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Abstract

Autoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive
thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto’s thyroiditis), as
well as autoimmune hyperthyroidism (Graves’ disease). As the possible causative genes of TPOAbs and AITD remain largely
unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528
TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant
associations (P,561028) were detected at TPO-rs11675434, ATXN2-rs653178, and BACH2-rs10944479 for TPOAb-positivity,
and at TPO-rs11675434, MAGI3-rs1230666, and KALRN-rs2010099 for TPOAb levels. Individual and combined effects (genetic
risk scores) of these variants on (subclinical) hypo- and hyperthyroidism, goiter and thyroid cancer were studied. Individuals
with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68–2.81, P = 8.161028), a
higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26–1.82, P = 2.961026), as well as a decreased
risk of goiter (OR: 0.77, 95% CI 0.66–0.89, P = 6.561024). The MAGI3 and BACH2 variants were associated with an increased
risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves’ disease (OR: 1.37, 95% CI
1.22–1.54, P = 1.261027 and OR: 1.25, 95% CI 1.12–1.39, P = 6.261025). The MAGI3 variant was also associated with an
increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18–2.10, P = 1.961023). This first GWAS meta-analysis for TPOAbs
identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we
identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide
insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers
may therefore predict which TPOAb-positives are particularly at risk of developing clinical thyroid dysfunction.
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Introduction

Autoimmune thyroid disease (AITD), including Hashimoto’s

thyroiditis and Graves’ disease, is one of the most common

autoimmune diseases, affecting 2–5% of the general population

[1,2,3]. Thyroid dysfunction has been associated with osteoporosis,

depression, atrial fibrillation, heart failure, metabolic syndrome, and

mortality [4,5,6,7,8,9,10,11]. High serum antibodies against the

enzyme thyroid peroxidase (TPO), which is located in the thyroid

and plays a key role in thyroid hormone synthesis, are present in 90%

of patients with Hashimoto’s thyroiditis [12,13], the most frequent

cause of hypothyroidism and goiter. Although TPO antibodies

(TPOAbs) are a useful clinical marker for the detection of early

AITD, it remains controversial if these antibodies play a causative

role in the pathogenesis of Hashimoto’s thyroiditis [14,15,16].

Interestingly, TPOAb-positive persons also have an increased

risk of developing autoimmune hyperthyroidism (Graves’ disease)

[17,18], which is caused by stimulating antibodies against the

thyroid stimulating hormone (TSH) receptor [19]. Numerous

studies have shown that Graves’ hyperthyroidism and Hashimoto’s

thyroiditis show co-inheritance [17,20,21]. Finally, thyroid auto-

immunity is the most common autoimmune disorder in women of

childbearing age, and TPOAb-positive women have an increased

risk of developing pregnancy complications such as miscarriage

and pre-term delivery [17,18,22,23,24,25,26].

The prevalence of TPOAb-positivity in the general population

ranges from 5–24%, but it is currently unknown why these people

develop TPOAbs, nor is it known why not all individuals with

thyroid autoimmunity develop clinical thyroid disease [27,28]. It is

estimated that around 70% of the susceptibility to develop thyroid

autoantibodies is due to genetic factors [29]. In this context it is

remarkable to note that little is known about the genetic factors

that determine TPOAb-positivity and the risk of AITD.

We therefore performed a genome wide association study

(GWAS) meta-analysis for TPOAbs in the general population in

18,297 individuals from 11 populations. Newly identified genetic

variants were studied in relation to subclinical and overt hypo- and

hyperthyroidism, goiter, thyroid autoimmunity during pregnancy

and thyroid cancer risk.

Results

Characteristics of the studied populations are shown in Table 1

and the Supplementary Material S1. Heritability estimates in the

family-based cohorts SardiNIA, TwinsUK and Val Borbera were,

respectively, 0.65, 0.66, and 0.54 for TPOAb-positivity, and 0.43,

0.66, and 0.30 for TPOAb levels.

Loci associated with TPOAb-positivity and TPOAb levels
See Table 1 and Supplementary Figure S1 for TPOAb

measurements and Supplementary Table S1 for genotyping

procedures. In most autoimmune diseases, both the presence

and the level of autoantibodies are relevant for the disease onset

[18,30,31]. Furthermore, different pathophysiological processes

may be involved in the initiation and severity of the autoimmune

response. We therefore performed a GWAS on TPOAb-positivity

(including 1769 TPOAb-positives and 16,528 TPOAb–negatives),

as well as a GWAS on continuous TPOAb levels (including 12,353

individuals) in stage 1. See Supplementary Figures S2 and S3 for

QQ (quantile-quantile) and Manhattan plots.

In stage 2, we followed-up 20 stage 1 SNPs (P,561026; 13

TPOAb-positivity and 10 TPOAb level SNPs, with 3 SNPs

overlapping) in 5 populations, including up to 8,990 individuals

for TPOAb-positivity (922 TPOAb-positives and 8068 TPOAb–

negatives) and 8,159 individuals for TPOAb level analyses (see

Supplementary Material S1). Results of the combined stage 1 and 2

Novel Thyroid Antibody and Disease Loci
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meta-analyses, including heterogeneity analyses, are shown in

Supplementary Tables S2 and S3. Regional association plots are

shown in Supplementary Figures S4 and S5. In the combined stage

1 and 2 meta-analyses GWAS significant associations (P,561028)

were observed near TPO (Chr 2p25; rs11675434), at ATXN2 (Chr

12q24.1; rs653178), and BACH2 (Chr 6q15; rs10944479) for

TPOAb-positivity, and near TPO (rs11675434), at MAGI3 (Chr

6q15; rs1230666), and KALRN (Chr 3q21; rs2010099) for TPOAb

levels (Table 2 and Figure 1). The TPOAb level meta-analysis P-

values for the 3 GWAS significant TPOAb-positivity loci were:

TPO-rs11675434: P = 7.4610213, ATXN2-rs653178: P = 1.361027,

and BACH2-rs10944479: P = 2.061024.

As the 3 GWAS significant loci for TPOAb levels also showed

associations with TPOAb-positivity (TPO-rs11675434: OR, 1.21

[95% CI, 1.15–1.28)], P = 1.5610216; MAGI3-rs1230666: OR,

1.23 [95% CI, 1.14–1.33], P = 1.561026; KALRN-rs2010099: OR,

1.24 [95% CI, 1.12–1.37], P = 7.461025), we subsequently

studied the (combined) effects of these 5 SNPs on clinical thyroid

disease. Genetic risk scores were calculated as described in the

Supplementary Material. The variance explained by these 5 SNPs

was 3.1% for TPOAb-positivity and 3.2% for TPOAb levels.

Subjects with a high genetic risk score had a 2.2 times increased

risk of TPOAb-positivity compared to subjects with a low genetic

risk score (P = 8.161028) (Table 3).

Table S4 shows the stage 1 TPOAb-positivity and TPOAb level

meta-analyses results for GWAS significant SNPs reported in

previous GWAS on thyroid related phenotypes.

Associations with hypo- and hyperthyroidism
The associations between the 5 GWAS significant SNPs and the

risk of abnormal thyroid function tests are shown in Table 4.

MAGI3- rs1230666 was associated with an increased risk of overt

hypothyroidism and increased TSH levels below the Bonferroni

threshold (i.e., P = 0.05/5 = 0.01). Borderline significant signals

were observed at BACH2- rs10944479 with a higher risk of

increased TSH levels as well as overt hyperthyroidism (P = 0.011

and P = 0.012), and at the KALRN-rs2010099 SNP with a lower

risk of decreased TSH levels (P = 0.010).

Furthermore, a higher genetic risk score was associated with a

higher risk of increased TSH levels (Supplementary Table S5). No

effects of the genetic risk score on the risk of overt hypothyroidism,

hyperthyroidism or decreased TSH levels were observed.

Associations with goiter
Individuals with a high genetic risk score had a 30.4% risk of

sonographically-proven goiter, compared to 35.2% in subjects

with a low score (P = 6.561024) (Table 5). None of the individual

SNPs was significantly associated with goiter risk.

Thyroid autoimmunity during pregnancy
As autoimmunity significantly changes during pregnancy [25],

we additionally studied these effects in an independent pregnant

population. Pregnant women with a high genetic risk score had a

2.4 times increased risk of TPOAb-positivity compared to women

with a low score (10.3% vs 4.8%, P = 0.03). These women did not

have a higher risk of increased TSH levels. However, a borderline

significant signal with a lower risk of increased TSH levels was

observed at ATXN2- rs653178 (OR, 0.54 [95% CI, 0.34–0.87],

P = 0.012).

Associations with thyroid disease in independent
populations

a) Graves’ disease. As MAGI3- rs1230666 and BACH2-

rs10944479 showed promising associations (i.e., P#0.05) with

hyperthyroidism in our meta-analyses, we tested these SNPs in an

independent population of 2478 patients with Graves’ disease and

2682 controls (see Supplementary Material for further details). Both

were associated with an increased risk of Graves’ disease (MAGI3-

rs1230666: OR, 1.37 [95% CI, 1.22–1.54]; P = 1.261027; BACH2-

rs10944479: OR, 1.25 [1.12–1.39]; P = 6.261025).

b) Thyroid cancer. Supplementary Table S6 shows the

associations of the 5 GWAS significant SNPs with thyroid cancer.

No statistically significant associations were detected, but a

borderline significant signal with an increased risk of thyroid

cancer was observed at ATXN2- rs653178 (OR, 1.32 [95% CI,

1.02–1.70], P = 0.03).

Pathway analyses
Ingenuity Pathway Analyses (IPA; Ingenuity Systems, Ca, USA)

and GRAIL analyses [32] were performed to identify potential

pathways involved in AITD, the results of which are shown in

Supplementary Tables S7 and S8, and Figure S6. The identified

top pathways involved cell death, survival, movement, and OX40

signalling.

Discussion

This is the first GWAS meta-analysis investigating the genetics

of TPOAbs in the normal population in up to 18,297 individuals

from 11 populations with replication in up to 8,990 individuals

from 5 populations. We identified 5 GWAS significant loci

associated with TPOAb-positivity and/or levels.

The most significant hit for both TPOAb-positivity and TPOAb

levels was located near the TPO gene itself. TPO is a membrane-

bound protein located on the apical membranes of the thyroid

follicular cell, catalyzing key reactions in thyroid hormone

synthesis [33]. Mutations in TPO have been found in patients

with congenital hypothyroidism [34,35]. Although TPOAbs are

Author Summary

Individuals with thyroid peroxidase antibodies (TPOAbs)
have an increased risk of autoimmune thyroid diseases
(AITD), which are common in the general population and
associated with increased cardiovascular, metabolic and
psychiatric morbidity and mortality. As the causative genes
of TPOAbs and AITD remain largely unknown, we
performed a genome-wide scan for TPOAbs in 18,297
individuals, with replication in 8,990 individuals. Significant
associations were detected with variants at TPO, ATXN2,
BACH2, MAGI3, and KALRN. Individuals carrying multiple
risk variants also had a higher risk of increased thyroid-
stimulating hormone levels (including subclinical and overt
hypothyroidism), and a decreased risk of goiter. The MAGI3
and BACH2 variants were associated with an increased risk
of hyperthyroidism, and the MAGI3 variant was also
associated with an increased risk of hypothyroidism. This
first genome-wide scan for TPOAbs identified five newly
associated loci, three of which were also associated with
clinical thyroid disease. With these markers we identified a
large subgroup in the general population with a substan-
tially increased risk of TPOAbs. These results provide
insight into why individuals with thyroid autoimmunity do
or do not eventually develop thyroid disease, and these
markers may therefore predict which individuals are
particularly at risk of developing clinical thyroid dysfunc-
tion.
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valid clinical biomarkers of AITD, they are generally considered to

be secondary to the thyroid damage inflicted by T-cells.

The FOXE1 gene has been previously associated with hypothy-

roidism [36,37] and is known to regulate transcription of TPO

[38]. In this context it is interesting to note that we did not find any

associations of the variant near TPO with hypothyroidism. Most

genes that have been associated with AITD (predominantly

Graves’ disease) by candidate gene and GWAS studies so far are

located in the HLA class I and II regions, or in genes involved in

T-cell (i.e., CTLA-4, PTPN22) or other autoimmune responses

[28,39]. Until now, the TPO gene itself had not been associated

with AITD, except in one recent candidate gene analysis in a small

cohort (n = 188) without replication [40]. A variant near TPO

(rs11694732), which is in LD with rs11675434 (r2 = 0.97 in

HapMap2), has previously been associated with TSH levels by

Gudmundsson et al [41]. However, various other GWAS on

serum TSH and FT4 levels have not found any significant

associations in or near this locus, including a recent similar sized

GWAS by Porcu et al [42].

Three of the other four loci identified here are located in or are in

linkage disequilibrium (LD) with genes previously associated with

other autoimmune diseases. Rs1230666 is located in intron 9 of

MAGI3, encoding a protein that modulates activity of AKT/PKB.

AKT/PKB is expressed in the thyroid and regulates apoptosis [43],

which seems to play an important role in the development of AITD

[44,45]. In addition, rs1230666 is in LD with rs2476601 (r2 = 0.70 in

HapMap2), a variant causing a R620W substitution in PTPN22.

PTPN22 is a lymphoid-specific intracellular phosphatase involved in

the T-cell receptor signaling pathway. Variations in PTPN22, and

specifically R620W, are associated with various autoimmune

disorders including type 1 diabetes, rheumatoid arthritis, systemic

lupus erythematosus and Graves’ disease [46,47,48,49]. The associ-

ations of the MAGI3 locus with TPOAb-positivity and Graves’ disease

may therefore also be explained by linkage with disease-associated

variants in PTPN22 [50]. Of note, the association signal at rs2476601

is one order weaker than that of the top variant rs1230666.

The BACH2 locus has been implicated in the susceptibility to

several autoimmune diseases, including celiac disease, type 1

diabetes, vitiligo, Crohn’s disease, and multiple sclerosis

[46,51,52,53,54]. A recent candidate gene analysis associated the

BACH2 locus with an increased risk of AITD, including

Hashimoto’s thyroiditis and Graves’ disease [55]. However, the

associations were not significant when Hashimoto’s thyroiditis and

Graves’ disease were studied separately. BACH2 is specifically

expressed in early stages of B-cell differentiation and represses

different immunoglobulin genes [56]. Interestingly, BACH2 can

bind to the co-repressor SMRT (silencing mediator of retinoid and

thyroid receptor), which may suggest a more direct effect on

thyroid hormone secretion and action as well.

Polymorphisms in ATXN2 have been associated with multiple

neurodegenerative diseases, including spinocerebellar ataxia and

Parkinson’s disease [57,58,59]. Different epidemiological studies

have associated thyroid dysfunction with cerebellar ataxia [60,61].

Furthermore, the identified SNP in ATXN2 has been previously

associated with renal function, serum urate levels and blood

pressure [62,63,64]. However, this SNP is in high LD with

rs3184504 (r2 = 0.873), a variant causing a Trp262Arg substitu-

tion of SH2B adaptor protein 3 (SH2B3). SH2B3 encodes the adaptor

protein LNK, a key negative regulator of cytokine signaling

playing a critical role in hematopoiesis. This variant is associated

with susceptibility to several autoimmune diseases, including celiac

disease, type 1 diabetes, vitiligo, and rheumatoid arthritis

[46,51,53,65], suggesting more relevance for TPOAb levels than

ATXN2. This is supported by a recent study which showed that

variants in LD with SH2B3, BACH2, and PTPN22 are associated

with TPOAb levels in patients with type 1 diabetes [66].

Whereas the above four loci are located in genes involved in the

immune response or the autoantigen, the KALRN (Kalirin) gene

encodes a multi-domain guanine nucleotide exchange factor for

GTP-binding proteins of the Rho family. The relation of KALRN

with levels of TPOAbs is unclear. This gene has recently been

found to be associated with megakaryopoiesis and platelet

formation [67], which may suggest a function in the immune

system [68]. We furthermore performed pathway analyses on the

stage 1 TPOAb-positivity and TPOAb level lead SNPs, and

identified the cell death, survival and movement pathway as an

important pathway for TPOAbs. This finding is supported by

previous studies, which show an important role for apoptosis in the

Table 2. Newly identified loci associated with TPOAb-positivity and/or serum TPOAb levels reaching genome wide significance.

Alleles
Stage 1 + 2 meta-analysis: up to 2691
cases and 24,596 controls

TPOAb-positivity SNP Chr. Position
(Build 36)

Risk Other RAFa Nearby gene OR (95% CI)b P value

rs11675434 2 1386822 T C 0.39 TPO 1.21 (1.15–1.28) 1.5610216

rs653178 12 110492139 C T 0.40 ATXN2 1.14 (1.08–1.19) 9.9610210

rs10944479 6 90937114 A G 0.16 BACH2 1.25 (1.14–1.37) 4.061028

Alleles Stage 1 + 2 meta-analysis: up to 20,512
subjects

TPOAb levels SNP Chr. Position
(Build 36)

Risk Other RAFa Nearby gene b (SE)c P value

rs11675434 2 1386822 T C 0.39 TPO 0.0202 (0.0046) 7.4610213

rs1230666 1 113974933 A G 0.16 MAGI3 0.0269 (0.0064) 1.861028

rs2010099 3 125782947 C T 0.91 KALRN 0.0240 (0.0076) 3.161028

Chr., chromosome
aRisk allele frequency: Weighted mean frequency of the risk allele across all included cohorts.
bAdjusted for age and gender
cExpressed in sd of natural logarithm transformed serum TPOAb level, adjusted for age and gender
doi:10.1371/journal.pgen.1004123.t002
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development of AITD [44,45]. Another top pathway involved was

the OX40 signalling pathway, and it is of interest to note that

OX40 is a T-cell activator promoting the survival of CD4+ T-cells

at sites of inflammation [69].

Our results have potential clinical relevance for several reasons.

Genetic risk scores based on these novel common (risk allele

frequencies: 9–40%) TPOAb-associated SNPs enabled us to iden-

tify a large subgroup in the general population with a two-fold

Figure 1. Genome wide association studies meta-analyses: Loci associated with TPOAb-positivity (a–c) and TPOAb levels (d–f) on a
genome-wide level of significance. Regional association plots of the genome-wide significant loci associated with TPOAb positivity (a–c) and
TPOAb levels (d–f). The y-axis on the left indicates the – log10 P value for the association with TPOAb –positivity (a–c) or TPOAb levels (d–f). SNPs are
plotted on the x-axis according to their chromosomal position against the association with the phenotype on the y-axis. The most significant stage 1
SNP is indicated in purple. The combined stage 1 and 2 result of this SNP is indicated in yellow. The SNPs surrounding the most significant SNP are
color-coded to reflect their LD with this SNP. Symbols reflect functional genomic annotation, as indicated in the legend. The blue y-axes on the right
of each plot indicate the estimated recombination rates (based on HapMap Phase II); the bottom of each panel shows the respective annotated
genes at the locus and their transcriptional direction. Mb, megabases.
doi:10.1371/journal.pgen.1004123.g001
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increased risk of TPOAb-positivity (10.4% vs 5.4%). These

individuals also have a higher risk of increased TSH levels and a

lower risk of goiter, suggesting an advanced stage of destruction of

the thyroid due to autoimmune processes. Furthermore, pregnant

women with high genetic risk scores had a 2.4 times increased risk

of TPOAb-positivity during pregnancy. In this context it is

interesting to note that TPOAb-positive pregnant women have an

increased risk of miscarriages and preterm births independent of

thyroid function [70].

Associations with thyroid disease were also found on an

individual SNP level. The MAGI3 SNP was associated with a

substantially increased risk of hypothyroidism, and the BACH2

SNP showed a borderline significant association (P = 0.011) with a

higher risk of increased TSH levels, which includes subjects with

subclinical and overt hypothyroidism. Furthermore, both loci were

significantly associated with an increased risk of Graves’ hyper-

thyroidism in an independent population. To predict which

patients with first or second degree relatives with documented

Hashimoto’s or Graves’ disease will develop clinical thyroid

disease, a clinical algorithm has been developed (i.e., the THEA

score) [18]. Future studies should analyze if these genetic markers

increase the sensitivity of the THEA score. Graves’ hyperthyroid-

ism and Hashimoto’s thyroiditis co-segregate in families and

subjects with TPOAbs have an increased risk of both diseases

[17,18,20,21,22,26]. The current study provides insight into this

phenomenon by showing that specific loci associated with

TPOAbs and (subclinical) hypothyroidism, i.e. MAGI3 and

BACH2, are also associated with Graves’ hyperthyroidism in an

independent case-control study.

The prevalence of TPOAb-positivity in the general population

is high (5–24%), but it is currently unknown why part of the

individuals with thyroid autoimmunity develop clinical thyroid

disease whereas others do not [27,28]. In this context it is

interesting to note that the TPOAb-associated SNPs located in

TPO and ATXN2 were not associated with clinical thyroid disease.

This suggests that the TPOAbs in these individuals may be of less

clinical relevance, providing insight into why TPOAb-positive

individuals do or do not eventually develop clinical thyroid disease.

Our study has some limitations. The validity of the results is

restricted to individuals from populations of European ancestry.

Future GWASs in populations from non-European descent will be

required to determine to which extent our results can be

generalized to other ethnic groups. Secondly, we did not perform

conditional analyses to further identify secondary association

signals within the identified loci, nor did we perform functional

studies for the identified variants. Further research is therefore

needed to unravel the exact biological mechanism behind the

observed associations. The fact that various TPOAb assays were

used across the participating cohorts could lead to bias. We

T
a

b
le

4
.

N
e

w
ly

id
e

n
ti

fi
e

d
T

P
O

A
b

as
so

ci
at

e
d

lo
ci

an
d

th
e

ri
sk

o
f

th
yr

o
id

d
is

e
as

e
in

st
ag

e
1

an
d

2
p

o
p

u
la

ti
o

n
s.

A
ll

e
le

s
In

cr
e

a
se

d
T

S
H

(1
1

1
0

ca
se

s/
1

9
,1

8
9

co
n

tr
o

ls
)

H
y

p
o

th
y

ro
id

is
m

(1
7

3
ca

se
s/

1
5

,9
4

0
co

n
tr

o
ls

)
D

e
cr

e
a

se
d

T
S

H
(9

6
7

ca
se

s/
1

9
,2

9
7

co
n

tr
o

ls
)

H
y

p
e

rt
h

y
ro

id
is

m
(7

8
ca

se
s/

1
4

,9
0

1
co

n
tr

o
ls

)

N
e

a
rb

y
g

e
n

e
S

N
P

R
is

k
O

th
e

r
O

R
(9

5
%

C
I)

P
v

a
lu

e
O

R
(9

5
%

C
I)

a
P

v
a

lu
e

O
R

(9
5

%
C

I)
a

P
v

a
lu

e
O

R
(9

5
%

C
I)

a
P

v
a

lu
e

TP
O

rs
1

1
6

7
5

4
3

4
T

C
1

.0
8

(0
.9

9
–

1
.1

8
)

0
.0

8
1

.1
4

(0
.9

1
–

1
.4

2
)

0
.2

6
1

.0
2

(0
.9

3
–

1
.1

1
)

0
.6

8
1

.1
0

(0
.8

1
–

1
.4

9
)

0
.5

4

A
TX

N
2

rs
6

5
3

1
7

8
C

T
1

.0
1

(0
.9

8
–

1
.0

4
)

0
.6

8
1

.2
5

(1
.0

1
–

1
.5

4
)

0
.0

4
1

.0
1

(0
.9

7
–

1
.0

4
)

0
.7

0
1

.0
0

(0
.7

4
–

1
.3

3
)

0
.9

9

B
A

C
H

2
rs

1
0

9
4

4
4

7
9

A
G

1
.1

7
(1

.0
4

–
1

.3
2

)
0

.0
1

1
1

.3
7

(1
.0

0
–

1
.8

8
)

0
.0

5
0

.9
1

(0
.8

0
–

1
.0

3
)

0
.1

5
1

.8
0

(1
.1

4
–

2
.8

5
)

0
.0

1
2

M
A

G
I3

rs
1

2
3

0
6

6
6

A
G

1
.2

3
(1

.0
9

–
1

.3
9

)
9

.0
6

1
0

2
4

1
.5

7
(1

.1
8

–
2

.1
0

)
1

.9
6

1
0

2
3

1
.0

8
(0

.9
6

–
1

.2
2

)
0

.2
2

1
.6

1
(0

.9
9

–
2

.6
0

)
0

.0
5

K
A

LR
N

rs
2

0
1

0
0

9
9

C
T

1
.0

5
(0

.9
0

–
1

.2
3

)
0

.5
2

0
.8

0
(0

.5
4

–
1

.2
0

)
0

.2
8

0
.8

2
(0

.7
1

–
0

.9
5

)
0

.0
1

0
0

.6
9

(0
.3

9
–

1
.2

4
)

0
.2

1

A
ll

an
al

ys
e

s
ad

ju
st

e
d

fo
r

ag
e

an
d

g
e

n
d

e
r.

A
TX

N
2-

rs
6

5
3

1
7

8
is

in
h

ig
h

LD
w

it
h

SH
2B

3-
rs

3
1

8
4

5
0

4
M

A
G

I3
-r

s1
2

3
0

6
6

6
is

in
h

ig
h

LD
w

it
h

P
TP

N
22

-r
s2

4
7

6
6

0
1

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

g
e

n
.1

0
0

4
1

2
3

.t
0

0
4

Table 3. Genetic risk score and the risk of TPOAb-positivity.

GRS Quartile
% TPOAb-positivity
(N cases/total) OR (95% CI)a P value

1 (reference) 5.4% (89/1637) - -

2 7.0% (114/1637) 1.29 (0.98–1.69) 0.07

3 9.0% (152/1695) 1.64 (1.26–2.13) 1.361024

4 10.4% (158/1523) 2.18 (1.68–2.81) 8.161028

GRS, genetic risk score (based on rs11675434, rs653178, rs10944479, rs1230666,
rs2010099).
aAdjusted for age and gender
doi:10.1371/journal.pgen.1004123.t003
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therefore used TPOAb-positivity cut-off values as provided by the

respective assay manufacturer, instead of using one fixed cut-off

value. This is also of clinical importance as in clinical practice most

institutions rely on the TPOAb-positivity cut-off as provided by

the assay manufacturer. Furthermore, we did not detect hetero-

geneity in our results, supporting the fact that results obtained with

different assays can be combined across cohorts using the z-score

based meta-analysis. Finally, as AITD coincides with other

autoimmune diseases, our results could be driven by indirect

associations with other autoimmune diseases. However, AITD is

the most common autoimmune disease in the general population.

We furthermore show that carriage of multiple risk alleles is

associated with an increased risk of thyroid dysfunction, which

underlines the clinical importance of our findings.

In conclusion, this first GWAS for TPOAbs identified five newly

associated loci, three of which were also associated with clinical

thyroid disease. Furthermore, we show that carriage of multiple

risk variants is not only associated with a substantial increased risk

of TPOAb-positivity, but also with a higher risk of increased TSH

levels (including subclinical and overt hypothyroidism) and a lower

risk of goiter. These genetic markers not only help to identify large

groups in the general population with an increased risk of TPOAb-

positivity, but may also predict which TPOAb-positive persons are

particularly at risk of developing clinical thyroid disease.

Materials and Methods

Study cohorts
For the TPOAb GWAS stage 1 and 2 analyses, and the

hypothyroidism, hyperthyroidism and goiter analyses, individuals

were recruited from 16 independent community-based and family

studies. For the Graves’ disease analyses, cases were recruited from

the United Kingdom Graves’ disease cohort and controls from the

British 1958 Birth Cohort. Thyroid cancer cases and controls were

recruited from the Nijmegen and Ohio thyroid cancer cohorts. A

detailed description of the original cohorts contributing samples is

provided in Table 1 and in the Supplementary Material. All

participants provided written informed consent and protocols were

approved by the institutional review boards or research ethics

committees at the respective institutions, and conducted according

to the Declaration of Helsinki.

Phenotype definitions
Serum TPOAb levels were determined with a range of assays.

TPOAb-positives were defined as subjects with TPOAb levels

above the assay-specific TPOAb-positivity cut-off, as defined by

the manufacturer (Table 1). Serum TSH and free thyroxine (FT4)

levels were determined using a range of assays (Table 1). Assay-

specific TSH and FT4 reference ranges were used, as provided by

the manufacturer (Table 1). Overt hypothyroidism was defined as

a high TSH (i.e., a TSH level above the TSH reference range) and

a low FT4. Increased TSH was defined as a high TSH, including

persons with overt hypothyroidism or subclinical hypothyroidism

(i.e., high TSH with a normal FT4). Overt hyperthyroidism was

defined as a low TSH and a high FT4. Decreased TSH was

defined as a low TSH, including persons with subclinical or overt

hyperthyroidism.

The diagnosis of goiter is described in the Supplementary

Material, and the diagnosis of Graves’ disease and thyroid cancer

in the respective cohorts have been described previously [41].

Genotyping
Samples were genotyped with a range of GWAS genotyping

arrays (Supplementary Table S1). Sample and SNP quality control

procedures were undertaken within each study. For each GWAS,

over 2.5 million SNPs were imputed using CEU samples from

Phase 2 of the International HapMap project (www.hapmap.org).

Genotyping procedures in the stage 2, Graves’ disease and

thyroid cancer populations are described in the Supplementary

Material.

Association analyses
The heritabilities of TPOAb-positivity and serum TPOAb levels

were estimated, as described in the Supplementary Material.

In stage 1, we performed a GWAS on TPOAb-positivity as well

as a GWAS on continuous TPOAb levels. Persons taking thyroid

medication were excluded. Each SNP was tested for association

with TPOAb-positivity using logistic regression analyses, adjusting

for age and sex. For cohorts with family structure, we approximated

the probability of being affected with a linear mixed model adjusting

for age and sex. The produced model was used to predict the

expected proportion of ‘‘risk’’ (effective) alleles in cases and controls,

hence giving the means to estimate odds ratios. Only unrelated

individuals were considered for the SardiNIA cohort. For the

GWAS of continuous TPOAb levels, samples with a TPOAb level

lower than the minimum TPOAb assay detection limit (Table 1)

were excluded. TPOAb levels were natural log-transformed,

and sex-specific, age adjusted standardized residuals were calcu-

lated. Each SNP was tested for association with these TPOAb

level residuals using linear regression analyses (additive model),

Table 5. Newly identified TPOAb associated loci, genetic risk scores and the risk of goiter.

Individual SNPs (2205 goiter cases/4532 controls) Genetic risk scores

Nearby gene SNP
Risk
allele

Other
allele OR (95% CI)a P value GRS Quartile

% Goiter
(N cases/total) OR (95% CI)a P value

TPO rs11675434 T C 0.95 (0.88–1.02) 0.17 1 (reference) 35.2% (588/1669) - -

ATXN2 rs653178 C T 0.95 (0.88–1.03) 0.22 2 33.7% (570/1691) 0.92 (0.79–1.06) 0.21

BACH2 rs10944479 A G 0.94 (0.85–1.05) 0.28 3 31.6% (530/1675) 0.84 (0.72–0.98) 0.03

MAGI3 rs1230666 A G 0.90 (0.81–1.00) 0.05 4 30.4% (517/1702) 0.77 (0.66–0.89) 6.561024

KALRN rs2010099 C T 0.93 (0.81–1.05) 0.23

GRS, genetic risk score (based on rs11675434, rs653178, rs10944479, rs1230666, rs2010099).
aAdjusted for age, gender, and body surface area.
ATXN2-rs653178 is in high LD with SH2B3-rs3184504.
MAGI3-rs1230666 is in high LD with PTPN22-rs24756601.
doi:10.1371/journal.pgen.1004123.t005
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correcting for relatedness in studies with family structure. See

Supplementary Table S1 for the software used for these analyses.

Before meta-analysis, SNPs with a minor allele frequency (MAF)

,1% or a low imputation quality were excluded (Supplementary

Material), after which the results of each GWAS were combined in

a population size weighted z-score based meta-analysis using

METAL [71]. Genomic control was applied to individual studies if

l.1.0.

In stage 2, we followed-up stage 1 GWAS significant SNPs, as

well as promising SNPs not reaching GWAS significance, in an

attempt to reach GWAS significant associations by increasing

sample size (Supplementary Material). Results from stage 1 and 2

were combined in a population size weighted z-score based meta-

analysis using METAL [71]. A z-score based meta-analysis was

used to reduce bias that might be induced by different assays. As

this method does not provide betas, and we wanted to provide a

rough estimate of the actual effect sizes for convenience, we

calculated betas using the fixed effects (inverse variance based)

meta-analysis method. Heterogeneity was tested, applying bonfer-

roni based P-value thresholds of P = 0.004 for the TPOAb-

positivity analyses and P = 0.005 for the TPOAb level analyses.

All studies assessed and, if present, corrected for population

stratification using principal-component analysis (PCA) and/or

multidimensional-scaling (MDS), with the exception of SardiNIA

and ValBorbera where the high isolation substantiates a lack of

stratification (Table S1) [72,73]. Lambda values were all ,1,

indicating that population stratification was overall properly

accounted for (Table S1). To fully remove residual effects, we

applied genomic correction to studies were lambda was .1. The

final meta-analyses reported a lambda of 1.01 for both the

TPOAb-positivity and the TPOAb level GWAS, thus no genomic

correction was applied.

The variances explained by the GWAS significant SNPs were

calculated. We subsequently studied the individual as well as the

combined effects of the GWAS significant SNPs on the risk of

clinical thyroid disease, as specified in the Supplementary

Material. In short, to study combined effects, a genetic risk score

was calculated for every person as the weighted sum of TPOAb

risk alleles. The associations between the individual SNPs, genetic

risk scores and the risk of abnormal thyroid function tests were

studied using logistic regression analyses. Logistic regression

analyses were used to study the associations with goiter, Graves’

disease and thyroid cancer (Supplementary Material). The results

of each study were combined in a population size weighted z-score

based meta-analysis using METAL [71].

Various bioinformatic tools were searched for evidence for

functional relevance of the GWAS significant SNPs and pathway

analyses were performed on the Stage 1 lead SNPs (see

Supplementary Material).

Supporting Information

Figure S1 TPOAb level distributions in persons with detectable

TPOAb levels in stage 1 and 2 populations.

(PPTX)

Figure S2 Quantile-quantile (QQ) plots for the TPOAb-

positivity and TPOAb level stage 1 meta-analyses.

(PPTX)

Figure S3 Manhattan plots for stage 1 meta-analyses for

TPOAb-positivity (a) and TPOAb levels (b). SNPs are plotted on

the x-axis according to their chromosomal position against

TPOAb-positivity (a) or TPOAb levels (b) (shown as – log10 P

value) on the y-axis. The horizontal grey line indicates the

threshold for genome-wide statistical significance (P,561028).

Genome-wide significant associations were observed near TPO

(Chr 2p25; P = 1.5610212), at ATXN2 (Chr 12q24.1;

P = 1.661029) and near HCP5 (Chr 6p21.3; P = 4.161028) for

TPOAb-positivity, and near TPO (Chr 2p25; P = 5.4610213) and

at ATXN2 (Chr 12q24.1; P = 1.161028) for TPOAb levels.

(PPTX)

Figure S4 Regional association plots of stage 1 lead loci for

TPOAb-positivity (panels a-m). The y-axis on the left indicates the

– log10 P value for the association with TPOAb –positivity. SNPs

are plotted on the x-axis according to their chromosomal position.

The most significant stage 1 SNP is indicated in purple. The

combined stage 1 and 2 result of this SNP is indicated in yellow.

The SNPs surrounding the most significant SNP are color-coded

to reflect their LD with this SNP. Symbols reflect functional

genomic annotation, as indicated in the legend. The blue y-axes

on the right of each plot indicate the estimated recombination

rates (based on HapMap Phase II); the bottom of each panel shows

the respective annotated genes at the locus and their transcrip-

tional direction. Mb, megabases.

(PPTX)

Figure S5 Regional association plots of stage 1 lead loci for

TPOAb levels (panels a-j). The y-axis on the left indicates the –

log10 P value for the association with TPOAb levels. SNPs are

plotted on the x-axis according to their chromosomal position.

The most significant stage 1 SNP is indicated in purple. The

combined stage 1 and 2 result of this SNP is indicated in yellow.

The SNPs surrounding the most significant SNP are color-coded

to reflect their LD with this SNP. Symbols reflect functional

genomic annotation, as indicated in the legend. The blue y-axes

on the right of each plot indicate the estimated recombination

rates (based on HapMap Phase II); the bottom of each panel shows

the respective annotated genes at the locus and their transcrip-

tional direction. Mb, megabases.

(PPTX)

Figure S6 GRAIL results for the stage 1 TPOAb-positivity and

TPOAb level lead SNPs. GRAIL circle plot of locus connectivity

where each locus is plotted in a circle, where significant

connections (P,0.05) based on PubMed abstracts are drawn

spanning the circle. Analyses were based on the 20 stage 1

TPOAb-positivity and TPOAb level lead SNPs.

(PPTX)

Table S1 Study sample genotyping, quality control and

association analyses for stage 1 populations.

(DOCX)

Table S2 Associations of stage 1 lead SNPs with TPOAb-

positivity in stage 1 and 2.

(DOCX)

Table S3 Associations of stage 1 lead SNPs with serum TPOAb

levels in stage 1 and 2.

(DOCX)

Table S4 Stage 1 TPOAb-positivity and TPOAb level meta-

analyses results for GWAS significant SNPs reported in previous

GWAS on thyroid related phenotypes.

(XLSX)

Table S5 Genetic risk score and the risk of increased TSH levels.

(DOCX)

Table S6 Newly identified TPOAb associated loci and the risk of

thyroid cancer.

(DOCX)
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Table S7 Top IPA associated networks for the Stage 1 TPOAb-

positivity and TPOAb level lead SNPs.

(DOCX)

Table S8 Top IPA associated canonical pathways for the Stage

1 TPOAb-positivity and TPOAb level lead SNPs.

(DOCX)

Text S1 Supplementary methods.

(DOCX)
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genotyping; Duke University, NC, USA, for genotyping; and the Finnish

Institute of Molecular Medicine, Finnish Genome Center, University of

Helsinki. We thank the volunteer twins who made available their time.

The United Kingdom (UK) Graves’ disease cohort would like to thank

all principle investigators (Amit Allahabadia, Northern General Hospital;

Sheffield, UK, Mary Armitage Royal Bournemouth Hospital, Bourne-

mouth, UK; Krishna V. Chatterjee, University of Cambridge, Adden-

brookes Hospital, Cambridge, UK; John H. Lazarus Centre for Endocrine

and Diabetes Sciences, Cardiff University, Cardiff, UK; Simon H. Pearce,

Institute of Human Genetics, Newcastle University, Newcastle-upon-Tyne,

Newcastle, UK and Bijay Viadya, Royal Devon and Exeter Hospital,

Exeter, UK), doctors and nurses for recruiting AITD subjects into the

AITD National Collection.

in the study, the local administrations and the ASL-Novi Ligure for support

Camaschella, Prof Federico Caligaris-Cappio and the MDs of the

collection.

Author Contributions

References

1. Gough SC (2000) The genetics of Graves’ disease. Endocrinol Metab Clin North

Am 29: 255–266.

2. Simmonds MJ, Gough SC (2004) Unravelling the genetic complexity of

autoimmune thyroid disease: HLA, CTLA-4 and beyond. Clin Exp Immunol

136: 1–10.

3. Tunbridge WM, Evered DC, Hall R, Appleton D, Brewis M, et al. (1977) The

spectrum of thyroid disease in a community: the Whickham survey. Clin

Endocrinol (Oxf) 7: 481–493.

4. Biondi B (2012) Mechanisms in endocrinology: Heart failure and thyroid

dysfunction. Eur J Endocrinol 167: 609–618.

5. Collet TH, Gussekloo J, Bauer DC, den Elzen WP, Cappola AR, et al. (2012)

Subclinical hyperthyroidism and the risk of coronary heart disease and mortality.

Arch Intern Med 172: 799–809.

6. Davis JD, Tremont G (2007) Neuropsychiatric aspects of hypothyroidism and

treatment reversibility. Minerva Endocrinol 32: 49–65.

7. Gencer B, Collet TH, Virgini V, Bauer DC, Gussekloo J, et al. (2012)

Subclinical thyroid dysfunction and the risk of heart failure events: an individual

participant data analysis from 6 prospective cohorts. Circulation 126: 1040–

1049.

8. Nicholls JJ, Brassill MJ, Williams GR, Bassett JH (2012) The skeletal

consequences of thyrotoxicosis. J Endocrinol 213: 209–221.

9. Rodondi N, den Elzen WP, Bauer DC, Cappola AR, Razvi S, et al(201)

Subclinical hypothyroidism and the risk of coronary heart disease and mortality.

Jama 304: 1365–1374.

10. Ruhla S, Weickert MO, Arafat AM, Osterhoff M, Isken F, et al. (2010) A high

normal TSH is associated with the metabolic syndrome. Clin Endocrinol (Oxf)

72: 696–701.

11. Selmer C, Olesen JB, Hansen ML, Lindhardsen J, Olsen AM, et al. (2012) The

spectrum of thyroid disease and risk of new onset atrial fibrillation: a large

population cohort study. Bmj 345: e7895.

12. Pearce EN, Farwell AP, Braverman LE (2003) Thyroiditis. N Engl J Med 348:

2646–2655.

13. Schweizer U, Chiu J, Kohrle J (2008) Peroxides and peroxide-degrading

enzymes in the thyroid. Antioxid Redox Signal 10: 1577–1592.

14. Brix TH, Hegedus L, Gardas A, Banga JP, Nielsen CH (2011) Monozygotic twin

pairs discordant for Hashimoto’s thyroiditis share a high proportion of thyroid

peroxidase autoantibodies to the immunodominant region A. Further evidence

for genetic transmission of epitopic ‘‘fingerprints’’. Autoimmunity 44: 188–194.

15. Huber G, Staub JJ, Meier C, Mitrache C, Guglielmetti M, et al. (2002)

Prospective study of the spontaneous course of subclinical hypothyroidism:

prognostic value of thyrotropin, thyroid reserve, and thyroid antibodies. J Clin

Endocrinol Metab 87: 3221–3226.

16. Nielsen CH, Brix TH, Leslie RG, Hegedus L (2009) A role for autoantibodies in

enhancement of pro-inflammatory cytokine responses to a self-antigen, thyroid

peroxidase. Clin Immunol 133: 218–227.

17. Strieder TG, Prummel MF, Tijssen JG, Endert E, Wiersinga WM (2003) Risk

factors for and prevalence of thyroid disorders in a cross-sectional study among

healthy female relatives of patients with autoimmune thyroid disease. Clin

Endocrinol (Oxf) 59: 396–401.

18. Strieder TG, Tijssen JG, Wenzel BE, Endert E, Wiersinga WM (2008)

Prediction of progression to overt hypothyroidism or hyperthyroidism in female

relatives of patients with autoimmune thyroid disease using the Thyroid Events

Amsterdam (THEA) score. Arch Intern Med 168: 1657–1663.

19. Weetman AP (2000) Graves’ disease. N Engl J Med 343: 1236–1248.

Novel Thyroid Antibody and Disease Loci

PLOS Genetics | www.plosgenetics.org 12 February 2014 | Volume 10 | Issue 2 | e1004123

The Busselton Health Study thanks the Busselton Population Medical

Research Foundation for approving the study. We thank Siemens Ltd.

Australia and New Zealand Healthcare Sector for donating assay reagents.

The Rotterdam Study thanks Pascal Arp, Mila Jhamai, Marijn Verkerk,

database, and Karol Estrada and Maksim V. Struchalin for their support in

creation and analysis of imputed data. The authors are grateful to the study

participants, the staff from the Rotterdam Study and the participating

general practitioners and pharmacists. We would like to thank Karol

Estrada, Dr. Fernando Rivadeneira, Dr. Tobias A. Knoch, Anis Abuseiris,

Luc V. de Zeeuw, and Rob de Graaf (Erasmus MC Rotterdam, The

Netherlands), for their help in creating GRIMP, and BigGRID,

computing resources. We would like to thank Symen Ligthart for his help

MediGRID, and Services@MediGRID/D-Grid for access to their grid

Lizbeth Herrera and Marjolein Peters for their help in creating the GWAS
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