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Abstract
Mesh network topologies are becoming increasingly popular in battery powered wire-
less sensor networks, primarily due to the extension of network range. However,
multi-hop mesh networks suffer from higher energy costs, and the routing strategy
employed directly affects the lifetime of nodes with limited energy resources. Hence
when planning routes there are trade-offs to be considered between individual and
system-wide battery lifetimes. We present a multi-objective routing optimisation ap-
proach using hybrid evolutionary algorithms to approximate the optimal trade-off be-
tween minimum lifetime and the average lifetime of nodes in the network. In order
to accomplish this combinatorial optimisation rapidly, our approach prunes the search
space using k-shortest path pruning and a graph reduction method which finds candi-
date routes promoting long minimum lifetimes. When arbitrarily many routes from a
node to the base station are permitted, optimal routes may be found as the solution to
a well-known linear program. We present an evolutionary algorithm that finds good
routes when each node is allowed only a small number of paths to the base station. On
a real network deployed in the Victoria & Albert Museum, London, these solutions,
using only three paths per node, are able to achieve minimum lifetimes of over 99% of
the optimum linear program solution’s time to first sensor battery failure.
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1 Introduction

Wireless Sensor Networks (WSNs) consist of autonomous devices distributed over a wide
area that are able to sense and periodically report environmental parameters such as
temperature or humidity. They are extensively used for remote monitoring, especially
in industrial, regulatory and heritage applications. Many applications require sensors
to be placed far away from easy access to mains power, so battery-powered sensors are
popular and are often necessary in such situations. However, it is also desirable that
sensors can be left unattended, without battery replacement for as long as possible. In
this paper we therefore investigate the use of hybrid evolutionary approaches to find
routing schemes for mesh wireless sensor networks that optimally preserve the life of
the network and promote energy efficiency.
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Many existing commercial products use an ad hoc topology for WSNs. Generally,
these ad hoc networks are point-to-point networks, in which each sensor reports directly
to a central base station. Despite being a low power solution, a major limitation is
limited network range as each sensor node must be able to communicate directly with
the base station. The rigid network structure also means that networks are unable to
cope with changing conditions in a dynamic radio environment, which may occur as
buildings are modified or furniture is moved. As a consequence sometimes multiple
base stations are required to cover a single site.

As a solution, in recent years, mesh network topologies, where data is relayed
from node to node en route to the base station, have grown in popularity. In addi-
tion to extending the range that can be covered by using multiple hops (that is multi-
ple node-to-node relays) mesh networks provide the opportunity of using alternative
routes, thus increasing resilience to radio environment changes. However, mesh net-
works are expensive in terms of energy consumption due to a higher overhead at each
node for additional activities, namely relaying messages for other nodes and, in sys-
tems with distributed planning, calculating new routes. These additional activities can
be severely detrimental to the overall life of the network, reducing the time before it
requires servicing and battery replacement. It is desirable to minimise the energy con-
sumption in the network, which is equivalent to maximising average lifetime (Rodoplu
and Meng, 1999). However, as Chang and Tassiulas (2004) indicated, using minimum
energy routes throughout the lifetime of a network can be detrimental to a group of
nodes that relays most routes. Hence, in addition to improving average lifetime, it will
usually be important to maximise the time before the battery of the shortest-lived node
is exhausted. This problem is called the maximum lifetime routing problem (Chang
and Tassiulas, 2004; Madan and Lall, 2006). Routing optimisation in mesh networks
therefore requires consideration of the trade-off between individual and system-wide
battery lifetimes within the network.

Both efficient energy usage and maximum lifetime routing have attracted much
research interest in recent years. These approaches can be divided into two groups:
distributed and centralised (Kulkarni et al., 2011). In distributed approaches, the re-
sponsibility for routing is distributed across the constituent nodes, i.e. the nodes are
able to make decisions on routing locally. On the other hand, in centralised approaches,
a centrally calculated route is broadcast to participating nodes.

Distributed approaches can provide good performance, and even optimal solu-
tions. For instance, the distributed approach described by Rodoplu and Meng (1999)
is guaranteed to converge to the minimum energy topology in a strongly connected
network where the communication links are not vulnerable to environmental changes.
In addition, Madan and Lall (2006) described a distributed approach that can locate
the optimal routing scheme using a sub-gradient algorithm to solve the convex op-
timisation problem presented by maximum lifetime routing. Also, some heuristic
approaches, such as reinforcement learning (Förster, 2007) and swarm intelligence
(Bashyal and Venayagamoorthy, 2007), can be applied in a distributed fashion, al-
though these only approximate the optimal solutions. An important consideration with
distributed approaches is that nodes require sufficient computational power and stor-
age to collect and store information regarding local connectivity and compute the best
routes based on available information. In comparison, centralised approaches, which
mostly incorporate variants of heuristic algorithms (Chang and Tassiulas, 2004; Xue
et al., 2006; Islam and Hussain, 2006; Yetgin et al., 2012) require lower computational
power and storage at the nodes, as most of the computation and storage is conducted
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by the central base station. Nonetheless, there is a system-wide overhead incurred in
gathering connectivity information and broadcasting routing information. In this pa-
per we consider very low powered nodes, each of which has limited computational
power and storage. Routes are therefore computed at a mains-powered base station.

Most current evolutionary algorithm (EA) based energy-aware centralised systems
consider energy expense. This is the case even for multi-objective routing optimisation,
where energy expense is optimised with additional objectives describing different fac-
tors, such as quality of service, bandwidth, packet loss ratio, etc. (Xue et al., 2006; Yetgin
et al., 2012). However, optimising the overall energy expenditure of a network may be
detrimental to the overall performance of the network, because often the goal is to pro-
long the lifetime of the network before any battery needs replacing. Merely reducing
the overall energy expenditure may place a large burden on a few nodes, resulting in
the rapid exhaustion of their batteries. We therefore seek to optimise the lifetime of
network nodes by modelling the charge held in their batteries and the energy expen-
diture at each node. Islam and Hussain (2006) and Kamath and Nasipuri (2011) have
considered maximising only the minimum remaining lifetime among nodes. Such ap-
proaches can improve the individual node specific energy state, but can be sub-optimal
from system-wide perspective. We therefore seek to find the optimal trade-off between
local and network-wide battery lifetimes.

In previous work (Rahat et al., 2014) we investigated a centralised approach us-
ing multi-objective routing optimisation with a view to locating efficient routes that
approximate the optimal trade-off between minimum lifetime and average lifetime
among nodes in the system. We also described how our system can cope with fail-
ure and permits self-healing in a dynamic radio environment. Our results indicated
that using multiple routing schemes may allow the minimum lifetime of the system to
be extended. In a mesh network where each node is able to route its messages to the
base station via a number of different routes Chang and Tassiulas (2004) have shown
that a linear programming (LP) problem may be solved to obtain the proportions of
messages that should be sent by each different route so as to achieve the maximum
minimum lifetime. However, in very low powered battery networks the requirement
to use many routes places an undue burden on the storage and computation that must
be performed at each node. We therefore consider a routing scheme in which each
node uses only a single route to the base station, but at a few discrete times the routing
scheme for the entire network can be changed. We present a hybrid multi-objective evo-
lutionary algorithm to maximise the minimum lifetime of any node in the system and
the average lifetime of all nodes in the system. This algorithm is shown to achieve min-
imum lifetimes very close to the LP solution obtained by Chang and Tassiulas (2004)
(which cannot directly be used here, due to its use of many routes per node). We also
show how a different linear program may be used to find the optimum proportion of
time for which each routing scheme should be used, thus obviating the need for an
additional evolutionary search for the routes’ time periods.

The number of potential solutions suffers from a combinatorial explosion as the
number of nodes grows. To combat this we use two methods of pruning the search
space, one based on the k-shortest paths from a node to the base station and another
that utilises the solution to the maximum minimum lifetime linear program to find
potentially useful routes.

In section 2 we describe the model of the wireless sensor network. In section 3
we present the maximum minimum lifetime LP problem and discuss why maximising
the average lifetime cannot be formulated as an LP problem. In section 4 we present
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vi vj vB

Figure 1: Route Si = 〈vi, vj , . . . , vB〉 from vi via vj to the base station vB .

search space pruning methods incorporating k-shortest paths and a graph reduction
method using the LP solution to the maximum minimum lifetime problem. These are
combined in section 5 where we present a hybrid evolutionary routing optimisation
strategy. Based on this, in section 6, we demonstrate and discuss our findings in a
real network deployed in the Victoria & Albert Museum, London. In section 7 we dis-
cuss how minimum lifetime of the system can be improved by using multiple routing
schemes in an optimal time-shared manner. Finally, conclusions are presented in sec-
tion 8.

2 System Model and Pareto Optimality

In this section we model the WSN and derive a multi-objective problem in order to
investigate how different routing schemes affect the trade-off between individual and
system average lifetimes.

A WSN is represented as a network graph, G = {V,E}, where V is a finite set of n
sensor nodes vi plus a base station node, vB , and E is the finite set of m edges (Cormen
et al., 2001) describing which nodes each node can communicate with. Each node must
send messages to the base station, perhaps by relaying a message through one or more
other nodes. It is not acceptable for nodes to be disconnected from the network (i.e. to
be unable to directly or indirectly route a message to the base station). In practical sit-
uations where this occurs, it is the role of the network engineer to distribute additional
‘repeater’ nodes to bridge communication gaps, or to use nodes which can transmit
at greater strengths. Once all nodes can pass on a message (directly or indirectly) to
the base station, the routing optimisation stage (the focus of this paper) may be un-
dertaken. In our scheme each node reports its status using a single route once every
reporting cycle (e.g. once each minute).

As illustrated in Figure 1, a route from node vi to the base station vB is described
by the sequence, Si = 〈vi, vj , . . . , vB〉. We denote by Si[p] the pth element of the route
Si. A routing scheme R is a set of routes, one for each node in the network, to the base
station:

R = {S1, S2, . . . , Sn} . (1)

An initial mapping phase, preceding optimisation, is used to discover with which
other nodes the node vi can communicate. We call this map the connectivity map. Com-
munications may take place using a variety of baud rates and powers, so we assume
that the most energy efficient baud rate and power combination has been discovered
for each pair of nodes that can communicate; generally low power and high baud rates
are most efficient in our system, but the optimisation does not rely on this. Also we as-
sume that communication is reliable at the chosen baud rate and power combination.

The energy required to transmit a message from vi to the base station is the sum of
the energies required to transmit a message between each of the nodes comprising the
route:

Hi =

l−1∑
p=1

eSi[p],Si[p+1] (2)
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Figure 2: A transmission link between node vi and vj . The associated energy costs to
send a message from vi to vj are: Tij at node vi andAji at node vj . The number of times
this edge is used by different routes, i.e. the edge utilisation, is uij .

where l is the length of the route and ejk is the energy required to transmit a mes-
sage from vj to vk. Note that this generally involves energy expenditure at both the
transmitting node and the receiving node, and will also involve expenditures for trans-
mitting an acknowledgement. As noted above, we assume that the communication is
reliable, but if an acknowledgement is not received from the receiver the message is
resent; this additional expense is not modelled, but if a link becomes unreliable, the
routing is re-optimised.

In many routing optimisation problems, such as shortest path problems, minimis-
ing a route’s overall cost is desirable. The overall cost is found by summing the costs
associated with each edge in the route. There are many well-known methods for min-
imising such costs, e.g. (Eppstein, 1998). In this problem, however, we focus on the
costs expended at the nodes themselves, rather than the edge costs. This is because it
is energy expended at the nodes that depletes charge in the batteries and thus governs
the lifetime of a node.

Let Tij be the energy (charge) required at node vi to send a message to vj (Figure
2) and let Aki be the energy required to receive a message from vk at vi. Also let the
edge utilisation uij for a directed edge between vi and vj be the number of times in one
reporting cycle that the particular edge is used by the routing scheme for a transmission
between the associated nodes. Then in one reporting cycle, node vi receives messages
from nodes with indices in the set Ii and sends data (including own data) to nodes
with indices Oi; the associated energy expense is

Ci =
∑
k∈Ii

ukiAki +
∑
j∈Oi

uijTij . (3)

Clearly
∑n

i Ci =
∑n

i Hi is equal to the energy cost across the whole network of sending
a message from each node.

In order to calculate the lifetime remaining due to a routing scheme we require
additional intrinsic information about the nodes, namely the charge qi remaining in the
battery and the quiescent energy consumption per reporting cycle Bi due to constant
micro-controller operation, sensor measurements, running an on-board display, etc.
The life of the current node therefore is modelled as

Li =
qi

(Bi + Ci)N
(4)

whereN is the number of reporting cycles per unit time. We emphasise that Li ≡ Li(R)
is a function of all the routes which utilise vi, and Ci is calculated from R.

Our goal is to prolong the average life of the network, that is to minimise the total
energy consumed, and to maximise the time before any individual node requires its
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battery to be recharged or changed. We therefore arrive at the two objective problem:

Maximise f1(R) =
1

n

n∑
i=1

Li(R). (5)

Maximise f2(R) = min
i∈[1,n]

Li(R). (6)

In addition, it may be important to prolong the lifetime of one or more nodes vi for
i ∈ U , because, for example, they are particularly inaccessible. In this case the two-
objective problem is augmented with a third objective:

Maximise f3(R) = min
i∈U

Li(R). (7)

The energy efficiency objective in (5) will ensure paths with the least energy con-
sumption are selected irrespective of the load imposed on the nodes. As a consequence,
certain nodes in the network may end up relaying most of the traffic (depending on the
network structure). This is in conflict with the minimum lifetime objectives in (6) and
(7), as to maximise these objectives it is better to distribute some load away from the
nodes relaying most traffic. Additionally, (6) and (7) will be in conflict when the mini-
mum lifetime node vm /∈ U and U 6= V .

Solving this multi-objective problem may result in multiple solutions, as opposed
to a single solution for single objective optimisation. In this case, there exists a set of
solutions which are Pareto optimal; that is, there are no other feasible solutions avail-
able that improve performance on one objective, without a simultaneous decrease in at
least in one other objective (see, for example, Coello Coello et al., 2001).

The dominance criterion is used to locate such solutions in the search space. The
dominance criterion from a routing optimisation perspective is described as follows. In
a multi-objective problem with M objectives, a routing scheme, R′, is said to dominate
another routing scheme, R, denoted R′ � R, iff

fm(R′) ≥ fm(R) ∀m = 1, 2, . . . ,M, and (8)
fm(R′) > fm(R) for some m.

Hence, we seek the maximal set of feasible routes which are mutually non-dominating,
which is known as the Pareto set.

Note that an alternative approach is to combine multiple objectives in a single
objective function as a weighted sum of the constituent objectives. A set of weights then
represents the relative importance of the underlying objectives as set by the decision
maker, and this technique can only find a solution relating to a particular trade-off in
a single optimisation run (Coello Coello et al., 2001). However, Das and Dennis (1997)
showed that performing multiple optimisation runs using evenly distributed weights
fails to locate an even distribution of solutions across all parts of the Pareto front, even if
the front is convex. Therefore, we consider these objectives as part of a multi-objective
problem.

3 Maximum Lifetime Routing and Energy Efficiency

Maximising the time before at least one node exhausts its power source is often referred
to as the maximum lifetime routing problem (Chang and Tassiulas, 2004; Madan and
Lall, 2006). Chang and Tassiulas have identified the maximum lifetime routing as a
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linear programming problem. This is particularly useful as this LP problem can be
solved in polynomial time. We use this solution in our hybrid evolutionary method,
not only as a yardstick for our approach, but also as a means of directing the search. In
this section, we present the LP formulation for maximum lifetime routing and discuss
why the problem of maximising the average lifetime cannot be formulated as a linear
program.

The LP problem formulated by Chang and Tassiulas (2004) incorporates multiple
sets of source-destination pairs, and can be generalised when these pairs are active at
different times with variable reporting rates in a multi-commodity setting. In this pa-
per, we consider a special case of their formulation, where all nodes send the same
amount of data periodically at fixed intervals, e.g. a message every minute. This sce-
nario is most common in industrial applications, especially for constant monitoring of
locations. Also, we extend the approach with the inclusion of quiescent consumption
at nodes as a practical consideration.

At the heart of the formulation of the LP problem lies the concept of network flow
conservation: the outgoing flows from a node vi must be equal to the sum of the incom-
ing flows from other nodes and the flow generated at vi. The network flow effectively
indicates edge utilisations, i.e. how many times a particular edge has been used in a
routing scheme. Hence, the flow conservation at vi can be written in terms of edge
utilisations. ∑

k∈Ii

uki + Ui =
∑
j∈Oi

uij , (9)

where uij is the edge utilisation of the link from vi to vj and Ui is the flow generated at
vi, namely the data generated in each reporting cycle at vi; the recipient node indices
belong to set Oi and nodes transmitting to vi have indices in the set Ii.

A mathematical programming formulation for the maximum lifetime routing can
be derived in the following way. The objective is:

max

(
min

i=[1,n]
Li

)
, (10)

which is the second objective of our multi-objective problem as presented in (6). The
associated constraints of this problem for vi ∈ V are:

uij ≥ 0, (11)

NLiBi +
∑
j∈Oi

NLiuijTij +
∑
k∈Ii

NLiukiAki ≤ qi, (12)

∑
k∈Ii

uki + Ui =
∑
j∈Oi

uij . (13)

Here the first constraint (11) ensures that edge utilisations are non-negative, the sec-
ond constraint (12) expresses the fact that the energy usage of a node cannot exceed the
remaining charge at the node, and the final constraint (13) represents the flow conser-
vation in the network.

The second constraint (12) is derived from the definition of lifetime as provided in
(3) and (4). Note that this expression is non-linear in uij , which means in general that
the feasible region is non-convex and that methods guaranteed to find the optimum
in polynomial time are not available (Boyd and Vandenberghe, 2004); furthermore, the
max-min objective function (10) is non-smooth (Zang, 1980).
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In the minimum lifetime case: Li ≥ mini=[1,n](Li) = L, so Li may be replaced with
L. Chang and Tassiulas (2004) therefore recast the problem in terms of ûij = Luij to
obtain an LP problem that can be solved in polynomial time (Boyd and Vandenberghe,
2004). The LP problem has the following objective:

max(L), (14)

subject to the following modified constraints:

ûij ≥ 0, (15)

NLBi +
∑
j∈Oi

NûijTij +
∑
k∈Ii

NûkiAki ≤ qi, (16)

∑
k∈Ii

ûki + LUi =
∑
j∈Oi

ûij . (17)

This LP problem may be solved to obtain the minimum lifetime for the system, L, and
a set of compound edge utilisations ûij .

The energy efficiency of WSN system is often viewed in terms of the average life-
time of the nodes. Maximising this ensures best possible usage of the energy available
in the network as a whole (Rodoplu and Meng, 1999). Similar to the minimum lifetime
problem, the objective is a linear function of the edge utilisations (5) with the same con-
straints (equations (11), (12), and (13)) as for the minimum lifetime problem. Unfortu-
nately, in this case the multiple quadratic constraints cannot be reformulated to obtain
an LP problem meaning that efficient polynomial time methods cannot be employed.
In addition, when the number of routes from a node to the base station is limited the
Chang and Tassiulas (2004) method cannot be used to obtain an LP method for solving
the minimum lifetime solution. We therefore turn to evolutionary methods to locate an
approximate Pareto front describing the trade-off between these objectives.

4 Search Space Pruning

The multi-objective optimisation problem described in section 2 is a combinatorial op-
timisation problem with, for practical WSNs, a vast number of potential solutions. The
number of possible routing schemes, i.e. the search space size, depends on the number
of available routes for each node in the system. For instance, in a network with n nodes
excluding the base station let the number of available loopless paths from vi to vB be ai.
In this case, the number of possible routing schemes, i.e. the number of combinations
of routes for individual nodes that can build the routing scheme, is:

Z =

n∏
i=1

ai. (18)

It is crucial for practical implementations that the optimisation process is fast. A way to
improve the speed of optimisation is to sensibly prune the search space, while retaining
important potential solutions. In this section, we describe two methods of pruning the
search space: k-shortest path pruning and a max-min lifetime pruning, based on the
maximum minimum lifetime solution, and discuss how they are used in approximating
the Pareto set.
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4.1 k-shortest Path Pruning

In order to combat the potential growth in the size of the search space as the number of
nodes increases we limit the number of potential routes available to each node. More
specifically, we limit the search to the space defined by the k-shortest paths for each
node, where the metric defining the distance between nodes (the weight of the edges)
is described below. This reflects our intuition that short paths to the base station are
most likely to be energy efficient. We select from among several shortest path routes
for each node because, if each node were to utilise its shortest path, nodes that occur in
many of the 1-shortest paths would be disproportionately burdened.

Algorithms for discovering the shortest path between two nodes in a weighted
graph are well known and the shortest path can be found in O(n log n) time (Yen, 1971;
Eppstein, 1998; Brander and Sinclair, 1995). However, as we noted above, the energy
costs in this problem are associated with the nodes themselves rather than with the
edges. We therefore weight the edges in the network graph to associate the energy cost
at the nodes with the edges connecting them. Consider the nodes vi and vj . We define
the weight of the edge between them as:

wij =
eij
qi

+
eji
qj
, (19)

where, as above, eij is the energy required to transmit a message from vi to vj , and qi
and qj are the battery charges. It is expected that eij = eji. This edge weighting models
the fact that a high transmission cost can be borne by nodes with a high battery charge,
but transmission is relatively expensive for nodes with low battery charge because each
transmission will make a larger fractional depletion of the charge. Likewise, if a node
is connected to mains power then transmissions are free, which is modelled by setting
qi → ∞. Note that qi/

∑
j eij is an estimate of the lifetime of vi. We call the cost of a

routing scheme calculated using the weights wij the composite cost.
As we require diversity in the search space and the possibility of load balanc-

ing among nodes, we propose to evolve solutions from among the k-shortest paths
for each node calculated with the composite cost (19). A number of algorithms are
available for computing the k-shortest paths; see for example (Yen, 1971; Eppstein,
1998). In our implementation we have used Eppstein’s algorithm modified to produce
only simple or loopless paths, which matches the best upper-bound time complex-
ity for finding k-shortest simple paths (Eppstein, 1998). We denote the mth shortest
route found for node vi by Sm

i , for m = 1, . . . , k. For a chosen k, we build a library
P = 〈{Sm

1 }km=1, {Sm
2 }km=1, . . . , {Sm

n }km=1〉 of paths, where each node has no more than
k paths. This is because the number of loopless paths to the base station, vB , for a
node may be less than k, especially if it is close to vB . A complete routing scheme R
is then represented by a path for each node selected from one of the paths available in
the library. Using this technique the reduced search space of possible solutions, Ω, is
no larger than kn.

We also investigated the correlation between the composite cost and the objectives
for 1,000 randomly chosen routing schemes with random charge levels qi at nodes for a
real network at the Victoria & Albert museum, which we describe in more detail below
(Rahat et al., 2014). We found that there is a fairly strong negative relationship between
the average battery life f1(R) and the composite cost (correlation coefficient −0.71).
This indicates that routing schemes selected with low composite cost via the k-shortest
paths algorithm are likely to have long average lives. On the other hand, there was a
very weak relationship between the minimum lifetime and composite cost. This was
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unsurprising since the minimum lifetime depends on a single node in the network and
is highly dependent on the interaction between routes.

4.2 Max-Min Lifetime Pruning

The correlation between composite edge cost and average battery lifetime, but poor cor-
relation between composite edge cost and minimum battery life means that although
the k-shortest paths pruning retains good average lifetime routes it may discard routes
that would yield a long minimum lifetime. To obtain good candidate routes for long
minimum lifetimes we solve the linear program to obtain the edge utilisations uij
which maximise the minimum lifetime. We then consider the subgraph G′ ⊂ G ob-
tained by deleting from G all the edges eij for which uij = 0. This subgraph G′ is then
used as the basis for generating a library P ′ of k-shortest paths with Eppstein’s algo-
rithm. The use ofG′ prunes the size of the search space, but retains routes that are good
for prolonging the minimum lifetime. We call this reduced search space Ω′.

The purpose of using such search space pruning is to retain routes from which to
build good solutions. Here each method has its own specific goal: k-shortest path prun-
ing for retaining solutions with better average lifetime and max-min lifetime pruning
for retaining solutions with better minimum lifetime. We can then utilise the modi-
fied search space to rapidly obtain a sensible approximation of the optimal Pareto set.
Although G′ ⊂ G, the k-shortest paths derived from G′ may be different from those
derived from G. As a consequence, using the k-shortest path pruning may result in the
search spaces Ω and Ω′ being quite dissimilar if not completely disjoint.

5 Hybrid Evolutionary Approach to Routing Optimisation

The main focus of our approach is the rapid approximation of the trade-off front be-
tween minimum lifetime and average lifetime from infrequent maintenance and en-
ergy efficiency perspectives respectively. In this section, we describe how we use hy-
brid evolutionary approaches in a multi-objective evolutionary algorithm to locate an
approximately optimal set of routes.

As described in the previous section, we prune the search space in two ways to
obtain path libraries, P and P ′, of potential routes for each node in the network. We
represent a solution as a vector of indices into these libraries, one index for each node,
so that a complete solution R describes a route for each node to the base station. One
optimisation strategy would be to select a route for each node from P ⊕ P ′. However,
as we demonstrate below, it is more effective to optimise in two stages. In the first
stage, we perform two separate optimisations, one selecting routes from P and the
other selecting routes from P ′. In the second phase routes are selected from P ⊕ P ′.
This phase is initialised from the non-dominated archives resulting from the two first
stage optimisations.

Optimisations for both stages use a genetic algorithm, with an unconstrained
Pareto archive to reap the benefits of better convergence properties (Fieldsend et al.,
2003). Algorithm 1 describes this multi-objective optimisation process in more detail.

Solutions, R, are represented by vectors of n integers; the ith element of the solu-
tion indexes one of the k-shortest paths found for node vi. In the initialisation step, we
generate at random a population from the pruned search space, Ω. (The search space is
Ω′ when using the max-min pruning, but we describe the algorithm in terms of Ω.) This
population comprises randomly-chosen routing schemes where the member routes are
chosen from the k-shortest paths for each node; thus for node vi the shortest paths are
selected from {Sm

i }km=1. Also, we include in the initial population the routing scheme
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Algorithm 1 Multi-objective routing optimisation of a battery powered mesh network.
Inputs

1: P : Library of paths for each node
2: T : Number of iterations
3: s : Size of initial archive
4: µ : Perturbation rate
5: c : Crossover rate

Steps
1: A← InitialiseArchive(P, s) . Initialise random archive
2: for i = 1→ T do
3: {R1, R2} ← Select(A) . Select two parent solutions
4: R′ ← CrossOver(R1, R2, c)
5: R′′ ← Perturb(R′, µ,P) . Mutation
6: A← NonDominated(A ∪R′′) . Update archive
7: end for
8: return A . Approximation of the Pareto set

which uses the first shortest route for each node. The initial archive of non-dominated
solutions A is the maximal non-dominated subset of this random population. At any
step of the evolution, A is the current approximation of the Pareto set within the par-
ticular chosen search space.

During the evolution process, we randomly select two routing schemes. These
parent routing schemes are then crossed-over to yield a single offspring R′: the route
for each node vi is selected either the first or second parent with probability c and
1 − c respectively, independently of the other nodes. This child is then perturbed by
choosing new routes (uniformly at random from P) for a proportion µ of the nodes in
the network. The perturbed child, R′′, is compared against the members in the archive:
if it is not dominated by any of them then it enters the archive and any elements of A
which are dominated by the new solution are removed from A. In this fashion only the
non-dominated routing schemes are preserved in the archive and the archive can only
approach the true Pareto set. The process of evolution continues for a fixed number
of episodes. Alternatively, another termination criterion, such as a specified minimum
dominated hypervolume (Zitzler, 1999), may be employed.

We denote the estimated Pareto sets resulting from the separate optimisations us-
ing P and P ′ as A and A′ respectively. As illustrated below, the archive A result-
ing from optimisation using P tends to favour solutions with long average lifetimes,
whereas A′ resulting from optimisation using P ′ tends to yield solutions with long
minimum lifetimes. However, solutions with intermediate average and minimum life-
times may be scarce in A ∪ A′. The second phase of the optimisation remedies this by
employing the same optimisation algorithm, but now selecting paths from P⊕P ′. This
optimisation is initialised from the maximal non-dominated subset of A ∪ A′; that is
A′′init = NonDominated(A ∪ A′), where NonDominated(·) is the function that returns
the maximal subset of non-dominated elements of X :

NonDominated(X) = {R ∈ X |@(R′ ∈ X ∧R′ ≺ R)}. (20)

We denote the archive resulting from the second optimisation by A′′.
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The overall hybrid evolutionary approach can be summarised as follows:

1. Gather the connectivity map, and construct the network graph G.

2. Solve the LP problem for maximum lifetime routing (10) to find the optimal mini-
mum lifetime L and edge utilisations uij .

3. Search space pruning.

(a) Use uij to generate the reduced graph G′ by selecting edges where uij > 0.

(b) Apply k-shortest path pruning to G and G′ creating path libraries P and P ′
respectively.

4. First stage of routing optimisation. Apply Algorithm 1 using P and P ′ separately.
This results in archives A and A′, which are the approximations of the Pareto set
in the relevant search space.

5. Initialise the second stage optimisation with A′′init = NonDominated(A ∪A′).

6. Second stage of routing optimisation: Apply Algorithm 1 using P ⊕P ′. On termi-
nation, we have the estimated Pareto set A′′.

Once the evolution process is finished, the decision maker may manually choose
the operating point using the final approximation of the Pareto front A′′. The chosen
routing scheme is sent to the nodes via the base station and becomes the active data
reporting scheme.

6 Illustration

A real network deployed in the Victoria & Albert Museum, London, is used to illustrate
the proposed approach.1 In a controlled environment over a vast area, such as Victoria
& Albert Museum, it is essential to monitor temperature and humidity in galleries and
display cases for the preservation of the artefacts. Compared to wired networks, battery
powered WSNs carry huge advantages in deployment cost and flexibility.

The network incorporated 30 sensor nodes and a base station, spanning five floors
within an approximate area of 35,000 m2. The thick, solid walls provide a challenging
radio environment whose characteristics vary with the passage of visitors through the
galleries.

6.1 Baseline Optimisation

The connectivity map G was built in an initial mapping phase in which nodes pinged
each other using a range of baud rates and powers to discover the minimum en-
ergy configuration for communication between those nodes within radio range of each
other.

Solving the maximum minimum lifetime LP problem results in a maximum min-
imum lifetime of 1.38 years, together with a set of edge utilisations. These edge utili-
sations were used to calculate the average lifetime of the system, which is 1.69 years.
They also enable the extraction of the sub-graph G′. We emphasise again that this max-
imum minimum lifetime is only achievable through the use of multiple routes from

1Data on the network to allow comparison with this work can be found at http://emps.exeter.ac.
uk/computer-science/wsn/
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each node to the base station, whereas we are constrained to seek a routing in which
each node uses only a single route to communicate with the base station. Clearly, the
requirement to use a single route means that battery loadings cannot be shared opti-
mally so that a single routing scheme will have a worse (shorter) maximum lifetime
than that given by linear programming.

Applying subspace pruning using k = 10 shortest paths results in libraries P and
P ′ from each of which 1030 solutions could be constructed. In each search space, the
initial population was built with 100 randomly chosen solutions from the relevant sub-
space together with the solution consisting of the shortest route for each node. The
initial archive was then found by extracting the maximal set of non-dominated solu-
tions in this population.

In the evolutionary optimisation we used µ = c = 0.1 as the perturbation and
crossover rates; these rates were chosen after a short empirical study on simulated
networks, but the performance of the optimiser is relatively insensitive to their precise
values. Using the dominated hypervolume measure (Zitzler, 1999), the Pareto sets for
the first stage optimisation were well converged after 150,000 epochs (Figure 6). The
second stage optimisation used the same µ and c as the first stage. This evolution was
run for 500,000 epochs, resulting in the final approximation of the Pareto set A′′.

A single core Python implementation takes about 2 minutes to complete each of
the initial 150,000 iterations on a 2.5 GHz machine. The 500,000 iterations in the second
stage takes about 4 minutes to complete. Consequently, the routes for new installations
can be found readily, making this approach particularly feasible as part of a real system.

Figure 3 shows the estimated Pareto fronts generated during the initial stage of
optimisation. As the figure suggests, in both search spaces, Ω and Ω′, there is a wide
range of routes which trade-off the average lifetime of the network against the time
before any single node exhausts its battery. We note that the optimisation has resulted
in routing schemes that are substantially better, in terms of both average and minimum
lifetime, than routing schemes utilising randomly chosen routes from the 10 shortest
paths in both Ω and Ω′. Indeed, for both search spaces, the routing schemes with the
longest minimum lifetime have a better average lifetime than any of the random solu-
tions for that search space. Interestingly, the shortest paths only solutions Rc and R′c
are very close to the estimated Pareto front in both spaces. We include Rc and R′c in the
initial archives for the relevant search spaces.

We note that for the Victoria & Albert Museum network 13 of the 30 nodes have a
possible path which appears in both P and P ′, although no node has more than 3 paths
common to both libraries. Since 17 of the nodes therefore have no paths appearing in
both libraries, it is not possible to construct a complete routing scheme, R, that exists
in both libraries and the search spaces Ω and Ω′ are completely disjoint. Also the fronts
occupy different parts of the objective space. Many of the solutions in A′ (resulting
from the max-min pruning) are dominated by solutions in A, which resulted from k-
shortest path pruning of the full graphG. Nonetheless, the utility of using the min-max
pruning is shown by the 11 solutions that achieve longer minimum lifetimes than any
solution found in Ω.

CombiningA andA′ leaves a large gap in the estimated Pareto front for intermedi-
ate average lifetimes. To remedy this, the second stage optimisation is initialised from
NonDominated(A ∪ A′) and the union of the two pruned search spaces is available for
constructing new solutions. The result of this second optimisation is shown in Figure
4.

As can be seen from Figure 4, A′′ is very close to A in the high average lifetime
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Figure 3: First stage optimisations using two pruned search spaces Ω and Ω′ for the
Victoria & Albert museum network. Initial randomly generated solutions and the op-
timised fronts are shown. Grey coloured symbols represent solutions for Ω′, while
black indicates solutions for Ω. Initial populations (I in Ω and I ′ in Ω′) are shown with
crosses; ringed crossed show the non-dominated initial archives, Ainit and A′init. The
shortest paths only solutions (Rc in Ω, and R′c in Ω′) are indicated with diamonds.

region, but combining paths from P and P ′ has resulted in solutions being found with
good minimum lifetimes and better average lifetimes than those in A′. The linear pro-
gramming solution (that solves for many routes per node rather than a single route) is
marked by a black triangle in the figure and this upper bound on the minimum life-
time, L = 1.38 years, is indicated by the horizontal dashed line. The best minimum
lifetime solution when nodes are constrained to use a single route found by the evo-
lutionary optimiser has a minimum lifetime of 1.29 years. This solution improves the
shortest-path only routing scheme by approximately 5 months in minimum lifetime at
an expense of 2 months in average lifetime. In contrast, the solution with best average
lifetime improves the shortest-path only solution by 7 days in average lifetime, while
the minimum lifetime is worse by 2 months, which is a rather small gain at a large
expense.

Figure 5 shows a comparison between the two-stage approach and a single-stage
approach in which solutions may be constructed from P ⊕ P ′ throughout the entire
optimisation. As can be seen from Figure 5, the estimated Pareto fronts resulting from
the two strategies mostly overlap, except at the extreme maximum minimum lifetime/
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Figure 4: Final stage of optimisation. The initial population (represented with crosses)
is generated by combining the archives from the previous stage; c.f. Figure 3. The non-
dominated elements ofA∪A′ are ringed, and form the initial archive of the second stage
routing optimisation problem (A′′init). Solid grey dots show the final approximation of
the Pareto set (A′′). The maximum minimum lifetime solution if nodes were allowed
to use multiple routes rather than a single route is indicated by the black triangle. The
horizontal dashed line through L is an upper bound to the minimum lifetime.

minimum average lifetime end. Here, the strategy of evolving solutions using a path
library that favours good minimum lifetime solutions has paid off, yielding additional
solutions with long minimum lifetimes. To generate this figure, the single stage strat-
egy was allowed to run for as many objective function evaluations as the two stage
strategy. This advantage is also apparent from the hypervolume progressions of the
single-stage and the two-stage approaches as depicted in Figure 6. Despite the ad-
ditional complexity of the optimisation algorithm, we therefore adopt the two-stage
approach.
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Figure 5: Comparison between single-stage optimisation and two-stage optimisation
strategies. The single-stage approach performs as well as two-stage approach, except
at the extreme minimum lifetime end.

0 50000 100000 150000 200000 250000 300000 350000 400000
1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

700000 750000 800000
Function Evaluations

H
y
p
er

vo
lu

m
e

M
ea

su
re

Two-stage Single-stage

First Stage Second Stage

P ′

P

P ⊕ P ′

H
yp

er
vo

lu
m

e
M

ea
su

re

Function Evaluations

Figure 6: Comparison between the hypervolume progressions of two-stage (solid line)
and single-stage (dashed line) approaches. In the first stage, optimising only in P (0
to 150,000) and P ′ (150,000 to 300,000) the hypervolume is close to convergence after
about 150,000 function evaluations. At this point, switching to the combinedP⊕P ′ pro-
vides an immediate improvement in hypervolume over the single-stage hypervolume.
The single-stage technique is unable to match the two-stage with the same number of
function evaluations, even when optimising using the combined path libraries P ⊕ P ′.
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Figure 7: Pareto front approximation (grey shaded circles) with three objectives for the
Victoria & Albert museum network. The solutions with best average lifetime, Ra, best
overall minimum lifetime, Rm, and best minimum lifetime of the priority group, Rp,
are indicated. The minimum energy solution Rc is dominated by all solutions in the
Pareto front approximation.

6.2 Protecting a Group of Nodes

In practice, it is often desirable to give priority to one or more nodes so that their life-
times are prolonged, because, for example, they are hard to access. To address this is-
sue, we introduce an additional objective (7) with the aim of prolonging the minimum
lifetime of the priority group of nodes, alongside aforementioned objectives.

We selected a priority group, U = {v8, v19, v21, v26} to include two heavily-loaded
nodes (v19 and v21 ) and two others. In Figure 7, we show the estimated trade-off
surface in 3-dimensions between average lifetime, overall minimum lifetime and min-
imum lifetime of a priority group of nodes. Except for the additional objective, the
hyper-parameters and general strategy for optimisation remain the same as before.

In Figure 8 we show the connectivity map as an adjacency matrix partitioned to
place the priority group at the top left. The distinct nature of routing schemes cor-
responding to the extreme solution with respect to each of the objectives is depicted
through the visualisation of the edge utilisations shown in Figure 9; here the grey scale
indicates the frequency with which an individual radio link (edge) is used in a particu-
lar routing scheme.

To illustrate the underlying distinction in nature of the extremal solution for each
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Figure 8: Adjacency matrix showing connectivity of nodes in the Victoria & Albert Mu-
seum network. The numbers on the left and bottom show the node indices; the base
station is vB . The grey scale indicates the energy consumption required for communi-
cation, with darker shades denoting less energy; white cells indicate there is no radio
link between cells (infinite energy required for communication). The matrix is parti-
tioned into submatrices showing connectivity between nodes in the priority group (A),
nodes outside the priority group (D) and the inter-connectivity between priority and
non-priority nodes (B> = C).

0 2 4 6 8 10 12 14 16 18 20

Edge Utilisation

Ra Rm Rp

Figure 9: Edge utilisations for best average lifetime Ra, best overall minimum lifetime
Rm and best minimum lifetime for the priority groupRp routing schemes. Higher edge
utilisations are represented by darker greys.
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objective, we consider the edge utilisations, i.e. the number of times a particular edge
is used in a routing scheme, of three particular routing schemes: best average lifetime
(Ra), best overall minimum lifetime (Rm) and best minimum lifetime of priority group
(Rp) solutions. In Figure 9, we see that in Ra most paths utilise the link between node
v19 and the base station vB . As minimum energy routes are preferred, the average
lifetime is high (1.99 years), but overall minimum lifetime and minimum lifetime of the
priority group are low. The minimum lifetime is low as nodes on minimum energy
paths relay most routes, and as a consequence exhaust their batteries quickly. The
overall minimum lifetime and minimum lifetime of the priority group are the same,
0.73 years. This is because the most energy efficient routes heavily load v19, which is in
the priority group, so causing it to exhaust its battery first.

In contrast, Rm provides a more evenly distributed edge utilisation map, in par-
ticular v19 and v21 share the load between them. In this case, an increase of 78.1% in
minimum lifetime when compared with Ra is achieved, at the expense of not using all
energy efficient routes. Hence, the average lifetime is reduced by 12.5%. The minimum
lifetime of the priority group is 1.3 years as v19 is the minimum lifetime node. We note
that in this case the intra-connectivity between protected group nodes also diminishes.

The most dramatic difference is in Rp, where most paths avoid the priority nodes,
improving the minimum lifetime for the priority group by 48.3% for v19 with respect to
Rm. To achieve this increase in minimum lifetime for the priority group, high energy
cost paths must be used for paths in the rest of the network resulting in a reduction in
the minimum lifetime for the network as a whole; v2 is the node whose battery is first
exhausted in this case.

7 Better Approximation of Maximum Lifetime Routing

It is of considerable practical importance to maximise the minimum lifetime of any
node in the network, because the network requires no maintenance until the battery
of the shortest-lived node is exhausted. Chang and Tassiulas (2004) described how
this can be modelled as an LP problem. The LP formulation relies on each node be-
ing able to use many paths to the base station, which in turn enables load balancing
by using different routes for fractions of the network lifetime. However, the compu-
tational power and the storage requirements associated with switching between many
routing schemes can be prohibitive for low-powered devices. Therefore, we consider a
strategy in which only a small number of routing schemes (two or three) are available
to the network, and all nodes change at pre-determined times to a new scheme. This
re-routing can be accomplished at low energy cost from the base station. In this sec-
tion we describe an evolutionary algorithm that optimises a small number of routing
schemes together, and thus achieves a better approximation to the LP solution quality
in comparison to using a single routing scheme throughout the lifetime of a network.

Intuitively, to see how using multiple routing schemes in a time-shared manner can
be useful, suppose that under the initial routing scheme R, a node v? has the minimum
lifetime. Now suppose that the network is optimised a second time after it has been in
operation for a while. The result of this second optimisation can be a routing scheme
in which v? is very lightly loaded, prolonging its life, while a different node, v′, which
was lightly loaded in the first epoch, now carries a heavier load. In this way the life of
v? is extended and it may be that v? or v′ or some other node is exhausted first, but in
any case the time before any single node is exhausted is delayed.
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7.1 Optimal Time Share

Inevitably the question now is how to best distribute the time share between multiple
routing schemes. For a particular routing scheme, the current drain per reporting cycle
is constant (the sum of a quiescent current together with transmission and reception
costs to each of the nodes it communicates with). The decay in stored battery charge
is therefore linear in time, although the decay rate depends on the particular routing
scheme used. With this (good) assumption, the times for which each routing scheme
should be used can be found by linear programming.

Consider a single routing scheme. If the initial charge at node vi is q0i, then after
running the system with routing scheme R for time τ the charge remaining at the node
is qi:

qi = q0i +miτ, (21)

where, mi < 0 is the rate of decay determined by the particular routing scheme in
operation and given by mi = −(Bi + Ci) (c.f., equations (3) and (4)).

In a similar fashion, if there are D routing schemes, R1, . . . , RD, in operation for
times τ1, . . . , τD, the charge decay equation for vi becomes:

qi = q0i +

D∑
d=1

midτd. (22)

Figure 10 illustrates the decay curve for vi for multiple routing schemes.
Denoting the vector of time spans by τ = (τ1, τ2, . . . , τD)>, the vector of initial

battery charges by q0 = (q01, q02, . . . , q0n)>, the vector of remaining charges by q =
(q1, q2, . . . , qn)> and the n by D matrix of decay rates by M, the charge decay equations
for all the nodes can be written as:

q = q0 + Mτ . (23)

The lifetime of the network is
∑D

d=1 τd = 1>τ subject to the constraint that the charge
remaining at all nodes is positive. This allows us to formulate an LP problem for the
timespans that will maximise the minimum lifetime of the network, given theD routing
schemes as follows:

max(1>τ ) (24)

subject to:

τd ≥ 0 d = 1, . . . , D, (25)
qi > 0 i = 1, . . . , n. (26)

Solving this LP problem enables us to derive the optimal time span vector τ ∗ for a
given set of routing schemes.

The minimum lifetime node will exhaust its battery first. At this point the network
would be re-routed for establishing connectivity for all other nodes as they have some
charge left. However, discounting the re-routing, we can consider this residual charge
at nodes for achieving better overall average lifetime. For such an arrangement, we
can assume that the nodes with remaining charge will carry on with the last, i.e. Dth,
routing scheme. Hence, the overall average lifetime will depend on the last routing
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Figure 10: Battery charge decay for a node vi with initial charge q0i using multiple
routing schemes. Routing scheme Rd is active for time span τd with a decay slope of
mid.

scheme in sequence. The time ti remaining for node vi after the minimum lifetime
node is exhausted is given by

q0i +

D∑
d=1

midτ
∗
d +miDti = 0. (27)

The average lifetime of the network is then

τ̄ = 1>τ ∗ +
1

n

n∑
i=1

ti. (28)

Clearly, although changing the order in which the routing schemes are used does not
affect the minimum lifetime, the average lifetime depends on which routing scheme is
chosen as the last routing scheme, RD. We therefore select RD as the routing scheme
that maximises the average lifetime.

Solving this LP problem and finding the routing scheme to use as RD enables us
to achieve the best minimum lifetime and average lifetime for given set of multiple
routing schemes.
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7.2 Evolving Multiple Routing Schemes

In order to locate good routing schemes we consider an evolutionary algorithm in
which a solution R is constructed from D routing schemes: R = {R1, R2, . . . , RD}. In
this “D-RS” approach the evolutionary algorithm is used to optimise the routes com-
prising each of the constituent schemes, but optimal timespans of these evolved routes
are found by solving the LP problem (24)-(26). This speeds up the search considerably
compared with using an evolutionary algorithm or similar stochastic search to find
good time spans as well as the good routing schemes. Note that it is possible for one
or more timespans to be zero, so that the evolutionary algorithm can locate solutions in
which only a single routing scheme is used.

Despite the pruning used to limit the size of the search space described in section
4, the use of several routing schemes leads to a further explosion in search space size
because the number of paths available for each node is 2k in each of the D routing
schemes (using k-shortest path pruning onG andG′). The number of possible solutions
is thus approximately (2k)nD, although some nodes may have fewer than 2k shortest
paths available.

In order to combat this combinatorial explosion we adapt the basic evolutionary
strategy for a single RS to perform a series of evolutionary searches in increasingly large
search spaces as follows.

1. Evolutionary searches using path libraries P and P ′ are carried out separately
but evolving single routing schemes rather than multiple schemes. (This can be
achieved by replicating a single routing scheme D times and applying the same
mutation and crossover operations to all of them.) As illustrated above, optimisa-
tion using P and P ′ separately helps to find good average lifetime solutions and
good minimum lifetime solutions by restricting the size of the search space and
guiding the search according to the pruning method used.

2. Still optimising using P and P ′ separately, we seek D-RS solutions. Here at each
iteration mutation and crossover operations suggest new paths for nodes in one of
the D constituent routing schemes, after which the optimal time spans, and thus
the minimum and average lifetimes, are calculated by linear programming (24)-
(26). As we illustrate later, solutions in which the routing schemes are the same
throughout the lifetime of the network can produce better average lifetime solu-
tions. Therefore, in half the iterations, a new solution is generated by replicating
one of the component routing schemes D times.

3. Finally, the non-dominated subset of the union of the archives obtained in step 2 is
used as the initial archive for a further optimisation using both P and P ′.

Recall that, as described in section 4.1, the path libraries were constructed from the
k-shortest paths based on the composite cost. There the edge weights in (19) were
calculated using the initial battery charges. However, the batteries become depleted by
the network operation due to the routing scheme. We therefore, albeit infrequently (e.g.
every 100,000 function evaluations), update the path libraries with k-shortest paths
calculated on the basis of battery charge distributions from partially drained networks,
and add any newly discovered paths to the path library. This allows the evolutionary
mechanism to choose paths better suited to a network that has been in operation for
some time.
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Figure 11: Performance comparison between optimisation with single routing scheme
(1-RS, black crosses), two routing schemes (2-RS, dark grey pluses), and three routing
schemes (3-RS, light grey stars). The performance of the maximum minimum lifetime
solution with unlimited paths (∞-RS) is shown with a triangle. The horizontal dashed
line through L shows the best possible minimum lifetime solution.

7.3 Performance Comparison

We compare the performance of optimised one, two and three routing schemes on the
Victoria & Albert Museum network.

For both 2-RS and 3-RS strategies, we used path libraries generated with k = 10
shortest paths. The first stage of the optimisation (1-RS) was run for 150,000 iterations,
while the second stage (multiple routing schemes using P or P ′ separately) were run
for a further 800,000 iterations. Finally the third stage (multiple RS and combined path
libraries) was run for an additional 1,000,000 iterations. These numbers of iterations
yield well-converged fronts, and for practical purposes fewer iterations can obtain a
good approximation.

In Figure 11, we show the estimated fronts for 1-RS, 2-RS, and 3-RS strategies.
As may be expected, the estimated Pareto front for 2-RS dominates or equals the 1-RS
scheme and it in turn is equalled or dominated by the 3-RS front. The 1-RS solution has
a maximum minimum lifetime of 93.7% of the maximum lifetime routing solution, L,
which has the freedom to use unlimited routes. The 2-RS strategy achieves an improved
minimum lifetime which is 97.8% of L. The additional flexibility inherent in the 3-RS
strategy allows a minimum lifetime that is 99.2% of L to be found.

In Figure 12 we present the summary attainment surfaces (Fonseca and Fleming,
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Figure 12: Performance comparison between 1-RS (black, bottom), 2-RS (dark grey,
middle), and 3-RS (light grey, top) approaches in terms of summary attainment surfaces
over 10 runs with solid lines representing 50% attainment surfaces, and dotted lines
depicting 10% and 90% surfaces. The performance of the maximum minimum lifetime
solution with unlimited paths is shown with a triangle. The horizontal dashed line
through L shows the best possible minimum lifetime solution.

1996; Knowles, 2005) for 1-RS, 2-RS, and 3-RS strategies calculated over 10 runs. The
narrow width between 10% and 90% attainment surfaces clearly indicates the desirable
repeatability and convergence of this approach. It also shows that the approximation
improves with each additional routing scheme; however, the rate of improvement di-
minishes as we increase the number of routing schemes.

Edge utilisations for best minimum lifetime and best average lifetime 1-RS and 2-
RS solutions are shown in Figure 13. As noted previously, with a single routing scheme
(top row of Figure 13) the best average lifetime solution heavily utilises a few edges,
whereas the load is more evenly distributed for the maximum minimum lifetime so-
lution. This pattern is also evident in the 2-RS solutions. The two component routing
schemes, Ra

21 andRa
22, for the best average lifetime solution are both similar to the 1-RS

solution. In fact, the 1-RS solution has a slightly better average lifetime than the 2-RS
solution and in general we find that good average lifetime solutions tend to have a
single RS.

Edge utilisations for the best minimum lifetime 2-RS component schemes Rm
21 and

Rm
22 are shown in Figures 13c and 13e. These are active for 0.3 years and 1.05 years re-

spectively, amounting to a total minimum lifetime of 1.35 years. However, individually
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(a) 1-RS, maximum minimum lifetime, Rm
1 (b) 1-RS, maximum average lifetime, Ra

1

(c) 2-RS, max-min lifetime 1st routing, Rm
21 (d) 2-RS, max-average lifetime 1st routing, Ra

21

(e) 2-RS, max-min lifetime 2nd routing, Rm
22 (f) 2-RS, max-average lifetime 2nd routing, Ra

22

0 2 4 6 8 10 12 14 16 18 20 22

Edge Utilisation

Figure 13: Multiple routing scheme edge utilisations. The top row shows edge utilisa-
tions for the best minimum lifetime Rm

1 and best average lifetime Ra
1 solutions using 1

routing scheme. Edge utilisations for the two components of the best minimum lifetime
for a 2-RS solution shown in (c) and (e) and for the best average lifetime (d) and (f).

Evolutionary Computation Volume x, Number x 25



A. A. M. Rahat, R. M. Everson, J. E. Fieldsend

Rm
21 and Rm

22 can only provide minimum lifetimes of 0.88 and 1.29 years respectively,
with the latter being the same as the best minimum lifetime solution from 1-RS (Rm

1 in
Figure 13a). As the different distributions of edge utilisations in Figures 13c and 13e
show, the additional lifetime is achieved by protecting some nodes while the first com-
ponent is active, but then loading them more while the second component is active.
Here these components are active for 22.2% and 77.8% of the network lifetime. The
extra flexibility provided by a third component produces a small increase in achievable
lifetimes, but the additional component is only used for a small fraction of time: the
best minimum lifetime 3-RS scheme uses components for 6%, 18.7%, and 75.3% of the
network lifetime.

Figure 11 and 12 also show that with each additional routing scheme in the solu-
tion, the approximation of the Pareto front improves. As well as improving the range
of minimum lifetime solutions located, it also becomes denser. We attribute this to the
additional flexibility to introduce paths that provide a finer grained trade-off between
the objectives.

8 Conclusions

Using mesh network topologies in low power Wireless Sensor Networks poses a chal-
lenging problem of finding routes that best preserve the lifetime of individual nodes
and the network as a whole. In this paper we have proposed a hybrid multi-objective
evolutionary approach to approximate the optimum trade-off between the minimum
lifetime for any nodes and the average lifetime of the whole, where these objectives are
associated with infrequent maintenance and energy efficiency respectively. Although
not discussed here, we remark that re-optimisation from a stored Pareto front approx-
imation is an effective way of re-routing a network in case of node or link failure or if
new nodes are introduced (Rahat et al., 2014).

Chang and Tassiulas (2004) have shown that the maximum lifetime routing for a
network can be modelled as an LP problem that can be solved in polynomial time to
obtain the proportions of messages that should be sent via different routes. However,
this formulation requires that each node to be able to use many different paths to the
base station. In low-power battery networks this is not feasible due the limited com-
putational power and storage. Hence, we use a evolutionary approach to locate a set
of routes for each node that can produce a close approximation to the many-paths LP
solution (99.2% with 3-RS).

As a combinatorial problem, the search space size can increase drastically as the
number of nodes increases. To reduce this potentially large space while retaining sen-
sible solutions, we use k-shortest path pruning on the full connectivity graph and on
a reduced graph. The k-shortest path pruning of the full graph limits the number of
routes available to a node and thus limits the search space, while retaining solutions
that are energy efficient. On the other hand, the graph reduction method retains paths
which tend to yield good minimum lifetime routes. Central to the efficacy of our ap-
proach is optimisation in these limited search spaces, both for single and multiple rout-
ing schemes. In addition, solving exactly for the proportions of time that each compo-
nent is active in a multiple routing scheme solution obviates the need for an additional,
expensive stochastic search.

As we have shown, the flexibility of more than one routing scheme allows better
solutions to be located. The nodes in the solutions here are constrained to change to
another routing simultaneously. Current work focusses on relaxing this requirement,
while still restricting the number of routes available to each node, in order to bring
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additional robustness against node or link failure to the network.
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