A Multivariable Super-Twisting Sliding Mode Approach

Indira Nagesh ${ }^{\text {a }}$ Christopher Edwards ${ }^{\text {b }}$
${ }^{a}$ Control and Research Group, Department of Engineering, University of Leicester, U.K.,(email- in33@le.ac.uk)
${ }^{\mathrm{b}}$ College of Engineering Mathematics and Physical Sciences, University of Exeter, U.K. (email- c.edwards@exeter.ac.uk)

Abstract

This communique proposes a multivariable super-twisting sliding mode structure which represents an extension of the wellknown single input case. A Lyapunov approach is used to show finite time stability for the system in the presence of a class of uncertainty. This structure is used to create a sliding mode observer to detect and isolate faults for a satellite system.

Key words: sliding modes, fault estimation, super-twisting, fault detection and isolation

1 Introduction

Sliding mode control has been an active area of research for many decades due its (at least theoretical) invariance to a class of uncertainty known as matched uncertainty [2]. More recently these ideas have been exploited extensively for the development of robust observers and have found applications in the area of fault detection and fault tolerant control [15,1]. However one of the disadvantages of traditional sliding mode control (1st order sliding modes) is the 'chattering' due to the discontinuous control action [2]. Higher order sliding modes (HOSM) remove the chattering effect while retaining the robustness of first order sliding modes and improving on their accuracy [3,4]. A disadvantage of imposing an r-th order sliding mode is the necessity of having $s, \dot{s} . . s^{r-1}$ available (where $s(t)$ is the switching surface). However in one special case of second order sliding modes, the derivative information is not required. This is the socalled 'super-twisting' approach [11]. Until very recently stability, robustness and convergence rates in higher order sliding mode methods have been analyzed in terms of homogeneity or geometric arguments [5]. However in a succession of papers $[6,16,14]$, Lyapunov methods were employed successfully for the first time to analyze the properties of the super-twisting algorithm for uncertain systems. This has opened the door for the integration of these ideas with other nonlinear tools including gain adaptation $[13,10,7]$. However in all these developments a single input control structure has essentially been considered. In many situations it is possible by control input

[^0]scaling to transform a multi-input control problem with m control inputs into a decoupled problem involving m single input control structures and so the approaches in $[13,10,7]$ work satisfactorily. Instead, in this communique, a multi-variable super-twisting structure is proposed, which is then analyzed using an extension of the Lyapunov ideas from [14]. An example involving a fault detection problem in a satellite system is used to demonstrate a situation in which the proposed multi-input super-twisting structure is useful. The notation used in the paper is quite standard - in particular, throughout the paper, $\|\cdot\|$ is used to represent the Euclidean norm.

2 Problem Statement and System Description

In multivariable sliding mode control and observation, the objective is to force to zero in finite time a constraint (or switching) function given by $\sigma(x)$, where $x \in \mathbb{R}^{n}$ is the state of the dynamical system and $\sigma: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}[17]$. In calculating the total time derivative of σ, for the case of conventional (first order) sliding modes, an expression

$$
\begin{equation*}
\dot{\sigma}(t)=a(t, x)+b(t, x) v+\gamma(t, \sigma) \tag{1}
\end{equation*}
$$

is established where v is the manipulated variable (the control signal or the output error injection in the case of observer problems), $a(t, x) \in \mathbb{R}^{m}$ and $b(t, x) \in \mathbb{R}^{m \times m}$ are assumed to be known, and $\gamma(\cdot)$ represents unknown (but usually bounded) uncertainty. If $\operatorname{det}(b(t, x)) \neq 0$ then using the expression $v=b(t, x)^{-1}(\bar{v}-a(t, x))$ where the components of \bar{v} are

$$
\begin{align*}
& \bar{v}_{i}=-k_{1} \operatorname{sign}\left(\sigma_{i}\right)\left|\sigma_{i}\right|^{1 / 2}-k_{2} \sigma_{i}+z_{i} \tag{2}\\
& \dot{z}_{i}=-k_{3} \operatorname{sign}\left(\sigma_{i}\right)-k_{4} \sigma_{i} \tag{3}
\end{align*}
$$

and k_{1}, \ldots, k_{4} are scalar gains, the system

$$
\begin{align*}
\dot{\sigma}_{i} & =-k_{1} \operatorname{sign}\left(\sigma_{i}\right)\left|\sigma_{i}\right|^{1 / 2}-k_{2} \sigma_{i}+z_{i}+\gamma_{i}(t, \sigma) \tag{4}\\
\dot{z}_{i} & =-k_{3} \operatorname{sign}\left(\sigma_{i}\right)-k_{4} \sigma_{i} \tag{5}
\end{align*}
$$

for $i=1 \ldots m$ is obtained. Suppose $\left|\gamma_{i}(t, \sigma)\right| \leq d_{i}\left|\sigma_{i}\right|$ for some scalars d_{i}, then if the gains $k_{1} \ldots k_{4}$ are chosen properly, it can be proved that $\sigma_{i}=\dot{\sigma}_{i}=0$ in finite time: see for example [14]. Alternatively if $\left|\dot{\gamma}_{i}(t, \sigma)\right| \leq \bar{d}_{i}$ for some finite gains \bar{d}_{i}, then for appropriate gains $\bar{k}_{1} \ldots k_{4}$, it can be proved that $\sigma_{i}=\dot{\sigma}_{i}=0$ in finite time: see $[3,14]$. In the literature such a controller is usually known as a super-twisting controller $[3,11,4]$.

Suppose instead of (2)-(3) a non-decoupled injection term

$$
\begin{align*}
& \bar{v}=-k_{1} \frac{\sigma}{\|\sigma\|^{1 / 2}}+z-k_{2} \sigma \tag{6}\\
& \dot{z}=-k_{3} \frac{\sigma}{\|\sigma\|}-k_{4} \sigma \tag{7}
\end{align*}
$$

is used where k_{1}, \ldots, k_{4} are scalars. Then the result is a set of coupled equations rather than the decoupled structure in (4)-(5), and the work in [14] cannot be employed directly. (Note however, if $m=1$ then the scalar control structure in (6)-(7) reverts to (2)-(3). Also in this situation $k_{2}=k_{4}=0$ is usually selected.) Substituting (6) into (1) yields a special case of the system

$$
\begin{align*}
\dot{\sigma} & =-k_{1} \frac{\sigma}{\|\sigma\|^{1 / 2}}+z-k_{2} \sigma+\gamma(t, \sigma) \tag{8}\\
\dot{z} & =-k_{3} \frac{\sigma}{\|\sigma\|}-k_{4} \sigma+\phi(t) \tag{9}
\end{align*}
$$

when $\phi(t) \equiv 0$. The term $\phi(t)$ in (9) is included here to maintain compatibility with the more generic formulation in [14], and will be exploited in the example in Section 3. The terms $\gamma(t, \sigma)$ and $\phi(t)$ are assumed to satisfy

$$
\begin{align*}
\|\gamma(t, \sigma)\| & \leq \delta_{1}\|\sigma\| \tag{10}\\
\|\phi(t)\| & \leq \delta_{2} \tag{11}
\end{align*}
$$

for known scalar bounds $\delta_{1}, \delta_{2}>0$.
Remark 1: Note that the uncertainty classes discussed earlier are a subset of the uncertainty in (10). Also note the matrix $b(t, x)$ must be known to achieve the structures in (8)-(9) (and also the decoupled one in (2)-(3)).

Remark 2: Also note that the differential equations in (4)-(5) and (8)-(9) have discontinuous right hand sides. The solutions to such equations must therefore be understood in the Filippov sense [8].

Remark 3: Equations such as (8)-(9) can also appear in the context of observer problems as will be demonstrated in Section 3.

Proposition 1 For the system in (8)-(9), there exist a range of values for the gains $k_{1} \ldots k_{4}$, such that the variables σ and $\dot{\sigma}$ are forced to zero in finite time and remain zero for all subsequent time.

Proof: For the system (8)-(9), consider as a Lyapunovfunction ${ }^{1}$ candidate

$$
\begin{equation*}
V(\sigma, z)=2 k_{3}\|\sigma\|+k_{4} \sigma^{T} \sigma+\frac{1}{2} z^{T} z+\zeta^{T} \zeta \tag{12}
\end{equation*}
$$

where $\zeta:=k_{1} \frac{\sigma}{\|\sigma\|^{1 / 2}}+k_{2} \sigma-z$. Define the subspace

$$
\begin{equation*}
\mathcal{S}=\left\{(\sigma, z) \in \mathbb{R}^{2 m}: \sigma=0\right\} \tag{13}
\end{equation*}
$$

then $V(\sigma, z)$ in (12) is everywhere continuous, and differentiable everywhere except on the subspace \mathcal{S}. Furthermore it is easy to verify that $V(\cdot)$ is positive definite and radially unbounded.

Differentiating the expression in (12) yields

$$
\begin{align*}
\dot{V}(\sigma, z) & =\left(2 k_{3}+\frac{k_{1}^{2}}{2}\right) \frac{\sigma^{T} \dot{\sigma}}{\|\sigma\|}+2\left(\frac{k_{2}^{2}}{2}+k_{4}\right) \sigma^{T} \dot{\sigma}+2 z^{T} \dot{z} \\
& +\frac{3}{2} k_{1} k_{2} \frac{\sigma^{T} \dot{\sigma}}{\|\sigma\|^{1 / 2}}-k_{2}\left(\dot{\sigma}^{T} z+\sigma^{T} \dot{z}\right) \\
& -k_{1}\left(-\frac{1}{2} \frac{\left(\sigma^{T} \dot{\sigma}\right)\left(z^{T} \sigma\right)}{\|\sigma\|^{5 / 2}}+\frac{\left(\dot{z}^{T} \sigma+z^{T} \dot{\sigma}\right)}{\|\sigma\|^{1 / 2}}\right) \tag{14}
\end{align*}
$$

then substituting for (8)-(9) it follows from (14) using straightforward algebra that

$$
\begin{align*}
\dot{V}(\sigma, z) & =-\left(k_{1} k_{3}+\frac{k_{1}^{3}}{2}\right) \frac{\|\sigma\|^{2}}{\|\sigma\|^{3 / 2}}+\frac{3}{2} k_{1} k_{2} \frac{\sigma^{T} \gamma}{\|\sigma\|^{1 / 2}} \\
& -\left(k_{2} k_{4}+k_{2}^{3}\right)\|\sigma\|^{2}-\left(k_{4} k_{1}+\frac{5}{2} k_{1} k_{2}^{2}\right) \frac{\|\sigma\|^{2}}{\|\sigma\|^{1 / 2}} \\
& +k_{1}^{2} \frac{\sigma^{T} z}{\|\sigma\|}+2 k_{2}^{2} \sigma^{T} z+3 k_{1} k_{2} \frac{\sigma^{T} z}{\|\sigma\|^{1 / 2}} \\
& -k_{2}\|z\|^{2}+\frac{k_{1}}{2} \frac{\left(\sigma^{T} z\right)\left(z^{T} \sigma\right)}{\|\sigma\|^{5 / 2}}-k_{1} \frac{z^{T} z}{\|\sigma\|^{1 / 2}} \\
& +\left(2 k_{3}+\frac{k_{1}^{2}}{2}\right) \frac{\sigma^{T} \gamma}{\|\sigma\|}+\left(2 k_{4}+k_{2}^{2}\right) \sigma^{T} \gamma \\
& -\left(k_{3} k_{2}+2 k_{1}^{2} k_{2}\right) \frac{\|\sigma\|^{2}}{\|\sigma\|} \\
& -k_{2} \gamma^{T} z+\frac{k_{1}}{2} \frac{\sigma^{T} \gamma z^{T} \sigma}{\|\sigma\|^{5 / 2}}-k_{1} \frac{z^{T} \gamma}{\|\sigma\|^{1 / 2}} \\
& +2 z^{T} \phi-k_{2} \sigma^{T} \phi-k_{1} \frac{\phi^{T} \sigma}{\|\sigma\|^{1 / 2}} \tag{15}
\end{align*}
$$

[^1]for all $(\sigma, z) \notin \mathcal{S}$. Then from simple bounding arguments
\[

$$
\begin{align*}
\dot{V}(\sigma, z) & \leq-\left(k_{1} k_{3}+\frac{k_{1}^{3}}{2}\right)\|\sigma\|^{1 / 2}-\left(k_{3} k_{2}+2 k_{1}^{2} k_{2}\right)\|\sigma\| \\
& -\left(k_{2} k_{4}+k_{2}^{3}\right)\|\sigma\|^{2}-\left(k_{4} k_{1}+\frac{5}{2} k_{1} k_{2}^{2}\right)\|\sigma\|^{3 / 2} \\
& +k_{1}^{2} \frac{\left|\sigma^{T} z\right|}{\|\sigma\|}+2 k_{2}^{2}\left|\sigma^{T} z\right|+3 k_{1} k_{2} \frac{\left|\sigma^{T} z\right|}{\|\sigma\|^{1 / 2}} \\
& -k_{2}| | z \|^{2}+\frac{k_{1}}{2} \frac{\left|\sigma^{T} z\right|^{2}}{\left.\|\sigma\|\right|^{5 / 2}}+\left(2 k_{3}+\frac{k_{1}^{2}}{2}\right) \frac{\left|\sigma^{T} \gamma\right|}{\|\sigma\|} \\
& +\left(2 k_{4}+k_{2}^{2}\right)\left|\sigma^{T} \gamma\right|+\frac{3}{2} k_{1} k_{2} \frac{\left|\sigma^{T} \gamma\right|}{\| \sigma| |^{1 / 2}} \\
& +k_{2}\left|\gamma^{T} z\right|+\frac{k_{1}}{2} \frac{\left|\sigma^{T} \gamma \| z^{T} \sigma\right|}{\|\left.\sigma\right|^{5 / 2}}+k_{1} \frac{\left|z^{T} \gamma\right|}{\|\sigma\|^{1 / 2}} \\
& +2 z^{T} \phi+k_{2}\left|\sigma^{T} \phi\right|+k_{1} \frac{\left|\phi^{T} \sigma\right|}{\|\sigma\|^{1 / 2}} \tag{16}
\end{align*}
$$
\]

Using the Cauchy-Schwartz inequality on the inner product terms, together with the bounds on the terms $\|\gamma\|$ and $\|\phi\|$ from equation (10)-(11):

$$
\begin{align*}
\dot{V}(\sigma, z) & \leq-\left(k_{1} k_{3}+\frac{k_{1}^{3}}{2}\right)\|\sigma\|^{1 / 2}-\left(k_{2} k_{3}+2 k_{1}^{2} k_{2}\right)\|\sigma\| \\
& -\left(k_{1} k_{4}+\frac{5}{2} k_{1} k_{2}^{2}\right)\|\sigma\|^{3 / 2}+k_{1}^{2}\|z\|-\left(k_{2} k_{4}\right. \\
& \left.+k_{2}^{3}\right)\|\sigma\|^{2}+2 k_{2}^{2}\|\sigma\|\|z\|+3 k_{1} k_{2}\|\sigma\|^{1 / 2}\|z\| \\
& -k_{2}\|z\|^{2}+\frac{k_{1}}{2} \frac{\|z\|^{2}}{\|\sigma\|^{1 / 2}}+\left(2 k_{3}+\frac{k_{1}^{2}}{2}\right) \delta_{1}\|\sigma\| \\
& +\left(2 k_{4}+k_{2}^{2}\right) \delta_{1}\|\sigma\|^{2}+\frac{3}{2} k_{1} k_{2}\|\sigma\|^{3 / 2} \delta_{1} \\
& +k_{2} \delta_{1}\|\sigma\|\|z\|+\frac{3}{2} k_{1}\|\sigma\|^{1 / 2}\|z\| \delta_{1} \\
& +2 \delta_{2}\|z\|+k_{2} \delta_{2}\|\sigma\|+k_{1} \delta_{2}\|\sigma\|^{1 / 2} \tag{17}
\end{align*}
$$

Define $x=\operatorname{col}\left(\|\sigma\|^{1 / 2},\|\sigma\|,\|z\|\right)$ then from (17)

$$
\begin{equation*}
\dot{V} \leq-\frac{1}{\|\sigma\|^{1 / 2}} x^{T} \Omega x-x^{T} \Psi x \tag{18}
\end{equation*}
$$

where

$$
\Omega=\left[\begin{array}{ccc}
\Omega_{11} & 0 & \Omega_{13} \tag{19}\\
0 & \Omega_{22} & \Omega_{23} \\
\Omega_{31} & \Omega_{32} & \Omega_{33}
\end{array}\right]
$$

with elements

$$
\begin{aligned}
& \Omega_{11}:=\frac{1}{2} k_{1}^{3}+k_{1} k_{3}-\delta_{2} k_{1} \\
& \Omega_{13}:=-\frac{1}{2} k_{1}^{2}-\delta_{2} \\
& \Omega_{22}:=k_{4} k_{1}+\frac{5}{2} k_{2}^{2} k_{1}-\frac{3}{2} k_{1} k_{2} \delta_{1} \\
& \Omega_{23}:=-\frac{3}{2} k_{1} k_{2} \\
& \Omega_{31}:=\Omega_{13}, \Omega_{32}:=\Omega_{23} \\
& \Omega_{33}:=\frac{1}{2} k_{1}
\end{aligned}
$$

and

$$
\Psi=\left[\begin{array}{ccc}
\Psi_{11} & 0 & \Psi_{13} \tag{20}\\
0 & \Psi_{22} & \Psi_{23} \\
\Psi_{31} & \Psi_{32} & \Psi_{33}
\end{array}\right]
$$

with elements

$$
\begin{aligned}
& \Psi_{11}:=k_{2} k_{3}+2 k_{1}^{2} k_{2}-k_{2} \delta_{2}-\left(2 k_{3}+\frac{1}{2} k_{1}^{2}\right) \delta_{1} \\
& \Psi_{13}:=-\frac{3}{4} k_{1} \delta_{1} \\
& \Psi_{22}:=k_{4} k_{2}+k_{2}^{3}-\left(k_{2}^{2}+2 k_{4}\right) \delta_{1} \\
& \Psi_{23}:=-k_{2}^{2}-\frac{1}{2} k_{2} \delta_{1} \\
& \Psi_{31}:=\Psi_{13}, \Psi_{32}:=\Psi_{23} \\
& \Psi_{33}:=k_{2}
\end{aligned}
$$

It is easy to verify the symmetric matrix $\Omega>0$ if the inequalities $k_{1}>\sqrt{2 \delta_{2}}, k_{2}>0, k_{3}>k_{3}^{\Omega}$ and $k_{4}>k_{4}^{\Omega}$ are satisfied where
$k_{3}^{\Omega}:=3 \delta_{2}+\frac{2 \delta_{2}^{2}}{k_{1}^{2}}$
$k_{4}^{\Omega}:=\frac{\beta_{1}}{\beta_{2}}+2 k_{2}^{2}+\frac{3}{2} k_{2} \delta_{1}$
with the positive scalar $\beta_{1}=\left(\frac{3}{2} k_{1}^{2} k_{2}+3 \delta_{2} k_{2}\right)^{2}$ and the scalar $\beta_{2}=k_{3} k_{1}^{2}-2 \delta_{2}^{2}-3 \delta_{2} k_{1}^{2}$.

Likewise the remaining symmetric matrix $\Psi>0$ if the inequalities $k_{1}>0, k_{2}>2 \delta_{1}, k_{3}>k_{3}^{\Psi}$ and $k_{4}>k_{4}^{\Psi}$ are satisfied where
$k_{3}^{\Psi}:=\frac{\frac{9}{16}\left(k_{1} \delta_{1}\right)^{2}}{k_{2}\left(k_{2}-2 \delta_{1}\right)}+\frac{\frac{1}{2} k_{1}^{2} \delta_{1}-2 k_{1}^{2} k_{2}+k_{2} \delta_{2}}{\left(k_{2}-2 \delta_{1}\right)}$
$k_{4}^{\Psi}:=\frac{\alpha_{1}}{\alpha_{2}\left(k_{2}-2 \delta_{1}\right)}+\frac{2 k_{2}^{2} \delta_{1}+\frac{1}{4} k_{2} \delta_{1}^{2}}{\left(k_{2}-2 \delta_{1}\right)}$
in which the scalars $\alpha_{1}:=\frac{9}{16}\left(k_{1} \delta_{1}\right)^{2}\left(k_{2}+\frac{1}{2} \delta_{1}\right)^{2} / k_{2}^{2}$ and $\alpha_{2}:=k_{2}\left(k_{3}+2 k_{1}^{2}-\delta_{2}\right)-\left(2 k_{3}+\frac{1}{2} k_{1}^{2}\right) \delta_{1}-\frac{9}{16}\left(k_{1} \delta_{1}\right)^{2} / k_{2}$. In order to satisfy both $\Omega>0$ and $\Psi>0$, the k_{i} 's are chosen as

$$
\left.\begin{array}{rl}
k_{1} & >\sqrt{2 \delta_{2}} \tag{25}\\
k_{2} & >2 \delta_{1} \\
k_{3} & >\max \left(k_{3}^{\Omega}, k_{3}^{\Psi}\right) \\
k_{4} & >\max \left(k_{4}^{\Omega}, k_{4}^{\Psi}\right)
\end{array}\right\}
$$

and hence from (18)

$$
\begin{equation*}
\dot{V} \leq-\frac{1}{\|\sigma\|^{1 / 2}} x^{T} \Omega x \leq-\frac{1}{\|\sigma\|^{1 / 2}} \lambda_{\min }(\Omega)\|x\|^{2} \tag{26}
\end{equation*}
$$

using Rayleigh's inequality. Define $X:=\operatorname{col}\left(\frac{\sigma}{\|\sigma\|^{1 / 2}}, \sigma, z\right)$ and note that $\|X\|=\|x\|$ for all values of the states σ
and z. Therefore (26) can be written as

$$
\begin{equation*}
\dot{V} \leq-\frac{1}{\|\sigma\|^{1 / 2}} \lambda_{\min }(\Omega)\|X\|^{2} \tag{27}
\end{equation*}
$$

Using similar arguments to [6], the Lyapunov function in (12) can be written as $V=X^{T} P X$ for an appropriate symmetric positive definite matrix $P \in \mathbb{R}^{3 m \times 3 m}$ and $V \leq \lambda_{\max }(P)\|X\|^{2}$ from Rayleigh's inequality. Therefore from (27)

$$
\begin{equation*}
\dot{V} \leq-\frac{1}{\|\sigma\|^{1 / 2}} \frac{\lambda_{\min }(\Omega)}{\lambda_{\max }(P)} V \tag{28}
\end{equation*}
$$

Because $V^{1 / 2}>\sqrt{\lambda_{\min }(P)}\|\sigma\|^{1 / 2}$, it follows that

$$
\begin{equation*}
\dot{V} \leq-\alpha V^{1 / 2}, \quad \text { where } \alpha=\frac{\lambda_{\min }(\Omega) \sqrt{\lambda_{\min }(P)}}{\lambda_{\max }(P)} \tag{29}
\end{equation*}
$$

for all $(\sigma(t), z(t)) \notin \mathcal{S}$. Note the absolutely continuous trajectories of the Filippov solution to (8)-(9) cannot stay on the set $\mathcal{S} \backslash\{0\}$ (i.e the set \mathcal{S} from (13) excluding the origin when both $\sigma=z=0$). This follows since if $\left(\sigma\left(t_{0}\right), z\left(t_{0}\right)\right) \in \mathcal{S} \backslash\{0\}$ at the time instant t_{0}, $\sigma\left(t_{0}\right)=0$ and from equation (8), $\left.\dot{\sigma}(t)\right|_{t=t_{0}}=z\left(t_{0}\right) \neq 0$ since $\left(\sigma\left(t_{0}\right), z\left(t_{0}\right)\right) \in \mathcal{S} \backslash\{0\}$. As a consequence, at least one component $\sigma_{i}(t)$ passes monotonically through zero during some (possibly small) time interval $T_{0} \subset \mathbb{R}$ containing t_{0} from the absolute continuity of $z_{i}(t)$ and the fact that $z_{i}\left(t_{0}\right) \neq 0$. Therefore along the Filippov solution to (8)-(9), inequality (29) holds almost everywhere, and thus $V(t)$ is a continuously decreasing function of time. Then using the 'Lyapunov Theorem' for differential inclusions in Proposition 14.1 [12], it can be concluded that the equilibrium point at the origin $(\sigma, z)=0$ is reached in finite time ${ }^{2}$. Finally substituting for $\sigma=z=0$ in the right hand side of (8) implies $\dot{\sigma}=0($ since $\gamma(0)=0)$ and therefore $\sigma=\dot{\sigma}=0$ in finite time as claimed.

Remark 4: Note the proof given above is constructive and in particular if the gains are chosen to satisfy (25) where the scalars δ_{1} and δ_{2} are given (10)-(11) and the scalars $k_{3}^{\Omega}, k_{3}^{\Psi}, k_{4}^{\Omega}, k_{4}^{\Psi}$, which depend on δ_{1} and δ_{2}, are given in (21)-(22) and (23)-(24), then from Proposition 1, the solution to (8)-(9) satisfies $\sigma=\dot{\sigma}=0$ in finite time.

Remark 5: These conditions are not identical to the ones in [6], perhaps because of the different approximations used to obtain the expressions in (17).

3 Example

The nonlinear rigid body equations of motion of a satellite, with thrusters providing the required torque, can

[^2]be represented in the following form [9]:
\[

$$
\begin{equation*}
\dot{w}=J^{-1}\left(T-w^{x} J w\right) \tag{30}
\end{equation*}
$$

\]

where $T \in \mathbb{R}^{3}$ are the torques from the thrusters, $w \in \mathbb{R}^{3}$ denotes the inertial angular velocities, $J \in \mathbb{R}^{3 \times 3}$ is a positive definite inertia matrix, and w^{x} denotes
$w^{x}:=\left[\begin{array}{ccc}0 & -w_{3} & w_{2} \\ w_{3} & 0 & -w_{1} \\ -w_{2} & w_{1} & 0\end{array}\right]$
where $w=\operatorname{col}\left(w_{1}, w_{2}, w_{3}\right)$ are the rate components in the three axes. In the event of faults associated with the thrusters the system in (30) can be re-modelled as

$$
\begin{equation*}
\dot{w}=J^{-1}\left(T+f-w^{x} J w\right) \tag{32}
\end{equation*}
$$

where $f \in \mathbb{R}^{3}$ represents the unknown torque arising from the fault. Assuming the inertia matrix J is known the objective is to create a fault detection scheme for such a system. One approach is to estimate f from knowledge of w and T only. For this purpose consider an observer of the form

$$
\begin{equation*}
\dot{\hat{w}}=J^{-1}\left(T-\hat{w}^{x} J \hat{w}\right)+\nu \tag{33}
\end{equation*}
$$

where the output error injection signal
$\nu=k_{1} \frac{\sigma}{\|\sigma\|^{1 / 2}}-\xi+k_{2} \sigma$
$\dot{\xi}=-k_{3} \frac{\sigma}{\|\sigma\|}-k_{4} \sigma$
and $\sigma=w-\hat{w}$. Define $z=\xi+J^{-1} f$ then it follows the time varying vectors σ, z satisfy (8)-(9) where by definition

$$
\begin{equation*}
\gamma(\sigma)=J^{-1}\left(\hat{w}^{x} J \hat{w}-(\sigma+\hat{w})^{x} J(\sigma+\hat{w})\right) \tag{36}
\end{equation*}
$$

and $\phi(t)=J^{-1} \dot{f}(t)$.
Remark 6: Because of the fact that discontinuities in the unit vector expression in (9) will only occur when all the components of $\sigma_{i}=0$, the proposed structure is likely to have improved chattering reduction properties.

During the sliding motion $\sigma=\dot{\sigma}=0$ and from (8) this implies $z=0$ since from $(36), \gamma(0)=0$. Consequently, since $z=0$ during the sliding motion, by definition $z=$ $\xi+J^{-1} f=0$. If the fault estimate \hat{f} is chosen as

$$
\begin{equation*}
\hat{f}(t):=-J \xi(t) \tag{37}
\end{equation*}
$$

then during sliding $\hat{f}=f$. Note that $\xi(t)$ is available in realtime as the solution to (35) and so $\hat{f}(t)$ from (37) is
a realtime estimate of thruster faults.
In the simulations, the initial conditions in the satellite model are $w(0)=\left[\begin{array}{lll}-0.0021 & -0.0067 & 0.0253\end{array}\right]$ and

$$
J=1.0 e^{003} \times\left[\begin{array}{ccc}
1.2757 & -0.0040 & -0.0230 \\
-0.0040 & 0.6597 & 0.0063 \\
-0.0230 & 0.0063 & 0.8750
\end{array}\right]
$$

The super-twisting observer gains are chosen as follows; $\delta_{1}=10, \delta_{2}=0.5, k_{1}=2, k_{2}=40, k_{3}=5.5625, k_{4}=60$ which satisfy the conditions of Proposition 1. Figure 1 shows that the state estimation error σ becomes zero in finite time as does the fault estimation error $e_{f}=\hat{f}-f$. Figure 2 shows that $\sigma=\dot{\sigma}=0$ simultaneously at approximately 0.11 seconds. Figure 3 shows the fault estimates of two simultaneous unknown inputs comprising two different sinusoids in channels 1 and 3 beginning at $t=0$. Visually perfect replication takes place.

Fig. 1. States estimation and fault reconstruction errors

4 Conclusion

This communique has presented a novel Lyapunov based super twisting sliding mode structure for multivariable situations. This represents a generalization of the wellknown single output case. A situation is presented in which this multivariable generalization provides a more elegant solution than trying to employ a decoupled collection of single variable structures.

References

[1] H. Alwi, C. Edwards and C.P. Tan. Fault detection and fault tolerant control using sliding modes. Springer Verlag, 2011.
[2] V. I. Utkin. Sliding Modes in Control and Optimization, Springer-Verlag, 1992.
[3] A. Levant. Sliding order and sliding accuracy in sliding mode control. Int. Journal of Control, 58, pp. 1247-1263, 1993.

Fig. 2. Plots of σ and $\dot{\sigma}$

Fig. 3. Fault reconstruction errors
[4] L. Fridman and A. Levant. "Higher order sliding modes as a natural phenomenon in control theory" in Robust Control via Variable Structure and Lyapunov Techniques, F. Garofalo and L. Glielmo (Eds), LNCIS, 217, 107-133, 1996.
[5] A. Levant. Homogeneity approach to higher-order sliding mode design. Automatica, 41, pp. 823-830, 2005.
[6] J. A. Moreno and M. Osorio. A Lyapunov approach to second-order sliding mode controllers and observers. Proc of the IEEE CDC, Mexico pp. 2856-2861, 2008.
[7] H. Alwi and C. Edwards. Oscillatory failure case detection for aircraft using an adaptive sliding mode differentiator scheme Proc of the ACC, San Francisco, pp. 1384-1389, 2011.
[8] A.F. Filippov, Differential Equations with Discontinuous Righthand Side. Dordrecht, The Netherlands: Kluwer, vol 304, 1998.
[9] M. J. Sidi Spacecraft dynamics and control: a practical engineering approach. Cambridge University Press, 1997.
[10] Y. B. Shtessel, J. A. Moreno, F. Plestan, L. M. Fridman, and A. S. Poznyak. Super-twisting Adaptive Sliding Mode Control: A Lyapunov Design. In Proc of the IEEE CDC, Atlanta, pp. 5109-5113, 2010.
[11] A. Levant. Robust exact differentiation via sliding mode
technique. Automatica, 34, pp. 379-84, 1998.
[12] K. Deimling. Multivalued Differential Equations, Walter De Gruyer, Berlin, Germany, 1992.
[13] T. Gonzalez, J Moreno and L. Fridman. Variable gain super-twisting sliding mode control. IEEE Transactions on Automatic Control, 57, pp. 2100-2105, 2012.
[14] J. A. Moreno and M. Osorio. Strict Lyapunov functions for the super-twisting algorithm. IEEE Transactions on Automatic Control, 57, pp. 1035-1040, 2012.
[15] L. Fridman, J. Davila and A. Levant. Higher order observeration of linear systems with unknown inputs. Proc of the IFAC World Congres Seoul, pp. 4779-4790, 2008.
[16] A. Polyakov, A. Poznyak. Reaching Time Estimation for Super-Twisting Second Order Sliding Mode Controller via Lyapunov Function Designing . IEEE Transactions on Automatic Control, 54, pp. 1951-1955, 2009.
[17] Y. Shtessel, C. Edwards, L. Fridman and A. Levant, Sliding Mode Control and Observation, Birkhauser, 2013.

[^0]: * A preliminary version of this paper was presented at the IFAC SAFEPROCESS workshop Mexico City, Mexico, September 2012. Contact email: c.edwards@exeter.ac.uk

[^1]: ${ }^{1}$ Note that in the special case when $m=1$, the Lyapunov function in (12) becomes the one originally proposed in [14].

[^2]: 2 The 'generalised' Lyapunov theorem in Proposition 14.1 [12] only requires continuity and not differentiability of $V(t)$ along the solution trajectories. This property is key to the proof above, which follows closely the arguments in [13].

