
DOI: 10.1038/nature14283 

Page 1 of 24 

Long-term decline of the Amazon carbon sink 
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Atmospheric carbon dioxide records indicate that the land surface has acted as a strong 
global carbon sink over recent decades1,2, with a substantial fraction of this sink probably 
located in the tropics3, particularly in the Amazon4. Nevertheless, it is unclear how the 
terrestrial carbon sink will evolve as climate and atmospheric composition continue to 
change. Here we analyse the historic evolution of the biomass dynamics of the Amazon 
rainforest over three decades using a distributed network of 321 plots. While this analysis 
confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-
term decreasing trend of carbon accumulation. Rates of net increase in above-ground 
biomass declined by one-third during the past decade compared to the 1990s. This is a 
consequence of growth rate increases levelling off recently, while biomass mortality 
persistently increased throughout, leading to a shortening of carbon residence times. 
Potential drivers for the mortality increase include greater climate variability, and 
feedbacks of faster growth on mortality, resulting in shortened tree longevity5. The 
observed decline of the Amazon sink diverges markedly from the recent increase in 
terrestrial carbon uptake at the global scale1,2, and is contrary to expectations based on 
models6. 

 

The direction and magnitude of the response of the Earth’s land surface to increasing 
levels of atmospheric CO2 and a warming climate are important determinants of future 
atmospheric CO2 levels and thus greenhouse warming6,7. One of the largest vegetation carbon 
pools on Earth is the Amazon forest, storing around 150–200 Pg C in living biomass and soils8. 
Earlier studies based on forest inventories in the Amazon Basin showed the tropical forest here 
to be acting as a strong carbon sink with an estimated annual uptake of 0.42–0.65 Pg C yr−1 for 
1990–2007, around 25% of the residual terrestrial carbon sink3,4. There is, however, substantial 
uncertainty as to how the Amazon forest will respond to future climatic and atmospheric 
composition changes. Some earlier modelling studies predicted a large-scale dieback of the 
Amazon rainforest9, while more recent studies predict a carbon sink well into the twenty-first 
century owing to a CO2 fertilization effect6. The realism of such model predictions remains low 
owing to uncertainty associated both with future climate and vegetation responses6,7 in particular 
changes in forest dynamics5,10,11. Thus, direct observations of tropical tree responses are crucial 
to examine what changes are actually occurring and what to expect in the future. Here we 
analyse the longest and largest spatially distributed time series of forest dynamics for tropical 
South America. 

Our analysis is based on 321 inventory plots lacking signs of recent anthropogenic 
impacts from the RAINFOR network4 and published plots. The sites are distributed throughout 
the Amazon basin and cover all major forest types, soils and climates (Extended Data Fig. 1). 
For each plot (mean size 1.2 ha) all trees with stem diameter greater than 100 mm were 
identified, and allometric equations applied to convert tree diameter, height and wood density to 
woody biomass or carbon8. Net biomass change was estimated for each census interval as the 
difference between standing biomass at the end and the beginning of the interval divided by the 
census length. We also derived forest woody productivity (hereafter termed productivity) from 
the sum of biomass growth of surviving trees and trees that recruited (that is, reached a 
diameter ≥ 100 mm), and mortality from the biomass of trees that died between censuses, 
allowing for census-interval effects (see Methods). Plots were measured on average five times 
and the mean measurement period was 3 years. For analysis purposes small plots were 
aggregated to leave 274 distinct units. We report trends since 1983, the first year with 
measurements for 25 plots, up to mid-2011. 

Our data show that forests continued to act as a biomass sink from 1983 to 2011.5, but 
also reveal a long-term decline in the net rate of biomass increase throughout the census period 
(Fig. 1a). The decline in net biomass change is due to a strong long-term increase in mortality 
rates (Fig. 1c), and occurred despite a long-term increase in productivity (Fig. 1b). While 
mortality increased throughout the period, productivity increases have recently stalled showing 
no significant trend since 2000 (Extended Data Fig. 3). These time trends are based on a varying 
set of plots over time (Extended Data Fig. 4), but this site-switching does not alter the results 
(see Supplementary Information). The observed trends also emerge from a separate plot-by-plot 
analysis (Fig. 2), with increases in mortality exceeding productivity gains by approximately two 
to one. Trends are rarely significant at the individual plot level owing to the stochastic nature of 
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local forest dynamics, but the mean slopes of net change, productivity and mortality all differ 
significantly from zero. Changes in forest dynamics were not geographically limited to a 
particular area, but occurred throughout the lowland South American tropics (Fig. 2). While 
rates of change vary depending on the precise plot set, time window and analytical approach 
used, the trends remain robust (Figs 1, 2 and Extended Data Fig. 3). 

Artefactual explanations have been offered to explain trends in biomass dynamics from 
plot measurements12,13. Principally, it has been suggested that previously reported net biomass 
increases4 could be driven by recovery of forests from local disturbances12. However, contrary to 
observations from recovering neotropical forests14 and successional studies15, the plots have 
collectively experienced increased biomass growth (Fig. 1), accelerated stem recruitment and 
death (Extended Data Fig. 6), and net biomass change is positively related to chnages in stem 
numbers, but not in wood density (Fig. 3b, c). It is thus unlikely that the overall patterns would 
be driven by recovery from disturbances. Alternatively, increases in mortality have been 
proposed to arise owing to biased selection of plots in mature forest patches, which over time 
accumulate disturbances13. The fact that forests and trees have continued to get bigger (Extended 
Data Fig. 5a) is contrary to this explanation. In addition, if this were driving the network-wide 
pattern, then the observed trends should disappear if data are reanalysed using only the first 
interval of each plot, but instead they persist. In summary, the data suggest that trends are 
unlikely to be caused by artefactual explanations of forests recovering from disturbances or 
selection of mature forest patches (see Supplementary Information for a more complete 
exploration of these potential biases). 

The factors driving the observed long-term changes remain unclear. The levelling off of 
productivity in the most recent decade (Fig. 1b and Extended Data Fig. 3f) could be due either to 
a relaxation of the growth stimulus itself, or to the onset of a counteracting factor depressing 
growth rates. The recent demonstration of Amazon-wide carbon sink suppression during a 
drought year16 indicates one possible driver. Tropical drought is also often associated with 
higher temperatures, which may further contribute to reducing productivity17 and carbon 
uptake18. The past decade in Amazonia has seen several droughts19 and warming20, which 
coincide closely with the stalling productivity across Amazon forests. 

The increased rate of biomass mortality is driven by an increasing number of trees dying 
per year (Extended Data Fig. 6c) rather than an increase in the size of the dying trees (Extended 
Data Fig. 5c). Several mechanisms may explain this increase in loss of biomass due to tree 
mortality, with recent climate events being an obvious candidate. The plot data clearly show 
short-term peaks in the size of dying trees during the anomalously dry years 2005 and 2010 
(Extended Data Fig. 5c). These are consistent with results from rainfall exclusion experiments in 
Amazonia21,22 and observations4 showing that large tropical trees are vulnerable to drought 
stress21. However, our data lack the signature expected if drought were the dominant long-term 
driver of the increasing loss of biomass due to mortality in Amazonia. That is, there has been no 
long-term change in the size of dead trees (Extended Data Fig. 5c), living trees have continued to 
get bigger (Extended Data Fig. 5a), and the increase in stem mortality predates the drought of 
2005 (Extended Data Fig. 6c). 

Alternatively, the increased productivity may have accelerated tree life cycles so that 
they now die younger. Large stature is associated with size-related hydraulic23 and mechanical 
failure24, reproductive costs25 and photosynthetic decline23. Faster growth exposes trees to these 
size-related risks earlier, as evidenced by tree ring data showing that faster growth shortens 
lifespans26,27, and by experimental data showing early onset of reproduction under increased CO2 
(ref. 28). The observed long-term acceleration in stem mortality rates and the plot-level 
association between productivity and the strength of the increase in biomass loss due to mortality 
(Extended Data Fig. 8b) are consistent with such a mechanism. While demographic feedbacks 
are not explicitly included in dynamic global vegetation models10, our results suggest that they 
could in fact influence the capacity of forests to gain biomass29, with transient rates of ecosystem 
net carbon accumulation highly sensitive to even small changes in carbon turnover times10. 

Finally, we put our results in a global perspective. According to global records, the land 
carbon sink has increased since the mid-1990s (refs 1, 2). While tropical land contributed 
significantly to this global sink during the 1980s and 1990s, our results show that the total net 
carbon sink into intact Amazon live biomass then decreased by 30% from 0.54 Pg C yr−1 
(confidence interval 0.45–0.63) in the 1990s to 0.38 Pg C yr−1 (0.28–0.49) in the 2000s (see 
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Methods). If our findings for the Amazon are representative for other tropical forests, and if 
below-ground pools have responded in the same way as above-ground biomass (AGB), then an 
apparent divergence emerges between a strengthening global terrestrial sink on one hand1,2 and a 
weakening tropical sink on the other. However, from an atmospheric perspective we also note 
that some of the effects of the Amazon changes are yet to be observed, as little of the carbon 
resulting from increased mortality is immediately released into the atmosphere30. Instead, dead 
trees decay slowly, with a fraction also moving into a long-term soil carbon pool. The Amazon 
forest sink has therefore become increasingly skewed towards gains in the necromass pools, 
inducing a substantial lag in the probable atmospheric response. On the basis of the observed 
long-term increase in mortality rates, we estimate that the atmosphere has yet to see ∼3.8 Pg of 
the Amazon necromass carbon produced since 1983 (see Methods), representing a 30% increase 
in necromass stocks. The modelled increase in Amazon necromass is twice the magnitude of the 
cumulative decadal decline in the live biomass sink from the 1990s to the 2000s (from 5.4 to 
3.8 Pg C). 

In summary, we find that the Amazon biomass carbon sink has started to decline, due to 
recent levelling of productivity increases, combined with a sustained long-term increase in tree 
mortality. This behaviour is at odds with expectations from models of a continually strong 
tropical biomass sink6, and underlines how difficult it remains to predict the role of land-
vegetation feedbacks in modulating global climate change7,10. Investment in consistent, 
coordinated long-term monitoring on the ground is fundamental to determine the trajectory of 
the planet’s most productive and diverse biome. 
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Figure 1 Trends in net above-ground biomass change, productivity and mortality across all 
sites. a–c, Black lines show the overall mean change during 1983–2011 for 321 plots (or 274 
units) weighted by plot size, and its bootstrapped confidence interval (shaded area). The red lines 
indicate the best model fit for the long-term trends using general additive mixed models 
(GAMM), accounting explicitly for differences in dynamics between plots (red 
lines denote overall mean, broken lines denote s.e.m.). Alternative analyses of subsets of plots 
that were all continuously monitored throughout shorter time intervals confirm that the observed 
trends are not driven by temporal changes in individual sample plot contributions (Extended 
Data Fig. 3). Estimated long-term (linear) mean slopes and significance levels are indicated, and 
are robust with regard to the statistical approach applied (that is, parametric or non-parametric, 
see Methods). Shading corresponds to the number of plots that are included in the calculation of 
the mean, varying from 25 plots in 1983 (light grey) to a maximum of 204 plots in 2003 (dark 
grey). The uncertainty and variation is greater in the early part of the record owing to relatively 
low sample size (see Extended Data Fig. 4). 
  

-2
-1

0
1

2
3

B
io

m
as

s 
ch

an
ge

 (M
g 

ha
-1
yr
-1
) a. Net biomass change Number of plots= 321

Slope= -0.034 Mg ha−1 yr−2

p= 0.034

b. Productivity Slope= 0.03 Mg ha−1 yr−2

p<0.001

3
4

5
6

7

P
ro

du
ct

iv
ity

 (M
g 

ha
-1
yr
-1
)

c. Biomass mortality Slope= 0.051 Mg ha−1 yr−2

p= 0.001

year

1985 1990 1995 2000 2005 2010

3
4

5
6

7

M
or

ta
lit

y 
(M

g 
ha

-1
yr
-1
)



DOI: 10.1038/nature14283 

Page 9 of 24 

 

Figure 2 Annual change in net above-ground biomass change, productivity and mortality 
for individual sites. The lines in the left-hand panels show the long-term rate of change for 117 
plots (or 87 units), estimated using linear regressions weighted by census-interval length and for 
display purposes centred around zero. This analysis includes only plots that were monitored for 
at least 10 years and contained three or more census intervals with at least one in the 1990s and 
one in 2000s. Red lines indicate long-term trends that negatively affect biomass stocks (for 
example, decreasing net change, increasing losses) and green lines indicate trends that positively 
affect biomass stocks (for example, increasing productivity). Bold black lines indicate the mean 
slope across all plots and confidence intervals (2.5–97.5 percentiles). Insets in the left panels 
show the frequency distribution of the slopes, with the mean slope and P value for t-test of 
difference from no slope. The maps show the location of the sites, and the colour and arrow 
length indicate the sign and magnitude of the slope, with adjacent plots joined into a single site 
for display purposes. 
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Figure 3 Relationships between annual net change in biomass of individual plots and their 
annual change in basal area, stem numbers and wood density. a–c, The mean values of the 
rates of changes for basal area (a), stem numbers per hectare (b) and wood density (c) are given 
in each panel along with the R2 of the relationship with annual net biomass change. The number 
of plots included is 234 (that is, those with data on change in basal area, stem numbers and wood 
density). 
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Methods 

Forest biometric data 

Mature forests, including terra firme, floodplain, white sand and swamp were sampled 
throughout the forested lowland tropical areas of South America (below 1,500 m above sea 
level) that receive at least 1,000 mm of rainfall annually. To be included in this study, permanent 
sample plots were required to have two or more censuses. Immature or open forests, and those 
known to have had anthropogenic disturbances owing to fire or selective logging, were 
excluded. The plots are geographically well dispersed throughout the Amazon Basin (Extended 
Data Fig. 1), covering every tropical South American country except Suriname. Supplementary 
Table 1 includes a complete list of plots included in this study with the respective size, start and 
end date for the censuses included in this analysis, and names of the main researchers for each 
plot. A full manual for plot establishment and tree measurements of the RAINFOR plot network 
can be found in ref. 31. 

Of the total 321 plots, 232 are from the RAINFOR network. In addition, we compiled 
biomass dynamics data for 89 plots from published studies, mostly from one site for 2001 to 
2003 (DUK) (see Supplementary Table 1). For these plots, we simply used the available biomass 
data as published. Note that these studies do not apply the same allometric equations, and may 
have slightly different measurements protocols and census interval corrections. While as a 
general rule all trees with stem diameters greater than 100 mm were included in this analysis, 
palms (Arecaceae) or coarse herbs of the genus Phenakospermum were excluded for a few plots 
(19) due to changes in measurement protocols over time in these plots. In addition, for a few 
plots only trees ≥130 or ≥200 mm in diameter were recorded in the first census(es). In these 
cases, we either standardized the biomass data in the first census(es) to trees ≥100 mm using the 
ratio of biomass for trees ≥100 and ≥200 mm (seven plots) of later censuses, or we used the 
slightly different minimum size threshold for the full period, including only trees ≥130 mm (for 
two plots). For full details on these specific issues see the online source data. For analysis 
purposes, plots smaller than 0.5 ha that were within 1 km or less of one another were merged, to 
give a total of 274 ‘sample units’. The mean size across all sample units was 1.24 ha, and the 
mean total monitoring period was 11.1 years. In total, the study monitored 343 ha for a 
combined total of 4,620 ha years, involving more than 850,000 tree measurements on around 
189,000 individual trees larger than 10 cm diameter. 

The standard protocol for tree measurements in the field is to measure diameter at breast 
height, defined as 1.3 m from the base of the stem. For non-cylindrical stems owing to buttresses 
or other deformities the point of measurement is raised approximately 50 cm above the 
deformity. The exact height of the point of measurement (POM) was recorded and marked on 
the trees to ensure that future measurements were taken at the same point. For those trees where 
buttress growth threatened to reach the initial POM, we raised the height of diameter 
measurement to a new POM, located sufficiently high above the buttresses to avoid interference 
of buttresses with diameter measurements at subsequent censuses. If a change in POM was 
made, we recorded both the diameter at the original POM and the new POM, thus creating two 
disjoint series of diameters measured at different heights. To avoid potential biases that can 
result from not accounting from the POM movement, following ref. 32 we computed a new 
diameter series that was calculated as the mean of: (1) diameter measurements standardized to 
the new (final) POM, obtained by multiplication of measurements at the original POM by the 
ratio between diameter measurements at the new and original POM, and (2) diameter 
measurements standardized to the original POM, by multiplying measurements at the new POM 
by the ratio between diameter measurements at the original and new POM. The outcome of our 
analysis was robust with respect to the method of dealing with POM changes, giving similar 
results using several alternative approaches for dealing with POM changes including the 
technique described previously17 in which diameter gains at the new POM are added to the 
diameter at the original POM. Following ref. 32 we used several techniques to avoid or minimise 
potential errors arising from missing diameter values, typographical errors, or extreme diameter 
growth ≥4 cm yr−1 or total diameter growth ≤−0.5 cm across a single census interval (that is, 
losing 0.5 cm, as trees may shrink by a small amount due to hydrostatic effects in times of 
drought, and measurement errors can be both positive and negative). For stems belonging to 
species known to experience very high growth rates or noted as having damaged stems we 
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accepted these values. We used interpolation, where possible, else extrapolation to correct errors. 
If neither of these procedures were possible we used the mean growth rate of all dicotyledonous 
stems in the same plot census, belonging to the same size class, with size classes defined as 
10 ≤ diameter < 20 cm, 20 ≤ diameter < 40 cm, and diameter ≥ 40 cm, to estimate the missing 
diameter value. Of all stem growth increments, for 1.7% per census we assigned interpolated 
estimates of diameter, for 0.9% we used extrapolated estimates, and for 1.5% we used mean 
growth rates. 

Computing above ground biomass, sampling effects and scaling up sink estimates 

We converted diameter measurements to AGB estimates using allometric equations described 
previously8, which include terms for wood density, diameter and tree height. Tree height was 
estimated based on established diameter-height relations that vary between the different regions 
of Amazonia8. Wood density values were extracted from a global wood density database 
(http://datadryad.org/handle/10255/dryad.235; ref. 33). In cases where a stem was unidentified 
or where no taxon-specific wood density data were available, we applied the appropriate genus 
or family-specific wood density values. If none of those was available, the mean wood density of 
all identified dicotyledenous tree stems in the plot was applied. In our analysis 80% of the trees 
were identified to species level, 94% to genus level, and 97% to family level. All data on tree 
diameter, taxonomy, and associated botanical vouchers are curated under the https:// 
.forestplots.net/ web application and database34. 

The magnitude of the biomass sink for the forested area of the Amazon Basin for the 
1990s and 2000s was estimated by multiplying the magnitude of total biomass change with an 
estimated area of intact forest, including all open and closed, evergreen and deciduous forests for 
tropical South America (6.29 × 108 ha, according to Global Land Cover map 2000; ref. 35). For 
this calculation we also included biomass components that were not directly measured, assuming 
that these pools responded proportionally to the measured above ground biomass in trees bigger 
than 10 cm in diameter. It has been shown using destructive measurements of stand biomass in 
central Amazonia that lianas and trees smaller than 100 mm in diameter represent an additional 
fraction of ~9.9% the measured AGB (in trees ≥10 cm in diameter36), and below ground biomass 
a fraction of ~37% the AGB36 .We assumed that 50% of biomass is carbon37. 

Analysing time trends and statistical analysis 

The longer a census interval, the greater the proportion of growth that cannot be directly 
observed within the interval, due to the growth of initially recorded trees that subsequently die 
during the interval, and the growth of unrecorded trees that both recruit and die during the 
interval38–40. Hence, variation in census interval lengths in plots over time will affect estimates of 
woody productivity and mortality rates40, potentially biasing the long-term trends if not 
accounted for. Using established procedures32, we therefore explicitly corrected for the influence 
of varying census interval length, by estimating the following two unobserved components: (1) 
unobserved recruits, that is, the cohort of recruits that both enter and die between two successive 
censuses, and (2) unobserved biomass growth and mortality, due to the growth of trees after the 
final census that a tree was recorded alive. To correct for unobserved recruits, we first estimated 
the number of unobserved recruits (Ur) as the number of stems in the plot (N) multiplied by the 
annual recruitment rate (R) multiplied by the mean annual mortality rate (M) multiplied by the 
census interval length (t): Ur = N × R × M × t. We assumed that the diameter of these trees was 
100 mm plus growth for one-third of the interval using the median growth rate for trees in the 
100–200 mm size class. The biomass of each tree was estimated by applying the regionally 
appropriate allometric equation8, using the plot mean wood density. To correct for unobserved 
growth and mortality due to trees dying within an interval, we assumed that all trees that died 
during the interval to have died at the mid-point, and assigned growth up to this mid-point, 
estimated as the median growth of all trees in the plot within the same size class. Full details of 
the procedure have been described previously2. These estimates of the unobserved biomass 
dynamics usually accounted for only a small proportion of the total woody productivity and 
mortality (respectively 2.28% and 2.74%, on average). 

Mean time trends of biomass dynamics (black lines in Fig. 1 and Extended Data Figs 3 
and 5–7) were calculated for each month since 1983 as the weighted mean across all sample 
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units. As plots vary in total area monitored, we used an empirical weighing procedure to account 
for differences between plots in sampling effort by weighting according to the square root of plot 
area4. Confidence intervals (95%) were estimated using weighted bootstrap sampling. 

To estimate long-term trends in biomass dynamics (cf. Figure 1), we first used general 
additive mixed models (GAMM) from the gamm4 R package41. Estimates of the long-term 
trends were performed by regressing the mid-point of each census interval (Extended Data Fig. 
2) against the rate of change (net change, mortality or gains). Here, systematic plot effects were 
explicitly accounted for by using plot as a random effect in the model. This avoided switches 
over time in the exact set of plots being monitored influencing the long-term trends. As census 
interval length and plot sizes varied, we weighted each data point in the regression by the 
product of the census interval length (in years) times the square root of plot size (in hectares), as 
suggested previously42. We estimated the linear slope of the long-term trend using the lme4 
package43. In an identical way to the GAMM, we accounted for plot effects and added weights to 
the regression. To test whether the estimated time trends were robust to different plots being 
sampled over different timeframes, we also repeated the above analysis over shorter time 
windows (1990–2011.5, 1995–2011.5 and 2000–2011.5) keeping the set of plots used 
completely constant. Results of this analysis are shown in Extended Data Fig. 3. 

The approaches using GAMM and the linear slope calculations are parametric and 
assume normally distributed data, while census-level data on AGB mortality and net AGB 
change are non-normally distributed, showing respectively right-skewed and left-skewed 
distributions. Thus the observed time series for AGB mortality and net AGB change do not 
strictly meet the criteria for this type of parametric analysis, although it might be expected from 
the central limit theorem that with sufficiently large data sets the regression analyses would still 
have validity. To test explicitly the robustness of our estimates for the models of net change and 
mortality with regard to violation of the normality assumption for ordinary least squares 
analysis, we used a rank-based estimator for linear models available from the Rfit-package44. 
This shows that slopes for AGB net change and mortality are similar or else of larger magnitude 
using non-parametric tests (that is, slope net change = −0.057 Mg ha−1 yr−2, P < 0.001, slope 
mortality = 0.061 Mg ha−1 yr−2, P < 0.001, compared respectively to values of 
−0.034 Mg ha−1 yr−2 and 0.051 Mg ha−1 yr−2 using the parametric techniques). A test of non-
parametric rank based estimations of the slopes of the change in standing biomass, or mortality 
on a per stem basis (Extended Data Fig. 6), and of changes in stem numbers and number of trees 
dying and recruiting per hectare (Extended Data Fig. 7), or basal area changes (Extended Data 
Fig. 8), show a similar results to that of the parametric tests: there is a significant decrease in net 
change of standing biomass per stem (P = 0.0014), no trend in the losses on a per-stem basis 
(P = 0.47), a significant decrease in the change in the number of stems per hectare (P < 0.001), 
marginally significant increase in number of recruits (P = 0.051), and a significant increase in 
the number of trees dying (P < 0.001), a significant decrease in net basal area change 
(P < 0.001), and a significant increase in basal area mortality (P < 0.001). 

A second method for calculating the long-term trends in biomass dynamics involved 
estimating the slopes of the time trends for individual plots (Fig. 2). We did this only for those 
plots that had at least three census intervals, and more than 10 years of total monitoring length 
with at least one census interval in the 1990s and in the 2000s. These stricter selection criteria 
were designed to allow us to focus on a core set of data most likely to capture long-term patterns 
in regional biomass dynamics. Slopes of biomass dynamics metrics were seldom statistically 
significant (P = 0.95) within plots, due to the stochastic nature of the dynamics data (Extended 
Data Fig. 2). We calculated the mean of the slopes across all plots weighted by the product of 
square root of plot area times the total census interval length. A t-test was used to test whether 
the mean values were significantly different from zero. 

All analyses was performed using the R statistical platform, version 3.0.2 (ref. 45). No statistical 
methods were used to predetermine sample size.  
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Extended Data Figure 1 Map showing locations of plots included in this study. The three-
letter codes refer to plot codes (see Supplementary Table 1). Adjacent plots (<50 km apart) are 
shown as one for display purposes. Size of the dots corresponds to the relative sampling effort at 
that location which is calculated as the square root of plot size multiplied by square root of 
census length. The grey area shows the cover of all open and closed, evergreen and deciduous 
forests for tropical South America, according to Global Land Cover map 2000. 
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Extended Data Figure 2 Scatterplot of mid-interval date against net AGB change, AGB 
productivity and AGB loss due to mortality for all data points and plots used in this 
analysis. a, Biomass change. b, Productivity. c, Mortality. Points indicate the mid-census 
interval date, while horizontal error-bars connect the start and end date for each census interval. 
To illustrate variation in net AGB change over time within individual plots, examples of time 
series for three individual plots are show as lines. 
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Extended Data Figure 3 Time trends of subsets of net above-ground biomass change, 
above-ground woody productivity and mortality rates for plots that were continuously 
monitored throughout, for the periods 1990–2011, 1995–2011 and 2000–2011. Locations for 
the set of plots included in the analysis for the different periods are show in the maps in lower 
panels. Sample sizes (n), slopes of the long-term linear trends (sl) and P values are shown. 
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Extended Data Figure 4 Mean number of plots, interval census length and area of all plots. 
The mean number of plots (red lines), mean interval census length (black lines) and mean plot 
area (blue lines) are shown. Note that the increased sampling in 2002 to 2004 is largely due to 
the short-term addition of 72 plots from one site (Ducke, north of Manaus), but this has no 
discernible effect on averaged biomass dynamics (Fig. 1). 
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Extended Data Figure 5 Biomass change, growth gains and mortalities on a per live stem 
basis. a, Mean net biomass change on a per live stem basis (that is, net biomass change per 
stem). b, Mean growth gains per live tree (that is, mean biomass accumulation of individual 
trees). c, Mortality losses per stsem. Analyses are based on 234 plots, excluding published 
studies without available stem-by-stem data. 
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Extended Data Figure 6 Rates of change in number of stems plus annualized fluxes of 
stems bigger than 10 cm in diameter. a–c, Mean net change in number of stems (a), number of 
recruits (b), and and number of dying trees (c). Analyses are based on 234 plots, excluding 
published studies without available stem-by-stem data. 
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Extended Data Figure 7 Basal area change, productivity and mortality. a, Mean net basal 
area change. b, Mean basal area productivity. c, Mean basal area mortality. Analyses are based 
on 234 plots, excluding published studies without available basal-area data. 
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Extended Data Figure 8 AGB mortality versus AGB productivity, AGB loss due to 
mortality versus the mean AGB productivity, and AGB productivity versus the mean AGB 
loss due to mortality. a, Scatterplot of the slope of AGB mortality of individual plots against 
the slope of AGB productivity of plots. b, Scatterplot of the slope of AGB loss due to mortality 
of individual plots against the mean AGB productivity of plots. c, Scatterplot of the slope of 
AGB productivity of individual plots against the mean AGB loss due to mortality of plots. The 
set of plots used in this analysis (117 plots, 87 units) includes only those that had at least 
10 years of data and at least three census intervals (that is, same criteria as plots shown in Fig. 
2). 
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Extended Data Figure 9 Net AGB change or loss due to mortality versus the total 
monitoring length of plots, and the slope of net AGB change or mortality versus the total 
monitoring length of plots. a–d, Scatterplots of net AGB change (a) or net AGB loss due to 
mortalityof individual plots (c) against the total monitoring length of plots, and the slope of net 
AGB change (b) or slope of AGB mortality of individual plots (d) against the total monitoring 
length of plots. None of the relationships are significant (P > 0.05). Note that the plots (117 
plots, 87 units) used in the b and d are only those that had at least 10 years of data and at least 
three census intervals (that is, same criteria as plots shown in Fig. 2). See Supplementary 
Information for discussion of these results.  
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Extended Data Figure 10 Modelled estimates of the effects of linearly increasing mortality 
on necromass stocks and soil organic-matter stocks. a, Necromass stocks. b, Soil organic 
matter stocks. c, The estimated fluxes of carbon from the forest to the atmosphere in three 
scenarios: (1) assuming constant mortality rate and a lag in decomposition of dead-tree biomass 
(green), (2) assuming an increasing mortality rate similar to the observed trend (Fig. 1c) and a 
lag in decomposition as modelled (black), and (3) with increasing mortality but with all dead-
tree biomass instantly respired (red). See Supplementary Information for discussion of these 
results.  
 


