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On Output Tracking Using Dynamic Output
Feedback Discrete-Time Sliding Mode Controllers

Nai One Lai, Christopher Edwards and S.K. Spurgeon

Abstract—In this paper an output feedback based discrete-
time sliding mode control scheme is proposed. It incorporates
a steady-state tracking requirement through the use of integral
action. Previous work has shown that with an appropriate choice
of sliding surface, discrete-time sliding mode control can be
applied to non-minimum phase systems. The original scheme
employed static output feedback and this imposed restrictions
on the class of systems to which it was applicable – specifically a
certain ‘fictitious’ sub-system was required to be output feedback
stabilizable. The scheme proposed in this paper includes a
compensator which broadens the class of systems for which
the results are applicable. In the presence of bounded matched
disturbances, ultimate boundedness results are obtained. It is
also shown that in the presence of a class of sector bounded
uncertainty, asymptotic stability can be achieved.

Index Terms—sliding modes, discrete-time, output feedback,
LMIs

I. INTRODUCTION

MAny conventional (continuous-time) sliding mode con-
trol design schemes assume that all the states of the

plant are directly accessible. In real systems this is not
tenable and usually not all system states are fully available or
measurable. One solution is to use an observer to reconstruct
the system states [20], [23], [6]. Alternatively output feedback
strategies can be employed in which the control law only
requires knowledge of measured outputs [5], [8], [1]. There
are, however, inherent system restrictions on using output
feedback sliding mode control design methods: normally, the
system must be relative degree one and minimum phase [7].
In some situations the relative degree condition can be relaxed
by considering higher order sliding mode schemes. However
the minimum phase restriction arises from the fact that the
system zeros appear amongst the poles governing the sliding
motion.

Compared with continuous time sliding mode strategies,
the design problem in discrete-time has received much less
coverage in the literature. With the exception of the early work
in [19], most of the literature assumes all states are available
[4], [9], [10], [11], [12], [22]. Schemes which have restricted
themselves to output measurements alone have invariably
utilized observers. Recent exceptions have been [14], [17]
and the discrete-time versions of certain higher-order sliding
mode control schemes in [2]. In particular, [14] considered an
output tracking problem for an uncertain linear system using
sliding mode ideas which requires output information only.
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It was shown in [14] that the relative degree and minimum
phase requirements could be overcome by the use of a novel
sliding surface. In order that a stable (ideal) discrete-time
sliding motion exists, necessary and sufficient conditions were
given in terms of the stabilizability, by static output feedback,
of a fictitious system triple obtained from the real system.
This fictitious system can easily be isolated once the real
system is transformed into a special canonical form described
in [14]. The stabilizability condition is a significant restriction
on the class of systems to which the results are applicable,
and of course for general multivariable systems this condition
can, at best, only be tested numerically. In [14], a static
output feedback structure was considered and so the fact
that there is a limitation on the class of systems to which
it is applicable is not surprising. This paper builds on this
earlier work and proposes a specific compensator structure to
circumvent this restriction. The resulting controller is applied
to a High Incidence Research Model (HIRM) aircraft system
as an example of a real engineering system.

II. A DISCRETE-TIME SLIDING MODE FORMULATION

Consider the square discrete-time system with matched
uncertainties

x(k+1) = Gx(k) + H(u(k) + ξ(k)) (1)
y(k) = Cx(k) (2)

where x ∈ IRn, u ∈ IRm and y ∈ IRp with m = p < n.
Assume that the input and output distribution matrices H and
C are full rank. In addition, assume the triple (G,H, C) is
minimal. The matched uncertainties, represented by ξ(k), are
assumed to be unknown but bounded.

Consider the problem of determining an appropriate sliding
surface S formed from a linear combination of the states, and
a control law depending only on the measured outputs such
that:
• for the nominal linear system when ξ ≡ 0 an ideal sliding

motion is obtained in finite time i.e. x(k) ∈ S for all
k > ks;

• for uncertain systems the effect of the matched uncer-
tainty ξ is minimized and an appropriate bounded motion
about S is maintained.

The discrete-time sliding mode situation is quite different
from its continuous time counterpart: in continuous time a
discontinuous control strategy can be employed to maintain
ideal sliding in the presence of bounded matched uncertainty
and in theory its effect is completely rejected; in discrete-
time, complete rejection of the uncertainty is not possible
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due to the sampled nature of the control signal. Furthermore,
the inclusion of a switched term in the control law may be
detrimental to the performance [21], [11], [12].

As in [21], the class of sliding surfaces will be restricted to
those which can be expressed as

S = {x ∈ IRn : HTPx = 0} (3)

where P ∈ IRn×n is a symmetric positive definite (s.p.d.)
matrix. Associate with P a candidate Lyapunov function
V (k) = x(k)TPx(k) and define a Lyapunov difference func-
tion by

∆V (k) = V (k + 1)− V (k) (4)

Consider initially a regulation problem where no uncertainty
is present (i.e. ξ(k) ≡ 0). In the absence of uncertainty an
ideal sliding motion can be attained on S whereby

HTPx(k + 1) = HTPGx(k) + HTPHu(k) = 0 (5)

It follows from (5) that the equivalent control action necessary
to maintain an ideal sliding motion on S from (3) is given by

ueq(k) = −(HTPH)−1HTPGx(k). (6)

If P is such that the closed-loop system, obtained from
using the control law (6) in (1), satisfies ∆V (k) < 0 for
all k, then from standard (discrete) Lyapunov theory the
closed-loop system is asymptotically stable. It is clear that
∆V (k) ≡ −xT(k)Qx(k), where

Q := P −GT
cPGc (7)

and the closed-loop system matrix

Gc := G−H(HTPH)−1HTPG (8)

If Q > 0, the closed-loop system is stable.

Remark 1: For the uncertain discrete-time system in (1), the
control law (6), with P chosen so that Q from (7) is s.p.d,
has the property that it:

a) induces an ideal sliding motion on S from (3) in finite
time when ξ(k) ≡ 0 (this follows immediately from (5)
and (6));

b) minimizes the effect of ξ(k) on the closed loop dynamics
in a min-max sense i.e. the control law minimizes over
all possible state feedback control laws the effect of the
worst case uncertainty ξ(k) on the Lyapunov difference
∆V (k) (see [21]);

c) minimizes in a min-max sense the deviation from the
ideal sliding surface S (see [11]).

]
If for a s.p.d. matrix P satisfying P − GT

cPGc > 0 it is
possible to solve

HTPG = FC (9)

for some matrix F ∈ IRm×p then provided det G 6= 0, the
controller from (6) can be realized through outputs alone as

u(k) = −(FCG−1H)−1Fy(k). (10)

It is shown in [13] that two necessary conditions to solve the
problem of synthesizing a s.p.d matrix P satisfying (9) which
ensures Q from (7) is s.p.d, are

A1) the plant state transition matrix G is nonsingular;
A2) the matrix CG−1H has rank m.

Based on assumptions A1 and A2, a change of coordinates can
be introduced which facilitates insight into the class of systems
for which this problem is solvable. Define a new matrix

S := CG−1. (11)

This matrix will take the role of the output distribution matrix
for a new, fictitious system (G,H, S), which will be useful for
the theoretical developments which follow. In order to facili-
tate the analysis, a change of coordinates will be introduced for
the fictitious system (G,H, S). From assumption A2 and the
definition of S in (11), rank(SH) = m. As argued in [13],
since rank(SH) = m, there exists a change of coordinates
such that x 7→ x̄ and (G,H, S) 7→ (Ḡ, H̄, S̄) where

Ḡ =
[

G11 G12

G21 G22

]
; H̄ =

[
0

H2

]
; S̄ =

[
0 T

]
(12)

where G11 ∈ IR(n−m)×(n−m), H2 ∈ IRm×m and is non-
singular and T ∈ IRm×m is orthogonal. As argued in [13],
necessary and sufficient conditions to solve the problem of
synthesizing a s.p.d matrix P satisfying (9) which ensures Q
from (7) is s.p.d, are that A1 and A2 hold, together with a
third requirement:

A3) the matrix sub-block G11 from (12) is stable.
The coordinate system associated with (12) will be used as a
basis for the results which follow.1

Remark 2: Assumption A1 appears in all the discrete-time
output min-max literature: see for example [18]. However A1
means the approach in this paper is not applicable to discrete-
time systems which contain pure time delays. Condition A2
is a necessary condition to find a s.p.d. matrix P and an
F ∈ IRm×p to solve (9). This can be easily verified: assuming
det(G) 6= 0, if (9) is satisfied then HTPH = FCG−1H
and hence rank(FCG−1H) = m. This implies CG−1H must
be rank m. The second condition is equivalent to the triple
(G,H, C) not having any invariant zeros at the origin since
CG−1H = G(0) where G(z) := C(zI − G)−1H and so
rank(CG−1H) = m implies z = 0 is not an invariant zero.
Condition A3 is limiting and will be obviated in this paper by
the introduction of a compensator.
Remark 3: It can be shown [13] that A3 is equivalent to the
triple (G,H, S) being minimum phase since the eigenvalues
of G11 represent the invariant zeros of (G, H, S). Note: this is
quite different to the continuous-time min-max case where the
system representation from the inputs to the true outputs must
be minimum phase. As argued in [13], [14] it is quite possible
for (G, H, C) to be non-minimum phase whilst satisfying A3.

This paper will consider the situation where a tracking
requirement is required and will remove A3 by the use of
a suitable dynamic compensator.

III. MAIN RESULTS

Assume throughout the rest of the paper that A1 and A2
from §II hold. It follows from the canonical form (12) that the

1In fact [13] considers the more general situation where p ≥ m and a
slightly more elaborate version of A3 is proved.
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true output distribution matrix

C̄ = S̄Ḡ =
[

TG21 TG22

]
(13)

To incorporate a tracking element, integral action will also be
included. The difference equation

xr(k + 1) = xr(k) + τ(r(k)− y(k)) (14)

will be added where τ represents the sample interval2. The
quantity r(k) represents the signal to be tracked by the output.
Furthermore assume r(k) = rs = const for k > k0.

Partition the state vector x̄ conformably as col(x1, x2)
where x1 ∈ IR(n−m). Also introduce additional states xc ∈
IR(n−m), which under certain circumstances represent an
estimate of the states x1.

The intention is to induce an ideal sliding motion on

S = {(x1, xc, xr, x2) : K1xc +Krxr +x2+Srrs = 0}, (15)

where K1 ∈ IRm×(n−m) and Kr ∈ IRm×m together with
Sr ∈ IRm×m represent design freedom. Let the compensator
take the form

xc(k + 1) = G11xc(k) + G12x2(k) + L(y(k)− ŷ(k)) (16)

where
ŷ(k) := TG21xc(k) + TG22x2(k) (17)

and L ∈ IR(n−m)×m is a design variable. During an ideal
sliding motion, from (15),

x2(k) = −K1xc(k)−Krxr(k)− Srr(k)

and so after some algebraic manipulation it can be shown that

xc(k + 1) = Φxc(k) + Γ1y(k) + Γ2xr(k) + Γ3r(k) (18)

where

Φ = G11 − LTG21 −G12K1 + LTG22K1 (19)

and

Γ1 = L, (20)
Γ2 = −G12Kr + LTG22Kr, (21)
Γ3 = −G12Sr + LTG22Sr. (22)

It is assumed that as part of the design process, L is chosen
to guarantee that detΦ 6= 0. Augment the system in (1), in
the canonical form of (12), with the integral and compensator
states from (14) and (18) to obtain:

xa(k + 1) = Gaxa(k) + Ha(u(k) + ξ(k)) + Hrr(k), (23)

where xa = col(x1, xc, xr, x2). (At first sight this represents
a non-intuitive arrangement of the states but it leads to a
simplification in the presentation.)

2If (1)-(2) is a genuinely discrete system and does not arise from sampling
a continuous-time system, then (14) can be replaced by xr(k+1) = xr(k)+
r(k) − Cpxp(k) and all the results which will subsequently be proved are
still true when this equation is used in place of (14).

The avialable outputs associated with this system are given
by ya = col(xc, xr, y). It is easily verified that

Ga =




G11 0 0 G12

Γ1TG21 Φ Γ2 Γ1TG22

−τTG21 0 Im −τTG22

G21 0 0 G22


 ; Ha =




0
0
0

H2




(24)
and the output distribution matrix

Ca =




0 In−m 0 0
0 0 Im 0

TG21 0 0 TG22


 , (25)

where ya := Caxa. Modify the control law in (10) to include
the reference signal so that

u(k) = −(FaCaG−1
a Ha)−1FaCaxa(k) + Frr(k), (26)

where now both Fa and Fr ∈ IRm×m are to be determined
(in terms of L, K1, Kr and Sr). The objective is to select Fa

and a matrix F2 ∈ IRm×m so that the surface

Sa = {xa : FaCaG−1
a xa + F2Srrs = 0} (27)

is identical to the surface S in (15), and then to select K1, Kr

and L to ensure a stable ideal sliding motion when confined
to S .

Providing the design matrix Fa is chosen to ensure the
eigenvalues of

Gc = Ga −Ha(FaCaG−1
a Ha)FaCa (28)

are inside the unit disk, (I − Gc) is invertible. Define xs =
(I −Gc)−1(Hr + HaFr)rs then using (26) and defining

e(k) = xa(k)− xs (29)

it follows from simple algebraic manipulation that

e(k + 1) = Gce(k) + Haξ(k) (30)

In the absence of uncertainty e(k) → 0 as k →∞, and since
steady state is achieved, it follows from (14) that y(k) = rs

and so tracking is achieved. Furthermore it can be shown that

FaCaG−1
a xs = FaCaG−1

a (I −Gc)−1(Hr + HaFr)rs

≡ FaCaG−1
a (Hr + HaFr)rs

and consequently if Fr is chosen as

Fr := −(FaCaG−1
a Ha)−1

(
FaCaG−1

a Hr + F2Sr

)
(31)

then FaCaG−1
a xs + F2Srrs = 0 and so xs ∈ S . From (30),

and following similar arguments to those presented in §II
concerning (7) and (9), the problem is therefore to find an
Fa and a s.p.d. matrix Pa ∈ IR2n×2n such that

FaCa = HT
aPaGa (32)

and
GT

cPaGc − Pa < 0 (33)

Proposition 1: Assuming conditions A1 and A2 are satis-
fied, then there exist matrices Fa and Pa such that (32)-(33)
hold.
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Proof If A1 and A2 are satisfied then all the development
in §III is valid. Define for the augmented system (30) and the
output distribution matrix in (25) a fictitious output distribution
matrix Sa := CaG−1

a . After some algebra it can be shown that

Sa =




0 Φ−1 −Φ−1Γ2 −Φ−1Γ1T − τΦ−1Γ2T
0 0 Im τT
0 0 0 T




=:
[

0 Ta

]
, (34)

where Ta ∈ IR(n+m)×(n+m) and det Ta 6= 0. Define a matrix

Fa := F2

[
K1Φ K1Γ2 + Kr K1Γ1 −Krτ + T T

]
,

(35)
where F2 ∈ IRm×m and is nonsingular. The matrix F2 has
no effect on the dynamics of the ideal sliding motion but is
required to solve the constraint (32). After a little algebra it
can be shown that

FaSa = FaCaG−1
a = F2

[
0 K1 Kr Im

]
. (36)

To facilitate choosing the parameters L, K1 and Kr, change
coordinates according to the transformation xa 7→ T̃ xa =: x̃
where

T̃ :=




In−m −In−m 0 0
0 In−m 0 0
0 0 Im 0
0 K1 Kr Im


 . (37)

This effectively forces the last m states of the new coordinates
to represent what, in continuous-time sliding mode control,
is called the ‘switching function’ σ = Krxr + K1xc + x2

associated with the surface S in (15). It follows that the
matrices G̃ = T̃GaT̃−1, H̃ = T̃Ha, H̃r = T̃Hr, C̃ = CaT̃−1

and S̃ = SaT̃−1. After some straightforward algebra

H̃ =




0
0
0

H2


 and H̃r =




−Γ3

Γ3

τIm

K1Γ3 + τKr


 . (38)

From equation (36) it follows that

FaS̃ =
[

0 0 0 F2

]
. (39)

Some algebra reveals the closed-loop system matrix

G̃c = G̃− H̃(FaS̃H̃)−1FaC̃ =:
[

G̃11 G̃12

0 0

]
, (40)

where

G̃11 =




G11 − LTG21 0
LTG21

−τTG21
G̃m


 (41)

and

G̃m :=
[

G11 −G12K1 −G12Kr

−τTG21 + τTG22K1 Im + τTG22Kr

]
(42)

This is most easily seen from the definition of S̃ = C̃G̃−1

and the fact that G̃c = (I − H̃(FaS̃H̃)−1FaS̃)G̃. From (39)
and (38) it can be easily shown that

(I − H̃(FaS̃H̃)−1FaS̃) = diag(In−m, In−m, Im, 0m×m)

and hence the structure in (40) follows immediately. It is clear
from (40) and (41) that

σ(G̃c) = {0}m ∪ σ(G11 − LTG21) ∪ σ(G̃m),

where

G̃m =
[

G11 0
−τTG21 Im

]

︸ ︷︷ ︸
Ga

11

−
[

G12

−τTG22

]

︸ ︷︷ ︸
Ga

12

[
K1 Kr

]

(43)
and σ(·) denotes the spectrum of a matrix. Since the matrix
pair (G11, G21) is observable (see for example [13]) and T is
nonsingular, the pair (G11, TG21) is observable. Consequently
L can be chosen to make (G11 − LTG21) stable. Likewise it
can be shown that provided (G,H, C) does not have invariant
zeroes at unity, the pair (Ga

11, G
a
12) is controllable and hence

the choice of K1 and Kr constitutes a state-feedback problem.
Consequently K1, Kr and L can be chosen to make G̃11 from
(41) stable. In the new set of coordinates x̃, let the Lyapunov
matrix be represented by P̃ . Using the definition of S̃, equation
(32) becomes

H̃TP̃ = FaC̃G̃−1 = FaS̃ (44)

In order to show that P̃ is a Lyapunov matrix for G̃c it must
be established that

Q̃ := P̃ − G̃T
c P̃ G̃c > 0 (45)

It can be seen from the structures of H̃ and FaS̃ in (38) and
(39) and from the fact that detH2 6= 0 that in order to satisfy
(44), P̃ must have a block diagonal structure:

P̃ =
[

P̃1 0
0 P̃2

]
, (46)

where P̃1 ∈ IR(2n−m)×(2n−m), P̃2 ∈ IRm×m and

F2 = HT
2 P̃2. (47)

In terms of the partition in (40), (45) can be written as

Q̃ =
[

P̃1 − G̃T
11P̃1G̃11 −G̃T

11P̃1G̃12

−G̃T
12P̃1G̃11 P̃2 − G̃T

12P̃1G̃12

]
. (48)

Let P̃1 > 0 be a solution to

P̃1 − G̃T
11P̃1G̃11 > 0. (49)

Such a solution P̃1 is guaranteed to exist since G̃11 is stable.
Then from the Schur complement, inequality (48) is satisfied
if and only if

P̃2 > G̃T
12P̃1G̃11(P̃1 − G̃T

11P̃1G̃11)−1(G̃T
11P̃1G̃12)

+G̃T
12P̃1G̃12 (50)

Any pair (P̃1, P̃2) satisfying (49) and (50) ensures P̃ from (46)
satisfies (44) and (45). Therefore Fa as defined in (35) and
Pa = T̃ TP̃ T̃ where T̃ is given in (37) constitutes a solution
to (32)-(33) and the proposition is proved.

Corollary 1: The sliding surface Sa given in (27) is iden-
tical to S given in (15).
Proof From the choice of Fr in (31) and FaCaG−1

a in (36),
the equivalence of Sa with S from (15) is clear since F2 is
nonsingular.
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Remark 4: It is easy to see from that the control law is
independent of the choice of matrix F2.

IV. ROBUSTNESS

This subsection considers the robustness properties of the
controller developed in §III. Suppose the matched uncertainty
ξ(k) in (1), in the coordinates associated with (12), satisfies

‖ξ(k)‖ < ρ1‖x̄(k)‖+ ρ0, (51)

where ρ1 and ρ0 are positive constants. Let

N :=
[

In−m 0 0 0
0 0 0 Im

]
. (52)

In this section, assume initially that r(k) ≡ 0 ∀k. Then
x̄ = Nxa = Ne where e is defined in (29) since xs = 0
because rs = 0 by hypothesis. Consequently inequality (51)
can be written as

‖ξ(k)‖ < ρ1‖Ne(k)‖+ ρ0. (53)

The design freedom associated with the Lyapunov matrix has
been shown to be represented by the pair of s.p.d. matrices
P̃1 and P̃2. Although the pair (P̃1, P̃2) must satisfy the matrix
inequalities (49) and (50), there is some inherent design
freedom. The selection of these matrices has no effect on the
compensator dynamics (18) or indeed the control law. Assume
the relevant design parameters have been selected to ensure G̃c

(and in particular G̃11 from (40)) is stable. Define

L(P̃1, P̃2, µ) := −eTT̃ TQ̃T̃ e+ξTH̃TP̃ H̃ξ+(µeTNTNe−ξTξ)
(54)

where Q̃ is defined in (48), T̃ is given in (37), P̃ is defined
in (46) and the scalar µ > 0.

Proposition 2: Suppose P̃1, P̃2 and µ are chosen so that
L(P̃1, P̃2, µ) < 0 and ρ1 <

√
µ, then in the absence of external

disturbances (i.e. when ρ0 = 0), asymptotic stability of the
closed-loop system (30) is guaranteed.
Proof Let

V (k) := eT(k)Pae(k), (55)

where Pa := T̃ TP̃ T̃ . Then from (30) it follows that

∆V (k) = −eT(k)T̃ TQ̃T̃ e(k) + ξT(k) H̃TP̃ H̃︸ ︷︷ ︸
=HT

aPaHa

ξ(k), (56)

Since by hypothesis ρ1 <
√

µ and ρ0 = 0, it follows from (53)
that ‖ξ‖ <

√
µ‖Ne‖. Consequently µeTNTNe − ξTξ > 0,

which in conjunction with (54), implies ∆V (k) < 0. It then
follows from standard Lyapunov arguments that e(k) → 0 as
k →∞ and asymptotic stability is proved.

Corollary 2: The states e(k) are forced to evolve in such a
way that the deviation from Sa tends to zero with respect to
time.
Proof It follows from (30) that

FaCaG−1
a e(k + 1) = HT

a PaHaξ(k) (57)

for k = 1, 2, . . . and thus ‖HT
a PaHaξ(k)‖ represents the

deviation from the ideal sliding surface

Sa = {xa | FCaG−1
a xa + F2Srrs = 0}

≡ {e | FCaG−1
a e = 0}

As argued above ‖ξ(k)‖ ≤ ρ1‖Ne(k)‖ for all k and thus
‖HT

a PaHaξ(k)‖ ≤ ρ1‖HT
a PaHa‖‖e(k)‖ → 0 as k → ∞ as

claimed, since ‖e(k)‖ → 0 from Proposition 2.

The condition L(P̃1, P̃2, µ) < 0 is guaranteed if

µNTN < T̃ TQ̃T̃ , (58)
H̃TP̃ H̃ < Im (59)

are satisfied subject to P̃ > 0. A logical way to proceed is to
choose P̃1, P̃2 satisfying (58)-(59) to maximize µ. This repre-
sents a convex optimization problem with decision variables
P̃1, P̃2 and µ. Linear Matrix Inequality (LMI) methods [3] can
be used to obtain the optimal values of the decision matrices
as a generalized eigenvalue problem.

Finally if ρ0 6= 0 and/or rs 6= 0 then (51) becomes

‖ξ(k)‖ < ρ1‖Ne(k)‖+ (ρ0 + ρ1‖Nxs‖)︸ ︷︷ ︸
ρ̄0

rather than (53). Now quadratic stability is lost, but if
ρ1 <

√
µ, ultimate boundedness can still be guaranteed using

arguments similar to those in Proposition 2.

V. EXAMPLE

In this section the longitudinal dynamics of the High In-
cidence Research Model (HIRM) aircraft will be considered
[16]. A linearization of the nonlinear simulation [16] about
Mach number 0.3 and an altitude of 5000ft has been used as
the basis of the design. A discretized representation based on
a sample interval of 0.025 secs is

G =




0.9862 0.0243 0
−0.0264 0.9894 0
−0.0003 0.0249 1.0000


 ; H =



−0.0038
−0.0810
−0.0010


 ;

where C = [ 0 0 1 ] the states of the model are angle
of attack (rad), pitch rate (rad/s) and pitch angle (rad). The
inputs and outputs are symmetrical tail plane deflection and
pitch respectively. In the coordinates of (12) it can be shown
that
[

G11 G12

G21 G22

]
=




0.9874 −0.1166 9.1989
−0.0003 2.9806 −157.0127
−0.0003 0.0251 −0.9925




and T = 1. Choosing

L =
[ −4.5025

80.2795

]

and
[

K1 Kr

]
=

[
0.4004 0.0090 0.6418

]

means σ(G11 − LTG21) = {0.97, 0.98} and σ(G̃m) =
{0.80, 0.90, 0.98}. In the following design Sr = 0.005 has
been selected. From equations (19)-(22) it follows that

Φ =
[ −0.9082 −0.0460

30.9949 1.6593

]

and
[

Γ1 Γ2 Γ3

]
=

[ −4.5025 −3.0357 −0.0237
80.2795 49.6316 0.3867

]
,
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It can be verified that det(Φ) = −0.0798 and so Φ is invertible
as required by the theory. From (35) it can be shown

Fa = F2

[ −0.1277 −0.0851 −0.0035 −0.0974
]

where F2 is a non-zero scalar. From (26)

u(k) =
[ −124.864 −83.191 −3.445 −95.211

]
ya(k)

+9.7553r(k).

The LMI optimization gives an optimal value of µ = 2.7792
for which F2 = 976.7225. In the following simulations, to test
the robustness of the controller, uncertainty of the form

ξ(k) =
[

0.3 0 0.3
]
x(k)

has been included. Clearly ‖ξ‖ ≤ 0.3‖x‖ and 0.3 ≤ √
2.7792,

from the theory developed earlier, asymptotic stability will be
retained for a zero reference signal, and ultimate boundedness
results will be achieved if rs 6= 0.

Figures 1-2 show the response of the closed loop system
obtained from implementing the above controller on the nom-
inal and uncertain systems. Good output tracking is achieved
in both situations, although of course, total invariance to the
matched uncertainty is not obtained (Figure 1). In the nominal
system there is no deviation from the sliding surface; however
in the presence of uncertainty some deviation appears (Figure
2). Further results pertaining to the application of the theory
developed in this paper to the HIRM aircraft benchmark are
given in [15].

VI. CONCLUSIONS

This paper has proposed a new output feedback based
discrete-time sliding mode control scheme. It incorporates a
tracking requirement and is dynamic in nature. Previous work
has shown that with an appropriate choice of surface, discrete-
time sliding mode control can be applied to non-minimum
phase systems. The original scheme was static output feedback
in nature and so inherently this imposed restrictions on the
class of systems to which it was applicable. The scheme
which has been proposed here includes a compensator and
so the output feedback restrictions have been removed. The
key aspect of the new scheme proposed here is that it is still
applicable to non-minimum phase systems.
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