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Abstract. When designing evolutionary algorithms one of the key con-
cerns is the balance between expending function evaluations on explo-
ration versus exploitation. When the optimisation problem experiences
observational noise, there is also a trade-off with respect to accuracy
refinement – as improving the estimate of a design’s performance typi-
cally is at the cost of additional function reevaluations. Empirically the
most effective resampling approach developed so far is accumulative re-
sampling of the elite set. In this approach elite members are regularly
reevaluated, meaning they progressively accumulate reevaluations over
time. This results in their approximated objective values having greater
fidelity, meaning non-dominated solutions are more likely to be correctly
identified. Here we examine four different approaches to accumulative
resampling of elite members, embedded within a differential evolution
algorithm. Comparing results on 40 variants of the unconstrained IEEE
CEC’09 multi-objective test problems, we find that at low noise levels
a low fixed resample rate is usually sufficient, however for larger noise
magnitudes progressively raising the number of minimum resamples of
elite members based on detecting estimated front oscillation tends to
improve performance.

Keywords: Pareto optimality, differential evolution, uncertainty, noise.

1 Introduction

Many real-world optimisation problems experience noise which corrupts the ob-
served quality values associated with a design. This may be due to, e.g., sen-
sor/measurement error or environmental variation during the evaluation of a
built design in embodied optimisation, or due to the stochastic nature of the
software simulation being optimised (repeated evaluations leading to slightly
different criterion values). Early multi-objective optimisation work raised the
issue of noise affecting an evolutionary optimiser [15], but practical work devel-
oping evolutionary multi-objective algorithms in this area did not commence in
ernest until nearly a decade later. There now exist a wide range of ‘noise-tolerant’
algorithms, designed specifically for multi-objective optimisation problems with
observational noise, e.g. [16, 17, 2, 27, 5, 3, 4, 8, 18, 1, 30, 12, 9, 6, 13, 24, 26, 20, 23,



10], and recent work has explored the situation where the objective functions
themselves are inherently uncertain [29].

The vast majority of noise-tolerant optimisers include some form of resam-
pling (repeated function reevaluation) of designs, in order to improve the esti-
mate of their associated objective values. This is required as noise will mean that
poor solutions with ‘favourable’ noise will be seen as better than they should
be, and likewise good solutions that experience detrimental noise will be seen as
relatively worse. This has the effect of corrupting fitness assignment and rank-
ing, polluting any elite sets that may be maintained, and generally degrading
optimiser performance. Furthermore, it has been observed in a number of studies
that as the estimated non-dominated set converges the main driver for updating
this set tends to be noise rather than improvements in the designs themselves
(see e.g. [12, 13, 10]). This can seriously impede the ability of an algorithm to
locate the Pareto front within the tolerance of the noise width(s).

There are many different approaches taken to resampling in the field, from
static approaches, where a fixed number of resamples are taken for each design
assessed, through to dynamic approaches based on, for example, reducing the
standard error to within an acceptable bound. The reader is directed toward
recent work by Siegmund et al. [25] for a full categorisation.

In the work presented here we are solely concerned with accumulative sam-
pling approaches (see e.g. [20, 10]). These require only a maximum likelihood
estimator function being available, est(·), which takes a set of reevaluated ob-
jective vectors associated with a design and provides the best estimate of the
underlying noise-free objectives. This differs from a large number of other sam-
pling approaches which rely on the noise experienced being Gaussian, and often
utilise variance and standard error estimates [17, 2, 8, 26, 23, 25].

Accumulative sampling approaches leverage the observation that increasing
the number of samples will increase the fidelity of the derived objective vector
estimate irrespective of the noise density experienced, as long as the estimator
is unbiased. That is, at the limit of infinite resamples the estimator will return
the noise-free objective vector. Furthermore, even in the case where an estima-
tor converges to the noise-free objective vector plus a bias, dominance-based
optimisation can still be performed effectively, as adding a constant does not
affect the relative Pareto ranking of solutions [10]. In accumulative resampling
of elite members, where the number of reevaluations per member is not limited,
there needs to be decision regarding how many function evaluations should be
expended on reevaluating elite members. In [20] the elite set is fixed in size,
and each generation the entire elite set is resampled once, with a correspond-
ing number of brand new designs also evaluated. In [10] each iteration of the
algorithm results in a single new design, and the elite member with the fewest
reevaluations is reevaluated a single additional time, with the last 5% of a run
entirely devoted to reevaluations. As such, both [20] and [10] split their allocated
function evaluations roughly equally between new proposals and previously eval-
uated proposals. Experiments at the end of [10] however indicate that an equal
balance between reevaluations and new design evaluations is not optimal for all



problems. Here we examine the use of adaptive reevaluation approaches for elite
member accumulative resampling, including methods that ensure the number of
effective reevaluations per member increases over time along with methods to
increase the reevaluation rate if convergence is impeded by noise.

The rest of the paper is structured as follows. In Sec. 2 the multi-objective
optimisation problem with observational noise is defined, along with basic re-
sampling definitions. In Sec. 3 the properties of elite accumulative resampling
are discussed, and the proposed adaptive methods described. In Sec. 4 the dif-
ferent approaches are compared empirically on the unconstrained problems of
the IEEE CEC’09 multi-objective test suite, modified with additive noise with
a range of magnitudes. Sec. 5 contains the paper conclusion and discussion.

2 Multi-objective optimisation with noise

Without loss of generality the multi-objective optimisation problem seeks to
simultaneously minimise D objectives: fd(x), d = 1, . . . , D where each ob-
jective depends upon a vector x = (x1, . . . , xp, . . . , xP ) of P parameters or
decision variables. The parameters may also be subject to equality and in-
equality constraints which, for simplicity, we assume can be evaluated precisely.
The multi-objective optimisation problem may thus be expressed as: minimise
f(x) = (f1(x), . . . , fD(x)), subject to the constraints which define X ∈ RP , the
feasible search space. When there are multiple competing objectives, solutions
may exist for which performance on one objective cannot be improved without
degrading performance on at least one other. Such solutions are said to be Pareto
optimal. The set of all Pareto optimal solutions is said to form the Pareto set,
whose image in objective space is known as the Pareto front.

A decision vector x is said to dominate another x′ iff fd(x) ≤ fd(x′) ∀d =
1, . . . , D and f(x) 6= f(x′). This is often denoted as x ≺ x′. Pareto domi-
nance is a key comparator used in a wide range of evolutionary optimisers –
either directly in their fitness assignment and ranking schemes, or as a means
to identify their final Pareto set estimate. Elitist multi-objective optimisers gen-
erally maintain a mutually non-dominating set A (often called an archive) of
solutions which form their estimated Pareto set at any stage in their optimi-
sation. This may be active (providing input into the optimisation process) or
a passive record of the best solutions ever encountered during the optimisation
[28]. In a noisy optimisation problem we cannot directly access f(x), instead we
have access to y, which are the criteria contaminated by observational noise ε.
Here we are concerned with additive noise:

yd = fd(x) + εd. (1)

With n repeated reevaluations at a design location x we obtain a set of noise
contaminated objective vectors Y (x) = {yi}ni=1, which, in conjunction with an
unbiased maximum likelihood estimator will provide us with an estimate of the

noise-free evaluation of f(x): f̂(x) = est(Y (x)). For instance, if the noise was



Gaussian then est(·) would be the mean function, whereas if the noise was
Laplacian it would be the median function.

In the noisy situation, we no longer have certainty that one solution domi-
nates another (or that they are mutually non-dominating), as the ε experienced
by each solution may be of a value sufficient to reverse the ordering of solutions
on one or more objective criteria. However, as n increases, our approximation
to f(x) improves (in general this accuracy improves proportionally to

√
n). In

order to ensure the exploitation of elite members uses accurately labelled de-
signs, recent noise-tolerant optimisers have focused on resampling elite members
preferentially [20, 10].

3 Adaptive accumulative sampling

Depending on the problem and the noise experienced, the update dynamics of
the elite set may vary considerably. If members are regularly leaving the elite
set, and new members regularly entering it, then the number of reevaluations
per elite member may be in effect quite low – even when reevaluating an elite
member for each new solution evaluated. Alternatively, if the membership of A
changes relatively irregularly, then the n per elite member may be very large.
Neither of these situations may be ideal in practice, as in the first instance the
elite members may fail to accumulate sufficient resamples to mitigate the noise
when in proximity to the Pareto front, and in the second case some of these
function evaluations may be better expended on new designs.

One side-effect of reevaluating previously evaluated solutions is that the esti-
mated Pareto front can oscillate. This is distinct from the oscillating/retreating
front issue derived from truncating elite sets in noiseless problems [14, 11], as
its root cause is due to the (estimated) objective location of previously elite
solutions moving, rather than the direct exclusion of solutions that are known
with certainty to be non-dominated. This therefore affects even unbounded elite
sets in the noisy case. An illustrative example is provided in Fig. 1. Here the
differential evolution for multi-objective optimisation (DEMO) algorithm [21] is
applied to noisy variants of the IEEE CEC’09 UP1 problem, with varying levels
of additive observational Gaussian noise. The population in DEMO is main-
tained using non-dominated sorting, so, subject to the population limit being
sufficient to contain the number of non-dominated solutions encountered at any
time point, on first glance the population should contain the best performing so-
lutions found so far (as it will only discard dominated solutions). However, this
maintenance approach is not sufficient in the noisy case with reevaluations – as
solutions may be discarded which would later be determined as non-dominated
due to reevaluations of elite members degrading their estimated performance
(‘exposing’ the previously dominated solutions). In Fig. 1 we expend one elite
member reevaluation for every new design evaluated. The left panel of Fig. 1
shows the number of times the non-dominated subset of the DEMO search pop-
ulation did not contain the non-dominated subset of all designs visited so far
(based on their est(·)). A secondary elite archive is maintained separately from
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Fig. 1. Empirical oscillation of estimated elite members with Gaussian observational
noise on the UP1 problem. Noise standard deviations σ = {0.01, 0.1, 1.0, 10.0} used
for four different runs of the DEMO algorithm using elite reevaluations. Left: cumula-
tive number of times the search population in DEMO needed to be updated using a
secondary tracking archive (black through to light grey indicates low noise through to
high noise). Right: Corresponding archive size, |At|. Note that |At| never exceeds 100
– the size of the non-dominated sorting truncated search algorithm in DEMO – but
the search population regularly discards solutions which later become non-dominated
(and have to be fed back in again) due to the reevaluation of the noisy solutions.

the DEMO population, using the techniques described in [7], and is merged in
with the search population whenever they are detected to have diverged (redi-
recting the DEMO population back to the estimated optimal regions of design
space). This recalibration can be seen to be regularly required even when the
search population membership is much larger than that of the elite set (an order
of magnitude bigger in the highest noise case).

We now propose a number of adaptive schemes for incremental accumulative
sampling, and discuss the reasoning behind them. Each approach treats the op-
timisation as an incremental process. At each time step t either a new design is
evaluated, or a previously evaluated elite solution is reevaluated. In both situa-
tions the membership of At (the estimated elite set at time t) may be altered,
as in the first instance the new design may enter At, and in the second instance
reevaluation may cause the previously elite member to be dominated and/or
move to a position in objective space such that solutions that were previously
identified as dominated should now (re)enter the elite set.

3.1 Fixed resamples per generation

The baseline approach evaluates one new design per algorithm iteration, and
reevaluates a single member of the elite set. The reevaluated elite member is
that with the fewest reevaluations contributing to its estimated objective values.1

1 Selection could instead be based on the largest standard error for situations where
a priori noise density information allows this to be calculated.



Algorithm 1 Resample rate fixed over time.

Require: At−1 Elite non-dominated members identified at previous time step
Require: Xt−1 Other previously evaluated designs (dominated at t− 1)
1: At := At−1, Xt := Xt−1

2: Propose and evaluate new design, update At and Xt

3: Reevaluate the member of At with fewest resamples, update At+1 and Xt+1

The evaluation of a new design may cause a change in the elite set or a change
in the set containing all previously evaluated dominated solutions at a time
step (Xt). The reevaluation of a solution may also cause multiple changes in
both sets, as it can mean the removal of elements from At to insert into Xt (if
the reevaluated solution has moved to a dominated locations, or to a location
that now dominates members of At), and the addition of elements from Xt

to At (where designs that were previous dominated are now categorised as non-
dominated due to the reevaluated solution moving to an objective space location
which no longer covers them). A basic outline is presented in Alg. 1.

3.2 Increasing resample rate, based on detecting false convergence

As mentioned above, one of the key issues with noisy optimisation problems
is that as an algorithm converges, there is a tendency for noise to drive the
search process over improving performance on the underlying criteria. One way
of detecting this is to compare the state of the best elite set estimate at one time
step, At, with that of an earlier time step, e.g. At−m. If the performance if At

is worse than that of At−m then (assuming A has not been truncated) this can
only be because reevaluations of members of A in the m intervening time steps
has meant that their predicted locations through est(·) have worsened, and that
this shift backwards of At has not been compensated for by finding other designs
which provide equivalent or better predicted performance to those in At−m. In
other words, the noise experienced made At−m seem better than it was, and
we have not found any solutions (or reevaluated any) in the intervening m time
steps to compensate for this over-estimate. In order to mitigate this, the number
of reevaluations are increased, making it harder for rogue reevaluations to unduly
influence the performance assessment (as outliers should be more quickly diluted
with subsequent reevaluations).

Alg. 2 outlines this approach using the binary ε+ indicator (other indicators
could also be used, see [19] for a discussion of different indicators and their
properties). If the additive ε required to make the At−m set dominate the At set
is lower that the value required to make the At set dominate the At−m set then
the number of reevaluations per iteration is increased. Here the objective values
are normalised by the bounds of the minimum bounding box containing At and
At−m, and the est(·) used are those calculated for the designs at the respective
time steps. Rather than compare At with At−m at every time step this is done
every m time steps as a minimum (lines 3-7). This allows the increment of k (the



Algorithm 2 Increasing resample rate based on convergence assessment.

Require: k Current resample number
Require: m Convergence time window
Require: At−m Elite non-dominated members identified at time step t−m
Require: At−1 Elite non-dominated members identified at previous time step
Require: Xt−1 Other previously evaluated designs (dominated at t− 1)
1: At := At−1, Xt := Xt−1

2: Propose and evaluate new design, update At and Xt

3: if number of time steps since last check meets or exceeds m then
4: if Iε+(At, At−m) > Iε+(At−m, At) then
5: k := k + 1
6: end if
7: end if
8: for i = 1, . . . , k do
9: Reevaluate the member of At+i−1 with fewest resamples, update At+i and Xt+i

10: end for

number of reevaluations per iteration) time to have an effect before the sets are
compared once more.

3.3 Increasing minimum revaluation number, based on detecting
false convergence

An alternative approach to increasing the absolute number of reevaluations each
iteration, is to increase the minimum number of reevaluations that archive mem-
bers must have accrued. This approach means the balance of function evaluations
expended on reevaluations versus new designs can alter back and forth from one
iteration to the next. For instance, if the minimum number of reevaluations per
elite member was k = 10, after reevaluating a single archive member with the
fewest reevaluations (Alg. 3 line 8), if all elite members had at least k reeval-
uations then no further reevaluations would be taken. On the other hand, if
there were elite members with fewer than k reevaluations, then the loop on lines
10-13 may be processed many times before the minimum number of reevalu-
ations condition was satisfied. Note that the check to increase k (lines 3-7) is
only undertaken in situations where the elite archive meets the condition that
all members have at least k reevaluations each.

3.4 Increasing average resamples per elite member

As the optimiser progresses we would like to say that the confidence we have in
our elite set (our estimate of the Pareto set) increases rather than decreases or
stagnates. With accumulative sampling the way to achieve this is to ensure that
the number of reevaluations per set member is always increasing. Comparing
one generation directly to the next can be a brittle approach as it may force
a relatively large increase in resamples each time step (for instance if |A| = 1
for any stretch of time the imposition of an extra reevaluation each iteration



Algorithm 3 Increasing minimum number of reevaluations for elite members,
based on convergence assessment.

Require: m Convergence time window
Require: At−m Elite non-dominated members identified at time step t−m
Require: At−1 Elite non-dominated members identified at previous time step
Require: Xt−1 Other previously evaluated designs (dominated at t− 1)
1: At := At−1, Xt := Xt−1

2: Propose and evaluate new design, update At and Xt

3: if number of time steps since last check meets or exceeds m then
4: if Iε+(At, At−m) > Iε+(At−m, At) then
5: k := k + 1
6: end if
7: end if
8: Reevaluate the member of At with fewest resamples, update At+1 and Xt+1

9: i := 1
10: while member of At+i with fewest resamples has fewer than k reevaluations do
11: Reeval. the member of At+i with fewest resamples, update At+i+1 and Xt+i+1

12: i := i+ 1
13: end while

Algorithm 4 Increasing resamples per elite member over time.

Require: At−1 Elite non-dominated members identified at previous time step
Require: Xt−1 Other previously evaluated designs (dominated at t− 1)
Require: α Average number of resamples of A across all previous time steps
1: At := At−1, Xt := Xt−1

2: Propose and evaluate new design, determine At and Xt

3: Reevaluate the member of At with fewest resamples, update At and Xt

4: i := 1
5: while mean num resamp(At) ≤ α do
6: Reevaluate member of At+i−1 with fewest resamples, update At+i and Xt+i

7: i := i+ 1
8: end while

can be putative if the set grows in size later during an optimisation). Instead
we examine a less stringent average approach here, as outlined in Alg. 4. Here
the average number of resamples of solutions in At is compared to the average
across elite members of all previous time steps, and repeated reevaluations are
taken if the current average is lower (lines 4-6). This is in addition to the extra
reevaluation taken each generation as standard (line 3), which acts to steadily
increase the lower bound on this minimum.

4 Empirical results

We now compare Algs. 1-4 empirically. We use the DEMO algorithm [21] to gen-
erate a new design at each iteration prior to elite set member reevaluation(s).
We modify the original DEMO in two ways to use in the noisy optimisation con-



Algorithm 5 Incremental differential evolution candidate creation, p.

Require: Zt−1 DEMO population at previous time step
1: p := copy random member(Zt−1)
2: {a,b, c} := copy random members(Zt−1 \ {p})
3: for i := 1, . . . , |p| do
4: if rand() < cross prob then
5: pi := ai + differential weight× (bi − ci)
6: end if
7: end for

text. Firstly, in order to make the algorithm incremental a single new candidate
design is generated from the DEMO population at each time step rather than
doubling the population size (before its reduction via ranking and crowding).
This is achieved at each algorithm iteration by selecting one of the DEMO pop-
ulation at random to be the base parent (see Alg. 5, line 1). Secondly, due to the
noisy environment, there is no guarantee that non-dominated solutions preserved
by ranking and crowding truncation at one time step in the DEMO population
will be non-dominated on reevaluation (as illustrated in Sec. 3). To mitigate this,
a separate elite set At is maintained using the data structures introduced in [7],2

and whenever the DEMO search population, Zt, does not contain At, the omit-
ted members are combined with Zt prior to DEMO’s truncation operator being
applied. This was found to significantly improve the performance of DEMO in
the noisy domain in our preliminary experimentation.

Further details describing DEMO may be found in the original work [21]. We
use a DEMO population of 100 in all experiments, a probability of crossover of
0.9 and differential weight of 0.5. The external archive |At| is unbounded, and is
updated at each time step using the data structure from [7] to ensure it contains
the best estimate of the Pareto set. The algorithm variants are evaluated on
the IEEE CEC’09 test suite3 [31]. We use the unconstrained (bounded) prob-
lems from the suite, UP1-10, with the standard number of design parameters,
and modify the objective values with independent additive Gaussian noise with
standard deviations of σ = {0.01, 0.1, 1.0, 10.0} (making 40 test problem variants
in total). In (1) therefore εd ∼ N (0, σ2). We run each algorithm 30 times, for a
total of 300,000 function evaluations, and record the generational distance (GD)
and inverse generational distance (IGD) every 500 function evaluations using
the At at that time point. The noise-free reevaluation of the stored At is used
– the corresponding non-dominated set in its mapping to the noise-free space
is extracted for the calculation of the quality measures. We utilise the modified
versions of the GD and IGD quality measures which are not susceptible to vari-
ation in set size (see [22]). We set the convergence check parameter m = 100 for
all experiments.

2 Matlab code from https://github.com/fieldsend/.
3 Matlab code from http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/

Shared Documents/Forms/AllItems.aspx.
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Fig. 2. IGD results, initial 10% of run. The left block of bar charts shows the proportion
of time, across problems and polled every 500 function evaluations, where a resampling
technique led to the best results (black), the second best (dark grey), third best (light
grey) and worst (white), for each noise level. The right set of bar charts shows the corre-
sponding significance assessments – black indicates the proportion where the approach
is significantly better than all three other sampling approaches, dark grey significantly
better than two, light grey significantly better than one and white not significantly
better than any others.
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Fig. 3. GD results, initial 10% of run. Description as in Fig. 2 caption.

Figs. 2 and 3 give the relative IGD and GD performance for the four reeval-
uation routines embedded in DEMO, at each of the noise levels, averaged across
the first 10% of the runs over the 10 test problems.4 For low noise levels the single
revaluation approach has generally good performance for both quality measures,
ranking first or second roughly 80% of the time across the initial stages of the

4 5% statistical significance is assessed using paired Wilcoxon signed ranks tests, with
each strategy compared to each of the other competitors.
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Fig. 4. IGD results, final 10% of run. Description as in Fig. 2 caption.
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Fig. 5. GD results, final 10% of run. Description as in Fig. 2 caption.

optimisation. This is seen to drop off as the noise increases. The minimum elite
member reevaluation approach (Alg. 3) performs fairly consistently across the
noise levels, and performs better than the steadily increasing reevaluations ap-
proach. Interestingly the approach which increases the number of reevaluations
at each iteration (if oscillation is detected) tends to perform worst, except for
the largest noise level, where its relative performance jumps up.

Figs. 4 and 5 provide the combined results for the final 10% of the runs.
The general trends are as for the first 10% but the relative decline (and rise)
of the reevaluation approaches as the noise level increases is more pronounced.
The single revaluation approach degrades more steeply as the noise level rises,
such that between σ = 0.1 and σ = 1.0 the minimum elite member reevaluation
approach (Alg. 3) replaces it as being the preferred approach. Indeed, this ap-
proach is best or second best for IGD 90% of the time for the highest two noise
values.
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Fig. 6. Average number of resamples per elite member elite on a single run on UP1
(top) and size of At (bottom) for each update algorithm. Black through to light grey
indicates low noise through to high noise σ = 0.01, 0.1, 1.0, 10.0.

4.1 Population dynamics

We can explore some of the different behaviours of the resampling regimes by
examining the elite population dynamics over time, which also lends insight as
to why particular approaches seem better suited to different noise regimes. Fig.
6 shows the average number of reevaluations per member of At as a run pro-
gresses through to 50,000 function evaluations on the UP1 problem for each of the
accumulative sampling schemes, for the four different noise magnitudes. Some
immediate differences become apparent. When noise is high the standard ap-
proach of fixing the ratio of resamples to new design evaluations throughout the
run can lead to fronts with large oscillations in the average number of resamples
per member (repeatedly jumping across the range of 2-15 in a few iterations).
On the other hand, increasing the number of reevaluations progressively each
time the front is detected as oscillating (Alg. 2) leads to rapidly increasing aver-
age number of reevaluations, meaning a relatively small proportion of expended
evaluations are on new designs. Alg. 3 (setting a minimum number of resam-
ples for archive members, and increasing this if convergence issues are detected)
can be seen to balance these properties, with the average number of resamples
increasing steadily in all noise regimes, but not drastically, and the variation rel-
atively small from one iteration to the next. Correspondingly, although the size
of At varies over time, it is seen to have lower amplitude on its high frequency
oscillations (indicating lower churn of elite members with this approach). Alg.
4 similarly removes the wild variation in the average number of reevaluations
experienced by members of At which Alg. 1 and Alg. 2 are susceptible to, how-
ever as the noise level increases the lower bound on this can be seen to plateau,
rather than steadily increase as in Alg. 3. This decay is due Alg. 4 comparing
the current average reevaluations per member of At with all previous archive



averages, alternatively a moving window approach should mitigate this (though
obviously the window size then becomes an additional parameter beyond m).

5 Conclusion

Accumulative resampling of the elite population has previously been seen to
provide state-of-the-art performance when embedded in noisy multi-objective
optimisers. The management regime for deciding what proportion of function
evaluations to expend on accumulative elite reevaluations rather than new de-
signs has not however received much previous attention. Here we have compared
four alternative accumulative resampling regimes, which we have embedded in
an iterative version of the popular DEMO algorithm, and analysed their per-
formance on 40 variants of the unconstrained CEC’09 test problems. When the
noise is level is low (with widths up to 10% of the range of the Pareto front),
then having an equal balance of new designs versus elite reevaluations provides
relatively good results both at the early stages of optimisation, and also toward
the end. For larger noise widths however the balanced approach is not optimal.
Due to the estimated front oscillation there is a frequent churn of the elite set
membership, meaning the number of reevaluations accrued by members tends to
be low, and does not markedly increase as search progresses. This therefore nul-
lifies the benefits of accumulation, as the elite solutions do not progressively get
more accurate as time progresses under the standard regime. In these situations
the detection of oscillation, and the increase in the minimum acceptable num-
ber of reevaluations per elite member in response, is seen to provide consistently
good results. We look forward to being able to tackle highly noisy multi-objective
problems which these alternative reevaluation regimes would now seem to facil-
itate (the work presented here including noise widths up to 1000% of the range
of the Pareto front).

Further areas of research include examining the use of other indicators to
detect oscillations, using different sized time windows in the detection process,
allowing the sample rate to decrease as well as rise, and investigating switching
regimes between maintenance algorithms.
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21. T. Robič and B. Filipič. DEMO: Differential evolution for multiobjective opti-
mization. In Evolutionary Multi-Criterion Optimization, pages 520–533. Springer,
2005.

22. O. Schutze, X. Esquivel, A. Lara, and C. A. Coello Coello. Using the Averaged
Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Op-
timization. IEEE Transactions on Evolutionary Computation, 16(4):504–522, 2012.

23. V.A. Shim, K.C. Tan, J.Y. Chia, and A. Al Mamun. Multi-objective Optimization
with Estimation of Distribution Algorithm in a Noisy Environment. Evolutionary
Computation, 21(1):149–177, 2013.

24. F. Siegmund. Sequential sampling in noisy multi-objective evolutionary optimiza-
tion. Master’s thesis, University of Skövde, School of Humanities and Informatics,
Sweden, 2009.

25. F. Siegmund, A. Ng, and K. Deb. A comparative study of dynamic resampling
strategies for guided evolutionary multi-objective optimization. In IEEE Congress
on Evolutionary Computation (CEC), pages 1826–1835. IEEE, 2013.

26. A. Syberfeldt, A. Ng, R.I. John, and P. Moore. Evolutionary optimisation of noisy
multi-objective problems using confidence-based dynamic resampling. European
Journal of Operational Research, 204:533–544, 2010.

27. J. Teich. Pareto-front exploration with uncertain objectives. In E. Zitzler, K. Deb,
L. Thiele, C.A. Coello Coello, and D. Corne, editors, Evolutionary Multi-Criterion
Optimization, volume 1993 of LNCS, pages 314–328. Springer, 2001.

28. D. van Veldhuizen and G. Lamont. Multiobjective Evolutionary Algorithms: An-
alyzing the State-of-the-Art. Evolutionary Computation, 8(2):125–147, 2000.

29. C. Villa, E. Lozinguez, and R. Labayrade. Multi-objective Optimisation under
Uncertain Objectives: Application to Engineering Design Problem. In Evolutionary
Multi-Criterion Optimization, number 7811 in LNCS, pages 796–810. Springer,
2013.

30. S. Yang, Y.S. Ong, and Y. Jin. Evolutionary computation in dynamic and uncertain
environments. Springer, 2007.

31. Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, and S. Tiwari. Multiobjective
optimization Test Instances for the CEC 2009 Special Session and Competition.
Technical Report CES-487, School of Computer Science and Electronic Engineer-
ing, University of Essex, UK, April 2009.


