous and laminar

flows near convective onset where Ra𝐹 is close Ra𝑐 , and more turbulent states up to Ra𝐹 ∼

106Ra𝑐 . Similarly a range of rotational rates were sampled from non-rotating cases up to

Taylor numbers in the range Ta = 10 to Ta = 1011, ensuring the parameter space includes a

wide range of flows including those heavily included by rotational forces with Ro𝑐 as low

as 0.03 (as seen in Figure 5.3).

Of particular interest was how the magnitude of the viscous dissipation varied un-

der the influence of rotation. Figures 5.4 and 5.5 show the values of 𝐸 for a range of cases.

The non-rotating cases show strong agreement with the asymptotic behaviour of𝐸with in-

creasing supercriticality as presented in Currie and Browning (2017). It is also of note that

the cases presented here differ to that in Currie and Browning (2017) in that the horizontal

extent of the fluid layer is taken to be twice that of the fluid depth. In the case of Currie

and Browning (2017) these are taken to be equal. Additionally, their horizontal boundary

conditions are taken to be impermeable, whereas the cases presented within this thesis are

taken to be periodic. It therefore appears that these high levels of dissipative heating, and

their asymptotic behaviour towards the modified upper bound of equation (5.1) are not a

feature of the rigid horizontal boundaries. Furthermore, these results appear in contrast
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to those of Alboussière et al. (2022) who, while using a different equation of state, argue

the limit approached by Currie and Browning (2017) only occurs for systems with rigid

boundaries.

Interestingly the rotational cases also appear to follow the same behaviour. The in-

variance of 𝐸 along the axis of increasing rotational influence can be seen in Figure 5.6

where for fixed supercriticalities and stratifications, the value of 𝐸 remains constant as

the flow becomes increasingly rotationally constrained. This result is somewhat surpris-

ing due to the very different dynamical structures that exist between the rotating and

non-rotating cases. The non-rotating cases typically organise themselves into one large

convective cell with small spatial variations in the velocity field outside of the bound-

ary layers and the convective channels. Rotationally constrained convection on the other

hand attempts to align vertical motions to the direction of the rotational axis and results in

much narrower convective channels. This results in more rapid variations in the velocity

field over much smaller spatial scales. Figure 5.7 shows the difference in flow structure

between the most and least rotationally constrained 𝑁𝜌 cases in Figure 5.6. It is shown

in the subsequent section (specifically Section 5.4.2, Figure 5.8) that the spatial distribu-

tion of the viscous dissipation is directly correlated with areas of high shear flow. This

is expected behaviour as the viscous stress tensor 𝜏𝑖 𝑗 is largest in regions of high fluid

shear. More specifically, the dissipation in the rotational regime is much more focused

in the bulk of the fluid, as opposed to the boundary dominated dissipation seen in the

non-rotational cases. In short, the total amount of dissipative heating that occurs is con-

strained by the asymptotic limit given by Currie and Browning 2017, however its spatial

distribution differs between the rotationally, and non-rotationally constrained cases.

Continuing this analysis of the bulk vs. boundary dissipation, a similar trend can

be seen in the horizontally averaged profiles of the dissipative heating, 𝐿𝑑𝑖𝑠𝑠 , in which

a shift towards a more linear profile with height is observed for increasingly rotationally

constrained flow. Additionally a new quantity we term the "dissipation half-height", 𝑧𝑑𝑖𝑠𝑠 ,

is then defined which represents the height at which half of the total volume-averaged

dissipation has occurred, that is, |𝐿𝑑𝑖𝑠𝑠(𝑧𝑑𝑖𝑠𝑠)| = 𝐸/2. As expected based on previous

discussions, increasing rotational constraint results in an increase in 𝑧𝑑𝑖𝑠𝑠 (see Figures 5.11
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and 5.12).

Comparisons are drawn between the calculated values of the Nusselt number, Nu,

a dimensionless measure of the efficiency of heat transport by convection, and the trends

presented in prior literature on convective theory. For non-rotating, weakly stratified,

cases, the Nusselt number matches the classical Nu ∼ Ra1/3 power law presented by

Malkus 1954b. This scaling is expected for regimes in which the bulk and boundary

heat transport is dominated by convection and conduction respectively. Additionally it

is expected that the boundary layers themselves be marginally stable against convection.

Other non-rotating cases at more significant 𝑁𝜌 present reasonable agreement with the

frequently observed Nu ∼ Ra2/7 scaling discussed at the end of Chapter 2. For the rotat-

ing cases a transition in scaling relations is observed as the simulations transition from a

Ro𝑐 < 1 regime to a Ro𝑐 > 1 one. Those that have Ro𝑐 < 1 and therefore are considered to

be rotationally constrained show good agreement with the rotation scaling of Nu ∼ Ra3/2.

As the level of turbulent driving increases and the rotational cases transition towards a

regime in which the influence of rotation on the dynamics becomes negligible, the cases

begin to follow the non-rotating 2/7ths power law scaling. This transitional behaviour is

broadly consistent with prior results across a range of both 2D and 3D simulations, in both

local and global geometries, as well as with those regimes accessible in lab experiments.

Prior to this work however, they have not been verified for the setup detailed here – in-

cluding crucially the presence of stratification, rotation, and imposed heat flux. That is, 2D

anelastic, rotating, convection. The general trends observed here are in good agreement

with a wide variety of recent literature, such as the transition from a steep Nu(Ra) scal-

ing to a non-rotating one (Aurnou et al. 2020), and agree with the expected scalings from

rotating mixing-length theory (Currie et al. 2020 and references therein). In particular,

we find that cases which follow the "rotating" heat transport relation are those for which

𝑧𝑑𝑖𝑠𝑠 is especially high (namely 𝑧𝑑𝑖𝑠𝑠 > 0.5), indicating that more than half the dissipation

occurs in the upper convection zone. It is striking that knowledge of 𝑧𝑑𝑖𝑠𝑠 alone appears

sufficient to determine whether our simulation will follow the rotating or non-rotating

scaling law. The presence of density stratification does introduce new effects – including

a strong asymmetry between the top and bottom boundary layers not present in earlier

Boussinesq work – which may be important in some contexts. The work shown here is
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therefore an important building block in working towards constructing a complete theory

of stratified, rotating convection.

The thermal boundary layers in our simulations are asymmetric as a result of the

stratification (the top one being considerably larger than the bottom) and that the thick-

nesses of the top and bottom boundary layers scale differently with Ra. To our knowledge,

this has not previously been demonstrated. In the non-rotating cases, knowledge of the

boundary layer width suffices to determine the overall heat transport scaling, as there is

little dissipation and a negligible entropy gradient within the bulk of the convection zone.

Finally, we have explored the link between dissipation and the kinetic energy flux. We de-

veloped a simple model of the kinetic energy flux in our non-rotating cases based on the

idea that dissipation approaches the upper bound at high enough Ra, and that much of

the dissipation occurs near the lower boundary. This model provided a reasonably accu-

rate prediction of the maximum (negative) kinetic energy flux attained in our simulations

for each stratification at high enough Ra.

The work presented in Chapter 6 moves away from the direct study of interior con-

vection and instead attempts to better constrain the influence of such motions on the over-

lying atmospheres in the context of highly irradiated and tidally locked planets, known as

hot Jupiters. Specifically it focuses on adapting the parameterisation of the interior con-

vective heat flux typically applied at the bottom boundary of these numerical simulations

which historically has been set to "Jupiter-like" parameters and then largely remained un-

touched. The presence of many hot Jupiters with inflated radii seem to suggest warmer

internal adiabats and therefore some missing mechanism for this additional energy dis-

sipation within the planetary interior. Given the growing observational evidence of a

correlation between incident stellar flux and inflated radii an obvious candidate for this

so called "missing energy" is the host star itself. Additionally, there is growing numeri-

cal evidence that suggests the vertical advection of potential temperature forms a robust

mechanism for transport of this surface heating to the interior adiabat. As argued by

Thorngren et al. 2019, if it is the case that the mechanism responsible for inflating these

hot Jupiters is in fact this additional heating of the internal adiabat as a result of the inci-

dent stellar flux, then eventually they will achieve some form of equilibrium. Following
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this logic they derive a relationship between the effective temperature 𝑇𝑒 𝑓 𝑓 and the intrin-

sic temperature 𝑇𝑖𝑛𝑡 , and find much higher values of 𝑇𝑖𝑛𝑡 than the typical "Jupiter-like"

values commonly used in exoplanet literature. Additionally, they also find considerably

shallower radiative-convective boundaries than the canonical 1 kbar commonly used for

these objects.

This chapter goes on to present global numerical simulations using the UK Met

Office’s Unified Model (UM) of a typical hot Jupiter atmosphere (specifically that of HD

209458 b) before using the arguments of Thorngren et al. 2019 as motivation to present

preliminary results for atmospheres with shallower radiative convective boundaries, and

hotter interiors. The results shown here seem to suggest a relatively significant reduction

in eastward zonal flows across the entire domain, resulting in a general deceleration and

narrowing of the deep eastward equatorial jet, and an enhancing of the counter-rotating

westward mid-latitude jets. However, such results are only preliminary and caution is

advised before any conclusive observations can be drawn. Lastly the convective parame-

terisation is allowed to vary as a function of latitude, motivated by the well known latitu-

dinal variation in the strength of convection as seen in rotating spherical shell convection.

Initial results show minimal conclusive variations in the large scale circulation as a result

of this latitudinal dependence, however as of yet only cold, "Jupiter-like" interiors have

been explored in the latitude-dependent case and further study with more appropriate

"hot" interiors may present more significant variations.

7.2 Future Work

As discussed above, the bulk of the work contained within this thesis has concerned it-

self with the study of convection in astrophysical fluids, with a large focus on the heat

transport and dissipation that occurs within such flows, working towards developing a

more complete convective theory in regimes that are likely to be realised in stars and plan-

ets. While significant progress has been made towards previously understudied regimes,

there are many physical processes that have still been omitted and will undoubtedly have

significant roles to play in understanding these real objects.



7.2. FUTURE WORK 187

7.2.1 Magnetohydrodynamics

While the work in Chapter 5 concerned itself primarily with the influence and amount

of viscous dissipation that can occur within a given fluid layer, at no point is the pres-

ence of magnetic fields expressly forbidden. When considering the equation for the total

dissipative heating,

Φ =

∫
𝑉

𝜏𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝑗2

𝜎
d𝑉, (7.1)

the integral consists of both a viscous component, 𝜏𝑖 , 𝑗 𝜕𝑢𝑖𝜕𝑥 𝑗
, and an Ohmic component, 𝑗2

𝜎 .

In fact, Hewitt et al. 1975 even considered the case of convectively driven hydromagnetic

spherical dynamo of radius 𝑎 in which Φ was dominated by ohmic effects, that is

Φ =

∫
𝑉

𝑗2

𝜎
d𝑉, (7.2)

and showed theoretically that

𝐸 =
Φ

𝐿
=

𝑎

𝐻𝑇
, (7.3)

an expression similar in form to the upper bound derived for the viscous only case, equa-

tion 5.1. The question remains then how such limits would be affected by the inclusion of

magnetic fields in the anelastic magnetohydrodynamical regime, and whether the addi-

tional mechanism by which energy can be dissipated would affect the observed asymptotic

limit seen in both Currie and Browning 2017 and the cases presented in Chapter 5. Pre-

liminary work has already been done on producing an anelastic, magnetoconvection code

and some initial results can be seen in Figure 7.1.

This initial case was only performed at a moderate value of Q = 10 (the Chan-

drasekhar number, see section 2.2.8) and Pm = 1 (the magnetic Prandtl number, see section

2.2.3) however even at such slight magnetic field strengths some features can be observed.

There are two additional heat transport terms that appear in both the internal and total
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Figure 7.1: Four different plots showing outputs from a preliminary MHD convective simulation at Ra𝐹 =

3.8 × 107, 𝑁𝜌 = 1, Q = 10, and Pr = Pm = 1. A vertical background magnetic field of strength 𝐵0 exists, with
both the top and bottom boundary conditions such that the field is purely vertical at boundaries. The top
two panels show the two flux decompositions previously discussed, showing the additional magnetic terms
𝐿𝑜ℎ𝑚 and 𝐿𝑙𝑜𝑟 given by equations (7.4) and (7.5) respectively. The bottom left panel shows the value of total
value of 𝐸, as well as the ohmic and viscous components, for both a magnetic and and non-magnetic case
of comparable Ra𝐹 . The bottom right panel shows the time-averaged entropy structure over which lines of
constant magnetic potential (magnetic field lines) are plotted.
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energy flux decompositions given by,

𝐿𝑜ℎ𝑚 =

∫
𝑉

−
𝑗2

𝜎
𝑑𝑉 =

∫
𝑉

−
𝜂

𝜇0
(∇ × 𝑩) · (∇ × 𝑩) 𝑑𝑉, (7.4)

and

𝐿𝑙𝑜𝑟 =

∫
𝑉

1
𝜇0

(𝒖 × 𝑩) · (∇ × 𝑩) 𝑑𝑉, (7.5)

which emerge from the Ohmic dissipation and the Poynting flux force terms in the inter-

nal and total energy equations. These heat transport terms are small in the case shown

in Figure 7.1, however they both scale directly with 𝑄 and so are expected to be signifi-

cant in the presence of stronger magnetic fields. Additionally, approximately 10% of the

total dissipation 𝐸 is ohmic in nature and the total value of 𝐸 is comparable to that of the

non-magnetic case at comparable Ra𝐹. With only a single magnetic case to compare no

conclusive statements can be presented, however it is interesting that the total dissipative

heating rate 𝐸 still falls beneath the asymptotic limit presented by Currie and Browning

2017. A more thorough exploration of magnetic cases at a range of 𝑄 and 𝑁𝜌 would be

the logical next step in exploring these limits.

7.2.2 3D geometry

As was discussed in Chapter 5, accessing the desired parameter regimes can be numeri-

cally difficult. The combination of the fact that increasing the rotation rate stabilises the

system against convection, and the nature of the asymptotic behaviour of the dissipa-

tion requiring high levels of supercriticality, means that the large values of Ra𝐹 that are

required to probe the desired parameter regime of Ro << 1 and Ra𝐹 >> Ra𝑐 quickly be-

come computationally expensive. As a result, the 2.5D geometry detailed in Section 5.2.1

was adopted to allow for the more computationally expensive regimes to be probed in a

more numerically cost-effective manner.

The convective zones within the interiors of real stars and planets are however,
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Figure 7.2: Comparison between the internal energy flux decomposition (left) and the horizontally averaged
vertical entropy profiles (right) of two non-rotating, stratified, simulations within the same parameter regime
of Ra𝐹 = 100Ra𝑐 and 𝑁𝜌 = 1/4. Differences in the overall flux balances are negligible, with the largest
deviation in 𝐿𝑡𝑜𝑡 between the 2D and 3D cases being ∼ 0.05% and the overall entropy contrast across the
domain varying by 3.04%.

clearly not 2D, and so initial work has begun on the exploration of a small sample of fully

3D convective simulations as an attempt to verify these results in a more physically real-

istic scenario. Vertical heat transport profiles and a horizontally averaged entropy profile

for a non-rotating 3D case of 𝑁𝜌 = 1.4 and Ra = 102Ra𝑐 can be seen in Figure 7.2.

They appear to show reasonable agreement with the 2D case, with near identical

flux profiles and an overall vertical entropy contrast of within ∼ 3.04%. Calculated values

for the Nusselt number, Nu, for the 3D case were Nu = 3.27 compared to Nu = 3.17,

an agreement of within ∼ 3.06%. This puts the 3D simulation neatly on the Nu ∼ Ra2/9
𝐹

scaling track for the 𝑁𝜌 = 1.4 cases in Figure 5.15 (orange crosses). Work has begun on

rotating 3D simulations however these are still ongoing and have not yet been sufficiently

evolved to be presented here.

7.2.3 Development of the bottom boundary in hot Jupiter simulations

The work presented in Chapter 6 focuses largely on the development of more realistic

bottom boundary conditions for the application to numerical simulations of hot Jupiter

exoplanets. A proposed mechanism for the inflated radius observed in these objects is a

heating of the interior, likely as a result of the advection of potential temperature down

from the surface and into the deeper layers, developing a hotter interior adiabat and there-

fore a larger overall radius. In such a scenario the convective heat flux supplied across the
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radiative-convective boundary, and the pressure at which this boundary occurs are likely

to differ from the canonical cold and deep "Jupiter-like" values that are currently used in

numerical studies of these atmospheres.

As previously discussed, the introduction of a more realistic "hot" interior, at a shal-

lower radiative-convective boundary pressure appears to have a significant effect on the

resulting zonal jet structure that is typical for hot Jupiter atmospheres. Specifically, the

eastward equatorial jet appears to experience a considerable deceleration and narrowing

as a result of an increased interior flux, along with an acceleration of the counter-rotating

westward jets at the mid latitudes. This therefore begs the question: could the deep zonal

jet be sufficiently disrupted to break down entirely, or even reverse direction, given a large

enough interior heat flux? An extension of this work will be performed to cover a wider

range of intrinsic heat flux values and radiative-convective boundary pressures. The dis-

cussion contained within Thorngren et al. 2019 suggest boundaries as shallow as 1 bar

and interior heat flux values as high as 700K. It is also feasible that for younger, newly

formed hot Jupiters or brown dwarfs, the interior heat flux could be even larger.

Additionally, the spatial variation of the interior convective flux is not currently

encapsulated in current parameterisations of this supplied interior heat flux. Chapter 6

introduces a basic latitude dependent heat flux in an attempt to capture this behaviour

however initial simulations with a cold "Jupiter-like" interior show little change in the

resulting dynamics. Application of such a spatially varying boundary condition to the

proposed, hotter and shallower bottom boundaries could prove more influential, and so

another avenue currently being explored is extending this latitudinal dependence to a

wide range of interior heat fluxes and with different rates for latitudinal drop off. This

would be the first step towards incorporating even more physically realistic convective

parameterisations, and the intention is develop this further by incorporating a "plume-

like" boundary condition like that proposed in Zhang and Showman 2014. This would

allow for a boundary in which the interior heat flux is not only a constant value that varies

spatially, but a more stochastic representation of convective overshooting that varies both

spatially and temporally.

Caution must be had however in raising the radiative-convective boundary too high



192 CHAPTER 7. CONCLUSIONS AND DISCUSSION OF FUTURE WORK

Figure 7.3: Figure adapted from Amundsen et al. 2014, Figure 4. Heating rates as a function of atmospheric
pressure obtained from the radiation scheme used within the UM (green and cyan) compared to the 1D
radiative-convective equilibrium code ATMO (black). The dotted blue line shows heating rates from using
band-averaged mean absorption coefficents. The flaws of using these mean absorption coefficents is discussed
in more depth in Section 4.4 of Amundsen et al. (2014).

without further consideration of the effects on the resulting flow. Amundsen et al. 2014

present an accuracy study of the radiation schemes used in hot Jupiter GCMs, and a fig-

ure of particular note is their Figure 4 (shown here in Figure 7.3). This figure presents the

heating rates as a result of radiation as a function of depth. In Chapter 6 the radiative-

convective boundary has been raised to pressures of 10bar, or 106Pa, and even at this

height, it can be seen in Figure 7.3 a small amount of the heating as a result of stellar ir-

radiance is being ignored. Moving this boundary up further to as low as 1 bar, or 105Pa,

will result in significant amounts of this heating being excluded. This heating is largely

responsible for the formation of the large scale advective motions that form. A trade off

exists therefore between fully encapsulating the heating from stellar irradiance and there-

fore the driving of these motions correctly from above, and accurately parameterising the

interior convection correctly by placing the boundary at the appropriate depth and cor-

rectly influencing these motions from below. It is unclear as of yet which of these is most

appropriate, and stresses the importance of the next significant step in studying the influ-

ence of the convective interior on its overlying atmosphere: The need for the development
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of numerical simulations of an overlying radiative atmosphere coupled fully to a resolved

convective interior. In such a way, both a realistic radiative convective boundary could be

obtained, without ignoring a significant portion of the radiative heating.

In conclusion, although our work has yielded new insights into both the dynamics

of convection in deep, stratified interiors, and the flow in planetary atmospheres, much

remains to be done. We hope in particular to extend our work to more realistic parameter

regimes (including magnetism) and, ultimately to explore the coupling between these two

regions.
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Appendix A

Dedalus input equations - 3d

Anelastic (rotating)

A.1 Non-dimensionalisation

Consider first the case of no magnetic influence. Our governing equations are as follows:

𝜕𝒖
𝜕𝑡

+(𝒖 · ∇) 𝒖+2𝛀×𝒖 = −∇𝑝̃+
𝑔𝑠

𝑐𝑝
𝒆̂𝑧+𝜈

[
1
𝜌̄

𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

))
− 2

3𝜌̄
𝜕

𝜕𝑥𝑖

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)]
(A.1)

∇ · (𝜌̄𝒖) = 0 (A.2)

𝜌̄𝑇̄

(
𝜕𝑠

𝜕𝑡
+ (𝒖 · ∇) 𝑠

)
= ∇ ·

(
𝜅𝜌̄𝑇̄∇𝑠

)
+ 𝜏𝑖 𝑗

𝜕𝑢𝑖
𝜕𝑥 𝑗

+ 𝐻 (A.3)

where 𝒖 is the fluid velocity, 𝛀 is our angular velocity, 𝑝̃ =
𝑝

𝜌̄ is the modified pres-

sure, 𝑔 is the acceleration due to gravity, 𝑠 is the specific entropy, 𝑐𝑝 is the specific heat

capacity at constant pressure, 𝜈 is the kinematic viscosity, and 𝜅 is the thermal diffusiv-

ity. We additionally consider the case of no internal heat generation and so 𝐻 = 0 and
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instead we impose a flux (𝐹) on our bottom boundary. Note that we have applied the LBR

approximation so that we are diffusing entropy as opposed to temperature. We assume a

constant 𝜈 and 𝜅. Additionally,

𝜏𝑖 𝑗 = 𝜈𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3𝛿𝑖 𝑗∇ · 𝒖
)

(A.4)

is the viscous stress tensor.

We non-dimensionalise our system by the viscous timescale, that is,

𝜕

𝜕𝑡
=

𝜈

𝑑2
𝜕

𝜕𝑡
∇ =

1
𝑑
∇̂ 𝒖 =

𝜈
𝑑
𝒖̂ 𝑝̃ =

𝜈2

𝑑2
ˆ̃𝑝 𝑠 =

𝐹𝑑

𝜅𝜌0𝑇0
𝑠 𝛀 = Ω𝛀̂ (A.5)

where terms denoted by a ˆ symbol represent non-dimensional variables, and noting

that 𝜏𝑖 𝑗 =
𝜌0𝜈2

𝑑2 𝜏̂𝑖 𝑗 . Additionally, we need to introduce four non-dimensional numbers. The

flux-based Rayleigh number, 𝑅𝑎, describing the turbulent nature of the flow, the Prandtl

number, 𝑃𝑟, the ratio of the viscous and thermal diffusivities, 𝜃, a non-dimensional mea-

sure of stratification equivalent to the inverse temperature scale height, and the Taylor

number, 𝑇𝑎, the ratio of the centrifugal to viscous forces.

𝑅𝑎 =
𝑔𝐹𝑑4

𝜈𝜅2𝑐𝑝𝜌0𝑇0
, 𝑃𝑟 =

𝜈
𝜅
, 𝜃 =

𝑔𝑑

𝑐𝑝𝑇0
, 𝑇𝑎 =

4Ω2𝑑4

𝜈2 (A.6)

Starting with the momentum equation, (A.1),

𝜈2

𝑑3

(
𝜕𝒖̂

𝜕𝑡
+ (𝒖̂ · ∇̂)𝒖̂

)
+2Ω𝜈

𝑑
𝛀̂×𝒖̂ = −𝜈2

𝑑3 ∇̂
ˆ̃𝑝+ 𝐹𝑑

𝜅𝜌0𝑇0

𝑔

𝑐𝑝
𝑠 𝒆̂𝑧+

𝜈2

𝑑3

[
1
ˆ̄𝜌

𝜕

𝜕𝑥 𝑗

(
ˆ̄𝜌
(
𝜕𝑢̂𝑖
𝜕𝑥̂ 𝑗

+
𝜕𝑢̂𝑗

𝜕𝑥̂𝑖

))
− 2

3 ˆ̄𝜌
𝜕

𝜕𝑥̂𝑖

(
ˆ̄𝜌
𝜕𝑢̂𝑗

𝜕𝑥̂ 𝑗

)]
(A.7)

rearranging yields,
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𝜕𝒖̂

𝜕𝑡
+(𝒖̂·∇̂)𝒖̂+2Ω𝑑2

𝜈
𝛀̂×𝒖̂ = −∇̂ ˆ̃𝑝+ 𝑔𝐹𝑑4

𝜈2𝜅𝑐𝑝𝜌0𝑇0
𝑠 𝒆̂𝑧+

[
1
ˆ̄𝜌

𝜕

𝜕𝑥 𝑗

(
ˆ̄𝜌
(
𝜕𝑢̂𝑖
𝜕𝑥̂ 𝑗

+
𝜕𝑢̂𝑗

𝜕𝑥̂𝑖

))
− 2

3 ˆ̄𝜌
𝜕

𝜕𝑥̂𝑖

(
ˆ̄𝜌
𝜕𝑢̂𝑗

𝜕𝑥̂ 𝑗

)]
(A.8)

and then finally, notice that

𝑅𝑎

𝑃𝑟
=

𝑔𝐹𝑑4

𝜈2𝜅𝑐𝑝𝜌0𝑇0
and 𝑇𝑎

1
2 =

2Ω𝑑2

𝜈
(A.9)

Substituting this in, we have our non-dimensional momentum equation,

𝜕𝒖̂

𝜕𝑡
+(𝒖̂·∇̂)𝒖̂+𝑇𝑎 1

2 𝛀̂×𝒖̂ = −∇̂ ˆ̃𝑝+𝑅𝑎
𝑃𝑟
𝑠 𝒆̂𝑧+

[
1
ˆ̄𝜌

𝜕

𝜕𝑥 𝑗

(
ˆ̄𝜌
(
𝜕𝑢̂𝑖
𝜕𝑥̂ 𝑗

+
𝜕𝑢̂𝑗

𝜕𝑥̂𝑖

))
− 2

3 ˆ̄𝜌
𝜕

𝜕𝑥̂𝑖

(
ˆ̄𝜌
𝜕𝑢̂𝑗

𝜕𝑥̂ 𝑗

)]
(A.10)

Next, consider the entropy diffusion equation, (A.3),

𝐹𝜈
𝜅𝑑

ˆ̄𝜌 ˆ̄𝑇
(
𝜕𝑠

𝜕𝑡
+ (𝒖̂ · ∇̂)𝑠

)
=
𝐹

𝑑
∇̂ ·

(
ˆ̄𝜌 ˆ̄𝑇∇̂𝑠

)
+ 𝜌0𝜈3

𝑑4 𝜏̂𝑖 𝑗
𝜕𝑢̂𝑖
𝜕𝑥̂ 𝑗

(A.11)

rearranging yields,

𝜈
𝜅
ˆ̄𝜌 ˆ̄𝑇

(
𝜕𝑠

𝜕𝑡
+ (𝒖̂ · ∇̂)𝑠

)
= ∇̂ ·

(
ˆ̄𝜌 ˆ̄𝑇∇̂𝑠

)
+

𝜌0𝜈3

𝐹𝑑3 𝜏̂𝑖 𝑗
𝜕𝑢̂𝑖
𝜕𝑥̂ 𝑗

(A.12)

and finally, notice that,

𝑃𝑟2𝜃
𝑅𝑎

=
𝜈2

𝜅2
𝑔𝑑

𝑐𝑝𝑇0

𝜈𝜅2𝑐𝑝𝜌0𝑇0

𝑔𝐹𝑑4 =
𝜌0𝜈3

𝐹𝑑3 (A.13)

Substituting this in, we have our non-dimensional entropy diffusion equation,
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𝑃𝑟 ˆ̄𝜌 ˆ̄𝑇
(
𝜕𝑠

𝜕𝑡
+ (𝒖̂ · ∇̂)𝑠

)
= ∇̂ ·

(
ˆ̄𝜌 ˆ̄𝑇∇̂𝑠

)
+ 𝑃𝑟2𝜃

𝑅𝑎
𝜏̂𝑖 𝑗

𝜕𝑢̂𝑖
𝜕𝑥̂ 𝑗

(A.14)

Lastly, we have our continuity equation, (A.2),

𝜌0𝜈

𝑑2 ∇̂ · ( ˆ̄𝜌𝒖̂) = 0 (A.15)

∇̂ · ( ˆ̄𝜌𝒖̂) = 0 (A.16)

We can also consider the non-dimensional forms of our reference state variables,

𝜌̄ = 𝜌0 ˆ̄𝜌 and 𝑇̄ = 𝑇0
ˆ̄𝑇 where ˆ̄𝜌 = (1 − 𝜃𝑧̂)𝑚 and ˆ̄𝑇 = 1 − 𝜃𝑧̂. Using these relations, we can

analytically expand our continuity equation,

𝜕

𝜕𝑥̂

( ˆ̄𝜌𝑢̂) + 𝜕

𝜕𝑦̂

( ˆ̄𝜌𝑢̂) + 𝜕

𝜕𝑧̂

( ˆ̄𝜌𝑤̂)
= 0 (A.17)

ˆ̄𝜌
(
𝜕𝑢̂

𝜕𝑥̂
+ 𝜕𝑣̂

𝜕𝑦̂
+ 𝜕𝑤̂

𝜕𝑧̂

)
+ 𝜕 ˆ̄𝜌

𝜕𝑧̂
𝑤̂ = 0 (A.18)(

𝜕𝑢̂

𝜕𝑥̂
+ 𝜕𝑣̂

𝜕𝑦̂
+ 𝜕𝑤̂

𝜕𝑧̂

)
+ 1

ˆ̄𝜌
𝜕 ˆ̄𝜌
𝜕𝑧̂
𝑤̂ = 0 (A.19)

note that,

𝜕 ˆ̄𝜌
𝜕𝑧̂

= −𝜃𝑚(1 − 𝜃𝑧̂)𝑚−1 (A.20)

1
ˆ̄𝜌
𝜕 ˆ̄𝜌
𝜕𝑧̂

= − 𝜃𝑚

(1 − 𝜃𝑧̂) (A.21)

and so,

(
𝜕𝑢̂

𝜕𝑥̂
+ 𝜕𝑣̂

𝜕𝑦̂
+ 𝜕𝑤̂

𝜕𝑧̂

)
− 𝜃𝑚

(1 − 𝜃𝑧̂) 𝑤̂ = 0 (A.22)
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giving us the final form of the continuity equation used in the anelastic code,

(1 − 𝜃𝑧̂)
(
𝜕𝑢̂

𝜕𝑥̂
+ 𝜕𝑣̂

𝜕𝑦̂
+ 𝜕𝑤̂

𝜕𝑧̂

)
− 𝜃𝑚𝑤̂ = 0 (A.23)

Note that in the Boussinesq case,𝑁𝜌 = 0 and then 𝜃 = 1−exp
(
− 0

1.5
)
= 0, so equation

A.23 reduces to the recognisable form,

(
𝜕𝑢̂

𝜕𝑥̂
+ 𝜕𝑣̂

𝜕𝑦̂
+ 𝜕𝑤̂

𝜕𝑧̂

)
= ∇̂ · 𝒖̂ = 0 (A.24)

A.2 Equation Expansion

To summarise, if we simply assume all variables to now be non-dimensional and drop the

hat ( ˆ ) notation, we have the following governing equations,

𝜌̄

(
𝜕𝒖
𝜕𝑡

+ (𝒖 · ∇) 𝒖
)
= − 𝜌̄∇𝑝̃ + 𝑅𝑎

𝑃𝑟
𝜌̄𝑠 𝒆̂𝑧 − 𝑇𝑎

1
2 𝜌̄𝛀 × 𝒖

+
[
𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

))
− 2

3
𝜕

𝜕𝑥𝑖

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)]
(A.25)

𝑃𝑟𝜌̄𝑇̄

(
𝜕𝑠

𝜕𝑡
+ (𝒖 · ∇) 𝑠

)
= ∇ ·

(
𝜌̄𝑇̄∇𝑠

)
+ 𝑃𝑟2𝜃

𝑅𝑎
𝜏𝑖 𝑗

𝜕𝑢𝑖
𝜕𝑥 𝑗

(A.26)

(1 − 𝜃𝑧)
(
𝜕𝑢

𝜕𝑥
+ 𝜕𝑤

𝜕𝑧

)
− 𝜃𝑚𝑤 = 0 (A.27)

Note we multiplied through by a factor of 𝜌̄ in (A.25) and moved the Coriolis term to the

right hand side.

For our equations to be recognised by Dedalus’s symbolic equation entry, we need

to fully expand each of our terms. Equation (A.59) is already in this expanded form,

however some rearrangement and expansions is required still for the momentum and
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entropy diffusion equations. Starting with the momentum equation, where we have three

equations for each of the components of momentum.

𝜌̄

(
𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
+ 𝑤 𝜕𝑢

𝜕𝑧

)
= −𝜌̄ 𝜕

𝜕𝑥

(
𝑝

𝜌̄

)
− 𝑇𝑎 1

2 𝜌̄
(
𝑤 cos 𝜙 − 𝑣 sin 𝜙

)
+

[
𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

))
− 2

3
𝜕

𝜕𝑥𝑖

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)]
· 𝒆̂𝑥 (A.28)

𝜌̄

(
𝜕𝑣

𝜕𝑡
+ 𝑢 𝜕𝑣

𝜕𝑥
+ 𝑣 𝜕𝑣

𝜕𝑦
+ 𝑤 𝜕𝑣

𝜕𝑧

)
= −𝜌̄ 𝜕

𝜕𝑦

(
𝑝

𝜌̄

)
− 𝑇𝑎 1

2 𝜌̄𝑢 sin 𝜙

+
[
𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

))
− 2

3
𝜕

𝜕𝑥𝑖

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)]
· 𝒆̂𝑦 (A.29)

𝜌̄

(
𝜕𝑤

𝜕𝑡
+ 𝑢 𝜕𝑤

𝜕𝑥
+ 𝑣 𝜕𝑤

𝜕𝑦
+ 𝑤 𝜕𝑤

𝜕𝑧

)
= −𝜌̄ 𝜕

𝜕𝑧

(
𝑝

𝜌̄

)
+ 𝑅𝑎

𝑃𝑟
𝜌̄𝑠 + 𝑇𝑎 1

2 𝜌̄𝑢 cos 𝜙

+
[
𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

))
− 2

3
𝜕

𝜕𝑥𝑖

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)]
· 𝒆̂𝑧 (A.30)

Let us first expand the pressure gradient terms, where we have already substituted in our

reduced pressure, 𝑝̃ =
𝑝

𝜌̄ . Now, 𝜌̄ = (1 − 𝜃𝑧)𝑚 , therefore, 𝜕
𝜕𝑥,𝑦

(
1
𝜌̄

)
= 0

𝜌̄
𝜕

𝜕𝑥

(
𝑝

𝜌̄

)
= 𝜌̄

(
1
𝜌̄

𝜕𝑝

𝜕𝑥
+ 𝑝 𝜕

𝜕𝑥

(
1
𝜌̄

))
=

𝜕𝑝

𝜕𝑥
(A.31)

similarly

𝜌̄
𝜕

𝜕𝑦

(
𝑝

𝜌̄

)
= 𝜌̄

(
1
𝜌̄

𝜕𝑝

𝜕𝑦
+ 𝑝 𝜕

𝜕𝑦

(
1
𝜌̄

))
=

𝜕𝑝

𝜕𝑦
(A.32)

however 𝜕
𝜕𝑧

(
1
𝜌̄

)
≠ 0
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𝜕

𝜕𝑧

(
1
𝜌̄

)
=

𝜕

𝜕𝑧
((1 − 𝜃𝑧)−𝑚) = 𝑚𝜃(1 − 𝜃𝑧)−𝑚−1 =

𝑚𝜃

𝜌̄𝑇̄
(A.33)

and so,

𝜌̄
𝜕

𝜕𝑧

(
𝑝

𝜌̄

)
= 𝜌̄

(
1
𝜌̄

𝜕𝑝

𝜕𝑧
+ 𝑝𝑚𝜃

𝜌̄𝑇̄

)
=

𝜕𝑝

𝜕𝑧
+ 𝑚𝜃

𝑇̄
𝑝 (A.34)

If we substitute in (A.31), (A.32), and (A.34), and multiply our equation for the z-component

of momentum through by a factor of 𝑇̄, we obtain,

𝜌̄

(
𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
+ 𝑤 𝜕𝑢

𝜕𝑧

)
= −

𝜕𝑝

𝜕𝑥
− 𝑇𝑎 1

2 𝜌̄
(
𝑤 cos 𝜙 − 𝑣 sin 𝜙

)
+

[
𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

))
− 2

3
𝜕

𝜕𝑥𝑖

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)]
· 𝒆̂𝑥 (A.35)

𝜌̄

(
𝜕𝑣

𝜕𝑡
+ 𝑢 𝜕𝑣

𝜕𝑥
+ 𝑣 𝜕𝑣

𝜕𝑦
+ 𝑤 𝜕𝑣

𝜕𝑧

)
= −

𝜕𝑝

𝜕𝑦
− 𝑇𝑎 1

2 𝜌̄𝑢 sin 𝜙

+
[
𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

))
− 2

3
𝜕

𝜕𝑥𝑖

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)]
· 𝒆̂𝑦 (A.36)

𝜌̄𝑇̄

(
𝜕𝑤

𝜕𝑡
+ 𝑢 𝜕𝑤

𝜕𝑥
+ 𝑣 𝜕𝑤

𝜕𝑦
+ 𝑤 𝜕𝑤

𝜕𝑧

)
= −𝑇̄ 𝜕𝑝

𝜕𝑧
− 𝑚𝜃𝑝 + 𝑅𝑎

𝑃𝑟
𝜌̄𝑇̄𝑠 + 𝑇𝑎 1

2 𝜌̄𝑢 cos 𝜙

+ 𝑇̄
[
𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

))
− 2

3
𝜕

𝜕𝑥𝑖

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)]
· 𝒆̂𝑧 (A.37)

Finally, we need to expand the viscous term,

𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

))
− 2

3
𝜕

𝜕𝑥𝑖

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)
(A.38)
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For the x-component, i = 1, sum over the repeated index j,

𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢

𝜕𝑥 𝑗
+

𝜕𝑢𝑗

𝜕𝑥

))
− 2

3
𝜕

𝜕𝑥

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)
=

𝜕

𝜕𝑥

(
𝜌̄

(
𝜕𝑢

𝜕𝑥
+ 𝜕𝑢

𝜕𝑥

))
− 2

3
𝜕

𝜕𝑥

(
𝜌̄
𝜕𝑢

𝜕𝑥

)
+ 𝜕

𝜕𝑦

(
𝜌̄

(
𝜕𝑢

𝜕𝑦
+ 𝜕𝑣

𝜕𝑥

))
− 2

3
𝜕

𝜕𝑥

(
𝜌̄
𝜕𝑣

𝜕𝑦

)
+ 𝜕

𝜕𝑧

(
𝜌̄

(
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤

𝜕𝑥

))
− 2

3
𝜕

𝜕𝑥

(
𝜌̄
𝜕𝑤

𝜕𝑧

)
(A.39)

which after some tidying,

𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢

𝜕𝑥 𝑗
+

𝜕𝑢𝑗

𝜕𝑥

))
− 2

3
𝜕

𝜕𝑥

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)
=𝜌̄

(
4
3
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2 + 𝜕2𝑢

𝜕𝑧2 + 1
3

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 1

3
𝜕2𝑤

𝜕𝑥𝜕𝑧

)
+ 𝜕𝜌̄

𝜕𝑧

(
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤

𝜕𝑥

)
(A.40)

For the y-component, i = 2, sum over the repeated index j,

𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑣

𝜕𝑥 𝑗
+

𝜕𝑢𝑗

𝜕𝑦

))
− 2

3
𝜕

𝜕𝑦

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)
=

𝜕

𝜕𝑥

(
𝜌̄

(
𝜕𝑣

𝜕𝑥
+ 𝜕𝑢

𝜕𝑦

))
− 2

3
𝜕

𝜕𝑦

(
𝜌̄
𝜕𝑢

𝜕𝑥

)
+ 𝜕

𝜕𝑦

(
𝜌̄

(
𝜕𝑣

𝜕𝑦
+ 𝜕𝑣

𝜕𝑦

))
− 2

3
𝜕

𝜕𝑦

(
𝜌̄
𝜕𝑣

𝜕𝑦

)
+ 𝜕

𝜕𝑧

(
𝜌̄

(
𝜕𝑣

𝜕𝑧
+ 𝜕𝑤

𝜕𝑦

))
− 2

3
𝜕

𝜕𝑦

(
𝜌̄
𝜕𝑤

𝜕𝑧

)
(A.41)

which after some tidying,

𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑢

𝜕𝑥 𝑗
+

𝜕𝑢𝑗

𝜕𝑥

))
− 2

3
𝜕

𝜕𝑥

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)
=𝜌̄

(
𝜕2𝑣

𝜕𝑥2 + 4
3
𝜕2𝑣

𝜕𝑦2 + 𝜕2𝑣

𝜕𝑧2 + 1
3

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 1

3
𝜕2𝑤

𝜕𝑦𝜕𝑧

)
+ 𝜕𝜌̄

𝜕𝑧

(
𝜕𝑣

𝜕𝑧
+ 𝜕𝑤

𝜕𝑦

)
(A.42)
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For the z-component, i = 3, sum over the repeated index j,

𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑤

𝜕𝑥 𝑗
+

𝜕𝑢𝑗

𝜕𝑧

))
− 2

3
𝜕

𝜕𝑧

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)
=

𝜕

𝜕𝑥

(
𝜌̄

(
𝜕𝑤

𝜕𝑥
+ 𝜕𝑢

𝜕𝑧

))
− 2

3
𝜕

𝜕𝑧

(
𝜌̄
𝜕𝑢

𝜕𝑥

)
+ 𝜕

𝜕𝑦

(
𝜌̄

(
𝜕𝑤

𝜕𝑦
+ 𝜕𝑣

𝜕𝑧

))
− 2

3
𝜕

𝜕𝑧

(
𝜌̄
𝜕𝑣

𝜕𝑦

)
+ 𝜕

𝜕𝑧

(
𝜌̄

(
𝜕𝑤

𝜕𝑧
+ 𝜕𝑤

𝜕𝑧

))
− 2

3
𝜕

𝜕𝑧

(
𝜌̄
𝜕𝑤

𝜕𝑧

)
(A.43)

which again, after some tidying becomes,

𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑤

𝜕𝑥 𝑗
+

𝜕𝑢𝑗

𝜕𝑧

))
− 2

3
𝜕

𝜕𝑧

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)
=𝜌̄

(
𝜕2𝑤

𝜕𝑥2 + 𝜕2𝑤

𝜕𝑦2 + 4
3
𝜕2𝑤

𝜕𝑧2 + 1
3

𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 1

3
𝜕2𝑣

𝜕𝑦𝜕𝑧

)
+ 2

3
𝜕𝜌̄

𝜕𝑧

(
2𝜕𝑤
𝜕𝑧

− 𝜕𝑢

𝜕𝑥
− 𝜕𝑣

𝜕𝑦

)
(A.44)

We can compute 𝜕𝜌̄
𝜕𝑧 analytically, and note the fact that if we multiple this by a factor of

𝑇̄ = 1 − 𝜃𝑧 as we have done in our z-momentum equation we can simplify as follows,

𝑇̄
𝜕𝜌̄

𝜕𝑧
= (1 − 𝜃𝑧)𝑚𝜃(1 − 𝜃𝑧)𝑚−1 = −𝑚𝜃𝜌̄ (A.45)

substituting (A.45) into (A.44),

𝜕

𝜕𝑥 𝑗

(
𝜌̄

(
𝜕𝑤

𝜕𝑥 𝑗
+

𝜕𝑢𝑗

𝜕𝑧

))
− 2

3
𝜕

𝜕𝑧

(
𝜌̄
𝜕𝑢𝑗

𝜕𝑥 𝑗

)
=𝜌̄

(
𝜕2𝑤

𝜕𝑥2 + 𝜕2𝑤

𝜕𝑦2 + 4
3
𝜕2𝑤

𝜕𝑧2 + 1
3

𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 1

3
𝜕2𝑣

𝜕𝑦𝜕𝑧

)
− 2

3
𝑚𝜃𝜌̄

𝑇̄

(
2𝜕𝑤
𝜕𝑧

− 𝜕𝑢

𝜕𝑥
− 𝜕𝑣

𝜕𝑦

)
(A.46)

Substituting these into our momentum equations, we obtain our fully expanded momen-

tum equations,
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𝜌̄

(
𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
+ 𝑤 𝜕𝑢

𝜕𝑧

)
= − 𝜕𝑝

𝜕𝑥
− 𝑇𝑎 1

2 𝜌̄
(
𝑤 cos 𝜙 − 𝑣 sin 𝜙

)
+ 𝜌̄

(
4
3
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2 + 𝜕2𝑢

𝜕𝑧2 + 1
3

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 1

3
𝜕2𝑤

𝜕𝑥𝜕𝑧

)
+ 𝜕𝜌̄

𝜕𝑧

(
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤

𝜕𝑥

)
(A.47)

𝜌̄

(
𝜕𝑣

𝜕𝑡
+ 𝑢 𝜕𝑣

𝜕𝑥
+ 𝑣 𝜕𝑣

𝜕𝑦
+ 𝑤 𝜕𝑣

𝜕𝑧

)
= − 𝜕𝑝

𝜕𝑦
− 𝑇𝑎 1

2 𝜌̄𝑢 sin 𝜙

+ 𝜌̄

(
𝜕2𝑣

𝜕𝑥2 + 4
3
𝜕2𝑣

𝜕𝑦2 + 𝜕2𝑣

𝜕𝑧2 + 1
3

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 1

3
𝜕2𝑤

𝜕𝑦𝜕𝑧

)
+ 𝜕𝜌̄

𝜕𝑧

(
𝜕𝑣

𝜕𝑧
+ 𝜕𝑤

𝜕𝑦

)
(A.48)

𝜌̄𝑇̄

(
𝜕𝑤

𝜕𝑡
+ 𝑢 𝜕𝑤

𝜕𝑥
+ 𝑣 𝜕𝑤

𝜕𝑦
+ 𝑤 𝜕𝑤

𝜕𝑧

)
= − 𝑇̄ 𝜕𝑝

𝜕𝑧
− 𝑚𝜃𝑝 + 𝑅𝑎

𝑃𝑟
𝜌̄𝑇̄𝑠 + 𝑇𝑎 1

2 𝜌̄𝑇̄𝑢 cos 𝜙

+ 𝜌̄𝑇̄

(
𝜕2𝑤

𝜕𝑥2 + 𝜕2𝑤

𝜕𝑦2 + 4
3
𝜕2𝑤

𝜕𝑧2 + 1
3

𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 1

3
𝜕2𝑣

𝜕𝑦𝜕𝑧

)
− 2

3𝑚𝜃𝜌̄

(
2𝜕𝑤
𝜕𝑧

− 𝜕𝑢

𝜕𝑥
− 𝜕𝑣

𝜕𝑦

)
(A.49)

Next we have our entropy diffusion equation. Starting with our divergence term,

∇ · (𝜌̄𝑇̄∇𝑠) = 𝜕

𝜕𝑥

(
𝜌̄𝑇̄

𝜕𝑠

𝜕𝑥

)
+ 𝜕

𝜕𝑧

(
𝜌̄𝑇̄

𝜕𝑠

𝜕𝑧

)
= 𝜌̄𝑇̄

(
𝜕2𝑠

𝜕𝑥2 + 𝜕2𝑠

𝜕𝑧2

)
+ 𝜕𝑠

𝜕𝑧

𝜕

𝜕𝑧

(
𝜌̄𝑇̄

)
(A.50)

however,

𝜕

𝜕𝑧

(
𝜌̄𝑇̄

)
=

𝜕

𝜕𝑧

(
(1 − 𝜃𝑧)𝑚+1

)
= (𝑚 + 1)(1 − 𝜃𝑧)𝑚 = (𝑚 + 1)𝜌̄ (A.51)
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and so,

∇ · (𝜌̄𝑇̄∇𝑠) = 𝜌̄𝑇̄

(
𝜕2𝑠

𝜕𝑥2 + 𝜕2𝑠

𝜕𝑧2

)
+ (𝑚 + 1)𝜌̄ 𝜕𝑠

𝜕𝑧
(A.52)

which when substituted in yields,

𝑃𝑟𝜌̄𝑇̄

(
𝜕𝑠

𝜕𝑡
+ 𝑢 𝜕𝑠

𝜕𝑥
+ 𝑤 𝜕𝑠

𝜕𝑧

)
= 𝜌̄𝑇̄

(
𝜕2𝑠

𝜕𝑥2 + 𝜕2𝑠

𝜕𝑧2

)
+ 𝜌̄(𝑚 + 1)𝜕𝑠

𝜕𝑧
+ 𝑃𝑟2𝜃

𝑅𝑎
𝜏̂𝑖 𝑗

𝜕𝑢𝑖
𝜕𝑥 𝑗

(A.53)

Lastly we need to expand our viscous term using (A.4). Both i and j are repeated index’s

in this term and so we sum over both,

𝜏̂𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

= 𝜌̄

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3𝛿𝑖 𝑗∇ · 𝒖
)
𝜕𝑢𝑖
𝜕𝑥 𝑗

(A.54)

𝜏̂𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

= 𝜌̄

(
2𝜕𝑢
𝜕𝑥

− 2
3∇ · 𝒖

)
𝜕𝑢

𝜕𝑥

+ 𝜌̄

(
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤

𝜕𝑥

)
𝜕𝑢

𝜕𝑧

+ 𝜌̄

(
𝜕𝑤

𝜕𝑥
+ 𝜕𝑢

𝜕𝑧

)
𝜕𝑤

𝜕𝑥

+ 𝜌̄

(
2𝜕𝑤
𝜕𝑧

− 2
3∇ · 𝒖

)
𝜕𝑤

𝜕𝑧
(A.55)

𝜏̂𝑖 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

= 2𝜌̄

[(
𝜕𝑢

𝜕𝑥

)2
+

(
𝜕𝑤

𝜕𝑧

)2
+ 𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
+ 1

2

((
𝜕𝑢

𝜕𝑧

)2
+

(
𝜕𝑤

𝜕𝑥

)2
)
− 1

3

(
𝜕𝑢

𝜕𝑥
+ 𝜕𝑤

𝜕𝑧

)2
]

(A.56)

Which gives us our final, fully expanded diffusion equation, noting that we have divided

out the common factor of 𝜌̄,
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𝑃𝑟𝑇̄

(
𝜕𝑠

𝜕𝑡
+ 𝑢 𝜕𝑠

𝜕𝑥
+ 𝑤 𝜕𝑠

𝜕𝑧

)
= 𝑇̄

(
𝜕2𝑠

𝜕𝑥2 + 𝜕2𝑠

𝜕𝑧2

)
+ (𝑚 + 1)𝜕𝑠

𝜕𝑧

+2𝑃𝑟
2𝜃
𝑅𝑎

[(
𝜕𝑢

𝜕𝑥

)2
+

(
𝜕𝑤

𝜕𝑧

)2
+ 𝜕𝑢

𝜕𝑧

𝜕𝑤

𝜕𝑥
+ 1

2

((
𝜕𝑢

𝜕𝑧

)2
+

(
𝜕𝑤

𝜕𝑥

)2
)
− 1

3

(
𝜕𝑢

𝜕𝑥
+ 𝜕𝑤

𝜕𝑧

)2
]

(A.57)

A.3 2.5D approximation

Now that we have our fully 3D governing equations expanded out in a dedalus-readable

format (equations A.59, A.47, A.48, A.49, and A.57) reducing them to 2.5D is relatively

straightforward. As seen in Section 4.1.2 we need to make a choice regarding which di-

mension to make axisymmetric, and given the nature of the system we are trying to solve

the x-dimension is chosen. To reduce the above equations to 2.5D, we now simply neglect

all variations in the x-direction, that is,

𝜕𝑥 = 0 (A.58)

and therefore we are left with,

(1 − 𝜃𝑧)
(
𝜕𝑤

𝜕𝑧

)
− 𝜃𝑚𝑤 = 0 (A.59)

𝜌̄

(
𝜕𝑢

𝜕𝑡
+ 𝑣 𝜕𝑢

𝜕𝑦
+ 𝑤 𝜕𝑢

𝜕𝑧

)
= − 𝑇𝑎 1

2 𝜌̄
(
𝑤 cos 𝜙 − 𝑣 sin 𝜙

)
+ 𝜌̄

(
𝜕2𝑢

𝜕𝑦2 + 𝜕2𝑢

𝜕𝑧2

)
+ 𝜕𝜌̄

𝜕𝑧

(
𝜕𝑢

𝜕𝑧

)
(A.60)
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𝜌̄

(
𝜕𝑣

𝜕𝑡
+ 𝑣 𝜕𝑣

𝜕𝑦
+ 𝑤 𝜕𝑣

𝜕𝑧

)
= − 𝜕𝑝

𝜕𝑦
− 𝑇𝑎 1

2 𝜌̄𝑢 sin 𝜙

+ 𝜌̄

(
4
3
𝜕2𝑣

𝜕𝑦2 + 𝜕2𝑣

𝜕𝑧2 + 1
3
𝜕2𝑤

𝜕𝑦𝜕𝑧

)
+ 𝜕𝜌̄

𝜕𝑧

(
𝜕𝑣

𝜕𝑧
+ 𝜕𝑤

𝜕𝑦

)
(A.61)

𝜌̄𝑇̄

(
𝜕𝑤

𝜕𝑡
+ 𝑣 𝜕𝑤

𝜕𝑦
+ 𝑤 𝜕𝑤

𝜕𝑧

)
= − 𝑇̄ 𝜕𝑝

𝜕𝑧
− 𝑚𝜃𝑝 + 𝑅𝑎

𝑃𝑟
𝜌̄𝑇̄𝑠 + 𝑇𝑎 1

2 𝜌̄𝑇̄𝑢 cos 𝜙

+ 𝜌̄𝑇̄

(
𝜕2𝑤

𝜕𝑦2 + 4
3
𝜕2𝑤

𝜕𝑧2 + 1
3

𝜕2𝑣

𝜕𝑦𝜕𝑧

)
− 2

3𝑚𝜃𝜌̄

(
2𝜕𝑤
𝜕𝑧

− 𝜕𝑣

𝜕𝑦

)
(A.62)

𝑃𝑟𝑇̄

(
𝜕𝑠

𝜕𝑡
+ 𝑤 𝜕𝑠

𝜕𝑧

)
= 𝑇̄

(
𝜕2𝑠

𝜕𝑧2

)
+ (𝑚 + 1)𝜕𝑠

𝜕𝑧

+2𝑃𝑟
2𝜃
𝑅𝑎

[
+

(
𝜕𝑤

𝜕𝑧

)2
+ 1

2

((
𝜕𝑢

𝜕𝑧

)2
)
− 1

3

(
𝜕𝑤

𝜕𝑧

)2
]

(A.63)
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