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Abstract

We show that dye-doped polymers open an interesting route to controlling light at the

nanoscale. Just as for the much better known metal-based plasmonic systems, propagating

and localized modes are possible. We show that the attractive features offered by plasmonics,

specifically enhanced optical fields and sub-wavelength field confinement, are also available

with these materials. They thus open a new opportunity in nanophotonics in which fabrication

and functionality might be achieved by harnessing molecular and supramolecular chemistry.

Much is expected of plasmonics, with applications being pursued over a wide range of fields

from on-chip plasmonic circuits1 to nanoantennae for the emission of light.2 The key to this wide-

ranging interest is that plasmonics enables the control of light deep into the sub-wavelength regime,

right down to the nanoscale.3 Noble metals such as gold and silver have fuelled the plasmonics
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revolution, providing a strong plasmonic response in the visible part of the electromagnetic spec-

trum. Their plasmonic response is associated with a negative real part of their permittivity, ε ′, in

this frequency range. For several decades it has been appreciated that loss (absorption) associated

with metals places a limitation on, for example, the distance over which surface plasmon-polariton

modes (SPPs) may propagate and these losses are associated with the imaginary part of the per-

mittivity, ε ′′. Many have sought to find ways to reduce these losses, for example by adding gain

materials to plasmonic nanostructures so as to offset the losses,4 or by seeking alternative materials

to the noble metals.

A variety of alternative materials have been explored, including: doped semiconductors,5

graphene,6 chalcogenides,7 tunable metal-semiconductor materials,8,9 transparent conducting ox-

ides,10 heavily-doped conducting polymers,11 and some nitrides,12,13 among others. All of these

materials yield a plasmonic response owing to the free charge-carriers they contain. The sim-

plest model for the permittivity of a material whose electromagnetic response is dominated by free

carriers is the Drude model, for which the permittivity is given by,14

ε(ω) = 1−
ω2

p

ω2− iωγ
(1)

where ωp is the plasma frequency and γ is the damping rate. This Drude response yields a negative

permittivity provided ω < ωp. The types of plasmon modes that may be supported depend on

how negative the permittivity is: propagating SPP modes require ε ′(ω)≤−1 whilst localised SPP

modes require ε ′(ω)≤−2.14

In plasmonic materials the negative permittivity is a consequence of the way the free charge-

carriers (typically a plasma of conduction electrons) respond to an applied electromagnetic field.

However, this is not the only way a negative permittivity may arise: it may also occur in the

(spectral) vicinity of a strong absorption resonance. In the work presented here our interest lies

in resonances associated with a strong yet narrow absorption line, typically due to exciton excita-

tion. The relative permittivity of a material that involves several resonances (i = 0,1,2..) may be

accounted for using the Lorentz model,15,16
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ε(ω) = εb +∑
i

fi ω2
i

ω2
i −ω2− iωγi

. (2)

In many cases one resonance dominates so that ω0 is the frequency associated with the transition

(the resonant frequency), f0 is the reduced oscillator strength17 of the transition and γ0 is the

damping rate. The term εb takes account of any non-resonant (background) response that may

be associated with other transitions well away (spectrally) from the transition of interest. The

properties of a material for which the Lorentz model is appropriate depend strongly on f0: if f0 is

sufficiently large then the real part of the permittivity will become negative and the material will

take on a metal-like appearance over a small wavelength range below the exciton resonance.18

In appropriate frequency ranges plasmonic and excitonic materials may both exhibit negative

permittivities, but they do so for very different reasons. The negative permittivity of plasmonic

materials arises from the mobile conduction electrons whilst the negative permittivity of excitonic

materials considered here arises from the nature of the localized Frenkel electron-hole pairs they

support . Our purpose here is to show, through experiment and simulation, that plasmonic materials

are not the only way to achieve optical field enhancement and sub-wavelength field confinement;

nanostructured excitonic materials may be used for the same purpose.

Just as plasmonic materials can support SPP modes so too can excitonic materials, in which

case we refer to them as surface exciton-polaritons (SEPs).19 Surface polaritons based on exci-

tonic materials have been known for many years. Early work involved materials that needed low

temperatures, both inorganic solids: ZnO,19 CuBr,20 ZnSe,21 CuCl,22 and one organic solid, an-

thracene.23 Some organic dye molecules also exhibit strong, narrow excitonic absorption bands,

for example J-aggregated dye molecules.24–26 Swalen and co-workers made important contribu-

tions in the late 1970s and early 1980s by showing that surface polaritons based on the excitonic

response of a variety of dye molecules could be achieved at room temperature.27–32 More recently

this work has been picked up by Gu et al.33 (Gu et al. referred to their mode by using the ap-

pealing phrase ’organic plasmon’, this seems inappropriate: whilst the system is made of organic

molecules, the response is due to excitons associated with the dye molecules, not a plasma associ-
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ated with free charge carriers).

Previous work has demonstrated that propagating SEP modes are possible using dye-molecule

based excitonic materials; here we show that localised SEP modes are also possible. Furthermore,

we show that localised SEPs have the potential to help us manipulate light at the nanoscale in much

the same way as localised SPPs. The rapid expansion of the field of plasmonics owes its origins

to improved nano-fabrication techniques, new nano-optical characterisation tools and better mod-

elling capabilities: excitonic materials may now perhaps benefit in the same way. We chose to

work with dye-doped polymers in this study for two reasons: first, this allowed us to adjust the

doping level and therefore control the effective oscillator strength, f0. Second, such an approach

lends itself to interesting design and fabrication routes, rational design for the dyes can be ac-

complished through chemical synthesis,34,35 whilst nanostructuring of polymers may be achieved

by, for example, conformal imprint lithography,36 or self assembly.37 There is the prospect of all

optical functionality.38

Below we present our results for polyvinyl alcohol (PVA) thin films doped with J-aggregated

molecules (TDBC: 5,6-dichloro-2-[[5,6-dichloro-1-ethyl-3-(4-sulphobutyl)-benzimidazol-2-ylidene]-

propenyl]-1-ethyl-3-(4-sulphobutyl)-benzimidazolium hydroxide, sodium salt, inner salt) used as

obtained from Few Chemicals GmbH. The TDBC doped PVA (TDBC:PVA) thin films were pre-

pared on glass substrates by spin coating from water-based solutions. The dye-polymer solutions

were prepared by mixing a 6.0 wt% PVA-water solution with a 2.0 wt% TDBC-water solution of

in a 1:3 volume ratio. The initial PVA (molar weight 85 000-124 000) solution was prepared by

dissolving the PVA in hot water at 90◦ C for several hours, yielding a 6.0 wt% solution that was

cooled before mixing with the TDBC-water solution. The final TDBC-PVA water solution had a

composition of 1.5 wt% PVA and 1.46 wt% TDBC. After deposition by spin coating the thickness

of the resulting films were characterized using a surface profiler (KLA D-100).

The metal-like optical properties of this type of sample are shown in the photograph in Fig-

ure 1, where the TDBC:PVA film shows a similar colour in reflected light to a gold film. This

similarity is related to the metal-like optical properties that the dye-doped polymer exhibits in the
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yellow/orange spectral region, below the exciton resonance at 590nm. Specifically, the metallic

copper-like reflectance of the TDBC:PVA film arises because of the strong (negative) real per-

mittivity in the orange part of the spectrum whilst the autumn yellow colour is due to inter-band

absorption towards the blue end of the spectrum.39 The key point is that TDBC-doped PVA has a

sufficiently strong permittivity to give a metal-like appearance.

To determine the permittivity of our films we measured their reflectance and transmittance at

normal incidence as a function of wavelength. We then used a parameter retrieval process to extract

the frequency dependent permittivity. This procedure was based on fitting numerically-simulated

data based on Fresnel equations40 to the experimental data, a Kramers-Krönig (KK) analysis being

used to help select the most physically appropriate solution (see Supporting Information). The

results of such a process for a 70± 7 nm-thick J-aggregated film spun from a TDBC-PVA water

solution containing 1.46 wt% TDBC are shown in Figure 2.

Figure 1: Photograph of a dye film spun from a TDBC-PVA water solution containing 1.46 wt%
TDBC (top right) along with a gold film for comparison (lower left).

Also shown in Figure 2 are the results of fitting a two-oscillator Lorentz model to the extracted

data.

To show that our TDBC:PVA films are capable of supporting SPEs we followed Philpott et

al.29 and Gu et al.33 and used the attenuated total reflection technique in the Kretschmann-Raether

prism coupling geometry41 to measure the reflectivity of thin TDBC:PVA films; the resulting data
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Figure 2: Extracted values of the real (circles) and imaginary (crosses) parts of the permittivity of
a thin film spun from a TDBC-PVA water solution containing 1.46 wt% TDBC. Also shown are
the results of fitting a two-oscillator Lorentz model to these data (lines). The best-fit parameters
were determined to be ω0 = 2.10eV (590nm), γ0 = 0.053eV , εb = 2.310, f0 = 0.36, ω1 = 2.03eV
(610nm), γ1 = 0.0988eV and f1 = 0.10 (for details of the parameter extraction see the supporting
information).

Figure 3: Left: reflectance of a nominally 70 nm thick film spun from a TDBC-PVA water so-
lution containing 1.46 wt% TDBC: (a) P-polarised reflectance (RP) colour map as a function of
wavelength and incident angle. Right: reflectance for both P- and S-polarisations for incident
wavelengths of: (b) 850 nm, (c) 590 nm, (d) 570 nm and (e) 450 nm.

are shown in Figure 3. We used a white light source followed by a scanning monochromator for our

incident beam, thereby allowing a spectral range from 1.46 eV (850 nm) to 2.76 eV (450 nm) to be

swept. Panel (a) in Figure 3 shows the p-polarised reflectance, RP, obtained for a nominally 70 nm

thick film spun from a TDBC-PVA water solution (containing 1.46 wt% TDBC) as a function of
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the wavelength and the incident angle. The RP response shows a dip as a function of incident angle

for wavelengths between 530 and 585 nm, below the exciton absorption resonance at 590 nmm.

For wavelengths far removed from the exciton absorption RP is (as expected) rather featureless.

This is also evident in Figure 3b and Figure 3e where single wavelength reflectance data are shown

for RP and RS at wavelengths of 850 nm and 450 nm respectively. The only feature that these

data show is the critical angle at ∼ 41◦. At the exciton transition peak, 590 nm, RP and RS are

both dominated by absorption, the reflectance for both polarisations being low and largely angle-

independent (Figure 3c). By contrast, at a wavelength of 570 nm, RP shows a gradual decrease for

angles beyond the critical angle until it reaches a minimum near 62◦. For angles larger than the

critical angle RS shows a monotonically rising response (Figure 3d).

Figure 4: Upper (a) RP and RS experimental (dotted lines) and model data (solid lines) for a thin
film spun from a TDBC:PVA solution containing 1.46 wt% TDBC at a wavelength of 579 nm.
The model parameters used here were: film thickness 30 nm, permittivity of spun film -4.4 +9.9i,
permittivty of prism 2.28. Lower (b) calculated magnitude of the local magnetic field strength (Hy
component) for p-polarised incident light, at a wavelength of 579 nm, and for an angle of incidence
of 60◦ as a function of distance through the structure.
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To explore the nature of the broad minimum in the p-polarised reflectance (RP) seen in Fig-

ure 3d, we fitted modelled reflectance data to the experimentally acquired data using a recursive

Fresnel approach. Figure 4a shows the RP and RS experimental (dotted lines) and modelled (solid

lines) data for a wavelength of 579 nm. The fitted value of the permittivity for this TDBC:PVA

thin film was -4.4 + 9.9i. This compares with the value used at the start of the fitting process (taken

from the parameter retrieval process, see Figure 2) of -4.4 + 3.9i. The higher value of the imagi-

nary part of the fitted permittivity is probably due to the presence of surface roughness of the spun

film, the roughness leads to losses that in a simple approximation can be incorporated into ε ′′.42

Losses due to surface roughness are likely to be more apparent when a surface mode is excited

(as here) then for normal incindence illumination (as for our parameter retrieval procedure). We

have also calculated43 and plotted the magnetic component of the p-polarised optical field through

the sample for the same incident wavelength and angle in Figure 4b. In this figure two features

are apparent: first, going from the prism/TDBC:PVA interface into the TDBC:PVA film the field

decays with distance - this is expected for an absorbing film; second, the field rises again towards

the TDBC:PVA/air interface - indeed, the field decays on either side of the TDBC:PVA interface,

just as expected for a surface mode.29 These data (Figure 4) allow us to identify the reflectivity

minimum with the excitation of a SEP mode.

Having established that our TDBC:PVA films may support a propagating surface exciton-

polariton we now turn our attention to localised (particle) surface exciton-polariton modes. The

data presented in Figure 2 indicate that over a small spectral range the real part of the permittivity

of our film goes below -2; this material should therefore be able to support localised modes. We

used Mie theory44 to calculate the absorption efficiency of 100 nm-diameter nanospheres using

a single-oscillator Lorentz model (for a range of oscillator strengths) and employed the extracted

values of the permittivity presented in Figure 2; the resulting data are shown in Figure 5a. We

chose a single-oscillator model so as to make the evolution of the response with oscillator strength

clear. The bare exciton absorption position is shown as a vertical dotted line. These data show a

transition in the behaviour of the absorption efficiency as the oscillator strength is increased. The
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absorption efficiency is defined as the absorption cross-section divided by the geometrical cross-

section (note that the data for different oscillator strengths are offset vertically for clarity). For low

oscillator strengths, e.g. f0 = 0.05 (dotted line), the only feature present is the exciton absorption

at 2.10 eV (590 nm), very close to the bare exciton frequency. For stronger oscillator strengths, e.g.

f0 = 0.36 (solid line), the peak in the absorption efficiency moves to higher frequencies (shorter

wavelengths) ∼ 2.18 eV . This shift occurs because for these higher oscillator strengths the real

part of the permittivity extends below -2 so that localised surface modes may be supported; the

∼ 2.18 eV peak in the absorption efficiency corresponds to this condition. The absorption ef-

ficiency spectrum calculated using the extracted (experimental) permittivity values (dash-dotted

line) looks very similar.

For the propagating SEP mode discussed above we confirmed the surface nature of the mode

from the calculated field profile in Figure 4b; we can now do something similar for the localised

mode. In Figure 5b we plot the time and surface averaged electric field strength (normalised to

the incident field strength) for a 100 nm diameter sphere of our TDBC:PVA (crosses and dots,

indicating data based on permittivity values derived from parameter retrieval and fitted reflectivity

respectively) and a 132 nm diameter gold sphere for comparison (dashed line). These data were

again calculated using Mie theory. The diameter of the gold sphere was chosen so as to give a

resonance at the same frequency as the TDBC:PVA sphere. The results of two calculations are

shown, one using permittivity values obtained from the parameter retrieval process (see Figure 2),

referred to in Figure 5b as ‘smooth’ and indicated by crosses, the other using permittivity values

obtained from fitting modeled reflectivity data, Figure 3 Figure 4, and referred to in the figure as

‘rough’ and indicated by dots (‘rough’ refers to the fact that the difference in these permittivity

values when compared to those derived from the parameter retrieval process arise from the way

the roughness of the doped PVA films affects the reflectivity measurements). Importantly, for both

parameter sets, there is a clear enhancement of the surface electric field on resonance. For the lower

loss permittivity values (smooth, crosses) the enhancement is greater than that of a comparable

gold particle on resonance (dashed line). Two further differences may be observed: first, the field
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Figure 5: Upper (a). The absorption efficiency (Qabs) for 100 nm-diameter nanospheres of
TDBC:PVA using a single-oscillator Lorentz model for three different effective oscillator strengths
(concentrations) together with the absorption efficiency calculated using the experimentally-
extracted permittivity (dash-dotted line). The exciton transition energy in the Lorentz model is
marked with the vertical dotted line. Lower (b). The time-averaged (root mean square) of the
calculated average electric field strength over the surface of a 100 nm diameter particle of TDBC-
PVA. The results of a similar calculation for a spherical gold particle are also shown (dashed line)
gold. The diameter of the gold sphere 132 nm was chosen to provide a resonance that peaks at
the same spectral position as that of the 100 nm TDBC:PVA particle. The shoulder near 2.1 eV
in the TDBC:PVA data corresponds to the bare exciton absorption. For the distinction between
‘roughâĂŹ and ‘smoothâĂŹ see main text

enhancement for the excitonic system is spectrally much sharper than that of the gold particle. This

sharp response is a natural consequence of the narrow spectral range over which the permittivity

of the TDBC:PVA is sufficiently negative. Second (and perhaps rather surprisingly) the maximum

field enhancement for the TDBC:PVA particle (lower loss parameters) is greater than that of the

gold particle. At the resonant frequency the permittivity of the gold takes the values −7.20+1.70i

whilst that of the TDBC:PVA (from parameter retrieval) is −2.55+1.24i.
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Figure 6: The strength of the time-averaged and orientationally-averaged electric field strength as
a function of distance from the surface of the sphere for the TDBC:PVA sphere (solid line) and a
gold sphere (dashed line).

Field enhancement on resonance such as that shown in Figure 5b is a key signature of localised

modes; so too is the confinement of the field. In Figure 6 we show the calculated spatial field

distribution associated with TDBC:PVA and gold particles explored in Figure 5b. Again, these

data were calculated using Mie theory. Again the results of two calculations are shown, one us-

ing permittivity values obtained from the parameter retrieval process, ‘smooth’ and indicated by

the solid line, the other using permittivity values obtained from fitting modeled reflectivity data,

‘rough’ and indicated by the dotted line. For both parameter sets we see that the field associated

with the localized surface exciton-polariton mode is tightly confined to the vicinity of the particle

just as the field associated with the localized surface plasmon-polariton mode of the gold particle

is, both decaying with a characteristic distance of ∼ 20 nm.

In summary, we have shown that polymer films doped with J-aggregated (TDBC) molecules

may exhibit a negative real permittivity in the vicinity of the exciton resonance. We have shown

that thin films of such material may support surface exciton-polariton modes, in much the same

way that thin metal films support surface plasmon-polariton modes. Furthermore, we have used the

material parameters derived from experiment to demonstrate that nano-structured excitonic materi-

als may support localised surface exciton-polariton modes. Thus, we have shown that the two key

attributes of plasmonics (field enhancement and confinement) may be achieved by exploitation of
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exciton-polaritons. With this in mind we suggest that these excitonic materials offer an interesting

and alternative path to controlling light at the nanoscale. This approach also offers the prospect of

being able to tailor material properties through the design of appropriate excitonic (dye) molecules

using the powerful techniques of supramolecular chemistry. The use of doped polymers opens up

the possibility of nanostructuring via easily scaled-up processes such as conformal imprint lithog-

raphy. Finally, although the speed of the typical excitonic response (∼ 10−10 s )45 does not match

that for plasmonic systems (∼ 10−14 s),46 this approach offers the prospect of dynamical optical

control of these material properties (and hence nanophotonic functionality) by appropriate pump-

ing of the excitonic transition.

Supporting Information Available: [concerning refractive index retrieval] This material is avail-

able free of charge via the Internet at http://pubs.acs.org.
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