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Abstract11

The social and economic benefits of the coastal zone make it one of the most treasured environments on our12

planet. Yet it is vulnerable to increasing anthropogenic pressure and climate change. Coastal management13

aims to mitigate these pressures while augmenting the socio-economic benefits the coastal region has to14

offer. However, coastal management is challenged by inadequate sampling of key environmental indicators,15

partly due to issues relating to cost of data collection. Here, we investigate the use of recreational surfers16

as platforms to improve sampling coverage of environmental indicators in the coastal zone. We equipped a17

recreational surfer, based in the south west United Kingdom (UK), with a temperature sensor and Global18

Positioning System (GPS) device that they used when surfing for a period of one year (85 surfing sessions).19

The temperature sensor was used to derive estimates of sea-surface temperature (SST), an important20

environmental indicator, and the GPS device used to provide sample location and to extract information21

on surfer performance. SST data acquired by the surfer were compared with data from an oceanographic22

station in the south west UK and with satellite observations. Our results demonstrate: (i) high-quality23

SST data can be acquired by surfers using low cost sensors; and (ii) GPS data can provide information on24

surfing performance that may help motivate data collection by surfers. Using recent estimates of the UK25

surfing population, and frequency of surfer participation, we speculate around 40 million measurements26

on environmental indicators per year could be acquired at the UK coastline by surfers. This quantity27

of data is likely to enhance coastal monitoring and aid UK coastal management. Considering surfing is28
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a world-wide sport, our results have global implications and the approach could be expanded to other29

popular marine recreational activities for coastal monitoring of environmental indicators.30

Introduction31

The coastal zone is regarded as one of the most valuable and vulnerable habitats on Earth [1]. It contains32

the richest level of marine biodiversity [2,3] and has a higher economic value per unit area than terrestrial33

and open-ocean ecosystems [4,5]. The coastal zone supports a significant proportion of the world’s fish34

catch and is a source of non-renewable and renewable energy, waste disposal and recreation [6–10]. Human35

population densities in coastal regions (within 100 km distance of the coast and <100 m above sea level)36

are estimated to be three times higher than global averages [11] and set to increase [12]. As a consequence37

the coastal zone is under increasing threat from: overfishing [6]; habitat degradation [13]; marine species38

loss [14, 15]; climate change [16]; harmful algal blooms [17]; hypoxia [18]; and eutrophication [19]. Coastal39

management is used to minimise the negative impacts of anthropogenic activity without compromising40

the socio-economic benefits of the coastal region [20].41

Monitoring the coastal zone is fundamental to coastal management. Without adequate monitoring,42

environmental managers lack the information required to develop sufficient understanding for good43

management, or enable response to sudden (e.g. sporadic events) and long-term change (e.g. climate44

change). Environmental indicators are simple measures used to track the state of an environment [21].45

In the coastal zone, these indicators can be physical (e.g. changes in land cover, currents, temperature,46

salinity, turbidity), biological (e.g. phytoplankton abundance and composition, macrophyte abundance) or47

chemical (e.g. nutrient concentrations, pH, toxic contaminants) [22]. There is high demand for observations48

on environmental indicators for coastal management of water quality, conservation, human resources and49

recreation (e.g. European Union Water Framework Directive) [22,23]. Traditionally in situ measurements,50

acquired using conventional platforms such as research vessels or buoys, have been used to monitor51

environmental indicators. However, traditional methods for collecting in situ measurements are expensive52

and hampered by challenges in the coastal zone; for instance, from biofouling, and from the effects of53

tides, wave shoaling and coastal currents. The deployment and maintenance of such systems are also54

inherently expensive. Demand for observations on environmental indicators is not met by in situ datasets55

currently available [24]. Consequently, inadequate sampling coverage in the coastal zone is regarded as a56
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major challenge facing coastal management [25].57

To improve sampling coverage remote-sensing systems have been deployed from satellite, aircraft58

and at fixed positions along the coastline. Satellite remote-sensing of visible and thermal imagery59

is capable of providing affordable imagery with good temporal and geographic coverage, but is often60

limited by spatial resolution [26], and challenged by the optical complexity of coastal waters [27] and by61

atmospheric-correction [26, 28]. Aircraft-mounted sensors can significantly improve spatial coverage in62

coastal waters [29,30], but are costly, especially when acquiring a high-temporal coverage. Fixed video63

systems are capable of improving spatial coverage [25, 31] and can extract information at low cost, on64

coastal morphology, currents and waves [32–34]. However, fixed video systems are limited in viewing range65

(∼2 km from the cameras in either direction [25]) and only available at specific locations. Furthermore,66

measurements of the ocean from remote-sensing platforms (satellite, aircraft and from fixed positions67

along the coastline) are limited to what can be measured using optical and infra-red radiation and require68

in situ data for calibration and validation. Other innovative solutions are needed to improve sampling69

coverage in the coastal zone, such as citizen science.70

Citizen science is the outsourcing of a task once performed by a set of professionals to a large network71

of voluntary citizens. If carefully constructed, it can promote public understanding of science [35–37] and72

tackle costly, intractable and laborious research problems [38–40]. The generation of reliable scientific73

data through citizen science has contributed to unexpected insight and innovation, and high-quality74

research [41, 42]. Emerging technologies, such as mobile applications, wireless sensor networks, on-line75

computer/video gaming, and miniaturised environmental sensors, show great promise for advancing citizen76

science [43]. The influence of gaming and competition plays a large role in participant motivation [43–45],77

highlighting the benefits of incorporating recreation into citizen science [46].78

In oceanography, citizen science has much untapped potential [47], especially when considering the79

high cost of oceanographic sampling (e.g. ship or boat hire) in comparison with many terrestrial-based80

sciences. In the UK alone, it has been estimated that 5.4 million people are involved in a recreational81

activity that requires direct interaction with the aquatic environment (both ocean and in-land waters),82

including some: ∼800,000 kayakers; ∼624,000 small-boat sailors; ∼518,000 surfers; ∼271,000 scuba divers;83

and 4.8 million outdoor swimmers [48]. Of all these major water-sport activities, surfing has the highest84

proportion of activity undertaken at the coastline [48]. The surfing community are also strong advocates85

of environmental monitoring (e.g. see Surfers Against Sewage [http://www.sas.org.uk/] and the Surfrider86
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Foundation [http://www.surfrider.org/]), orchestrate their activities year round [49], and have an intrinsic87

interest in the functioning and state of the environment [50], making them a good target audience for88

citizen science projects in the coastal zone.89

In this paper, we investigate the potential of using surfers as platforms to monitor environmental90

indicators in the coastal zone, with a view to enhance the sampling coverage required to improve coastal91

management. We focus our efforts on collection of sea-surface temperature (SST) data, considered an92

important environmental indicator for coastal management [22,23], which plays a fundamental role in: the93

structuring of marine biodiversity in coastal environments [3]; the initiation and duration of the spring94

phytoplankton bloom [51]; the growth and metabolic rates of all trophic level species, from plankton [52,53]95

to fish [54,55]; the exchange of climatically important gases between the atmosphere and the ocean [56];96

the local weather and climate [57]. Temperature is also a property that can be measured relatively easily97

(e.g. through measurements of electric resistance) and cheaply, making it ideal for citizen science-based98

projects. We equipped as surfer with a temperature sensor and Global Positioning System (GPS) device99

for a period of one year that they used when surfing. The SST data are compared with estimates from a100

local oceanographic station and satellite data, to determine if SST acquired from a surfer is reliable and101

what additional benefits it may bring. The GPS data is used to acquire information on surfer performance102

and used to illustrate potential motivation for data collection. Our results are extrapolated using estimates103

of the UK surfing population to demonstrate the potential of using surfers to improve sampling coverage104

of environmental indicators in the coastal zone. Finally, we discuss the implications of our results for other105

recreational water-sports and for monitoring environmental indicators not accessible by remote means.106

Materials and Methods107

Statistical tests108

To compare SST data acquired by the surfer with those acquired from other sources, we used the squared109

Pearson correlation coefficient (r2) and the Root Mean Square Error (Ψ), the latter calculated according110

to111

Ψ =

[
1
N

N∑
i=1

(
XE

i −XM
i

)2]1/2

, (1)
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where, X is the variable (SST) and N is the number of samples. The superscripts E and M refer to112

two independent methods of measuring the same variable (e.g. one from the surfer and one from the113

satellite). The Ψ can also be partitioned into its precision and accuracy (or bias) components, such that114

Ψ2 = ∆2 + δ2, where the precision component ∆ is expressed as115

∆ =

 1
N
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, (2)

and the accuracy (or bias) component as116

δ =
1
N

N∑
i=1

(
XE

i −XM
i

)
. (3)

Having a term available that distinguishes systematic (δ) and random (∆) differences was found to be117

useful in the context of this study. We also computed the slope (S) and intercept (I) of a linear regression118

between XE and XM . A slope (S) close to one and an intercept (I) close to zero is an indication that the119

two estimates of temperature agree well.120

Equipment121

Following advice from the Faculty Research Ethics Committee for Health and Human Sciences Research122

at Plymouth University, UK, that ethical approval was not required for our study, a recreational surfer123

(lead author) was equipped with a UTBI-001 Tidbit V2 Temperature Data Logger and a Garmin etrex 10124

GPS (Fig. 1).125

The Garmin etrex 10 device was used to extract GPS information. It contains an EGNOS-enabled GPS126

receiver, has HotFixr satellite prediction and can track both GPS and GLONASS satellites simultaneously,127

allowing it to use 24 more satellites than using GPS alone. During each session, the Garmin etrex 10128

device was stored in a water-resistant Aquapac inside a waist-bag worn by the surfer (Fig. 1), and set to129

record GPS data at 1 second intervals. Information on location (latitude and longitude), time, distance,130

speed and orientation for each surf were extracted from the GPS device post session.131

The Tidbit V2 temperature logger was attached, using cable-ties, at mid-point to the leash of the132

surfboard to ensure continuous contact with seawater when surfing (Fig. 1), measuring temperature133

in the top metre of the water column. The waterproof Tidbit V2 temperature logger has an accuracy134
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of 0.2oC over a range of 0-50oC, a resolution of ∼0.02oC at 25oC, a stability of ∼0.1oC per year, a135

response time of 5 minutes in water, and a battery life of ∼5 years at a >1 minute logging interval. Three136

times during the period of study (May and August 2014 and January 2015), the Tidbit V2 temperature137

logger was compared with a VWR1620-200 traceable digital thermometer (NIST/ISO calibrated, with an138

accuracy of 0.05oC at the range of 0 to 100oC and a resolution of 0.001oC) at 1oC intervals from 6 to139

25oC using a PolyScience temperature bath. On all three occasions, and over the 6 to 25oC temperature140

range, the systematic bias (δ) between the Tidbit V2 temperature logger and the VWR1620-200 traceable141

thermometer was < 0.05oC, lower than the accuracy of the VWR1620-200 traceable thermometer, with142

a precision (∆) < 0.025oC and an error (Ψ) < 0.05oC. The slope (S) ranged from 0.997-1.000 and the143

intercept (I) 0.047-0.084oC for the three tests. Results from the comparison indicate the Tidbit V2144

temperature logger performed with high accuracy, with low bias and that its performance was stable over145

the study period. HOBOware software and HOBO USB Optic Base Station (BASE-U-4) were used by146

the surfer to launch the Tidbit V2 temperature logger prior to each session, and then to upload data post147

session. Temperature data were collected at 10 second intervals during each surf.148

Study site149

The tagged surfer was stationed around the coastline of South West UK (Fig. 2a). Between the 5th150

January 2014 and the 4th January 2015 the surfer orchestrated their recreational activity 85 times at a151

variety of locations (Fig. 2a), with 74% of the surfs (63) conducted at Wembury beach near the city of152

Plymouth (Fig. 2b and c) at a near weekly temporal sampling rate. A GPS track, taken on the 13th153

of September 2014, is shown in Fig. 2c and illustrates how the surfer switched on the GPS device (and154

Tidbit V2 temperature logger) in the car park at Wembury (on land) then walked down to the beach and155

went surfing, before walking back to the car park and uploading the GPS and temperature data. Speed156

from the same GPS track is plotted as a function of cumulative distance travelled in Fig. 2d, with the157

spikes in speed indicative of the surfer riding waves. The temperature data for the same session is also158

plotted as a function of time (Fig. 2e) and illustrates a large change in temperature between switching159

the sensor on at the beginning of each session and entering the water (and exiting the water prior to160

switching the sensor off) with relatively stable temperature readings during the period the surfer was161

immersed in seawater.162
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Temperature data processing163

Considering the Tidbit V2 temperature sensor was activated before entering the water, and deactivated164

after leaving the water, many of the initial and final temperature data were recorded when on land.165

Furthermore, as the sensor has a response time of up to 5 minutes in sea-water, the time between activation166

and sea-water equalisation varied among sessions. Therefore, the temperature data required processing167

to extract SST. While it is possible to use GPS data, together with tidal and shoreline information, to168

determine when the surfer was in the sea, we developed a GPS-independent SST extraction methodology.169

This was thought useful for occasions when either the clocks of the GPS and the temperature sensors170

disagree, or if temperatures were recorded without associated GPS. Fig. 3a shows a superposition of all171

temperature data acquired by the surfer at Wembury beach during the study period. The data were172

normalised such that the start (surfer entered the water and sensor equalised to water temperature) and173

end (surfer exited the water and sensor beginning to respond to air temperature) is at the same point on174

the x-axis for each session. The colour scale of Fig. 3a indicates the median of the remaining data (used175

to compute SST) after the exclusion of erroneous data. The methodology used to determine the start and176

stop times is described below.177

Firstly, we make the assumption that the midpoint of the temperature data for each session occurred178

while the sensor was in the water. This was visually checked using GPS data and found to occur for179

every session at Wembury beach. Fig. 3b shows an example of temperature data collected on the 13th
180

September with the midpoint shown as a vertical blue line. The temperature data for each session was181

then divided into two equal halves around the midpoint. For the initial half, every data point was removed182

sequentially and the standard deviation was calculated incrementally with the last data point representing183

the standard deviation of the midpoint (zero). For the second half, this procedure was repeated but in184

reverse. This method produced a list of standard deviations which are plotted (dark blue line) in Fig.185

3c for data collected on the 13th September, with the fraction of data used to compute each standard186

deviation plotted as the purple line in Fig. 3c. The period for which the surfer measured SST (immersed187

in sea-water) was then taken to be between the first and last points where the standard deviation was less188

than 10 % of the largest standard deviation (Fig. 3c dashed blue line). The cutoff of 10 % was chosen189

based on a visual comparison with the timing of the first and last waves caught by the surfer, as estimated190

from the GPS data. All temperature measurements before and after these points were excluded (shown in191

the grey areas of Fig. 3a-e), and the median of the remaining data for each session used to compute SST.192
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Fig. 3d shows the temperature of each session presented as in Fig. 3a, but with the computed SST193

(median of remaining data) subtracted, and Fig. 3e shows the standard deviations for the data collected194

at Wembury beach. These figures demonstrate that the method removes nearly all the erroneous initial195

and final points. Computing the median of the remaining data as the SST (rather than the mean of the196

remaining data) also minimises the influence of any erroneous data points that may pass through the197

processing at the margins of the dataset. The method was checked by visually inspecting the temperature198

data for each session with the GPS data. During one session, where air temperature and sea temperature199

were very similar (little variance), the method excluded a significant portion of the data collected in200

the sea. However, even in this singular case the computed SST using our method was not significantly201

different (within the accuracy of the sensor) from computing the median of the temperature data using202

the start (surfer entering the water) and end (surfer exiting the water) derived from the GPS (first and203

last wave caught).204

Our method (Fig. 3) is based on the assumptions that: (i) the temperature of the sensor in the sea205

is relatively stable compared with the variability caused by the transition from air to sea; (ii) that the206

mid-point of the dataset occurred in the sea; and (iii) duration in the sea is longer than duration out of207

the water. The method would need to be reviewed for conditions where these assumptions are breached.208

GPS data processing209

The GPS data processing builds upon the recent work of Barlow et al. [58] to provide performance210

statistics on surf sessions. The GPS data processing was designed to account for variations in the range211

of surfing speeds due to differing surfer ability, surfboard types and ocean conditions. During each surf212

session GPS data were logged at a temporal resolution of one second. Each measurement provided a213

location, speed and bearing. Initially, a pre-processing filter was applied to remove any anomalous data214

with speeds greater than 15.3 m s−1, the speed of a swell with a significant wave height of 5 m [59], thought215

not to have occured during sampling.216

Following the high speed filter, the speed at which a surfer could be classed as surfing (wave riding) was217

determined for each surf. This was done using all data where the surfer was not waiting (speeds greater218

than 0.5 m s−1 [58]). The non-waiting speeds were arranged in ascending order and we implemented219

a version of the Jerome Friedman’s multivariate adaptive regression splines, to fit a number of hinge220

functions to the data (Fig. 4a). The maximum number of model terms were set to five, to force the model221
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to break the data into three regions. This allowed the identification of two break-points in the range of222

observed speeds. The first break-point represents the transition from paddling to surfing. Note that this223

transition is likely to change depending on wave size, surfboard type and surfer performance. We took the224

first break-point in the hinge function to define the minimum surfing speed for a given surf session. This225

was conducted independently for each surf session.226

In addition to travelling at a required velocity, a surfer should also be travelling in the correct direction227

(approximately toward shore-line). Analysis of a number of individual sessions revealed occasional228

anomalous GPS data with speeds well above paddling velocities, headed away from shore, usually following229

the end of wave. As most of the data with surfing speeds are towards the beach, the bearings for all the230

data with speeds greater than the minimum surfing speed were averaged to give a mean surfing direction231

(Fig. 4b). An angular window of ±90◦ either side of the mean surfing direction was defined as permissible232

surfing directions to allow for left and right rides, and prevent these anomalous GPS data for interfering233

with the performance statistics.234

Following the establishment of these two criteria, the GPS data was analysed in chronological order.235

Once the minimum surfing speed had been crossed and the surfer was travelling in the right direction236

they were considered to be riding a wave. As the speed of a surfer may vary during a single wave, with237

some manoeuvres requiring the surfer to slow (or stall) the board, or to change direction sharply (possibly238

outside of the permissible surfing directions), the surfer speed was allowed to drop below the threshold239

velocity and outside permitted direction for up to eight seconds before a wave was considered finished240

(Fig. 4c). Note that this does not result in an eight second addition to the duration of each wave, as each241

wave was terminated at the last valid point.242

Following wave identification, any ride lasting less than four seconds [58] was counted as a failed wave243

and not included in the riding statistics. Having determined the beginning and end of each wave, the244

wave statistics and the total session information were computed. An example of performance statistics245

for a full surfing session is shown in Fig. 4d. For the calculation of whole sessions statistics, the start246

of the session was set at two minutes before the first wave and the end at two minutes after the last247

wave, acknowledging that there is likely to be variability in this assumption. From the GPS processing a248

summary was produced for each surf session and the results from these were combined to produce an249

annual summary (number of sessions, waves caught, total ride time and distance). To put the performance250

statistics of the surfer derived using the GPS in the context of the wider surfing community, the tagged251
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surfer was rated according to the Hutt et al. [60] surfer skill rating scale, that varies from 1-10. A rating252

of between 5 and 6 (intermediate level) was assigned to the surfer.253

Additional data sources254

For comparison with the temperature data measured by the surfer at Wembury beach, SST data were255

acquired from two other sources: station L4 in the Western Channel Observatory (WCO) and from256

satellite observations of thermal infra-red radiation. Station L4 is a coastal station located ∼12 km south257

west of Wembury beach (Fig. 2b) and forms part of the WCO, an oceanographic time series and marine258

biodiversity reference site in the Western English Channel [61, 62]. An autonomous buoy is operated259

at station L4 equipped with a WET Labs Water Quality Monitor (WQM), which incorporates WET260

Labs’ fluorometer-turbidity and Sea-Bird’s CTD sensors, providing temperature, salinity, depth, dissolved261

oxygen, chlorophyll fluorescence, turbidity and backscattering data. The WQM records SST at hourly262

intervals, with an accuracy of 0.002oC at a range of -5 to 35 oC, and a resolution of 0.001oC. The buoy263

at station L4 was brought to shore in November 2013 for maintenance and was ready for redeployed in264

December 2013. However, due to the large storm events of winter 2013-2014, the buoy was not redeployed265

until March 2014. SST data were acquired for the period 11th March 2014 to 4th January 2015. Daily266

median SST were extracted from the time series, and we also extracted SST data at the hour closest in267

time to that acquired by the surfer at Wembury beach during the study period.268

Advanced Very High Resolution Radiometer (AVHRR), daily, ∼1 km mapped, SST data were acquired269

from the NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS [63]). This data270

were received at Dundee and processed in near-real time at Plymouth Marine Laboratory. An example271

of an AVHRR image, processed by NEODAAS over the South West UK for 10th of September 2014, is272

provided in Fig. 2a-c. A daily time series of AVHRR SST data were extracted for station L4 and Wembury273

beach. This time series represented an average of a box of pixels (3×3) centred at station L4 (latitude =274

50.25, longitude = -4.2167) and Wembury beach (latitude = 50.3160, longitude = -4.0854). Following275

standard methods, we used a multi-pixel box to increase the possibility of an in situ measurement (taken276

either at station L4 or Wembury) being available for comparison with the AVHRR data [64].277
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Results and Discussion278

Sea Surface Temperature (SST) results279

SST acquired by the surfer at Wembury beach over the study period is plotted in Fig. 5a. In January280

2014 (day 5) the SST was around 10 oC and dropped to approximately 9.5 oC by early March (day 60).281

Between March and July (day 60-210), the SST increased steadily from 9.5 oC to 18 oC, with a few sporadic282

increases observed over the period (Fig. 5a). In early August (day 225) SST dropped rapidly from 18 oC283

to 15 oC, then rose back to approximately 18 oC by late September (day 272). Between October 2014 and284

January 2015 (day 277 to >365) there was a steady decline in SST from around 18 oC to 11 oC.285

The time series of SST acquired by the surfer at Wembury beach is overlain onto the daily median SST286

data from station L4 (Fig. 5a). There is good agreement between the two SST estimates, as illustrated by287

scatter plots between daily match-ups (Fig. 5b). Over the seasonal cycle the SST data collected by the288

surfer at Wembury beach explained 93 % of the variance in the SST data at station L4, with an error289

(Ψ) of 0.78 oC and a bias (δ) of 0.31 oC. When extracting station L4 SST data at the corresponding hour290

the surfer was immersed in the water (as opposed to comparing daily median estimates from station L4),291

statistical results improved further, with the surfer explaining 94 % of the variance in the SST data at292

station L4, with an error (Ψ) of 0.73 oC (Fig. 5b). The SST data collected by the surfer at Wembury293

beach is seen to capture the general seasonal cycle (lower SST in the winter, higher SST in the summer)294

and also abrupt changes, such as the decrease in SST in August (day 225 Fig. 5a) seen in the station295

L4 data. Good agreement between the two datasets illustrate the potential of using surfers to acquire296

high-quality SST data in the coastal environment.297

Whereas the statistical tests confirm that SST from station L4 data agreed well with the SST data298

collected by the surfer at Wembury beach, there were still some marked differences (Fig. 5a). During299

spring, a few sporadic increases in SST of around 2 oC were observed in the Wembury time series, for300

instance, day 72 and 104 (see Fig. 5a). Both these measurements coincide with small wave heights301

and clear skies (data not shown), with a late morning low tide and the surfing session occurring during302

mid-high tide in either the afternoon or evening. In both cases, it may be that the exposed inter-tidal303

land (which has a much lower heat capacity than the ocean) was warmed prior to the rising afternoon tide304

during which the surf took place, which together with a diurnal increase in water column temperature,305

possibly resulted in a localised increase in SST during the later period of the day. Sporadic increases in306
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SST close to the coastline are not surprising when considering the multiple factors that may influence307

coastal temperature (e.g. land-sea temperature exchange and localised run-off from rainfall) that may308

not be captured by in situ instruments situated further offshore (e.g. at station L4). In some regions,309

data on differences between coastal and offshore SST may provide useful information regarding freshwater310

discharge (e.g. close to estuaries), variations in coastal currents, and the location and intensity of tidal311

mixing fronts [62,65,66]. All of which have implications for biological productivity and the transportation312

of pollutants and contaminants. Monitoring SST in coastal regions, relative to offshore regions, may also313

benefit marine recreation (e.g. useful information for water bathers).314

The time series of satellite-derived SST at station L4 is overlain onto the daily median in situ SST315

data from the station L4 buoy in Fig. 5c, and a scatter plot of the two SST estimates is shown in Fig. 5d.316

At station L4, the satellite data is in very good agreement with the in situ observations, explaining 97 %317

of the variance in the SST data with an error (Ψ) of 0.46 oC, a bias (δ) close to zero, a slope (S) close to318

one, and an intercept (I) close to zero (Fig. 5d). By contrast, comparisons of satellite SST and in situ319

SST (collected by the surfer) at Wembury beach are not so good (Fig. 5e and f), with the satellite data320

explaining only 87 % of the variance in the in situ SST with a higher error (Ψ = 1.37 oC) and a large bias321

(δ = −0.81 oC, Fig. 5f). Furthermore, in comparison with 153 available satellite observations at station322

L4 over the study period, only 60 satellite observations were available at Wembury beach (Fig. 5c and e).323

It is common to observe a fewer number of satellite observations in coastal regions as land-sea adjacency324

complicates the signal received by the satellite sensor and the nature of the aerosol composition at the325

coastline complicates atmospheric correction [26]. Higher errors (both systematic (δ) and random (∆))326

in satellite-derived SST at Wembury and fewer observations, when compared with those at station L4,327

further emphasize a need for in situ SST observations at coastal regions, which could be acquired by328

recreational waters-users such as surfers.329

SST is one of the most important characteristics of an aquatic system. It is considered by the330

Global Climate Observing System as an essential climate variable [67], influencing: dissolved oxygen331

levels; the solubility and reaction rates of chemicals; the metabolism, growth and reproduction of marine332

organisms [52,53]; and water density and stratification, which impact coastal physics and the transport333

of nutrients, contaminants and pollutants. Variations in nearshore SST have been correlated with coral334

bleaching events [68] and unusual, and sometimes harmful, algae blooms [69]. Monitoring SST in the335

nearshore region is of particular importance considering its high level of biological diversity, productivity,336
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and economic value, when compared with open-ocean environments [2–5], and its vulnerability from a337

rising human population and climate change.338

In addition to SST, it is feasible to monitor other environmental indicators by using recreational339

water-users, such as surfers. Salinity, a valuable environmental indicator in the coastal environment [70],340

can be estimated from measurements of conductivity. The acidity (pH) of seawater, which influences341

metabolic rates and immune responses of some organisms [71] and calcification [72], can also be measured342

electronically using a pH meter. In fact, as part of the Wendy Schimdt Ocean Health XPRIZE, there343

are ongoing efforts to develop a surfboard fin capable of simultaneously measuring temperature, salinity,344

and pH [73]. Monitoring nutrient concentrations and toxic pollutants is important for management345

of eutrophication and water quality. Recent advances in miniaturised technology [74, 75] may permit346

future measurements of nutrient concentrations and toxic pollutants from platforms such as surfboards.347

Large-scale data collection by recreational water-users on environmental indicators has the potential to348

improve our understanding of the coastal system, that is currently based on observations with suboptimal349

spatial and temporal coverage. Should a scientific question arise on a component of the coastal system, it350

may be possible to address this question by equipping recreational water-users with miniature sensors351

suitable for measuring the environmental indicator pertinent to the question.352

GPS results353

Annual surfer performance statistics derived from the GPS processing are provided in Table 1. Over the354

entire year (85 surf sessions), the surfer caught approximately 2012 waves, surfed for 90.6 hours (nearly 4355

days), covered a distance of 375.8 km of which they rode 110.8 km. We conducted a sensitivity analysis of356

the fixed parameters involved in the GPS processing (see Table 1) and found the GPS processing method357

relatively robust, with minor effects on the annual statistics (Table 1).358

To assess the performance of our GPS method relative to those in the literature, we computed surfer359

performance metrics for comparison with Barlow et al. [58] (Table 2). In general, our results are remarkably360

similar with those of Barlow et al. [58] (see Table 2). Some level of similarity can be expected, when361

considering both methods rely on GPS data and there were similarities in data processing, yet the study362

of Barlow et al. [58] was based on 60 surfing sessions and 39 recreational surfers of varied ability, whereas363

our study was based on 85 surfing sessions by the same surfer, of an intermediate level [60]. Statistical364

results derived here (Table 2) are also comparable with those derived elsewhere [76,77], especially when365
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considering differences in surfer ability among studies.366

As highlighted in previous studies [58, 77], surfing statistics acquired from GPS data have use in367

monitoring fitness and performance. The prevalence of technology in recreation and leisure has proliferated368

in recent years with the development of mobile application technology. Mobile phone applications such as369

Strava, a GPS enabled smart-phone application designed to track recreational activities such as cycling370

and running, are becoming increasing popular. Coupled with developments in social media (e.g. Twitter371

and Facebook) and website visualisation (e.g. Google Earth), users of GPS enabled mobile applications372

can view and share their GPS track and performance. This has led to the use of mobile applications for373

recreational competition, for instance, the Strava software “King Of The Mountain” that is designed for374

users to compete with each other over who can cycle a particular route the quickest. The company RipCurl375

has introduced a GPS surf watch (http://www.ripcurl.com/searchgps-1.html) and other GPS-based376

devices are becoming available for monitoring surfer performance (e.g. the action sports tracker (TRACE)377

http://www.traceup.com/). It is likely similar applications will soon be available for surfers to compare378

their performance and compete. In citizen science, the influence of gaming and competition plays a379

large role in participant motivation [43–45]. Use of mobile GPS technology in surfing for competition380

could drastically enhance participation in a marine-based citizen science project focused on monitoring381

environmental indicators like SST.382

Potential of surfers to monitor environmental indicators383

The equipment and approach used in our study (Fig. 1) was designed to test the feasibility of using384

surfers to monitor environmental indicators in the coastal zone. It would likely require modification for385

widespread use. For instance, sensor launch, data offload and data post-processing (both SST and GPS)386

currently require a small investment of time before and after each surfing session, which may discourage387

citizen uptake. By leveraging emerging citizen-based technologies (e.g. mobile phone applications) and388

commercial GPS equipment, making use of established methods for data processing, sensor communication389

and data storage, this could be made quicker, easier and more efficient. As thermistor-based devices390

become cheaper and more widespread, equipment costs for measuring SST could be reduced further, but391

would need to balance against data quality and sensor durability. Considering the surfer as a platform,392

mounted environmental sensors need to be unobtrusive, so as not to interfere with surfer performance and393

discourage uptake. We found that the Tidbit V2 temperature logger (size = 30×41×17 mm, weight =394
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23 g) met this requirement, but not all sensors are likely to. Furthermore, any widespread data collection395

by surfers is likely to be biased toward conditions and locations preferable for surfing, and subsequent data396

analysis should consider associated biases. This issue could be minimised if the approach was expanded to397

other popular marine recreational activities, which take place in a variety of maritime conditions.398

Results from this study demonstrate that it is feasible to use surfers as a platform to acquire high-quality399

data on environmental indicators in the coastal environment (Fig. 5). If the approach was scaled-up to a400

large citizen-science based project, it would be pertinent to gauge the potential in data acquisition by401

surfers. Knowledge on the global surfing population and the frequency at which surfers partake in their402

activity is relatively scarce. However, in certain regions, such as in the UK, statistical estimates of surfers403

are available. For instance, it has been estimated that there are in the region of 500,000 to 700,000 surfers404

in the UK [48,78].405

Using a survey of >2000 respondents, and based on an estimate of 500,000 surfers [48], Mills and406

Cummins [49] estimated the regional distribution of UK surfers and the monthly frequency of participation.407

Multiplying the number of surfers per region by the annual frequency of participation gives an estimation408

of the potential number of measurements that could be collected by surfers per year, assuming all UK409

surfers were equipped to measure environmental indicators. Based on the study of Mills and Cummins [49],410

we estimate in the region of 40 million independent measurements on environmental indicators could411

be collected by surfers in the UK per year. Fig. 6 shows the spatial (region) and temporal (monthly)412

distribution of these estimates. South-West England (Devon and Cornwall) is predicted to have the largest413

benefit with ∼18 million measurements per year, followed by the South coast of England, Wales and414

the East coast of England with between 5-8 million measurements per year each, and by Scotland and415

Northern Ireland with ∼2 million and ∼0.4 million measurements per year, respectively. In all six regions,416

the distribution of measurements are biased toward autumnal months (when the water temperature is417

warm and the surf conditions relatively consistent in the UK), with a lower number during winter months418

(Fig. 6). As highlighted by Mills and Cummins [49], their study is not without limitations and these419

numbers are there to serve as rough estimates. Our estimates of sample coverage based on their study420

(Fig. 6) also assume all UK surfers were to participate in data collection when in reality only a small421

fraction of the total community is likely to participate in a citizen science project. Nevertheless, even if422

one in a hundred UK surfers were to collect data it is estimated in the region of 400,000 measurements423

per year in the UK could be collected by surfers on environmental indicators based on study of Mills and424
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Cummins [49]. This would significantly improve sampling coverage in the coastal zone and impact UK425

coastal management.426

Whereas we have illustrated the potential of environmental data collection by surfers in the coastal427

zone of the UK (Fig. 6), surfing is a world-wide activity and conclusions drawn here resonate globally.428

Surfers frequent uninhabited (e.g. vulnerable reef environments) and remote regions (some of which are429

inaccessible by large research vessels), and countries with little or no coastal monitoring and coastal430

management (e.g. parts of Asia, Africa and South America) that may benefit significantly from such data431

collection. Furthermore, although we have focused our analysis on data collection by surfers, our results432

have implications for other recreational marine activities. At the UK coastline (excluding in-land waters)433

it is estimated that there are approximately: 337,000 kayakers; 362,000 small boat sailors; 190,000 scuba434

divers; 2.8 million outdoor swimmers; 96,000 water-ski and wake-boarders; 98,000 windsurfers; and 62,000435

kite-surfers [48]. Citizen science based projects inclusive of these other recreational activities are likely to436

improve sampling coverage and benefit coastal management.437

Conclusions438

The coastal zone provides huge social and economic benefits to society yet is under threat from an439

increasing human population and climate change. Coastal management aims to minimise these negative440

impacts while maximising societal benefits the coastal zone offers. Unfortunately, coastal management is441

challenged by inadequate sampling of key environmental indicators. With a view to enhance sampling442

coverage required for better coastal management, we investigated the possibility of using recreational443

surfers as platforms for monitoring environmental indicators in the coastal zone. To do this, we equipped444

a recreational surfer with a GPS device and a temperature sensor for a period of one year. The GPS data445

were used to extract information on surfer performance, whereas the temperature sensor was used to446

derive estimates of SST, an important environmental indicator in coastal waters.447

By comparing the SST data collected by the surfer at Wembury Beach, UK, with data collected from448

a nearby oceanographic station (L4) and satellite observations, we conclude that recreational surfers are449

capable of acquiring high-quality data on SST in the coastal environment. Furthermore, useful information450

on surfing performance statistics can be acquired from the GPS data that may help motivate data collection451

by surfers. Based on a recent analysis of the UK surfing population, we estimate that UK surfers have the452
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potential to acquire up to 40 million independent measurements on environmental indicators per year453

around the UK coastline. Such a huge level of data collection is likely to significantly enhance sampling454

coverage of environmental indicators required to improve and support coastal management. Surfing is455

a world-wide recreation, and our results have global implications for: coastal monitoring in remote and456

under-sampled regions; for other marine recreational activities in the coastal zone; and for monitoring457

other environmental indicators to that of SST, that may be measured by recreational water-users.458
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Figure Legends654

Figure 1. Equipment used in the study and surfer set-up. (a) Shows the Tidbit V2 temperature
logger attached at mid-point to the surfboard leash. HOBOware software and HOBO USB Optic Base
Station (BASE-U-4) were used by the surfer to launch the Tidbit V2 temperature logger prior to each
session, and then to upload data post session. (b) Shows the GARMIN extrex 10 GPS, water-resistant
Aquapac and waist-bag worn by the surfer. Information at one second intervals on location (latitude and
longitude), time, distance, speed and orientation for each surf, were extracted from the GPS device post
session. (c) Shows the surfer equipped with the sensors, and (d) shows the surfer collecting data during a
session at Wembury beach. Consent to publication was obtained from the participant in this figure.
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Figure 2. Study site and sampling locations with an example of GPS and temperature
data collected by the surfer. (a) Shows the locations of the 85 surfing sessions in South West UK
conducted during the study, overlain onto a NEODAAS AVHRR SST image taken on the 10th September
2014. (b) Shows a plot of Plymouth and surrounding waters with locations of the surfing sessions near
Plymouth and of station L4 in the Western Channel Observatory, with data from the AVHRR SST image
(10th September 2014). (c) Shows a plot of Wembury beach in Plymouth, with a GPS track taken by the
surfer on the 13th September 2014 overlain onto AVHRR SST estimate at Wembury beach (10th

September 2014). (d) Shows speed as a function of cumulative distance travelled for the GPS track taken
on the 13th September 2014, with the bumps in speed indicative of the surfer riding waves. (e) Shows a
plot of temperature data collected by the surfer during the surf session on the 13th September 2014.
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Figure 3. Processing method for the temperature data (denoted in the figure as T)
acquired by the surfer. Figures (a), (d) and (e) were normalised such that the start (surfer entered
the water and sensor equalised to water temperature) and end (surfer exited the water and sensor
beginning to respond to air temperature) is at the same point on the graph (x-axis) for each session. (a)
A superposition of all the temperature data acquired by the surfer during the study period at Wembury
beach. (b) A typical temperature data set, acquired on the 13th September 2014, showing the start and
stop time of the surf (vertical grey lines), mid-point of data collection (blue line), excluded data (grey
shaded areas) and the median of the data collected in the sea (considered as the SST). (c) Standard
deviations computed using the processing method for data collected on 13th September 2014, with the
corresponding fraction of data used to calculate the standard deviations and the 10 % threshold used to
exclude data collected when the surfer was on land. (d) Shows the temperature of each session presented
as in Fig. 3a, but with the computed SST (median of remaining data) subtracted. (e) A superposition of
the standard deviations for the data collected at Wembury beach.
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Figure 4. GPS processing used to estimate surfer performance statistics. An example from
the 30th August 2014. (a) Shows speed from the GPS plotted as a function of data sorted according to
speed (grey crosses). Hinge functions were fitted to the data to partition it into three linear fits (red
dashed lines), and identify two break-points. The first break-point (black solid line) in the hinge function
was used to define the transition from paddling into surfing (wave riding). (b) Bearing (or direction) data
for all surfing data points (where speed is greater than at the break-point in (a)). Red line indicates the
average surfing direction during the session and the dark blue lines indicate the region with an angular
window of ±90◦ either side of the mean surfing direction, defined as the permissible surfing directions and
used to help control quality of the data. The letter n refers to number of data points measured while
travelling above the break-point speed. (c) An example of a categorised wave during the session with
speed (and bearing) plotted as a function of time. As the speed increases above the break-point speed
(denoted BP) the wave starts (blue dashed line). In this case the wave is classified as ended (dark blue
line) when the bearing falls outside the permissible surfing directions (see (b)), with the 8 second window
(used to check (in this case) if bearing fell back inside the permissible surfing directions up to 8 seconds
after it first fell outside) shown as the grey dashed line. (d) Shows speed as a function of cumulative
distance travelled for the GPS track over the entire session, with waves classified in light blue shading. N
refers to number of waves during the session and Sc (and the horizontal dashed line) denotes the
break-point speed (see (a)) used to define the transition from paddling into surfing during this session.
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Figure 5. Sea surface temperature (SST) results from the study. (a) Shows the time series of
SST acquired by the surfer at Wembury beach overlain onto the daily median SST data from station L4
during the study period (N refers to the number of samples). (b) Shows a scatter plot of daily match-ups
between SST acquired by the surfer at Wembury beach and SST data from station L4. Bracketed
statistics refer to use of hourly match-ups between the two datasets. (c) Shows the time series of SST
from satellite (AVHRR) at station L4 overlain onto the daily median SST data from station L4 (buoy)
during the study period. (d) Shows a scatter plot of daily match-ups between SST from satellite
(AVHRR) at station L4 and SST data from the buoy at station L4. (e) Shows the time series of SST from
satellite (AVHRR) at Wembury beach overlain onto SST acquired by the surfer at Wembury beach during
the study period. (f) Shows a scatter plot of daily match-ups between SST from satellite (AVHRR) at
Wembury beach and SST data acquired by the surfer at Wembury beach. Statistics are denoted as
follows: r2 is the squared Pearson correlation coefficient; Ψ is the Root Mean Square Error; ∆ is the
unbiased Root Mean Square Error; δ is the bias; S and I are the slope and intercept of a linear regression
respectively; and N refers to the number of match-ups.



30

Figure 6. Estimates of the number of measurements on environmental indicators that
could be acquired by surfers in the UK per month. These statistics were computed as follows.
Firstly, the total number of surfs per month were computed for a series of regions around the UK by
multiplying Table 1 of Mills and Cummins [49] (the number of surfers per region) with Table 20 of Mills
and Cummins [49] (the number of times per month by region that surfers go surfing). The regions defined
in Mills and Cummins [49] were then aggregated into six key areas: South-West England = Cornwall +
South Devon + North Devon; South coast England = South Coast 1 + South Coast 2 + South Coast 3;
East coast England = East Coast + North East; Scotland = East Coast Scotland + Morray Firth +
North Coast + Outer Hebrides + Orkney Islands + Inner Hebrides; Northern Ireland = Northern Ireland;
and Wales = Cardiff + Swansea + West Wales + North Wales. Total measurements for each region per
year are also provided. Note that land locked UK surfers defined by Mills and Cummins [49], who are also
estimated to surf ∼2.6×106 per year, were not included in this analysis as it was difficult to determine
surfing locations.
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Tables655

Table 1. Annual surfer performance statistics.

Surfer Performance variables This Study1,2

Total number of surfing sessions 85

Total number of waves caught 2012 ±73

Total time spent in the ocean (hours) 90.6 ±0.9

Total time spent riding waves (hours) 6.8 ±0.16

Total water distance covered (km) 375.8 ±2.4

Total riding distance covered (km) 110.8 ±2.1

Total paddling distance covered (km) 134.7 ±1.1

Total waiting distance covered (km) 81.1 ±1.2

Total miscellaneous distance covered (km) 49.1 ±1.8
1 Statistics based on one year of data collected by the same surfer
of an intermediate level according to the Hutt et al. [60] surfer skill
rating scale.
2 Uncertainty (±) was computed based on a sensitivity analysis
of fixed parameters used in the GPS processing, with the fol-
lowing parameters varied: the minimum moving speed (fixed at
0.5 ms−1) varied between 0.2-1.0 ms−1, at 0.2 ms−1 intervals; the
pre-processing high speed filter (fixed at 15.3 ms−1) varied between
10-18 ms−1, at 2 ms−1 intervals; the minimum duration of a classi-
fied wave (fixed at 4s) varied between 3-6 s, at 1s intervals; and the
duration the surfer was allowed to fall below the threshold velocity
and outside the permissible directions (fixed at 8s) varied between
6-10 s, at 1s intervals. For each sensitivity run, one parameter
was varied while keeping others fixed at their default value. In
total 17 sensitivity runs were conducted and for each of the surfer
performance variables, standard deviations were computed based
on the 17 runs and are provided as ± values in the table.
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Table 2. Surfer performance statistics derived in this study
compared with those of Barlow et al. [58].

Surfer Performance statistics Barlow et al. [58]1 This Study2

Number of rides (per hour) 20.6 ±11.41 21.8 ±5.6

Maximum of ride speed (m s−1) 6.1 ±1.2 7.7 ±2.3

Mean ride time (s) 13.0 ±5.0 11.7 ±2.7

Maximum ride time (s) 27.3 ±13.3 24.8 ±8.6

Mean ride distance (m) 54.8 ±25.4 51.9 ±14.6

Maximum ride distance (m) 117.7 ±63.4 105.8 ±39.1

Total distance covered whilst surfing (%) 25.6 ±9.6 27.8 ±8.1

Total time spent waiting (%) 41.8 ±9.8 59.3 ±9.7

Total time spent paddling (%) 47.0 ±6.1 29.4 ±7.5

Total time spent riding (%) 8.1 ±5.3 7.2 ±2.6

Total time miscellaneous (%) 3.1 ±1.9 4.1 ±3.6

Surfing cut-off speed3 (m s−1) 2.5 2.1 ±0.3
1 The study of Barlow et al. [58] was based on 60 surfing sessions and 39 recreational
surfers of varied ability.
2 This study was based on 85 surfing sessions by the same surfer, of an intermediate level
according to the Hutt et al. [60] surfer skill rating scale.
3 The study of Barlow et al. [58] used an absolute cut-off speed of 2.5 m s−1, whereas in this
study the cut-off was determined independently for each session by use of hinge functions.


