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Abstract 26 

It is imperative to identify highly polymorphic and tightly linked markers of a known 27 

trait for molecular marker assisted selection (MAS).  Potyvirus resistance 4 (Pvr4) 28 

locus in pepper confers resistance to three pathotypes of Potato Virus Y (PVY) and to 29 

pepper mottle virus (PepMoV).  We describe the use of next generation sequencing 30 

technology to generate molecular markers tightly linked to Pvr4.  Initially, comparative 31 

genomics was carried out and a syntenic region of tomato on chromosome ten was used 32 

to generate PCR-based markers and map Pvr4.  Subsequently, the genomic sequence of 33 

pepper was used and more than 5000 single nucleotide variants (SNVs) were identified 34 

within the interval. In addition, we identified nucleotide-binding site-leucine-rich repeat 35 

(NB-LRR) type disease resistance genes within the interval.  Several of these SNVs 36 

were converted to molecular markers desirable for large-scale molecular breeding 37 

programmes. 38 

 39 

Keywords: Potato virus Y, pepper, Pvr4, next generation sequencing, MAS, 40 

synteny. 41 
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Introduction 42 

Pepper (Capsicum) species are among the most important horticultural crops worldwide 43 

and belong to the Solanaceae family along with tomato and potato.  Cultivated fruits are 44 

used as fresh vegetables, spices, colouring agents and for some medical applications 45 

(Mathew, 2006). Worldwide, approximately 30 million tons per year are produced 46 

(FAO 2011). As with other crop plants, pepper is subject to attacks by many pathogens 47 

that can significantly reduce yields.  48 

Potato Virus Y (PVY) is a member of the group Potyvirus and considered to be 49 

the most common and important virus in pepper growing regions (Janzac et al., 2009, 50 

Kim et al., 2008, Scholthof et al., 2011).  PVY can be transmitted by grafting, sap 51 

inoculation and insects such as aphid (Green and Kim 1991; Kanavaki et al., 2006).  52 

Isolates of PVY are designated PVY-0, PVY-1, and PVY 1-2 according to their 53 

virulence on pepper genotypes (Kyle and Palloix 1997; Caranta et al., 1999).  54 

Since chemical methods have limited success for controlling PVY, resistant 55 

varieties would be the most effective means of disease management. Although seven 56 

potyvirus resistance genes have been identified in pepper, the Pvr4 locus has been 57 

reported to confer dominant resistance to three pathotypes of PVY (Caranta et al., 1996) 58 

and to pepper mottle virus (PepMoV) (Caranta et al., 1999). This dominant gene was 59 

derived from the Criollo de Morelos 334 (CM334) variety. Recently, it has been 60 

transferred into many pepper varieties using traditional breeding methods where virus 61 

tests have been used for selection. 62 

 Virus screening assays are useful and utilised commonly in resistance breeding 63 

programmes (Ottomon et al., 2009).  However, they are laborious, time-consuming and 64 

expensive. These difficulties can be overcome by exploiting molecular markers tightly 65 
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linked to the resistance gene(s). Molecular markers can be used to detect desirable 66 

characters at any stage of the plant’s life cycle and reduce time required for phenotypic 67 

observation.  In the last three decades, several DNA fingerprinting methods have been 68 

used for marker development to map relevant genes including restriction fragment 69 

length polymorphism (RFLP; Tör et al., 1994), random amplified polymorphic DNA 70 

(RAPD; Williams et al., 1990), amplified fragment length polymorphism (AFLP; 71 

Rehmany et al., 2000) and cleaved amplified polymorphic sequences (CAPS; Tör et al., 72 

2002).  The bulk segregant analysis (BSA) method (Michelmore et al., 1991), which 73 

relies on the bulking of around fifteen segregating individual plants to form two pools 74 

differing only in the region of interest, has been employed to generate markers closely 75 

linked to the gene of interest.  Once the markers are identified, a large number of 76 

individuals from the segregating populations are tested to confirm the linkage and, 77 

subsequently, further markers are developed to use in marker assisted selection (MAS) 78 

programmes.   79 

An AFLP-derived CAPS marker, E41/M49-645, developed previously is linked 80 

to the Pvr4 locus in pepper (Caranta et al., 1999). We attempted to use this marker in 81 

our pepper-breeding programme.  However, we found that the linkage was not close 82 

enough to Pvr4 for a satisfactory MAS programme to assist Pvr4 introgression into 83 

several susceptible backgrounds. 84 

The objective of this study was to develop new molecular markers tightly linked 85 

to the disease resistance gene Pvr4 for molecular breeding in pepper.  We employed 86 

next generation sequencing (NGS) technology in combination with the BSA method to 87 

generate genomic data from resistant and susceptible lines.  Initially, a syntenic region 88 

of the tomato genome was used to mine the pepper sequence data that we generated and 89 
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hundreds of single-nucleotide variants (SNVs) between pepper and tomato were 90 

detected.  Several of these SNVs were then converted to MAS-friendly PCR-based 91 

markers.  Subsequently, the pepper genome sequence became available and was used 92 

for fine mapping the locus.  The orders of markers, and their genetic and physical 93 

distance from Pvr4 were determined using a mapping population. 94 

 95 

Materials and Methods 96 

Virus isolate and biological assay 97 

An isolate of PVY pathotype 1-2 was kindly provided by Eric Verdin (INRA-PACA-98 

France) and used throughout this study.  The virus was multiplied in susceptible pepper 99 

plants (Capsicum annuum line Y-CAR) according to previous studies (Boiteux et al., 100 

1996; Dhawan et al., 1996; Echer and Costa 2002). Virus inoculum was prepared by 101 

homogenizing infected leaves in 0.01 M phosphate buffer (pH 7.0) containing 0.2 % 102 

sodium sulphate. After 600-mesh carborundum was added, cotyledons of test plants at 103 

the cotyledon to two true leaf stages were inoculated (Janzac et al., 2009, Kim et al., 104 

2008, Moury et al., 1997, Moury et al., 1998). The plants were then kept in a growth 105 

chamber at 22
o
C with a 16 h photoperiod.  Inoculations were repeated 3-7 days later.  106 

Inoculated plants were evaluated for symptom development 3-4 weeks after inoculation. 107 

Plants showing disease symptoms on their uninoculated leaves were rated as susceptible 108 

while those without symptoms were accepted as resistant. After visual evaluation, 109 

young leaves were harvested from the plants with and without symptoms on their 110 

uninoculated leaves and DAS-ELISA (Clark and Adams 1977) was performed to 111 

determine the presence or absence of the virus.  112 

Plant lines and generation of mapping population 113 
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The susceptible C. annuum L. cv. SR-231, a Charleston type sweet pepper with superior 114 

agronomic characters, was crossed with C. annuum accession Criollo de Morelos 334, 115 

which is resistant to the PVY pathotype 1-2, to generate F1 lines. A total of 200 F2 seeds 116 

were obtained from a single F1 plant. Individual plants in the segregating F2 lines were 117 

then sap-inoculated with the PVY.  Twenty F2 resistant lines from these assays were 118 

allowed to self-pollinate.  Subsequently, twenty-four seedlings from each of these F3 119 

lines were sap inoculated with isolates of PVY to determine their genotypes at the F2 120 

stage. 121 

 122 

DNA extraction and sequencing analysis 123 

Genomic DNA was isolated from fresh young leaves by using the Wizard Magnetic Kit 124 

(Promega) following the manufacturer’s instructions. The bulked segregant analysis 125 

was carried out as previously described (Michelmore et al., 1991). DNA was extracted 126 

separately from each individual of the progeny and DNA from fifteen resistant and 127 

fifteen susceptible F2 individuals was pooled in equal concentrations to make up the 128 

resistant and susceptible bulks, respectively.  We generated 1 lane of 100 bp paired-end 129 

Illumina HiSeq2500 sequencing data for each parent (resistant and susceptible) line and 130 

bulked (resistant and susceptible) pools, comprising 87.9 M pairs of reads for the 131 

susceptible parent, 107.6 M for the resistant parent, 55.2 M for the resistant bulk and 132 

62.3 M for the susceptible bulk. The Illumina reads were first trimmed based on their 133 

quality scores using Btrim (Kong, 2011) with a cut-off of 25 for average quality scores 134 

within a moving window of 5 bp. The minimum acceptable read length was 25 bp (that 135 

is, reads that were shorter than 25 bp after trimming were discarded). Other parameters 136 

for Btrim were set to default values. Pvr4 was mapped previously on pepper 137 
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chromosome 10 (http://solgenomics.net/marker/SGN-M6414/details) and the synteny of 138 

the location between tomato and pepper was documented (Wu et al., 2009).  We used 139 

the interval (59.000.000-61.000.000) from tomato chromosome 10 (RefSeq accession 140 

NC_015447) as a reference to align the trimmed sequences using Geneious R7 (created 141 

by Biomatters).  Once alignments were made, we searched for single-nucleotide 142 

variants and other short variants between the parental lines. The alignment results were 143 

first converted into BAM format (Li et al., 2009) and visualized using Integrative 144 

Genomics Viewer (IGV, James et al., 2011). 145 

Once the sequence of the pepper genome became available (Kim et al., 2014), we used 146 

the pepper chromosome 10 sequence version 1.55 (downloaded from the Seoul National 147 

University website [http://peppergenome.snu.ac.kr/]).  We extracted the Pvr4 region and 148 

used it as a reference sequence to align our sequences obtained from the Illumina 149 

HiSeq2500.  We aligned the tomato and pepper genomic sequences using BLASTN and 150 

visualized the alignment results using the Artemis Comparison Tool (Carver et al., 151 

2005).  Additional PCR-based markers were generated from the pepper genomic 152 

sequences. cDNA databases for Cm334 and Zunla-1 were obtained from 153 

http://peppergenome.snu.ac.kr/ and http://peppersequence.genomics.cn, respectively.  154 

Conversion of polymorphic sequences into PCR-based molecular markers 155 

Before SNVs were converted into PCR-based CAPS markers, polymorphic sites were 156 

confirmed both on parents and bulks.  We then randomly selected candidates to cover 157 

the 2 Mb regions and the SNVs were converted into CAPS marker using dCAPS 158 

(http://helix.wustl.edu/dcaps/dcaps.html) (Neff et al., 2002).   Each PCR amplification 159 

was performed in a total volume of 25 μl containing 20 ng of genomic DNA, forward 160 

and reverse primers each at 0.4 μM, 10xPCR Buffer 2 mM MgCI2, 0.4 mM dNTPs and 161 
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1 U of Taq DNA polymerase (Vivantis). The PCR reaction consisted of a first step at 162 

94°C for 3 min followed by 35 cycles of 30 s denaturation at 94°C, 30 s annealing at 50- 163 

60°C (based on Tm of primers) and 1 min extension at 72°C. Finally, an extension step 164 

was carried out at 72°C for 5 min. A 10 μl sample of each reaction volume was loaded 165 

onto a 1.5% agarose gel to ascertain whether PCR amplification was successful. The 166 

remaining 10-15 μl of PCR reactions were digested with relevant restriction enzymes 167 

following manufacturer's instructions. Digest products of PCR amplicons were 168 

separated on a 2% agarose gel containing TAE buffer at 110 V for 2h, and visualized 169 

under UV light after staining with ethidium bromide.  170 

 171 

Confirmation of linkage between established and newly generated markers. 172 

Newly generated PCR-based markers were tested first on parents to confirm the 173 

polymorphisms and then on a segregating 200 F2 population derived from the cross C. 174 

annuum L. cv. SR-231 x C. annuum accession Criollo de Morelos 334.  Marker 175 

genotyping data and the virus disease phenotyping data were used to identify the Pvr4 176 

interval.  Recombinant lines and the physical map covering the TG420 region were used 177 

to narrow the interval for generation of new markers that could be used in the MAS 178 

programme.  Sequences of PCR-based markers will be provided upon request. 179 

 180 

Accessions 181 

The accession number for Sequenced Read Archive (SRA) is SRX713975. 182 

 183 

RESULTS 184 

Pvr4 segregates as a single locus 185 
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Capsicum annuum L.  cv SR-231 was crossed to C. annuum accession Criollo de 186 

Morelos 334 (CM334) (Fig. 1).  The resulting F1 exhibited resistance to PVY 1-2 187 

indicating resistance carried from CM334 was dominant.  A population total of 200 188 

segregating F2 progeny derived from the F1 were inoculated with this virus.  The 189 

phenotypic observation was confirmed by DAS-ELISA method (Clark and Adams 190 

1977).  The observed segregation in this experiment was 150 resistant to 54 susceptible 191 

(3:1; X
2
=0.05, P=0.05) suggesting a single gene, Pvr4, was the only resistant 192 

determinant segregating in this cross. 193 

 194 

Comparative genomics help identify Pvr4 interval 195 

At the beginning of our study, the pepper genome was not available and the relevant 196 

databases (Bombarely et al., 2011) placed Pvr4 on chromosome 10 towards the 197 

telomeric region linked to the marker TG420.  In addition, a complete integrated map of 198 

pepper was available and a few papers described a genetic interval for Pvr4 (Caranta et 199 

al., 1999; Barchi et al., 2007; Paran et al., 2004; Lee et al., 2009). Since pepper 200 

chromosome 10 contains all the markers of the tomato chromosome 10 (Wu et al., 201 

2009) and the tomato genome had recently been sequenced (Tomato Genome 202 

Consortium, 2012), we focused attention on the region of marker TG420 and used the 203 

sequence information from the tomato chromosome 10: 59,000.000-61,000.000 as a 204 

reference to align the pepper sequences obtained from parental and bulked lines 205 

generated with HiSeq 2500 (Illumina). 206 

From the resulting alignments against the tomato reference sequence, we identified sites 207 

that were polymorphic between resistant and susceptible pepper lines.  Some of these 208 

polymorphisms consisted of SNVs and were converted into sequence-specific co-209 
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dominant PCR-based markers.  The CAPS markers MY262 (Tom chr 10: 59,293,491-210 

59,293,668) and MY69 (Tom chr 10:60,111,004-60,111,469) were then used to map 211 

Pvr4 with the segregating F2 lines (Data for some of the segregating F2 lines that are 212 

critical for mapping Pvr4 are given in Supplemental Table 1).  A total of 400 lines were 213 

tested and there were 5 recombinants for MY262 and 6 for MY69 showing the markers 214 

were linked to Pvr4. An interval for the locus was defined in the vicinity of TG420.  To 215 

reduce the interval, further markers MY342 and MY302 were generated from the 216 

polymorphic regions and mapping was carried out decreasing the interval on the tomato 217 

genome to 509 kb (Figure 2). 218 

 219 

Pvr4 interval is larger in pepper than that in tomato 220 

As the pepper genome became available (Kim et al., 2014), we compared pepper and 221 

tomato genomes around the Pvr4 region using pairwise sequence alignment. There was 222 

a high degree of synteny, but this region of chromosome 10 in pepper was inverted 223 

compared to tomato (Figure 3).  In addition, the physical map showed that the Pvr4 224 

interval in pepper is larger than that in tomato. Further markers were generated from the 225 

Pvr4 region using the now available pepper (version 1.55) chromosome 10 sequences.  226 

First, we used the Pvr4 region between markers MY69 and MY302 (chr10: 230,139,119 227 

to 232,119,074) as a reference to map short sequences only from parental lines 228 

generated by Illumina sequencing; then we compared the two parents for variations. If 229 

the variation frequency was100%, these polymorphisms were considered to be suitable 230 

to convert to CAPS markers.  Using this approach, we identified 5194 polymorphic sites 231 

[insertions, deletions and SNPs] (Supplemental Table 2).  Further markers were 232 



 12 

generated and Pvr4 was fine mapped between MY1476 and MY5009 to an interval of 233 

630kb with 1 recombinant either side (Fig. 2).      234 

 235 

Pvr4 interval contains NB-LRR type R-genes 236 

Once we had fine-mapped the Pvr4 gene and identified the interval, we wanted to 237 

develop a marker that would be naturally polymorphic for several different pepper 238 

varieties. Such a marker could then be easily incorporated into molecular breeding 239 

programmes.  For this reason, we mapped the Unigene sequences onto the interval using 240 

the cDNA data sets generated from C. annum cultivars, CM334 and Zunla-1, obtained 241 

from http://peppergenome.snu.ac.kr/ and http://peppersequence.genomics.cn, 242 

respectively.  We then searched the cDNAs aligning within this interval for NBS-LRR- 243 

and RLK- type disease resistance genes by using BLASTX.  We identified 8 cDNAs in 244 

CM334 and 18 in Zunla-1 cultivars that show sequence similarity to NBS-LRR type R-245 

genes (Supplemental Table 3).  Since NBS-LRR type genes can be very polymorphic 246 

across different accessions and cultivars, we then generated a new CAPS marker, 247 

MY1421, within one of the NBS-LRR type genes and used it to map Pvr4 with the F2 248 

population.  The MY1421 marker co-segregated with Pvr4 (Fig. 2), indicating its 249 

usefulness for MAS during transfer of Pvr4 into susceptible pepper varieties.  250 

 251 

Discussion 252 

We wanted to generate tightly linked markers for Pvr4 suitable for molecular 253 

breeding programmes.  To achieve this, we used a mapping population from a cross 254 

between PVY resistant and susceptible lines for phenotying Pvr4 in the individual 255 

progeny plants.  Subsequently, we employed NGS technology to sequence the genome 256 
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of the parental and the bulked lines.  We then applied the power of comparative 257 

genomics to identify the syntenic region and to reveal polymorphisms between 258 

susceptible and the resistant lines.  Some of the selected polymorphisms were then 259 

converted into PCR-based molecular markers, which were then tested on the 260 

segregating mapping population to confirm the genetic linkage between the markers and 261 

Pvr4.  Here, we present evidence that Pvr4 is mapped to an interval of 630kb with two 262 

flanking and one co-segregating markers.   263 

MAS is one of the most widely used applications in breeding programs (Foolad 264 

2007). The process reduces breeding time and allows pyramiding of desirable genes in a 265 

superior line. Therefore, development of markers tightly linked to the gene of interest is 266 

of high importance for breeders.  Previously, DNA-based molecular markers have been 267 

developed for resistance breeding in pepper (Moury et al., 2000; Kim et al., 2008).  268 

However, in our previous studies, we have used the published AFLP-derived CAPS 269 

marker in our segregating populations and some commercial varieties.  Unfortunately, 270 

the linkage we observed was not tight enough to carry out MAS programmes (data not 271 

shown). In the present study, the power of NGS coupled with comparative genomics led 272 

to the development of several markers tightly linked to the target gene Pvr4.    273 

Synteny has been described as the preserved order of genes on chromosomes of 274 

related species, which results from descent from a common ancestor (Duran et al., 275 

2009).  Since tomato and pepper are closely related (bot are members of the Solanaceae 276 

family) and synteny exists on different parts of the chromosomes, we used comparative 277 

genomics to generate markers and map the gene of interest. A 2Mb genomic sequence 278 

from the tomato chromosome 10 around marker TG420 was used and the short 279 

sequences from the parental lines were aligned.  SNVs were identified and converted to 280 
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PCR-based co-dominant markers and a 509kb interval for the Pvr4 was defined.  SNPs 281 

generated by using NGS technology have been applied to many molecular marker 282 

applications including genetic diversity analysis, DNA diagnostics, high-resolution 283 

genetic mapping, phylogenetics and selection of desirable characters (Rafalski, 2002, 284 

Jones et al., 2009).  At the beginning of this study, the pepper genome sequence was not 285 

available, but the use of NGS enabled us to generate markers rapidly and identify a 286 

manageable interval for the gene of interest.  287 

Once the pepper genomic sequence information became available, comparison of 288 

the Pvr4 interval between pepper and tomato genomes revealed that the interval was 289 

much bigger in the pepper genome (around 2Mb) than in tomato.  This prompted us to 290 

generate further markers by SNV discovery and their conversion to molecular markers.  291 

This enabled us to fine map the Pvr4 interval in pepper to 630kb.  292 

Since the markers developed are co-dominant, they can be used to discriminate 293 

different alleles in breeding lines and populations.  We did not intend to clone the Pvr4 294 

gene but to identify markers that are tightly linked to it for use in breeding programmes.  295 

Molecular markers must be cost-effectively amenable to a large number of samples in 296 

order to be used in MAS (Gupta et al, 1999).  In addition, molecular markers should co-297 

segregate or be tightly linked to traits of interest, preferably less than 1 cM genetic 298 

distance.  Thus, the use of flanking markers or intragenic markers greatly increases the 299 

reliability of markers to predict phenotype (Ragimekula et al., 2013).  In this study, we 300 

developed flanking markers with only one recombination event on either side of and 301 

less than 1 cM genetic distance away from Pvr4.  To support this and develop a co-302 

segregating marker, we looked at the possible polymorphic genes within the interval. It 303 

is well known that nucleotide-binding site-leucine-rich repeat (NB-LRR) proteins 304 
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confer disease resistance and are the most variable gene family in plants (Guo et al.,, 305 

2011).  Our search for possible NB-LRR cDNAs in the interval revealed eight in the 306 

CM334 and 18 in the Zunla-1 cultivars, confirming the usual finding that most NB-LRR 307 

genes reside in clusters (Meyers et al., 2003).  A marker generated from within one of 308 

these genes co-segregated with Pvr4. 309 

The number of NB-LRR genes in one cluster can vary between cultivars or 310 

species (Guo et al.,, 2011).  This may be the case between the pepper cultivars CM334 311 

and Zunla-1, as well as between tomato and pepper, as indicated by the difference in 312 

size of their physical maps of the Pvr4 locus. In fact, Qin et al (2014) reported the 313 

synteny between tomato and pepper cv Zunla-1 at the gene level.  It was clear from their 314 

work that out of 18 NB-LRR genes in the interval, only one of them was present in 315 

tomato.   316 

In conclusion, the Pvr4 locus can now be transferred to superior pepper lines via 317 

marker assisted backcross selection. Since genetic variation is high in pepper genome, 318 

the markers developed in this study could easily be tested for efficiency in breeding 319 

lines with different genetic backgrounds. Our findings contribute to the improvement 320 

and generation of new hybrid pepper lines. 321 
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 465 

Figure Legends 466 

Figure 1.  Interaction phenotypes of PVY on pepper cultivars C. annuum L. cv. 467 

SR-231(A) and Criollo de Morelos 334 (B).  A-susceptible and B-resistant  468 

 469 

Figure 2.  Physical map of Pvr4 locus in tomato and pepper. 470 

A) Pvr4 locus in tomato showing the molecular markers around TG420.  Markers 471 

MY262, MY342, MY302 and MY69 were generated from the pepper sequences 472 

aligned to the tomato genome chromosome 10: 59,000,000-61,000,000.  473 

B) Pvr4 locus in pepper. The region was determined by aligning the Pvr4 locus in 474 

tomato to pepper genome on chromosome 10.  Markers MY1176, MY141 and 475 

MY5009 were generated from polymorphic regions of the pepper sequences that 476 

were aligned to the pepper genome chromosome 10: 230,000,000-233,200,000. 477 

Numbers under each marker represents the number of recombinants identified 478 

from 400 F2 mapping population.     479 

Figure 3. Pairwise sequence alignment of the Pvr4-containing region of tomato 480 

chromosome 10 versus the pepper chromosome 10.  The tomato chromosome 481 

sequence version 2.40 (TGR, 2012) was downloaded from the Sol Genomics Network 482 

site (ftp://ftp.solgenomics.net/tomato_genome/assembly/build_2.40/). The pepper 483 

chromosome sequence version 1.55 (Kim et al., 2014), was downloaded from the Seoul 484 

National University website (http://peppergenome.snu.ac.kr/). We aligned the sequences 485 

using BLASTN and visualized the alignment results using the Artemis Comparison 486 
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Tool (Carver et al., 2005). The figure shows only alignments between nucleotides 487 

58,000,000 to 61,000,000 on the tomato chromosome and 230,000,000 to 233,000,000 488 

on the pepper chromosome and shows only alignments with a BLASTN score of at least 489 

167. Same-strand matches are indicated in red while opposite-strand matches are 490 

indicated in blue. 491 

 492 

Supplemental Table 1. Segregation of a locus among F2 lines of SR-231 x CM334 493 

that were critical to the mapping of Pvr4 494 

Supplemental Table 2.  Sequence variations/SNPs between resistant and 495 

susceptible parents in the Pvr4 locus. 496 

 497 

Supplemental Table 3.  NBS-LRR type genes within Pvr4 interval for two different 498 

cultivars. 499 

 500 

 501 
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