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Two-Mode Brokerage in Policy Networks 

Abstract  

Gould and Fernandez (1989) developed a widely used operationalization of brokerage for one-

mode networks.   The basic idea of brokerage is that the central actor or ‘broker’ benefits from 

spanning the gap (or structural hole) between two disconnected parties.  However, it is not 

always advantageous to limit the systems studied to only one mode. We develop an 

operationalization of two-mode brokerage in which we can classify the structures according the 

heterogeneity of the types of actors involved.  We apply this conception to water policy networks 

in the San Joaquin-Sacramento River Delta in California where two-mode networks represent 

organizations participating in multiple policy institutions.  The potential benefits of brokerage 

are high in these types of fragmented systems where multiple institutions and organizations are 

involved with policy decisions.  Of particular interest is the role of collaborative institutions, 

which are hypothesized to broker the most heterogeneous structures.  We use our two-mode 

version of brokerage to construct a scale of brokerage from most homogeneous to most 

heterogeneous.  This scale lets us categorize both the role of these collaborative institutions as 

well as the importance of brokerage in the system overall. 
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1.  Introduction 

The brokerage role, where one node acts as a bridge, intermediary, or boundary spanner between 

two otherwise disconnected nodes or groups of nodes (thus forming a “chain” of three actors), is 

an important concept in social network analysis.   Ronald Burt’s theory of structural holes is 

premised on the idea that a brokering individual or organization can take advantage of the 

different resources and information they can access, which cannot be accessed by other, non-

brokering nodes (Burt 2001).  Gould and Fernandez (1989) developed one of the most widely 

used definitions of brokerage, which categorizes brokerage chains into distinct roles based on the 

classification of the nodes into different groupings (usually a categorical vertex attribute).  In an 

example from health policy in the United States, they show that brokerage roles are associated 

with greater reputations for influence over the policy process (Fernandez and Gould 1994).  Thus 

brokers can benefit from their positions by gaining access to diverse resources and information 

and acquiring a better reputation among others in the network. 

Here we extend this idea from one-mode networks, defined by a set of nodes and the 

edges that connect those nodes, to two-mode networks.  A two-mode network is made up of two 

different sets of nodes (called modes), where ties only connect nodes of different sets (see 

section 1.2).  Fernandez and Gould (1989) used a one-mode network (generated from a survey 

question), but explained that they could have used a two-mode network consisting of the 

organizations and different events the organizations co-attended.  They did not use the two-mode 

approach because a) they chose to test hypotheses in which event participation was viewed as an 

attribute, and b) they argued that co-participation in events reflects only short-term goals 
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(Fernandez and Gould 1994, pp 1467).  Although they were far more interested in the first mode 

(organizations) than the second mode (events), in many other cases (including the one to be 

described) this choice is not so clear.  The method developed in this paper permits the 

investigation of brokerage chains using the data on both modes.   

The method developed in this paper permits the investigation of brokerage chains using 

the data on both modes.  The theoretical importance of our two-mode version of brokerage relies 

on similar theoretical reasoning as other definitions of brokerage.  The benefits of brokerage are 

higher when they include more diverse groups, which serve as non-redundant sources of 

information, ideas, and other resources.  Keeping the full two-mode structure permits us to 

examine the diversity of both modes, and allows us to empirically characterize the types of 

brokerage chains expected to provide the greatest benefits. 

 We apply our two-mode version of brokerage to an empirical case of water policy 

networks, where brokerage is particularly relevant.  A defining feature of water governance is 

institutional fragmentation, which occurs when different governing institutions have overlapping 

responsibility for policy issues that span administrative boundaries, or work independently on 

issues that are in reality interconnected—what Lubell (2013; see also Long 1958) calls an 

“ecology of games”.  Within each policy “institution” (which other researchers have called 

“policy processes” or “venues”) multiple participating organizations make collective decisions 

about various issues. The existence of interdependent policy institutions creates a large potential 

for “institutional externalities” in which organizations making decisions in one policy institution 

fail to consider the costs and benefits imposed on others.  Although we focus on water policy, 

institutional fragmentation is a major challenge in most other policy domains, and brokerage 

provides benefits by helping to coordinate diverse actors and institutions.   
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  This article focuses particularly on the idea of “institutional” brokerage, in which policy 

institutions emerge to forge connections between institutions that were otherwise fragmented.  

Brokering institutions helps alleviate fragmentation by providing opportunities to negotiate over 

the benefits and costs of coordinated decisions (Berkes 2002; Carlsson and Sandstrom 2008; 

Crona and Parker 2012; Manring 2007; Stovel and Shaw 2012) and share information across 

different types of boundaries.  Since the 1990s, environmental policy has witnessed the evolution 

of a massive number of “collaborative” institutions, which seek to play exactly this brokering 

role (Ansell and Gash 2007; Hughes and Pincetl 2013; Leach et. al 2002).  These institutions are 

designed specifically to take advantage of the potential benefits of a brokering position 

(Schneider et al 2003).   

In the next section, we will discuss the general idea of brokerage as it has emerged from the 

sociological literature on networks, and explain how it is operationalized in the context of two-

mode networks.  We then describe some specific hypotheses to be tested in our example of water 

policy institutions.  The results section tests these hypotheses by means of descriptive statistics, 

Exponential Random Graph Models (hereafter ERGM or ERG model), and simulations from the 

ERG model.  

1.1 Brokerage in One-Mode Networks 

Mardsen defines brokerage as a process “by which intermediary actors [brokers] facilitate 

transactions between other actors lacking access to or trust in one another” (Marsden 1982, 

p202).  Interest in studying brokerage exploded after Burt’s claim that “social capital is created 

by a network in which people can broker connections between otherwise disconnected segments” 

(Burt 2001).  In the organizations literature, this same role is referred to with a variety of terms 
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from boundary spanners (Aldrich and Herker, 1977; Friedman and Podolny, 1992), bridging 

organizations (Brown, 1998, Hahn et. al., 2006), broker organization (Chaskin, 2001), and many 

others (Collins-Dogrul, 2012).  These brokers can profit from increased exposure to different 

ideas, knowledge, or resources (Burt 2001), boosted reputations and influence (Heaney 2006), 

and monopolizing communication pathways (Chaskin 2001).  However, these roles are not 

without costs and potential pitfalls; brokers are often taking the highest risks when working with 

disconnected parties that can be suspicious of others or even hostile (Stovel and Shaw 2012). 

Gould and Fernandez added a group identity component to Marsden’s definition, arguing that 

frequently in social systems, actors are organized along different criteria – institution type, 

membership, issue focus, etc – and therefore have different goals.  They were interested in why 

organizations crossed these group boundaries to work together and whether this structural 

position was related to perceived influence over policy negotiations (as determined by other 

organizations in the network). 

Figure 1 shows Gould and Fernandez’s classifications of the five types of brokerage possible 

when group identity (as determined by a categorical attribute) is considered.  The shading of the 

node, specifically black, gray, or white, indicates to which grouping the node belongs.  The 

Gatekeeper Itinerant Liaison Representative Coordinator 

Figure 1: Gould and Fernandez' Brokerage Typology 
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brokering organization is always the middle node in this “chain” – the one that both sends and 

receives a tie.  The brokerage chain on the far left displays a scenario in which brokerage is 

occurring within one defined group or type of actors (indicated by the fact that all of the nodes 

are shaded black).  In this condition, the broker is coordinating the activities of group members 

who have similar interests, aims, and goals.  For the Representative structure, the broker 

represents his or her group to a member of a different group.  This is indicated by the fact that 

the broker and the top node are both shaded the same, and the recipient of the broker’s 

information (the node on the bottom) is shaded differently.  In the Gatekeeper scenario, the flow 

of information is reversed – the broker receives information from a node in a different group (the 

white node at the top) and transmits the information to a node in the same group as the broker.  

The Itinerant structure occurs when the two alters (top and bottom) are from the same set of 

nodes (both shaded black) but the broker is from a different group.  Finally, in the Liaison 

structure, is a case where all three nodes in the brokerage chain are from different groups. 

One of Fernandez and Gould’s main findings is that the benefits of brokerage are mediated 

both by the type of organization (the node sets) and the type of brokerage chain (the 

classification in Figure 1).  The first distinction Fernandez and Gould make is between the 

individuals playing roles in the coordinator scenario and the other brokerage structures; because 

the coordinators broker only within their own type this is referred to as a ‘null’ form of 

brokerage (Fernandez and Gould 1994, p1459).  The second distinction they make is by 

considering coordinator, representative, and gatekeeper brokerage roles as distinct from itinerant 

and liaison roles.  They called the first three “insider” roles because at least one other actor in the 

chain is from the same subgroup as the broker, whereas the itinerant and liaison chains are 

“outsider” since the broker is the only representative of its type in the chain. In their health 
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policy example, Fernandez and Gould use this insider/outsider division with the classification of 

organizations as government/non-government to posit a differentiated relationship between 

brokerage roles and influence.  Although non-governmental organizations were found to have 

more influence when they held any type of brokerage position (Table 3, p1471), governmental 

organizations gained influence only when they held “outsider” brokerage roles in itinerant and 

liaison chains (Table 4, p1472).  Fernandez and Gould (1989) argued that this results from the 

constraint that governmental organizations must be perceived as impartial in order to benefit 

from a brokerage position, but that is not the case for non-governmental organizations.  

1.2 Extending Brokerage to Two-Mode Networks 

A two-mode network has two sets of vertices, referred to here as M and N, and each edge has 

two endpoints, {v1,v2}, such that v1 ∈ M and v2 ∈ N.  In the standard definition of two-mode 

networks, a vertex is never directly linked to another vertex from the same subset (although some 

work in multilevel networks uses an alternative; see Wang, Robins et al. 2013).  Researchers 

have been studying two-mode network structures for almost as long as they have studied 

networks themselves (see Freeman’s 2004 description of Hobson’s 1884 study).  Recently, there 

has been increased attention on the analysis tools used for two-mode networks (see a special 

issue in the Journal of Social Networks: Agneessens and Everett 2013).  Many approaches to 

analyzing two mode networks consist of converting the data to a one-mode network (either MxM 

or NxN) that is a projection of the original data.  However, previous studies have shown that 

one-mode projections subvert many of the reasons for collecting the two-mode data structures in 

the first place, lose information, and can present misleading results (Borgatti and Everett 1997; 

Jasny 2012; Latapy et al. 2008; Opsahl 2011).   
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Our two-mode expansion of Gould and Fernandez’ brokerage categories is shown in Figure 

2.  The circles and squares represent different modes. Each category from Gould and Fernandez’ 

typology is expanded to consider whether the nodes in the second mode, the squares, are from 

the same attribute category or not (vertical vs. horizontal lines within the square).
1
  The one-

mode projection of these structures would result in the Gould and Fernandez categories but 

without directionality in the ties.  We select institutions as the first mode (circles) and 

organizations (squares) as the second mode because we will develop specific hypotheses about 

the capacity of different institutional types to broker among other institutions via joint 

participation of actors (see section 2).  Keeping the organizations permits the additional 

classification according to heterogeneity in that mode as well. 

                                                           
1
 Another difference is that these two-mode structures are undirected.  While we could have a 

scenario in which one mode sends a tie to the other mode, the direction does not change the 

possible structural configurations as it can in the one-mode system.  Representative and 

Gatekeeper brokerage, as conceived by Gould and Fernandez, have the exact same attribute 

configuration but differ in the direction of the ties.  In our two mode interpretation, these 

categories are collapsed.   

Liaison Itinerant 
Representative/ 
Gatekeeper Coordinator 

Figure 2: Two-Mode Brokerage Typology 
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The underlying theoretical perspective, that brokers receive some type of benefits from their 

position in the network, still applies in a two-mode network.  Potential benefits include access to 

resources, reinforcement of reputation, learning new information, and controlling information 

flow between groups.  The brokering institutions become venues where organizations know they 

will participate with organizations of differing perspectives and experience as evidenced by their 

participation in the other, disconnected institutions.  These benefits depend on the attraction of 

different kinds of organizations with knowledge and resources gained from attending different 

kinds of institutions.  When the two institutions at the ends of the brokerage chain are making 

conflicting decisions—the classic symptom of fragmentation—the brokering institution can help 

actors reduce the costs of conflict.  Where Fernandez and Gould saw differences between 

homogeneous (coordinator) brokerage and increasing amounts of heterogeneity in the node sets, 

we can formalize this observation into an ordered scale of heterogeneity utilizing the two-mode 

structure. 

1.3 Homogenous and Heterogeneous brokerage chains 

To order the brokerage chains, we use a similarity index similar to the Simpson or Herfindahl 

index (Butts 2011; Simpson 1949; see Freeman 1978 for related ideas in a social networks 

context).   

𝑆(𝑣𝑖) =
∑ 𝐼(𝑣𝑖,𝑣𝑗)

2𝑛
𝑗≠𝑖

𝑛−1
     [1] 

𝑤ℎ𝑒𝑟𝑒 𝐼(𝑣𝑖 , 𝑣𝑗) = {
1 𝑖𝑓 𝐴𝑡𝑡𝑟(𝑣𝑖) = 𝐴𝑡𝑡𝑟(𝑣𝑗)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    [2] 

n is the total number of vertices (institutions or organizations) in whichever mode vi belongs to.   
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Figure 3 shows a single brokerage chain labeled to match equations 3-6.  Equations 3-6 are 

the specific versions of equation 1 for the brokerage case.  For brokerage chains, the number of 

institutions (mode 1) is always 3 and the number of organizations (mode 2) is 2. 

S(MB) is calculated from the perspective of the broker, and S(Mi) from the perspective of the two 

pendant institutions (labeled M1 and M2 in Figure 3).  S(M1) is calculated as the probability that, 

randomly selecting another institution from the options of the Broker (MB) and the other 

institution (M2), that institution will have the same attribute group as M1. S(M2) is calculated 

similarly.  

𝑆(𝑀𝐵) =  
𝐼(𝑀𝐵,𝑀1)

2+𝐼(𝑀𝐵,𝑀2)
2

2
      [3] 

𝑆(𝑀1) =  
𝐼(𝑀1,𝑀𝐵)

2+𝐼(𝑀1 ,𝑀2)
2

2
      [4] 

𝑆(𝑀2) =  
𝐼(𝑀2,𝑀𝐵)

2+𝐼(𝑀2,𝑀1)
2

2
     [5]  

Each brokerage chain has two organizations (squares) labeled N1 and N2.  Since the identity 

function I is commutative such that I(i,j)=I(i,j), it makes no difference whether we calculate S(N) 

from the perspective of organization 1 or 2.  Thus S(N) distinguishes between chains that have 

two organizations of the same type or of different types.   

𝑆(𝑁) = 𝑆(𝑁1) = 𝑆(𝑁2) = 𝐼(𝑁1, 𝑁2)
2    [6] 

M2 M1 

N2 

MB 

N1 

Figure 3: A single brokerage chain 
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Using these indices, we can now order all the brokerage forms along a continuum from 

entirely homogenous, where the chain has three of the same type of node from the first mode and 

two of the same type from the second, to heterogeneous with three different types of nodes from 

the first mode and two different types from the second.  Our representation of this ordering is 

shown in Figure 4.  The horizontal dimension differentiates between homogeneity and 

heterogeneity in the second mode according to the S(N) value.  The vertical dimension sorts 

differences in the first mode by first ranking according to the S(MB) score and then the sum of 

S(M1) and S(M2).  Although the Representative/Gatekeeper and Itinerant categories both contain 

two of one kind of institution and one of another (in the first mode), from the perspective of the 

broker, the Representative/Gatekeeper structure is considered more homogenous because the 

broker belongs to the dominant subgroup.  Ordering the scores first from the perspective of the 

broker and second from the perspective of the other institutions in the chain is consistent with 

Fernandez and Gould’s findings that the similarities in brokerage patterns were due to the 

Liaison 

Representative 
/Gatekeeper 

Itinerant 

S(N)=0 S(N)=1 

 

More 
Homogeneous 

1
st

 M
o

d
e 

Coordinator 

More 
Heterogeneous 

2nd Mode 

Figure 4: Organizing Brokerage Forms by Heterogeneity 
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distinction of whether the broker was “inside” meaning had other members of its group in the 

chain (as in coordinator, representative, and gatekeeper chains) or “outside” where the broker 

was the lone representative of its group (Fernandez and Gould 1994).   

This scaling of brokerage chains by levels of similarity expands on an observation Fernandez 

and Gould made that the types of brokerage tend to cluster by vertex type.  In their study, 

organizations tended to participate in either coordinator, representative, and gatekeeper 

brokerage chains or in itinerant and liaison chains.  From our standpoint, this can be redefined 

into two groups of brokers: one that brokers more homogenous sets of participants and one that 

brokers more heterogeneous chains.  We see the brokerage chains at the two ends of this 

homogeneity/heterogeneity spectrum serving fundamentally different functions.  Coordinator 

brokers position themselves among institutions with similar interests.  Thus as a broker they are 

reinforcing connections between disconnected, but alike, others.  As heterogeneity is introduced 

(and increases), the barriers to joint effort increase as well as the hypothesized rewards.  An 

institution that brokers highly diversified groups of other institutions (and organizations) are 

faced with very different challenges.  We therefore expect different types of organizations to 

participate in different types of chains.  Unlike Fernandez and Gould’s binary division of insider 

and outsider brokerage, we expect participation brokerage to follow an ordered scale. 

2. Hypotheses for Environmental Governance and Collaborative Institutions 

We perform an empirical analysis of two-mode brokerage in an environmental governance 

setting where institutional brokerage is expected to have substantial benefits.  Specifically, we 

examine the complex institutional system of water governance in the California Delta. This 

complex institutional system is an “ecology of games” where a diverse community of policy 
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actors participates in multiple institutions to make decisions about sets of interconnected water 

issues (Lund 2010; Lubell 2015; Lubell et al., 2014).  These multiple institutions are fragmented, 

with a high potential for decisions made in one institution to have negative or positive effects on 

other parts of the system (institutional externalities).  Multiple actors within the system have 

diverse policy preferences and information resources, which must be negotiated throughout the 

policy-process.  Brokering institutions therefore play an important role in this context by 

facilitating coordination and information sharing among otherwise fragmented decisions, and 

negotiation among diverse actors.  As a result, we theorize that the benefits of brokering are 

higher when the actors or institutions are heterogeneous.  

 In many cases, specific types of institutions called “collaborative partnerships” have 

emerged to fill this brokering role; these collaborative partnerships have been a central focus of 

the public and environmental policy literature in the last two decades (Sabatier et al. 2005; 

Ansell and Gash, 2008; O’Leary 2006).  We posit the following three hypotheses based on the 

role of collaborative institutions in the ecology of governance games: 

H1:  Collaborative partnership institutions are associated with the highest levels of 

brokerage. 

H2:  Brokerage is concentrated among the most heterogeneous brokerage chains. 

H3: Institutional brokerage structures exist in the network that are more than an by-product 

of lower level processes. 

All of these hypotheses relate to the overall structure of policy networks under the assumption 

that brokerage evolves to capture the benefits of reducing fragmentation.  Although these 

benefits are clear for environmental governance, the argument will be relevant to any other 
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policy system where multiple policy institutions, issues, and actors create a fragmented ecology 

of games.  The rest of this section develops these hypotheses in more detail.  

The first hypothesis argues that that collaborative policy institutions are more likely to play 

brokerage roles than other types of institutions.  Collaborative institutions are explicitly designed 

to bring otherwise disconnected institutions together by inviting participation from stakeholders 

who are involved with multiple policy processes and issues (Hughes and Pincetl 2012).  If 

collaborative institutions do play their hypothesized brokerage role, they should be associated 

with a larger number of brokerage chains compared to other types of institutions (our schema 

includes 10 different types of institutions, see section 3.1).  We examine descriptive statistics and 

use simulations from an ERG model to establish whether the observed number of brokerage 

chains associated with collaborative institutions is higher than expected from different null 

models of random graphs.  This method allows us to examine the number of brokerage chains 

while conditioning on the fact that some types of institutions are generally more popular (well 

attended) than others.  More popular institutions might have more brokerage opportunities 

(especially in sparse networks with low clustering) solely because they have more links in 

general.  While popularity (degree) is not directly linked to brokerage, being able to control for it 

with density terms for each specific institutional allows us to identify brokerage chains that are 

not just a by-product of high degree nodes.  We fit an ERG model to the data and simulate 1000 

networks from that model to create a reference distribution.  By comparing our empirical 

statistics to the same derived from the reference distribution, we can determine whether 

multistakeholder partnerships participate in more brokerage chains than expected given the 

sufficient statistics used as input for the ERGM.  
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Hypothesis 2 states that if brokerage operates as assumed, the combined costs of playing any 

brokerage role coupled with the increased returns from brokering a heterogeneous chain should 

result in observing more heterogeneous chains.  Additionally, since collaborative institutions 

were supposedly a response to the fragmentation that resulted from the lack of communication 

between different types of groups (Hughes and Pincetl 2013), we expect that the majority of 

brokerage opportunities would be between but not within groups.  This finding would be 

consistent with Fernandez and Gould’s similar observation that itinerant and liaison chains 

comprised the majority of the brokerage structures (Fernandez and Gould 1994). 

Hypothesis 3 argues that brokerage is a distinct network process providing benefits over and 

above other structural network properties.  The relevance of hypotheses 1 and 2 depends on this 

broader hypothesis.  A necessary but not sufficient condition for this argument is to show that 

brokerage chains are not the result of more localized processes.  For example, Bernoulli graphs 

(networks where each tie has the same probability of occurring) can contain brokerage structures 

generated at random.  Gould and Fernandez showed that brokerage structures in observed 

networks were significantly more frequent than in Bernoulli graphs; this is evidence for the 

existence of brokerage as a distinct network process. 

We extend this thinking to more complex baseline models than the Bernoulli graph, which 

are dissimilar to most real-world networks (Newman 2002; Robins et al. 2007).  To better 

understand brokerage, we follow the same logic as Gould and Fernandez but use baseline models 

that contain networks that incorporate mechanisms we believe to be operating in addition to 

brokerage.  For example, Lubell et al. (2015) find evidence of centralization and closure in two-

mode networks.  Brokerage chains could emerge purely as a consequence of these more general 

structural processes.  Such local processes may provide additional benefits to institutions; 
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centralization can be interpreted as facilitating diffusion of information while closure helps build 

cooperation (Burt 2001; Lubell et al 2011; Scholz et al 2008).  We argue that brokerage, by 

linking different types of institutions and actors, provides additional benefits over and above 

these more basic processes.   

By simulating from models conditioned on the tendency of the empirical network towards 

centralization and clustering, we will test whether brokerage is simply the result of random 

combinations of lower-order graph structures.  We will compare our data to networks simulated 

by two-mode ERG models that include these lower order structures.  We then count the 

brokerage chains that exist in our empirical data, and check to see if the observed data has more 

“extreme” amounts of brokerage than predicted by models that include only the lower-level 

structures.  If this hypothesis is true, it supports the idea that brokerage structures serve a unique 

function within the network over and above more commonly studied policy network structures 

like centralization and closure. 

3. Empirical Analysis of Water Governance Networks 

In this section we first describe how we created the empirical water policy networks focused on 

the San Joaquin-Sacramento River Delta in California (hereafter, CA Delta).  The California 

Delta is the most important water policy context in California, and supplies water for a large 

portion of urban and agricultural needs in the state (Lubell et al., 2013).  Following the data 

description is an elaboration of the methods.  We use two-mode ERG models to establish 

baseline network models, and compare the average number of brokerage chains in simulated 

ensembles of networks to the observed data.   

3.1 Data Collection 
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We populated the vertex sets for institutions and participating organizations through a 

newspaper and web search.  We bounded the sample region to the legally defined California 

delta.  Some additional areas were included because they might have impact within the delta; 

these areas include towns close to, but outside, the legal Delta boundary, and the Metropolitan 

areas in Southern California (primarily Los Angeles and San Diego).  Only one newspaper is 

chosen per town.  Exceptions may be made for papers based in a town, but reporting on the 

greater area, as well as large Metropolitan areas.  Some areas may not have a paper (or at least is 

not listed in Newsbank), but may be covered under the umbrella of another paper.  In cases 

where multiple newspapers exist in a locality, preference is given to the larger paper.  We then 

searched the database for articles within the date range of 2005-2010 that included one or more 

of the following terms: water supply, water quality, flood, habitat protection, land use, and 

climate change.  All mentions of institutions and organizations were added as nodes in the 

network.  A tie was added to the network when an article or website listed an organization as 

participating in a given institution. 

The data set consists of 146 institutions categorized into 10 types following the typology in 

Lubell et al (2011): collaborative partnerships, projects, local planning, conservancy, science, 

interest groups, joint powers, advisory committees, regulatory/permitting, and other.  Our sample 

of organizations originally consisted of 1594 different entries but this was reduced to 527 (see 

section 3.2) with 14 separate types: federal government, state government, regional government, 

local government, water infrastructure special district, environmental special district, 

environmental group, trade/business/industry group, education/consulting/research group, multi-

stakeholder coalition, political party, recreational group, agriculture, tribal group, and other.  

While some organizations clearly identified strongly with specific institutions (for example the 
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Multistakeholder Coalition organizations were frequently participants in the Multistakeholder 

Partnership institutions), we were able to distinguish between organizations and institutions 

clearly due to the bipartite structure of a two mode network; only organizations could attend 

events held by institutions as opposed to other organizations.  This distinction permitted clear 

categorization of what was an organization and what was an institution. 

3.2 Boundary Specification and Data Reduction 

Boundary issues are a common problem in network science (Doreian and Woodard 1994; 

Kossinets 2006; Robins et al. 2004).  As with most other surveys of social networks from second 

hand materials, we cannot claim to have captured every institution or organization active during 

the study period, but we are fairly confident that we have captured the core organizations and 

institutions.  The core is more easily captured since they will be mentioned more often.  In 

capturing the core institutions, we also gathered information on many organizations that were 

only mentioned once.  These organizations are ‘pendants’ in social network terminology.  Since 

we are interested in how institutions (our first mode), broker other institutions via co-attendance 

of organizations (our second mode), pendant organizations cannot affect the statistic of interest.  

In each brokerage chain every organization is tied to two institutions; adding or removing the 2
nd

 

mode (organization) pendants cannot alter the brokerage scores. Removing these pendants has 

added benefits; by reducing the 2
nd

 mode from 1594 actors to 527, the subsequent models are 

much more easily fit.  To measure some of the impact of removing the 2
nd

 mode pendants, we 

introduce a continuous attribute for the first mode venues that represents the number of actors 

(2
nd

 mode) ties removed in the reduced network.  By adding a density parameter for this 

attribute, we can determine whether the venues whose degree is substantially lowered by 



19 
 

removing the border pendants subsequently have lower degree on average when compared with 

venues that lost fewer pendants (see Log(Pendant Number) in Table 2). 

4. Counting Brokerage Chains 

To address our hypotheses, we first count the number of brokerage chains found in our 

empirical network and classify them by the type of chain (according to the typology in Figure 2).   

A two-mode brokerage chain occurs whenever two institutions are separated by a shortest path 

containing three intervening nodes (two organizations and the brokering institution) and thus 

four ties.  The left-hand side of Figure 5 is an example of a brokerage chain.  By looking at the 

chains with a shortest path length of four between the two institutions we discount any non-

brokered chains.  A non-brokered chain is depicted on the right-hand side of Figure 5.  This 

structure is not brokered since in this chain any two institutions can bypass the third and are 

connected by a shortest path of length two. 

The counts of brokerage chains can distinguish between the institutions that do the most 

brokering compared to other institutions (Hypothesis 1), and whether the counts of the chains 

grow with level of heterogeneity (Hypothesis 2).  However, we are also interested in whether the 

Figure 5: Finding Brokered Chains 

Chain with Brokerage  Chain without Brokerage 
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levels of brokerage in general are greater than we would expect (Hypothesis 3).  To understand 

what we would expect under ‘random’ conditions, we turn to Exponential Random Graph 

Models (Robins, Pattison, et al. 2007).   

4.1 Exponential Random Graph Models (ERGM) 

Counting and classifying the number of brokerage chains cannot solely demonstrate what 

kinds of mechanisms might produce networks with these properties.  Even Bernoulli random 

graphs, where each tie has an equal probability of existing and are thus formed “at random,” can 

exhibit brokerage structures.  In this analysis, we test whether the empirical number of brokerage 

chains could be explained by alternative mechanisms of network formation.  Additionally, we 

will show that certain institutions are disproportionately occupying these roles.  Following Wang 

et al. (2009) and Wang, Pattison, et al (2013), we consider a series of nested Exponential 

Random Graph models with increasing complexity.   

The most basic baseline model is a Bernoulli model which uses one sufficient statistic – the 

number of edges in the model.  We include additional terms for each category of organization 

and institution to reflect our belief that certain types of institutions and organizations will be 

more active than others.  The coefficients of this model, one for each type of institution or 

organization (minus a reference category for each mode), indicate whether  institutions or 

organizations of a particular type have more ties than we would expect due simply to the 

distribution of types in the network.  As in Lubell et al. (2011), the reference categories are 

collaborative partnership institutions (1
st
 mode) and local government organizations (2

nd
 mode).  

Depictions of these terms are shown in Figure 6. 
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A model with solely density terms is still a dyadic-independent meaning that the likelihood 

of an edge is not conditional on the presence or absence of any other edges.  However, this 

independence is not consistent with observations from the field (Lubell and Lippert 2011) nor 

with similar studies of organizational networks (Robins, Snijders, et al 2007).  The premise of 

our argument is that which organizations attend which institutional venues is not decided in a 

vacuum but influenced by choices made by other institutions and organizations.  We therefore 

investigate whether dyadic-dependent structures beside brokerage could explain the empirical 

brokerage structures that we observe.  The following two Figures, 7 and 8, show two such 

structural tendencies that can be estimated in the ERGM framework: centralization and 

clustering.   

Overall density parameter 

Density parameter for a specific 

Organization type 

Density parameter for a 

specific Institution type 

Figure 6: Density Parameters 
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The degree dispersion parameters (Figure 7) measure the extent to which having ties already 

increases the likelihood of gaining additional ties.  These parameters can be interpreted as 

measures of the tendency for centralization in the network (Robins, Snijders, et al. 2007).  In 

contrast to the density terms, where each additional tie has the same probability of occurring as 

the previous tie, these terms reflect the tendency towards degree centralization in the network.  

These degree terms include a damping parameter – meaning that additional ties yield 

diminishing returns, and an alternating sign (even numbered stars give a positive boost where 

odd numbered stars decrease the likelihood of ties).  These two qualities were added for 

computational and model-fitting benefits, and are discussed in Snijders et al. (2006).  Since we 

are analyzing bipartite networks, we will include separate terms for degree dispersion in the first 

and second modes.  The institutions and organizations may have different centralization 

mechanisms and therefore should not be combined as one parameter (Wang et al. 2009).  

The final set of terms used in the more complex models is the shared partner terms shown in 

Figure 8.  Where the degree dispersion terms measured centralization, the shared partner terms 

measure a tendency towards clustering (Robins, Snijders, et al. 2007).  As a pair of institutions 

Degree Dispersion Parameters  
(Alternating Stars) 

Figure 7: Degree Dispersion Parameters 

For Institutions For Organizations 
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(or organizations) is linked to a third institution (organization) through ties to the same actor in 

the other mode, they are more likely to be linked to increasing numbers of such institutions 

(organizations).  As with the degree dispersion parameters, these terms are alternating and have a 

dampening coefficient to aid in model fitting and convergence (Snijders et al. 2006).  Again, we 

separate these terms for the first and second modes. 

4.2 Simulating from ERGM models 

None of the current ERGM software contains specifications for brokerage chains with an 

added attribute classification.  While creating these terms might be a worthwhile endeavor, the 

increasing complexity of the structures prompts some cause for concern about how well these 

models could fit even if the terms were simple to implement.  The method we have chosen in this 

paper is to simulate from the series of nested models with lower order terms and use these 

simulations as a baseline model.  We compare the empirical counts of brokerage to the counts for 

each simulated network, and thus are able to discern how much of the empirical brokerage is 

likely explained by these other structural forms (Jasny 2012; Mayhew 1984).   

Alternating Shared Partners 

Parameters 

For Organizations For Institutions 

Figure 8: Shared Partner Parameters 
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This analysis is done in five steps.  First, we fit multiple ERG models to the empirical data.  

We pick the one that best fits the data according to the Mahalanobis distance (Wang et al 2009).  

This model does not include any brokerage terms.  Next, we simulate 1000 networks from the 

model generated.  From each simulation, we identify all the brokerage chains.  These are all of 

the chains such that two institutions are connected by a shortest path through a third institution.  

Once these chains are identified, they are sorted into the different brokerage categories outlined 

in Figure 2.  Finally, these counts are compared to the empirical counts as in standard statistical 

hypothesis testing.  

5. Results 

We begin by examining the empirical brokerage scores grouped by institution type.  These 

results compare the institutions to each other and addresses our first hypothesis – that 

Multistakeholder Partnerships broker the most of all the institution types.  To answer the 

remaining hypotheses we turn to the results of the Exponential Random Graph Models and 

simulation. 

5.1 Empirical Brokerage Results 

Table 1 shows the counts of brokerage chains in the empirical data by institution type divided 

by the number of institutions in the network of that type.  For example the average 

Multistakeholder Partnership brokers 59 chains coordinator chains with the same type of 

organizations, but 271 coordinator chains where the organizations are of different types.  The 

final row displays the sum of the normalized counts for each brokerage chain type. 
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 Coordinator Representative/ 

Gatekeeper 

Itinerant Liaison Total 

 Same Different Same Different Same Different Same Different  

Collaborative 

Partnerships 

59 271 436 1853 98 369 579 2452 6117 

Projects 39 211 376 2100 120 687 639 3492 7664 

Local Planning 8 57 155 938 100 511 542 2674 4985 

Conservancy 1 6 27 137 19 135 78 739 1142 

Science 16 11 259 375 230 262 1020 1298 3471 

Interest Groups 1 1 29 75 49 111 279 625 1170 

Joint Powers 0 0 65 210 196 491 975 3026 4963 

Advisory 

Committee 

0 3 16 338 89 367 473 2094 3380 

Regulatory 

Permitting 

3 7 80 146 47 111 290 658 1342 

Other 0 0 0 2 2 24 6 152 186 

Totals 127 567 1443 6174 950 3068 4881 17210  

Table 1: Normalized Empirical Brokerage Scores 

These results show limited support for the first hypothesis since collaborative partnerships 

broker more chains on average (the last column in Table 1 shows the total) than all the other 

types of institutions with the exception of Projects.  The totals for each kind of brokerage chain 

(the bottom row in Table 1) show a generally increasing trend from left (most homogeneous) to 

right (most heterogeneous) with the exception of the Representative/Gatekeeper scores, showing 

potential support for the second hypothesis.  However, to determine the significance of these 

counts we turn to the simulations from ERG models. 
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5.2 Comparing nested ERGM models 

Table 2 shows the ERGM results for four models: the density model, a model with the degree 

dispersion alternating star parameters, a model with the shared partner parameters, and a final 

model with both sets of structural parameters added.  Each model was run with the same settings 

in BPnet
2
.  These models have converged since the t-ratios are close to 0 (Robins, Pattison, et al 

2007).  The 4
th

 model, with parameters for density, degree dispersion, and shared partners, has 

the lowest Mahalanobis distance and therefore best describes the empirical data.  We discuss the 

coefficients in that model and use those parameters for the subsequent simulation.  We begin 

with the density terms for both modes (institutions and organizations) and then move to the more 

complex structural terms in the model.  

Each density term gives the log-odds of that type of institution (or organization) having a tie 

above the probability of the reference group.  For example, with a significant log-odds value of 

.703, federal organizations are approximately twice as likely (67%-33%) as local organizations 

(the reference category) to participate in venues.
3
  All the institution types have fewer ties 

(participating organizations) than the collaborative partnership reference category, ranging from 

a relative probability of 30% (the ‘other’ category with a log-odds value of -0.784) to 47% (the 

‘joint powers’ category with a log-odds value of -0.085).  Thus, although the collaborative 

partnerships do not lead the network in brokered chains, they do in overall number of 

participating organizations. 

                                                           
2
 Default parameters except we controlled for no isolates, and set the multiplication factor to 200.  This change 

permitted the model to wander the parameter space more before finding the local maximum (Wang et al.  2009).  
We also used structural 0s to condition the model on the ties of the top 5 institutions and organization by degree.  
This was done to achieve better model fit as in Lubell et al 2011. 
3
 To convert log-odds to probability, exponentiate the coefficient and divide by one plus the exponentiation. 
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The structural terms test for the presence of different types of network properties in each 

mode.  The star terms (Institution Stars and Organization Stars), are positive and significant for 

both modes (2.606 and 0.806 respectively) indicating high levels of centralization for both 

institutions and organizations.  The shared partner terms indicate the level of clustering present 

in the network.  Institutions have a positive and significant coefficient (0.012), whereas 

organizations have a negative and significant coefficient (-0.185).  The lack of clustering among 

organizations reflects the observation from the literature that the stakeholders involved in water 

policy in the subject area are heavily divided.   

The positive and significant coefficient for the log of the number of removed pendants 

indicates that those institutions that had many pendant organizations (organizations that only 

attended one institutional venue) are significantly more likely to have ties in the reduced data set 

than those institutions which didn’t lose as many pendant organizations.  Thus, removing the 

pendants did not result in a set of institutions with lower degree distributions, in fact the exact 

opposite.  This finding suggests that there are not central organizations that we have not 

measured. 

The ERGM results in Model 4 reveal suggest that different organizing principles are at work 

in the first and second modes.  This part of the analysis would have been overlooked had we 

used a one-mode projection rather than modeling the full structure.  These mechanisms would 

not have been captured in the Bernoulli model that Gould and Fernandez used to test for 

brokerage significance.  In the next section, we use simulation to test whether these mechanisms 

alone could plausibly explain the numbers of brokerage chains observed in the empirical data. 
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  Model 1 Model 2 Model 3  Model 4 

  Estimate t-ratio Estimate t-ratio estimate t-ratio Estimate t-ratio 

S
tr

u
ct

u
ra

l 
T

er
m

s Edges -4.217* -0.035 -10.468* 0.064 -3.898* 0.061 -10.307* 0.081 

Institution Stars   3.033* 0.068   2.606* 0.083 

Organization Stars   0.261 0.063   0.806* 0.085 

Institution Shared 

Partners 

    0.002* 0.094 0.012* 0.599 

Organization Shared 

Partners 

    -0.199* 0.027 -0.185* 0.031 

          

D
en

si
ty

 T
er

m
s 

fo
r 

O
rg

an
iz

at
io

n
 T

y
p

es
 

 Federal 0.633* 0.030 0.588* -0.016 0.874* 0.071 0.703* 0.001 

State 0.686* -0.009 0.631* 0.061 0.985* 0.039 0.767* 0.025 

Regional 0.845* 0.024 0.796* -0.035 1.205* 0.016 0.975* 0.031 

Special District -0.142 0.008 -0.132 0.068 -0.180 0.059 -0.143 0.047 

Environmental Special 

District 

-0.096 -0.046 -0.095 -0.010 -0.126 -0.004 -0.111 -0.010 

Environmental Group -0.193 -0.042 -0.191 -0.015. -0.236* 0.031 -0.214* -0.006 

Business -0.293 -0.017 -0.250 -0.061 -0.385* 0.049 -0.259 0.088 

Educational 

Organization 

-0.213 -0.041 -0.204 -0.022 -0.275* 0.030 -0.229* 0.067 

Multi-Stakeholder 

Coalition 

-0.355 -0.003 -0.327 -0.098 -0.460* -0.024 -0.354 0.042 

Recreational Group 0.547* -0.021 0.488 0.003 0.782* 0.054 0.580 0.071 

Agriculture -0.554* -0.087 -0.531* 0.029 -0.675* 0.054 -0.571* -0.000 

Tribal -0.524 0.033 -0.491 0.124 -0.611 -0.010 -0.439 -0.021 

Other 1.413* 0.029 1.338* 0.042 2.311* -0.017 1.969* 0.019 

          

D
en

si
ty

 T
er

m
s 

fo
r 

In
st

it
u

ti
o

n
 T

y
p

es
 

Local Planning -1.161* 0.022 -0.507* 0.032 -0.842* -0.036 -0.290* -0.057 

Science -0.710* -0.026 -0.650* 0.026 -0.502* 0.028 -0.468* -0.035 

Conservancy -0.664* -0.049 -0.523* -0.039 -0.428* -0.061 -0.339* 0.104 

Joint Powers -0.408* -0.003 -0.276 -0.008 -0.146 -0.055 -0.085 -0.020 

Interest Group -0.615* -0.003 -0.479* -0.038 -0.318* 0.030 -0.235* 0.075 

Advisory -0.450* 0.044 -0.328* -0.028 -0.225 0.032 -0.147 -0.027 

Projects -0.792* 0.021 -0.597* -0.064 -0.538* -0.013 -0.421* 0.037 

Regulatory -0.863* -0.055 -0.649* 0.065 -0.547* -0.020 -0.391* -0.009 

Other -2.272* -0.142 -1.063* -0.010 -1.890* -0.117 -0.784* 0.015 

          

 Log(Pendant Number) 0.572* -0.003 0.443* 0.061 0.406* 0.073 0.309* 0.157 

          

 Mahalanobis Distance 108.067  111.249  149.787  105.490  

Table 2: Nested ERG Models 
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5.3 Simulated Brokerage Results 

We simulated 1000 networks from the parameter values of the sufficient statistics in Model 

4.  Figure 9 shows a goodness-of-fit plot for geodesic distances (shortest paths) between each 

pair of nodes in each of the simulated networks.  The bar plot represents the distances in all the 

simulated networks and the stars (connected by the bolded line) are the empirical values.  The 

simulated data fits the empirical values reasonably well with every data point falling within the 

quantiles except for path lengths of three which is slightly high compared to the empirical data 

and paths of length five which is slightly low in comparison.   

Figures 10 and 11 show how significance is calculated for each brokerage chain, and how to 

interpret Figure 12 (the results for each type of chain by institution type).  The brokerage chains 

were counted for each simulation and categorized by organization and institution heterogeneity 

according to the configurations in Figure 2.  Figure 11 shows two examples: Scientific 

institutions brokering two other Scientific institutions (Coordinator brokerage) between the same 

Figure 9: Goodness of Fit for Geodesic Distance 
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types of participating organizations (top) and different types of organizations (bottom).  The 

histogram shows the count of this type of chain in each of the 1000 simulations, and the dotted 

line is the empirical value.  For the brokerage chains where the organizations are of the same 

type, the simulated networks replicated the number of chains found empirically.  This empirical 

count is within two standard deviations of the mean of the simulated distribution of scores, and 

thus is depicted by a white circle (fifth row, first column of Figure 12) which indicates non-

significance according to Figure 10.  Conversely, when brokering differing types of 

organizations, none of the simulated models had a lower number of such brokerage chains.  As a 

result, this score is negatively significant at .000 and represented by a downward pointing black 

triangle (fifth row, second column in Figure 12).  The symbols in Figure 12 are shaded according 

to the key in Figure 10 and sized by the relative difference between the mean of the simulations 

and the empirical brokerage chain count, giving an estimate of how far off the simulation is in 

Figure 10: Significance Key 

 

FFigure 10: Significance Key 
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magnitude. 

 

 

 

Figure 11: Two Examples of Calculating Significance 

 

Figure 12 shows the significance of the eight types of brokerage chains for the ten institution 

types;   49 of the 80 tests run showed the empirical brokerage score to be positively significant 

when compared to the simulated distribution (all the upward pointing triangles).  In 12 cases, 

there were significantly fewer brokerage chains than expected (the downward pointing triangles).  

Clearly the two mechanisms of centralization and clustering do not explain the empirical 

brokerage observed in the network.  This finding supports our third hypothesis.  There is 
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something else at work beyond these two mechanisms that results in the large amount of 

brokerage in our empirical case. 

 

Additionally, the findings in Figure 12 support our first two hypotheses.  We see that 

Multistakeholder partnerships are tied with Projects for being involved in the most significant 

levels of brokerage.  Second, heterogeneous chains are more likely to be brokered at significant 

rates (compared to the null model) than homogenous chains, supporting the second hypothesis.   

 

6. Conclusion 

This article makes methodological, theoretical, and substantive contributions to the study of 

brokerage in two-mode networks.  On the methodological side, we show how Gould and 

Fernandez’s conceptualization of brokerage can be expanded to two-mode brokerage chains.  

Brokerage chains feature a central node from first mode of the network that links two other 

Figure 12: Significance of Brokerage Chains in Edge Model 
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nodes via links in the second mode of the network.  Given the classification of nodes into 

different types, we provide a measure of heterogeneity in the brokerage chains.  Future research 

in two-mode brokerage should build on this combination of structural and attribute terms.  It 

would be useful to develop a set of ERGM terms that would follow this 

homogeneity/heterogeneity scale to fully parameterize the patterns seen here.  Gould and 

Fernandez’ premise that structural patterns take on entirely different meanings when colored by 

the attribute classes of the actors present is an important observation, the ramifications of which 

have not been fully developed in current network theory or methods.  Instead of dividing our 

theory and methods into separate attribute and structural effects, we need to explore the possible 

interdependence of these terms.   

On the theoretical side, we extend the logic of Gould and Fernandez to argue that the benefits 

of brokerage are highest in heterogeneous chains.   In the empirical case of water governance, 

institutions that are involved in heterogeneous chains are expected to have more influence over 

decisions in the network, and higher capacity to ameliorate problems of fragmentation.  As with 

Gould and Fernandez, we expect brokerage to be concentrated for certain types of actors and 

institutions.  In particular, collaborative partnerships are specifically designed to mitigate 

fragmentation.  We show that they occupy these brokerage roles at significantly higher levels 

than expected under different null models of random networks.  We also see that as the level of 

heterogeneity in the chain increases, so do the number of brokerage chains (Table 1) as well as 

how many different types of brokerage chains have significantly high counts when compared to 

the baseline model (the number of positively significant chains increases as we move from left to 

right in Figure 12). 
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The substantive contribution demonstrates the relevance of brokerage to water governance in 

the California Delta.  A significant amount of brokerage exists in the CA Delta ecology of games 

that is not explained by the presence of alternative mechanisms. These brokerage activities have 

emerged over time as water policy actors have struggled with the fragmented policies that 

address complex water problems in the region.  Brokerage is likely to emerge from an 

evolutionary process, where policy entrepreneurs identify problems of fragmentation and seek to 

build institutions and networks that catalyze cooperation among previously conflicting actors.  

To the extent these policy entrepreneurs capture the benefits of brokering institutions, and 

enough of the involved actors provide political support, such brokering institutions are more 

likely to survive in the overall system.   

This argument is consistent with our empirical observation that brokerage is concentrated 

among the most heterogeneous types of chains, where the benefits are expected to be greatest.  

Brokerage is also concentrated among collaborative partnerships which have the goal of 

spanning various types of boundaries to increase cooperation.  Hence, the observed patterns of 

brokerage are a sign of effective governance in the system and the benefits of the multi-

stakeholder partnerships in combatting the issues of fragmentation.  However, it is impossible to 

say from this research whether there is enough brokerage in the system, relative to some other 

type of unobserved, counterfactual institutional arrangements.  Future research, most likely with 

longitudinal data, is necessary to further develop and test hypotheses about how these important 

brokerage chains arise and what policy outcomes result. Such research also needs to analyze why 

different actors create and participate in brokering institutions.  
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