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Abstract
We experimentally investigate the disposition of decision makers

to use case—based reasoning as suggested by Hume (1748) and formal-
ized by Case—Based Decision Theory (Gilboa and Schmeidler, 1995).
Our subjects face a monopoly decision problem about which they
have very limited information. Information is presented in a manner
which makes similarity judgements according to the feature matching
model of Tversky (1977) plausible. We provide subjects a “history”
of cases. In the 2×2 between—subject design, we vary whether in-
formation about the current market is given and whether immediate
feedback about obtained profits is provided. The results provide sup-
port for the predictions of Case—Based Decision Theory, particularly
when no immediate feedback is provided.
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1 Introduction

Considerable decision making in economics occurs in complex environments

in which the decision maker’s knowledge of the payoff function she faces is

severely constrained. Very little is known about decision making procedures

in such environments. Expected utility theory does not seem plausible in

such situations and, furthermore, cannot be used to make meaningful predic-

tions. It seems reasonable to suppose that people use a variety of procedures

or decision making algorithms in such complex environments in which the

decision maker’s information is severely limited.

A theory of decision making which is suitable for complex environments

follows from the ideas of the late Scottish philosopher David Hume (1711-

1776). According to Hume (1748), “From causes which appear similar we

expect similar effects.” Hume went on to assert that “This is the sum of all

our experimental conclusions.” A recent formulation of decision making by

Gilboa and Schmeidler (2001) provides a formalization of the ideas of Hume.

In Gilboa and Schmeidler’s Case—Based Decision Theory (CBDT) actions

are evaluated according to the similarity weighted sum of payoffs they have

yielded in similar problems.

In this paper we test whether decision makers use case—based reason-

ing in making their choices when given information that makes similarity

judgements of a particular kind salient. Specifically, a feature—based simi-

larity function (Tversky, 1977) seems plausible given the description of the

decision problem the subjects face in our experiment. Given the salience

of the feature—based similarity function, we are able to predict the choices

that a case—based decision maker (DM) would make and can compare those

predictions with actual behavior of participants in the experiment. This al-

lows us to test whether our subjects employ CBDT, assuming feature—based

similarity, in their decision making.
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This paper is not aimed to test the (axiomatically developed) models of

either Gilboa and Schmeidler or Tversky, in which case it would be more

suitable to test if people behave according to their respective axioms. Nor,

is this paper aimed at deriving the similarity functions people use. For this

a very different experimental design would be optimal. Rather, we aim to

see if the combined models have predictive power in environments in which

expected utility theory has little predictive power. Specifically, we investi-

gate if people choose according to CBDT in an environment (decision making

task) where the assumption of feature—based similarity seems plausible.

While CBDT has been used in applied work in economics (e.g. financial

markets, Guerdjikova, 2002 and 2003; housing markets, Gayer et al., 2007;

and capacity planning, Jahnke et al., 2005), little experimental evidence has

been gathered by economists to test the plausibility of the reasoning sug-

gested by Hume which is distinct from what is usually assumed in economics.

Ossadnik et al. (2013) find support for the predictive power of CBDT in re-

peated decision problems of structural ignorance. Our paper provides a first

such test for a one—shot decision problem.

CBDT is not proposed as an alternative to or a generalization of the dom-

inant expected utility theory.1 It is thought to be suitable in environments

which are suffi ciently complex or in which the decision maker’s information

is severely limited so that the expected utility approach can not plausibly be

used. In such situations, the decision maker may be more likely to rely upon

her past experiences to evaluate current choices and reason in the manner

suggested by Hume.

In order to test the predictions of a simple variant of CBDT and fea-

ture based similarity, we study production choices of a monopolist who is

producing for several independent markets about each of which she has some

1For a formal relation between expected utility theory and CBDT see Matsui (2000).
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knowledge of “past cases.” In this environment, a case—based decision maker

employing a feature—based similarity function would compare the market

conditions of her “past cases,”or “memory,”to the market conditions she is

currently facing and use that similarity measure to weigh the past outcomes

of each of her production choices.

We employ a 2×2 design, in which we first contrast behavior in situations
in which CBDT can be used with situations in which it cannot be used. We

do this by comparing the choices of a monopolist who has some information

about the current market conditions with choices when the monopolist does

not have such information. In the latter the monopolist has no information

with which to make a (feature-based) similarity comparison. Second, we

analyze if immediate feedback about the obtained profits makes the subject

more (or less) prone to use CBDT. The provision of such information may

potentially confound the use of the simple versions of the models we test.

We do this by either revealing profits from a market right after a production

choice is made or delaying such feedback until production choices have been

made for all of the markets.

Our results provide some support for CBDT. First of all, as expected,

observed choices are different when participants are given information about

the current market alongside a “market history” compared to when such

information is not given. More importantly, we find that for almost all

participants CBDT (coupled with feature based similarity) predicts more

choices correctly than a random choice model. For a significant subset of

participants CBDT predicts more than half of their choices correctly, and

for a smaller, yet substantial subset, CBDT predicts more than two thirds

of their choices correctly. The support for CBDT is stronger when payoff

information is delayed until the end of the experiment. We interpret this as

suggesting that CBDT (coupled with feature based similarity) is more salient

when additional information about the performance of the DMs choices is not
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immediately provided because such information alters the decision making

procedure (and/or the similarity relation) used by the DM.

While feature—based similarity seems to be very salient given our design,

other similarity relations are plausible. For example, subjects could believe

that the production choice with the highest payoff in memory will yield the

highest payoff in the current market. We find that if payoff information is

given immediately after production choices for each market are made, equally

many participants seem to be guided by CBDT as by the simple heuristic

that assumes that similar production choices yield similar profits independent

of how similar the current market is to the scenario in memory. However,

when such information is not given, CBDT predicts more choices correctly.

The remainder of the paper is organized as follows. Section 2 introduces

CBDT and the notion of similarity. It gives a motivation for the specific

functional form of similarity that we are using. Section 3 explains the

experimental design. Section 4 states the predictions and our hypotheses.

Section 5 discusses the experimental results and Section 6 provides concluding

remarks. Appendix A contains a sample set of instructions and Appendix

B provides additional individual data.

2 Preliminaries

2.1 Case—Based Decision Theory

Often times, decisions have to be made with very little information about the

underlying environment. Consider the following example where only limited

information is available:

The manager of a firm is looking to hire a technician for her

newly established IT department. Her choice set is given by

the applicants for the job. She knows that she is looking for
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a technician who is highly skilled at computer networking, flu-

ent in visual basic, and can lead and motivate the rest of the IT

team. She, however, does not know how each candidate would

perform if hired. For example, a candidate may be highly skilled

in all of the requisite areas, but it may turn out that he is going

through a painful divorce and is continuously late for work and of-

ten depressed. Or a candidate may display great leadership and

organizational skills but may turn out to be very poorly skilled at

computer networking. The more she thinks about it the more she

realizes that other problems may also occur and that she has no

way of knowing what they might be or how they might affect the

company. The manager is facing uncertainty, ambiguity, and a

lack of information on several dimensions.

There are several diffi culties with fitting this problem into the framework

of expected utility. First, the states of the world do not naturally suggest

themselves. Second, imagining all of the possible outcomes for each action is

not a trivial task. This would amount to imagining every possible thing that

could happen once an applicant is hired and imagining all of those things for

every possible applicant. Lastly, even after an action has been taken, the

outcome may not reveal the realized state of the world or whether the action

chosen was optimal. For situations like this, when DMs cannot be guided

by expected utility theory, CBDT has been suggested as an alternative.

The basic premise behind CBDT is that a DM uses her past experiences

(or the experiences of others) to help evaluate current choices, rather than

relying on beliefs about certain states of the world occurring. In the above

example, if each job candidate provided references, then the manager could

use the candidate’s previous performance to help assess how each candidate

would perform if she was hired. In order to help evaluate past outcomes, an

agent possesses a similarity function that quantifies how similar the current
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situation is to a past situation. The agent is assumed to compare the current

situation to all available past situations. The more similar the current

situation is to a past situation the more heavily the agent will weigh the

outcome of that past situation. The agent is then assumed to choose the

action that maximizes the sum of the similarity weighted outcomes of all past

situations.

Formally, a case—based DM is assumed to have a memory, M , consisting

of a set of cases. A case consists of a problem or situation, q, the action

chosen in that situation, a, and the utility, u(r), gained from choosing action

a in situation q and receiving the result (or outcome or consequence) r.

Gilboa and Schmeidler (1995) provide axioms under which a cased—based

DM behaves as if he possesses a similarity function, s(p, q), which evaluates

the similarity between the current situation and any past situation. When

confronted with a problem, p, the case—based DM chooses the action a that

maximizes

U(a) = Up,M(a) =
∑

(q,a,r)∈M

s(p, q)u(r), (1)

where s (p, q) measures the similarity between the current situation p and

some past situation q. When considering any action a, the case—based DM

only concerns herself with past situations in which that particular action was

chosen. If in a past situation action a was not chosen, then the result and

the subsequent utility obtained in that situation are ignored.2

In other words, a case—based DM adds up, over all cases in her memory,

the similarity weighted utility that each action has received.3 Whichever

2For a version of case—based decision theory that allows the agent to use such informa-
tion, see Gilboa and Schmeidler (1997).

3CBDT usually does not make any distinction between an action that resulted in zero
utility and one that simply was not chosen, since zero utility is typically taken as the
default aspiration level.
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action has the largest sum is the action that is predicted to be chosen in

the current situation. Note that this means that any action that has never

been chosen in the past will not be chosen in the current situation unless all

actions chosen in the past resulted in negative utility.4

2.2 Similarity

Let’s reconsider the example of the IT manager. Assume the manager

received equally outstanding references for two candidates (Betty and Bob)

and she must decide between them. Suppose Bob’s reference was from a

previous job in which he designed and maintained webpages. However,

Betty’s reference was from a previous job in which she was the head of a

large corporation’s IT department and was responsible for maintaining all

networking. It seems obvious that the similarity between the past situation

in which Betty was hired and the manager’s current one is greater than the

similarity between the past situation in which Bob was hired and the current

one. Therefore Betty’s outstanding recommendation will receive more weight

than Bob’s and the manager will choose to hire Betty.

While the above example seems intuitive, we have to consider a specific

form for the similarity function in order to obtain actual choice predictions

from CBDT. While the notion of similarity has not been widely studied in

the economics literature, it has been the subject of much discourse in the

psychology literature (see Goldstone and Son, 2005 for an overview).5 Most

of the models of similarity can be divided into two groups: geometric models

and feature—matching models.

Geometric models assume that the objects that are being evaluated can

be represented in some n—dimensional space. The (dis)similarity between

4In such a scenario a case—based DM is assumed to randomly choose an action from
the set of available actions that have not yet been chosen.

5See Rubinstein (1988) and Sarin and Vahid (2004) for previous applications in eco-
nomics.
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two objects is then calculated as some measure of distance between the two

objects. The most typical measures are the Euclidean distance and the City—

Block distance. While these models have desirable mathematical properties,

experimental studies have shown that they do not do well in representing

how subjects actually perceive similarity (see Goldstone and Son, 2005 and

Tversky, 1977 for overviews).6

In response to some of these findings, Tversky (1977) developed a model

of similarity that assumes that objects can be described by a set of features

and that similarity is defined over the features that two objects have in

common and those that they do not have in common. This allows an agent

much more flexibility in measuring the similarity between two objects, and

also allows similarity to be measured among objects that do not naturally

lend themselves to placement in some n—dimensional space. Specifically,

Tversky’s model says that similarity is calculated in the following manner.

Let A be the set of features associated with object a and let B be the set of

features associated with object b. The measure of how similar a is to b is

given by s(a, b) = θf(A ∩ B) − βf(A − B) − γf(B − A), where θ, β, and γ
are positive constants and f is an interval scale that represents the salience

or prominence of various features. Thus, the similarity between two objects,

a and b, is a function of the set of features the two have in common, those

that a has but b does not, and those that b has but a does not. This allows

the measure of similarity between a and b to be positive or negative and it

allows the similarity between a and b to differ from the similarity between b

6In particular, several of the properties of the geometric models are consistently violated
by experimental subjects. First, it has been shown that the identity property does not
hold, i.e. subjects do not always perceive an object as identical to itself (see Podgorny
and Garner, 1979). Second, actual similarity evaluations are not always symmetric (see
Holyoak and Gordon, 1983; and Ortony et al., 1985). For instance, a subject reporting
that domestic cats are very similar to tigers does not necessarily indicate that the same
subject will report that tigers are very similar to domestic cats. Lastly, the triangle
inequality often does not hold, nor does transitivity (Tversky and Gati, 1982). Finding
objects A and B very similar and objects B and C very similar does not necessarily
indicate that the subject will find objects A and C very similar.
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and a.

In order to remain within the bounds of Case—Based Decision Theory,

we use a simplified version of Tversky’s feature based similarity function

when calculating its predictions in our setup. The underlying axioms of

CBDT imply that the similarity function a case—based DM uses can only

take on values between 0 and 1. To achieve this we choose β = γ = 0 to

prevent the similarity function from taking negative values. We assume that

all features are given the same weight when calculating similarity, i.e. it is

not more important to have feature 1 in common than it is to have, say,

feature 2 in common. We let f count the number of features two objects

have in common. CBDT assumes that if two objects are identical then the

similarity between them is equal to 1 and that it is equal to 0 if they have

no features in common. To ensure this we set the parameter θ equal to the

reciprocal of the maximum number of features two objects could possibly

have in common.7 With the additional assumption of u(r) = r the decision

problem of a case—based DM can be formulated as choosing

max
a
U(a) = Up,M(a) =

∑
(q,a,r)∈M

θf (p ∩ q) r. (2)

3 Experimental Design

Since this is the first experimental investigation of case—based decision mak-

ing for one shot decision problems, there are several aspects of the design

that need detailed discussion. We will first give a general description of

the individual decision making framework we use and then explain why we

made particular design choices. Special attention is paid to the manner in

7If one only knows if attributes are equal or not, one can represent it as the “city block”
distance in a model where the new attribute aij is an indicator of the old attribute bi and
takes the value vi. This is standard encoding of qualitative variables as indicator ones in
econometrics.
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which we induce the decision maker’s memory, how the similarity between

the current and the “past”problems is generated and how the complexity of

the task is created.

Subjects acted as monopolists making production choices for 30 differ-

ent and independent markets. In each market, the production choice was

limited to one of four values: 50, 100, 150, or 200. Subjects were informed

that their profits depended on their production choice and some market con-

ditions. Four different marketing reports (scenarios) with information on

“past”market conditions and production choices with resulting profits were

displayed for each market. This provided the memory of the DMs. In half

of the treatments subjects were informed about the current market condi-

tions, in the other half they are not. In half of the treatments, after making

a production choice, subjects were informed about their profits from that

market and then moved on to the next market. Otherwise the feedback

about the profits made in each of the markets was delayed until the end of

the experiment. Table I summarizes our 2×2 between—subject design.

Table I:

The 2×2 Experimental Design

Information

Past + Current Past Only

Feedback Immediate 39 subjects 30 subjects

Delayed 33 subjects 31 subjects

Figure 1 shows a screenshot of the experimental interface for the treat-

ment in which immediate feedback and information about the current market

conditions is given.8 In the language of CBDT, the current problem is given

by a Current Market Report that includes features of Market Conditions on

8Screenshots of the other three treatments are given in Appendix C.
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the right hand side of the page. The cases in the DMs memory are given by

four Scenarios that include features of the market conditions. Each case is

listed with an act (Production Value) and an outcome/consequence (Profit).

Figure 1: Screenshot

One—shot decisions, independence of markets: In the instructions,
and in the questionnaire following the instructions, we made sure that the

subjects understood that the markets were independent from one another

and that decisions made for one market would not affect any other market.9

9We chose to work in a framework where a DM never encounters the same problem
twice. CBDT can, however, be modified to study choices in repeated decision problems
(see, e.g., Gilboa and Schmeidler, 2001).
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To emphasize that the markets were independent, a different set of market

conditions was displayed in each market.

Memory: Control over the memory is important in order to make accu-
rate predictions in CBDT. Firstly, we wanted to minimize the effect of any

“home—made prior,”i.e. memory the subjects brought to the lab with them.

We did this by the novel manner in which we presented the decision problem

and, in particular, our use of symbols. We believe the use of symbols rather

than numbers made it more diffi cult for subjects to use their extant memory

to deal with the problem at hand. Our use of symbols will be discussed in

more detail when we talk about how we induce similarity.

Secondly, we did not want subjects to “build”a memory over the 30 dif-

ferent markets they faced during the experiment. We, therefore, emphasized

that markets were independent. We induced a separate and different “mem-

ory”for each of the 30 markets. We did this by displaying four scenarios in

each market. The displayed scenarios and the market conditions which they

represented were different for each market. For each of the four scenarios,

a different production choice and the profit that would have been earned

given that production choice and the market conditions, was displayed.10

To ensure that in each market each production value was a possible choice

for a case—based decision maker, each memory contained one observation of

each possible production value. Thus, the memory of each subject, for each

market, consists of 4 scenarios and their descriptions (i.e. the market condi-

tions and their corresponding symbols, the production choices, and resulting

profits).

A case—based decision maker would calculate the similarity between the

current market and the four cases (i.e. four scenarios) in her memory and

use the similarity measure to weigh the profit that was “received” in each

10See Appendix A for a full set of the instructions.
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case. The production value with the highest similarity—weighted profit is the

one that a case—based decision maker would choose. The displayed market

conditions and production values were randomly generated for each market.

While it was possible for profits to be negative for a given decision, overall

accumulated profits could never be negative.

If our subjects adjusted their behavior in response to the actions they

chose (in unrelated markets) and the profits they obtained, then the four cases

that we provided would not be the only basis for their decisions. That is, if

the subjects were (erroneously, because the markets were unrelated) learning

through reinforcement, then our assumptions would not be met and we would

have lost control. We therefore vary whether subjects are informed about

their profits from each market immediately after they make a production

choice or not. If the (profit) feedback is delayed, all profits from all markets

are displayed at the end of the experiment. The delayed feedback condition

eliminates most kinds of reinforcement learning that could have potentially

occurred across the independent markets.

Similarity: In an attempt to make the use of a feature—based simi-
larity function salient we displayed all values of the market conditions as

symbols. Subjects were told that the marketing report in each market was

transmitted by their marketing department with an error that resulted in all

numbers/levels being erased and only symbols being reported.11 Subjects

were informed that the error was consistent, i.e. the same symbol always

meant the same thing for the same market condition, while it could mean

different things for different market conditions. All participants faced the

11We used a square, a triangle and a circle. To distinguish shapes easier, we colored
them. Squares were always green, triangles blue and circles orange. Since the experimental
interface included geometric forms and colors, we asked participants after the experiment
how they interpreted those. In particular, participants were asked: “If it were the case
that the three symbols you saw during the experiment [symbols again given here] stood
for high, medium and low, which symbol would you think stood for which level?” We
found no correlation between any symbol and level.
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same markets in the same order with the same set of scenarios given to them.

There are several reasons we chose to use symbols instead of actual val-

ues. Firstly, it eliminates geometric similarity considerations. Secondly, it

reduces home—made priors. What we discovered in pilot experiments was

that people treated large values of some features closer to other large values

of the feature (and, hence, more similar than) smaller values of the feature.

This is problematic for the simple (original) version of CBDT where similar-

ity can either be 0 or 1. Furthermore, the values interacted with the features

of the decision problem in a way that brought into the lab things we wanted

to control for. For example: home—made priors of the following type were

possible: “The temperature is very high today so I shouldn’t produce very

much because it’s too hot for buyers to want to be out shopping.” These

observations suggested that the subjects were using similarity relations in

their memory before entering the laboratory to inform the decision task in

the laboratory. We wanted control over the subject’s memory and did not

want them to be able to (systematically) use their earlier memory for the

decision tasks they faced in the lab. We believe the use of symbols makes

it more diffi cult for people to bring their “real world”memories into the lab

in any systematic way. It therefore allows us to test the theory better and

with less interference from similarity relations the subjects may have devel-

oped from life outside the lab. We acknowledge that this might restrict

the external validity of our experiment but we wanted to test the theory as

cleanly as possible. We also acknowledge that the use of symbols could lead

the subjects to think in terms of similarity. However, we believe that even

with values (rather than symbols) people use similarity judgements. With

symbols, we believe, they are more likely to use feature—based similarity as

we assume. That is, we feel the use of symbols gave us better control.

Complexity: CBDT was conceived under the premise that in many de-
cision problems states of the world are neither naturally given nor can they
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be simply formulated. Furthermore, it assumes that often even a compre-

hensive list of all possible outcomes is neither readily available nor easily

imagined. In order to generate a complex enough environment, in which it

is impossible for subjects to figure out potential states of the world or associ-

ated outcomes, we let the profit of the monopolist in a given market depend

on many different variables that we call market conditions.

We used a total of 12 different market conditions. Subjects, however,

did not know this. In each market, subjects were only given information

on a random subset of 5 conditions.12 Deriving predictions using a lin-

ear feature—based similarity relation assumes that all market conditions are

equally weighted. We therefore did not want to give the names too much eco-

nomic meaning and have subjects trying to guess which ones might influence

their sales and therefore their profits as such a behavior would have violated

the assumption of equal weights, we decided to name our market conditions

as neutrally as possible. We came up with Tourist Population, Wind, UV

Factor, Chance of Rain, % of Population Female, Humidity, Traffi c Condi-

tions, Temperature, Literacy Rate, Median Age, # of Potential Buyers, and

Gas Price. Subjects never saw the last two conditions: # of potential buyers

or gas price. Subjects did not even know that these conditions existed. For

each market each condition was randomly chosen to have a value of either 1,

2, or 3.

We generated 15 different payoff functions and used each one twice. The

payoff functions were not additively separable, varied according to which

choice maximized the payoff and differed in the “penalty”for making a non—

optimal choice.13 Of the 12 market conditions a randomly selected set of

4 would enter the payoff function in each market. Out of the 5 conditions

12The market conditions displayed in the hypothetical scenarios are the same as those
given in the marketing report so that similarity comparisons could be made between them.
13To ensure comparability across treatments, the subjects faced the same payoffs func-

tion in the same order.

16



that the subjects saw in each market, 3 were payoff relevant and the other 2

were not. As mentioned before, two conditions (# of potential buyers and

the gas price) were never reported to the subjects. One of these was chosen

at random to enter the payoff function in each market.14

We furthermore vary whether subjects are given information about the

current market in addition to the four scenarios in the induced memory. The

treatment without current information acts as a control treatment. Subjects

cannot use case—based reasoning to make their choices if there is no infor-

mation about the current decision problem. Note that all subjects in all

treatments saw the same sequence of market conditions and the underlying

profit functions were the same. Hence, we can make direct comparisons be-

tween the different treatments. Observed choices in the treatment without

current which coincide with choices that are in agreement with the predic-

tions of CBDT in the treatment with current information are due to factors

which do not involve case—based reasoning. Only the additional choices (in

the treatment with current information) in line with CBDT can be attributed

to case—based reasoning. Note that instead of a treatment that does not pro-

vide the current market report, we could have displayed the current market

report using incomparable information. We prefer the cleaner comparison

between a treatment with current market conditions and one without cur-

rent market conditions as anything else might have confused subjects and

introduced other errors into the decision making process.

The experiments were conducted at the Economic Research Laboratory

at Texas A&M University. Invitations to participate in the experiments

were randomly sent out to undergraduate students in our database of about

1,200 from a diverse background of majors. The experimental interface was

programmed in zTree (Fischbacher, 2007). On average the experimental

14An example of a payoff function is π(.) = 50q−0.009(3C1C2−C3C4)q2−1150 ln(q−48),
where q is the quantity chosen and Ci indicates market condition i.
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sessions lasted about 90 minutes and average earnings were $16.32 with a

minimum of $10.37 and a maximum of $19.56. Additionally, a $5 showup fee

was paid).15 We tested the participants’comprehension in a questionnaire

after reading the instructions. We individually checked their answers and

corrected them in private if necessary. We went over all questions again

aloud.

4 Predictions and Hypotheses

Using the screenshot from Figure 1 as an example, we would like to demon-

strate how Case—Based Decision Theory with a feature—based similarity would

make its predictions.16 For each scenario, a case—based DM would count the

number of conditions for which the symbol that is given in the scenario

matches the symbol that is given in the current market report. Looking at

Figure 1, we can see that scenario 1 has three conditions in which the symbols

are the same as in the current report (namely wind, humidity and temper-

ature). Scenario 2 also has three conditions that show the same symbols

(namely humidity, UV factor and temperature). Scenario 3 and 4 each have

one match (temperature and uv factor, respectively). A case—based DM

then weighs the received profits in each scenario with the similarity count

divided by 5, the total number of conditions and hence possible matches.

Hence, 2380 gets a weight of 3/5, 3880 gets a weight of 3/5 and 5580 and

4240 each get a weight of 1/5. The similarity weighted profit from scenario

2 is the biggest and therefore a case—based DM should choose 100 in this

market.

As for hypotheses, we first would like to establish that the provision of

information about the current market conditions makes a difference in the
15Sessions varied in size from 4 to 18 participants.
16The relatively coarse and simplified version of the feature based similarity function

that we employ makes the same predictions as a more generalized similarity function used
by Gilboa et. al (2006) in all but one market.
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choice behavior. We then postulate that this difference in choices is driven by

similarity comparisons that subjects make and incorporate into their decision

making through case—based reasoning.

H1: Choices in the treatments when current information is provided are

different from choices in the treatments when such information is not

provided.

H2: Choices in the treatments when current information is provided are

in line with case—based reasoning. Hence CBDT with feature—based

similarity is a good predictor of choices.

We do not have any hypothesis regarding the timing of the feedback. In-

tuitively, immediate feedback could interfere with our control over the sub-

ject’s memory and make predictions of CBDT less precise as it could lead to

subjects “learning”across markets. Past choices that seemed “satisfactory”

could be reinforced and hence alter the basis of similarity comparisons.17

We, therefore, check that no such learning was occurring in our analyses of

the data.

5 Experimental Results

5.1 The Effect of Current Information

For each market, we conduct Chi—square tests to determine whether behav-

ior differs when current information is given compared to when it is not.18

In 14/30 (13/30) markets, choices in the treatment with current information

17Note that subjects did not even know the range of payoffs. Any judgement regarding
the satisfaction through the evaluation of obtained payoffs is highly subjective.
18For the non—parametric tests used in this paper see Siegel and Castellan (1998).
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are significantly different from choices in the treatment without current infor-

mation when immediate (delayed) feedback is provided. These Chi—square

tests have to be interpreted with care, however, as frequencies are rather low

in some cells. The test tends to falsely not reject the null, i.e. choices show

up as not significantly different from one another when they actually are

(Type II error). We tend to interpret this conservative reading as support

for our first hypothesis: Choices in the treatments when current information

is provided are different from choices in the treatments when such informa-

tion is not provided. The question remains as to how people make use of the

provision of current information. Do they do so in the form of case—based

reasoning?

5.2 Absolute Performance of CBDT

We first analyze how well the predictions of CBDT match observed behav-

ior.19 We are interested in predicting individual behavior rather than the

average behavior of participants. We therefore calculate the mean squared

deviations (MSDs) of the theoretical prediction from the observed choice for

all 30 decisions a subject faced. We do this for each subject (individual

data can be found in Appendix B, Table V). If every market’s choice co-

incides with its CBDT prediction a subject would show a MSD of 0, and if

the subject never selected as predicted her MSD would equal 2. If a subject

was choosing randomly, one could interpret this as meaning that her choices

coincide with theoretical predictions 25% of the time (since there are four

choices to choose from). Given that CBDT is a deterministic model, it

seems unsuitable to compare it to a probabilistic one where each entry in the

prediction vector is 0.25.20 We therefore establish the benchmark of random

19For a first analysis we assume that the aspiration level of a case—based decision maker
is zero. This aspiration level can be easily adapted as we discuss in section 6.2.
20Such a calculation would lead to a MSD of 0.75. In general, the calculation of MSDs

favors probabilistic models over point predictions (see Selten, 1998 for an axiomatization
of quadratic scoring rules).
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choice as being correct 25% of the time and obtaining a MSD of 0 and being

incorrect 75% of the time realizing a MSD of 2. The average over all 30

decisions is then 1.5. Table II shows that CBDT predicts behavior better

than a random choice model for 97% (79.5%) of subjects in the treatment

with delayed (immediate) feedback. In order to see how many choices are

predicted correctly by CBDT we establish two other benchmarks: (1) pre-

dicted choices coincide with observed choices at least half of the time (in 15

out of 30 markets), and (2) predictions coincide with observed behavior at

least two—thirds of the time (in 20 out of 30 markets). Table II summarizes

the results and provides support for hypothesis 2 that subjects make use of

current information in the form of case—based reasoning.

Table II:

Observed Frequencies of individual MSDs

when comparing choices to CBDT predictions

CBDT predicts correctly more often than:

Random Half Two—Thirds

(>7 choices) (>15 choices) (>20 choices)

(MSD<1.5) (MSD<1) (MSD<0.67)

Immediate Feedback 79.5% (31/39) 25.6% (10/39) 15.4% (6/39)

Delayed Feedback 97.0% (32/33) 39.4% (13/33) 18.2% (6/33)

5.3 An Alternative Heuristic and Relative Performance

of CBDT

Since EUT is not a reasonable alternative decision making procedure in the

environment we consider, we look for simple decision making principles that

deliver predictions in our environment and that can pose as alternatives to

CBDT (other than the random choice model). Heuristics, or rules of thumb,

referring to useful and indispensable cognitive processes for solving problems
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that cannot be handled by logic and probability theory (e.g., Polya, 1954),

suggest themselves. Heuristics allow people to make decisions by simplifying

the complex environments people often face (e.g., Simon, 1955).

Gigerenzer and Goldstein (1996) introduced such a fast and frugal algo-

rithm, called “Take the Best”for a search problem. While we use the same

basic principle as “Take the Best,” the implementation of this heuristic is

quite different (and much simpler) in our environment. As such we call this

heuristic the “Max—Heuristic” in our setting. Our subjects are given four

scenarios for each of the decisions that they are facing, with each possible

production value being chosen and displayed once. The Max—Heuristic (or,

MAX) would predict that a DM chooses the production value that returned

the highest profit among those four scenarios. For example, looking at the

screenshot in Figure 1, a DM is predicted to choose 150, as it returned the

highest profit, 5580, of all the displayed production values. Note that in the

treatment where information about the current market is given this would

mean that DMs ignore that information. In the treatments when such infor-

mation is not given, MAX seems a rather suitable. Note also that even MAX

is based on similarity arguments. The similarity notion is, however, very

different. MAX is entirely based on the assumption that similar production

choices yield similar profits independent of how similar the current market

conditions are to the scenarios in memory.21 ,22

21Choices predicted by CBDT are different from those predicted by MAX in all but 7
markets. Note that if only the rank of profit were available instead of the exact profit,
then the results should not change according to the MAX heuristic. Since the focus of this
paper is not the MAX heuristic, we do not vary the design to investigate its robustness.
22As suggested by Karl Schlag, an alternative rule of thumb could be to prioritize simi-

larity, i.e., choose the production value whose scenario has the most features in common
with the current report (as long as its profit is positive). If there are more than one
of those production values, choose the one with the highest profit from this set. If the
production value whose scenario has the highest number of features in common with the
current report has a negative profit associated with it, choose the one that has the next
highest number of features in common. Again, if there are more of those, choose the one
that has the highest profit associated with it. In our experimental setup predicted choices
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Table III demonstrates that CBDT is a better predictor than MAX when

feedback is delayed and current information is provided (i.e., individual MSDs

of observed choices from predicted choices are lower for CBDT). When

feedback is immediately provided and current information is given, CBDT

does not predict a larger proportion of choices when compared to MAX,

indicating that equally many participants seem to be guided by CBDT as

are guided by MAX.

Table III:

CBDT vs. MAX in Treatments w/ current

Robust Rank Order Test z—statistic

Immediate Feedback 0.03

Delayed Feedback −4.27∗∗
Note: ∗∗ indicates significance on the 5% level

Table IV summarizes the performance of MAX compared to the three

previously established benchmarks. Comparing the performance of CBDT

(as summarized in Table II) when information about the current market is

given and feedback is delayed with the performance of MAX (as summa-

rized in Table IV) we find that CBDT predicts better than random for more

subjects than MAX (Test of Equality of Proportions: z—value= 3.61, one—

tailed p < 0.001).23 In this treatment, CBDT predicts more than half and

more than two thirds of the choices correctly more often than MAX (Test

of Equality of Proportions: z—value= 2.87 (1.51), one—tailed p = 0.00211

of such a heuristic coincide with predicted choices of CBDT in all but three markets. We
therefore do not separately analyze its predictive power.
23The specific test statistic is z = (p1−p2)/Spc , where pi is the proportion in subsample

i, and Spc =
√
pc(1− pc)( 1N1

+ 1
N2
) is an estimate of the standard error of the difference

in proportions, p1 − p2. pc is an estimate of the population proportion under the null
hypothesis of equal proportions, pc = (p1N1 + p2N2)/(N1 + N2), where Ni is the total
number of subjects in subsample i (see Glasnapp and Poggio, 1985).
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(0.0655)). When feedback is immediately provided, CBDT and MAX are

equally good when compared to a random choice model or when comparing

the number of choices predicted correctly (more than half and more than two

thirds, respectively).
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Table IV:

Observed Frequencies of individual MSDs

when comparing choices to MAX predictions

Max—Heuristic predicts correctly more often than:

Random Half Two—Thirds

(>7 choices) (>15 choices) (>20 choices)

(MSD<1.5) (MSD<1) (MSD<0.67)

Immediate w/ Current 87.2% (34/39) 20.5% (8/39) 10.3% (4/39)

Feedback w/o Current 93.3% (28/30) 33.3% (10/30) 26.7% (8/30)

Delayed w/ Current 60.6% (20/33) 9.1% (3/33) 6.1% (2/33)

Feedback w/o Current 80.6% (25/31) 29.0% (9/31) 12.9% (4/31)

Figures 2 and 3 graphically show the performance of CBDT predictions.

Performance is evaluated by how many of the 30 decisions are predicted cor-

rectly, i.e. coincide with actually observed choices. The cumulative density

of observed choices coinciding with predicted choices is plotted for the differ-

ent treatments.24 To make comparisons easier, two vertical lines, referring

to 1/4 (random) and 2/3 (two—thirds) of the decisions, are included. The

further the lines are to the right, the more often do the predictions of CBDT

coincide with observed choices. The lower the lines the higher the proportion

of subjects for whom predicted choices coincide with observed choices. The

figures can be tied back to Tables II and IV. In addition to the benchmark of

7.5 correct choices for a random model, we simulated 100 subjects to make 30

decisions randomly. We plot the cumulative probability distribution of the

simulated choices that coincide with actual choices and add them to Figure

2 for comparison.

Figure 2 clearly shows that CBDT does better than a random model.

If one takes 7.5 as the average of correctly predicted choices by the random
24Each subject is characterized by one number that corresponds to how many of her

observed choices coincide with theoretically predicted choices.
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model, than Figure 2 shows that for 79.5% of the subjects CBDT does better

(as indicated in Table II) when feedback is immediate.25 This percentage

is 97% when correctly predicted choices of CBDT are compared with ran-

domly correctly predicted choices when feedback is delayed. However, testing

the distribution of correctly predicted choices reveals no difference between

delayed and immediate feedback (Kolmogorov—Smirnov test, p = 0.177).
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Figure 2: Cumulative density of choices in line with CBDT predictions
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Figure 3: Cumulative density of choices in line with predictions of CBDT or

MAX
25These percentages are 100% minus the percentage that is found at the intersection of

the solid line with the vertical line at 1/4.
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Figure 3 compares the performance of CBDT with the performance of

MAX. Panel (a) shows that when feedback about profits is immediately

given performance does not differ (Kolmogorov—Smirnov test, p = 1.000).

Panel (b) illustrates that CBDT outperforms MAX when feedback is delayed

(Kolmogorov—Smirnov test, p = 0.014).

6 Further Analyses of the Results

6.1 Learning

There are different types of learning that could take place in our experi-

ment. First, it seems natural to ask whether our subjects learn to become

case—based decision makers. If this was the case, we should observe that in-

dividual MSDs (calculated with respect to the CBDT predictions) get smaller

over time. Second, our subjects could learn across markets. For the purpose

of our paper it is important that there be no such learning. In the imme-

diate feedback treatment, in which subjects received feedback about their

performance after each decision, it could be conjectured that some kind of

reinforcement learning could be taking place.

In order to address the first type of learning we calculate the average

of an individual’s MSDs over the first 15 markets and compare this with

the average of the same individual’s MSDs (when calculated with respect

to the CBDT predictions) over the second 15 markets (see Appendix B for

the individual data). We find that 44% (17/39) show a smaller MSD in

the second half of the experiment when current information is provided and

immediate feedback is given. This percentage is not significantly different

from the percentage of those that show an increase in their MSDs, 38.5%

(15/39), (Test of Equality of Proportions, z—value= 0.46, n.s.). The same

holds when feedback is delayed and information about the current market is

given (18/33 (MSD decreases) vs. 14/33 (MSD increases), Test of Equality of
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Proportions, z—value= 0.92, n.s.). We can therefore conclude that subjects do

not tend to use CBDT more often over time, i.e. there is no learning towards

becoming a case—based DM. Interestingly, participants seem to follow MAX

more often over time when immediate feedback is given and no information

about the current market is given (21/30 (MSD decreases) vs. 8/30 (MSD

increases), Test of Equality of Proportions, z—value= 3.36, one—tailed p <

0.001). Immediate feedback is driving this result. The MSDs with respect

to MAX do not go down when feedback is delayed (14/31 (MSD decreases)

vs. 10/31 (MSD increases), Test of Equality of Proportions, z—value= 1.04,

n.s.).

In order to address the second type of learning, we derive predictions from

a reinforcement learning type model in which agents only have information

about the action they take and the payoff it obtains. We use the payoff as-

sessment learning model (Sarin and Vahid, 1999) in which a DM is assumed

to evaluate actions (j, k) according to their (payoff) assessments or attrac-

tions (qj, qk).26 The DM chooses the action with the highest attraction. If

she chooses action k at time t and receives a payoff of x, then the attraction

of action k at time t+1 becomes qk(t+1) = (1−λ)qk(t)+λx, where λ ∈ [0, 1],
while for all other possible actions j 6= k, qj(t+1) = qj(t). We assume initial

assessments equal to the average of the payoffs seen in the first four scenarios

of market 1 and find the λ that best fits the data (through a grid search

method with 0.1 increments). We use this to calculate the individual MSDs

for each subject. We find that the payoff assessment model does better in

the treatments with immediate feedback compared to when feedback is de-

layed (in which case, it is equivalent to the random choice model). However,

it only predicts choices more than half of the time for one subject out of all

the treatments. Its general performance is close to random (MSD = 1.5).27

26Given that our paper aims at explaining individual behavior, we do not simulate a
probabilistic reinforcement learning model (e.g., Roth and Erev, 1995) which would either
lead to comparing choices with a probability vector or analyzing population means.
27Given that there is not much variance in individual MSDs, we determine overall per-
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We therefore feel confident that there is not much learning going on across

markets.

6.2 CBDT with Different Aspiration Levels

As mentioned earlier, we derive CBDT predictions assuming an aspiration

level of zero. This can be easily adjusted to include other aspiration levels.

We redid our analysis and set the aspiration level equal to the average payoff

of all four cases in a DM’s memory. We do not observe any participant in

the treatments when current information is provided for whom the adjusted

CBDT predicts more than two—thirds of their choices correctly. Unfortu-

nately, the new predictions of CBDT with average aspirations often coincide

with the predictions of the MAX. This makes any distinction between these

two alternative decision making processes impossible. A different design is

needed to distinguish between alternative aspiration levels for CBDT.

7 Conclusion

We design an experiment to test whether subjects use case—based reasoning

combined with feature based similarity in an individual decision making en-

vironment. Our design makes the use of a feature—based similarity relation

salient. We find that when similarity comparisons can be made along the

lines we hypothesize, decision makers seem to do so. In particular, for a

significant subset of the participants CBDT predicts more than half of their

choices correctly, and for a smaller, yet substantial subset, CBDT predicts

more than two thirds of their choices correctly. Note that we are only assum-

formance by calculating the average MSD for each treatment. Interestingly, when no
current information is given, the model that fits “best” gives a weight of 0.1 to the ob-
tained payoff independent of whether immediate feedback is given or not. Behavior seems
quite “backward” looking. When current information is given, 0.2 returns the lowest
average MSD when immediate feedback is given. However, when feedback is delayed the
lowest average MSD is obtained with a weight of 0.9.
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ing a similarity function in order to derive predictions from CBDT. We are

not actually testing for the plausibility or suitability of the similarity func-

tion. While we cannot distinguish between closely related similarity functions

that our participants might be using, the strength of this paper lies in the

fact that a rather coarse similarity relation can be used to make predictions

that are borne out in the data, i.e. our design is robust to “small”changes

in the similarity function.

It can be argued that our experimental design leads subjects to use the

MAX heuristic. While that may indeed be the case, it only makes it more

striking that some subjects do in fact behave as if they were case—based

decision makers and choose to act as such despite the availability of the

seemingly simpler MAX heuristic.

Our data reveal that CBDT seems more appropriate in situations where

feedback is slow. This is reassuring as CBDT was conceived to be applicable

in complex situations when other learning is not really possible. We think

there are at least two reasons for this. First, when no immediate feedback

is given, the proportion of people who use other, arguably simpler heuristics

(like the Max heuristic) does not increase over time (unlike when immediate

feedback is given). Second, as the payoff assessment simulation in section

6.1 shows, a very simple adaptive learning model describes behaviour better

when immediate feedback is given as compared to when such feedback is not

given, indicating that a model allowing for learning across markets tracks

individual behaviour better than one that doesn’t. But, as the comparison

with CBDT shows, an adaptive learning model that does not capture the

notion of similarity is not as powerful in predicting individual choices as a

model that incorporates similarity in a way that CBDT does.

It seems reasonable to suppose that people use a variety of procedures or

decision making algorithms in complex environments in which the decision

maker’s information is severely limited. Our results suggest that people seem
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to employ Hume—like reasoning. However, our findings also suggest that peo-

ple may be using yet simpler decision making procedures, or heuristics, in

these complex choice environments. As considerable decision making in eco-

nomics occurs in such complex, informationally constrained, environments,

it appears desirable to study further, both theoretically and experimentally,

the decision making procedures agents use in such environments.
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Appendix A —Instructions

This is an experiment in the economics of decision making. Texas A&M
University has provided funds for this research. If you follow the instructions
and make good decisions, you can earn an appreciable amount of money. At
the end of today’s session, you will be paid your earnings in private and in
cash.

It is important that you remain silent and do not look at other people’s
work. If you have any questions, or need assistance of any kind, please raise
your hand and an experimenter will come to you. If you talk, laugh, exclaim
out loud, etc. you will be asked to leave and you will not be paid. We expect
and appreciate your cooperation.

During this session you will be acting as a firm who is selling a good. You
will be selling your good to 30 independent markets. You can think of these
as 30 geographically separated islands. In each of the 30 markets (islands)
you are the only seller of the good. This means that nothing any other
seller or firm does can affect you or your market. Each period represents a
new market and you will have to make a decision about how many units you
want to produce for that market. It is costly to produce this good and if
you produce units that do not get sold in that market, you will NOT be able
to keep those units for use in other markets. At the end of each period you
will earn profits on the units of your good that you do sell in that market.

At the beginning of each period you will receive a Marketing Report
that contains information regarding some Market Conditions for the current
market. You can think of this as information about the market that has been
gathered for you by the Marketing Department of your firm. Gathering this
data is costly to your firm, as such your Marketing Department is not able
to gather all information in every market. Therefore, the information that
your Marketing Department does collect can vary from market to market.
However, nothing you or anyone else does can change what information is
gathered in any market.

After gathering the data the Marketing Department sends it to you. Un-
fortunately there is an error that occurs during that transmission. Instead
of receiving the actual data all you receive is a list of the Market Condi-
tions that were collected and a table of symbols representing the actual data.
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Fortunately the error is consistent. This means that identical symbols for a
given Market Condition represent the same actual data. For instance, if the
Marketing Department gathers data that says median income is $35,000 and
a blue triangle gets transmitted, then whenever the Marketing Department
reports $35,000 for median income it will be transmitted as a blue triangle
in the Marketing Report. However, a blue triangle can also appear for other
Market Conditions, where it does not necessarily stand for $35,000. For
example, if the Marketing Department gathers data on a high inflation rate
and this information gets transmitted as a blue triangle, then all Marketing
Reports with a high inflation rate will have a blue triangle in the table for
inflation rate.

After you have received the Current Marketing Report you will be asked
to choose a Production Value of 50, 100, 150, or 200 units. Your Profits
each period depend on your Production Value and may also depend upon
some of the Market Conditions. After you have made your production
choice, you will be informed of your Profits for that market. You will then
proceed to the next market where you will be given the new market’s Current
Marketing Report. You will then be asked to choose a Production Value for
that market. The session will continue in this manner until you have made
production choices for 30 markets.

In order to help you with your decisions, for each market the experi-
menter has included four different scenarios. In each of these scenarios the
experimenter was given a Marketing Report similar to the Marketing Re-
ports that you will be given. The experimenter then chose a Production
Value in such a manner that each of the four production choices was chosen
once. The Profits reported in these scenarios are the profits that would
have been earned in that market given the reported Market Conditions and
the chosen Production Value. The Profits reported in these scenarios will
NOT be included in your Total Profits. Your Total Profits consist only of
those profits that you earn during the session, i.e. when you are making the
production decision. Your Total Profits will be calculated by simply adding
up the profits you earn in each of your markets.

Figure 1 gives an example of the decision screen. At the top right of the
screen you will see labeled the current market. At the bottom right of the
screen you will see your Total Profits, which will include all Profits you have
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earned so far. On the left side of the screen you will also see a table with the
four scenarios for the current market. In the first column from the left you
will see labels for the Market Conditions, the Production Values, and Profits.
So in this market, your Marketing Department has gathered information on:
the Tourist Population, the Wind, the Humidity, the UV Factor, and the
Temperature. Looking at the symbols in the table you can see that there is
a blue triangle for Tourist Population in Scenario 1 and Scenario 2. This
means that the Tourist Population was the same in both of these scenarios.
You can also see that there is a blue triangle for Humidity in Scenario 3.
While this is the same symbol that was present in Scenarios 1 and 2 for the
Tourist Population, it does not necessarily represent the same thing that it
did for Tourist Population. Below the scenarios you will see the Production
Values and Profits for those scenarios. Again, the Production Values were
chosen so that each value was chosen exactly once. The Profits that you
see are the Profits that would have been earned had the given Production
Value been chosen with the given scenario. On the right side of the screen
you will see the Marketing Report for the current market, in the left hand
column are the symbols representing the data from the report and in the
right hand column are the labels for the different Market Conditions that are
reported. On the bottom of the screen you will see the menu of choices for
your Production Value.

In order to select a Production Value simply use your mouse to click in
the circle to the left of the value you wish to choose. After clicking in one
of the circles you MUST click the Confirm button before your choice will
be submitted. If you wish to change your choice you may do so at any
time BEFORE clicking the Confirm button. You may change your choice
of Production Value as many times as you wish. However, once you have
clicked the Confirm button you will NOT be able to change your Production
Value for the current market. After you have clicked Confirm a results screen
will appear and inform you of your Profits for the current market. Once you
have finished viewing these results click Continue to move on. After you
have clicked Continue, you will proceed to the next market where you will be
given the new market’s Marketing Reports and asked to make a production
choice for that market.
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After you have made production choices for 30 markets the session will
be over. A screen will appear informing you of your Total Profits and Total
Earnings. Your Total Earnings are the amount you will be paid in cash.
Your Total Earnings are calculated by dividing your Total Profits by 6,000.
In other words for every $6,000 in Profits that you made you will earn $1.00
in cash. For instance, if you earn a Total Profit of $96,000 then your Total
Earnings will be $16. If you did not choose to receive a hang tag for parking
then you will receive a $5.00 show-up fee in addition to your Total Earnings.
In that case your Total Payment will be calculated by adding the $5.00 show-
up fee to your Total Earnings. So in the above example your Total Payment
would be $16.00 + $5.00 or $21.00 in cash. However, if you did choose to
take a hang tag for parking your Total Payment will be the same as your
Total Earnings. Once the session is over and everyone has viewed their Total
Earnings you will be called up, one at a time, to be paid privately and in
cash. The session will not be finished until everyone has made decisions for
all 30 of their markets. After you have finished please wait patiently for all
remaining markets to finish.
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Appendix B —Individual Data
Table V: Individual MSDs for CBDT and MAX Predictions

Immediate Feedback Delayed Feedback
w/ Current w/o Current w/ Current w/o Current
CBDT Max CBDT Max CBDT Max CBDT Max
0.933 1.333 1.533 0.533 1.067 1.733 1.467 1.067
1.200 1.400 1.400 1.067 0.733 1.267 1.200 1.333
1.600 0.867 1.333 1.067 0.600 1.667 1.467 0.467
0.933 1.467 1.333 0.733 1.200 1.333 1.333 0.933
0.667 1.467 1.267 1.267 0.667 1.667 1.400 0.933
1.667 1.733 1.600 0.600 0.933 1.067 1.333 1.467
1.333 1.333 1.667 1.067 0.333 1.667 1.533 0.133
1.533 0.467 1.533 1.333 0.733 1.067 1.333 1.267
1.533 0.200 1.333 0.600 1.467 0.067 1.533 1.600
1.133 1.067 1.333 0.400 1.000 1.600 1.467 1.533
1.333 1.267 1.400 1.333 1.267 1.200 1.200 1.133
1.267 1.533 1.600 1.067 1.333 1.533 1.267 1.400
1.467 0.867 1.333 1.133 1.067 1.533 1.533 1.600
1.267 1.133 1.133 0.667 1.133 1.000 1.267 1.000
1.000 1.200 1.067 1.067 1.200 1.533 1.400 1.533
1.200 1.000 1.200 1.533 0.467 1.533 1.333 1.333
0.600 1.467 1.333 1.000 1.467 1.200 1.467 1.067
0.667 1.200 1.200 0.867 1.000 1.133 1.600 1.467
1.467 0.600 1.467 1.067 1.333 1.067 1.400 1.200
1.333 0.933 1.200 1.333 1.400 1.133 1.267 1.533
1.333 1.533 1.667 0.333 0.867 1.267 1.267 1.267
1.200 1.000 1.533 0.467 1.533 1.333 1.400 0.600
1.467 1.267 1.267 1.067 1.467 0.200 1.533 1.667
0.400 1.600 1.467 1.200 1.267 1.067 1.267 1.333
1.733 1.333 1.400 1.333 0.200 1.733 1.533 0.933
1.600 0.933 0.867 1.667 1.400 1.467 1.267 1.200
0.667 1.400 1.467 1.000 1.067 1.800 1.600 0.733
1.467 1.400 1.600 1.467 1.000 0.867 1.733 0.467
0.600 1.267 1.133 1.333 0.733 1.600 1.533 0.867
1.000 1.600 1.600 0.600 0.933 1.200 1.200 1.200
0.933 1.267 1.200 1.267 1.333 1.333
1.133 1.200 0.200 1.467
1.600 0.067 0.733 1.733
1.067 1.067
1.267 1.400
0.800 1.467
1.200 1.133
1.600 1.133
1.133 1.267
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Table VI: Blocks of 15 rounds of Individual MSDs

for CBDT and MAX (w/ Current)

Immediate Feedback Delayed Feedback
CBDT Max CBDT Max

1—15 16—30 1—15 16—30 1—15 16—30 1—15 16—30
0.800 1.067 1.467 1.200 1.333 0.800 1.733 1.733
1.200 1.200 1.467 1.333 0.400 1.067 1.600 0.933
1.600 1.600 1.067 0.667 0.267 0.933 1.467 1.867
1.067 0.800 1.200 1.733 1.067 1.333 1.600 1.067
1.200 0.133 1.467 1.467 0.933 0.400 1.867 1.467
1.867 1.467 1.733 1.733 0.667 1.200 0.933 1.200
1.467 1.200 1.467 1.200 0.400 0.267 1.600 1.733
1.467 1.600 0.800 0.133 1.067 0.400 0.400 1.733
1.467 1.600 0.400 0 1.333 1.600 0.133 0
1.067 1.200 0.933 1.200 1.333 0.667 1.733 1.467
1.600 1.067 1.600 0.933 0.933 1.600 1.600 0.800
1.467 1.067 1.467 1.600 1.200 1.467 1.467 1.600
1.467 1.467 1.200 0.533 0.800 1.333 1.733 1.333
1.333 1.200 1.333 0.933 1.333 0.933 0.800 1.200
0.933 1.067 1.200 1.200 1.067 1.333 1.733 1.333
1.333 1.067 1.067 0.933 0.533 0.400 1.600 1.467
0.800 0.400 1.600 1.333 1.333 1.600 0.933 1.467
0.800 0.533 1.200 1.200 1.333 0.667 1.067 1.200
1.467 1.467 0.800 0.400 1.600 1.067 1.067 1.067
1.330 1.333 0.800 1.067 1.333 1.467 1.333 0.933
1.200 1.467 1.467 1.600 0.933 0.800 1.467 1.067
1.067 1.333 1.200 0.800 1.467 1.600 1.067 1.600
1.600 1.333 1.200 1.333 1.600 1.333 0.133 0.267
0.667 0.133 1.733 1.467 1.067 1.467 1.333 0.800
1.867 1.600 1.333 1.333 0.267 0.133 1.733 1.733
1.467 1.733 1.067 0.800 0.933 1.867 1.333 1.600
0.800 0.533 1.200 1.600 1.333 0.800 1.733 1.867
1.067 1.867 1.467 1.333 1.067 0.933 1.067 0.667
0.533 0.667 1.333 1.200 0.800 0.667 1.867 1.333
0.933 1.067 1.733 1.467 1.200 0.667 0.933 1.467
1.200 0.667 1.067 1.467 1.200 1.200 0.933 1.600
1.200 1.067 1.333 1.067 0.400 0 1.333 1.600
1.600 1.600 0.133 0 0.933 0.533 1.867 1.600
1.067 1.067 1.333 0.800
1.200 1.333 1.333 1.467
1.200 0.400 1.467 1.467
1.067 1.333 1.067 1.200
1.333 1.867 1.333 0.933
0.800 1.467 1.333 1.200
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Table VII: Blocks of 15 rounds of Individual MSDs

for CBDT and MAX (w/o Current)

Immediate Feedback Delayed Feedback
CBDT Max CBDT Max

1—15 16—30 1—15 16—30 1—15 16—30 1—15 16—30
1.467 1.600 0.800 0.267 1.200 1.733 1.467 0.667
1.333 1.467 1.333 0.800 1.467 0.933 1.200 1.467
1.333 1.333 1.333 0.800 1.600 1.333 0.400 0.533
1.200 1.467 0.933 0.533 1.333 1.333 0.800 1.067
1.333 1.200 1.200 1.333 1.200 1.600 0.933 0.933
1.333 1.867 0.800 0.400 1.200 1.467 1.467 1.467
1.467 1.867 1.333 0.800 1.467 1.600 0.267 0
1.467 1.600 1.600 1.067 1.333 1.333 1.333 1.200
1.067 1.600 0.800 0.400 1.467 1.600 1.600 1.600
1.333 1.333 0.400 0.400 1.467 1.467 1.467 1.600
1.333 1.467 1.200 1.467 1.333 1.067 1.067 1.2
1.600 1.600 1.333 0.800 1.333 1.2 1.333 1.467
1.067 1.600 1.733 0.533 1.467 1.600 1.733 1.467
1.200 1.067 0.800 0.533 1.333 1.200 0.667 1.333
0.800 1.333 1.467 0.667 1.333 1.467 1.600 1.467
1.333 1.067 1.467 1.600 1.333 1.333 1.200 1.467
1.067 1.600 1.333 0.667 1.200 1.733 1.467 0.667
1.067 1.333 0.800 0.933 1.600 1.600 1.467 1.467
1.333 1.600 1.633 0.533 1.467 1.333 1.067 1.333
1.333 1.067 1.067 1.600 1.067 1.467 1.467 1.600
1.600 1.733 0.533 0.133 1.467 1.067 1.200 1.333
1.467 1.600 0.667 0.267 1.467 1.333 0.533 0.667
1.200 1.333 1.200 0.933 1.600 1.467 1.867 1.467
1.467 1.467 1.333 1.067 1.333 1.200 1.600 1.067
1.333 1.467 1.200 1.467 1.733 1.333 1.067 0.800
1.067 0.667 1.467 1.867 1.333 1.200 1.333 1.067
1.467 1.467 1.200 0.800 1.600 1.600 1.067 0.400
1.600 1.600 1.733 1.200 1.733 1.733 0.800 0.133
1.200 1.067 1.467 1.200 1.600 1.467 0.933 0.800
1.600 1.600 0.533 0.667 1.333 1.067 0.933 1.467

1.200 1.467 1.200 1.067
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Appendix C —More Screenshots

Figure 1: Figure 4: Screenshot of Immediate without Current
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Figure 5: Screenshot of Delayed with Current
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Figure 6: Screenshot of delayed without Current
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