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Abstract

This communique proposes a multivariable super-twisting sliding mode structure which represents an extension of the well-
known single input case. A Lyapunov approach is used to show finite time stability for the system in the presence of a class
of uncertainty. This structure is used to create a sliding mode observer to detect and isolate faults for a satellite system.

Key words: sliding modes, fault estimation, super-twisting, fault detection and isolation

1 Introduction

Sliding mode control has been an active area of research
for many decades due its (at least theoretical) invari-
ance to a class of uncertainty known as matched uncer-
tainty [2]. More recently these ideas have been exploited
extensively for the development of robust observers and
have found applications in the area of fault detection
and fault tolerant control [15,1]. However one of the dis-
advantages of traditional sliding mode control (1st or-
der sliding modes) is the ‘chattering’ due to the discon-
tinuous control action [2]. Higher order sliding modes
(HOSM) remove the chattering effect while retaining the
robustness of first order sliding modes and improving on
their accuracy [3,4]. A disadvantage of imposing an r-th
order sliding mode is the necessity of having s, $..s" !
available (where s(t) is the switching surface). However
in one special case of second order sliding modes, the
derivative information is not required. This is the so-
called ‘super-twisting’ approach [11]. Until very recently
stability, robustness and convergence rates in higher or-
der sliding mode methods have been analyzed in terms
of homogeneity or geometric arguments [5]. However in
a succession of papers [6,16,14], Lyapunov methods were
employed successfully for the first time to analyze the
properties of the super-twisting algorithm for uncertain
systems. This has opened the door for the integration
of these ideas with other nonlinear tools including gain
adaptation [13,10,7]. However in all these developments
a single input control structure has essentially been con-
sidered. In many situations it is possible by control input
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scaling to transform a multi-input control problem with
m control inputs into a decoupled problem involving m
single input control structures and so the approaches
in [13,10,7] work satisfactorily. Instead, in this commu-
nique, a multi-variable super-twisting structure is pro-
posed, which is then analyzed using an extension of the
Lyapunov ideas from [14]. An example involving a fault
detection problem in a satellite system is used to demon-
strate a situation in which the proposed multi-input
super-twisting structure is useful. The notation used in
the paper is quite standard — in particular, throughout
the paper, || - || is used to represent the Euclidean norm.

2 Problem Statement and System Description

In multivariable sliding mode control and observation,
the objective is to force to zero in finite time a constraint
(or switching) function given by o(x), where z € R™ is
the state of the dynamical system and o : R™ — R™ [17].
In calculating the total time derivative of o, for the case
of conventional (first order) sliding modes, an expression

o(t) = a(t, ) + b(t, z)v + (¢, 0) (1)

is established where v is the manipulated variable (the
control signal or the output error injection in the case
of observer problems), a(t,z) € R™ and b(t,z) € R™*™
are assumed to be known, and 7(-) represents unknown
(but usually bounded) uncertainty. If det(b(¢,z)) # 0
then using the expression v = b(t, x) "1 (v—a(t, x)) where
the components of v are

U; —klsign(ai)|a¢|1/2 — koo + 2; (2)
2'51' = —kgsign(ai) — k‘40’i (3)
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and k1, ..., ky are scalar gains, the system

Gi = —ksign(oy) |02 — kaos + 2 + it o) (4)
Zi = —kgSigH(O’i) — k40’i (5)

for i« = 1...m is obtained. Suppose |y;(t,0)| < d;|o]
for some scalars d;, then if the gains & . .. k4 are chosen
properly, it can be proved that o; = ¢; = 0 in finite time:
see for example [14]. Alternatively if |4;(¢,0)| < d; for
some finite gains d;, then for appropriate gains k; . . . kq,
it can be proved that o; = ¢; = 0 in finite time: see
[3,14]. In the literature such a controller is usually known
as a super-twisting controller [3,11,4].

Suppose instead of (2)-(3) a non-decoupled injection
term

_ g
U—-le—f—Z—kQU (6)

z= —k‘gi — k‘40’ (7)
Il

is used where kq, ..., k4 are scalars. Then the result is a
set of coupled equations rather than the decoupled struc-
ture in (4)-(5), and the work in [14] cannot be employed
directly. (Note however, if m = 1 then the scalar control
structure in (6)-(7) reverts to (2)-(3). Also in this situ-
ation kg = k4 = 0 is usually selected.) Substituting (6)
into (1) yields a special case of the system

g
:—]ﬁW-’-Z—kQU'F’Y(t,O') (8)

—kgﬁ — ka0 + (1) (9)

when ¢(t) = 0. The term ¢(t) in (9) is included here to
maintain compatibility with the more generic formula-
tion in [14], and will be exploited in the example in Sec-
tion 3. The terms (¢, o) and ¢(t) are assumed to satisfy

vt o)l < éao]] (10)
llp(®)]] < 62 (11)

for known scalar bounds 1, d2 > 0.

Remark 1: Note that the uncertainty classes discussed
earlier are a subset of the uncertainty in (10). Also note
the matrix b(¢, ) must be known to achieve the struc-
tures in (8)-(9) (and also the decoupled one in (2)-(3)).

Remark 2: Also note that the differential equations in
(4)-(5) and (8)-(9) have discontinuous right hand sides.
The solutions to such equations must therefore be un-
derstood in the Filippov sense [8].

Remark 3: Equations such as (8)-(9) can also appear in
the context of observer problems as will be demonstrated
in Section 3.

Proposition 1 For the system in (8)-(9), there exist
a range of values for the gains ki ...ky, such that the
variables o and & are forced to zero in finite time and
remain zero for all subsequent time.

Proof: For the system (8)-(9), consider as a Lyapunov-
function! candidate

1
V(o z) = 2ks||o|| + ksoT o + §sz—|—CTC (12)
where ( := k1W + koo — z. Define the subspace

S={(0,2) €eR*™ : =0} (13)
then V' (o, 2) in (12) is everywhere continuous, and dif-
ferentiable everywhere except on the subspace S. Fur-
thermore it is easy to verify that V'(-) is positive definite
and radially unbounded.

Differentiating the expression in (12) yields

. k2 T - k2
V(o,2) = (2ks + 5 )ﬁ +2(2 +ka)oTo + 275
3 ole T T.
+ EkleW — kQ(O' z+o Z)
(L (cTd) (2T o) N (2To 4+ 2705) (14)
U2 ol [EIRE

then substituting for (8)-(9) it follows from (14) using
straightforward algebra that

O'T’}/

o[/
|||

|lo][ /2

- ki llof?
V(O’, Z) = —(/ﬁk‘g + 7) ||O'||3/2

3
+ §k1k2

5
— (kaks + K3)[|o||* — (kaky + §k1k§)

O'TZ

TERE

ki (0T2)(2To) k‘ 2Tz
2 [l o[/
T
g

QUTZ 2 T
+ k‘l— + 2]620' z + 3k1ka

Il

— kallz|]* +

o

o]l
— (k‘gk‘g + 2/{/‘%]62)

k2
+ (2ks + ) o + (2ha + B5)o Ty

[lo]]?

o]
T, EO'T’)/ZTU C 2Ty
2 [lo]f>/? llo]]1/2
¢To
[lo][1/2

— ko

+ 2270 — kool p — ky (15)

1 Note that in the special case when m = 1, the Lyapunov
function in (12) becomes the one originally proposed in [14].



for all (o, z) ¢ S. Then from simple bounding arguments

. k3
Vo, 2) < —=(kiks + = )IIOII”2 — (kskz + 2kiks)||o]|

5
— (koks + k2)||0||2 — (kaky + §k1k§)||a||3/2

|0’ z| |0Tz|
+ k2 4 2k2 (0T 2| 4 3kiky ——
llo]] 217 [o][1/2
ki oTz]? k2 o7y
— ka|l2|]* + = + (2ks + =)
2 ||o]5/2 27 |lo]|
3 oT
2k + K)o + —MQW
ki loTA||z" o] |27]
+haly" 2| + = ky
2 lo|[>/? [lo][1/2
o7l

+ 2270 + kaloT | + ks

16
oli72 (16)

Using the Cauchy-Schwartz inequality on the inner prod-
uct terms, together with the bounds on the terms ||v||
and ||¢|| from equation (10)-(11):

V(o,2) <

(ks + )II 112 ~

(kaks + 2K2ks)]|o]|
= (huka + §k1k2>||o||3/2 + k2|l = (ks
+ k3)lol* + 263 o2 +3k1k2||o||1/2||z||

|l
EHUHl/Q )51||U||

— ko|2])? + (2k3+
3
+ (ks + K3)01|o||* + Shuka o>/,

3
+ kabal|o|[|[2]] + §k1|lo||1/2||2||51
+ 285||2]| + k262|o|] + k102||o||*/? (17)

Define 2 = col(||o||*/2, ||o||,]|2||) then from (17)

: 1 T T
where
Q1 0 Q3
Q=10 Qo Q3 (19)
Q31 Q39 Q33

with elements

01 = %k% + k1ks — 0ok

Qg == —1k7 — 0,

Qoo = kak1 + Sk3k1 — 3kika01
Qo3 1= —%klkg

Q31 1= M3, Q32 1= Qa3

Q33 1= %kl

and
Uy 0 Wy
U= 1 0 Wy Uy (20)
W31 W3 Was

with elements

U1y = koks + 2kTk — kaba — (2k3 + 5k7)61
\:[113 = —%kldl

Wog 1= kyko + kg —
\:[123 = —k% - %kg(sl
W3y i= Wiz, Ugp 1= Wog3
W33 = ko

(k3 + 2k4)01

It is easy to verify the symmetric matrix Q > 0 if the
inequalities k1 > /202, ko > 0, k3 > kg} and kg > kff
are satisfied where

2 2
kS =30 + % (21)
a._ b 3
k‘4 = — —|— 2]62 k‘251 (22)

with the positive scalar 8 = (%k%kz + 302k2)? and the
scalar B = ksk? — 263 — 302k3.

Likewise the remaining symmetric matrix ¥ > 0 if the
inequalities k1 > 0, ko > 201, k3 > k¥ and kg > kY are
satisfied where

D (k161)2  Lk26, — 2k%ks + kaly

kY 23

3 ko(ky — 261) (ky — 267) (23)
2]6251 =+ lk252

T B AL L 24

4 0&2(/6‘2 — 251) (k‘g — 251) ( )

in which the scalars oy 1= 2 (k161)?(k2+501)?/k3 and
g = ko (ks + 2k3 — 62) — (2ks + 3k1)01 — % (k161)%/ko.
In order to satisfy both 2 > 0 and ¥ > 0, the k;’s are

chosen as
k1 > V 262
ko > 26, (25)
kg > maX(k§7 kgp)
ks > max(k$, kYY)
and hence from (18)
= leli7? = el

using Rayleigh’s inequality. Define X := COZ(W, 0,2)
and note that || X|| = ||z|| for all values of the states o



and z. Therefore (26) can be written as

1 2
< — T @)X (21)
Using similar arguments to [6], the Lyapunov function
in (12) can be written as V = X7 PX for an appropri-
ate symmetric positive definite matrix P € R3*3™ and
V' < Amaz(P)||X]|? from Rayleigh’s inequality. There-
fore from (27)

1 Amin (2)
Ve lmnlTy, 28
= 17 A (P) (28)

Because V2 > \/Ain(P)||o]|/2, it follows that

Awnn(Q) \/ A"m777.(P)
)

V é —aVl/Q, where oo = W (29)
for all (o(t),2(t)) ¢ S. Note the absolutely continu-
ous trajectories of the Filippov solution to (8)-(9) can-
not stay on the set S\ {0} (i.e the set S from (13) ex-
cluding the origin when both ¢ = z = 0). This follows
since if (o (o), z(to)) € S\ {0} at the time instant ¢,
o(tp) = 0 and from equation (8), 6(t)|t=t, = 2(to) # 0
since (o (to), 2(t0)) € S\ {0}. As a consequence, at least
one component o;(t) passes monotonically through zero
during some (possibly small) time interval T C R con-
taining to from the absolute continuity of z;(¢) and the
fact that z;(to) # 0. Therefore along the Filippov solution
to (8)-(9), inequality (29) holds almost everywhere, and
thus V(¢) is a continuously decreasing function of time.
Then using the ‘Lyapunov Theorem’ for differential in-
clusions in Proposition 14.1 [12], it can be concluded that
the equilibrium point at the origin (o, z) = 0 is reached
in finite time 2. Finally substituting for ¢ = z = 0 in
the right hand side of (8) implies & = 0 (since v(0) = 0)
and therefore o = ¢ = 0 in finite time as claimed. = W

Remark 4: Note the proof given above is constructive and
in particular if the gains are chosen to satisfy (25) where
the scalars §; and d2 are given (10)-(11) and the scalars
kS kY kSE kY, which depend on 1 and &2, are given in
(21)-(22) and (23)-(24), then from Proposition 1, the
solution to (8)-(9) satisfies 0 = ¢ = 0 in finite time.

Remark 5: These conditions are not identical to the ones
in [6], perhaps because of the different approximations
used to obtain the expressions in (17).

3 Example

The nonlinear rigid body equations of motion of a satel-
lite, with thrusters providing the required torque, can

2 The ‘generalised’ Lyapunov theorem in Proposition 14.1
[12] only requires continuity and not differentiability of V'(¢)
along the solution trajectories. This property is key to the
proof above, which follows closely the arguments in [13].

be represented in the following form [9]:
w=J NT —w"Jw) (30)

where T' € R3 are the torques from the thrusters, w € R?
denotes the inertial angular velocities, J € R3*3 is a
positive definite inertia matrix, and w® denotes

0 —w3 Wy

w? = w3 0 —w (31)

—WwW2 W1 0

where w = col(wq, w2, w3) are the rate components in
the three axes. In the event of faults associated with the
thrusters the system in (30) can be re-modelled as

w=J YT+ f—w"Jw) (32)

where f € R? represents the unknown torque arising
from the fault. Assuming the inertia matrix J is known
the objective is to create a fault detection scheme for
such a system. One approach is to estimate f from knowl-
edge of w and T only. For this purpose consider an ob-
server of the form

W= J YT — & J) + v (33)

where the output error injection signal
ey — — &+ k (34)
v=k——7>5 — o
o172 ’

. g
f:—kg——k40 35
o] (35)

and 0 = w — . Define z = £ + J~'f then it follows
the time varying vectors o, z satisfy (8)-(9) where by
definition

(o) = J 1@ Jw — (o +0)*J (o + b)) (36)

and ¢(t) = J 1 f(t).

Remark 6: Because of the fact that discontinuities in the
unit vector expression in (9) will only occur when all the
components of g; = 0, the proposed structure is likely
to have improved chattering reduction properties.

During the sliding motion ¢ = ¢ = 0 and from (8) this
implies z = 0 since from (36), v(0) = 0. Consequently,
since z = 0 during the sliding motion, by definition z =
&+ J1f = 0. If the fault estimate f is chosen as

ft) = —JE) (37)

then during sliding f = f. Note that & (t) is available in
realtime as the solution to (35) and so f(¢) from (37) is



a realtime estimate of thruster faults.
In the simulations, the initial conditions in the satellite

model are w(0) = [ —0.0021 —0.0067 0.0253] and

1.2757 —0.0040 —0.0230
—0.0040 0.6597 0.0063
—0.0230 0.0063 0.8750

J = 1.0e%% x

The super-twisting observer gains are chosen as follows;
01 = 10,02 = 0.5, k1 = 2,k = 40, ks = 5.5625, k4 = 60
which satisfy the conditions of Proposition 1. Figure 1
shows that the state estimation error ¢ becomes zero in
finite time as does the fault estimation error ey = f — f.
Figure 2 shows that ¢ = ¢ = 0 simultaneously at ap-
proximately 0.11 seconds. Figure 3 shows the fault esti-
mates of two simultaneous unknown inputs comprising
two different sinusoids in channels 1 and 3 beginning at
t = 0. Visually perfect replication takes place.
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Fig. 1. States estimation and fault reconstruction errors

4 Conclusion

This communique has presented a novel Lyapunov based
super twisting sliding mode structure for multivariable
situations. This represents a generalization of the well-
known single output case. A situation is presented in
which this multivariable generalization provides a more
elegant solution than trying to employ a decoupled col-
lection of single variable structures.
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