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Abstract

The Type III secretion system (TTSS) is a protein secretion machinery used by certain gram-negative bacterial pathogens of
plants and animals to deliver effector molecules to the host and is at the core of the ability to cause disease. Extensive
molecular and biochemical study has revealed the components and their interactions within this system but reductive
approaches do not consider the dynamical properties of the system as a whole. In order to gain a better understanding of
these dynamical behaviours and to create a basis for the refinement of the experimentally derived knowledge we created a
Boolean model of the regulatory interactions within the hrp regulon of Pseudomonas syringae pathovar tomato strain
DC3000 Pseudomonas syringae. We compared simulations of the model with experimental data and found them to be
largely in accordance, though the hrpV node shows some differences in state changes to that expected. Our simulations
also revealed interesting dynamical properties not previously predicted. The model predicts that the hrp regulon is a
biologically stable two-state system, with each of the stable states being strongly attractive, a feature indicative of selection
for a tightly regulated and responsive system. The model predicts that the state of the GacS/GacA node confers control, a
prediction that is consistent with experimental observations that the protein has a role as master regulator. Simulated gene
‘‘knock out’’ experiments with the model predict that HrpL is a central information processing point within the network.
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Introduction

Many gram-negative bacterial pathogens of plants use the Type

III Secretion system (TTSS) to deliver effector molecules directly

into the host [1]. The TTSS is a tube like structure with ring

structures embedded in the plasma membrane and a filament

structure termed the hrp pilus [2,3]. The TTSS is encoded by

around 20 hrp (hypersensitivity response and pathogenicity) genes

that are found in several operons on the chromosome or plasmids

of plant-pathogenic bacteria [4]. The hrp operons are grouped

according to operon structure. The hrp genes of Pseudomonas syringae

pathovar tomato strain DC3000 (P.syringae), Erwinia spp. and

Pantoea stewartii belong to group I [5]. Here we consider this group,

specifically the signal transduction components [5–16] influencing

expression of the hrp regulon have been discovered in Pseudomonas

syringae.

The regulatory interactions in the hrp regulon are reviewed in

detail elsewhere [5]. Briefly, in P. syringae the GacS sensory

histidine kinase and GacA cognate response regulator dimer

activate transcription of the alternative sigma factor gene rpoN,

which together with the dimer HrpRS (a member of the NtrC

family of two-component regulator proteins) regulates transcrip-

tion of the hrpL gene. HrpL activates transcription of the hrp

regulon via interactions with the hrp box, a conserved nucleic acid

sequence promoter motif and RpoN. Together these interactions

result in the expression of the genes encoding proteins that

constitute the machinery of the TTSS.

Thanks to the concerted efforts of many groups a good number

of the signal transduction and regulatory components of the hrp

genes in P. syringae and their interactions with each other have

been discovered [5] but the dynamics of the system as an

integrated whole have not been considered. In this study we hoped

to use modelling techniques to synthesise the biochemical and

molecular information available and take the next step. The

approach we intend can be understood with a simple analogy: the

powerful reductionist approaches of traditional biochemistry and

molecular biology are analogous to a watchmaker deconstructing a

watch, listing the component parts but perhaps stopping at

drawing a picture of how it goes back together. The logical next

step for the watchmaker is simply to put the watch back together,

wind it up and see if it goes. The availability of molecular

information and modelling methods allow the biologist to take this

next step. Modelling the interactions allows biologists to under-

stand a whole new level of operation of a system of interest, to

observe emergent features that are not obvious from the parts list

and known interactions alone. When modelled scenarios do not

match up with the results observed in real life, discrepancies may

not be due to weaknesses in the model. Rather they can indicate

errors in our understanding of regulatory relationships or

omissions from the parts list and allow us insight that can result

in the refinement of our knowledge.

In recent years mathematical models have been applied to the

computational analysis of biochemical networks including meta-

bolic pathways, signal transduction and gene regulatory networks

PLoS ONE | www.plosone.org 1 February 2010 | Volume 5 | Issue 2 | e9101



[17–19]. In situations where the biochemical and kinetic

parameters of a system are known in great detail modelling with

continuous or stochastic approaches such as differential equations

or Monte Carlo simulations [20] is informative and appropriate.

Often the amount of information on biochemical parameters is

very low indeed and stochastic or continuous models cannot be

formulated. In the absence of detailed biochemical information,

discrete deterministic, parameterless models can be constructed.

Such models are being used increasingly to reproduce dynamical

behaviours of molecular control networks and it is being

discovered that it is the sequence of events rather than the timing

that is the important factor [21–27], thus much can be learned

from these sorts of models. One such class of discrete model is the

Boolean model. Boolean representations are very common in

biology and are often used implicitly for describing sets of

regulatory interactions in diagrams and figures describing models

so they are a natural tool for biologists to analyse and interpret. In

the Boolean formalism a network is created with the entities under

study as nodes and regulatory relationships as one-way (directed)

links between them. Nodes can have two states; True or False. As

the model is run the states of each node are updated according to

the states of the upstream nodes via a set of update rules

represented as a logical statement using Boolean operators AND,

OR, NOT that evaluate to either True or False. The changing

pattern of states that the nodes pass through during the time

evolution of the model is called its dynamical trajectory. We

wanted to know whether a Boolean model could be used to

reliably reproduce the observed patterns of expression of the genes

of the hrp regulon and then if it could be used to identify any

interesting dynamical properties of the system that were not

obvious from the literature.

Results and Discussion

A Discrete Dynamical Model of the hrp Regulon of
Pseudomonas syringae

There is a paucity of kinetic and quantitative information on

biochemical parameters such as protein DNA binding affinities,

RNA polymerase extension rates and so on in the specific hrp

regulon literature, so it is not possible to create detailed continuous

or stochastic models without making gross and probably erroneous

estimations about the values of these parameters. We used a

discrete Boolean model framework to create a model of, and to

simulate the activity of the hrp regulon.

The regulon was reproduced as a directed network by com-

bining literature data (summarised in [5]) for P.syringae, into an

interaction network (Figure 1). We decided that proteins are the

entities under study within the network and they are represented

as nodes. Genes and mRNA are implicitly contained in these

nodes. Regulatory interactions are represented as directed edges

starting in the source, regulator node and ending in the target

regulated node; regulatory interactions are classified as either

activation or inhibition and are represented by arrows or blunt

ends to edges respectively. In the spirit of making our model as

simple as possible, but not any simpler, the choice of nodes and

interactions was made so as to minimise the complexity without

losing essential information. This meant removing nodes that were

redundant, i.e. functionally equivalent to another such as the genes

of the hrp regulon that according to our knowledge have no effect

on other genes within it, or merging some proteins into single

nodes because their dimerisation is required for action. The pairs

of proteins GacS and GacA and also HrpR and HrpS are

understood to have regulatory roles only when they have

heterodimerised [13], so we condensed these pairs into just two

nodes representing the heterodimers GacSGacA and HrpRS,

which has no effect on the dynamics of the network and removes

needless complexity. Other factors that may be presumed to be

constant between the different genes can be ignored in the model.

Some factors that are not truly constant between genes in vivo, like

transcription and degradation rates but in which the differences

are due to time dependent factors end up being equivalent because

of the Boolean framework. The complexities of RNA Polymerase

holoenzyme formation and alternative sigma factor RpoN

regulation while itself complex, boils down to whether or not the

RpoN protein is present and need not be considered in more

detail. Our network contains 7 nodes; GacSGacA, RpoN, HrpRS,

HrpV, HrpA, HrpG and HrpL representing 9 proteins.

We used information from the literature to compose a set of

state-change rules that were formulated according to Boolean rules

(Table 1). Each node in the model has a binary state, either True

(1, or on) or False (0, or off), reflecting the eventual expression of

the gene. A nodes state depends on the states of the nodes that lead

to it; that is the state of a protein is a function of the state of the

proteins that have regulatory action up on it. We used the AND

operator when literature reports state that multiple proteins are

Figure 1. Network of the hrp regulon of P. syringae. Nodes (Blue
circles) represent the proteins in the network and edges (black lines)
represent regulatory interactions, arrow headed edges represent a
positive regulatory interaction and T-headed edges represent a
negative regulatory interaction.
doi:10.1371/journal.pone.0009101.g001
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required for activation, the OR operator when only one of a

number is sufficient to activate and the AND NOT operator when

a protein inhibits another. The protein GacGacA has no state-

change rule because it is the most upstream protein and none of

the other proteins in the model act upon it and no other proteins

are known to regulate it in P. syringae, though HrpXY is known to

regulate GacSGacA in Erwinia and Pantoea stewartii.

Dynamical Model of the Pseudomonas syringae hrp
Regulon Recreates Patterns of Expression Observed
In Vivo

After constructing the model we considered the time evolution

(the change of state over time) of the proteins. We ran the model

by setting initial conditions for all proteins to False, with the

exception of GacSGacA which was set to True. We ran the model

for 10 steps in synchronous mode [28], which assumes that all

regulatory processes have the same duration, and that there is time

for only one update of each protein’s state within each time step of

the model. The time evolution of the proteins in the synchronous

runs of the model can be seen in Figure 2A. The proteins are

activated (obtain a state of True, or 1) in a specific sequence,

RpoN and HrpRS are activated by GacSGacA immediately and

in turn activate HrpL at the second step. HrpL is then able to

activate the other proteins of the regulon and the system reaches a

steady state with all proteins, except HrpV activated by the third

step. This pattern matches very well the observed pattern of

expression and expression patterns of the genes of the hrp regulon

and would be quite unlikely to occur from the model by chance,

given the potential state space. The False state of HrpV reflects the

structure of the model rather than the biological situation, HrpV is

regulated negatively as a protein by HrpG in P. syringae and this is

reflected in our model, but accumulation of hrpV mRNA can occur

independently. The model doesn’t clearly represent the situation

where the turn over or functional status is changed.

Wiring Is More Important Than Timing in the Model of
the hrp Regulon

One interesting question to ask of the model is whether the

behaviours it displays are dependent on the timing of the events

within it or whether only the sequence of events is important.

Systems that are time independent are more robust to stochastic

perturbations. So to determine whether the timing of regulatory

processes was critical to the overall time evolution of node state we

ran the model in an asynchronous update mode. In this the mode

the time scale of the regulatory processes are randomly chosen

[28]. This is achieved by updating node states in a random order

rather than in a predetermined one, and we record a time step as

the longest interval for a node to respond to changes in its

regulators. Asynchronous updates introduce a stochastic dimen-

sion to the evolution of the system [29,30] and can vary the steady

states reachable from the initial states of the system. We ran the

model from the same starting point as the synchronous model

described above for ten steps and with 10,000 iterations. For each

protein at each time step we calculated the fraction of runs that

had a value of True at that step (Figure 2B). In the asynchronous

update run HrpRS, RpoN and HrpL activated immediately in

100% of runs and stayed activated for 92% or more of runs

thereafter. The other proteins activate in more than 92% of runs

one step later. Again, HrpV remains in an off state for the entire

run, being activated in only 16% of runs at step 2. The similarity

in the evolution patterns of the synchronous and asynchronous

runs is striking; both reach an essentially steady state in which the

hrp regulon is expressed after 2 or 3 steps. This indicates that the

timing of regulation is less important than the ‘wiring’ of the

system in specifying its dynamical behaviour so we were able to use

the less computationally expensive synchronous updates of the

model for all subsequent runs which is a useful technical aspect but

it implies a much more subtle point. Systems that are not

dependent on timing are much more robust to the sorts of

stochastic variation that one would expect in biochemical systems,

Table 1. Network nodes in the model and corresponding
Boolean update rules.

Node Update rule

GacSGacA -

RpoN GacSGacA

HrpRS (GacSGacA) and (not HrpV) or (HrpA)

HrpV (HrpL and RpoN) and not HrpG

HrpA HrpL

HrpG HrpL

HrpL RpoN AND HrpRS

doi:10.1371/journal.pone.0009101.t001

Figure 2. Time evolution of proteins in the model. We ran the
model in synchronous mode (A) and examined the state of each protein
at each time step for 10 steps. 1 = True, 0 = False. We also ran the model
in asynchronous mode (B) for 10,000 repeat runs and calculated the
proportion of runs in which each protein was in the True state.
doi:10.1371/journal.pone.0009101.g002

Boolean Model of hrp Regulon

PLoS ONE | www.plosone.org 3 February 2010 | Volume 5 | Issue 2 | e9101



the advantage of this is straightforward, it ensures that the

expression of the TTSS will occur. Robustness of this sort also

protects the functioning of the system against evolutionary change

in the sequences of the proteins of the TTSS. Changes in

promoter, gene and protein sequences are all able to affect the rate

and steady state level of gene expression, which could really

disturb functioning in a time-dependent system. In a robustly

wired system sequences are more free to evolve with less chance of

disrupting system function. Such freedom could be essential in a

system that specifies a crucial part of the pathogen infection

apparatus as this, allowing it to evolve in response to changes in

the host if needed.

The Model Predicts That the hrp Regulon Cannot Be
Accidentally Activated by Ectopic Expression of Genes
Within It and GacSGacA Is the Only Determinant

So that we might understand the paths through which the system

could possibly run, we ran the model in synchronous mode for 10

steps starting from each of the 2 (128) possible states of the model

and mapped the dynamical trajectories from each start state to the

final state via every state the model occupied on the way. Such an

analysis provides a map of the way the system could possibly behave

under different combinations of ectopic expression of its genes. The

results of this analysis can be seen in Figure 3. In Figure 3 each of the

dots represents a model state and the arrows lead from a state to the

subsequent state. Remarkably, the model converges on two discrete

end-points or attractors. The two discrete trees that lead to an

attractor each contain 64 states, 50% of the total. One of the trees

leads to an attractor identical to the steady state describe above, with

all the proteins (with the exception of HrpV) showing a state of

True. The second tree leads to an attractor with all proteins in the

False state. A similar analysis averaging 10,000 runs in an

asynchronous mode showed the same pattern. The presence of just

two attractors indicates that the system is a strongly regulated

switch, optimised to allow only expression of the components of the

hrp regulon all together or not at all, predicting that a non-

constitutive mutation in expression of any combination of genes

cannot cause ectopic expression of the hrp regulon. To ascertain

whether or not a specific factor or factors in the dynamical model

could be determinants of which attractor a state leads to, we

calculated for each protein the number of times it was true or false

for each step of the evolution of the model. We did this starting from

each possible start step in each of the two attractor trees described

above. During the initial states of the runs for both attractor trees,

each protein, except GacSGacA could be in either state, in fact at

the start of runs all proteins except GacSGacA were equally in either

state. The state of GacSGacA throughout the runs corresponds to

the final state in each of the attractor trees, when GacSGacA is True

the model is attracted to an ‘on’ steady state regardless of other

perturbations, and when GacSGacA is False the model attracts to

an ‘off’ state. This indicates that GacSGacA is the sole determinant

of the expression of the genes of the hrp regulon and that ectopic

expression of other components cannot initiate or sustain the

expression of the regulon. Such an observation is intellectually

satisfying firstly because it reflects the situation observed in vivo but

secondly, and more importantly, it reflects a system that is not

capable of being accidentally ‘hot-wired’ by changes in its

components expression patterns. Therefore expensive accidental

deployment of the TTSS machinery and effectors is not likely to

occur because of short-circuiting of the system itself. The

GacSGacA dependency is both a strength and a weakness.

Although the pathogen is able to deploy its TTSS according to

specific inputs and is not likely to accidentally misfire, hosts that are

able to disrupt the activation of GacSGacA are able to prevent the

activation of the TTSS.

Simulated Knock-Outs Predict Essential Proteins Within
the hrp Regulon Model

To find essential nodes in the model it is possible so to

determine whether any proteins in the model could be essential to

the normal steady state that we have already described above and

in Figure 1 we performed synthetic knock-outs, running the model

synchronously with a single protein’s state set to False throughout

the run. Figure 4 shows the results of this analysis. In Figure 4 each

of the columns represents the tenth state for a run with the protein

at the head of the column knocked-out. A blue cell indicates that

the protein on the row was in the True state, a white cell indicates

that the protein was in the False state. Absence of GacSGacA

Figure 3. Attractor trees of the model for the 128 different start states. We ran the model in synchronous mode starting from each of the
128 possible combinations of states. Each circle represents a possible state of the model and the edge indicates the state to which the model evolves
on the next iteration. The tree with the terminal node labelled ‘ON’ has an attractor with the same state as the steady state of runs with the model i.e
GacSGacA = True; RpoN = True; HrpV = False; HrpG = True; HrpRS = True; HrpL = True; HrpA = True; The tree with terminal node labelled ‘OFF’
has an attractor in which all states are false.
doi:10.1371/journal.pone.0009101.g003
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leaves the model in the ‘off’ attractor state. The analysis reveals

proteins HrpRS, RpoN and HrpL are all required for the

expression of the other hrp proteins in the model, but are not

dependent on them for their own expression. As HrpL is directly

downstream of both HrpRS and RpoN and only activates state

when both inputs are True it can be considered that HrpL

functions as an integrator of these two inputs, requiring that both

are received for the activation of the rest of the regulon. It could be

argued that the pathogen would easily be able to circumvent these

switches by over expressing a single component, such as HrpL, but

this would result in constitutively expressing the TTSS and would

likely to be disadvantageous.

Conclusions
The identification of missing parts and connections is only one

possible new source of information that a model can give us, the

emergent and dynamical behaviours of the system cannot be

appreciated from the network diagrams common in the biological

literature. Modelling studies allow us to identify behaviours not

predictable from the network diagram. The dynamical properties of

the hrp regulon have not been studied before and the Boolean

model we have created is able to reproduce the pattern of changes

observed in vivo. The Boolean model predicted that the system is

constructed such that wiring is more important than timing and that

the ectopic expression of the components cannot accidentally

activate the regulon. These time-independent dynamics also allow

for evolutionary change within the components of the system

themselves without adversely affecting the functioning of the system

as a whole. Such an arrangement would be useful for biological

systems that rely on interactions between molecules whose primary

sequence is liable to alter by chance mutation which could alter

stochastic properties and systems would need to evolve protection

against this to remain robust. Evolving a network where the

connections specify the behaviour is one way to retain robustness

and evolvability. The Boolean model confirms that the system is

dependent on the specific GacSGacA ‘switch’ that had been shown

experimentally but it was also able to show that no other protein or

combination of proteins within the hrp system is able to take over

the role of GacSGacA and specify an ‘on’ state of the system.

Materials and Methods

The network of signalling components of the hrp regulon was

constructed by compiling information from an extensive literature

study from the following primary reports([5–16]. The update rules

described in Table 1 were compiled based on the interactions

described in the reports and summarised in [5]. Once this was

done we were able to formulate the rules and create the model in a

Boolean framework ready for simulation. Model construction and

simulation was carried out in the BooleanNet 1.2.4 system [28], a

Python scripting language software library that allows the

definition of a model by listing the entity and update rules

described above. The BooleanNet system is capable of interacting

with standard Python plot libraries and our plots were created

using the PyLab Python libraries, our networks were visualised in

Cytoscape 1.5 [31].
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