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Fault reconstruction using a LPV sliding mode
observer for a class of LPV systems

H. Alwi, C. Edwards, and A. Marcos

Abstract

This paper proposes a new sliding mode observer for fault reconstruction, applicable for a class of Linear
Parameter Varying (LPV) systems. Observer schemes for actuator and sensor fault reconstruction are presented. For
the actuator fault reconstruction scheme, a virtual system comprising the system matrix and a fixed input distribution
matrix is used for the design of the observer. The fixed input distribution matrix is instrumental in simplifying the
synthesis procedure to create the observer gains to ensure a stable closed-loop reduced order sliding motion. The
‘output error injection signals’ from the observer are used as the basis for reconstructing the fault signals. For the
sensor fault observer design, augmenting the LPV system with a filtered version of the faulty measurements allows
the sensor fault reconstruction problem to be posed as an actuator fault reconstruction scenario. Simulation tests
based on a high-fidelity nonlinear model of a transport aircraft have been used to demonstrate the proposed actuator
and sensor FDI schemes. The simulation results show their efficacy.

I. INTRODUCTION

Fault Detection and Isolation (FDI) is a vital component of (active) Fault Tolerant Control (FTC) schemes [1], [2].
The FDI scheme is responsible for providing timely information about the location of any faults/failures within
the system being monitored, thus allowing for example, controller reconfiguration. A challenging problem in FDI
design, especially for aerospace applications, is dealing with changes in the operating conditions. Such changes must
not result in false alarms and unnecessary controller reconfiguration. Although there are nonlinear model based FDI
approaches for nonlinear systems (see for example [3], [4], [5], [6]), most FDI schemes have been based on linear
time invariant (LTI) systems (e.g. [7], [8], [9]). Ad-hoc methods of gain scheduling to extend these linear methods
to nonlinear systems, whilst attractive, do not guarantee the required level of performance, or even stability, other
than at the points of design [10]. The same is also true for FDI schemes based on scheduled observers. A more
formal natural extension of LTI based FDI approaches, is to consider LPV system based FDI (see for example [11],
[12], [13], [14], [15]) to automatically schedule the observer or detection filter gains. This is a suitable compromise
between ‘full-blown’ nonlinear designs such as [3], [4], [5], [6], and LTI methods based around an operating point.
This allows the convenience associated with LTI schemes, and yet guarantees performance and stability over a
wide operating envelope. A common application area for LPV systems is aerospace problems. Recent papers such
as [16] demonstrate the successful application of an LPV detection filter to the longitudinal dynamics of a Boeing
747-100/200 aircraft. Although there is a wealth of literature on LPV based controller design (e.g. [17], [18], [19],
[20], [10], [21]), the literature on LPV observer based FDI or LPV fault detection filters, is more limited. The work
in [11], [13], [16], [12], [22], [23] and most recently [14], [15], [24], represents recent results in the field of LPV
observer based FDI.

In the last decade there has been an explosion of interest in exploiting sliding mode techniques for FDI. The early
sliding mode observer-based FDI papers built on traditional residual based FDI concepts (e.g. [25], [26]). The idea
in [25], [26] was to ensure the sliding motion was broken when faults/failures occurred in the system. In practice,
because of the robustness properties of sliding modes, this was difficult to realize. More recent work by [27],
[28] focused on approaches which reconstruct/identify faults. Not only do these approaches detect and isolate the
source of the faults/failures, they also provide additional insight about the faults/failures (e.g. shape and magnitude).
This is advantageous and can be exploited for FTC: for example, the availability of a fault reconstruction signal
means sensor faults can be corrected before the measurements are used by the controller (for example [29], [30]).
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Originally conceived in [31], the methods have evolved to include (Linear Matrix Inequality) LMI based design
[32] and robustness to uncertainty [33]. In particular the method from [33] has recently been tested on an aircraft
benchmark problem [30]. However the methods in [31], [32], [33] are based on LTI systems or quasi-linear systems
[34] subject to uncertainty and thus are restricted to near trim conditions. One way to extend these methods to
wider operating conditions is to introduce an LPV formulism. Although there are LPV based sliding mode control
schemes (e.g. [35], [36]) proposed in the literature, there are no published LPV sliding mode observer schemes.

This paper proposes an extension of the schemes in [31] to a class of LPV systems. The LPV approach employed
in this paper is motivated by the need to ensure the validity of the underlying model, about which the observer
is designed, over a wide range of the flight envelope. In comparison with direct nonlinear approaches (e.g. [37]),
the LPV model formulation is easier to obtain (e.g. through collections of linear models based on various flight
conditions) and may explicitly contain models of the aerodynamic coefficients through polynomial fitting. This is a
convenient way to capture the variations in the aerodynamic coefficients throughout the flight envelope to maintain
a good fidelity level for the model. Also since the LPV approach can be thought of as a special case of gain
scheduling, it can therefore be considered as a natural extension to linear based schemes and is widely accepted in
the literature and industry. Therefore, an LPV methodology is suitable for the application considered in this paper:
it has the convenience of a linear based approach while covering a wide range of the flight envelope with good
fidelity as compared to nonlinear methods.

In this paper, both actuator and sensor faults are considered. For actuator faults, to extend the methods from
[33] to LPV systems, and to achieve an observer regular form [31], it is assumed that the input distribution matrix
associated with the faults, can be factorized into a fixed and varying part. The LPV observer design is based on a
‘virtual system’ formed from the factorized fixed distribution matrix, and the varying system matrices. In the case
of sensor faults, the suggested design method involves re-formulating the problem as an actuator fault scenario.
Therefore the observer design methodology for actuator FDI can also be used in these problems. The re-formulation
is achieved by augmenting the original system with a filtered version of the faulty measurements. The augmentation
considered in this paper differs from the one in [33] where the plant is augmented with filtered versions of all the
outputs. Augmenting with only the potentially faulty measurements ensures the size of the augmented system is
kept as low as possible. This is advantageous when employing the LMI synthesis.

The efficacy of the theoretical developments is demonstrated through its application to FDI scenarios in a
benchmark aircraft problem from the literature [38], [39]. This benchmark was used as the basis for the GARTEUR
AG-16 project aimed at demonstrating the benefits of modern FDI and FTC methods for aerospace systems. For
actuator fault reconstruction, the example shows the practicality of the factorization of the input distribution matrix
associated with the actuators to be monitored, and the design procedure for the observer gains. The proposed
observer scheme is tested on the full nonlinear high fidelity model of the aircraft [40]. To demonstrate sensor fault
reconstruction, the same example is considered. In both situations, the results show successful reconstruction of
faults.

II. ACTUATOR FAULT RECONSTRUCTION FOR LPV SYSTEMS

A. LPV system description

Consider an LPV plant subject to actuator faults represented by

ẋ(t) = A(ρ)x(t) +B(ρ)u(t) +D(ρ)fi(t) (1)

y(t) = Cx(t) (2)

where A(ρ) ∈ IRn×n, B(ρ) ∈ IRn×m, D(ρ) ∈ IRn×q are parameter varying matrices, and the matrix C ∈ IRp×n is
fixed. The dimensions representing the state order, the number of measured outputs and the number of independent
faults are assumed to satisfy n > p ≥ q. It is assumed that the inputs u(t) and the outputs y(t) are available for
the FDI scheme. The unknown signal fi(t) : IR+ → IRq represents the effect of the faults. In fault–free conditions
fi = 0, but when fi ̸= 0, a fault exists in the system. Assume that the varying parameters, ρ ∈ Ω ⊂ IRd, where Ω
is a compact set. Furthermore assume ρ is available (i.e. perfectly measurable) for the observer scheme which will
be proposed.

Assume the varying matrix D(ρ) can be factorized into a fixed and a varying component

D(ρ) = DE(ρ) (3)
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where D ∈ IRn×q, and E(ρ) ∈ IRq×q. It is assumed E(ρ) is invertible for all ρ ∈ Ω. This will assist in
the development of the observer, and will be discussed later. Although this is clearly a restriction, this perfect
factorization is quite common for over actuated systems or systems with redundancy e.g. large civil aircraft [40],
[41]. An example of just such a factorization for a large civil aircraft will be shown later in the paper.

Using (3), the system in (1) can be re-written as

ẋ(t) = A(ρ)x(t) +B(ρ)u(t) +DE(ρ)fi(t)︸ ︷︷ ︸
fν(t,ρ)

(4)

where the function fν(t, ρ) : IR+× IRd → IRq now represents the unknown ‘virtual faults’ which will be estimated
by the observer. However, because det(E(ρ)) ̸= 0, the actual fault fi(t) can be estimated once estimates of fν(t, ρ)
are available. Assume that

∥fν(t, ρ)∥ < r1(ρ)∥u∥+ φ(t, y, ρ) (5)

where r1(ρ) and φ : IR+× IRp× IRd → IR+ are known functions and y is the measured output from (2). Equation
(5) constitutes an upper bound on the worse case effect of the fault impacting on the model dynamics.

B. LPV sliding mode observer

The proposed observer has the structure

˙̂x(t) = A(ρ)x̂(t) +B(ρ)u(t)−Gl(ρ)ey(t) +Gnν(t) (6)

where the gains Gl(ρ) ∈ IRn×p and Gn ∈ IRn×p are the design freedom to be exploited to induce a sliding motion
[31]. The objective is to force the output estimation error

ey(t) = ŷ(t)− y(t) (7)

to zero in finite time where ŷ(t) = Cê(t). Once the output error is zero, a first order sliding mode is said to have
been attained [42] on the surface

S = {e ∈ IRn : Ce = 0} (8)

where e(t) = x̂(t) − x(t) is the state estimation error. During sliding, actuator faults can be estimated using the
‘equivalent output injection’ [42], [31], [32], [33] signals required to maintain sliding.

From the definition of e, subtracting (6) from (4) yields the error system

ė(t) = A(ρ)e(t)−Gl(ρ)ey(t) +Gnν(t)−Dfν(t, ρ) (9)

In order to obtain the ‘observer regular form’, the following key assumption is made:

Assumption 1: rank(CD) = q where C and D are defined in (1) and (3).

Since D is a fixed matrix and CD is full rank, there exists a coordinate transformation [31] x(t) 7→ Tox(t) such
that

y(t) =
[
0 T

]
︸ ︷︷ ︸

C

[
x1(t)
x2(t)

]
(10)

and the fault distribution matrix

D =

[
0

D2

]
=

 0

0
Do

 (11)

where T ∈ IRp×p and is orthogonal, and D2 ∈ IRp×q, and Do ∈ IRq×q is nonsingular. In this observer regular form,
the error system (9) can be written as[

ė1(t)
ė2(t)

]
=

[
A11(ρ) A12(ρ)
A21(ρ) A22(ρ)

]
︸ ︷︷ ︸

A(ρ)

[
e1(t)
e2(t)

]
−
[

0
D2

]
︸ ︷︷ ︸

D

fν(t, ρ)−
[
Gl1(ρ)
Gl2(ρ)

]
ey(t) +

[
Gn1

Gn2

]
ν(t) (12)
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where e1 ∈ IRn−p and e2 ∈ IRp. Consider a further state transformation

ẽ(t) =

[
ẽ1(t)
ey(t)

]
= TL

[
e1(t)
e2(t)

]
=

[
e1(t) + Ley(t)

ey(t)

]
(13)

where TL ∈ IRn×n is given by

TL =

[
I L
0 T

]
(14)

and L ∈ IR(n−p)×p. The matrix L represents the design freedom. In the new coordinates ẽ, the output distribution
matrix

ey(t) =
[
0 I

]
︸ ︷︷ ︸

C̃

ẽ(t) (15)

As in [33], the matrix L is assumed to have the special structure

L =
[
L1 0

]
(16)

where L1 ∈ IR(n−p)×(p−q). In the new coordinates, the gain associated with the nonlinear injection is chosen as

G̃n = TLGn =

[
0
Ip

]
(17)

and the error system from (12) can be written in the new coordinates as[
˙̃e1(t)
ėy(t)

]
=

[
Ã11(ρ) Ã12(ρ)

Ã21(ρ) Ã22(ρ)

]
︸ ︷︷ ︸

Ã(ρ)=TLA(ρ)T−1
L

[
ẽ1(t)
ey(t)

]
−
[

0

D̃2

]
︸ ︷︷ ︸
D̃=TLD

fν(t, ρ)−
[
G̃l1(ρ)

G̃l2(ρ)

]
︸ ︷︷ ︸

G̃l(ρ)

ey(t) +

[
0
I

]
︸ ︷︷ ︸
G̃n

ν(t) (18)

where the fact that LD2 = 0 has been used to obtain the above (because of the structures of D and L in (11) and
(16)). In (18), by definition, D̃2 = TD2 and

ey(t) = C̃ẽ(t) =
[
0 Ip

]
ẽ(t)

Furthermore

Ã(ρ)=

[
Ã11(ρ) Ã12(ρ)

Ã21(ρ) Ã22(ρ)

]
=

[
A11(ρ) + LA21(ρ) A12(ρ)T

−1 + LA22(ρ)T
−1 − Ã11(ρ)LT

−1

TA21(ρ) TA22(ρ)T
−1 − TA21(ρ)LT

−1

]
(19)

Due to the special structure of L from (16), the top left sub-block of (19) is

Ã11(ρ) = A11(ρ) + L1A211(ρ) (20)

where A211(ρ) ∈ IR(p−q)×(n−p) represents the top (p − q) rows of A21(ρ) in (12). Suppose a matrix L1 can
be chosen such that Ã11(ρ) is quadratically stable i.e. there exists a symmetric positive definite (s.p.d) matrix
P1 ∈ IR(n−p)×(n−p) and an L1 ∈ IR(n−p)×(p−q) such that

Ã11(ρ)
TP1 + P1Ã11(ρ) < 0 (21)

for all ρ ∈ Ω. A choice of observer gain G̃l(ρ) from (18) is then

G̃l(ρ) =

[
G̃l1(ρ)

G̃l2(ρ)

]
=

[
Ã12(ρ)

Ã22(ρ)− Ãs
22

]
(22)

where

Ãs
22 = −k2Ip (23)
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and k2 is a positive design scalar. Substituting (22) into (18) yields[
˙̃e1(t)
ėy(t)

]
=

[
Ã11(ρ) 0

Ã21(ρ) −k2Ip

] [
ẽ1(t)
ey(t)

]
−
[

0

D̃2

]
fν(t, ρ) +

[
0
I

]
ν(t) (24)

For the injection term ν ∈ IRp, consider the jth component νj(t) defined by

νj(t) = −k1sign(ey,j(t))|ey,j(t)|1/2 + zj(t) (25)

żj(t) = −k3sign(ey,j(t))− k4ey,j(t) (26)

for j = 1, 2, . . . p where ey = col(ey,1, ey,2 . . . ey,p). The variables k1, k3, k4 (and k2) are design scalars to be
chosen. The lower equations from (24) together with (25) can be written component-wise as

ėy,j(t) = ξ̃j(t)− k2ey,j(t)− D̃2,jfν(t, ρ) + νj(t) (27)

where D̃2,j is the jth row of D̃2 and

ξ̃j(t) = Ã21,j(ρ)ẽ1(t) (28)

where Ã21,j(ρ) is the jth row of the varying matrix Ã21(ρ) from (24). Consequently combining (25)-(27) yields

ėy,j(t) = −k1 sign(ey,j(t))|ey,j(t)|1/2 − k2 ey,j(t) + zj(t) + ξ̃j(t)− D̃2,jfν(t, ρ) (29)

żj(t) = −k3 sign(ey,j(t))− k4 ey,j(t) (30)

for j = 1, 2, . . . p. Making the change of variable

z̃j(t) := zj(t) + ξ̃j(t)− D̃2,jfν(t, ρ) (31)

Equations (29)-(30) can be re-written as

ėy,j(t) = −k1 sign(ey,j(t))|ey,j(t)|1/2 − k2 ey,j(t) + z̃j(t) (32)
˙̃zj(t) = −k3 sign(ey,j(t))− k4 ey,j(t) + ϕi(t) (33)

where ϕi(t) =
˙̃
ξj(t)− D̃2,j ḟν(t, ρ). Furthermore

|ϕi(t)| < ∥ ˙̃ξj(t)∥+ ∥D̃2,j∥ ∥ḟν(t, ρ)∥ (34)

≤ ∥∂Ã21,j

∂ρ
∥ ∥ρ̇∥ ∥ẽ1(t)∥+ ∥Ã21,j∥ ∥ ˙̃e1(t)∥+ ∥D̃2,j∥ ∥ḟν(t, ρ)∥ (35)

Then since the autonomous system associated with the states ẽ1(t) in (24) is stable, ∥ẽ1∥ and ∥ ˙̃e1∥ are bounded.
Provided ∥ḟν(t, ρ)∥ is bounded, Ã21(ρ) is affine in ρ and the LPV parameter changes are bounded (i.e. ρ̇ is bounded),
then it follows |ϕi(t)| < ε for some sufficiently large ε. Note that (32)-(33) is a special case of the supertwisting
structure from [43]. As in [43] the gains from (32) and (33) are chosen as

k1 > 2
√
ε (36)

k2 > 0 (37)

k3 > ε (38)

k4 >
(k2)

2
(
(k1)

3 + 5
4(k1)

2 + 5
2(k3 − ε)

)
k1(k3 − ε)

(39)

Consequently from the results in [43], ey,j = ėy,j = 0 in finite time. Therefore from (32), z̃j(t) = 0 in finite time
and from the definition of z̃j(t) in (31),

zj(t) = D̃2,jfν(t, ρ)− ξ̃j(t) (40)

in finite time. From (24), ˙̃e1 = Ã11(ρ)ẽ1 and since by construction Ã11(ρ) is quadratically stable, ẽ1(t) → 0.
Therefore from (28) and (40)

z(t) → D̃2fν(t, ρ) (41)
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asymptotically where z(t) = [z1, z2 . . . , zp]
T is from (26). Therefore the output fault fν(t, ρ) can be reconstructed

online using the expression

f̂ν(t) = D̃†
2z(t) (42)

where D̃†
2 is the pseudo inverse of the matrix D̃2 since by assumption D̃2 is full column rank. By assumption E(ρ)

is invertible and using (4), the actual actuator fault can be estimated as

f̂i(t) = E(ρ)−1f̂ν(t) (43)

Using (42), an estimate of the fault can be written as

f̂i(t) = E(ρ)−1︸ ︷︷ ︸
varying

D̃†
2︸︷︷︸

fixed

z(t) (44)

where one potential choice for D̃†
2 = (D̃T

2 D̃2)
1−D̃T

2 . Note that the inverse in this expression is well defined, since
D̃2 has full column rank by construction.
Remark: During the sliding motion once the reduced order dynamics have disappeared, the fault fν(t, ρ) is related
to z(t) through

z(t) = D̃2fν(t, ρ) (45)

Substituting for z(t) from (45) into (42), and using the expression for D̃†
2 given above, ensures f̂ν = fν . In the

case when the reduced order dynamics are still decaying, and z(t) ≈ D̃2fν(t, ρ), a least squares solution will be
obtained.

III. SENSOR FAULT RECONSTRUCTION FOR LPV SYSTEMS

A. LPV system with sensor faults

For the sensor fault reconstruction problem, consider an LPV plant represented by

ẋ(t) = A(ρ)x(t) +B(ρ)u(t) (46)

y(t) = Cx(t) +Nfo(t) (47)

where fo(t) ∈ IRr is the (unknown) vector of sensor faults and N ∈ IRp×r where rank(N) = r and r ≤ p. This
corresponds to a scenario in which some of the sensors are fault-free while some are prone to faults. In Engineering
systems this is not an unreasonable assumption - some sensors may be inherently less reliable or more vulnerable
to external damage or else constitute the output from some triplex voting system [44]. Typically the columns of N
correspond to the standard basis for IRp. In this situation by permutating the order of the outputs, without loss of
generality assume that the plant representation is in a form where the outputs which are prone to faults are in the
lower output equations, i.e.

y(t) =

[
y1(t)

y2(t)

]
}fault free
}prone to fault

=

[
C1

C2

]
︸ ︷︷ ︸

C

x(t) +

[
0

I

]
︸ ︷︷ ︸

N

fo(t) (48)

where C1 ∈ IR(p−r)×n, and C2 ∈ IRr×n.
The idea now is to re-formulate the problem such that the fault reconstruction scheme in Section II can be used

to estimate fo(t). Consider a new state zf (t) ∈ IRr which is the filtered output of y2(t): specifically

żf (t) = −Afzf (t) +Afy2(t) (49)

where −Af is a stable matrix of dimension IRr×r. Substituting for y2(t) from (48) into (49) and augmenting with
system (46) yields[

ẋ(t)
żf (t)

]
︸ ︷︷ ︸

ẋa

=

[
A(ρ) 0
AfC2 −Af

]
︸ ︷︷ ︸

Aa(ρ)

[
x(t)
zf (t)

]
︸ ︷︷ ︸

xa

+

[
B(ρ)
0

]
︸ ︷︷ ︸

Ba(ρ)

u(t) +

[
0
Af

]
︸ ︷︷ ︸

Fa

fo(t) (50)
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Replacing the system output y2(t) from (48), with the filtered version in (49), generates a new ‘output’ (of the
augmented system) with the form [

y1(t)
zf (t)

]
︸ ︷︷ ︸

ya

=

[
C1 0
0 Ir

]
︸ ︷︷ ︸

Ca

[
x(t)
zf (t)

]
︸ ︷︷ ︸

xa

(51)

Note that this augmentation scheme is different from the one originally proposed in [33] where the system is
augmented with all the filtered outputs of the plant. Now the output (51) is a combination of the actual and the
filtered outputs (which are prone to faults). System (50)-(51) is in the form of (4), and an observer can be designed
by replacing (A(ρ), D,C) in (9) and (7) with (Aa(ρ), Fa, Ca) in (50) and (51) respectively. By construction,
rank(CaFa) = r where Ca and Fa are defined in (51) and (50).

A further change of coordinates is required to ensure that the augmented system outputs are in the form in (15).
To achieve this, consider a coordinate transformation xa 7→ Toaug

xa = x̂a where[
x̂(t)
zf (t)

]
︸ ︷︷ ︸

x̂a

=

[
Ts 0
0 Ir

]
︸ ︷︷ ︸

Toaug

[
x(t)
zf (t)

]
︸ ︷︷ ︸

xa

=

[
Tsx(t)
zf (t)

]
(52)

and Ts ∈ IRn×n is any nonsingular matrix such that C1T
−1
s =

[
0 Ip−r

]
. Then, in the new coordinates

Ĉa =

[
C1 0
0 Ir

]
︸ ︷︷ ︸

Ca

[
Ts 0
0 Ir

]
︸ ︷︷ ︸

T−1
oaug

=

[
C1T

−1
s 0

0 Ir

]
=

[ [
0 Ip−r

]
0

0 Ir

]
=
[
0 Ip

]
(53)

and the augmented system in (50) becomes

˙̂xa = Âa(ρ)xa(t) + B̂a(ρ)u(t) + F̂afo(t) (54)

where

Âa(ρ) =

[
TsA(ρ)T

−1
s 0

AfC2T
−1
s −Af

]
, B̂a(ρ) =

[
TsB(ρ)

0

]
, F̂a =

[
0
Af

]
(55)

Note that the system described in (53)-(55) above, is in the regular form similar to (10)-(12). Therefore the observer
design synthesis in Section II-B can also be used here.

IV. ACTUATOR FAULT RECONSTRUCTION EXAMPLE

This section describes an application of the new theory described in the earlier sections to an aerospace system
benchmark FTLAB747. The FTLAB747 software running under Matlab has been developed for the study of fault
tolerant control and FDI schemes. It represents a ‘real world’ model of a B747-100/200 aircraft. The technical data
and the underlying differential equations were originally obtained from NASA [38], [39], and the software was
developed at Delft University of Technology by van der Linden (Delft University Aircraft Simulation and Analysis
Tool, DASMAT) [45]. It was subsequently upgraded by Smaili (FTLAB747) [46] and used in the independent
investigation of the Bijlmermeer incident [47] by Delft University of Technology [48]. The software was later
enhanced by Marcos and Balas [40] (FTLAB747 V6.1/V6.5) and used as a testing platform for fault detection and
fault tolerant control schemes. The high fidelity nonlinear model has 77 states incorporating rigid body variables,
sensors, actuators and aero-engine dynamics. All the control surfaces and engine dynamics are highly detailed and
comprise dynamics with hard nonlinearities for actuator position and rate limits. The capabilities of this software
as a realistic platform to test FTC and FDI schemes is demonstrated by its subsequent use by many researchers
(see for example references [49], [50], [7], [16], [51]). More recently this software has been upgraded by Smaili et
al.[52] and used as a generic test bed for the GARTEUR AG16 group [41] which studied and compared state of
the art fault detection and fault tolerant control schemes. The LPV plant used as a basis for the observer design has
been obtained from [53] (which is derived from the FTLAB747). The LPV plant was created using the function
substitution LPV modelling approach [54], where the aerodynamic coefficients from [38], [39] have been simplified



THIS PREPRINT APPEARS IN ITS FINAL FORM IN THE JOURNAL OF THE FRANKLIN INSTITUTE, VOL.349, NO.2 (2012), PP.510-530. (DOI:10.1016/J.JFRANKLIN.2011.06.026) 8

by polynomial fitting. The aerodynamic coefficients are polynomial functions of velocity (Vtas) and angle of attack
(α) for the range of [150, 250]m/s and [-2, 8]◦ respectively, at a fixed altitude of 7000m [53]. The LPV system
states and inputs are deviations from the trim values (i.e. x̄ = x− xtrim and ū = u− utrim). Further details of the
LPV model description, trim values, and a validation of the LPV model can be found in [53], [54].

The states of the LPV plant in [53] are [ᾱ, q̄, V̄tas, θ̄, h̄e]
T (which represent angle of attack, pitch rate, speed,

pitch and altitude) and the inputs are [δ̄e, δ̄s, T̄n] (which represent elevator, stabilizer and thrust). In this example,
the outputs of the LPV plant are [V̄tas, ᾱ, q̄]T. The LPV system given in [53] is obtained at trim values of

[αtrim, qtrim, Vtastrim , θtrim, hetrim ] = [1.05◦, 0◦/s, 227.02m/s, 1.05◦, 7000m]

[δetrim , δstrim , Tntrim
] = [0.163◦, 0.590◦, 42291N ]

The states have been reordered and h̄e has been removed so that for design purposes the state vector becomes
[θ̄, V̄tas, ᾱ, q̄]T with inputs [δ̄e, δ̄s, T̄n]. The LPV system matrices are given by

A(ρ) = A0 +
7∑

i=1

Aiρi (56)

B(ρ) = B0 +
7∑

i=1

Biρi (57)

where

[ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7] := [ᾱ, V̄tas, V̄tasᾱ, V̄ 2
tas, V̄ 2

tasᾱ, V̄ 3
tas, V̄ 4

tas] (58)

and ᾱ = α−αtrim, V̄tas = Vtas−Vtastrim . Details of the matrices Ai, Bi for i = 1, . . . 7 are given in the Appendix,
and the output distribution matrix is given by

C =
[
0 I3

]
In regular form, the LPV input distribution matrix is given by

B(ρ) =


0 0 0
0 0 B23(ρ)

B31(ρ) B32(ρ) B33(ρ)
B41(ρ) B42(ρ) B43(ρ)

 (59)

Here, it is assumed that the engines are fault free. The actuators that will be monitored for faults are the elevator
and stabilizer. Therefore the fault distribution matrix D(ρ) from (1) is given by

D(ρ) =


0 0
0 0

B31(ρ) B32(ρ)
B41(ρ) B42(ρ)

 (60)

i.e. the first two columns of B(ρ) in (59). The key observation is that the matrix D(ρ) in (60) can be factorized
as in (3) where

D(ρ) =


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

D

[
B31(ρ) B32(ρ)
B41(ρ) B42(ρ)

]
︸ ︷︷ ︸

E(ρ)

(61)

It is clear that rank(CD) = 2 (i.e. full rank) and all the theory developed in the earlier sections can now be applied.
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A. LPV Observer Design

The design of the observer gains in (6) are dependent on L1 as shown in (17), (22), (16) and (14). The design
freedom matrix L1 can be synthesized from an LMI perspective using the single quadratic Lyapunov function
approach [17] according to

(A11(ρ) + L1A211(ρ))
TP1 + P1(A11(ρ) + L1A211(ρ)) < 0 (62)

P1 > 0 (63)

The solution for P1 and the design gain L1 are obtained as part of the output of the standard MATLAB LMI
multi-model state feedback synthesis code ‘msfsyn’ [55] adapted to tackle an observer problem (i.e. the dual of the
standard control problem). Here, a regional pole placement design [55] has been selected to place the closed-loop
poles inside specific LMI regions [55], [56] in the complex plane to the left of the vertical line through −1. Using
‘msfsyn’ [55] this yields L1 = 1.1476 with P1 = 1.1738×10−7. The range of Vtas and α is given by [150, 250]m/s
and [−2, 8]◦ respectively [53]. The stable design matrix Ãs

22 from (23) has been chosen as Ãs
22 = −I3 where

k3 = 1. It can be shown the fixed gain G̃n in (17) can be written in the original coordinates as Gn = T−1
o T−1

L G̃n

and is given by

Gn =


−1.1476 0 0

1 0 0
0 1 0
0 0 1


For simulation, the gain G̃l(ρ) in (22) has been split into varying and fixed components and written in the original
coordinates as

Gl(ρ) = T−1
o T−1

L G̃l(ρ) = T−1
o T−1

L

([
Ã12(ρ)

Ã22(ρ)

]
−
[

0

Ãs
22

])
= Gla(ρ)−Glb

where

Glb =


1.1476 0 0
−1 0 0
0 −1 0
0 0 −1


while

Gla(ρ) = Gla0
+

7∑
i=1

Glai
ρi

See the Appendix for details about the individual gains. The individual gains for the ‘output injection signal’ and
the linear gains in (23), (25) and (26) are k1 = 2.1, k2 = 1, k3 = 2 and k4 = 9.0480.

Remark: Note that for the LPV system considered here, the matrix Ã21(ρ) from (19) is fixed. Therefore (34)
and (35) can be re-written as

|ϕi(t)| < ∥ ˙̃ξj(t)∥+ ∥D̃2,j∥ ∥ḟν(t, ρ)∥
≤ ∥Ã21,j∥ ∥ ˙̃e1(t)∥+ ∥D̃2,j∥ ∥ḟν(t, ρ)∥ (64)

In this case, the bound on |ϕi(t)| only depends on the bound of ∥ḟν(t, ρ)∥. Here it was found that choosing ε = 1
was a suitable choice.

Remark: In this example the chosen outputs were [V̄tas, ᾱ, q̄]T which means that the CD full rank condition
was satisfied. If instead [V̄tas, ᾱ, θ̄]T were the chosen outputs, it can be verified following the procedure given
earlier that rank(CD) = 1 and the assumptions are not satisfied since the relative degree one condition has been
lost. However, using the approach proposed in [57], a supertwist differentiator could be used in conjunction with
θ̄ to create in real-time a signal dθ̄

dt and the approach described in Section II could still be employed – even in this
relative degree two situation.
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B. Actuator Faults Reconstruction Results

A closed-loop controller has been used to provide a simulation environment in which altitude is maintained (since
the LPV model assumes a fixed altitude). The controller also ensures a good response to a change in speed. The
controller associated with all the results in this paper is based on the reconfigurable LPV control design [21] for
the longitudinal axis, which is the baseline controller given in the FTLAB747-V6.1/6.5 software and is described
in detail in [21]. The controlled outputs are flight path angle (γ) and speed. The controller uses the elevators and
thrust for flight manoeuvres, while the stabilizer is used to trim the aircraft [21]. The controller was originally
designed to deal with elevator faults and failures. The faults in this paper are simulated as additive perturbations
occurring in the actuator inputs. This facilitates the analysis of the performance of the fault reconstruction scheme.
Such an approach is also considered in [16] for example.

The nonlinear simulations were conducted using the FTLAB747-V6.1/6.5 software which runs under MATLAB
and SIMULINK. The nonlinear simulation was conducted with trim conditions of

[αtrim, qtrim, Vtastrim , θtrim, hetrim ]
T = [1.8◦, 0◦/s, 227.02m/s, 1.8◦, 7000m]

[δetrim , δstrim , Tntrim
] = [0.5895◦, 0.0591◦, 40863N ]

Note that these are not exactly the same trim values used to obtain the LPV model in [53]. This is due to the fact
that some of the trim configurations are not available in [53] (e.g. the initial mass and the xcg location). The above
trim was obtained with an initial mass of 300,000kg, xcg = 25%mac and 1.085◦ pilot column deflection.

Figure 1 shows the simulation results from using the nonlinear plant in an elevator fault scenario. The faults
are simulated as additive perturbations at the actuator command from the controller (as shown in Figure 1(c)) and
are unknown to the observer. Note that sensor noise is considered in the FTLAB747-V6.1/6.5 software simulation
package. The sensor noise considered is Gaussian noise with variance ranges from 1×10−2 to 1×10−8 depending
on the particular channel. The effect of noise can be seen in Figures 1(a) and 1(b). Figure 1(a) shows the demanded
change in speed and the speed tracking performance. There is a zero demand on γ (to maintain altitude at 7000m).
Figure 1(a) shows good tracking performance even in the presence of the elevator fault. Figure 1(b) shows that the
controller (ue) has managed to compensate for the additive fault which does not appear in the elevator deflection
δe. Figure 1(c) shows good reconstruction of the fault by the proposed observer scheme.

V. SENSOR FAULTS RECONSTRUCTION EXAMPLE

As in Section IV-B, the simulations associated with the sensor fault reconstruction are from the full high-fidelity
nonlinear model using FTLAB747. In this example, it will be assumed that only the θ measurement is prone to
faults. The system states have been reordered as x(t) = [α, q, Vtas, θ], so that

y(t) =


α(t)
q(t)

Vtas(t)

θ(t)


}

fault free

}prone to fault

= C1

{
C2{


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1


︸ ︷︷ ︸

C

x(t) +


0
0
0

1


︸ ︷︷ ︸

N

Fo(t)

The scalar variable Af (in this case) has been chosen as Af = 1. The new augmented system output in (51) is

[
y1(t)
zf (t)

]
︸ ︷︷ ︸

ya

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 0 1


︸ ︷︷ ︸

Ca

[
x(t)
zf (t)

]
︸ ︷︷ ︸

xa

(65)

As in Section IV-A, L1aug
was obtained using the code ‘msfsyn’ to place the closed-loop poles inside an LMI

region [55], [56] to the left of a vertical line through −1. This yields L1aug
= [−2.9216 − 0.0000 0.9216] with
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Fig. 1. Nonlinear model simulation: elevator fault
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P1aug
= 0.0582. The stable design matrix Ãs

22aug
has been chosen as Ãs

22aug
= −0.9I4. The fixed gain G̃naug

in
(17) can be written in the original coordinates as Gnaug

= T−1
oaug

T−1
Laug

G̃naug
and is given by

Gnaug
=


1.0000 0 0 0

0 1.0000 0 0
0 0 1.0000 0

2.9216 0.0000 −0.9216 0
0 0 0 1.0000


As in Section IV-A, the gain Glaug

(ρ) in (22) has been split into varying and fixed components

Glaug
(ρ) = T−1

oaug
T−1
Laug

G̃l(ρ) = T−1
oaug

T−1
Laug

([
Ã12(ρ)

Ã22(ρ)

]
−
[

0

Ãs
22aug

])
= Glaaug

(ρ)−Glbaug

where

Glbaug
=


−0.9000 0 0 0

0 −0.9000 0 0
0 0 −0.9000 0

−2.6294 −0.0000 0.8294 0
0 0 0 −0.9000


and

Glaaug
(ρ) = Glaaug0

+
7∑

i=1

Glaaugi
ρi

See the Appendix for details of the individual gains. The individual gains for the ‘output injection signal’ and the
linear gains in (23), (25) and (26) are k1aug

= 2.1, k2aug
= 0.9, k3aug

= 2 and k4aug
= 7.3289.

A. Sensor Faults Reconstruction Results

The controller used in Section IV-B, was employed to effect a demand change in speed and altitude as shown in
Figure 2(a). Note that the trim values are not considered in Figure 2. Also note that a change of altitude is outside
the validity of the LPV model [53] used for the observer design. Here a change of altitude is used to show the
capabilities of the sliding mode FDI scheme to handle model/plant mismatches.

It is assumed that the sensor fault only affects the fault monitoring unit (i.e. the faulty measurement only appears
before the FDI observer) and the faulty sensor measurement (in this case θ) is not used by the controller in the
feedback control loop. Note that as in Section IV-B, sensor noise was included in the simulation. The effect of
noise can be seen in Figures 2(a) and 2(b).

Figure 2(a) displays the observer states (q, Vtas, α, θ), the tracking of flight path angle (γ) and the change in
altitude (he). Figure 2(a) also shows the corrupted measurement of θ (a slow drift from 50-400sec followed by a
constant bias from 400sec onwards) and its filtered version zf . Note that the effect of the filter is not visible (visibly
both θ and zf overlap). Figure 2(c) shows no visible errors between the actual measurements and the observer
states as ∥ey∥ is close to zero. Figure 2(c) also shows good reconstruction of the faults by the proposed observer
scheme.

VI. CONCLUSIONS

This paper has proposed a new LPV based sliding mode observer scheme for fault reconstruction. For actuator
faults, the design involves factorizing the varying input distribution matrix associated with the fault channels into
a fixed and varying part, creating a ‘virtual’ system. The observer gains, which are designed to ensure a stable
reduced order sliding motion in the state estimation error space, are synthesized using LMI methods based on the
virtual system. The virtual actuator fault reconstructions are based on the ‘equivalent output error injection signals’
of the observer, and are mapped back to create estimates of the actual faults by exploiting the factorization of the
fault distribution matrix. For sensor faults, the observer design has involved re-formulating the problem into an
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Fig. 2. Nonlinear model simulation: θ fault
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actuator fault reconstruction framework. This allows the LPV observer synthesis approach for the actuator faults
to be applied directly. The simulation results for both actuator and sensor faults, on the high fidelity nonlinear
plant associated with the GARTEUR AG16 benchmark, show good reconstruction of the faults, demonstrating the
efficacy of the proposed schemes.

APPENDIX

A(ρ) =


0 0 0 a14(ρ)

a21(ρ) a22(ρ) a23(ρ) 0
0 a32(ρ) a33(ρ) a34(ρ)
0 a42(ρ) a43(ρ) a44(ρ)


where

a14(ρ) = 1

a21(ρ) = −9.7851

a22(ρ) = −0.0061− 2.1091× 10−5ρ2 − 2.2374× 10−8ρ4

a23(ρ) = 5.7733− 84.5625ρ1 − 0.0351ρ2 − 0.7450ρ3 − 7.7365× 10−5ρ4 − 0.0016ρ5

a32(ρ) = −5.2124× 10−4 − 6.2678× 10−7ρ2 + 1.1121× 10−11ρ4

a33(ρ) = −0.5935− 0.0026ρ2

a34(ρ) = 0.9914

a42(ρ) = −4.9579× 10−4 − 3.8893× 10−6ρ2 − 7.6201× 10−9ρ4 + 1.9644× 10−12ρ6

a43(ρ) = −1.9626 + 3.4170ρ1 − 0.0173ρ2 + 0.0301ρ3 − 3.8081× 10−5ρ4 + 6.63× 10−5ρ6

a44(ρ) = −0.4609− 0.0020ρ2

(66)

B(ρ) =


0 0 0
0 0 b23(ρ)

b31(ρ) 0 b33(ρ)
b41(ρ) b42(ρ) b43(ρ)


where

b23(ρ) = 1.3323× 10−5 − 5.8133× 10−7ρ1

b31(ρ) = −0.0358− 1.1877× 10−5ρ2 + 1.5311× 10−6ρ4 + 3.9135× 10−9ρ6

b33(ρ) = −3.6326× 10−9 − 5.8732× 10−8ρ1 + 1.6002× 10−11ρ2 + 2.5871× 10−10ρ3

b41(ρ) = −1.7696− 0.0089ρ2 + 5.9851× 10−5ρ4 + 4.4285× 10−7ρ6 + 6.9127× 10−10ρ7

b42(ρ) = −3.9993− 0.0352ρ2 − 7.7600× 10−5ρ4

b43(ρ) = 1.5328× 10−7

(67)

Gla(ρ) =


0 0 gla13(ρ)

gla21(ρ) gla22(ρ) 0
gla31(ρ) gla32(ρ) gla33(ρ)
gla41(ρ) gla42(ρ) gla43(ρ)


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where

gla13(ρ) = 1

gla21(ρ) = 11.2232− 2.1091× 10−5ρ2 − 2.2374× 10−8ρ4

gla22(ρ) = 5.7733− 84.5625ρ1 − 0.0351ρ2 − 0.7450ρ3 − 7.7365× 10−5ρ4 − 0.0016ρ5

gla31(ρ) = −5.2124× 10−4 − 6.2678× 10−7ρ2 + 1.1121× 10−11ρ4

gla32(ρ) = −0.5935− 0.0026ρ2

gla33(ρ) = 0.9914

gla41(ρ) = −4.9579× 10−4 − 3.8893× 10−6ρ2 − 7.6201× 10−9ρ4 + 1.9644× 10−12ρ6

gla42(ρ) = −1.9626 + 3.4170ρ1 − 0.0173ρ2 + 0.0301ρ3 − 3.8081× 10−5ρ4 + 6.63× 10−5ρ6

gla43(ρ) = −0.4609− 0.0020ρ2

(68)

Glaaug
(ρ) =


glaaug11(ρ) glaaug12(ρ) glaaug13(ρ) 0
glaaug21(ρ) glaaug22(ρ) glaaug23(ρ) 0
glaaug31(ρ) 0 glaaug33(ρ) 0

0 glaaug42(ρ) 0 0
glaaug51(ρ) glaaug52(ρ) glaaug53(ρ) glaaug54(ρ)


where

glaaug11(ρ) = −0.5935− 0.0026ρ2

glaaug12(ρ) = 0.9914

glaaug13(ρ) = −5.2124× 10−4 − 6.2678× 10−7ρ2 + 1.1121× 10−11ρ4

glaaug21(ρ) = −1.9626 + 3.4170ρ1 − 0.0173ρ2 + 0.0301ρ3 − 3.8081× 10−5ρ4 + 6.63× 10−5ρ6

glaaug22(ρ) = −0.4609− 0.0020ρ2

glaaug23(ρ) = −4.9579× 10−4 − 3.8893× 10−6ρ2 − 7.6201× 10−9ρ4 + 1.9644× 10−12ρ6

glaaug31(ρ) = −22.8150− 84.5625ρ1 − 0.0351ρ2 − 0.7450ρ3 − 7.7365× 10−5ρ4 − 0.0016ρ5

glaaug33(ρ) = 1.4939− 2.1091× 10−5ρ2 − 2.2374× 10−8ρ4

glaaug42(ρ) = 1

glaaug51(ρ) = 2.9216

glaaug52(ρ) = 7.9363× 10−3

glaaug53(ρ) = −0.9216

glaaug54(ρ) = −1

(69)
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