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Introduction
Insulin resistance (IR) is present in the vast majority of patients 
who eventually develop type 2 diabetes and seems to be a nec-
essary, but not sufficient, abnormality leading to hyperglycemia 
in these individuals. Insulin-resistant persons who continue to 
secrete enough insulin to prevent gross decompensation of glu-
cose homeostasis are still at increased risk to develop cardiovascu-
lar disease. It is estimated that 25% to 33% of the US population is 

Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with 
type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains 
largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for 
direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, 
with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 
(NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. 
The rs1208 “A” allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, 
total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and 
carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte 
cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoprotere-
nol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. 
Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as 
measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support 
a role for NAT2 in insulin sensitivity.
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vitro and in vivo functional validation. To our knowledge, this 
study includes the vast majority of individuals in the world who 
have had both a reference measure of insulin sensitivity and have 
DNA available for genetic studies.

Results
GWAS single-marker association testing for insulin sensitivity. We 
analyzed GWAS data from nondiabetic participants of European 
ancestry from 4 studies who provided DNA for genome-wide geno-
typing and underwent a direct measure of insulin sensitivity (Table 
1), including either euglycemic-hyperinsulinemic clamp or IST. In 
total, 2,764 European subjects passed quality control procedures and 
entered the GWAS analysis. In the initial meta-analyses (adjusted 
for age, gender, and ethnicity, with or without adjustment for BMI), 
no SNPs reached GWAS significance levels of P < 5 × 10–8. We took 
forward variants representing 4 of the top signals into follow-up 
studies (Figure 1 and Supplemental Figure 1; supplemental material 
available online with this article; doi:10.1172/JCI74692DS1).

In silico replication and de novo genotyping in independent cohorts. 
We performed an in silico follow-up of 5 SNPs from the 4 top loci 
most strongly associated with insulin sensitivity in 1,601 Hispanic 
subjects from 3 cohorts within the GUARDIAN consortium (19) 
who had previously undergone hyperinsulinemic-euglycemic 
clamp and GWAS genotyping (Supplemental Table 1). These SNPs 
were chosen because they had initial GWAS P values of less than 6 × 
10–6, with evidence of multiple supporting SNPs (Table 2 and Figure 
1). The most strongly associated SNPs at one of these loci, NAT2, 
included two common, nonsynonymous coding SNPs [rs1208 
(803A>G, K268R) and rs1801280 (341T>C, I114T)], which are in 
modest pairwise linkage disequilibrium; r2 ~ 0.75) (Figure 2).

In the GUARDIAN analysis, only SNPs in the NAT2 locus were 
directionally consistent with the initial GWAS findings for insulin 
sensitivity (P = 0.09 for rs1801280 and P = 0.10 for rs7832071, which 
was selected as proxy for rs1208 with r2 = 0.97) (Figure 3 and Supple-

sufficiently insulin resistant to be at risk for adverse clinical conse-
quences (1, 2), and the worldwide prevalence of IR is increasing as 
a consequence of the obesity epidemic (3). A greater understand-
ing of the genetic basis of insulin sensitivity could lead to better 
diagnostic and therapeutic options.

Insulin-mediated glucose uptake is dictated primarily by skel-
etal muscle and adipose tissue and varies by as much as 6-fold in 
apparently healthy individuals (1, 4, 5). Direct measures of insulin 
sensitivity include the euglycemic-hyperinsulinemic clamp (6, 7) 
and the insulin suppression test (IST) (8), which are highly nega-
tively correlated (r < –0.9) (9).

The heritability of insulin sensitivity is approximately 40% 
to 50%, both prior to and after adjusting for an estimate of adi-
posity, such as BMI or waist circumference (10, 11). However, 
very large GWAS of surrogate measures of IR or consequences of 
IR (such as diabetes or fasting insulin) have identified few novel 
loci that appear to influence insulin sensitivity. Of the 65 type 
2 diabetes variants, the vast majority appear to affect insulin 
synthesis, processing and secretion, and/or pancreatic develop-
ment, with only a few loci having been associated consistently 
with surrogate measures of IR (e.g., PPARG, IRS1) (12–17). Sur-
rogate measures of IR are only modestly correlated with direct 
measures (with correlation coefficients of r ~ 0.35–0.75 for mea-
sures based on fasting insulin and/or glucose or measures based 
on oral glucose tolerance test [GTT]) (5, 13, 18), supporting a 
partly overlapping genetic structure between surrogates and 
quantitative measures of IR.

To promote investigation into the genetic basis of insulin 
sensitivity, we formed the GENESIS (GENEticS of Insulin Sensi-
tivity) consortium. Here, we report what we believe to be a novel 
insulin sensitivity locus (N-acetyltransferase 2 [NAT2]) identified 
through a combined approach, incorporating a GWAS meta-anal-
ysis of 2,764 individuals and replication in 2,860 individuals with 
direct, reference measures of insulin sensitivity, followed by in 

Table 1. Summary details of relevant characteristics of GWAS (RISC, ULSAM, EUGENE2, and Stanford IST) cohorts

Traits GWAS cohorts
RISC (n = 1,004) ULSAM (n = 899) EUGENE2 (n = 591) Stanford (n = 270)

Female (%) 56% 0% 57% 54%
Age (yr)A 44 (30–61) 71 (70–74) 40 (23–66) 52 (22–71)
Fasting insulin (pmol/l) 34.3 (3.0–116.0) 76.5 (3.5–294.5) 50.6 (4.0–218.7) NA
Fasting glucose (mmol/l) 5.05 (2.9–6.8) 5.32 (3.6–6.9) 5.09 (2.4–6.7) 5.38 (3.6–6.9)
BMI (kg/m2) 25.4 (16.9–43.9) 25.9 (16.7–39.1) 26.7 (17.4–47.3) 29.9 (18.8–53.8)
Insulin sensitivityB 39.8 (4.9–114.3) 30.9 (4.7–64.0) 40.03 (11.3–103.4) 8.3 (2.3–17.9)
Systolic BP (mmHg) 117 (79–168) 145 (100–207) 124 (90–184) 121 (79–235)
Total cholesterol (mmol/l) 4.83 (2.7–8.2) 5.83 (2.4–9.0) 4.94 (2.50–8.0) 4.99 (2.9–8.6)
LDL (mmol/l) 2.91 (0.8–6.6) 3.94 (1.3–6.5) 3.07 (1.0–5.7) 3.07 (1.4–5.1)
HDL (mmol/l) 1.43 (0.3–2.7) 1.32 (0.5–3.1) 1.36 (0.5–3.4) 1.21 (0.47–2.46)
TG (mmol/l) 1.08 (0.3–12.7) 1.35 (0.4–5.2) 1.26 (0.33–16.1) 1.60 (0.33–15.9)
Current smokers (%) (at time of clamp) 28% 21% 28% 15%
AAge indicated is mean (range). BIn all studies except for Stanford, the insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp (M 
value [μM/min/kg body weight]). The M value has a positive correlation with insulin sensitivity (i.e., an individual with a high M value has high insulin 
sensitivity). In the Stanford and SAPPHIRe studies, insulin sensitivity was measured by the IST, with a readout of steady-state plasma glucose (mmol/l). 
The steady-state plasma glucose value is highly inversely correlated to the M value (r ~ –0.9) (9, 61). Conversion factors were total cholesterol, LDL, and 
HDL: 1 mmol/l = 38.6 mg/dl; TGs: 1 mmol/l = 88.5 mg/dl; glucose: 1 mmol/l = 18.0 mg/dl. BP, blood pressure.
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cohorts from Minnesota (NaKs cohort, n = 115). With the exclusion of 
this cohort, the association for rs1208 and rs1801280 became stron-
ger (P = 6.4 × 10–7 and P = 1.1 × 10–5, respectively) (Figure 3, Supple-
mental Table 2, and Supplemental Figure 2).

For each “A” allele at rs1208, the effect on measures of insu-
lin sensitivity was modest, explaining 0.5%–0.8% of the trait 
variance for M value derived from euglycemic clamp or steady-
state plasma glucose derived from the IST.

Predicted NAT2 acetylator phenotype is not associated with 
insulin sensitivity. It is well established that variation in NAT2 has 
effects on metabolism of certain drugs and toxins (20, 21). NAT2 
is highly polymorphic, with over 65 known allelic variants (http://
louisville.edu/medicine/departments/pharmacology/news-in-
formation/nat). However, humans can be classified into “rapid,” 
“intermediate,” or “slow” acetylators of isoniazid or sulfamethaz-
ine (the canonical substrates) on the basis of the haplotype struc-
ture that can be inferred with great accuracy in European popula-
tions from a subset of the 7 more common coding SNPs (22, 23). To 
assess whether the association that we observed with insulin sen-
sitivity was being driven by predicted acetylator status, we used 

mental Table 2). We also genotyped the rs1208 and rs1801280 SNPs 
in adult nondiabetic European subjects from Minnesota (n = 930) and 
Scandinavia (n = 329). As shown in Figure 3, the effect size and direc-
tionality of the association were consistent across cohorts.

Finally, we tested the association of rs1208 and rs1801280 
in 455 East Asian samples that had previously undergone GWAS 
genotyping, and the direction of effect was consistent for these 
SNPs. However, the minor allele frequencies of these SNPs in East 
Asian individuals is much lower than those in European individu-
als, at only approximately 4%.

Meta-analysis. Following the in silico and de novo analyses in the 
GUARDIAN, Scandinavian, and Minnesota studies, we performed an 
inverse variance–weighted, fixed-effects meta-analysis of the com-
bined discovery and replication cohorts (with the analyses adjusted 
for age, gender, BMI) (n = 5,624). This meta-analysis showed that the 
ancestral alleles at both rs1208 (the “A” allele, frequency 0.57) and 
rs1801280 (“T” allele, frequency 0.55) were associated with a greater 
degree of IR (P = 2.8 × 10–6 and P = 5.7 × 10–5, respectively). There was 
evidence of heterogeneity in the data (P for heterogeneity of 0.05) 
that was no longer evident after the exclusion of the smallest of the 

Figure 1. Manhattan plot for the age-, 
gender-, and BMI-adjusted GWAS 
analyses (genomic positions from 
Hg19). Insulin sensitivity measures 
were fitted in a linear regression 
model with age, gender, center, and 
BMI, with the first two principal com-
ponents for race/ethnicity included as 
predictors.

Table 2. Top GWAS signals for insulin sensitivity

SNP Chr Pos (Hg19) Effect  
allele

Other  
allele

Effect allele  
freq

Effect Std error P value DirectionA Heterogeneity  
P value

N

rs9877159 3 190,699,342 A G 0.10 0.21  
(0.15)

0.05  
(0.05)

5.56 × 10–6  
(1.05 × 10–3)

++++ 0.33 (0.55) 2,764

rs117421960 8 91,723,406 T G 0.96 –0.40  
(–0.29)

0.09  
(0.09)

3.56 × 10–6  
(8.83 × 10–4)

--?? 0.34 (0.10) 1,903

rs1801280 8 18,257,854 T C 0.55 –0.13  
(–0.09)

0.03  
(0.03)

3.74 × 10–6  
(1.46 × 10–3)

---- 1.00 (0.71) 2,764

rs1208 8 18,258,316 A G 0.57 –0.13  
(–0.09)

0.03  
(0.03)

9.81 × 10–7  
(6.52 × 10–4)

---- 0.99 (0.72) 2,764

rs1775921 10 29,045,858 T C 0.91 –0.23  
(–0.21)

0.05  
(0.05)

4.33 × 10–6  
(3.15 × 10–5)

---- 0.24 (0.80) 2,764

Top insulin sensitivity signals identified in our study with P < 1 × 10–6 are shown. AThe direction of effects was reported in this order: RISC (n = 1,004), ULSAM 
(n = 899), EUGENE2 (n = 591), and Stanford (n = 270). The meta-analyzed results were based on the BMI-adjusted model. The BMI-unadjusted model 
generated similar but weaker association results (these results are shown in parentheses). “–“ indicates that the effect allele was associated with decreased 
insulin sensitivity; “+” indicates that the effect allele was associated with increased insulin sensitivity. “?” indicates that the direction of effect was 
indeterminate as the SNP was not found in the cohorts in question or was unable to be genotyped in those cohorts. Pos, position; freq, frequency.
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NAT2 SNPs are associated with other cardiometabolic traits in 
large-scale GWAS. We hypothesized that SNPs that affect insu-
lin sensitivity might also affect cardiometabolic risk. To assess 
whether NAT2 SNPs are also associated with other glycemic 
traits and lipid levels, we used publicly available GWAS data from 
MAGIC (Meta-Analyses of Glucose and Insulin-related traits 
Consortium) (17, 25) and GLGC (Global Lipids Genetics con-
sortium) (26). The rs1208 and rs1801280 SNPs were nominally 
associated with hemoglobin A1C (HbA1C) and fasting glucose in 
approximately 133,000 individuals from the MAGIC study and 
with triglycerides (TGs) and total cholesterol in approximately 
100,000 individuals (26). The effects are all in the expected 
direction (e.g., the effect allele/ancestral allele “A” of rs1208, 
which is associated with impaired insulin sensitivity, is also asso-
ciated with unfavorable changes of lipids levels) (Table 3). These 

a 6-SNP model to predict acetylator phenotype (http://nat2pred.
rit.albany.edu/). There was no significant association of predicted 
acetylator phenotype with insulin sensitivity (P = 0.23 for BMI-ad-
justed insulin sensitivity and P = 0.83 for the unadjusted model).

NAT2 SNPs are not associated with insulin clearance or insulin 
secretion. Given the role of NAT2 as a drug-metabolizing gene, we 
wanted to exclude an effect on insulin clearance, which can be calcu-
lated by the insulin infusion rate divided by the steady-state plasma 
insulin level during the euglycemic clamp. In analyses analogous to 
those performed for insulin sensitivity, we determined that rs1208 
and rs1801280 are not associated with insulin clearance (P > 0.05).

We also queried publically available data (24) and ascer-
tained that rs1208 is not associated with indices of glucose-stim-
ulated insulin secretion during oral GTT, such as the disposition 
index (P = 0.34, n = 10,500).

Figure 2. Regional association plots 
for NAT2. Regional association plots 
for NAT2 (A) in age- and gender-ad-
justed analyses and (B) age-, gender-, 
and BMI-adjusted analyses. The –log10 
of P values of the imputed SNPs are 
plotted on the y axis against genomic 
position (Hg19) on the x axis. Purple 
diamonds represent the top signal. 
Estimated recombination rates (taken 
from HapMap) are plotted to reflect the 
local linkage disequilibrium structure 
around the associated SNPs and their 
correlated proxies (according to a blue-
to-red scale from r2 = 0 to r2 = 1, based 
on pairwise r2 values from Hg19/1000 
Genomes).
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(Figure 4). In contrast to the effects seen with suppression of 
Nat1 levels, when Nat1 was overexpressed in 3T3-L1 cells, there 
was an increase in insulin-stimulated glucose uptake (31% vs. 
control, P < 0.001) (Figure 4 and Supplemental Figure 5). As 
expected, the total amount of glucose uptake was suppressed by 
the presence of cytochalasin b or apigenin, but overexpression 
of Nat1 was still associated with an increase in glucose uptake 
compared with that in control cells. In addition, overexpression 
of mouse Nat1 in mouse C2C12 myotubes increased insulin-
mediated glucose uptake (Supplemental Figure 6).

Nat1 silencing increased basal and isoproterenol-stimulated 
lipolysis, while decreasing insulin-mediated suppression of lipoly-
sis, in 3T3-L1 cells. Basal lipolysis was increased by 2.3-fold by Nat1 
siRNA, and isoproterenol-stimulated lipolysis was significantly 
augmented from the 6.3-fold increase in control cells (receiv-
ing scrambled siRNA) to 8.4-fold in the presence of Nat1 siRNA  
(P < 0.001). In the presence of siRNA to Nat1, insulin was not able 
to fully suppress isoproterenol-induced lipolysis (Figure 5). Con-
versely, Nat1 overexpression decreased isoproterenol-stimulated 
lipolysis by 66% (P < 0.001) and augmented the insulin-mediated 
suppression of lipolysis by 69% (P < 0.001) (Figure 5) compared 
with cells transfected with an empty vector.

SNPs were not associated with HDL cholesterol levels. The NAT2 
SNPs have a borderline association (P = 0.06) in the expected 
direction with type 2 diabetes in the DIAGRAM consortium (27). 
The rs1208 SNP is also nominally associated with an increase in 
coronary artery disease risk (P = 0.02) in data from the CARDIo-
GRAM (Coronary ARtery DIsease Genome-Wide Replication 
And Meta-Analysis study) consortium (28).

Perturbations in Nat1 affect insulin sensitivity and adipogene-
sis in vitro. To further explore the possible role of human NAT2 
(or its mouse ortholog, Nat1; ref. 29) in insulin sensitivity, we 
conducted in vitro studies related to cellular insulin response. 
Mouse 3T3-L1 adipocytes are a commonly used model in the 
study of IR. In these cells, stimulation with insulin decreased 
the mRNA levels of mouse Nat1 by approximately 50%, with-
out an effect on mouse Nat2 (the ortholog to human NAT1) (ref. 
21 and Supplemental Figure 3). si RNAs directed against mouse 
Nat1 resulted in a 65% decrease in Nat1 levels, without affecting 
mouse Nat2 levels (Supplemental Figure 4).

Nat1 knockdown decreased insulin-stimulated glucose 
uptake by 34% (P < 0.001) and also inhibited insulin-stimulated 
glucose uptake by 25% in the presence of the competitive glu-
cose transport inhibitors apigenin and cytochalasin B (P < 0.001)  

Table 3. Top insulin sensitivity signals in our meta-analysis and associations to other glycemic and cardiovascular traits  
in public GWAS data

SNPs rs9877159 rs1208 rs1801280 rs117421960 rs1775921

chr:pos chr3:190699342 chr8:18258316 chr8:18257854 chr8:91723406 chr10:29045858

Effect allele/other allele A/G A/G T/C T/G T/C

Effect allele freq 0.1 0.57 0.55 0.96 0.91

Insulin sensitivity  
(BMI adj)

β + – – – –
P 5.6 × 10–6 9.8 × 10–7 3.7 × 10–6 3.6 × 10–6 4.3 × 10–6

HOMA-IR β – – – + +
P 0.73 0.64 0.62 0.03 0.75

HOMA-B β – – – + +
P 0.82 0.72 0.64 0.52 0.27

HbA1C β – + + – –
P 0.7 0.02 0.03 0.01 0.38

FI (BMI adj) β – + + + –
P 0.02 0.32 0.45 0.37 0.5

FG (BMI adj) β – + + + –
P 0.24 0.02 0.01 0.02 0.52

TG β – + + + +
P 0.46 2.6 × 10–5 3.3 × 10–6 0.02 0.75

TC β – + + – –
P 0.1 4.2 × 10–4 9.5 × 10–4 0.8 0.98

LDL-C β – + + + –
P 0.04 0.03 0.04 0.47 0.48

HDL-C β + + – + –
P 0.29 0.82 0.91 0.04 0.71

For simplicity, only directions of effects are reported. The effects of HbA1C, fasting insulin (FI), fasting glucose (FG), TG, total cholesterol (TC), LDL 
cholesterol (LDL-C), and HDL cholesterol (HDL-C) are reported on the same effect alleles as in the GWAS of insulin sensitivity. The GWAS association 
statistics for HbA1C, fasting insulin, and fasting glucose were extracted from MAGIC GWAS results (25, 62). The GWAS association statistics for TG, 
total cholesterol, and LDL were extracted from the results of Teslovich et al. (26). Bold font indicates at least nominal significance. chr:pos, chromosome 
position; HOMA-IR, homeostasis model assessment-IR; HOMA-B, homeostasis model assessment–β cell function; BMI adj, BMI adjusted.
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Finally, Nat1 silencing also decreased 3T3-L1 adipocyte dif-
ferentiation by 32% (P < 0.001) compared with control, as judged 
by the accumulation of cytoplasmic lipid droplets and 29% 
decreased TG content (P < 0.01). This effect was accompanied by 
a decrease in the levels of adipogenic genes, such as Pparg, Cebpa, 
and Lep (Figure 6).

Knockout of Nat1 through gene targeting leads to decreased insulin 
sensitivity in vivo. Through homologous recombination, we gener-
ated mice that were wild-type (Nat1WT), heterozygous (Nat1Het), or 
homozygous (Nat1KO) for a global knockout of Nat1. Fasting plasma 
glucose, insulin, and TG levels were markedly elevated in Nat1KO 
mice compared with those in Nat1WT mice (136%, 150%, 154%, 
respectively), and heterozygote mice also had significant elevations 
in fasting blood glucose and TGs, with a (nonsignificant) increase 
in fasting plasma insulin compared with that in Nat1WT mice.

Nat1KO mice had significantly elevated plasma glucose levels 
during intraperitoneal GTTs and a decreased response to insulin 
with higher plasma glucose levels during intraperitoneal insulin 

tolerance test (ITTs) compared with Nat1WT mice (AUC increased 
by 144% for GTT, P < 0.001, and 124% for ITT, P < 0.01). For 
both the GTT and ITT, plasma glucose levels were significantly 
elevated by 30 minutes and remained elevated at 120 minutes. 
Importantly, in both the GTT and ITT, there was a gene dos-
age effect, with Nat1Het mice having an intermediate phenotype 
between Nat1WT and Nat1KO (Figure 7). There was no difference 
in body weight in the gene-targeted mice compared with that in 
wild-type mice (Supplemental Figure 7).

Discussion
Our study, which coupled genetic data from 5,624 individuals with 
direct measures of IR with detailed in vitro and in vivo functional 
characterization provides strong evidence for the role of the NAT2 
gene in insulin sensitivity.

This study is, to our knowledge, the first association study aris-
ing from a GWAS meta-analysis with these phenotypes. Although 
our association statistics did not reach formal levels of genome-wide 

Figure 3. Forest plot and association statistics for the lead SNP in NAT2, rs1208 (effect allele “A”, frequency 0.57), in all cohorts in analyses adjusted for 
age, gender, and BMI. We performed an inverse variance–weighted fixed-effects meta-analysis of the combined discovery and replication cohorts (with 
the analyses adjusted for age, gender, and BMI). The vertical black line indicates the null or “0” effect. The dashed vertical line indicates the overall effect 
size (ES) after the meta-analysis. Rectangles are proportional to the sample size of the referenced cohort. Horizontal lines through the rectangles indicate 
the standard error. Diamonds represent the overall effect size for each subtotal and for the overall analysis. The width of the diamond spans the standard 
error. “Subtotal” refers to either the subtotal of the discovery phase GWAS or the subtotal of the replication. *, Scandinavian replication cohort; **, part of 
GUARDIAN consortium, Hispanic replication cohort; ***, Minnesota replication cohort.
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significance, several supporting strands of evidence present a com-
pelling case for NAT2. First, in our GWAS, we observed the strongest 
association for a nonsynonymous SNP in NAT2 [rs1208 (803A>G, 
K268R)], with the ancestral “A” allele (frequency 0.57) associated 
with a greater degree of IR in analyses adjusted for age, gender, and 
BMI (P = 2.8 × 10–6). Importantly, the same ancestral “A” allele at 
rs1208 was also nominally associated with various cardiometabolic 
traits, including higher fasting glucose, HbA1C, TG levels, total and 
LDL cholesterol, and coronary artery disease in the expected direc-
tion. In a lookup of the publically available data from the DIAGRAM 
consortium, rs1208 has a borderline nominal association with type 
2 diabetes (P = 0.06) in the expected direction. Finally, in another 
recent study, SNP rs7825609 in NAT2 was associated with a com-
bined phenotype of cardiovascular disease and type 2 diabetes (30). 
As IR is a common risk factor for both cardiovascular disease and 
type 2 diabetes, the association of this NAT2 SNP with the combined 
phenotype is in line with a role of NAT2 in IR.

Second, the results of our in vitro functional experiments 
support direct effects of NAT2 perturbations on glucose uptake, 
lipolysis, and adipocyte differentiation. In mouse 3T3-L1 adipo-
cytes, silencing of Nat1 (the mouse ortholog to NAT2) decreased 
insulin-mediated glucose uptake. Furthermore, Nat1 silencing 
also decreased 3T3-L1 adipocyte differentiation and increased 
basal and isoproterenol-stimulated lipolysis, while decreasing 
insulin-mediated suppression of lipolysis. Importantly, opposite 
effects were seen with Nat1 overexpression both in mouse 3T3-L1 
adipocytes as well as mouse C2C12 myoblasts.

Finally, our in vivo studies in mice deficient or heterozygous for 
mouse Nat1 (the mouse ortholog of human NAT2) (21, 31) affirm 
that decreased Nat1 levels increased fasting glucose, insulin, and TG 
levels. Even more compelling are the data from the GTTs and ITTs, 
showing that loss of Nat1 results in an IR phenotype. Mice lacking 
either/both Nat1 and Nat2 have not previously been described to 
have an overt phenotype (32, 33) other than a reduction in arylamine 

Figure 4. Effect of Nat1 knockdown and overexpression on glucose uptake. (A) Nat1 knockdown decreased basal and insulin-stimulated glucose uptake 
in 3T3-L1 adipocytes. 3T3-L1 adipocytes transfected with scrambled siRNA (scr siRNA) or with siRNA against Nat1 (si Nat1). Cells were incubated in the 
presence or absence of insulin and the GLUT4 inhibitor apigenin (data for apigenin are shown, though similar results were obtained with cytochalasin B) 
in glucose and serum-free culture medium. 2-NDBG glucose uptake was measured using a plate reader. Values indicate mean ± SD of 3 separate experi-
ments, with 3 to 5 wells per experiment. **P ≤ 0.01, ***P ≤ 0.001 relative to basal scrambled controls or the indicated comparison bar. (B) Nat1 increased 
glucose uptake in 3T3-L1 adipocytes. 3T3-L1 adipocytes transfected with pCMV control and the overexpression plasmid for Nat1 (pNat1). Cells were incu-
bated in the presence or absence of insulin and/or inhibitor in glucose and serum-free culture medium. 2-NBD glucose uptake was measured using a plate 
reader. Values indicate mean ± SD of 3 separate experiments, with 3 to 5 wells per experiment. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, relative to basal pCMV 
controls or the indicated comparison bar, ANOVA.

Figure 5. Effect of Nat1 knockdown and overexpression on lipolysis. (A) Knockdown of Nat1 increased both basal and stimulated lipolysis. 3T3-L1 adipo-
cytes were transfected with scrambled siRNA or with siRNA against Nat1. Cells were serum starved for overnight and stimulated with 1 μM isoproterenol 
(ISO) or 100 nM insulin for 1 hour. FFA release in the media was measured and normalized with total protein. Data represent the mean ± SD of 3 separate 
experiments, with 3 to 5 wells per experiment. ***P ≤ 0.001, relative to basal scrambled control or the indicated comparison bar. (B) Nat1 overexpression 
decreased basal and isoproterenol-induced lipolysis. 3T3-L1 adipocytes were transfected with pCMV control plasmid or pNat1. Cells were serum starved for 
overnight and stimulated with 1 μM isoproterenol or 100 nM insulin for 1 hour. FFA release in the media was measured and normalized with total protein. 
Data represent the mean ± SD of 3 separate experiments, with 3 to 5 wells per experiment. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, relative to basal pCMV 
controls or the indicated comparison bar, ANOVA.
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(rs1495741), which has modest linkage 
disequilibrium with rs1208 (r2 = 0.23) 
but tags the NAT2 acetylator pheno-
type, has been associated with skin 
fluorescence, a noninvasive marker 
of advanced glycation endproducts 
(44). Interestingly, the rapid acetylator 
genotype was associated with lower 
skin fluorescence but higher fasting 
glucose and HbA1C values. While the 
crystal structure of NAT2 has been 
resolved in complex with CoA, neither 
K268R (rs1208) nor I114T (rs1801280) 
are known to play a direct role in these 
interactions, but several of the cod-
ing SNPs, including rs1801280, are 
thought to increase protein degrada-
tion (31, 45, 46), thereby affecting the 
acetylator phenotype.

The search for an explanation 
for the presence of multiple common 
coding SNPs in NAT2 has been the 
source of intense investigation, and 
the prevalence of NAT2 haplotypes 
has been determined for a large num-
ber of human populations (38, 45); the 
“rapid” acetylator NAT2*4 haplotype 
is considered ancestral and predomi-
nates in Southern Africa and East Asia, 
but higher frequencies of the most 
common “slow” acetylator haplotypes 
NAT2*5 (defined by the presence of 
rs1801280) and NAT2*6 (defined by 
the presence of rs1799930) predom-
inate in Europe, Northern Africa, and 

the Middle East (47). Importantly, our analysis based on predicted 
acetylator status did not support a stronger association with insu-
lin sensitivity for “slow” versus “rapid” acetylators, which suggests 
that the mechanism by which NAT2 may affect insulin sensitiv-
ity might be independent of the ability to acetylate the canonical 
drug substrates. In this regard, it is interesting that, although NATs 
were among the first examples of pharmacogenetic genes to be 
described, the endogenous substrate for NAT2 is unknown (21, 48).

The strengths of our study include the rigorous, quantitative 
measurement of insulin-mediated glucose uptake in the various 
cohorts, which in fact represent the majority of subjects in the 
world with both “clamp” data and DNA available for genotyping. 
We have also performed detailed in vitro and in vivo characteriza-
tion to buttress support for NAT2 as an IR gene. The weaknesses 
of the study are the relative paucity of samples with this quantita-
tive phenotype and the inability to easily collect more subjects with 
these measurements. It is plausible that a larger sample size would 
uncover additional variants, as has been seen in most other quanti-
tative phenotypes, such as height, BMI, and lipid levels (26, 49, 50).

Even with this report, there remain only a handful of variants 
associated with IR, which may be at least partly explained by the 
complex pathophysiology and difficulty of measuring IR. The 

metabolism (34). However, prior to this report, little was known 
about the effects on metabolic parameters or glucose metabolism 
(D.W. Hein, personal communication).

NAT2 and the related NAT1 comprise a unique family of 
cytosolic enzymes that catalyze acetyl-CoA–dependent N- and 
O-acetylation reactions and have distinct substrate specificity 
and tissue distribution despite a high degree of homology (~80% 
amino acid identity) (35–37). Human NAT2 has a single 870-bp 
coding exon encoding the 290–amino acid, 34-kDa enzyme (38), 
which is highly expressed in liver and intestine, with low levels of 
expression in other tissues (Genotype Tissue Expression project; 
http://www.gtexportal.org/home/gene/NAT2). Over 50 years ago, 
variation in NAT2 causing altered acetylation activity was shown to 
be responsible for isoniazid-induced toxicity (39). NAT2 plays a role 
in the biotransformation and detoxification of many commonly 
used hydrazine and arylamine drugs as well as xenobiotics and car-
cinogens, resulting in the well-described relationship between the 
“slow” acetylation status of NAT2 and increased risk of industrial 
bladder cancer caused by exposure to arylamine dyes and cigarette 
smoke (38, 40, 41). Common SNPs in NAT2 are also associated 
strongly with other endophenotypes, such as various metabolites 
in blood and urine (42, 43). More recently, another variant in NAT2 

Figure 6. Silencing Nat1 decreased adipogenesis. 3T3-L1 preadipocyte cells were transfected with scram-
bled or Nat1 siRNA and left untreated or treated with a mixture of methylisobutylxanthine, dexametha-
sone, and insulin (differentiation media). (A) Ten days after the addition of differentiation media, the cells 
were photographed. Original magnification, ×10. (B) Cell differentiation was quantified using FACS and 
expressed relative to scrambled control. Results represent mean ± SD from 5 separate experiments, with 3 
to 5 wells per experiment. ***P ≤ 0.001, 2-tailed unpaired Student’s t test and ANOVA. (C) Total TGs were 
measured using a plate reader. Results represent mean ± SD from 3 separate experiments, with 3 to 5 wells 
per experiment. **P ≤ 0.01, 2-tailed unpaired Student’s t test and ANOVA. (D) 3T3-L1 preadipocytes were 
treated as above, and the mRNA levels of the indicated genes were determined by real-time quantitative 
PCR, normalized to cyclophilin, and expressed relative to scrambled control. Results represent mean ± SEM 
from at least 3 separate experiments, with 3 to 5 wells per experiment. *P = 0.05, **P = 0.01, ***P = 0.001, 
2-tailed unpaired Student’s t test and ANOVA.
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Replication cohorts
The GUARDIAN cohort is comprised of nondiabetic Mexican-Amer-
ican subjects from 7 independent cohorts, but euglycemic clamps 
(using an insulin infusion rate of 60 mU/m2/mi for 2 hours) were per-
formed in the following three studies: the Mexican-American Coro-
nary Artery Disease study, the Hypertension-IR study, and the NIDD-
M-Atherosclerosis study. A total of 1,601 subjects from these cohorts 
passed quality control and were included in the analyses.

Following the lookup in the GUARDIAN samples, the strongest 
evidence for association was observed for nonsynonymous coding 
SNPs in NAT2 (rs1208 and rs1801280). Therefore, we performed de 
novo genotyping in additional European, nondiabetics from several 
studies in Minnesota (IR Study, PHPBC, NaKs) and Scandinavia 
(BOTNIA, MALMO-SIB).

A limited number of Chinese or Japanese subjects (461 siblings 
from 202 families) that had undergone an IST as part of the SAPPHIRe 
Cohort study were also used to lookup top association SNPs in NAT2.

Additional descriptions of the replication cohorts are shown in the 
Supplemental Methods.

GWAS genotyping, quality control, and imputation of individual studies
The RISC and Stanford samples were genotyped using the Affymetrix 
6.0 microarray platform. The ULSAM samples were genotyped using 
the Illumina Omni2.5M platform. The EUGENE2 samples were geno-
typed using the Illumina 550K platform. For all studies, we used stan-
dard quality control criteria, including excluding samples that were 
duplicated or those with gender discordance or non-European ancestry. 

manifestation of IR entails intricate compensations across mul-
tiple parallel pathways, which might mask the effects of genetic 
variants, whereas β cell dysfunction mainly involves one organ 
and manifests as one easily measurable outcome (i.e., plasma 
concentration of insulin). We have analyzed the largest sample 
size so far, with insulin sensitivity measured by gold standard 
methods. These quantitative measures of insulin sensitivity are 
invasive, labor-intensive, and time-consuming procedures. How-
ever, these measures are considered the best reflection of periph-
eral insulin action. Our study provides an example of how new 
information from more detailed measures of insulin sensitivity 
can contribute to the understanding of IR pathophysiology. Fur-
ther investigation of NAT2 is warranted, given these unexpected 
findings that potentially indicate a new role for this very well-
known pharmacogenetic locus.

Methods

GWAS populations and phenotyping
The four studies in the GWAS included the RISC consortium (n = 
1,004), ULSAM (Uppsala Longitudinal Study of Adult Men; n = 899), 
the EUGENE2 consortium (n = 591), and the Stanford IST cohort (n = 
270). Descriptive characteristics of the participants are shown in Table 
1. In brief, we excluded individuals with established heart disease or 
diabetes (or those on diabetic medications), pregnancy, fasting plasma 
glucose ≥7.0 mmol/l; 2-h plasma glucose (on a 75-g oral GTT) ≥11.0 
mmol/l. Additional details are available in the Supplemental Methods.

Figure 7. Nat1 deficiency impaired insulin sensitivity in vivo. (A and B) Intraperitoneal GTTs and ITTs were performed on fasted male mice (n = 13–21 per 
genotype). The area under the curve was measured and plotted. Het, heterozygote. (C) Blood glucose (n = 13–20 per genotype), (D) plasma insulin (n = 
13–20 per genotype), and (E) TG (n = 13–16 per genotype) concentrations were determined in mice fasted overnight. Values represent mean ± SEM.  
*P < 0.05, **P ≤ 0.01, ***P ≤ 0.001, ANOVA.
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known glycemic-related and diabetes-related SNPs showed an enrich-
ment of low P values for insulin sensitivity associations and whether 
the direction of effects was consistent with what we would expect 
(Supplemental Tables 3 and 4 and Supplemental Figure 9).

For the NAT2 SNPs, we also accessed information on coronary 
artery disease from the CARDIoGRAMplusC4D consortium (28).

Cell culture
The murine preadipocyte line 3T3-L1 was obtained from ATCC and 
cultured according to the manufacturer’s instructions. Differentiation 
was as described previously (54) (see the Supplemental Methods for 
additional details). Mouse C2C12 myoblasts obtained from ATCC were 
cultured in DMEM supplemented with 10% FBS. To induce differenti-
ation, media were replaced with DMEM containing 2% horse serum. 
Experiments were performed in differentiated C2C12 myotubes.

RNA extraction, reverse transcription, and real-time PCR
Total RNA from cells and mouse tissues were isolated, and quantita-
tive PCR was performed as described previously (55) using primers 
shown in Supplemental Table 5. The data were analyzed by the public 
domain program relative expression software tool (REST).

Transient transfection of 3T3-L1 cells
For knockdown experiments, differentiated 3T3-L1 adipocytes were 
transfected with 50 nM synthetic predesigned siRNA targeting Nat1 
(mouse homolog to NAT2) or nonsilencing siRNA (Origene) using Lip-
ofectamine 2000 transfection reagent (Life Technologies) following 
the manufacturer’s recommended protocol. For overexpression stud-
ies, cells were transiently transfected with expression plasmids for Nat1 
and pCMV (control) (500 ng per well). After 48 hours of transfection, 
the media were changed and cells were exposed to insulin (100 nM) or 
vehicle. After 6 hours, cell extracts were prepared for RNA and protein.

Lipolysis and glucose uptake assays in 3T3-L1 cells
Lipolysis and glucose uptake assays were performed as previously 
described in fully differentiated 3T3-L1 adipocytes (54, 56). See the 
Supplemental Methods for additional details.

Adipogenesis of 3T3-L1 preadipocytes
To determine the impact of Nat1 expression (overexpression or knock-
down) on the normal differentiation of 3T3-L1 preadipocytes into 
mature adipocytes, transient transfection in 3T3-L1 preadipocytes was 
used on day 0 and day 4 of a standard differentiation protocol (see 
the Supplemental Methods for additional details). For knockdown 
experiments, 3T3-L1 adipocytes were transfected with 20 nM syn-
thetic predesigned siRNA targeting Nat1 or nonsilencing siRNA. On 
day 10, pictures of the cells were taken and cell lysates were collected 
for RNA isolation or protein quantitative analysis. At days 11 and 12, 
when the control adipocytes reached maturity, adipocyte differentia-
tion was quantitated by “side scatter” (scatter of laser light caused by 
fat droplets in adipocytes) assessed by flow cytometry. Total TGs were 
measured using plate reader after dissolving the lipids in isopropanol.

Nat1-targeted mice
Nat1-targeted mice (Nat1KO mice) were produced by homologous recom-
bination at the Knockout Mouse Project Repository and the Mouse Biol-
ogy Program (http://www.mousebiology.org) at the University of Cali-

We excluded SNPs with genotyping call rates <95%, Hardy-Weinberg 
equilibrium P values of less than 0.0001 and MAF <1%. Haplotypes 
were phased using MACH (51) (RISC, EUGENE2, and Stanford). Miss-
ing genotypes were imputed on the 1000 Genomes Project data (interim 
20101123 phase 1) against all-population reference panel using either 
MiniMac (52) (RISC, EUGENE2, Stanford) or IMPUTE (ULSAM). Addi-
tional details are available in the Supplemental Methods.

In silico lookup and de novo replication genotyping
Based on the initial GWAS, we carried forward 5 SNPs from 4 loci that 
had been implicated through the initial “discovery” analysis (of the 4 
GWAS cohorts) for examination within the GUARDIAN cohort. These 
loci were chosen because they had P values of approximately 10–6 in 
the discovery analysis and also had multiple supporting SNPs within 
the locus (Table 2). Two SNPs (rs1208 and rs1801280, r2 ~ 0.75) from 
the NAT2 locus were included because they were both nonsynonymous 
coding SNPs. Additional details on these SNPs are in the Supplemen-
tal Methods. Following the in silico lookup in GUARDIAN, rs1208 and 
rs1801280 were genotyped in the Scandinavian and Minnesota sam-
ples using TaqMan.

Finally, we examined whether the NAT2 SNPs were associated 
with the metabolic clearance rate of insulin, which could be calculated 
as the insulin infusion rate divided by the steady-state plasma insulin 
level during the euglycemic clamp or IST. Insulin clearance data were 
available from GWAS cohorts, excluding the Stanford cohort.

NAT2 predicted acetylator phenotype analysis
NAT2 haplotypes have been shown to be predictive of NAT2 acetyla-
tor status (22). To determine whether the insulin sensitivity associa-
tion would be stronger when comparing “rapid,” “intermediate,” and 
“slow” predicted acetylator phenotypes with one another based on hap-
lotypes, we performed an analysis using a 6-SNP model that has been 
shown to accurately predict the rapid, intermediate, and slow acetylator 
phenotype (as defined by the ability of NAT2 to acetylate the canonical 
substrate isoniazid). The acetylator phenotype of each individual was 
predicted using NAT2PRED (http://nat2pred.rit.albany.edu/) (23).

The associations between insulin sensitivity SNPs and glycemic traits, 
lipids levels, and cardiovascular risk
To assess the potential overlap among the SNPs associated with insulin 
sensitivity, glycemic traits, and lipid levels, we downloaded the pub-
licly available GWAS data for fasting insulin, fasting glucose, HbA1C, 
homeostasis model assessment-IR, homeostasis model assessment–β 
cell function, BMI, TGs, total cholesterol, HDL cholesterol, and LDL 
cholesterol from MAGIC (17, 25) and GLGC (26). We pulled out inde-
pendent SNPs (pruned based on a 500-kb window) with P < 1 × 10–3 
(n = 185 SNPs) from our meta-analyzed GWAS data (insulin sensitiv-
ity adjusted for age, gender, and BMI) and cross-referenced the top 
signals of insulin sensitivity with other glycemic traits and lipids in 
large-scale publicly available GWAS data from the MAGIC and GLGC 
consortia. We investigated whether the SNPs with low P values in our 
study showed associations with these traits more than expected by 
chance (Supplemental Figure 8).

Furthermore, we investigated associations for the fasting insulin– 
and fasting glucose–associated SNPs reported by Scott et al. (17) and 
the 65 type 2 diabetes SNPs reported by Morris et al. (53) with insu-
lin sensitivity in our study. We ran queries to examine whether these 
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total, 12,106,458 SNPs passed quality control (minor allele count [MAC] 
>5 in individual cohorts; imputation quality >0.3 in MACH or >0.4 in 
IMPUTE) and were included in the meta-analysis. Meta-analyses were 
performed after reversing the signs of the effect sizes in the Stanford 
cohort (as the correlation of IST with M value is inverse).

During the meta-analysis, significant heterogeneity was demon-
strated for the smallest cohort that was part of the genotyping effort 
in Minnesota (n = 115, P for heterogeneity = 0.05); hence, additional 
analyses were performed excluding this cohort.

Statistical analysis of acetylator phenotype. Association analysis was 
performed in STATA to see whether the predicted acetylator pheno-
type was associated with insulin sensitivity, with acetylator phenotypes 
coded as follows: 0 = S (slow), 1 = I (intermediate), and 2 = R (rapid).

Statistical analyses of in vitro data. Statistical analyses of the 
experiments were performed with GraphPad Prism 5.0. Two-tailed 
unpaired Student’s t test and ANOVA were applied to determine statis-
tical significance.

Study approval
All human genetic studies were conducted according to the principles 
of the Declaration of Helsinki. The IRBs at Stanford University, Upp-
sala University (ULSAM), Lund University (Scandinavian cohorts), 
and University of Minnesota (Minnesota studies) as well as all of the 
institutions represented in the RISC, EUGENE2, GUARDIAN, and 
SAPPHIRe studies approved these studies. The institutions repre-
sented are referenced in the supplemental material. Written informed 
consent was received from participants prior to inclusion in the study. 
All animal protocols were approved by the Administrative Panel on 
Laboratory Animal Care at Stanford University and were performed 
in accordance with the guidelines of the American Association for the 
Accreditation of Laboratory Animal Care.
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fornia, Davis, using a C57BL/6N ES cell clone (11571A-A3). Though we 
attempted to breed 5 chimeric mice to achieve germline transmission, 
all mice in these studies arose from the successful mating of a single 
70% chimeric male mouse with C57BL/6 female mice, transmitting the 
Nat1-targeted allele to a single female heterozygote mouse.

Mice used in experiments were generated through breeding with 
C57BL/6 mice or heterozygote crosses, and age-matched wild-type 
littermate mice were used as controls. Mice were housed in a pathogen-
free barrier facility with a 12-hour light/dark cycle and fed standard 
rodent chow diet and water ad libitum. Body weight was monitored 
weekly for 12 weeks. Male mice, between 10 and 14 weeks old, were 
used in all the experiments. For genotyping, PCR analysis was used, 
using the following primers: Nat1-wt F: CCTGCCATCTTCCTTTT-
GACAGAGG; Nat1-wt R: TGTGCTTACAAACACAGATGCTGGC; 
Neo F: GCAGCCTCTGTTCCACATACACTTCA; Nat1-R: GGCTT-
GAGTTCTGTTTTGAGGACTGG.

Blood glucose, plasma insulin, and plasma lipid composition 
assessment
Overnight fasting blood glucose levels from the tail vein were mea-
sured with a glucometer (TRUEbalance, Nipro Diagnostics Inc.). 
Blood was collected by retro-orbital bleeding from anesthetized 
mice, and plasma TGs levels were determined in mice fasted over-
night using enzymatic kits (L-Type TG M, Wako Diagnostics) (57). 
Plasma insulin levels were determined using the Ultra-Sensitive 
Mouse Insulin ELISA Kit (Crystal Chem Inc.).

GTTs and ITTs
GTTs and ITTs were performed on 10- to 12-week-old mice, as previ-
ously reported (58). For GTTs, mice were injected i.p. after overnight 
fasting with 2 g glucose/kg body weight. For ITTs, mice were injected 
i.p after 6-hour fasting with insulin at 1.0 U/kg body weight. See the 
Supplemental Methods for additional details.

Statistics
GWAS analyses and study-specific statistical analyses. We performed 
GWAS of insulin sensitivity in a total sample size of 2,764 individuals 
of European descent. In the primary analyses, insulin sensitivity mea-
sures were fitted in a linear regression model with age, gender, center 
(for RISC and EUGENE2, which were conducted at multiple centers), 
BMI, and the first two principal components for race/ethnicity (derived 
from EIGENSTRAT; ref. 59) included as predictors. We also ran the 
analysis without adjustment for BMI in an attempt to identify loci asso-
ciated with insulin sensitivity via adiposity. The standardized residuals 
from the linear regression analysis were normalized by inverse-normal 
transformation prior to GWAS to create a normally distributed trait for 
GWAS analysis. To account for imputation uncertainty, we used the 
1000 Genomes imputation allele dosage in linear models. We carried 
out GWAS separately within each cohort using an additive genetic 
model. Additional details are in the Supplemental Methods.

Meta-analysis. Following the in silico lookup and de novo genotyp-
ing efforts in the GUARDIAN, Scandinavian, and Minnesota samples, 
we performed an inverse variance–weighted fixed-effects meta-analysis 
of the combined discovery and replication cohorts (with the analyses 
adjusted for age, gender, BMI) for the NAT2 SNPs rs1208 and rs1801280. 
We used the METAL program (60) to meta-analyse individual stud-
ies by combining the study-specific regression coefficient estimates. In 
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