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‘When you are studying any matter, or considering any philosophy, ask yourself only what are the

facts. What is the truth that the facts bear out. Never let yourself be diverted either by what you

wish to believe, or by what you think would have beneficient social effects if it were believed; but

look only and solely at what are the facts.’

—Bertrand Russell. BBC interview on Face to Face (1959).
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Summary. In antibiotic therapy design, conventional wisdom holds that higher antibiotic

dosages always leads to the observation of fewer bacterial cells, resulting in a monotonic decay

in cell number as a function of increasing antibiotic dose; accordingly, throughout this thesis, we

will call this phenomenon a monotone dose-response profile. When we analysed the evolution

of antibiotic resistance mediated by the multi-drug efflux pump AcrAB-TolC in Escherichia coli

to study if such a monotone dose-response is maintained at all times, our analysis showed

that higher dosages can, in fact, lead to higher bacterial loads. This is because selection for

drug resistance is mediated by the duplication of the genes, AcrAB-TolC, that encode the

aforementioned efflux pump. As explained in detail below, our work highlights the idea that

Darwinian selection on additional copies of AcrAB-TolC is a non-linear function of antibiotic

dose and that the observed transition from monotone to non-monotone dose-response is a

consequence of AcrAB-TolC being strongly selected at very specific dosages. We term this

phenomenon an ‘evolutionary hotspot’.

Next, we extended the above experimental system to solid media to study how selection on

resistance mediated by AcrAB-TolC leads to a ‘spatio-genomic patterning’ effect that we call a

‘bullseye’. Using a bespoke culture device developed as part of this PhD, we show that spatial

selection on resistance also depends non-linearly on the distance of the cell from an antibiotic

source, and that the non-linearity can be multi-modal as a function of distance, and therefore

also of antibiotic dose. This result also contradicts the aforementioned principle that higher

antibiotic dosages necessarily lead to fewer bacterial cells.

Following on from this, we then studied the ability of microbial competitors for resources to

modulate the antibiotic sensitivity of a particular strain of E. coli, namely Tets, using a range of

multi-species experiments. We measured the sensitivity to antibiotics of Tets both with, and

without, one bacterial or fungal competitor. When that competitor was equally sensitive to the

antibiotic, we observed that Tets was less sensitive to it, in part due to an ‘antibiotic sinking’

effect carried out by the competitor strain. However, when the competitor was not sensitive to

the antibiotic, Tets was, accordingly, more sensitive than in the absence of competition. In this

latter case, the competitor seemed to reduce the growth of Tets by carbon theft as part of a

phenomenon known as ‘competitive suppression’. Moreover, this ecological effect is one that

synergises with the action of the antibiotic.

Finally, we turned to a study of an ecological trade-off motivated by ribosome-binding

antibiotics. So, by manipulating the content of ribosomal RNA in the E. coli cell, a large and

essential molecule that is bound by antibiotics such as tetracycline or erythromycin, we could
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subsequently manipulate what is known as a metabolic trade-off between growth rate and

growth yield. The latter is the number of cells produced per molecule of carbon found in the

extracellular environment of the bacterial population. Using glucose as carbon source we

therefore constructed an empirical fitness landscape that shows how the optimum number of

ribosomal rRNA operons depends on extracellular glucose concentration. Whilst this study

does not relate directly to the presence of an antibiotic, it does show that by altering the number

of operons in a manner that is known to affect antibiotic susceptibility, we can also mediate

important growth parameters like cell yield, aka efficiency, and growth rate.
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1.1 A) ‘Mutant Selection Window’ (MSW) model, adapted from REFERENCE 17.

The black bars represent bacterial density in number of cells or strains. The

selective gradient, as a function of antibiotic concentration, is represented

in red. Below or above this window there is no selection on resistance. B)

Sub-inhibitory selective window model. Growth rates of a sensitive (S, in

green) and a resistant populations (R, in red) as a function of antibiotic

dose. Assuming the existence of costs of resistance, here represented as the

difference in growth rate in the absence of antibiotic, the minimum selective

concentration (MSC) is defined as the concentration of antibiotic at which S

and R have identical growth rates, and thus selection on R begins. Note that

this selection takes places below the minimum inhibitory concentration of the

wild-type strain (MICs). Adapted from REFERENCE 19.. . . . . . . . . . . . . . . . . . . . . 3

2.1 A) The proposed transport mechanism and (b) estimated structure of the

multi-drug efflux pump AcrAB-TolC taken from REFERENCES 54 in the case

of A) and 52 in the case of B). The pump rests on a structure formed by

proteins AcrB and AcrZ in the inner membrane, opening out to the cytoplasm.

In the outer membrane lies TolC that forms a pore opened to the extracellular

environment. AcrA connects both in the periplasm, and forms a vestibule in

the periplasm with AcrB. The drug binding pocket is hidden in the vestibule.

The drug is captured and ejected to the environment powered by protons

(H+) from the periplasm. Note that further studies of this pump52 established
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the cytoplasmic section of AcrB as a completely different component, AcrZ

that is also produced by the acr operon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Partial regulatory network of the operons mar and acr composed through

a reverse-literature research during this project (i.e. if acr is regulated by

rob, what regulates rob?). There are at least three main signals for the

acr operon. First is guanosine tetraphosphate (ppGpp), a small nucleotide

‘alarmone’ that acts as a global gene expression regulator in E. coli.57 This

signal is produced upon nutrient limitation and its accumulation leads to

the down-regulation of basic processes such as DNA replication, and the

up-regulation of processes such as glycolysis, oxidative stress and osmotic

stress response.57 Second is the response to oxidative stress specifically

mediated by the sox operon. This operon is able to sense reactive oxygen

species, known mutagenic byproducts of metabolism and activate a series of

downstream genes to remove such mutagenic byproducts.58 The third signal

depends on population density, or a quorum sensing mechanism, mediated

by sdiA. This gene is involved in the density-dependant regulation of cell

division.67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 A comparative set of four dose-response profiles, using erythromycin, for

the strains of E. coli AG100, AG100-A, TB108, and eTB108 where optical

density data has been measured at 600nm (OD600) after 24h of growth. Note

that OD600 is shown on the y-axis whilst the concentration of erythromycin

is represented in a logarithmic scale on the x-axis. The IC99 and its 95%

confidence intervals, determined using n = 8, are shown for each strain on

top of the x-axis. Only three of these are visible as two of the strains have

overlapping confidence intervals for their IC99 values (eTB108 and AG100).. 12

2.4 A shematic showing the key parameters involved in the quantification of the

rate of adaptation with respect to any phenotype on the y-axis, here taken to

be the growth rate. The rate of adaptation is denoted α throughout the text. . 13

2.5 A) Variation in strength of selection on resistance as a function of the dose of

an antimicrobial: it has been postulated to have a linear form.26,27 Thus one

might anticipate a form whereby s(A) = σ · A for some coefficient σ. B) The
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rate of the sweep to fixation of an advantageous trait of interest, assuming a

constant selection coefficient s, see REFERENCE 23. This is a logistic curve

whose steepness, and therefore the rate of fixation, is positively correlated

with the value of s. From A) this rate of fixation is therefore also positively

correlated with the value of A, if dose is indeed positively correlated with the

selection coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 A prediction from the theoretical model defined in EQUATION 2.1. The con-

centration of antibiotic is represented on a logarithmic scale on the x-axis,

whereas the growth in terms of OD600 is represented as a linear scale on

the y-axis. This model predicts that the initial antimicrobial dose-response

profile is monotone in accordance with standard tests that are used to

quantify sensitivity to antibiotics in the lab. In time, following adaptation,

cells with a higher number of pumps grow better at higher concentrations

of antibiotic and they are selected through time, thus producing a non-

monotone dose-response profile, eventually. The parameters are as fol-

lows:74 V = 1139.6µg/OD600/h, Km = 0.53882µg/mL, κ = 0.2mL/µg, v =

3987.3µg/OD600/h, km = 19.681(dimensionless), g = 0.5(dimensionless),

d = 0/day , ϕ = 93.068mL/OD600/h, δ = 0.0025/gene, ∆ = 18(dimensionless),

and c = 0.000315OD600/µg with initial conditions BIC = {0.01, 0, 0}. The

dashed line highlights the culture density in the absence of drug. . . . . . . . . . . . 18

2.7 A second prediction from the theoretical model defined in EQUATION 2.1

when the ability of products of the acr operon to pump antibiotic has been

removed from the model. The concentration of antibiotic is represented using

a logarithmic scale on the x-axis, whereas growth in terms of OD600 is

represented using a linear scale on the y -axis. The black line shows the total

population density. Due to the inability of the cells to increase their ability

to efflux the drug, and with the initial population lacking efflux pumps, the

dose-response profile remains monotone at all times. In such a case, the

IC90 shows little variation through time. Parameters as in FIG. 2.6 with only

one modification: δ = 0/gene. The dashed line highlights the culture density

in the absence of drug. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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2.8 Experimental data on the growth of E. coli AG100 shown on the y-axis as

the mean of OD600 ± standard error (n = 8, black), as a function of the

concentration of erythromycin (Ery) on the x-axis. Data is plotted at the

moment of inoculation (t = 0h) each season (one day per season) and every

6h thereafter. The vertical dashed line represents the IC99 measured after

24h of growth. This IC99 is often said to be the lower boundary of the mutant

selection window (MSW), here represented in grey. In blue we represent

the best Hill fit to data. This clearly shows a transition from monotone to

non-monotone behaviour of the density data through time as the quality of

the blue line datafit deteriorates through time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Experimental data on the growth of E. coli AG100-A shown on the y-axis

as the mean of OD600 ± standard error (n = 8, black), as a function of the

concentration of erythromycin (Ery) on the x-axis. Data is plotted at the

moment of the inoculation (t = 0h) and every 6h thereafter. The vertical

dashed line represents the IC99 measured after 24h of growth. This IC99 is

often said to be the lower boundary of the mutant selection window (MSW),

here represented in grey. In blue we represent the best Hill fit to data ±

standard error (n = 8). (Note: we observed growth in the treatment containing

the highest concentration of erythromycin in 1 out of 8 replicates after day 5). 23

2.10The difference between optical density data for the strain AG100 (left), AG100-

A (right) and the best-fit monotone (Hill) profile (fitted with respect to OD600)

on the y-axis is plotted as a function of the concentration of erythromycin

on the x-axis (shown as ‘E’ in the subplots on the right). The area under

the curve of the difference between data and optimal datafit (AUCd ) is used

to monitor the deviation from monotonicity as a function of time and the

concentration of erythromycin (central plot). This shows maximal deviation is

achieved at an intermediate time point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.11Experimental data on the growth of E. coli TB108 shown on the y-axis

as the mean of OD600 ± standard error (n = 8, black), as a function of

the concentration of erythromycin (Ery) on the x-axis. Data is plotted as

OD600 (top) and as normalised GFP (nGFP, bottom) plotted at the moment
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of the inoculation (t = 0h) and every 6h thereafter. The vertical dashed line

represents the IC99 measured after 24h of growth. In blue we show the best-fit

Hill function.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.12The difference between the optical density data for the strain TB108 and the

best-fit monotone (Hill) profile in OD600 (top) and normalised GFP (nGFP,

bottom) on the y-axis as a function of the concentration of erythromycin on

the x-axis (E, subplots in the right). The area under the curve of this difference

(AUCd ) is used to monitor the deviation from monotonicity as a function of

time and the concentration of erythromycin (central plot). . . . . . . . . . . . . . . . . . . 26

2.13Experimental data on the growth of E. coli eTB108 shown in the y-axis as

the mean of OD600 ± standard error (n = 8, black), as a function of the

concentration of erythromycin (Ery) on the x-axis. Data for OD600 (top) and

normalised GFP (nGFP, bottom) plotted at the moment of the inoculation (t

= 0h) and every 6h thereafter. The vertical dashed line represents the IC99

measured after 24h of growth. In blue we show the best-fit Hill function.. . . . . 27

2.14The difference between the optical density data for the strain eTB108 and

the best-fit monotone (Hill) profile in OD600 (top) and normalised GFP (nGFP,

bottom) on the y-axis as a function of the concentration of erythromycin on

the x-axis (E, subplots in the right). The area under the curve of this difference

(AUCd ) is used to monitor the deviation from monotonicity as a function of

time and the concentration of erythromycin (central plot). . . . . . . . . . . . . . . . . . . 28

2.15Top) A partial view of the regulation network of the acr operon (see p. 10

for details). Bottom) The expression profile of AcrB-sfGFP is shown as a

function of time over 24h at different concentrations of erythromycin for the

strain eTB108. A proxy for the relative abundance of AcrB-sfGFP per cell is

shown on the y-axis as a function of time (bottom). Different concentrations

of erythromycin are denoted by different colours. We note that the small

oscillations observed are seemingly produced by mechanical components of

the microplate reader and not by any oscillatory dynamic produced by the

above network (see FIG. S.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.16Erythromycin dose-response profiles for evolved E. coli AG100 measured
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every 24h. The growth measured as OD600 is shown on the y-axis as a

function of the concentration of erythromycin, represented on the x-axis.

For the subplots, the y-axis represent the point-to-point slope changes of

the dose-response profiles and significantly positive (green) or negative

(red) slopes are highlighted accordingly (α = 0.01). These numbers indicate

whether an increase or decrease in drug dose increases or decreases the

OD values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.17Erythromycin dose-response profiles for E. coli eTB108 measured every 24h.

The growth measured as OD600 is represented on the y-axis as a function

of the concentration of erythromycin, represented on the x-axis. For the

subplots, the y-axis represent the point-to-point slope changes of the dose-

response profiles and significantly positive (green) or negative (red) slopes

are highlighted accordingly (α = 0.01).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.18Erythromycin dose-response profiles for E. coli eTB108 measured every 24h.

The absolute abundance of AcrB measured as normalised GFP (nGFP) is

represented on the y -axis as a function of the concentration of erythromycin,

represented on the x-axis. For the subplots, the y -axis represent the point-to-

point slope changes of the dose-response profiles and significantly positive

(green) or negative (red) slopes are highlighted accordingly (α = 0.01). . . . . . 32

2.19Erythromycin dose-response profiles for E. coli eTB108 measured every 24h.

The relative abundance of AcrB per cell measured as normalised GFP (nGFP)

per OD600 is represented on the y-axis as a function of the concentration

of erythromycin, represented on the x-axis. For the subplots, the y-axis

represent the point-to-point slope changes of the dose-response profiles

and significantly positive (green) or negative (red) slopes are highlighted

accordingly (α = 0.01). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.20Erythromycin dose-response profiles for E. coli TB108 measured every 24h.

The absolute abundance of AcrB measured as normalised GFP (nGFP) is

represented on the y -axis as a function of the concentration of erythromycin,

represented on the x-axis. For the subplots, the y -axis represent the point-to-

point slope changes of the dose-response profiles and significantly positive
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(green) or negative (red) slopes are highlighted accordingly (α = 0.01). . . . . . 33

2.21Erythromycin dose-response profiles for E. coli AG100-A measured every

24h. The growth measured as OD600 is represented on the y-axis as a

function of the concentration of erythromycin, shown on the x-axis. For the

subplots, the y-axis represent the point-to-point slope changes of the dose-

response profiles and significantly positive (green) or negative (red) slopes

are highlighted accordingly (α = 0.01).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.22Erythromycin dose-response profiles for E. coli TB108 measured every 24h.

The growth measured as OD600 is represented in the y-axis as a function

of the concentration of erythromycin, represented in the x-axis. For the

subplots, the y-axis represent the point-to-point slope changes of the dose-

response profiles and significantly positive (green) or negative (red) slopes

are highlighted accordingly (α = 0.01).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.23Selection statistics for E. coli AG100 as a function of the concentration of

erythromycin: rate of adaptation per replicate based on rAUC (αAUC , left).

Darker greys represent lower rates of adaptation, eight replicates shown,

whereas brighter greys represent higher rates. Mean rate of adaptation as

a function of the concentration of erythromycin (right). The numbers shown

correspond to the p-values of an unpaired t-test (α = 0.05). The error bars

represent the standard error of the mean (n = 8), and the grey area represents

the mutant selection window (MSW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.24Selection statistics for E. coli AG100-A as a function of the concentration

of erythromycin: rate of adaptation per replicate based on rAUC (αAUC , left).

Darker greys represent lower rates of adaptation, eight replicates shown,

whereas brighter greys represent higher rates. Mean rate of adaptation as

a function of the concentration of erythromycin (right). The numbers shown

correspond to the p-values of an unpaired t-test (α = 0.05). The error bars

represent the standard error of the mean (n = 8), and the grey area represents

the mutant selection window (MSW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.25Selection statistics for E. coli TB108 as a function of the concentration of

erythromycin: A,C,E) rate of adaptation per replicate based on rAUC (αAUC).
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Data for A) OD600, C) absolute abundance of AcrB-sfGFP as normalised

GFP (nGFP), E) relative abundance of AcrB-sfGFP as normalised GFP per

OD units. Darker greys represent lower rates of adaptation, eight replicates

shown, whereas brighter greys represent higher rates. B,D,F) Mean rate of

adaptation as a function of the concentration of erythromycin (right column).

The numbers shown correspond to the p-values for an unpaired t-test (α =

0.05). The errorbars represent the standard error of the mean (n = 8), and

the grey area represents the mutant selection window (MSW). . . . . . . . . . . . . . 36

2.26Selection statistics for E. coli eTB108 as a function of the concentration of

erythromycin: A,C,E) rate of adaptation per replicate based on rAUC (αAUC).

Data for A) OD600, C) absolute abundance of AcrB-sfGFP as normalised

GFP (nGFP), E) relative abundance of AcrB-sfGFP as normalised GFP per

OD units. Darker greys represent lower rates of adaptation, eight replicates

shown, whereas brighter greys represent higher rates. B,D,F) Mean rate of

adaptation as a function of the concentration of erythromycin (right column).

The numbers shown correspond to the p-values for an unpaired t-test (α =

0.05). The errorbars represent the standard error of the mean (n = 8), and

the grey area represents the mutant selection window (MSW) . . . . . . . . . . . . . . 37

2.27Estimation of the number of AcrB proteins per cell for populations the strains

E. coli TB108 (top) and eTB108 (bottom) as time changes. The two main

plots in the left-hand column represent the relative normalised GFP per OD600

in each population (y-axis, shown are means ± standard error, n = 8) as a

function of time (x-axis) and the different concentrations of erythromycin have

different colours. The subplots in the right-hand columns show sweep rates

per replicate as a function of erythromycin (Ery) whereby lighter squares

have higher values (8 replicates shown). The rate of sweep (ψ) is measured

using AUC as implemented in EQUATION 2.4 (bottom), and the maximum rate

of change in the time-series dataset for nGFP ·OD−1
600 (y) for robustness as

max
0h≤t≤168h

dy
dt (top). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.28A) Genomic data for E. coli AG100. Coverage of the acr operon, relative to

the genome background, as a function of the concentration of erythromycin
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and time (x-axis, mean ± s.e.m, n = 3). B) Rate of sweep as the increase in

acr copies per day as a function of the concentration of erythromycin on the

y -axis, of the acr operon based on the genomic data.. . . . . . . . . . . . . . . . . . . . . . 40

2.29A) Estimation of the number of AcrB proteins per cell for populations the

strains E. coli as time changes. The main plot in the left-hand column repre-

sents the relative normalised GFP per OD600 (y-axis, shown are means ±

standard error, n = 8) as a function of time (x-axis) and the different concen-

trations of erythromycin have different colours. The subplots in the right-hand

columns show sweep rates per replicate as a function of erythromycin (Ery)

whereby lighter squares have higher values (8 replicates shown). The rate of

sweep (ψ) is measured using both AUC (bottom), and finite difference approx-

imations (top) for robustness. B) Rate of sweep, measured as the increase in

acr copies per day as a function of the concentration of erythromycin on the

y -axis, of the acr operon based on the genomic data.. . . . . . . . . . . . . . . . . . . . . . 41

3.1 Dose-response profiles for C. albicans showing the change in growth rate

as a function of the concentration of fluconazole in the absence (dark grey,

n = 2), and in the presence (light grey, n = 3) of the fluconazole-resistant

competitor C. glabrata. Growth rate in the absence of fluconazole is plotted on

the y-axis. The vertical dotted lines represent the concentration at which 90%

of the growth measured in the absence of fluconazole condition is inhibited,

coloured accordingly (IC90 = 1.821 and 1.811 µg/mL in monoculture, IC90 =

1.563, 1.823, and 0.978 µg/mL in coculture). Data provided by Emily Cook,

University of Exeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Dose-response profiles for E. coli Wcl showing the change in growth rate

as a function of the concentration of tetracycline in the absence (dark grey),

and in the presence (light grey) of the competitor S. typhimurium, where the

latter is sensitive to this antibiotic. Growth rate in the absence of tetracycline

is plotted on the y-axis. The vertical dotted lines represent the concentration

at which 90% of the growth measured in the absence of tetracycline is

inhibited, coloured accordingly: IC90 = 0.245 ± 0.004 µg/mL in monoculture
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(mean ± 1.96 standard error), IC90 = 0.326 ± 0.024 µg/mL in coculture. We

analysed the difference between both IC90 using a Wilcoxon rank sum test

with ranksum = 100, and p = 1.55 · 10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Model of the minimal selective concentration (MSC).19 Fitness, typically

measured as growth rate after 24h of growth, is represented in the y-axis as

a function of the concentration of antibiotic, represented in the x-axis. This

model assumes the existence of a ‘cost of resistance’,87 whereby mutations

conferring resistance to antibiotics are also associated with lower fitness.

Thus, in the absence of antibiotics, the drug-sensitive competitor (hereafter

denoted by ‘s’) has a higher growth rate after, say, 24h of growth, than the

resistant type (denoted by ‘r’). However, the s-type has a higher sensitivity

to the antibiotic and therefore MICs < MICr . As a consequence, the addition

of antibiotic to a mixed culture of s and r forces a ‘crossing point’ between

these two dose-response profiles. This crossing point defines the MSC, a

concentration at which both competitors have the same fitness and whereafter

selection on the resistant competitor begins. Note that MICs and MICr are

measured in monoculture only. We conducted competition experiments at

concentrations at which only the sensitive type is predicted to have changes

in fitness (pink). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Diagram of the mathematical model formalised in EQUATION 3.1. A0 and

C denote the concentrations of antibiotic and carbon, respectively, in the

environment. Each cell contains an enzyme (black) able to take C from

the environment and process it to grow (the growth rate function is defined

as G(C) = y · VC/(Km + C), y denoting the yield per molecule of C, V

the maximum rate at which C is processed, and Km the enzymatic half-

saturation constant). A0 diffuses into the cells at a rate ϕ, binding to the

enzyme and reducing the growth of the cell (a growth inhibition function is

defined to be γ(A) = 1/(1 + κjA2
j ), G(C) being redefined as Gj (C, A) =

y · VC0/(Km + C0) · 1/(1 + κjA2
j )). Here j denotes the type of bacterium,

either sensitive (S) or resistant (R), κR � κS. We assume that antibiotic

degrades through time at a rate d . Finally, the growth function GR (C, A) is
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modulated by the cost of resistance parameter Γ > 0.. . . . . . . . . . . . . . . . . . . . . . 50

3.5 Our theory predicts that the S strain is more sensitive to tetracycline in the

presence of a competitor than in its absence. A) The monoculture dose

response of the S (plasmid-free) and R (resistant plasmid carrying) strains of

E. coli. This shows that the R strain can be considered completely resistant

over the range of dosages applied but the S strain has an IC50 over 0.14µg/mL

of tetracycline. B) Co-culture experiment with the 50-50 inoculum of S and

R strains, where the IC50 of the S strain has now shifted to 0.074µg/mL.

Moreover, 0.2µg/mL tetracycline is the IC91 in co-culture whereas it is the

IC63 in monoculture. The numerical values for the parameters are S0 = 0.001

cells, R0 = 0.001 cells, A0 = 0.2µg/mL, C0 = 100µg/mL, V = 2,400µg/cell/hour,

Km = 1µg/mL, γ= 0.75, ϕ = 103ml/cell, κ = 400mL/µg, d = 0.1 /h, η = 0.01,

carbon conversion factor = 0.00075 cells/µg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Predicted inhibition per molecule of drug in the absence, and in the presence,

of a competitor with different sensitivities to the antibiotic tetracycline. The

sensitive competitor (S) is inhibited with less tetracycline in the presence of a

resistant competitor (R) due to competitive supression. Equally, the growth

of R is promoted due to a similar phenomenon with opposite effect, namely

competitive release,35 whereby the eradication of a competitor (in this case by

the use of antibiotics) leaves the unaffected competitor with more resources

to grow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Theoretical prediction of the existence of a concentration of antibiotic at which,

within a mixed culture, sensitive (s, green) and resistant (r, red) competitors

have identical fitness (MSC). The thin and thick lines represent the predictions

after one day and seven days of mixed growth, respectively. The crossing

point defines the MSC, which is here predicted to be different after seven

days of competition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Overlapped dose-response profiles for Tetrm (red), and Tetsm (green) in mono-

culture. Culture growth is represented as left) optical density estimated from

normalised fluorescence (ODe
600), centre) per capita growth rate, and right)

maximum increase in ODe
600 per hour on the y -axis, whereas the concentra-
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tion of tetracycline is represented on a logarithmic scale on the x-axis. Upon

detection, the MSC is represented in dark grey the IC90 for Tets in green,

and that for Tetr in red. For each case, we quantified the costs of resistance

as the difference between Tetr and Tets in the absence of tetracycline (data

shown on the y -axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Left) Overlapped, culture density dose-response profiles for each competing

strain grown in monoculture. For more information see FIG. 3.8. Right)

Overlapped, culture density dose-response profiles for each competing strain

grown in coculture over 24h. We quantified the costs of resistance as the

difference between Tetr and Tets in the absence of tetracycline (data shown

on the y -axis). We used a Wilcoxon rank sum test to analyse the differences

in IC90 (p = 1.55 · 10−4 and ranksum = 100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10Overlapped, growth rate dose-response profiles for each competing strain

grown in monoculture (left) and 24h of coculture (right). For more information

see FIG. 3.8. Upon detection, the MSC is represented in dark grey the IC90

for Tets in green, and that for Tetr in red. We quantified the costs of resistance

as the difference in between Tetr and Tets in the absence of tetracycline (data

shown on the y-axis). We used a Wilcoxon rank sum test to analyse the

differences in IC90 (p = 1.55 · 10−4 and ranksum = 100) and MSC (p = 0.019

and ranksum = 42). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.11Overlapped dose-response profiles for Tetr (red), and Tets (green) during

the seven days of co-culture. Changes in A) optical density estimated from

normalised fluorescence (ODe
600), B) relative frequency, C) per capita growth

rate, and D) maximum increase in ODe
600 per hour as a function of the con-

centration of tetracycline. Upon detection, mean ± 95% confidence intervals

are shown for the MSC, represented in dark grey, and the IC90 for Tets, in

green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.12Change in the IC90 as a function of the growth conditions (monoculture

or coculture) and competition length based on culture density (left), and

maximum increase in ODe
600 per hour (right). We analysed the difference in

the IC90 between that measured in monoculture (label M) and after 24h of
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coculture using a Wilcoxon rank sum test with p = 1.55 · 10−4 and ranksum =

100 for data based either on culture density (left) or growth rate as ODe
600 per

hour (right). We also quantified differences in the IC90 measured after 48h

of coculture, with p = 3.10 · 10−4 and ranksum = 92 for the data based on

culture density (left), p = 0.002 and ranksum = 89 for data based on growth

rate as ODe
600 per hour (right). The linear model ICc

90 = a + bt is represented

in dark grey, the parameter b not being significantly different from zero. . . . . . 59

3.13Relative concentration of tetracycline per optical density unit (ODe
600) for the

sensitive strain Tets in monoculture (labelled M), after 24 and 168 hours of

competition (labelled C). The barplots represent mean ± standard error (n =

7), whereas the raw data is shown as circles. We analysed the differences

between M and C(24h) using a Wilcoxon rank sum test with p = 0.011 and

ranksum = 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.14Overlapped, culture density dose-response profiles for each competing strain

grown in coculture over 24h (left) and 168h (right). Upon detection, the MSC

is represented in dark grey the IC90 for Tets in green, and that for Tetr in

red. For each case, we quantified the costs of resistance as the difference

in between Tetr and Tets in the absence of tetracycline (data shown on the

y-axis). We used a Wilcoxon rank sum test to analyse the differences in

IC90 (p = 5.84 · 10−4 and ranksum = 77). The costs of resistance are shown

on the y-axis as the difference between Tetr and Tets in the absence of

tetracycline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.15Overlapped, growth rate dose-response profiles for each competing strain

grown in coculture over 24h (left) and 168h (right). Upon detection, the MSC

is represented in dark grey the IC90 for Tets in green, and that for Tetr in

red. For each case, we quantified the costs of resistance as the difference

in between Tetr and Tets in the absence of tetracycline (data shown on the

y -axis). We used a Wilcoxon rank sum test to analyse the differences in IC90

(p = 0.00408 and ranksum = 31) and MSC for which no statistical difference

was found. The costs of resistance are shown on the y -axis as the difference

between Tetr and Tets in the absence of tetracycline. . . . . . . . . . . . . . . . . . . . . . . 60
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3.16The main figure shows the 7-season distribution of the number of plasmids

in the R-cell types when σ = 0.01. Note how these distributions are more

skewed towards higher plasmid numbers as the dose of drug increases. The

inset shows three particular plasmid distributions after 7 seasons, including

the inoculum distribution which sees a random distribution of both s and r cell

types, with a uniform distribution of plasmids in the latter case. . . . . . . . . . . . . . 62

3.17Left) New predicted outcome of a competition between the strains Tets and

Tetr . This prediction is not qualitative different from the previous version of

the model. Right) Relative frequency of the plasmid as a function of the dose

(coloured), assuming a uniform distribution at inoculation time (t = 0h).. . . . . . 63

3.18Relative copies of the plasmid pGW155B per cell of Tetr after 24h of coculture

with Tetr . We robustly fitted the linear model y = a + bx where the 95%

confidence interval for a is (19.76, 41.35) and for b is (26.52, 284.56), with

R2
adj = 0.198. This highlights a weak, but significantly positive correlation

between number of plasmids per cell and dose of tetracycline. . . . . . . . . . . . . . 64

4.1 A schematic of our implementation of the antibiotic susceptibility test: an

antibiotic drug held at high dosage at the centre of an agar plate diffuses out

into a bacterial lawn, producing a killing zone or zone of inhibition where by

the higher the dose, the larger the zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 A) Raw data: an image of a bacterial lawn (in false colour) showing how the

zone of inhibition on that lawn increases in area with increasing dose, here at

1, 2, 4,...., 128 times the MIC dose determined in liquid culture conditions. B)

The increase in area for the tetracycline drug for strains MG1655 and AG100

follow a power law with coefficient close to a value of two: a quadratic. This is

consistent with increases in zone of inhibition being described by a threshold

killing model whereby escape of the drug fro the centre following a diffusion

equation, as shown in the text (Statistical note: correlation coefficients are

R2 = {0.898, 0.959} respectively, F-statistics versus constant models are

F = {728, 1930} and corresponding p-values are given by: p = {1.43 ·

10−82, 3.45 · 10−115}.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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4.3 The leftmost plot shows the decay in drug concentration as a function of

distance from the drug source, where the latter has been deployed at a value

Ac. As the drug diffuses outwards, it maintains a value above the minimal

bactericidal concentration (MBC) for a while, thus enlarging the zone of

inhibition (ZoI), up to a maximum time point. Beyond this time, dose is too

low to ensure bacterial killing occurs. The middle plot is analogous to the first,

but with double the dose supplied, 2 × Ac . This calculation illustrates that the

zone of killing increases in size by a factor
√

2 according to diffusion theory.

The rightmost plot shows the dynamics of the drug dosage as a function of

time both inside and also right at the very edge of the zone of inhibition. . . . . 69

4.4 A) The basic structure of an operon: a promotor region in light grey, followed

by a gene coding a protein that represses transcription of the same operon,

followed by a second protein that encodes part of an efflux pump. We use

the green font colour to highlight the fact that we have a strain which has

GFP fused to the protein P, we also have strains without GFP fused to P. We

have in mind that P represents the A and B proteins of the acrRAB operon.

B) E.coli can duplicate the number of copies of the acr operon in its genome

which leads to a novel network structure following duplication in which the

two copies repress each other. C) Following a further duplication of one of

the operons, a three-node network results with all nodes repressing each

other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 A) We took a fluorescence microphotography showing the localisation of

GFP within a section of an E. coli cell close to the moment of division. Using

this labelled strain of bacterium we are able to deduce how the dynamics

of regulation of the protein AcrB correlates with the use of the macrolide,

erythromycin (labelled ‘ERY’). In the absence of the drug (grey curve) the

protein is down-regulated through lag and exponential phase (less than 12h)

before being up-regulated and then stabilising in stationary phase (12h and

beyond). When drug dosage is applied, first at a low dosage of 5µg/ml ,

the concentration of AcrB per cell increases substantially to level about 40%

higher at its maximum in the absence of drug. However, as the dose is
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further increased we observed a negative correlation between drug and

AcrB concentration per cell. (b) The negative correlation so-described is

significant across a wide range of ERY dosages, as shown by the results

of determining a t-statistic (for the derivative of GFP per cell with respect to

dose) following a linear regression that is testing for the increase or decrease

in AcrB concentration as dose changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 The analysis of the photographs from a spatial dose-response assay, using

the strain eTB108, shows the expression of AcrB using the proxy of green flu-

orescence levels (shown next to optical density (i.e. white light) at A) 24h and

B) 48h . This yields a per cell measure of AcrB concentration which is done

by calculating fluorescence observed per optical density. This measure is

shown in the inset of both plots which indicates a positive correlation between

drug dose and pumps per cell. We designed an algorithm in Matlab, using

the image analysis toolbox, to extract the information from the photographs

FIG. S.16.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 A) The intersection of the line and the quadratic functions give the values of

the environmental sugar concentration, S, for which growth rate has a local

extremum (a maximum). In this illustrate example, it is only in those regions

for which S lies between 2 and 3µg/ml (at the intersection of the red and

black lines) for which growth rate can have a local maximum and, then, it

is only for a certain range of the number of additional gene copies. B) The

analogous plot to that given in A), but showing dependence on A rather than

S. C) From A) and B) we deduce that, for the correct values of A and S, there

can be local spatial maxima with respect to growth rates whose location can

change with the number of copies of the resistance operon, acr.. . . . . . . . . . . . 76

4.8 Bullseye pattern formation due to the duplication of the acr operon as pre-

dicted by EQUATION 4.6. The distance from the centre of the plate is repre-

sented on the x−axes, whereas on the y−axes we represent the nutrient

and drug concentrations, and bacterial density all in arbitrary units. The first

ring (A top) is due to the increased bacterial growth produced by the higher

availability of nutrients (A, bottom plot in green) and extremely low concen-
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trations of drug (A bottom plot in red) in the boundary of the killing zone.

More nutrients are available beyond this boundary, but the concentrations

of drug in these coordinates impede the growth of the bacterial cells. Only

when the cells carry a second copy of this operon (b1), translated into higher

drug resistance, they are able to grow conforming an ‘inner rings’ of bacteria

(B top) until the concentration of drug is too high for these resistant cells (B

bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 A (relative) dose-response of three strains of E.coli with respect to the drug

erythromycin using units of optical density measured at 600nm. The acr

knockout strain AG100-A is most sensitive to the drug, followed by TB108

which has a GFP physically fused to AcrB, followed by the strain MG1655.

These antibiotic sensitivity tests, required for experiments in CHAPTER 2,

show that, overall, bacterial growth declines monotonically with increasing

drug supply over a 24h incubation period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.10An erythromycin dose-response curve of the E.coli AG100 strain with a Hill

function fit super-imposed onto the data. The latter is used to determine

an IC99 within a certain confidence and define the classic mutant selection

window (grey). Drug dose is shown on a linear scale on the x-axis, optical

density at 24h is shown on the y-axis. Data from experiment described in

CHAPTER 2 (FIG. 2.8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11Frames from a video showing the transition from monotone to non-monotone

dose response in the inhibition of E.coli growth by kanamycin held in the

central circular region. The top-most image was taken at time, t = 0h, the

bottom-most at t = 24h. The right column shows the mean dose-response

determined from each image in the left-hand column. . . . . . . . . . . . . . . . . . . . . . . 85

4.12The result of quantifying the transition in the dose-response data of FIG.

4.11. Plot A) shows how the data exhibits a low degree of non-monotonicity

at early on the in the experiment because the best monotone fit to data

is a good descriptor of the dose-response. Plot B) shows, at a later time,

that the best monotone fit to data gives a relatively poor fit. The right-hand

images in A) and B) show the difference between filtered data and the best
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monotone fit. C) Tracing the goodness of fit of the best monotone descriptor

of the dose-response data shows deterioration through time, indicative of a

transition from monotone to non-monotone dose-response. . . . . . . . . . . . . . . . . 86

4.13Measures of non-monotonicity (the oscillation profile and bumpiness mea-

sure) using the winding number of some synthetic data. In each of (A-F)

one can see, in the left column of the two images, a function representing

a particular dose-response pattern with zero drug at the x = 0 position

and higher drug where x � 0. Plot (A) shows a monotone dose-response

which is reflected in the oscillation profile equation, shown in the middle

figure of plot A), to the zero function. Plots (B-F) have increasing degrees of

non-monotonicity which is reflected in the oscillation profile in the right-hand

figure of each plot whereby the grey regions have increasing area. In each

window, the right-most plot corresponds to the bumpiness spectrum. Plot (F)

accords with what one might expect from intuition: the bumpiness spectrum

of a cos(2π · x ) function, suitably normalised, is (0, 2, 0, ...) as it exhibits ex-

actly two bumps. Plot (a) shows that the bumpiness spectrum of a monotone

function is the zero sequence (0, 0, ....).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.14The left-hand image shows the mean optical density of two bacterial strains

at 24h, AG100 and AG100-A, the latter does not have a functional acr

operon whereas the former does. The two right-hand images are false colour

representations of two different agar plates on which the respective strains

were cultured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.15A) The left-most plot shows an analysis of the dose-response profile which

constitutes the observed mean optical density as a function of the spatial

distance from the source of the drug (at position zero), and in this case it

is derived from strain AG100-A that lacks the efflux pump operon, acr. The

left-hand plot shows (in red) the best monotone function fit to data, filtered

data (in blue) and the dash blue lines indicate the leftmost point where the

optical density has been established to be significantly above zero using a

t-test with significance level p = 0.05. To the right of this point we assume

that optical density is significantly positive. The middle plot is the oscillation
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profile O(f )(α) for this AG100-A data and the rightmost plot is the bumpiness

spectrum that is derived from the oscillation profile. Neither of the latter two

measures are consistent with the presence of oscillations. B) This is the

analogous analysis to A) but now for the strain AG100 that possesses the

acr operon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Diagram of the metabolic rate-yield trade-off theory. A) Rate of ATP production

is shown on the y -axis as a function of the yield, η, on the x-axis. This function

reaches its maximum at η/2.37 B) The dynamics of ATP production depicted

in A) may change if part of the ATP synthesised is used to increase the

production rate. This investment of ATP comes at a cost of lower maximum

yields.38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 A) Non-linear, monotonic increase in the carrying capacity, K , shown on the

y -axis, as a function of the concentration glucose of glucose supplied to the

media, shown on the x-axis. B) Landscape of possible carrying capacities as

a function of both glucose supplied and copies of the rrn operon. Contour lines

show the combination of glucose and number of rrn operons with identical K . 96

5.3 A) Representation of yield, measured as the ratio between K and glucose

supplied, on the y-axis and the glucose supplied to the media, on the x-

axis. The decrease in yield as a function of glucose supplied describes a

hyperbola that is consistent with formerly hypothesised RYTOs based on

a branched pathway, each branch leading to different yields.42,114 B) Upon

variation in environmental conditions, here in glucose supplied, the relative

maximum yield (green, strains in black) is achieved by strains with different

number of rrn operons. Per-strain hyperbola, as formalised in p. 97, shown in

grey. C) Landscape of possible yields achieved as a function of the glucose

supplied and the number of rrn operons. Contour lines show the combination

of glucose and number of rrn operons with identical yield. . . . . . . . . . . . . . . . . . . 98

5.4 Representation of the change in yield, shown on the y-axis, as a function

of the number of rrn operons. Each subplot shows this relationship when

different concentrations of glucose is supplied of the media. Overall, there is
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a linear, significant increase in yield as the number of rrn operons is reduced

when the concentration of glucose is above 0.25 mg/mL (black). However,

we observed no significant change when this concentration is equal or lower

than 0.25mg/mL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 A) Change in per capita growth rate, shown on the y -axis, as a function of the

glucose supplied to the media, on the x-axis. We modified Monod’s growth

model (in black, see p. 97) to include, explicitly, the glucose-dependence

property of the yield. We observed an absolute, overall optimum per capita

growth rate at ≈0.5 mg/mL of glucose. B) Upon variation in environmental

conditions, here in glucose supplied, the relative maximum per capita growth

rate (green, strains in black) is achieved by strains with different number of

rrn operons. Per-strain hyperbola, as formalised in p. 97, shown in grey. C)

Landscape of possible per capita growth rates achieved as a function of the

glucose supplied and the number of rrn operons. Contour lines show the

combination of glucose and number of rrn operons with identical yield. . . . . . 100

5.6 Representation of the change in per capita growth rate, shown on the y-

axis, as a function of the number of rrn operons. Each subplot shows this

relationship when different concentrations of glucose is supplied of the media.

We compared whether the change in per capita growth rate is linear (light

grey) or non-linear (black). We tested the non-linearity of the data by fitting

the quadratic model r (G) = a + b ·G + b ·G2 to the data. Here r denotes per

capita growth rate, G the concentration of glucose, a per capita growth rate

when G = 0, and b and c phenomenological coefficients. . . . . . . . . . . . . . . . . . . 101

5.7 Left) Relationship between the per capita growth rate, measured as doublings

per hour on the y -axis, and yield, defined as cell density in OD units generated

per mg of glucose after 24h of growth, on the x-axis. The black line represents

the predicted, overall RYTO profile based on the predictions for yield (FIG.

5.3A) and per capita growth rate (FIG. 5.5A). Right) When we compare

the data in A) with the concentration of glucose, we observe RYTO at low

glucose concentrations, whereas at higher concentrations the RYTO turns

into a rate-yield trade down (RYTD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
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5.8 Relationship between the per capita growth rate, measured as doublings per

hour on the y-axis, and yield, defined as cell density in OD units generated

per mg of glucose after 24h of growth, on the x-axis. Each subplot represents

this relationship for every strain, and hereby demonstrates the robustness of

this RYTO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.9 Relationship between the per capita growth rate, measured as doublings per

hour on the y-axis, and yield, defined as cell density in OD units generated

per mg of glucose after 24h of growth, on the x-axis. Each subplot represents

this relationship as a function of the number of rrn operons and glucose

supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.10A) Culture growth rate, rmax , shown on the y-axis as a function of glucose

supply, shown on the x-axis. The black line represents the overall growth

rate as predicted by Monod’s growth, as opposed to that predicted per strain,

represented in B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.11A) Relationship between the population growth rate, rmax , shown on the

y-axis, and yield on the x-axis. The size of the data points is indicative

of the number of rrn operons, from seven copies in the wild-type strain

MG1655 (labelled WT) to just two copies in the strain with five deletions,

∆5.Relationship between power output,37 shown on the y-axis, and yield,

on the x-axis. The black line represents the quadratic model P (Y ) = a + b ·

Y + b · Y 2, P denoting the power output, Y the yield, a the growth rate when

y = 0, and b and c phenomenological coefficients. The 95% confidence for a

is (-0.003, 0.0004), for b (0.042, 0.086), and for c (-0.220, -0.110). The trend

is analogous to that observed in FIG. 5.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.12Relative yield, defined as OD units generated per mg of glucose per rrn

operon, is shown on the y-axis as a function of the glucose supplied to the

media, on the x-axis. Lines represent the best model fit: exponential (light

grey) or sigmoidal (dark grey), chosen depending on the corrected Akaike

Information Criterion (AICc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.13Shape of the RYTO profile when relative yields are taken into account. The

strains containing seven to three rrn are clustered within a group with high
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per capita growth rate but low relative yield, whereas the strain with two

rrn operons, ∆5, forms a second cluster characterised by lower per capita

growth rates and higher yields. Black lines correspond to the estimation from

a quadratic model. Regression for the wild-type (WT): R2 = 0.56, F-statistic

versus constant model: 11.7, p = 0.000562. Regression for ∆5: R2 = 0.27 ,

F-statistic versus constant model: 3.44, p = 0.0541. . . . . . . . . . . . . . . . . . . . . . . . 108

5.14Effect of the number of rrn operons on the metabolic rate-yield trade-off

when relative yield is taken into account. Each plot represents this effect

when different concentration of glucose is supplied to the media. In each

subplot, per capita growth rate is represented on the y-axis, whereas the

yield, defined as cell density in OD units generated per mg of glucose after

24h of growth, is represented on the x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.15Left) Relationship between the population growth rate, measured as the

maximum increment in OD per hour, shown on the y -axis, and relative yield,

defined as cell density in OD units generated per mg of glucose after 24h of

growth, on the x-axis. Right) Relationship between biomass production,37

shown on the y -axis, and relative yield, on the x-axis.. . . . . . . . . . . . . . . . . . . . . . 109

5.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

S.1 Growth profiles for E. coli AG100 based on OD600 measured every 20min

(1/3h), for 24h, during 7 days. Each subplot contains the growth profile of eight

replicates as a function of time, and as a function of the dose of erythromycin

(columns). The different rows show the fit, and the data for different days

ranging from days 1 to 7. We used the degree of overlap of the data (grey)

and the model (blue) to validate the appropriateness of the models that we

used to calculate the growth rate in each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

S.2 Growth profiles for E. coli AG100-A based on OD600 measured every 20min

(1/3h), for 24h, during 7 days. Each subplot contains the growth profile of eight

replicates as a function of time, and as a function of the dose of erythromycin

(columns). The different rows show the fit, and the data for different days

ranging from days 1 to 7. We used the degree of overlap of the data (grey)
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and the model (blue) to validate the appropriateness of the models that we

used to calculate the growth rate in each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

S.3 Growth profiles for E. coli TB108 based on OD600 measured every 20min

(1/3h), for 24h, during 7 days. Each subplot contains the growth profile of eight

replicates as a function of time, and as a function of the dose of erythromycin

(columns). The different rows show the fit, and the data for different days

ranging from days 1 to 7. We used the degree of overlap of the data (grey)

and the model (blue) to validate the appropriateness of the models that we

used to calculate the growth rate in each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

S.4 Growth profiles for E. coli TB108 based on normalised fluorescence (nGFP)

measured every 20min (1/3h), for 24h, during 7 days. Each subplot contains

the growth profile of eight replicates as a function of time, and as a function

of the dose of erythromycin (columns). The different rows show the fit, and

the data for different days ranging from days 1 to 7. We used the degree of

overlap of the data (grey) and the model (blue) to validate the appropriateness

of the models that we used to calculate the growth rate in each case. . . . . . . . 125

S.5 Growth profiles for E. coli TB108 based on relative fluorescence per OD600

unit (nGFP · OD−1) measured every 20min (1/3h), for 24h, during 7 days.

Each subplot contains the growth profile of eight replicates as a function of

time, and as a function of the dose of erythromycin (columns). The different

rows show the fit, and the data for different days ranging from days 1 to 7. We

used the degree of overlap of the data (grey) and the model (blue) to validate

the appropriateness of the models that we used to calculate the growth rate

in each case.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

S.6 Growth profiles for E. coli eTB108 based on OD600 measured every 20min

(1/3h), for 24h, during 7 days. Each subplot contains the growth profile of eight

replicates as a function of time, and as a function of the dose of erythromycin

(columns). The different rows show the fit, and the data for different days

ranging from days 1 to 7. We used the degree of overlap of the data (grey)

and the model (blue) to validate the appropriateness of the models that we

used to calculate the growth rate in each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
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S.7 Growth profiles for E. coli eTB108 based on normalised fluorescence (nGFP)

measured every 20min (1/3h), for 24h, during 7 days. Each subplot contains

the growth profile of eight replicates as a function of time, and as a function

of the dose of erythromycin (columns). The different rows show the fit, and

the data for different days ranging from days 1 to 7. We used the degree of

overlap of the data (grey) and the model (blue) to validate the appropriateness

of the models that we used to calculate the growth rate in each case. . . . . . . . 128

S.8 Growth profiles for E. coli eTB108 based on relative fluorescence per OD600

unit (nGFP · OD−1) measured every 20min (1/3h), for 24h, during 7 days.

Each subplot contains the growth profile of eight replicates as a function of

time, and as a function of the dose of erythromycin (columns). The different

rows show the fit, and the data for different days ranging from days 1 to 7. We

used the degree of overlap of the data (grey) and the model (blue) to validate

the appropriateness of the models that we used to calculate the growth rate

in each case.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

S.9 Adaptive landscapes for E. coli AG100 according to the best model fit (left),

finite difference approximation (centre), and area under the curve (right). The

analysis reflects the robustness of the existence, and location of the evolu-

tionary ‘coldspots’ and ‘hotspots’ as a function of the dose of erythromycin.

The colorbar indicates the rate of adaptation, black being the lowest rate of

adaptation and white being the highest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

S.10Adaptive landscapes for E. coli AG100-A according to the best model fit

(left), finite difference approximation (centre), and area under the curve

(right). The analysis reflects the robustness of the existence, and location

of the evolutionary ‘coldspots’ and ‘hotspots’ as a function of the dose of

erythromycin. The colorbar indicates the rate of adaptation, black being the
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I I N T R O D U C T I O N

“[resistance] is a purely chemical question which can only be solved by chemical means.”

—Paul Ehrlich,1 considered father of chemotherapy.

ANTIBIOTICS heralded a new era in the treatment of bacterial infections in which

deadly infections, such as bacterial meningitis, could be cured. The discovery

of the β-lactam penicillin and subsequently of other antibiotics defined the so-called

golden age of antibiotic discovery,2 when the drugs were classified in different classes

(i.e. tetracyclines or macrolides) based on their biochemical properties. The ability

of bacteria to become resistant to toxic substances, such as antibiotics, was well

known since the early twentieth century,3 but the variety of these drugs led “society

and the scientific community to become complacent about the potential of bacterial

resistance”.4 Such are the dimensions of resistance today that, during 2014, the World

Health Organization (WHO) published a report stressing that resistance to commonly

used antimicrobials is both widespread and, to quote the report directly, “few if any

antimicrobial options are available”.5 The same report also highlights the “virtually

empty pipeline for the development of new antibacterial drugs”. Whilst the efforts to

discover new antibiotics are of course an essential effort, perhaps it led us to overlook

what has been termed “insufficient information about the conditions and factors that

can lead to the mobilisation, selection and movement of these [resistant] bacteria”.6

This was already asked in the 1950s. When doctors started to quantify antibiotic

resistance in the clinic, feared that “if the supply [of antibiotics] should cease (. . . ) the

time may come when a few of the more enterprising [bacterial] species will flourish

more or less unhindered”.7 An editorial note in the British Medical Journal then asked
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about the conditions in which resistance was acquired.8 Thus, very little progress has

been made ever since. The small molecule antibiotic itself, in particular the discovery of

new ones, will play an essential part of the ongoing fight in the antimicrobial crisis, but

the clinical deployment of those molecules is an equally important part of the problem

and we contend that this represents an under-studied set of scientific questions.

Therefore, in response, this thesis presents a theoretical and empirical study of such

conditions, motivated by clinical treatments, and asks, exactly, what are the conditions

that lead to the most rapid onset of bacterial resistance to antibiotics? A number of

metabolic and physiological questions are addressed as a direct result of the questions

we ask about antibiotics. More immediately, in this chapter, we will introduce a number

of fundamental problems associated with antibiotic therapy design that we would like

to resolve.

1.1 ANTIBIOTIC RESISTANCE (I): QUANTIFIED WITHIN 24H, TREATED FOR WEEKS

Antibacterial drugs are, by definition, toxic to bacterial-type microorganisms. Antibiotic

therapy design is based on a principle, assumed to be true for more than a century,

whereby higher dosages of a drug necessarily lead to fewer observed bacterial cells

in the presence of that drug.9–12 Now, in practise, antibiotic sensitivity tests (ASTs)

quantify the precise dosage in vitro prior to use in the clinic. In these standardised

tests media, growth conditions and incubation times are clearcut, defined and, by

now, almost seen by the community as immutable.11 However, I contend that there

is potential for a fundamental flaw in the relationship between ASTs and clinical

therapies and it is this: the incubation time of ASTs is typically 24h, whilst therapies

last substantially longer in the clinic.13,14 Whether or not the sensitivity quantified by

ASTs is maintained for longer incubation times has been experimentally demonstrated

many times over in the field. However, this understanding has not been translated

into improved clinical treatments. Whilst the latter is well beyond the purpose of this

thesis, I will aim to show that prolonged treatments, beyond 24h, do lead to increases

in resistance in a consistent, and even possibly, a prior predictable, manner.
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FIGURE 1.1. A) ‘Mutant Selection Window’ (MSW) model, adapted from REFERENCE 17. The black bars represent bac-

terial density in number of cells or strains. The selective gradient, as a function of antibiotic concentration, is represented

in red. Below or above this window there is no selection on resistance. B) Sub-inhibitory selective window model. Growth

rates of a sensitive (S, in green) and a resistant populations (R, in red) as a function of antibiotic dose. Assuming the

existence of costs of resistance, here represented as the difference in growth rate in the absence of antibiotic, the mini-

mum selective concentration (MSC) is defined as the concentration of antibiotic at which S and R have identical growth

rates, and thus selection on R begins. Note that this selection takes places below the minimum inhibitory concentration

of the wild-type strain (MICs). Adapted from REFERENCE 19.

1.2 SELECTION ON RESISTANCE IS PROPORTIONAL TO ANTIBIOTIC DOSE

Resistance to antibiotics is caused by transmissible genetic elements but also sponta-

neous chromosomal mutations.15,16 But it is important to know at which drug dosages

these genes are most selected for. This question has been studied and the outcome of

those studies has concluded that the concept of a ‘selection window’ in which resistant

mutants are strongly selected within a narrow range of concentrations of antibiotic

resolves this question.17 However, where this window, if it does indeed exist, resides

remains a matter of some discussion in the field due to what could be said to be

poorly supported criteria whereby the boundaries of the selective window are defined

(FIG. 1.1).17–19 In this thesis we therefore use a specific model system to address the

question of where these windows can indeed be found.

But what does ‘strongly’ mean in terms of selection? The strength of selection can

be objectively measured and quantified with the selection coefficient. In population

genetics theory, selection “applies to the organism as a whole”20 and therefore the

selection coefficient is considered to be a “complicated function of the entire system of

gene frequencies and can only be dealt with qualitatively”.20 Thus, the simplest case

of study of selection in population genetics has typically been that of one gene with a
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constant selection coefficient.20–24 This concept has been applied to study antibiotic

resistance in the clinic, and the strength of selection on resistance is considered to

be proportional to antibiotic dose.25–27 In this thesis, our data leads to a different

conclusion, namely one whereby selection on specific resistance genes can be shown

to vary in a nonlinear and, indeed, non-monotone fashion with respect to antibiotic

dose. We will find hotspots and coldspots in the spectrum of dosages where selection

is maximised and minimised, respectively.

1.3 ANTIBIOTIC RESISTANCE (II): TESTED ON A SPECIFIC STRAIN, USED AGAINST

BACTERIAL COMMUNITIES

A second likely flaw in the relationship between antibiotic sensitivity tests (ASTs) and

their utility in terms of predicting the outcome of clinical therapies in hospital patients

may stem from a fundamental property of microbial ecologies. These tests always, by

design, quantify the sensitivity to antibiotics of a single, isolated strain of bacterium.

Yet, in the clinic, antibiotics are not only deployed to target this particular strain, but

they also target commensal microbes and the entire gamut of species that constitute

the patient’s microflora. Moreover, some infections can be polyclonal and, indeed,

polymicrobial.28–30

Although therapies designed using isolated strains have been said some time ago to

provoke a minimum disturbance on the microflora,31 these microbes necessarily set the

context for competition for resources with the bacteria being targeted. Whether or not

the competition modifies the sensitivity to antibiotics of the targeted strain, previously

quantified on isolation, is poorly understood.

Competition, and indeed cooperation, of the targeted species with other microbial

species represents just one aspect of the ASTs that departs from the reality of a

pathogen’s lifestyle, but there are others. In particular, the immune system of a healthy

host is known to play a large part in the success, and failure, of antibiotic treatments,

but immunity plays almost no role in this thesis. This is not because it lacks importance,

rather, it is a highly relevant part of the entire problem, however we have endeavoured

to keep this work centred on a body of tractable experimental in vitro systems which

has precluded the use of animal models.
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1.4 IN MIXED POPULATIONS, FAST DIVIDING CELLS OUTCOMPETE SLOW DIVIDING CELLS

The effect of antibiotics on bacteria is often measured as the reduction in bacterial

fitness,32 which is defined in terms of generation times (per capita growth rate).19,32–35

Therefore, fitter types of bacteria divide quicker than less fit types. In the case of mixed

populations of bacteria it has been proposed that, if mutations providing resistance to

antibiotics have a cost associated so that resistant cells are less fit, sensitive stains of

bacteria may outcompete resistant populations, less fit, when the use of antibiotics is

interrupted.36

But slow dividing cells can also surpass fast dividing cells. Stemming from certain

thermodynamic constraints,37,38 it has been proposed that high growth rates are not

compatible with simultaneous high growth yields (biomass produced per molecule of

carbon source) and, hence, there must be a metabolic trade-off between rate and

yield.38 Under such circumstances, assuming the constant supply of resources, slow

dividing but efficient cells can, in fact, outcompete fast dividing but inefficient cells.38

Now, bacterial growth rate is coupled to the cell’s capacity to synthesise proteins,39

and this capacity depends on the concentration of ribosomes within the cell.40 So whilst

the use of ribosome-binding antibiotics is expected to reduce bacterial fitness, and

therefore the growth rate,41 it is important to ask if the addition of such antibiotics leads

to slow dividing, yet more efficient, resistant bacterial cells. This could be described

as the potential for resistant cells to exploit an inevitable trade-off in growth. Empirical

datasets supporting the aforementioned trade-off are scarce42 meaning predictions

based on these trade-offs, in terms of how antibiotic-resistant cells might outcompete

drug sensitive cells, are very limited. We therefore sought to address this.

1.5 QUESTIONS AND THESIS OUTLINE

Using the bacterium Escherichia coli as a living model we answered a wide range of

questions that can be summarised as follow.

First, we explored whether the previously introduced principle whereby high dosages

always lead to low cell densities holds at all times during antibiotic treatment. E. coli is

known to possess an operon (acr) that encodes a pump with which the bacterium is

able to efflux a wide range of molecules, including antibiotics, from the cytoplasm of
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the cell into extracellular space, thus providing a generic resistance mechanism on this

operon. There are other mechanisms, more antibiotic-specific, that provide resistance

through random changes in the genome or mutations. These mutations may affect, by

chance, the molecule targetted by the antibiotic, or metabolic enzymes that can modify

the antibiotic molecule.43 Once these mutations occur de novo, they can be transmitted

and acquired through vectors such as plasmids,44 helping to spread resistance more

rapidly. However, due to its unusually broad specificity,45 we explored how selection on

resistance provided by the aforementioned operon is mediated by the dosage of the

ribosome-binding drug, erythromycin, supplied to the environment in which E. coli is

cultured.

We then looked into how selection on resistance is mediated by the presence of a

competitor microbial strain in the culture. Motivated by this question, we used a range

of multi-species experiments, including fungal microbial species that are known to

co-infect humans. We also sought to tackle the problem of determining the profile of

selection as a function of antibiotic dose using strains of E. coli which harbour a plasmid

that encodes the tetracycline resistance gene tet36. This gene provides ribosomal

protection against the tetracycline class of antibiotics so we explored whether, or not,

there is a minimal antibiotic dose at which selection on this plasmid begins.

Penultimately, we partially extended the first study (i.e. the one on acr selection) to a

spatially-extended context to understand spatial patterning effects of the acr operon.

For this we employed mathematical modelling, and used a bespoke spatial culture

device that was constructed as part of this PhD project.

Finally, we were interested in how the number, or concentration, of targets within the

cell of important antibiotics like erythromycin and tetracycline mediate key phenotypes

like growth rate and cell efficiency (per supplied molecule of carbon). Whilst this does

not relate directly to the presence of an antibiotic, we analysed whether by altering

the number of operons in a manner that is known to affect antibiotic susceptibility, we

could also mediate important growth parameters like cell efficiency and growth rate.
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ANOMALOUS DRUG activity, also known in the literature as a paradoxical effect,

is a phenomenon whereby higher doses of antibiotic do not necessarily yield

higher bactericidal, or indeed bacteriostatic, effects of that drug.10,46–48 In other words,

an inhibitor is not an inhibitor at all doses, but it can even appear to be a stimulant

of vegetative growth. This phenomenon, observed many decades ago after short (in

all likelihood, non-evolutionary) periods of 16 to 24h of exposure to antibiotics, has

been known since the 1940s but still remains poorly understood.49 In this chapter

we will demonstrate that a similar ‘paradox’ can be produced through selection for a

‘genomically scalable’ multi-drug efflux pump system, AcrAB-TolC, caused by genome

duplication events.

Previously this was deemed to be a paradox in the cited references and the so-

called ‘Eagle effect’ is one observation that fits this particular description. From a more

modern and evolutionary perspective, we will show that a paradox whereby greater

drug doses also produce higher population densities of a bacterium can be the result

of differential selection for a drug resistance mechanism. Such differential selection

can, as we will demonstrate, lead to a strong non-linear and, more importantly, non-

monotone relationship between selection on a resistance mechanism and the drug
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dose applied to the microbial population under study.

The purpose of this chapter is to provide the data supporting the existence of such a

non-monotone relationship. We will demonstrate that selection on resistance, in this

case by antibiotic efflux, is subsequently maximised in a ‘mid-dose region’. The latter

term will be explained in the remainder of this chapter.

Determining the drug dosing regions where selection for a resistance mechanism is

maximised is a key problem in the field of antibiotic pharmacology. As we discussed

in the introductory chapter various different theories have been postulated for this,

with a variety of empirical datasets put forward to support each view.17–19 With the

minimum inhibitory concentration of the wild-type (MIC) as the central parameter,

these theories are mutually exclusive: one establishes that selection on resistance

begins at concentrations above the MIC,17,18 whereas for the other theory it begins at

concentrations below the MIC.19

It is essential to determine which concentration maximises selection on resistance

and to determine selection on resistance in a precise way, we used a simple experi-

mental model based on Escherichia coli ’s multi-drug efflux pump AcrAB-TolC. We now

describe some of the features of this pump system.

2.1 DESCRIPTION OF THE MULTI-DRUG EFFLUX PUMP ACRB-TOLC AND ITS REGULATION

The role played by efflux pumps in clinical multi-drug resistance (MDR) has been

reconsidered in recent years.50,51 In the bacterium Escherichia coli there is, perhaps,

one of the best-described such pumps, the AcrAB-TolC efflux pump system (FIG. 2.1).

Its components are encoded by an different operons, acr, and tolC. The products

of these genes interact with each other to assemble the multi-drug efflux pump that

connects the bacterial cytoplasm with extracellular space, as shown in FIG. 2.1.45,52

With a proton-powered, rotational mechanism, this pump is able to collect antibiotics

as well as a broad range of small molecule substrates from within the periplasm and

translocate them to the outside of the cell. The specificity of this pump is known to be

‘unusually broad’45 and is believed that these pumps not only provide MDR but also a

fitness advantage in their natural environments.53

The complex, regulatory architecture of this efflux system has been determined to
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A) B)

FIGURE 2.1. A) The proposed transport mechanism and (b) estimated structure of the multi-drug efflux pump AcrAB-

TolC taken from REFERENCES 54 in the case of A) and 52 in the case of B). The pump rests on a structure formed

by proteins AcrB and AcrZ in the inner membrane, opening out to the cytoplasm. In the outer membrane lies TolC that

forms a pore opened to the extracellular environment. AcrA connects both in the periplasm, and forms a vestibule in

the periplasm with AcrB. The drug binding pocket is hidden in the vestibule. The drug is captured and ejected to the

environment powered by protons (H+) from the periplasm. Note that further studies of this pump52 established the

cytoplasmic section of AcrB as a completely different component, AcrZ that is also produced by the acr operon.

some extent, where a role is played by several genes within the mar regulon which

mediate MDR levels via expression of the acr operon. From a literature search, we

constructed just a part of the regulatory network of the acr operon, as shown in FIG.

2.2 in order to provide background to the complex dynamics of Acr protein expression

that are likely following antibiotic challenge to the bacterial cell.

Using an even larger model of this regulatory network, we could also attempt to

link metabolic processes, such as the response to nutrient limitation, oxidative stress

molecules, or population densities to the expression level of the acr operon. We

presented FIG. 2.2 only to illustrate the fact that it is not even clear whether, for

example, acr expression is positively correlated with antibiotic dose. Nevertheless,

we remark that in the absence of antibiotics and due to the accumulation of stress

signals in the cell, this efflux pump system can be up-regulated to play a key role in

‘detoxifying’ the cell from hazardous metabolic byproducts, and down-regulated when

such byproducts are absent.
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FIGURE 2.2. Partial regulatory network of the operons mar and acr composed through a reverse-literature research

during this project (i.e. if acr is regulated by rob, what regulates rob?). There are at least three main signals for the acr

operon. First is guanosine tetraphosphate (ppGpp), a small nucleotide ‘alarmone’ that acts as a global gene expression

regulator in E. coli. 57 This signal is produced upon nutrient limitation and its accumulation leads to the down-regulation

of basic processes such as DNA replication, and the up-regulation of processes such as glycolysis, oxidative stress

and osmotic stress response.57 Second is the response to oxidative stress specifically mediated by the sox operon.

This operon is able to sense reactive oxygen species, known mutagenic byproducts of metabolism and activate a series

of downstream genes to remove such mutagenic byproducts.58 The third signal depends on population density, or

a quorum sensing mechanism, mediated by sdiA. This gene is involved in the density-dependant regulation of cell

division.67

2.2 QUANTIFYING THE DEGREE OF RESISTANCE PROVIDED BY THE ACRAB-TOLC EFFLUX

PUMP SYSTEM

To determine the role of the AcrAB-TolC efflux pump system in multi-drug resistance,

in E. coli, we used a number of strains with a modified AcrAB-TolC efflux pump (TABLE

2.1). Our wild-type strain here is one denoted AG100, a K-12 strain of E. coli. This

strain was modified with the transposable element Tn909 to interrupt the sequence of

the genes acrA and acrB within the acr operon. Thus, this derivative strain, namely

AG100-A, produces nonfunctional versions of the proteins AcrA and AcrB, which are

two key components of the AcrAB-TolC efflux pump system. In order to measure

the relative abundance of AcrAB-TolC within the cell exposed to different antibiotic
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TABLE 2.1. Strains of Escherichia coli used to perform the experiments described in this chapter. The strain TB108 was

kindly provided by Dr. Tobias Bergmiller.

Strain Genotype Reference

E. coli AG100 K-12 argE3 thi-1 rpsL xyl mtl ∆(gal-uvrB)

supE44

68

E. coli AG100-A AG100 ∆acrAB::Tn903 68

E. coli TB108 MG1655 acrB-sfGFP-FRT Unpublished

E. coli eTB108 MG1655 acrB-sfGFP-FRT ± ? This thesis

environments we used derivatives of a K-12 strain that we denote TB108.

The latter is derived from another K-12 type strain, this time MG1655, and in TB108

the original acrB is replaced with a copy of acrB which has been tagged (physically

fused) with sfGFP (the superfolder green fluorescent protein), inserted downstream

and in-frame. The result is a fully functional, although partially ‘damaged’, efflux

protein AcrB with sfGFP attached in the cytoplasmic c-terminal end. By measuring the

fluorescence produced by sfGFP, we will be able to measure the relative abundance of

the AcrAB-TolC efflux pump system as a function of time and antibiotic dose. By doing

so we can determine the strength of selection for this efflux system at different doses.

In order to quantify the loss of efflux efficacy due to the GFP construct imposed

upon the cell relative to the wild-type strains, we measured the resistance to the

macrolide erythromycin using the broth dilution method in 96-well microtiter plates,

as shown in FIG. 2.3. The strain AG100 displayed the highest MIC for this protein

synthesis-inhibiting drug, followed by TB108 and then AG100-A. This latter strain

showed the lowest MIC, thus demonstrating that the lack of a functional AcrAB-TolC

efflux pump system leads to an increased sensitivity to erythromycin. However, strain

TB108 showed a phenotype that rests between the strain AG100 and that with the

nonfunctional copy of acrAB, AG100-A. In order to verify that sfGFP was physically

interfering with the function of AcrB, and to repair this if possible, we evolved this strain

in the presence of 10µg/mL of erythromycin for seven days (experimental details are

given below within this chapter). Our working hypothesis for this procedure was that

sub-populations with a lower physical interference between these two components
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FIGURE 2.3. A comparative set of four dose-response profiles, using erythromycin, for the strains of E. coli AG100,

AG100-A, TB108, and eTB108 where optical density data has been measured at 600nm (OD600) after 24h of growth.

Note that OD600 is shown on the y -axis whilst the concentration of erythromycin is represented in a logarithmic scale on

the x-axis. The IC99 and its 95% confidence intervals, determined using n = 8, are shown for each strain on top of the

x-axis. Only three of these are visible as two of the strains have overlapping confidence intervals for their IC99 values

(eTB108 and AG100).

(AcrB and the GFP) would be preferentially selected in this evolutionary protocol.

After the selection process, a new strain labelled eTB108 (meaning ‘evolved TB108’),

subsequently had a sensitivity (i.e. MIC) to erythromycin that is indistinguishable to

that measured for the strain AG100. We labelled the resulting strain eTB108 and used

this for the subsequent studies that we now describe.

2.3 QUANTIFYING ADAPTATION: RATE OF CHANGE IN GROWTH RATE AS A FUNCTION OF

TIME AND DOSE

Whilst performing the aforementioned studies, we measured how these different strains

adapted to their environment. One way of doing this relied on finding rates of change

of growth rate as a function of time, and antibiotic dose, and calling this the rate of

adaptation. This is an approach already used in the literature,69 and the idea is based

on the assumption that growth rates will change as a function of time as the bacterium
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FIGURE 2.4. A shematic showing the key parameters involved in the quantification of the rate of adaptation with respect

to any phenotype on the y-axis, here taken to be the growth rate. The rate of adaptation is denoted α throughout the

text.

adapts to the environment. This phenotypic change can then be taken as a simple

measure quantifying the complex processes of adaptation (FIG. 2.4).

A key parameter for producing such datasets is the ‘adaptive time’, denoted tadapt .

Here r0 denotes the bacterial growth rate at the beginning of a bacterial culture

experiment, r (t ) is the growth rate at some time t and ∆r (t ) the difference between

r0 and r (t ). We can the define the adaptive time to be the time at which the condition

r (t ) = r0 +∆r (t )/2 is satisfied. Lastly, the rate of adaptation (denoted α) is defined as

the ratio between ∆r and tadapt so that α := (∆r/2)/tadapt ; for further details of the

calculation see REFERENCE 69.

2.4 HYPOTHESIS: IF THE STRENGTH OF SELECTION IS A LINEAR FUNCTION OF THE DOSE,

THEN RESISTANCE MUST ALSO BE A LINEAR FUNCTION OF THE DOSE

In population genetics theory, the strength of selection on a novel trait encoded by

some allelic variant is quantified by the selection coefficient. This coefficient, frequently

denoted s, is usually assumed to be constant for a given trait.20,21,23 One standard

version of this theory proposes that ‘sweeps to fixation’ of a novel trait encoded by an

advantageous allele occur in a manner that can be represented as a logistic function

of the time.



1 4 C H A P T E R I I

A) Antimicrobial Concentration

S
el

ec
tio

n
S

tre
ng

th

0

∆y
∆x

= s, selection coefficient

Time

P
ro

po
rt

io
n

Tr
ai

t F
ix

ed

0

1

s > 0

Transfer

B)
FIGURE 2.5. A) Variation in strength of selection on resistance as a function of the dose of an antimicrobial: it has been

postulated to have a linear form.26,27 Thus one might anticipate a form whereby s(A) = σ · A for some coefficient σ.

B) The rate of the sweep to fixation of an advantageous trait of interest, assuming a constant selection coefficient s, see

REFERENCE 23. This is a logistic curve whose steepness, and therefore the rate of fixation, is positively correlated with

the value of s. From A) this rate of fixation is therefore also positively correlated with the value of A, if dose is indeed

positively correlated with the selection coefficient.

If an allele provides resistance to an antibiotic drug, the strength of selective pressure

exerted by the antibiotic has been frequently discussed in the literature, which recently

has stated that it ought to be proportional to the drug dose applied, as depicted in FIG.

2.5, see REFERENCES 26 and 27.

If this rationale holds in practise, we should observe an increase of the frequency

of resistance due to this allele, as a function of the dose of antibiotic supplied to the

environment and as a function of time. However, much classical population genetics

theory does not account for a dynamically changing population density; we address this

below. However, antibiotics, by definition, have strong density-dependent suppression

effects on growth and therefore control mutation supply because high doses will lead to

small population sizes and therefore a reduced number of novel alleles with potential

to provide resistance de novo. Our first approach to addressing these issues was

theoretical. Next, with the results of that study, we went on to validate the resulting

model experimentally.

So, the following model is a frequency- and density-dependent mathematical genetics

model of the evolutionary dynamics of the operon acr at different antibiotic doses. We

considered a situation whereby a monoclonal population of a bacterium, at density

B, is exposed to an antibiotic, A, for a period of time t . To grow, B consumes a

carbon source, S, supplied to the environment. To make our model compatible with
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experimental methodologies such as batch transfers, we further assume that B is

transferred to an environment with replenished S and A at time intervals indexed by

the letter i , usually at 12h or 24h duration, satisfying the expression

Bi (tstart; Sstart, Astart) = η · Bi−1(tstart; Sstart, Astart).

Here B(t , S, A) = (b1(t , S, A), ... , bn(t , S, A)) denotes a time-series vector containing

the density of n different genotypes that sum together to form B at time t , given S

and A; 0 < η � 1 denotes the fraction of B transferred (typically η0.01), and i > 1

denotes the number of transfers, aka seasons or treatments. We will describe below

how these different genotypes are defined. This is a relationship implemented as part

of common evolutionary protocols that permit the propagation of a bacterial population

indefinitely through time so that multiple antibiotic treatments can be administered.

These are called ‘batch transfer protocols’ in which a small amount of biomass is

transferred from one experimental vessel to another on a seasonal basis, each season

typically lasting 24h, and indexed by i as mentioned above. Below we will write down

explicit differential equations so that we can predict the behaviour of B as a function of

t , S, A and i with the following rationale. Each cell contains a transporter that is able

to take S from the environment and process it to grow. Assuming that each molecule

of S is transformed into biomass (yield, c = 1), the growth rate function is defined

to have the Michaelis-Menten form G(S0) = c VS0
(Km+S0) . Here V and Km denote the

maximal uptake and half-saturation constants, respectively. The antibiotic, at initial

concentration A0, diffuses into the cells at a rate controlled by ϕ and binds to the

transporter, with affinity κ, reducing the growth of the cells. This type of inhibition (γ)

can be modelled as γ(A) = 1
1+κA

70 and the growth function is therefore redefined as

G(S, A) := c VS0
(Km+S0) · γ(A).

The reduction in growth thus becomes a function of the antibiotic concentration

within each cell genotype and will be written ABj . Suppose the bacterium B may be

resistant to the antibiotic A by means of an efflux pump,51,71 whereby ABj is removed

from the cytoplasm of the bacterium at the maximal rate v . Different cell genotypes are

defined by the number of copies of this gene, j > 1, whereas the expression levels of

this system will be denoted 1 > p > 0. The abundance of this pump protein therefore
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depends on number of genes encoding efflux pumps (j) and on the expression of these

genes (p). The number of copies may change due to duplication mutations that we

modelled as a Poisson process at a certain rate δ per cell per hour, whereas the rate

of losing a copy of the gene is δ(1 +∆) > δ.

We then impose the conditions p1 = 0, and p2 > 0. This means that cells with one

gene copy must first express it before ABj can be pumped from the cell, thereafter

that gene may be duplicated. Finally, we assume a functional form for pj that is

monotonically increasing and bounded in j , controlled by a dimensionless constant g

in the Michaelis-Menten function pj = (j − 1)/(1 + g(j − 1). Thus, the cell phenotype

for which j = 1 has the gene for efflux pump, but does not express it. We based this on

the limited abundance of the DNA polymerase transcription complex,72 consequently it

has to ‘compete’ for each gene copy providing a limit on the number of efflux genes

that can be simultaneously expressed. If the genotypes within the vector B, namely

bj , represent the densities of bacteria that carry j copies of the efflux pump, a greater

value of j implies a greater resistance. The genetics of the mechanism by which this

occurs is represented by the following set of ordinary differential equations (ODEs):

d
dt

b1 = G(S, A1) · b1 − δ · (b1 − (1 +∆) · b2), (2.1a)

d
dt

bj = G(S, Aj ) · bj − δ · ((1 +∆) · bj − bj−1 − (1 +∆) · bj+1), (2.1b)

d
dt

bn = G(S, An) · bn − δ · ((1 +∆) · bn − bn−1), (2.1c)

d
dt

S = −
V · S0

Km + S0
·

n∑
j=1

bj , (2.1d)

d
dt

A0 = −d · A0 −

n∑
j=1

bj ·

(
ϕ · (A0 − Aj ) −

v · pj

km + pj
· Aj

)
, (2.1e)

d
dt

Aj = −d · Aj + bj ·

(
ϕ · (A0 − Aj ) −

v · pj

km + pj
· Aj

)
. (2.1f)

We represented three different phenotypes (n = 3) containing a single but unex-

pressed efflux pump gene, a single and expressed efflux pump gene, and two copies

of the efflux pump gene that are fully expressed. At the end of the 24h hours season, a

sample of the current population is transferred to fresh medium where the next season
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of growth occurs. We set this sample to be 1% of the bacterial population at the end of

the season and repeated the protocol for a 7-season period in the model.

We solved this model numerically in Matlab using the function ode15s, which uses nu-

merical differentiation formulas (NDFs).73 The first prediction of the model is illustrated

in FIG. 2.6. At the earliest times during the protocol, the density of the drug-susceptible

population is seen to be decreasing monotonically, as a function of the increasing dose

of antibiotic A0. But the population density rapidly evolves to have a non-monotone

profile. Also, the IC90 (the drug concentration inhibiting 90% of growth, defined at 24h

for each day) clearly increases as a function of time as expected from adaptation to

the presence of the antibiotic. This adaptation, according to the nature of the model, is

an increase in frequency of cells that carry two or more copies of the efflux operon in

their chromosome.

EQUATION 2.1 makes a second prediction that is illustrated in FIG. 2.7. In the

case of a knockout strain, for example, meaning that the efflux pump cannot be

expressed by the cells, the population density decays monotonically at all times as

the concentration of antibiotic increases and there is no evidence of an increased IC90

through time. These are predictions that we can validate against experimental data,

given an appropriate protocol, as we now show below.
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FIGURE 2.6. A prediction from the theoretical model defined in EQUATION 2.1. The concentration of antibiotic is rep-

resented on a logarithmic scale on the x-axis, whereas the growth in terms of OD600 is represented as a linear scale

on the y -axis. This model predicts that the initial antimicrobial dose-response profile is monotone in accordance with

standard tests that are used to quantify sensitivity to antibiotics in the lab. In time, following adaptation, cells with a

higher number of pumps grow better at higher concentrations of antibiotic and they are selected through time, thus pro-

ducing a non-monotone dose-response profile, eventually. The parameters are as follows:74 V = 1139.6µg/OD600/h,

Km = 0.53882µg/mL, κ = 0.2mL/µg, v = 3987.3µg/OD600/h, km = 19.681(dimensionless), g = 0.5(dimensionless),

d = 0/day , ϕ = 93.068mL/OD600/h, δ = 0.0025/gene, ∆ = 18(dimensionless), and c = 0.000315OD600/µg with

initial conditions BIC = {0.01, 0, 0}. The dashed line highlights the culture density in the absence of drug.
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FIGURE 2.7. A second prediction from the theoretical model defined in EQUATION 2.1 when the ability of products of the

acr operon to pump antibiotic has been removed from the model. The concentration of antibiotic is represented using a

logarithmic scale on the x-axis, whereas growth in terms of OD600 is represented using a linear scale on the y -axis. The

black line shows the total population density. Due to the inability of the cells to increase their ability to efflux the drug,

and with the initial population lacking efflux pumps, the dose-response profile remains monotone at all times. In such

a case, the IC90 shows little variation through time. Parameters as in FIG. 2.6 with only one modification: δ = 0/gene.

The dashed line highlights the culture density in the absence of drug.
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2.5 VALIDATING OUR THEORETICAL HYPOTHESIS IN THE LABORATORY: THE TRANSITION

FROM MONOTONE TO NON-MONOTONE DOSE-RESPONSE PROFILE IN Escherichia coli

To validate our hypothesis we used a standard experimental setup that is often em-

ployed in evolutionary microbiology studies.69 For each of the bacterial strains shown

in TABLE S.5 we created a 96-well microplate with minimal media containing 0.2% (w/v)

of glucose, 0.1% (w/v) of casamino acids and eleven concentrations of erythromycin

(both 0-2 and 0-50µg/mL, depending on the strain). Next, we inoculated this microplate

with an overnight culture (>16h) of the corresponding strain and transferred the culture

to another microplate with an identical setup at 24h intervals for seven days. Between

each transfer, we monitored the growth of the cultures by measuring the optical density

at 600nm (producing a density we denote OD600, or just OD) every 20min. The results

of this experiment are shown in FIGS. 2.8 to 2.14. For every strain we compared

the dose-response data to a monotone control profile, which was derived from the

Hill function,75 using a data-fitting routine coded using Matlab. The following is the

mathematical definition of a Hill function used to model the dose-response data:

ODmodel(C) = OD0 · *
,
1 −

Imax ·Ch

ICh
50 +Ch

+
-

. (2.2)

Here ODmodel(C) is the growth observed as a function of the erythromycin concentra-

tion (C), OD0 the growth observed in the absence of erythromycin, Imax the maximum

inhibition observed, IC50 the concentration of erythromycin achieving 50% of Imax and

h the Hill coefficient which controls the ‘sigmoidicity’ of this dataset. This coefficient

is non-dimensional and non-negative. Using Matlab to generate the aforementioned

monotone control profile, we used our datasets to determine the best fit to the Hill

model using a nonlinear regression method and we then quantified the difference

between the data and the control profile by determining the area under the curve

between the difference of the two (AUCd (E )). This procedure allowed us to measure

the ‘non-monotonicity’ of the dose-response data.

When we did this for the wild-type strain AG100 (see FIG. 2.8), bacterial growth

as a function of the concentration of erythromycin has a monotonically decaying

profile during the first 48h. After this time, there was a transition of that dose-response

beyond which formed a non-monotone dose-response profile as a function of the
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error (n = 8, black), as a function of the concentration of erythromycin (Ery) on the x-axis. Data is plotted at the moment
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the IC99 measured after 24h of growth. This IC99 is often said to be the lower boundary of the mutant selection window

(MSW), here represented in grey. In blue we represent the best Hill fit to data. This clearly shows a transition from

monotone to non-monotone behaviour of the density data through time as the quality of the blue line datafit deteriorates

through time.
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concentration of erythromycin. This observation is compatible with the mathematical

model defined in EQUATION 2.1. The observed deviation from monotonicity computed

in this measure shows that AUCd (E ) for AG100 crosses the zero point twice, leading

to the development of a spike at t = 84h where this deviation is maximised (FIG.

2.10, p < 0.001; one-way ANOVA). The development through time of a non-monotone

dose-response profile, including an increase in the IC99, is also compatible with the

theoretical model defined in EQUATION 2.1.

To validate our second prediction, we repeated the above experiment using the efflux

knockout strain AG100-A, which produces nonfunctional of the proteins AcrA and AcrB.

Therefore it has a nonfunctional AcrAB-TolC efflux pump system. With this strain, the

growth measured by OD decayed monotonically at all measured times as a function

of the concentration of erythromycin (FIG. 2.9). For the strain AG100-A, the deviation

from the monotone control profile was considerably reduced (FIG. 2.10), and AUCd

reflected no defined shape (p ≈ 0.46; one-way ANOVA testing for differences between

treatments).

The data for these two strains, AG100 and AG100-A, is compatible with the pre-

dictions from our theoretical model and it shows the fundamental role played by the

AcrAB-TolC efflux pump system in driving this phenomenon (the transition from mono-

tone to non-monotone dose-response profile because of differential selection for the

efflux pump). Our model assumes that the efflux pump is scalable through genomic

amplification mutations whereby the number of copies of a gene or operon increases in

the chromosome. Thus, we decided to monitor the relative abundance of AcrAB-TolC

using the strains TB108 and eTB108, where AcrB has sfGFP as a fluorescent tag.

Here, we assumed that an increment in the number of copies of the genes involved in

this efflux pump is translated into a concomitant increment in the number of AcrAB-TolC

efflux pumps (i.e. a genomic duplication event would result in an increase of the number

of proteins conforming the AcrAB-TolC efflux pump system, therefore duplicating the

fluorescence detected). However, the strains we used only allowed us to measure

AcrB levels, they did not allow us to make any inferences regarding the structure of the

chromosome during adaptation to the presence of the drug.

We repeated the previous protocol using the strain TB108, the results were not
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FIGURE 2.9. Experimental data on the growth of E. coli AG100-A shown on the y-axis as the mean of OD600 ± standard

error (n = 8, black), as a function of the concentration of erythromycin (Ery) on the x-axis. Data is plotted at the moment

of the inoculation (t = 0h) and every 6h thereafter. The vertical dashed line represents the IC99 measured after 24h of

growth. This IC99 is often said to be the lower boundary of the mutant selection window (MSW), here represented in

grey. In blue we represent the best Hill fit to data ± standard error (n = 8). (Note: we observed growth in the treatment

containing the highest concentration of erythromycin in 1 out of 8 replicates after day 5).
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conclusive. On the one hand, growth decays monotonically at all measured times as a

function of the concentration of erythromycin, similar to our previous observation for

the strain with nonfunctional efflux pumps AG100-A (FIG. 2.11). This dose-response

profile was observed both for culture density (OD600) and for absolute abundance

of AcrB per cell (represented here as normalised GFP per OD). On the other hand,

the resistance of this strain to erythromycin is ∼25 times higher than that measured

for the strain AG100-A, but it is still more sensitive than the other K-12 wild-type

strain, AG100. Furthermore, there was no significant deviation from the monotone

control profile during the first six days both in OD600 and normalised GFP (FIG. 2.12,

p > 0.5; one-way ANOVA testing for between-dose differences in deviation from the

monotonic profile). Our interpretation was that the fluorescent tag, sfGFP, interfered

with the normal function of AcrB and the whole AcrAB-TolC efflux pump system, thus

diminishing the the strength of selection on the pump and therefore removing the effect

we originally observed with AG100 above.

Nevertheless, at t = 156h a deviation from monotonicity was observed, which was

different from earlier observations both in OD600 and OD-normalised GFP (i.e. the

AcrB per cell proxy, FIG. 2.12). This deviation was produced by the cultures grown

in the presence of 10µg/mL of erythromycin. We tested the sensitivity of this evolved
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FIGURE 2.11. Experimental data on the growth of E. coli TB108 shown on the y-axis as the mean of OD600 ± standard

error (n = 8, black), as a function of the concentration of erythromycin (Ery) on the x-axis. Data is plotted as OD600 (top)

and as normalised GFP (nGFP, bottom) plotted at the moment of the inoculation (t = 0h) and every 6h thereafter. The

vertical dashed line represents the IC99 measured after 24h of growth. In blue we show the best-fit Hill function.
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FIGURE 2.12. The difference between the optical density data for the strain TB108 and the best-fit monotone (Hill) profile

in OD600 (top) and normalised GFP (nGFP, bottom) on the y-axis as a function of the concentration of erythromycin on

the x-axis (E, subplots in the right). The area under the curve of this difference (AUCd ) is used to monitor the deviation

from monotonicity as a function of time and the concentration of erythromycin (central plot).

culture of TB108 (called ‘eTB108’ hereafter) to erythromycin, the IC99 being identical to

that for AG100 (FIG. 2.3 in p. 12). The new data was interpreted to potentially indicate

a mitigation, by adaptation to erythromycin, of the interference between AcrB and its

fluorescent tag, sfGFP, thus permitting the AcrAB-TolC efflux system to perform as

expected. We had no clear indication as to the mechanism of this ‘repair process’ and

at the time of writing this thesis, these strains have been submitted to a sequencing

centre in Germany in order to assess what the genetic basis of those adaptations might

be. The details of that study are considered outside of the scope of this thesis because,

as we will now show, we are able to exploit this strain to correlate non-monotone

dose-response profiles with hotspots for selection on AcrB, using this new strain.

This evolved strain, eTB108, was used to repeat the protocol and validate our

assumption that the monotone to non-monotone profile transition is mediated by

changes in the relative abundance of the AcrAB-TolC efflux pump system per bacterial

cell. For this strain, in terms of culture density (OD600), the growth measured by OD

decays monotonically as a function of the concentration of erythromycin (FIG. 2.13).

The properties of the dose-response profile do, however, change through time. In some

aspects this resembled the changes observed in the prior K-12 wild-type strain AG100.

For example, at t = 24h we observed a change in the slope of the dose-response

profile that is nearly identical to that noted in AG100 (FIG. 2.13).
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FIGURE 2.13. Experimental data on the growth of E. coli eTB108 shown in the y-axis as the mean of OD600 ± standard

error (n = 8, black), as a function of the concentration of erythromycin (Ery) on the x-axis. Data for OD600 (top) and

normalised GFP (nGFP, bottom) plotted at the moment of the inoculation (t = 0h) and every 6h thereafter. The vertical

dashed line represents the IC99 measured after 24h of growth. In blue we show the best-fit Hill function.
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FIGURE 2.14. The difference between the optical density data for the strain eTB108 and the best-fit monotone (Hill) pro-

file in OD600 (top) and normalised GFP (nGFP, bottom) on the y-axis as a function of the concentration of erythromycin

on the x-axis (E, subplots in the right). The area under the curve of this difference (AUCd ) is used to monitor the deviation

from monotonicity as a function of time and the concentration of erythromycin (central plot).

We compared this to the readings for OD-normalised GFP (the proxy of per-cell

abundance of AcrB, FIG. 2.13). The development and expansion of a plateau in the

dose-response data for culture density shown in this figure, follows the monotone to

non-monotone transition profile in the abundance of AcrB, and therefore of AcrAB-

TolC, seen in the same figure. A further observation of this figure, highlighted how

the data crosses the monotone control profile twice, confirming the presence of a

spike, or candidate selection hotspot. This is where the deviation from monotonicity is

maximised (FIG. 2.14, p < 0.001; one-way ANOVA). Therefore, as predicted by our

model, a change in abundance of the AcrAB-TolC efflux pump system may be the

cause behind the phenomenon hereby described, namely a transition from a monotone

to a non-monotone dose-response profile. The effect is clearer in the data related to

AG100 than it is for eTB108.

2.6 NON-MONOTONE DOSE-RESPONSE PROFILES: INCREMENTS IN BACTERIAL GROWTH

FROM INCREMENTS IN THE CONCENTRATION OF ANTIBIOTIC

A corollary of the existence of a non-monotone dose-response profile is the idea that

increments in the concentration of an antibiotic can lead to increases in bacterial

growth. This is counter-intuitive and the basis of the ‘paradox’ we described above. The

purpose of this section is to dig a little deeper into the reasons why this might occur
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using the strain eTB108. We were particularly interested in whether or not the increase

in antibiotic dose leads to an increase, or a decrease, in the amount of efflux pump

protein expressed per cell. Intuitively, we hypothesised a positive correlation between

the number of these efflux pumps, and the dose of antibiotic supplied. But, in fact, we

saw that this was untrue in the case of the strains of E. coli we used and the antibiotic

erythromycin. We did verify that, at some specific doses, this hypothesis was true only

after a period of adaptation to the drug.

To perform this analysis, we quantified changes in the dose-response profiles as

a function of the concentration of erythromycin. We compared the data gathered for

every concentration with a ‘zero-slope’ model, using t-tests to estimate whether the

slopes are greater, lower, or equal to zero (FIGS.2.16 to 2.19). This test was performed

for culture densities (OD600), absolute abundances of AcrB (normalised GFP), and

also the relative abundance of AcrB (a proxy for AcrAB-TolC per cell, assuming one

copy of the operon in the chromosome in the absence of antibiotic).

To quantify the relative abundance of AcrB-sfGFP , thus of the AcrAB-TolC efflux

pump system, we divided the absolute abundance of AcrB by culture density (OD600).

This normalises the abundance of AcrB, read as AcrB per cell, when the culture is

grown in media without antibiotic. We used this number as a reference when comparing

the quantity of AcrAB-TolC per cell in different growth conditions.

FIG. 2.15 contains a sub-network of the regulation network of the acr operon.

Previously, we stated that the role of this pump is to detoxify the cell during metabolism

and that AcrAB-TolC would be up-regulated when hazardous byproducts accumulate

in the cell and down-regulated when these stressors are absent. What we observed

when we calculated the relative abundance of AcrB per cell (and shown inFIG. 2.15)

was more subtle than this. For example, in the absence of drug we saw that AcrB

per cell stayed fairly constant through the lag phase period, between 0 and 10h after

inoculation/transfer, but then up-regulated through exponential growth (10-17h after

inoculation/transfer). This is consistent with the previous comment regarding AcrB

regulation, and it remained at a static value through stationary phase. However, when

a small amount of erythromycin was supplied into the growth medium, it delayed the

exponential phase, and we saw a continual climb of AcrB per cell through stationary
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FIGURE 2.15. Top) A partial view of the regulation network of the acr operon (see p. 10 for details). Bottom) The

expression profile of AcrB-sfGFP is shown as a function of time over 24h at different concentrations of erythromycin

for the strain eTB108. A proxy for the relative abundance of AcrB-sfGFP per cell is shown on the y -axis as a function

of time (bottom). Different concentrations of erythromycin are denoted by different colours. We note that the small

oscillations observed are seemingly produced by mechanical components of the microplate reader and not by any

oscillatory dynamic produced by the above network (see FIG. S.13).

phase. This rise in AcrB was much higher than had been the case in the absence of the

drug. This appears to indicate that AcrB expression is, in a general sense, positively

correlated with the presence of this antibiotic. Yet, the same figure showed that further

increases in drug concentration actually lead to decreases in the amount of observed

AcrB per cell, with greater drug leading to lower AcrB at all higher drug doses. As the

network in FIG. 2.15 indicates, there is potential complex regulations of the AcrAB-TolC

efflux pump due to the overlap between the mar, population density sensing, and

resource stress networks to control pump expression levels.

The decay in the up-regulation rate of this efflux pumps can be explained by the

mechanism whereby erythromycin inhibits cell growth (protein synthesis inhibition).76

But why this reduction in up-regulation rate leads to higher relative numbers of pumps

per cell is beyond the scope of this chapter. In CHAPTER 5 we explore the theoretical

framework that proposes, based on thermodynamic constrains to be explained in that

chapter, the existence of a trade-off between the rate of production of a biochemical

pathway (i.e. to produce ATP or AcrB) and the production per molecule of substrate

or yield of that pathway. A demonstration that such trade-off between rate and yield
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FIGURE 2.16. Erythromycin dose-response profiles for evolved E. coli AG100 measured every 24h. The growth mea-

sured as OD600 is shown on the y -axis as a function of the concentration of erythromycin, represented on the x-axis.
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exists could provide an insight to, for example, why the addition of a protein synthesis

inhibitor leads to an increase in total AcrB protein produced.

In these strains where sensitivity to erythromycin is reduced due to the increase in

the relative number of multi-drug efflux pump AcrAB-TolC, following several days of

adaptation to the drug, the drug-by-drug changes in AcrB expression described above

can undergo changes as a function of the concentration of erythromycin (FIGS. 2.16,

2.17, 2.18, and 2.19). In particular, FIGURE 2.18 clearly shows the phenomenon to

which we are referring: the initial negative correlation between drug and AcrB becomes

a positive correlation at later times. This, however, is total AcrB expressed in the

populations, not AcrB per cell.
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FIGURE 2.17. Erythromycin dose-response profiles for E. coli eTB108 measured every 24h. The growth measured as

OD600 is represented on the y -axis as a function of the concentration of erythromycin, represented on the x-axis. For the

subplots, the y -axis represent the point-to-point slope changes of the dose-response profiles and significantly positive

(green) or negative (red) slopes are highlighted accordingly (α = 0.01).
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FIGURE 2.18. Erythromycin dose-response profiles for E. coli eTB108 measured every 24h. The absolute abundance

of AcrB measured as normalised GFP (nGFP) is represented on the y -axis as a function of the concentration of ery-

thromycin, represented on the x-axis. For the subplots, the y -axis represent the point-to-point slope changes of the

dose-response profiles and significantly positive (green) or negative (red) slopes are highlighted accordingly (α = 0.01).
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FIGURE 2.19. Erythromycin dose-response profiles for E. coli eTB108 measured every 24h. The relative abundance

of AcrB per cell measured as normalised GFP (nGFP) per OD600 is represented on the y -axis as a function of the

concentration of erythromycin, represented on the x-axis. For the subplots, the y -axis represent the point-to-point slope

changes of the dose-response profiles and significantly positive (green) or negative (red) slopes are highlighted accord-

ingly (α = 0.01).

Nevertheless, in FIG. 2.19 we observed the analogous change in correlation reported

in the previous paragraph. It is clear that adaptation to this antibiotic is changing the

way in which AcrB is regulated, consistent with known literature on adaptation of E. coli

to protein-synthesis antibiotics where mutations in MarR have been observed following

evolutionary experiments of this type.74 Importantly, the same figure shows a clear

increase in the relative abundance of AcrB per cell, shifting from 1 to almost exactly 2

‘copies of acrB per cell’ as a function of the concentration of erythromycin. This shift

in the relative abundance of AcrB is directly related to the ‘expansion’ of the plateau

formerly discussed with respect to the strain eTB108. The value ‘2’ we observed here
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FIGURE 2.20. Erythromycin dose-response profiles for E. coli TB108 measured every 24h. The absolute abundance

of AcrB measured as normalised GFP (nGFP) is represented on the y -axis as a function of the concentration of ery-

thromycin, represented on the x-axis. For the subplots, the y -axis represent the point-to-point slope changes of the

dose-response profiles and significantly positive (green) or negative (red) slopes are highlighted accordingly (α = 0.01).
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FIGURE 2.21. Erythromycin dose-response profiles for E. coli AG100-A measured every 24h. The growth measured as

OD600 is represented on the y -axis as a function of the concentration of erythromycin, shown on the x-axis. For the

subplots, the y -axis represent the point-to-point slope changes of the dose-response profiles and significantly positive

(green) or negative (red) slopes are highlighted accordingly (α = 0.01).

would seem to be closely related to the sweep through the population of a duplication

mutation, but we have not proven this, as yet. If we implement the same experiments

using the strain TB108, for which we do not observe the monotone to non-monotone

dose-response transition, the values of these same slopes are negative at all times

(see FIGS. 2.20, 2.21, and 2.22). This would indicate no measurable change in the

regulation of the pump following a period of adaptation using this strain. It also indicates

that increases in drug dose do correlate with a decrease in AcrB expression for this

strain at all times in these experiments.
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FIGURE 2.22. Erythromycin dose-response profiles for E. coli TB108 measured every 24h. The growth measured as

OD600 is represented in the y -axis as a function of the concentration of erythromycin, represented in the x-axis. For the

subplots, the y -axis represent the point-to-point slope changes of the dose-response profiles and significantly positive

(green) or negative (red) slopes are highlighted accordingly (α = 0.01).

2.7 ANALYSING PHENOTYPIC RATES OF ADAPTATION: THE MONOTONE TO NON-MONOTONE

TRANSITION PROFILES REVEAL ADAPTATION ‘HOTSPOTS’ AND ‘COLDSPOTS’

In the previous section we sought correlations between bacterial growth, AcrB expres-

sion levels and antibiotic concentration. We observed that these correlations could

change significantly during periods of adaptation to antibiotics. Such changes in expres-

sion profiles of the pump system are the cause of the non-monotone dose-response

profiles observed in those same experiments. Next we used a simple measure of

adaptation, observed above, to demonstrate that the non-monotone profiles are due to

doses that maximise selection on this pump. These we called ‘evolutionary hotspots’.

To quantify the existence, or absence, of evolutionary hotspots we analysed the rate

of adaptation measure (α, as defined in p. 13 and discussed above) calculated as the

ratio between growth at t = 24h and the area under the curve (AUC) of the 24h OD

data time series. An AUC version of growth rate, rAUC , is defined as

rAUC :=
OD(24h)∫ 24h

0 OD(t ) · dt
. (2.3)

This measure of growth rate, applied to a 24h times series denoted OD(t ), has the

appropriate units, namely ‘per hour’. Using rAUC , our analysis of the rate of adaptation

of this particular phenotype for all the different strains used in this chapter revealed the

existence of two ‘windows’ with opposite effects (as shown in FIGS. 2.23, 2.24, 2.25,

and 2.26). We could use different definitions of rAUC , so that if x (t ) is any series of
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phenotype data, then we will also write rAUC := x (24h)∫ 24h
0 x (t )·dt

. Although this is not a growth

rate, it is still a rate of change of x (t ).
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FIGURE 2.23. Selection statistics for E. coli AG100 as a function of the concentration of erythromycin: rate of adaptation

per replicate based on rAUC (αAUC , left). Darker greys represent lower rates of adaptation, eight replicates shown,

whereas brighter greys represent higher rates. Mean rate of adaptation as a function of the concentration of erythromycin

(right). The numbers shown correspond to the p-values of an unpaired t-test (α = 0.05). The error bars represent the

standard error of the mean (n = 8), and the grey area represents the mutant selection window (MSW).
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FIGURE 2.24. Selection statistics for E. coli AG100-A as a function of the concentration of erythromycin: rate of adapta-

tion per replicate based on rAUC (αAUC , left). Darker greys represent lower rates of adaptation, eight replicates shown,

whereas brighter greys represent higher rates. Mean rate of adaptation as a function of the concentration of erythromycin

(right). The numbers shown correspond to the p-values of an unpaired t-test (α = 0.05). The error bars represent the

standard error of the mean (n = 8), and the grey area represents the mutant selection window (MSW).

In relative terms, the first window is located at very low concentrations of ery-

thromycin, where the rate of adaptation to the low-drug environment is lower than in

the antibiotic-free control. We considered this to be an evolutionary coldspot ; the rate

of adaptation may be increased either by adding or removing erythromycin from this

coldspot. The second window sits between the evolutionary coldspot and the IC99. In

contrast to the coldspot, the rate of adaptation in this window is higher than in the
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FIGURE 2.25. Selection statistics for E. coli TB108 as a function of the concentration of erythromycin: A,C,E) rate of

adaptation per replicate based on rAUC (αAUC ). Data for A) OD600, C) absolute abundance of AcrB-sfGFP as normalised

GFP (nGFP), E) relative abundance of AcrB-sfGFP as normalised GFP per OD units. Darker greys represent lower rates

of adaptation, eight replicates shown, whereas brighter greys represent higher rates. B,D,F) Mean rate of adaptation as

a function of the concentration of erythromycin (right column). The numbers shown correspond to the p-values for an

unpaired t-test (α = 0.05). The errorbars represent the standard error of the mean (n = 8), and the grey area represents

the mutant selection window (MSW).



N O N - L I N E A R S E L E C T I O N O N A C R A B - T O L C 3 7

A)
0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

7

8

 

Erythromycin (µg/mL)

E. coli eTB108, α
AUC

 (h
−2

)

 

R
e

p
lic

a
te

−9.5

−1.6625

6.175

x 10
−4

0 10 20 30 40 50
−10

−5

0

5

x 10
−4

0.009

6e−07

Erythromycin (µg/mL)

α
A

U
C
 (

h
−

2
)

E. coli eTB108

 

 

Mean

SE (n = 8)

B)

C)
0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

7

8

 

Erythromycin (µg/mL)

E. coli eTB108, α
AUC

 (h
−2

)

 

R
e

p
lic

a
te

−1.7575

−0.2375

1.2825

x 10
−3

0 10 20 30 40 50

−1

0

1

x 10
−3

6e−10

4e−11

Erythromycin (µg/mL)

α
A

U
C
 (

h
−

2
)

E. coli eTB108

 

 

Mean

SE (n = 8)

D)

E)
0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

7

8

 

Erythromycin (µg/mL)

E. coli eTB108, α
AUC

 (h
−2

)

 

R
e

p
lic

a
te

−1.035

0.4825

2
x 10

−3

0 10 20 30 40 50

−1

0

1

2
x 10

−3

0.9

4e−08

Erythromycin (µg/mL)

α
A

U
C
 (

h
−

2
)

E. coli eTB108

 

 

Mean

SE (n = 8)

F)
FIGURE 2.26. Selection statistics for E. coli eTB108 as a function of the concentration of erythromycin: A,C,E) rate of

adaptation per replicate based on rAUC (αAUC ). Data for A) OD600, C) absolute abundance of AcrB-sfGFP as normalised

GFP (nGFP), E) relative abundance of AcrB-sfGFP as normalised GFP per OD units. Darker greys represent lower rates

of adaptation, eight replicates shown, whereas brighter greys represent higher rates. B,D,F) Mean rate of adaptation as

a function of the concentration of erythromycin (right column). The numbers shown correspond to the p-values for an

unpaired t-test (α = 0.05). The errorbars represent the standard error of the mean (n = 8), and the grey area represents

the mutant selection window (MSW)
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antibiotic-free control. We considered this to be an evolutionary hotspot and, from

this point, any change in the concentration of erythromycin leads to a reduced rate

of adaptation, as can be seen in the same figures. The existence of these windows,

hotspots and coldspots, is independent of the growth rate traits that we measured,

whether this be culture density (OD600), absolute abundance of AcrB (normalised

GFP), or relative abundance of AcrB (normalised GFP per OD600).

Importantly, for the latter trait, we measured the sweep to fixation as a function of

time (t), and dose. We observed in FIG. 2.27 (bottom plot) that AcrB-sfGFP increased

among the bacterial cells in a logistic fashion, in which a phase of non-linear increase

is followed by a stable phase (sweep to fixation, see FIG. 2.5 in p. 14). This increase is,

however, preceded by a non-linear decline of AcrB-sfGFP. The rate of sweep to fixation

can be calculated using a logistic model,23 so we included a simple non-linear term to

account for the loss of AcrB-sfGFP. Denoting the relative abundance of AcrB-sfGFP as

U, we fitted the following model to the data:

U (t ) = U0 +

Loss of AcrB︷︸︸︷
Ae−t ι +

Sweep of AcrB︷      ︸︸      ︷
c

1 + Be−tψ . (2.4)

Here ι denotes the loss rate of AcrAB-TolC per OD600 unit, ψ the rate of sweep, c the

number of relative copies of acr per cell, U0 the relative abundance of AcrB at t = 0h,

and A and B are phenomenological coefficients. In FIG. 2.27 we see that such a rate of

sweep is maximised not only at the particular dose of 30µg/mL of erythromycin, within

the evolutionary hotspot, but also within the particular times of 48 and 96h (2-4 days).

Other notable features of the same dataset are: i) at a dose of 5µg/mL of ery-

thromycin, the levels of AcrB expression achieved a degree of stasis which may

indicate a stable mutation-selection balance whereby AcrB duplications reside at ap-

proximately 50% frequency in the population. The same can be said for slightly higher

doses with slightly higher percentages of the acr duplication. Finally, ii) we noted that

high erythromycin doses lead to a stable down-regulation of the AcrB protein that is

not overcome by adaptation. This is likely due to the low supply of mutants at these

doses, which are the result of the small populate sizes.
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FIGURE 2.27. Estimation of the number of AcrB proteins per cell for populations the strains E. coli TB108 (top) and

eTB108 (bottom) as time changes. The two main plots in the left-hand column represent the relative normalised GFP

per OD600 in each population (y -axis, shown are means ± standard error, n = 8) as a function of time (x-axis) and

the different concentrations of erythromycin have different colours. The subplots in the right-hand columns show sweep

rates per replicate as a function of erythromycin (Ery) whereby lighter squares have higher values (8 replicates shown).

The rate of sweep (ψ) is measured using AUC as implemented in EQUATION 2.4 (bottom), and the maximum rate of

change in the time-series dataset for nGFP ·OD−1
600 (y ) for robustness as max

0h≤t≤168h

dy
dt (top).
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2.8 GENOMIC DATA CONFIRMS DUPLICATION OF THE ACRAB-TOLC MULTI-DRUG EFFLUX

PUMP LOCI

Our hypothesis of genomic duplication events was previously based on the mathemati-

cal model in EQUATION 2.1. The changes on the relative abundance of AcrB-sfGFP

were based on the engineered, later evolved, strain E. coli eTB108 (FIG. 2.27). Dr

Gunther Jansen, from the University of Kiel in Germany, performed the preliminary

whole genome sequencing (WGS) using a pipeline designed elsewhere.74 The data

proved that the increase through time in the relative abundance of this pump was due

to the duplication of the number of copies of the acr operon (FIG. 2.28A).

Using the routine described in EQUATION S.1, we observed the rate of sweep not

as a linear but rather as a non-linear function of the dose. FIG. 2.28B shows that

the non-linear sweep rate is maximised at certain concentrations of erythromycin.

Concentrations above or below these result in, overall, lower sweep rates.
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FIGURE 2.28. A) Genomic data for E. coli AG100. Coverage of the acr operon, relative to the genome background, as

a function of the concentration of erythromycin and time (x-axis, mean ± s.e.m, n = 3). B) Rate of sweep as the increase

in acr copies per day as a function of the concentration of erythromycin on the y -axis, of the acr operon based on the

genomic data.

Using our proxy system, based on relative abundance of AcrB-sfGFP, we found the

same optimal concentrations (FIG. 2.29A). This proxy also provided information that

is not captured by the WGS data: the regulation of the AcrAB-TolC efflux pump due

to the addition of erythromycin. In our experimental set up this pump is immediately

down-regulated with the addition of the antibiotic and, only after a period of adaptation,

the efflux pump is up-regulated. We are currently developing a similar pipeline to further
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FIGURE 2.29. A) Estimation of the number of AcrB proteins per cell for populations the strains E. coli as time changes.

The main plot in the left-hand column represents the relative normalised GFP per OD600 (y -axis, shown are means

± standard error, n = 8) as a function of time (x-axis) and the different concentrations of erythromycin have different

colours. The subplots in the right-hand columns show sweep rates per replicate as a function of erythromycin (Ery)

whereby lighter squares have higher values (8 replicates shown). The rate of sweep (ψ) is measured using both AUC

(bottom), and finite difference approximations (top) for robustness. B) Rate of sweep, measured as the increase in acr

copies per day as a function of the concentration of erythromycin on the y -axis, of the acr operon based on the genomic

data.

analyse the WGS data, and reveal whether or not there are change in the regulation of

the efflux pump and if these precede the duplication event.

2.9 CONCLUSIONS

In SECTION 1.1 we introduced the principle on which antibiotic sensitivity tests stand

on, whereby higher dosages of the drug always lead to fewer bacterial cells. We demon-

strated that this relationship may change and the monotone decrease of bacterial cell

density, as a function of antibiotic dose, may become non-monotone. Consequently,

we quantified a range or window of antibiotic concentrations in which, though time,

the antibiotic has little effect on bacterial growth density. In our case, this transition

is led by the duplication of the acr operon and subsequently selection on cells with

extra copies (mutation window). Moreover, we also developed a theoretical framework

that is able to predict, qualitatively, the evolution of resistance to antibiotics when

the underlying mechanism of resistance is based on duplications of efflux pumps.

Our resulting mutation window therefore refutes the arbitrarily set boundaries of the

so-called mutant selection window introduced in SECTION 1.2.

Also, our whole genome sequence (WGS) datasets show the relationship between
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acr operon copy number. These datasets show a monotone increase in the number of

acr operons, provided the appropriate dose. This conflicts with the dataset obtained

through the quantification of the fluorescent protein AcrB-sfGFP, in which a decrease

in AcrB-sfGFP production precedes a monotone increase of AcrB-sfGFP. The later

dataset is not only result of the number of copies of the acr operon, but it also

summarises the expression and translation processes required for protein synthesis.

Thus, the pipeline that we are currently developing will highlight mutations that may

have occurred, presumably in the acr regulation network, to explain the difference

between WGS and AcrB-sfGFP datasets.



III A N T I M I C R O B I A L S E N S I T I V I T Y I N T H E

P R E S E N C E O F C O M P E T I T O R S

SENSITIVITY TO ANTIBIOTICS is quantified by exposing an isolated bacterial strain

to increasing concentrations of antibiotic. The use of mixed isolates in these

tests is considered to lead to unreliable results and to be a poor indicator of clinical

practice.31 Whilst this seems logical from a quantification perspective, in practice

pathogenic microbes are not found in isolation. Instead, they form part of ecological

communities with intricate ecological relationships between a variety of microbial

species that make up both the infection and the host’s microflora.

We argue that during an infection, the integration of the pathogen within the host’s

microbial communities could quite easily affect the applicability of antibiotic sensitivity

data. So, in this chapter we will demonstrate, both theoretically and empirically, that

antibiotic sensitivity tests (ASTs) can both underestimate and overestimate the potency

of antibiotics in polymicrobial contexts. We observed that which of these two outcomes

occurs in practise depends crucially on the sensitivity of the second microbial isolate

used in co-culture as a competitor for resources with the first.

So, when the competitor is not sensitive to the antibiotic used, due to either the

presence of a resistance mechanism or an inherent lack of sensitivity (e.g. the use of

antibacterials with fungal co-cultures), we observe that the bacteria targeted had an

increased sensitivity to the antibiotic. We believe this phenomenon can be explained

by competitive suppression.77 This is a process whereby the growth rate of one

microorganism is reduced by another acting as a ‘resource thief’ and, at least from a
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growth-reduction perspective, this theft is a process that synergyses with the action of

the antibiotic. However, when the aforementioned competitor species is as sensitive to

the antibiotic as the bacteria targeted, we found that the latter was less sensitive to the

drug. In this case each competitor is exposed, in relative terms, to lower concentrations

of the antimicrobial and thus the competition process antagonised with the antibiotic.

We also observed that when the competition for resources is extended for several

seasons, where each season represents one treatment of 24h duration, the synergistic

effect of the competition can be further increased leading to even higher sensitivities to

the antibiotic. This effect can be maintained if the competition lasts even longer still, in

which case no significant change of sensitivity was observed.

We note that within this chapter, interestingly, none of the evolutionary drug-adaptation

tests performed in the presence of competitors for resources created conditions that

could lead to a monotone to non-monotone profile transition.

3.1 PROBLEM: ANTIBIOTIC SENSITIVITY IS QUANTIFIED ON ISOLATED STRAINS, BUT

ANTIBIOTICS ARE USED AGAINST MICROBIAL COMMUNITIES

In nature, microorganisms, such as bacteria, proliferate in conditions surrounded by

cells with the same and different genotypes. Like-genotypes naturally cluster due to

the dynamics of two daughter cells emerging from a single mother cell. In any case,

all these genotypes reside in permanent competition for resources such as amino

acids, oxygen, carbon, salts and water.78–81 In the clinic, however, antibiotic sensitivity

tests are performed on specific clonal isolates. This procedure is sustained by the idea

that therapies eradicate these isolates without significant disturbance of the patient’s

microflora.31 Whilst this idea is now known to be incorrect,82,83 antibiotic susceptibility

tests remained highly standardised and do not reflect the change in the understanding

of how antibiotics mediate between-species competition.

3.2 HYPOTHESIS: ECOLOGICAL CONTEXT CAN ALTER DOSE RESPONSE PROFILE

Motivated by whether or not the ecological context of a given microbial isolated can

interfere with its sensitivity to antimicrobial drugs, we performed sensitivity tests both in

the absence (monoculture) and in the presence (co-culture) of a competitor species. To
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FIGURE 3.1. Dose-response profiles for C. albicans showing the change in growth rate as a function of the concentration

of fluconazole in the absence (dark grey, n = 2), and in the presence (light grey, n = 3) of the fluconazole-resistant

competitor C. glabrata. Growth rate in the absence of fluconazole is plotted on the y-axis. The vertical dotted lines

represent the concentration at which 90% of the growth measured in the absence of fluconazole condition is inhibited,

coloured accordingly (IC90 = 1.821 and 1.811 µg/mL in monoculture, IC90 = 1.563, 1.823, and 0.978 µg/mL in coculture).

Data provided by Emily Cook, University of Exeter.

better understand this phenomenon, we also competed the human pathogenic Candida

albicans with a fungal competitor, and strains of E. coli with a bacterial competitor

(see FIGS. 3.1 and 3.2, strain details in TABLE 3.1). The sensitivity to the antimicrobial

drug was measured as the concentration of drug able to inhibit 90% of the growth

observed in the absence of drug (IC90 hereafter). Next we compared monoculture dose

responses with co-culture dose-responses to assess changes in drug sensitivity due

to the presence of a competitor species.

FIG. 3.1 illustrates the sensitivity of Candida albicans to the antifungal fluconazole,

measured in the presence and in the absence of a competitor species. When this fungi

was grown in the presence of Candida glabrata as competitor species, the resulting

IC90 for C. albicans was lower than that measured in a monoculture. Note that in this

case C. glabrata is naturally resistant to fluconazole. We will demonstrate that this is

also the outcome when both competitors are bacteria later on in this chapter.
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TABLE 3.1. Strains used for the validation of the competition model

Strain Genotype Reference

Escherichia coli Wyl MC4100 galK::YFP, ampR , pCS-λ 84

Escherichia coli GB(c) MC4100 galK::CFP, ampR , pGW155B 85

Candida glabrata – ATCC 2001

Candida albicans SBC153 ura3∆::imm434/ura3∆::imm434

RPS1/rps1∆::CIp10 ACT1/ACT1p-GFP-

NAT1

86

FIG. 3.2 displays the outcome of two competing bacterial species, each being

sensitive to the antibiotic tetracycline to a similar degree. The competitors are the

cyan fluorescence-tagged strain of Escherichia coli Wcl, and the human pathogen

Salmonella typhimurium. As opposed to the previous figure, in which competitors had

different sensitivities to the antimicrobial drug, the IC90 for the strain of Escherichia coli

Wcl was higher in the presence of the competitor but that for S. typhimurium did not

significantly change.
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FIGURE 3.2. Dose-response profiles for E. coli Wcl showing the change in growth rate as a function of the concentration

of tetracycline in the absence (dark grey), and in the presence (light grey) of the competitor S. typhimurium, where the

latter is sensitive to this antibiotic. Growth rate in the absence of tetracycline is plotted on the y-axis. The vertical dotted

lines represent the concentration at which 90% of the growth measured in the absence of tetracycline is inhibited,

coloured accordingly: IC90 = 0.245 ± 0.004 µg/mL in monoculture (mean ± 1.96 standard error), IC90 = 0.326 ± 0.024

µg/mL in coculture. We analysed the difference between both IC90 using a Wilcoxon rank sum test with ranksum = 100,

and p = 1.55 · 10−4.

These datasets suggest that ecological relationships with other microorganisms can

modulate the sensitivity of a given microbial cell to an antimicrobial drug. They also

suggest that such relationships can be complex, as demonstrated by the asymmetric

modulation between the bacterial species E. coli Wcl and S. typhimurium in which only

one of the species was affected by the competition. The cause of such asymmetry is

beyond the scope of this PhD project, therefore we sought to simplify the protocol by

instead using two strains of the same bacterial species in order to better understand

how direct competition for a common resource can mediate drug resistance.

This common genetic background would provide identical metabolic profiles of each

competitor and the sensitivity to antibiotics of one of the competitors can be controlled

with the introduction of specific resistance genes on a plasmid. This artificially creates

a competition that is analogue to the datasets represented above and is a simple

proxy for the kind of microbial community that motivated this study. A theoretical
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FIGURE 3.3. Model of the minimal selective concentration (MSC).19 Fitness, typically measured as growth rate after

24h of growth, is represented in the y-axis as a function of the concentration of antibiotic, represented in the x-axis. This

model assumes the existence of a ‘cost of resistance’,87 whereby mutations conferring resistance to antibiotics are

also associated with lower fitness. Thus, in the absence of antibiotics, the drug-sensitive competitor (hereafter denoted

by ‘s’) has a higher growth rate after, say, 24h of growth, than the resistant type (denoted by ‘r’). However, the s-type

has a higher sensitivity to the antibiotic and therefore MICs < MICr . As a consequence, the addition of antibiotic to a

mixed culture of s and r forces a ‘crossing point’ between these two dose-response profiles. This crossing point defines

the MSC, a concentration at which both competitors have the same fitness and whereafter selection on the resistant

competitor begins. Note that MICs and MICr are measured in monoculture only. We conducted competition experiments

at concentrations at which only the sensitive type is predicted to have changes in fitness (pink).

framework developed elsewhere19 (FIG. 3.3) is relevant to the analysis of our proxy for

a multi-species, drug-treated community.

We used the above framework to mimic selection on antibiotic resistance in mixed

bacterial populations composed of species with different sensitivity to antibiotics. It has

been proposed that mutations, or plasmids, that provide resistance to antibiotics are

often associated with low relative growth rates in the absence of the antibiotic.87 Thus

the difference in sensitivities assumed by this framework results in different growth

rates,19 as part of an effect known as resistance mutations having fitness ‘costs of

resistance’.

FIG. 3.3 illustrates the case of a competition between two bacterial strains, each

with different sensitivities to an antibiotic and the existence of costs of resistance. If

antibiotic sensitivity is measured for each strain separately (in monoculture) using the

minimum inhibitory concentration or MIC, then MICS < MICR must be satisfied (S and

R denote the sensitive and resistant strains, respectively). Moreover, the growth rate

after 24h of growth in monoculture (r ) must satisfy that rS > rR due to the existence of

costs of resistance. With these conditions, the resulting dose-response profiles cross

each other when they are overlapped. The crossing point highlights the existence of a
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concentration at which both strains have the same growth rate or fitness. Known as

the minimum selective concentration or MSC, this concentration sets the drug dosing

boundary at which selection on the resistant strains begins (FIG. 3.3). This allowed us

to frame basic predictions of the drug dosages which select for or against the most

resistant strain: below the MSC dose it is the drug-susceptible strain that has the higher

growth rate, whereas above the MSC it is the drug-resistant.

However, this statement is based on fitness (growth rate) determined in monoculture.

In terms of changes in sensitivity to the antibiotic that are observed in the presence

and in the absence of competition, this framework makes no predictions. We therefore

sought to also refine the notion of the MSC using our two-strain microbial community

and asked whether the monoculture dose-response data is relevant to predict the

MSC.

Our first approach to these questions was theoretical and we present a mathematical

model, shown below, that implements the costs of resistance discussed above with the

following rationale. We considered two monoclonal populations of bacteria with different

sensitivities to an antibiotic, where the density of the sensitive population is denoted

as S and R denotes that of the resistant population. The growth of these populations

depends on a source of carbon, C, which these cells take from the environment

using a transporter (FIG. 3.4). Thus, as we explained in the previous chapter, we

defined the growth function for these two populations as Gx (C0) = VC0
Km+C0

. Note that

the growth parameters V and Km for both populations, generically denoted as x , are

identical. These parameters denote the maximal uptake and half-saturation constants,

respectively. Then an antibiotic A is supplied at the concentration A0. As mentioned in

the previous chapter, A diffuses into the cells at a rate ϕ and binds to the transporter,

with affinity κ, to reduce the growth of the cells. The resulting inhibition function is

γ(A) = 1
1+κA2 , where 2 is the Hill coefficient.75 The growth function of the sensitive

population is herefore redefined as Gs (C0, A0) = VC0
Km+C0

· γ(A0) whereas the growth

of R remains as Gr (C0) = VC0
Km+C0

for simplicity. The concentration of A found in each

population is noted as As or Ar , depending on whether the population is sensitive or

resistant. However, as proposed by the authors of REFERENCE 19, the resistance of R

will come at a cost that reduces the growth rate or fitness (Γ).
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FIGURE 3.4. Diagram of the mathematical model formalised in EQUATION 3.1. A0 and C denote the concentrations of

antibiotic and carbon, respectively, in the environment. Each cell contains an enzyme (black) able to take C from the

environment and process it to grow (the growth rate function is defined as G(C) = y · VC/(Km + C), y denoting the

yield per molecule of C, V the maximum rate at which C is processed, and Km the enzymatic half-saturation constant).

A0 diffuses into the cells at a rate ϕ, binding to the enzyme and reducing the growth of the cell (a growth inhibition

function is defined to be γ(A) = 1/(1 + κj A2
j ), G(C) being redefined as Gj (C, A) = y · VC0/(Km +C0) · 1/(1 + κj A2

j )).

Here j denotes the type of bacterium, either sensitive (S) or resistant (R), κR � κS . We assume that antibiotic degrades

through time at a rate d . Finally, the growth function GR (C, A) is modulated by the cost of resistance parameter Γ > 0.

To make this model compatible with experimental methodologies we assumed that a

sample of the entire culture, either mono- or co-culture, is transferred to an environment

with replenished antibiotic and resources. These transfers occur at 24h intervals and

are indexed by the letter i , satisfying the expressions

Si (tstart , Cstart , Astart ) = η · Si−1(tend , Cend , Aend )

, and

Ri (tstart , Cstart , Astart ) = η ·Ri−1(tend , Cend , Aend ).

Here, 0 < η � 1 denotes the fraction of S and R transferred (∼ 1% of the culture), and

i > 1 the number of transfers, or seasons. We formalised this model with the following

set of ordinary differential equations (ODEs)

d
dt

S = Gs (C, A0) · S, (3.1a)

d
dt

R = (1 − Γ) ·Gr (C, A0) ·R, (3.1b)

d
dt

C = −
V ·C

km +C
· (R + S), (3.1c)

d
dt

As = −d · As + ϕ · (A0 − As) · S, (3.1d)

d
dt

Ar = −d · Ar + ϕ · (A0 − Ar ) ·R, (3.1e)

d
dt

A0 = −d · A0 − ϕ ·
(
A0 · (R + S) − (AsS + Ar R)

)
, (3.1f)
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We considered the cases where the initial inoculum was formed by i) the strain S

(monoculture), ii) the strain R (monoculture), and iii) a mixture of equal proportions

of both strains (50%S + 50%R) in co-culture, and solved the model numerically in

Matlab using the function ode113, a variable order Adams-Bashforth-Moulton PECE

solver.88 This model makes several predictions. The first prediction was that antibiotic

sensitivity increases depending on whether or not a second microbial population is

present (FIG. 3.5). There is no explicit definition of how the strains interact with each

other in our model, which leaves the use of a common source of carbon as the only

explanation for this prediction. The reduction in growth by ‘carbon theft’ is known as

competitive suppression77 and it also enhanced the potency of the antibiotic according

to our model (FIG. 3.6).
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FIGURE 3.5. Our theory predicts that the S strain is more sensitive to tetracycline in the presence of a competitor than

in its absence. A) The monoculture dose response of the S (plasmid-free) and R (resistant plasmid carrying) strains of

E. coli. This shows that the R strain can be considered completely resistant over the range of dosages applied but the S

strain has an IC50 over 0.14µg/mL of tetracycline. B) Co-culture experiment with the 50-50 inoculum of S and R strains,

where the IC50 of the S strain has now shifted to 0.074µg/mL. Moreover, 0.2µg/mL tetracycline is the IC91 in co-culture

whereas it is the IC63 in monoculture. The numerical values for the parameters are S0 = 0.001 cells, R0 = 0.001 cells,

A0 = 0.2µg/mL, C0 = 100µg/mL, V = 2,400µg/cell/hour, Km = 1µg/mL, γ= 0.75, ϕ = 103ml/cell, κ = 400mL/µg, d = 0.1 /h,

η = 0.01, carbon conversion factor = 0.00075 cells/µg.

The other predictions apply if the competition lasts more than a 24h season. For

example, our model predicted that the competitive suppression previously observed

was intensified and sustained through time (FIG. 3.7). It also predicted the arrangement

of the co-culture in three different ‘niches’ mediated by antibiotic dose. The most

sensitive strain outcompeted its resistant counterpart in the first of these niches, which

was defined at relative low concentrations of antibiotic. The next niche was defined
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FIGURE 3.6. Predicted inhibition per molecule of drug in the absence, and in the presence, of a competitor with different

sensitivities to the antibiotic tetracycline. The sensitive competitor (S) is inhibited with less tetracycline in the presence

of a resistant competitor (R) due to competitive supression. Equally, the growth of R is promoted due to a similar

phenomenon with opposite effect, namely competitive release, 35 whereby the eradication of a competitor (in this case

by the use of antibiotics) leaves the unaffected competitor with more resources to grow.
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FIGURE 3.7. Theoretical prediction of the existence of a concentration of antibiotic at which, within a mixed culture,

sensitive (s, green) and resistant (r, red) competitors have identical fitness (MSC). The thin and thick lines represent the

predictions after one day and seven days of mixed growth, respectively. The crossing point defines the MSC, which is

here predicted to be different after seven days of competition.

at relative high concentrations of antibiotic and was dominated by the most resistant

strain. In this niche the sensitive strain was outcompeted. Finally, the third niche sat

in between the previous two. In this niche both competitors were co-maintained, as

opposed to the other niches in which only one of the strains survived.

The aforementioned minimal selective concentration (MSC) was located in the

third niche. The arrangement of these niches, however, was not immediate. The

precise boundary concentrations for each of them changed through time until they

eventually reached an equilibrium, in which the concentrations defining the niches no

longer changed. The MSC also changed through time and met an equilibrium, which

depended on the volume of the culture transferred with every season. Thus the MSC
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at equilibrium can be higher or lower than the MSC measured after a 24h season. With

our transfer volume, previously defined as 1% of the culture, the model predicts an

increase through time of the MSC. This latest prediction contradicts the role of the

MSC, measured after 24h of growth, as the parameter defining where selection on

resistance begins. Our model demonstrates that this concentration is dynamic and

sits within a stable interface in which two competing species can be co-maintained.

This interface separates the niche which selects for the most sensitive competitor from

that which selects for the most resistant competitor. Finally, we sought to test these

predictions in the laboratory.

3.3 VALIDATING THE THEORETICAL MODEL EXPERIMENTALLY: WE SHOW ANTIBIOTIC

SENSITIVITY IN COMPETITION IS NOT CONSISTENT WITH ASTS, AND THE IC90 CAN SHIFT

TOWARDS LOWER CONCENTRATIONS

Many bacterial species are able to produce antibiotic-like substances called ‘bacteri-

ocins’ which are used to remove neighbouring competitor species.81 These substances

are highly specific and can lead to cross-resistance with antibiotics.89 Thus, bacteri-

ocins would be a confounding factor that could confound a study of competing microbial

species in the presence of an antibiotic. To avoid such effects we decided to compete

bacteria with a common genetic background. We used two strains derived from E. coli

MC4100 that had different fluorescent markers inserted in the chromosome (TABLE

3.1). This allowed us to track each strain in mixed cultures. Moreover, one of the strains

was modified to contain the plasmid-borne locus tet(36), which confers resistance to

the tetracycline class of antibiotic. We labelled this strain as Tetr , and its sensitive

counterpart as Tets.

Consequently these strains are consistent with our theoretical model in which the

only difference between them was the degree of resistance to the antibiotic. Our

experimental protocol also implemented other conditions introduced in our model. We

began the co-culture experiment using a mixed culture which contained equal number

of cells for Tetr and Tets as inoculum. Also, the experiments were conducted for seven

24h seasons and the initial conditions of the following season were set by transferring

1% of the culture. We set up a 96-well microplate with minimal media containing
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0.4% (w/v) of glucose, 0.1% (w/v) of casamino acids and eleven concentrations of

tetracycline ranging from 0 (control) to 0.5 or 15µg/mL, depending on the strain. The

cultures were incubated for 24h and later transferred to microplates with an identical

conditions using a 96-well pin replicator. For experiments involving monocultures or

co-cultures a sample for each strain was grown overnight (>16h), which were later

used as inoculum.

As before with the above theoretical study, we first quantified the sensitivity to

tetracycline of each bacterial strain separately. We naturally named this condition

monoculture and denoted it by the letter m, as opposed to the condition where both

strains were grown together in a mixed culture or co-culture. We noted the latter using

the letter c. Next, the optical density was read at 600nm (OD600 or just OD) for each

strain grown in monoculture as well as the fluorescence (RFU). The fluorescence was

read at 505nm/540nm (excitation/emission wavelengths) for yellow fluorescent protein

and at 430nm/480nm for cyan fluorescent protein. The OD600 readings were used to

normalise the fluorescence signal (RFUn) and correlate fluorescence with the densities

of each bacterial strain in co-culture. We denoted yellow (YFP) and cyan (CFP) reads

in the plate-reading device as y and c, respectively, and calibrated the values y0 and c0

so that 1 ×OD600 = y0 · YFPmax and 1 ×OD600 = c0 ·CFPmax . These values provided

the number of OD600 units per yellow and cyan fluorescence unit. We read the data

triple (yr , cr , ODr ) from the plate reader and defined the expected values of optical

density (ODe) for each strain as yod = yr · y0 and cod = cr · c0 so that yod + cod = ODr

was satisfied. We also estimated the fraction of each strain in the mixed culture as

fy =
yod

yod + cod
and fc =

cod

yod + cod
.

Finally we calculated the growth rate of each strain, r , using the following finite

difference (forward Euler) approximation. We represented the change through time of

RFUn as F (t ) and defined its derivative as

F ′(t ) =
Ft+∆t − Ft

∆t

where

r = max
0≤t≤24h

F ′(t ).
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Here ∆t is the read frequency in hours and r is expressed as maximum increase in

RFUn per hour. To test whether or not the MSC is sensitive to the way the growth

rate is calculated, we also estimated the per capita growth rate using the routine in

EQUATION S.1. This growth rate is expressed as doublings per hour.
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FIGURE 3.8. Overlapped dose-response profiles for Tetrm (red), and Tetsm (green) in monoculture. Culture growth is

represented as left) optical density estimated from normalised fluorescence (ODe
600), centre) per capita growth rate,

and right) maximum increase in ODe
600 per hour on the y -axis, whereas the concentration of tetracycline is represented

on a logarithmic scale on the x-axis. Upon detection, the MSC is represented in dark grey the IC90 for Tets in green, and

that for Tetr in red. For each case, we quantified the costs of resistance as the difference between Tetr and Tets in the

absence of tetracycline (data shown on the y -axis).

FIG. 3.8 displays the dose-response profiles of each strain grown in monoculture

in the presence of the antibiotic tetracycline. For convenience, these profiles were

overlapped and used to calculate parameters such as the MSC, and IC90. We observed

the MSC to be highly sensitive to the way it was calculated. The numerical value for this

concentration was different between either form of growth rate and we were also unable

to measure it using ODe. The sensitivity to tetracycline was rather similar despite of

the data used, Tets being ∼ 30 times more sensitive to the drug than Tetr . Finally we

measured the costs of resistance as the difference in growth rates and culture density

between both strains in the absence of antibiotic. The resulting costs also were highly

sensitive to whether we used culture density or growth rates.

Next, we repeated the previous measurements when the strains were grown in co-

culture. Due to such difference in sensitivity, Tets set a limit as to how much tetracycline

we could use, so we used a range of concentrations wide enough to be toxic for Tets

but not for Tetr . As predicted by our theoretical model, the resulting MSC and IC90

were different from those measured in monoculture (FIGS. 3.9 and 3.10). The IC90 was

reduced between 30 to 50% depending on whether the concentrations were calculated

using cell density or growth rate. The MSC was reduced in such conditions by 80%
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FIGURE 3.9. Left) Overlapped, culture density dose-response profiles for each competing strain grown in monoculture.

For more information see FIG. 3.8. Right) Overlapped, culture density dose-response profiles for each competing strain

grown in coculture over 24h. We quantified the costs of resistance as the difference between Tetr and Tets in the

absence of tetracycline (data shown on the y -axis). We used a Wilcoxon rank sum test to analyse the differences in

IC90 (p = 1.55 · 10−4 and ranksum = 100).

and was coupled with the nearly total reduction of the costs of resistance. Although

this last observation is not entirely consistent with our mathematical model, the MSC

did change when the strains were grown in co-culture just as our model predicted.
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FIGURE 3.10. Overlapped, growth rate dose-response profiles for each competing strain grown in monoculture (left)

and 24h of coculture (right). For more information see FIG. 3.8. Upon detection, the MSC is represented in dark grey

the IC90 for Tets in green, and that for Tetr in red. We quantified the costs of resistance as the difference in between Tetr

and Tets in the absence of tetracycline (data shown on the y -axis). We used a Wilcoxon rank sum test to analyse the

differences in IC90 (p = 1.55 · 10−4 and ranksum = 100) and MSC (p = 0.019 and ranksum = 42).

The IC90 for the most sensitive strain Tets was reduced in the presence of Tetr in

accordance with our theory. To quantify the inhibition per molecule of tetracycline, first

we calculated the inhibition of growth in the presence of T µg/mL of tetracycline as GT .

If we label the growth in the absence of the drug as G0, then I(T ) := 1 −GT /G0. We
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finally defined the inhibition per molecule of tetracycline as the ratio between I(T ) and

T . When the antibiotic inhibits the growth of the culture this ratio is positive, otherwise

it is negative. FIG. ?? shows that the effect of tetracycline on Tets was stronger in the

presence of Tetr , with the strongest inhibition being produced by a comparatively lower

antibiotic dose.

FIG. 3.11 displays the raw data for the co-culture grown during seven 24h seasons,

with transfers of ∼ 1% of the culture at 24h intervals. We presented the data as expected

culture density (ODe) obtained from fluorescence readings, relative frequency, per

capita growth rate (doublings per hour) and growth rate (ODe per hour) of each strain

as a function of tetracycline dose. The dataset aligns well with the predictions of the

model, which predicted the competitive suppression to be sustained and enhanced

through time (FIG. 3.12). It also shows an increase in the number of molecules of

tetracycline per cell, especially between the growth measured in monoculture and after

24h of co-culture (FIG. 3.13). To calculate this, we labelled the growth read at IC90 in

each condition as G90 and used the ratio between IC90 and G90 as a proxy to estimate

the concentration of tetracycline per cell.

In terms of culture density, Tets overcame the ‘benefits of resistance’ observed for

Tetr in the absence of tetracycline. This was coupled with the emergence of a crossing

point (MSC) between the dose-response profiles of some of the replicates (FIG. 3.14).

During the length of the experiment, the MSC shifted towards higher concentrations of

tetracycline as predicted by our model (FIG. 3.7). When we measured the MSC using

growth rates it remained unchanged during the seven days (FIG. 3.15). However, Tet r

was not able to outcompete Tets until the dose of tetracycline was well beyond the MSC.

We interpreted this as the niche predicted by our model in which both competitors could

be co-maintained, mediated by antibiotic dose, and where we would find the MSC.

When the dose of tetracycline was higher we could no longer measure the presence

of the most sensitive strain Tets and therefore these concentrations defined the niche

which selects on the most resistant competitor Tet r . The existence of a niche selecting

for the most sensitive strain was not observed.
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FIGURE 3.11. Overlapped dose-response profiles for Tetr (red), and Tets (green) during the seven days of co-culture.

Changes in A) optical density estimated from normalised fluorescence (ODe
600), B) relative frequency, C) per capita

growth rate, and D) maximum increase in ODe
600 per hour as a function of the concentration of tetracycline. Upon

detection, mean ± 95% confidence intervals are shown for the MSC, represented in dark grey, and the IC90 for Tets , in

green.
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the IC90 between that measured in monoculture (label M) and after 24h of coculture using a Wilcoxon rank sum test with

p = 1.55 · 10−4 and ranksum = 100 for data based either on culture density (left) or growth rate as ODe
600 per hour (right).

We also quantified differences in the IC90 measured after 48h of coculture, with p = 3.10 · 10−4 and ranksum = 92 for

the data based on culture density (left), p = 0.002 and ranksum = 89 for data based on growth rate as ODe
600 per hour

(right). The linear model ICc
90 = a + bt is represented in dark grey, the parameter b not being significantly different from

zero.
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FIGURE 3.13. Relative concentration of tetracycline per optical density unit (ODe
600) for the sensitive strain Tets in

monoculture (labelled M), after 24 and 168 hours of competition (labelled C). The barplots represent mean ± standard

error (n = 7), whereas the raw data is shown as circles. We analysed the differences between M and C(24h) using a

Wilcoxon rank sum test with p = 0.011 and ranksum = 33.
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FIGURE 3.14. Overlapped, culture density dose-response profiles for each competing strain grown in coculture over

24h (left) and 168h (right). Upon detection, the MSC is represented in dark grey the IC90 for Tets in green, and that

for Tetr in red. For each case, we quantified the costs of resistance as the difference in between Tetr and Tets in the

absence of tetracycline (data shown on the y -axis). We used a Wilcoxon rank sum test to analyse the differences in

IC90 (p = 5.84 · 10−4 and ranksum = 77). The costs of resistance are shown on the y -axis as the difference between

Tetr and Tets in the absence of tetracycline.
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FIGURE 3.15. Overlapped, growth rate dose-response profiles for each competing strain grown in coculture over 24h

(left) and 168h (right). Upon detection, the MSC is represented in dark grey the IC90 for Tets in green, and that for

Tetr in red. For each case, we quantified the costs of resistance as the difference in between Tetr and Tets in the

absence of tetracycline (data shown on the y -axis). We used a Wilcoxon rank sum test to analyse the differences in

IC90 (p = 0.00408 and ranksum = 31) and MSC for which no statistical difference was found. The costs of resistance

are shown on the y -axis as the difference between Tetr and Tets in the absence of tetracycline.
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3.4 FURTHER PREDICTIONS: THE NUMBER OF RESISTANCE PLASMIDS PER R CELL IS

PREDICTED TO INCREASE WITH THE DOSE

Above we noted that the most resistant competitor, Tetr , carries a plasmid-borne

mechanism of resistance (tet(36)). Yet the mathematical model in EQUATION 3.1 does

not include explicitly resistance as a function of the number of plasmids. We now rectify

this omission by introducing the following theoretical model.

d
dt

S = Gs (C, A0) · S (3.2a)

d
dt

R =M
(
(1 − Γ) ·Gr (C, A0) ·R

)
(3.2b)

d
dt

C = −
V ·C

Km +C
·

*.
,

∑
j

Rj + S+/
-

, (3.2c)

d
dt

As = −d · As + ϕ · (A0 − As) · S, (3.2d)

d
dt

Ar = −d · Ar + ϕ · (A0 − Ar ) ·
∑

j

Rj , (3.2e)

d
dt

A0 = −d · A0 − ϕ ·
*.
,
A0

*.
,

∑
j

Rj + S+/
-
−

*.
,
AsS + Ar

*.
,

∑
j

Rj
+/
-

+/
-

+/
-

, (3.2f)

where the sum is taken over the number of R cells with different numbers of plasmids

(j). During cell division, plasmids are replicated alongside the bacterial chromosome

and equally segregated between the two daughter bacterial cells.90 In the model we

assume that such segregation is not perfect, and only one plasmid can be gained or

lost at a time with equal probability σ. We modelled this as a Markov process with the

following transition probability matrix

M =

*................
,

1 σ 0 · · · 0

0 1 − σ σ 0
...

0 1 − σ σ
. . .

0 1 − σ . . . 0
... . . . . . . σ

0 · · · 0 1 − σ

+////////////////
-

for a population of R formed by j subpopulations with j − 1 plasmids per cell. Note that

if the subpopulation with one plasmid per cell loses the plasmid, we assume that it

cannot be recovered.
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FIGURE 3.16. The main figure shows the 7-season distribution of the number of plasmids in the R-cell types when

σ = 0.01. Note how these distributions are more skewed towards higher plasmid numbers as the dose of drug increases.

The inset shows three particular plasmid distributions after 7 seasons, including the inoculum distribution which sees a

random distribution of both s and r cell types, with a uniform distribution of plasmids in the latter case.

FIG. 3.16 illustrates the purpose of using this model. We solved this model numeri-

cally using the Matlab function ode15s, which uses numerical differentiation formulas

(NDFs),73 and used it to predict the existence of different distributions of plasmid

numbers observed per cell at the end of seven seasons, which can be determined

for each dosage. In the simulated case presented in this figure, we see that higher

dosages (in red) led to higher numbers of plasmid per cell and vice versa. This oc-

curs because because we assumed the plasmid had no copy number control and is

therefore susceptible to copy number changes. These changes can occur during cell

division, creating differential segregation of plasmid numbers within the dividing cell.

There are different ways of representing the same phenomenon and FIG. 3.17 shows

that this new model predicts the existence of dynamics on the distribution of plasmids

in the Tet r -subpopulation as a function of the concentration of tetracycline that has a

switch-like structure that occurs around 0.05µg/mL. The validation of this prediction is

technically demanding, but we approximated it by measuring the mean copy number of
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plasmids per cell using quantitative PCR (qPCR). We therefore calculated the number

of plasmids using a protocol published elsewhere91 (FIG. 3.18). The result of this

qPCR-based protocol showed a significant positive correlation between the number of

plasmids contained in each Tetr cell after just 24h of competition with Tets (F -statistic

versus constant model = 4.4, p = 0.047). Thus, selection on the plasmid can occur

very rapidly and lead to changes in the distribution of plasmids per Tet r -cell.
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FIGURE 3.17. Left) New predicted outcome of a competition between the strains Tets and Tetr . This prediction is not

qualitative different from the previous version of the model. Right) Relative frequency of the plasmid as a function of the

dose (coloured), assuming a uniform distribution at inoculation time (t = 0h).

3.5 CONCLUSIONS

During the introductory chapter, in SECTION 1.3, we highlighted a fundamental problem

in antibiotic therapy design in which antibiotic sensitivity is quantified on an isolated

bacterial population. The drug is, however, used on the natural microbiota of a patient

(be this a person, pet or farm animal). Here we demonstrated, supported by a theoreti-

cal framework developed during this chapter, the sensitivity to antibiotics of a sensitive

species can be further increased in the presence of other micro-organism when the

latter is not affected by the drug. The stress produced by the antibiotic is added to the

reduction of carbon and oxygen by the competing micro-organism due to an ecological

phenomenon known as competitive suppression.

For convenience, in our case the micro-organism is resistant to the antibiotic tetra-

cycline and thus we measured when the selection for this resistant bacterial species

begins. This resistant species confronts a cost, a reduced growth rate, consequence

of the plasmid-born resistance mechanism. In such circumstances it has been sug-

gested that selection on resistance begins at a particular concentration resistance,
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FIGURE 3.18. Relative copies of the plasmid pGW155B per cell of Tetr after 24h of coculture with Tetr . We robustly

fitted the linear model y = a + bx where the 95% confidence interval for a is (19.76, 41.35) and for b is (26.52, 284.56),

with R2
adj = 0.198. This highlights a weak, but significantly positive correlation between number of plasmids per cell and

dose of tetracycline.

the so-called minimal selective concentration or MSC (FIG. 3.3). This concentration

sets when both sensitive and resistant species have identical growth rate and, thus,

higher dosages would select for the most resistant species. However, we showed

that the MSC is not robust to different ways of measuring growth rate and therefore

different definitions of growth rate yield different MSCs. Whether the MSC is calculated

overlapping the dose-response profiles of both species, or empirically from a mixed

culture also yield different MSCs. We also demonstrated that the MSC changes during

the experiment. Thus, the MSC is a poor predictor of where selection on resistance

begins.

In our case the resistant species harbours a plasmid with the ribosomal protection

gene tet36. We also quantified how dose affects the plasmid copy number per cell but

a weak correlation was found with the experimental setup presented in this chapter.



IV S E L E C T I O N O N T H E D U P L I C AT I O N O F

A C R A B - T O L C I N S PAT I A L LY D I S T R I B U T E D

C U LT U R E S

BY IMPLEMENTING AN analogy of the laboratory protocol used to determine antibi-

otic susceptibility, the so-called E-test, we are able to quantify aspects of selection

for antibiotic resistance in a spatial drug gradient. Our main result is this. Although one

might expect greater drug dose to correlate with lower population densities, we show

that this expectation is not met in practice and the reasons for this are both ecological

and evolutionary. We therefore show, using a combination of theoretical modelling and

spatially-extended laboratory microbial growth experiments, that the growth rate of

a bacterial population with genetically distinct subpopulations can be maximised at

intermediate distances from the antibiotic drug. Moreover, each subpopulation, distin-

guishable by the number of resistance genes they carry, can have a maximal growth

rate at a different spatial location.

One prediction from this observation is that microbes growing in an antibiotic gradient

can exhibit, at least temporally, a certain ‘bullseye’ pattern formed from concentric

rings. Experiments using Escherichia coli provide evidence for the existence of these

rings and we show, using genetic manipulation of the resistance genes in question,

that such a genetic manipulation can move the location of this pattern.

This chapter represented the work of an unusually large within-lab collaboration

between the following people who each contributed to different aspects of the project.

Their contributions are detailed as follows.



6 6 C H A P T E R I V

R. C. Reding Roman: implemented experimental protocols, analysed data, designed

experiments and mathematical models;

M. Hewlett: designed and implemented experimental protocols, analysed data;

F. Gori: implemented computer codes to simulate mathematical models;

S. Gardner: developed a multi-fluorescence video capture device based on an Arduino

controller and a commercial camera;

I. Gudelj: designed experiments, provided funding for the project from a NERC grant;

R. Beardmore: provided funding from an EPSRC grant, wrote and analysed mathemat-

ical and computer models.

4.1 INTRODUCTION: SELECTION FOR RESISTANCE AT DIFFERENT DOSAGES

The purpose of this study is to test the following hypothesis: is it true that a greater

antibiotic dose necessarily yields fewer bacterial cells? The Eagle effect, observed

many years ago,46 provides one of the earliest answers to this question, and that

answer is negative for it can be the case that bacterial densities increase with increasing

antibiotic dose. However, how Darwinian selection for resistance might also produce

datasets like those reported by Eagle, and others, has received little attention in

the literature. We therefore study this question from an evolutionary and ecological

perspective, focusing on how resistance by efflux can contribute to datasets that

also lead to the rejection of the above hypothesis. In short, we will conclude that

a phenomenon known as competitive release can combine with selection on gene

duplication mutations that mediate drug resistance by efflux to produce spatiogenomic

patterns in which more drug need not correlate with fewer bacteria.

One of the most common assays performed in hospitals is the antibiogram,92,93 it

is an in vitro test for susceptibility to a range of antibiotics. At the core of antibiotic

susceptibility testing is a simple laboratory test that determine zones of inhibition, these

are often performed using manufacturers’ so-called E-strips.94 The E-strip is impreg-

nated with a gradient of antibiotics and it is placed onto a bacterial lawn whereupon

killing and growth inhibition of some of the bacteria can result. From this killing, a

clearance appears on the lawn up to a certain drug concentration from which one can

read concentrations at which the microbe is sensitive to the drug used.
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As this protocol by its very design creates a spatial gradient of antibiotic, we are

interested in ecological and evolutionary features that might result from the implemen-

tation of such a test. The bespoke implementation in our laboratory of an analogue of

the test is illustrated in FIG. 4.1.

A(x)

spatial coord (x)

Ac

0

bacterial 
density

killing 
zone

growth

Ac

drug

FIGURE 4.1. A schematic of our implementation of the antibiotic susceptibility test: an antibiotic drug held at high dosage

at the centre of an agar plate diffuses out into a bacterial lawn, producing a killing zone or zone of inhibition where by

the higher the dose, the larger the zone.

This drug susceptibility protocol is performed on an agar plate containing minimal

growth medium, a carbon source, salts and amino acids. At the centre of the plate

a circular region of agar is excised by hand and replaced with agar that has been

impregnated with an antibiotic at a controlled dose, an antibiotic gradient therefore

ensues across the plate.

It is thought that antibiotic gradients are associated with rapid selection for resistance,

the idea being that a microbial population is exposed to small increments of drug which

can be easily dealt with. A little like the tale in which a frog that can be boiled slowly

by steadily increasing the temperature of the water of the pan in which it sits, so a

microbe is thought to readily survive small increments in antibiotic dosage when an

abrupt change would be lethal.95

We therefore use a laboratory model system in which changes in antibiotic resistance

can be measured over short timescales. This system sees the bacterium Escherichia

coli K12, strains TB108, MG1655 and AG100, treated with tetracycline and macrolide

antibiotics, we use this combination because K12 has a clinically important efflux

pump96 formed from the products of the operon acr and the protein TolC.97 Moreover,

acr resides in a genomic region that can be recombined to produce duplications and

triplications very rapidly under antibiotic selection pressure involving macrolides and
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tetracyclines.98

A)

0.1 Di↵usion and clearance zone in MG1655 and AG100

For both MG1655 and AG100 strains, bacteria were inoculated into soft agar supplemented with 1% glucose.
The central circle of the plate was made with concentrations of doxycycline ranging from 1xMIC (all doses refer
to concentrations used in liquid media) to 128xMIC, in 8 two-fold steps. The clearance zone was measured by
fitting a circle to the radius of no growth, and by measuring pixels until growth reached an arbitrary threshold
(e.g., 0.3 ⇤ maxgrowthintensity). The raw pictures, profiles and clearance zones are shown below.

Raw image − false colour

Polar Transformed Image

Figure 1: Raw pictures of AG100 at various Dox concentrations.
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Figure 2: AG100 profile plots, whereby pixel intensity (brightness) is used as a proxy for optical density, and
thereby, growth.

1

1xMIC 2x 4x 8x 16x 32x 64x 128x

B)
0 20 40 60 80 100 120

0

20

40

60

80

100

c
le

a
ra

n
c
e

 z
o

n
e

 r
a

d
iu

s
 (

p
ix

e
ls

)

drug concentration at centre (xMIC)

 

 
power law: coefficient 95% CI (0.444,0.625)

data (mean ± 95% CI)

0 20 40 60 80 100 120
0

20

40

60

80

100

c
le

a
ra

n
c
e

 z
o

n
e

 r
a

d
iu

s
 (

p
ix

e
ls

)

drug concentration at centre (xMIC)

 

 
power law: coefficient 95% CI (0.403,0.508)

data (mean ± 95% CI)

FIGURE 4.2. A) Raw data: an image of a bacterial lawn (in false colour) showing how the zone of inhibition on that lawn

increases in area with increasing dose, here at 1, 2, 4,...., 128 times the MIC dose determined in liquid culture conditions.

B) The increase in area for the tetracycline drug for strains MG1655 and AG100 follow a power law with coefficient close

to a value of two: a quadratic. This is consistent with increases in zone of inhibition being described by a threshold killing

model whereby escape of the drug fro the centre following a diffusion equation, as shown in the text (Statistical note:

correlation coefficients are R2 = {0.898, 0.959} respectively, F-statistics versus constant models are F = {728, 1930}

and corresponding p-values are given by: p = {1.43 · 10−82, 3.45 · 10−115 }.)

4.1.1 Inreases in the zone of inhibition of MG1655 and AG100 with dose are

consistent with linear diffusion theory. The fundamental solution of the linear

diffusion equation

At = σAxx ,

on an infinite two-dimensional domain with Dirac delta initial condition of mass Ac is

given by the expression

A(t ) =
Ac

4πσt
exp

(
−(x2 + y2)/4tσ

)
which represents a temporally-modulated normal distribution. If we assume, as is

natural, that extracellular and intracellular drug concentrations are highly correlated

and, also, that the concentration of A leads to bacterial killing provided it is of a

sufficiently high value, Ad say, a value known as the minimal bactericidal concentration

(MBC), then the zone of inhibition, or killing, is given by those pairs (x , y ) for which

Ad < max
t>0

Ac

4πσt
· exp

(
−(x2 + y2)/4tσ

)
.
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Let us write r =
√

x2 + y2. By taking the derivative with respect to t of the function

A(t ) defined within the latter inequality and setting this derivative to zero, we find this

maximum occurs when t = r2/4σ. At this value of t there results A(t ) = Ac/(πr2e).

Hence, equating Ac/(πr2e) with Ad , we deduce that killing occurs up to a certain

spatial radius, r < rd say, where

rd =
(
Ac/(Adπe)

)1/2 .
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FIGURE 4.3. The leftmost plot shows the decay in drug concentration as a function of distance from the drug source,

where the latter has been deployed at a value Ac . As the drug diffuses outwards, it maintains a value above the minimal

bactericidal concentration (MBC) for a while, thus enlarging the zone of inhibition (ZoI), up to a maximum time point.

Beyond this time, dose is too low to ensure bacterial killing occurs. The middle plot is analogous to the first, but with

double the dose supplied, 2 × Ac . This calculation illustrates that the zone of killing increases in size by a factor
√

2

according to diffusion theory. The rightmost plot shows the dynamics of the drug dosage as a function of time both

inside and also right at the very edge of the zone of inhibition.

If we therefore examine the plot of empirically-determined zones of inhibition, like

those in FIG. 4.2, we ought to observe that the increase in radius of that zone with

the dosage applied scales like the square root of the drug dose. From a nonlinear

regression p1 + p2xp3 , we observe that the value p3 = 1/2 lies within the 95% confi-

dence interval for the estimate of this power coefficient. We therefore cannot reject

the hypothesis that some value of the power coefficient provides a better fit than the

theoretically-predicted square root law. We shall modify this simple diffusion-based

theory later in order to provide more refined predictions of the nature of population

dynamics in the growth region outside these zones of inhibition.

4.1.2 The AcrAB-tolC efflux system, the acr operon and its duplications. Out-

side the zones of inhibition where drug dosage is so high that bacterial killing is assured,
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we anticipate a complex set of population dynamics between different tetracycline

and macrolide resistance mechanisms available to the E.coli cell. In particular, the

E.coli chromosome carries genes that encode proteins AcrA, AcrB and TolC which

form a membrane-spanning efflux pump that includes tetracyclines and macrolides in

the family of small molecule substrates that it can pump. Moreover, structure-altering

mutations in AcrB are known to mediate clinical resistance to a range of antibiotics.96.

R P R P R P
(a) (b)

R R

R

(c)

FIGURE 4.4. A) The basic structure of an operon: a promotor region in light grey, followed by a gene coding a protein

that represses transcription of the same operon, followed by a second protein that encodes part of an efflux pump. We

use the green font colour to highlight the fact that we have a strain which has GFP fused to the protein P, we also have

strains without GFP fused to P. We have in mind that P represents the A and B proteins of the acrRAB operon. B)

E.coli can duplicate the number of copies of the acr operon in its genome which leads to a novel network structure

following duplication in which the two copies repress each other. C) Following a further duplication of one of the operons,

a three-node network results with all nodes repressing each other.

The efflux proteins AcrA and AcrB are encoded within an operon acr, that we shall

also write acrRAB to highlight the fact that the operon contains a triple of proteins, two of

which form the pump but the first of which to be transcribed encodes a repressor of the

same operon. Now, acr is contained within a genomic region in the E.coli chromosome

that can be recombined into the chromosome to form a large mutation with a high

mutation rate consisting of about 8% of the entire bacterial genome. Under strong

selection for resistance as encoded by this pump, this region has been observed to be

duplicated in doxycycline monotherapy and triplicated in a doxycycline-erythromycin

cocktail treatment98 within five days of exposure to these antibiotic conditions at low

population densities.

When these operons are duplicated, triplicated, or held at an even greater copy

number, this creates a growing network of ever stronger co-repression, as depicted

in FIG. 4.4. Moreover, the acr operon is regulated by a complex stress network that

includes the mar regulon and regulatory mutations in this operon, through marR can

mediate expression of the AcrAB-TolC efflux pump.98
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FIGURE 4.5. A) We took a fluorescence microphotography showing the localisation of GFP within a section of an E. coli

cell close to the moment of division. Using this labelled strain of bacterium we are able to deduce how the dynamics

of regulation of the protein AcrB correlates with the use of the macrolide, erythromycin (labelled ‘ERY’). In the absence

of the drug (grey curve) the protein is down-regulated through lag and exponential phase (less than 12h) before being

up-regulated and then stabilising in stationary phase (12h and beyond). When drug dosage is applied, first at a low

dosage of 5µg/ml , the concentration of AcrB per cell increases substantially to level about 40% higher at its maximum

in the absence of drug. However, as the dose is further increased we observed a negative correlation between drug

and AcrB concentration per cell. (b) The negative correlation so-described is significant across a wide range of ERY

dosages, as shown by the results of determining a t-statistic (for the derivative of GFP per cell with respect to dose)

following a linear regression that is testing for the increase or decrease in AcrB concentration as dose changes.

In order to illustrate how this pump is regulated during different phases of bacterial

growth and in different antibiotic concentrations, we present the data in FIG. 4.5. Using

an altered MG1655 strain in which GFP is physically fused to AcrB, a strain denoted

TB108. The latter strain, which allows us to infer data on efflux pump numbers per cell,

shows that the pump decreases in concentration in lag and stationary phase, during the

period up to 12h in FIG. 4.5(a). In the absence of drug as stationary phase is entered,

the pump is up-regulated to a value deemed to be unity for this discussion. A region of

stasis is reached from 18h onwards in which the pump concentration neither declines

nor increases. When the drug erythromycin is used in the growth medium, a similar
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dynamic of regulation of the pump is observed except that the final concentration per

cell is much higher and it continues to increase in stationary phase, to a value about

40% higher than that observed in the absence of drug. Now, FIG. 4.5A and B both

show that an increasing down-regulation of the acrB protein is observed as more drug

is used in the growth medium. Thus, while it might be hypothesised that more drug

necessarily leads to an increase in pumps expressed per cell, this statement is only

true for certain dosages. The opposite is also observed in a single season of bacterial

growth.
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FIGURE 4.6. The analysis of the photographs from a spatial dose-response assay, using the strain eTB108, shows the

expression of AcrB using the proxy of green fluorescence levels (shown next to optical density (i.e. white light) at A) 24h

and B) 48h . This yields a per cell measure of AcrB concentration which is done by calculating fluorescence observed

per optical density. This measure is shown in the inset of both plots which indicates a positive correlation between

drug dose and pumps per cell. We designed an algorithm in Matlab, using the image analysis toolbox, to extract the

information from the photographs FIG. S.16.

4.1.3 A duplication of the acr operon does not double protein AcrB concentra-

tion. Consider the following differential equation model of the acr operon shown in

FIG. 4.4. The auto-repressive nature of structure, whereby the repressor R is tran-

scribed, followed by the efflux protein, P, and then R represses the further transcription

of the operon leads to one possible model of the following form:

d
dt

P = −d0P + ρM, (4.1a)

d
dt

M = −d1M + g
V

1 + kP
+M0. (4.1b)
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Here d0 and d1 are degradation rates of the protein, P, and of mRNA associated

with the transcription of the operon. We assume that the concentration of the repressor

protein, R is proportional to that of P, which is reasonable given they are encoded

by the same operon. The parameter M0 is a basis level of transition of the operon,

gV +M0 is the maximal rate of transcription, where the parameter g is a proxy for the

number of copies of the operon held in the genome.

In steady-state, EQUATION 4.1a-b satisfies the following. First, P = ρM/d0, and

therefore M0 + gV /(1 + kP) = d1m = d1d0P/ρ. This is a quadratic in P which, when

solved, gives

P = P∗(g) := α +
√

1 + β · g,

where α = (k−1− ρM0/(d0d1))/(k−1+ ρM0/(d0d1)) and β =
4V ρ

d0d1k (k−1+ ρM0/(d0d1))−2.

Let us now assume that A(t ) is the internal concentration of antibiotic in the cell and

that A0 is extracellular concentration of the drug, and then

d
dt

A = ϕ(A0 − A) − ρA · P. (4.1c)

Then, in steady-state,

A = A∗(g) :=
ϕA0

ϕ + ρP
=

A0

1 + ϕ
ρ (α +

√
1 + β · g)

.

We therefore deduce, because of the auto-repressive nature of the efflux operon, that

internal drug concentration and concentration of the efflux protein itself, scale as
√

g,

the square root of the number of copies of the operon in the genome.

At this point we make the following remark. In the above, the value of M0 is assumed

to be small and should in fact be g ·M0 in this analysis. This reflects the idea that if a

gene is copied in the chromosome, then the basal transcription rate could well, indeed

should, increase approximately linearly with the number of copies of the transcribed

gene. This modification has the effect of changing the terms α and β above so that they

also depend on g. However, if M0 is small enough, then the above predicted square

root dependence of A∗(g) on g will be largely unaffected, although there clearly do

exist parameter regions where that dependence will be lost. In short, the replacement

M0 → g ·M0 in the above manipulations makes clear in which parameter regimes that

can happen. Throughout the remainder, for simplicity, we assume that α and β do not

depend on g.
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4.2 THEORETICAL PREDICTIONS: THE BULLSEYE PATTERN

4.2.1 The bullseye pattern: a heuristic derivation. Assume for now that environ-

mental, meaning extracellular, antibiotics degrade sufficiently during the time of an

experimental protocol in order for the diffusion equation with decay to be a reasonable

description of the dynamics of the antibiotic molecules through space, ignoring uptake

and efflux for the moment. Thus we suppose that the parameter that was denoted A0

above now depends on space and time in such a way that

At = σAxx − dA,

where A(x = 0, t ) = Ac and A(x → ∞, t ) = 0 hold for all t > 0. In steady-state, this

equation has solution

A = A(x ) = Ac · e−(σ/d )1/2x .

Consistent with the experimental protocol depicted in FIG. 4.1, if we assume the

existence of a diffusing extracellular nutrient, call it S, then we may also introduce two

further diffusion and decay parameters, this time for the carbon source glucose, and

write S = S(x ) = Sc · e−(σ/d )1/2x . We use the latter form as a coarse approximation of

the true nature of the nutrient concentration, S, because no cells can be found within

the red, high-drug region in the centre of FIG. 4.1. However, cells are found inside

the grey region and they will begin to ingest those nutrients and grow, this will create

a nutrient gradient whereby more nutrients can be found inside the red region than

outside it. Thus, we assume for now that the nutrient has a similar form to the drug

profile. As this is a heuristic derivation, to makes matters simpler still we will assume

S = S(x ) ≈ Sc · e−(σ/d )1/2x .

Now, suppose that bacteria grow through time according to Michaelis-Menten-Monod

kinetics in the sense that their growth rate, G, can be written

G = G(S, A) = c ·
vS
κ + S

· f (A),

where f (A) is an A-dependent inhibition function which slows growth as a function of

intracellular drug concentration, A. Thus, following the dependencies in this simple
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model, G is a function of x . We are interested in where the maxima of this function,

G(x ), might occur and so we now compute ∂
∂x G(S, A). So, we first note that

∂

∂x
G(S, A) = f ′(A)A′

cvS
κ + S

+ f (A)
cvS′

κ + S
− f (A)S′

cvS
(κ + S)2

and as we are seeking maxima with respect to x of this quantity, we now determine

whether, or not, the latter expression has zeros. This occurs if and only if

0 = f ′(A)A′S + f (A)S′ − f (A)S′
S

κ + S
. (4.2)

Now, collating the information we have so far and using the fact that A represents

intracellular drug concentration, by relating this to extracellular drug concentration, we

have A0 = Ac · e−(σ/d )1/2x and, therefore,

A =
Ac · e−(σ/d )1/2x

1 + ϕ
ρ (α +

√
1 + β · g)

= A∗(g)
S
Sc

.

Thus, EQUATION 4.2 has a solution if and only if the following quadratic in S does too:

0 =
A∗(g)

Sc
·

f ′(A)
f (A)

· S(κ + S) + κ. (4.3)

We have reached a point beyond which we cannot easily continue without specifying

a form for the function f (A) which denotes the rate of decrease in growth rate as a

function of antibiotic. These are not generally well-understood75 and, in the absence of

any better model, we assume that we are working with a protein synthesis inhibitor that

binds to a pocket on the ribosome and that growth rate is proportional to the number of

drug-free ribosomes. If we impose mass-action kinetics onto the following standard

schema whereby antibiotic, A, binds to the ribosome, R, to form the inhibited complex,

[AR],

A +R
k1
−−⇀↽−−
k−1

[AR]

then one can readily derive
R

R + [AR]
=

1
1 + qA

as being the fraction of antibiotic-free ribosomes. We therefore set f (A) = 1/(1 + qA)

where q is a parameter. Given this set of assumptions, we deduce that equation

(EQUATION 4.3) is equivalent to

S · (κ + S) = qκ
(
qS +

Sc

A∗(g)

)
. (4.4)
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Equation (EQUATION 4.4) can be re-written with respect to antibiotic too, whereupon it

takes the form

A ·
(
κS−1

c A∗(g) + A
)
= qκ (1 + A) . (4.5)

It is clear from the linearity and quadratic nature of their respective left and right hand

side that equations (EQUATION 4.4) and (EQUATION 4.5) have solutions that depend

on g and, as illustrated in FIG. 4.7, the growth rate function G, defined above, can

have local maxima in space that are located in different places for different values of g.

In order words, an antibiotic can create a spatio-genomic pattern with a multi-bump

structure with respect to the drug gradient.
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FIGURE 4.7. A) The intersection of the line and the quadratic functions give the values of the environmental sugar

concentration, S, for which growth rate has a local extremum (a maximum). In this illustrate example, it is only in those

regions for which S lies between 2 and 3µg/ml (at the intersection of the red and black lines) for which growth rate can

have a local maximum and, then, it is only for a certain range of the number of additional gene copies. B) The analogous

plot to that given in A), but showing dependence on A rather than S. C) From A) and B) we deduce that, for the correct

values of A and S, there can be local spatial maxima with respect to growth rates whose location can change with the

number of copies of the resistance operon, acr.

Whether, or not, the potential for such a multi-bump structure is realised in practise

depends on many parameters within the model. For example, not only is an antibiotic

gradient required in the theory, a resource gradient has to be created by virtue of the

fact that the use of high antibiotic dosages kills so many cells that their resources are

‘released’. This also requires the presence of cells some distance from the drug source

in exactly the manner depicted in FIG. 4.1.

In that figure, the indicated ‘killing zone’ contains no bacterial cells but it does contain

antibiotic and glucose, and other nutrients, in the agar that will both diffuse outwards to

create the requisite gradients. The glucose, or any other sugar, gradient is created by

virtue of the greatest population densities being present furthest from the drug at the

start of the experiment.



S E L E C T I O N O N T H E D U P L I C AT I O N O F A C R A B - T O L C I N S PAT I A L LY D I S T R I B U T E D C U LT U R E S7 7

4.2.2 A theoretical genetics model of drug efflux. Having used a highly stylised

form of mathematical modelling to infer that a spatio-genomic pattern, in the form of a

bullseye, can appear in an antibiotic gradient because of a spatial nutrient gradient, as

illustrated in FIG. 4.7, we now turn to a mathematical model that is more explicit in its

ability to capture both the diffusing nature of different bacterial and chemical species

and the manner in which ecological dynamics mediate the potential existence of the

bullseye pattern.

To begin the specification of the model, we first define the radial diffusion operator,

written L, of a function f (r ), by

L(f ) =
∂2f
∂r2 +

1
r
∂f
∂r

.

This is defined for sufficiently smooth functions, f that satisfy f ′(0) = 0 and f ′(r0) = 0

where r0 > 0 is a positive constant that defines the radius of the circular domain in

which the diffusion processes are assumed to take place.

The following partial differential equations are now used to describe the spatial

dynamics of antibiotic inhibition to which we allude above:

∂

∂t
B0 = G0(S, a0)B0 + δ(1 +∆)B1 − δB0 + ρbL(B0), (4.6a)

∂

∂t
B1 = G1(S, a1)B1 − δ(1 +∆)B1 + δB0 + ρbL(B1), (4.6b)

∂

∂t
a0 = −ηa0 + B0ϕ(aext − a0) − B0

vp0

k + p0
a0 + δ(1 +∆)a1 − δa0 + ρaL(a0), (4.6c)

∂

∂t
a1 = −ηa1 + B1ϕ(aext − a1) − B1

vp1

k + p1
a1 − δ(1 +∆)a1 + δa0 + ρaL(a1), (4.6d)

∂

∂t
aext = −ηaext −

1∑
i=0

Biϕ(aext − ai ) −
1∑

i=0

Bi
vpi

k + pi
ai + ρeL(aext), (4.6e)

∂

∂t
S = −

vS
κ + S

1∑
i=0

Bi + ρuL(S), (4.6f)

subject to initial conditions as depicted in the schema of the protocol in FIG. 4.1 and

using no-flux (Neumann) boundary conditions so that no mass can spill out of the

simulated experimental agar plate at any time.

The model (EQUATION 4.6) captures the densities of two bacterial subpopulations

having density Bi (t ) at time t and expressing different numbers of copies of an efflux

gene or operon, where the i = 1 genotype has one more than the i = 0 genotype,
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where this gene codes a protein, or protein complex, that transports drug from the cell.

The intracellular drug concentrations for each subpopulation Bi is denoted by ai and is

measured per unit volume. The variable aext is the extracellular concentration of drug,

S denotes the concentration of a limiting carbon source, glucose in our experimental

systems.

Note that we assumed that mutations increasing the number of efflux pump-encoding

genes (B0 → B1) are less likely than those reducing the number of such genes

(B1 → B0). We have done this because the genomic region in which acr resides is

unstable in the sense that replication of the chromosome usually leads to just one

copy of the operon, and mother cells with a duplication are more likely to have two

‘daughter’ cells where one such daughter is without that duplication than to have two

daughters where both daughters carry it. In other words, there is strong physiological

purifying selection acting against the duplication mutation.

EQUATION 4.6a and b) describe the variation of bacterial density with respect to time.

The model assumes that this variation is caused by three phenomena, one for each

term of the equation. The first part of these equations describes the temporal variation

of bacterial density Bi due to the growth and division of bacteria with intracellular drug

concentration ai and in an environment with glucose concentration S. This phenomenon

is modelled as an exponential growth of the bacterial population, with cellular growth

rate

Gj (S, A) := cj ·
1

1 + pA
·

vS
k + S

,

where c is cell yield per glucose supplied, v and k are the maximal uptake rate and

half-saturation constants associated with Michaelis-Menten uptake of the single carbon

source S, and p is the reciprocal of the half-saturation constant due to the inhibition

from ribosome-antibiotic binding.

To represent the cost of expressing the efflux gene, we chose the yield of ci of each

sub-population, Bi , to satisfy the condition that their respective yields are ordered such

that the greater resistance genotype has a lower per-glucose cell yield, in other words

c1 < c0. We have assumed this because the chromosomal recombination events that

produce increases in the copy of the acr operon carry with them 8% of the entire set

of genes held in the chromosome. It is highly likely that the duplication will therefore
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come at a large ‘protein cost’ whereby many proteins will be over-expressed following

the duplication that have no selective advantage and yet energy in the form of carbon

and ATP is used in order to express those genes.

The second terms of EQUATION 4.6a and EQUATION 4.6b describe the variation

of Bi caused by down/up-regulation of the efflux gene in some of the bacteria. The

down-regulation of the efflux gene in some of the B1 cells make them become B0,

while B0 that up-regulate that gene become B1. The process of up-regulation of efflux

genes is assumed to occur randomly as a Poisson process at a certain rate δ per cell

per hour (the probability of expression and amplification of the gene per cell per unit

time are assumed, for simplicity, to be the same); similarly, the down-regulation is a

Poisson process with rate δ(1+∆), a value necessarily greater than δ. The final terms

of EQUATION 4.6a and EQUATION 4.6b give the variation of bi (t ) due the radial diffusion

of bi with rate ρb.

The process of up-regulation of efflux genes and both increases and decreases in the

copy number of the efflux genes are assumed to occur randomly as a Poisson process

at a certain rate δ per cell per hour (the probability of expression and amplification of

the gene per cell per unit time are assumed, for simplicity, to be the same).

We assume a functional form for pj that is monotone increasing and bounded

in j , controlled by a dimensionless constant g (the Michaelis-Menten function pj =

(j − 1)/(1 + g(j − 1))). Thus pj is also dimensionless and the quantity pj /(k + pj ) is

the probability of finding a pump in the state where it momentarily is bound to drug.

The rationale for this is that the polymerase transcription complex, assumed limited in

number, has to compete for each gene copy, thus providing a limit on the number of

efflux genes that can be simultaneously expressed.

The remaining variables in EQUATION 4.6 have the following meaning: ϕ is the

antibiotic diffusion rates across the cell membrane, v is the maximal antibiotic efflux

rates and k is half-saturation constants associated with efflux pump-antibiotic molecule

binding; V and K are the maximal uptake rate and half-saturation constant associated

with Michaelis-Menten uptake of the single carbon source, glucose S; Gj (S, A) is the

per hour growth rate of each cell detailed above; δ is the rate of amplification of the

efflux gene and δ(1 +∆), a value necessarily greater than δ, is the rate of decay of
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the efflux protein expressed by this gene. Finally, therefore, n − 1 is the maximum copy

number of the gene.

We solved EQUATION 4.6 numerically in python using the package odeint from

the SciPy library (www.scipy.org), which uses a linear multistep method (predictor-

corrector) or backward differentiation formula methods (the Gear methods) depending

on whether the problem is stiff or non-stiff. In the resulting prediction, shown in FIG. 4.8,

there is a clear difference in the nature of the spatio-genomic pattern depending on

whether the antibiotic efflux operon present in the chromosome can be duplicated, or

not. In the case where it cannot be duplicated, the spatial pattern is simple and consists

of a single ‘growth ring’ where bacterial densities have achieved a local optimum. This

is consistent with the analysis illustrated in FIG. 4.7, but it indicates that only one of the

predicted rings is realised using the diffusion model (EQUATION 4.6). FIG. 4.8 shows

that in order to achieve something like the bullseye pattern predicted by FIG. 4.7, we

must use a strain of bacterium that is able to duplicate the efflux operon, acr. These

provide testable experimental predictions that we address in the following section.

A) B)

FIGURE 4.8. Bullseye pattern formation due to the duplication of the acr operon as predicted by EQUATION 4.6. The

distance from the centre of the plate is represented on the x−axes, whereas on the y−axes we represent the nutrient

and drug concentrations, and bacterial density all in arbitrary units. The first ring (A top) is due to the increased bacterial

growth produced by the higher availability of nutrients (A, bottom plot in green) and extremely low concentrations of

drug (A bottom plot in red) in the boundary of the killing zone. More nutrients are available beyond this boundary, but

the concentrations of drug in these coordinates impede the growth of the bacterial cells. Only when the cells carry a

second copy of this operon (b1), translated into higher drug resistance, they are able to grow conforming an ‘inner rings’

of bacteria (B top) until the concentration of drug is too high for these resistant cells (B bottom).
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4.3 EXPERIMENTAL DATA

We now provide an analysis of the result of some bacterial growth experiments that,

we believe, show evidence of the bullseye pattern predicted in theory. Before we are

able to do this, we first present some mathematical measures of monotonicity that we

can apply to dose-response curves in order to provide a quantitative description of how

many rings a spatial dose-response pattern possesses.

4.3.1 Mathematical measures of (non-)monotonicity.
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FIGURE 4.9. A (relative) dose-response of three strains of E.coli with respect to the drug erythromycin using units of

optical density measured at 600nm. The acr knockout strain AG100-A is most sensitive to the drug, followed by TB108

which has a GFP physically fused to AcrB, followed by the strain MG1655. These antibiotic sensitivity tests, required for

experiments in CHAPTER 2, show that, overall, bacterial growth declines monotonically with increasing drug supply over

a 24h incubation period.

4.3.1.1 A First Numerical Measure of Non-Monotonicity: the Hill function. The basic

idea of an empirical antibiotic dose-response is encapsulated in FIG. 4.9. In it, an

exponential scale of increasing dosages is presented on the x-axis and the y-axis

contains data relating to the growth of the microorganism in question, in that case

optical density although other measures, such as growth rate, are also used in the
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antibiotic literature. It is common, as we have also done using the dose-response data

in FIG. 4.10(a), to assume that the data decreases monotonically with dose and to

numerically fit a Hill function to it. A Hill function takes the form

H (A) = H0 ·
K n

K n + An

where H0, K and n are three parameters to be determined as part of the data fit.

Using this fit, we can then estimate ICx values which are the dosages that give an x%

reduction in growth. In other words, ICx satisfies the relationship H (ICx ) = x
100 · H0,

thus the value of K is the IC50 of the data.

However, as FIG. 4.10B shows, Hill functions are not accurate descriptors of dose-

response data when one is interested in studying, as we are here, the effect selection

for resistance has at different dosages. For the latter figure shows the effect on the

Hill function-like data, gathered at 24h, after that E.coli data has been evolved in

the presence of erythromycin for a further 72h. The details of how this is done are

contained in the methods section, but it is clear from the figure that the monotone nature

of the data has changed; while there is short-term monotonicity of dose-response the

strength of selection at different dosages differs in such a way that monotonicity is not

preserved through adaptive and evolutionary changes. This observation is consistent

with the theory of SECTION 4.2.1 which shows that the maximal growth rates for

different genotypes can occur at different dosages and it is difference of these growth

rates between genotypes that determine the strength of selection for resistance.

We therefore require statistical methods for quantifying the the non-monotonicity

properties of dose-responses. One could, of course, use the goodness of fit, or poor-

ness of fit, of a Hill curve to dose-response data but this would not capture information

about the oscillatory properties of the dose response. Another approach is to perform

a best-monotone function fit to data, this could be achieved as follows.

4.3.1.2 A Second Numerical Measure of Non-Monotonicity: monotone data fitting.

Suppose that (u0, u1) ∈ H := R × L2((0, 1), R), we can define a monotonic function

M (u) ∈ W 1,1((0, 1), R) by

M (u0, u1)(x ) = u0 +

∫ x

0
u1(y )2dy .



S E L E C T I O N O N T H E D U P L I C AT I O N O F A C R A B - T O L C I N S PAT I A L LY D I S T R I B U T E D C U LT U R E S8 3

0 10 20 30 40 50

0

0.05

0.1
O

D
6
0
0

Erythromycin (µg/mL)

E. coli AG100, t = 24h

 

 

Data
IC

99
 ± 95% CI

Hill fit

10 20 30 40 50
Erythromycin (µg/mL)

E. coli AG100, t = 96h

FIGURE 4.10. An erythromycin dose-response curve of the E.coli AG100 strain with a Hill function fit super-imposed

onto the data. The latter is used to determine an IC99 within a certain confidence and define the classic mutant selection

window (grey). Drug dose is shown on a linear scale on the x-axis, optical density at 24h is shown on the y -axis. Data

from experiment described in CHAPTER 2 (FIG. 2.8).

Note that d
dx M (u0, u1) = u2

1 ≥ 0 almost everywhere and u2
1 is an element of L1 by

definition, justifying our claims on the properties of M.

Now, any dataset resulting from the experimental construction of a dose-response

curve gives rise to a function in W 1,1 through linear interpolation: if (xi , yi ) defines

a discrete set of points with 0 = x1 < x2 < ... < xN = 1 representing a series of

antibiotic dosages, we take the maximal dose to be xN = 1 which should be thought of

simply as a normalisation to unity, then the linear interpolant of the data points yi is

not only a continuous function, but it is in fact Lipschitz. It is therefore a member of the

space W 1,∞ which is contained within W 1,1. We can therefore apply the operator M to

experimental data.

Given a function d (·) ∈ W 1,1, supposed to represent an empirical dose response

dataset, we then define the best monotone approximation of d to be the element

(v0, v1) ∈ H that achieves

min
{
‖M (u0, u1) − d ‖L2 : (u0, u1) ∈ H, ‖M (u0, u1)‖∞ ≤ ‖d ‖∞

}
.

If we define r (u0, u1) := ‖M (u0, u1) − d ‖L2 then r is a sum and composition of convex

and linear functionals and operators and H is a Hilbert space on which infimising

sequences of M are bounded and from these observations one can prove that there

is a unique minimiser of r . Moreover, approximations to this can be readily computed



8 4 C H A P T E R I V

using a direct optimisation algorithm if d is the piecewise linear interpolant of a discrete

dataset. We call the value of r so obtained the measure of monotonicity of the function

or dataset d . It is not a fine measure of how the data oscillates, but it is a measure of

how ‘not monotone’ the data is.

In order to illustrate that the appearance of non-monotone dose-response profiles

with mid-dose local maxima can appear for a range of antibiotic drug molecules, we

applied this numerical measure of non-monotonicity to a video of E.coli AG100 growth

in the presence of kanamycin, see FIG. 4.12. The raw data is contained within a

video, a few frames of which are illustrated in FIG. 4.11. Consistent with the theories

developed earlier, this data exhibits a transition from monotone to non-monotone dose

response.

4.3.1.3 A Third Numerical Measure of Non-Monotonicity: the oscillation profile.

Although a metric with respect to monotonicity allows one to quantify the loss of

monotonicity in the dose-response profile through time, the above theoretical modelling

arguments have indicated that there is the opportunity, given the right environmental

conditions, for the presence of subtle structures within those nonlinear profiles. For

example, the non-monotonicity may be due to selection for certain copies of specific

drug resistance operons occurring at different drug dosages. In order to discern those

effects, which are predicted to be associated with multi-bump dose-response patterns,

we need a finer measure of these oscillation that we can apply to experimental data.

We therefore turn to the winding number of a given function, call the function f (t )

and let W (f ) denote its winding number about the number α. We consider f to be

normalised in two ways such that its domain is [0, 1] and, over this domain, inf(f ) = 0

and sup(f ) = 1. Its winding number is the value W (f , α) = w (f − α, f ′) where

w (x , y ) =
∫

xdy − ydx
x2 + y2 .

We say that the oscillation profile of f (t ), is the function of α defined by

O(f )(α) := W (f , α)

defined for all values of α, but potentially non-zero only for α ∈ ran(f ) where ran(f ) :=

(inf(f ), sup(f )) = (0, 1). Note that O(f )(α) = 0 for values of α outside that range,
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FIGURE 4.11. Frames from a video showing the transition from monotone to non-monotone dose response in the

inhibition of E.coli growth by kanamycin held in the central circular region. The top-most image was taken at time, t = 0h,

the bottom-most at t = 24h. The right column shows the mean dose-response determined from each image in the

left-hand column.
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FIGURE 4.12. The result of quantifying the transition in the dose-response data of FIG. 4.11. Plot A) shows how the data

exhibits a low degree of non-monotonicity at early on the in the experiment because the best monotone fit to data is a

good descriptor of the dose-response. Plot B) shows, at a later time, that the best monotone fit to data gives a relatively

poor fit. The right-hand images in A) and B) show the difference between filtered data and the best monotone fit. C)

Tracing the goodness of fit of the best monotone descriptor of the dose-response data shows deterioration through time,

indicative of a transition from monotone to non-monotone dose-response.

inside that range O(f ) only takes integer values. If we now define a sequence On :=∫
O(f )(α)<n O(f )(α)dα, with O0 = 0, and then set

Bn = On+1 −On,
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we call the latter the bumpiness spectrum of the function f .
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FIGURE 4.13. Measures of non-monotonicity (the oscillation profile and bumpiness measure) using the winding number

of some synthetic data. In each of (A-F) one can see, in the left column of the two images, a function representing a

particular dose-response pattern with zero drug at the x = 0 position and higher drug where x � 0. Plot (A) shows a

monotone dose-response which is reflected in the oscillation profile equation, shown in the middle figure of plot A), to

the zero function. Plots (B-F) have increasing degrees of non-monotonicity which is reflected in the oscillation profile in

the right-hand figure of each plot whereby the grey regions have increasing area. In each window, the right-most plot

corresponds to the bumpiness spectrum. Plot (F) accords with what one might expect from intuition: the bumpiness

spectrum of a cos(2π · x ) function, suitably normalised, is (0, 2, 0, ...) as it exhibits exactly two bumps. Plot (a) shows

that the bumpiness spectrum of a monotone function is the zero sequence (0, 0, ....).

In order to illustrate how the oscillation profile and the bumpiness spectrum might be

used to provide insight into the non-montone and multi-bump nature of empirical data,

we turn to FIG. 4.13. It shows synthetic examples of both monotone dose-repsonse

profiles and also non-monotone profiles. The figure also shows how the bumpiness

spectrum encapsulates the oscillatory character of those profiles in a manner that is

reminiscent of Fourier series coefficients.

4.3.2 Applying the bumpiness spectrum to laboratory spatial dose-response

data. We will now claim that the bumpiness spectrum so-defined can be used to

corroborate visual evidence for an emergent pattern exhibiting concentric rings of

increasing radius when E.coli grows in a spatial antibiotic gradient, as predicted by the

above theory.

First, the experimental data for this is a pair of images that we present in FIG.

4.14A and B. The left-hand image shows the optical density profile as a function of

the distance from the source of the drug at the centre of the plate whereby drug
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FIGURE 4.14. The left-hand image shows the mean optical density of two bacterial strains at 24h, AG100 and AG100-A,

the latter does not have a functional acr operon whereas the former does. The two right-hand images are false colour

representations of two different agar plates on which the respective strains were cultured.

dosage necessarily decreases towards the edge of the plate. Images taken from these

agar plates are shown in the right-hand image of the same figure whereby the white

semi-circular region is the drug source. This figure illustrates bacterial population

density at 24h and, to the eye, appears to exhibit bullseye ring patterns. This appears

consistent with the density images on the left, and although the acr knockout strain

has an essentially increasing density profile with decreasing drug, as may be expected,

the AG100 wild-type strain has an altogether different, and clearly non-monotone,

character.

To quantify this apparent non-monotonicity, effectively in order to produce numerical

measures of what the human eye perceives in FIG. 4.14B, we present FIG. 4.15. It

shows the oscillation profile of the population density data as a function of the spatial

coordinate for the two E.coli strains AG100 and AG100-A, FIG. 4.15 is an analysis of

data taken from FIG. 4.14A).

The population density data relating to AG100-A in the left-hand image of FIG.

4.15 looks almost monotone to the human eye and, indeed, FIG. 4.15(a) shows little

quantitative evidence of non-monotonicity. There is some evidence of a mutli-bump

profile to be seen in the bumpiness spectrum, but certainly not to the same extent as

that seen in the analogous data for strain AG100. This data can be seen in FIG. 4.15(b).

The latter data alluded to, for AG100, shows in quantitative terms what appears to

the human eye in FIG. 4.14 whereby distinct rings highlighting regions of growth can

be seen for this strain, consistent with predictions made earlier using mathematical

models.
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FIGURE 4.15. A) The left-most plot shows an analysis of the dose-response profile which constitutes the observed

mean optical density as a function of the spatial distance from the source of the drug (at position zero), and in this

case it is derived from strain AG100-A that lacks the efflux pump operon, acr. The left-hand plot shows (in red) the best

monotone function fit to data, filtered data (in blue) and the dash blue lines indicate the leftmost point where the optical

density has been established to be significantly above zero using a t-test with significance level p = 0.05. To the right

of this point we assume that optical density is significantly positive. The middle plot is the oscillation profile O(f )(α) for

this AG100-A data and the rightmost plot is the bumpiness spectrum that is derived from the oscillation profile. Neither

of the latter two measures are consistent with the presence of oscillations. B) This is the analogous analysis to A) but

now for the strain AG100 that possesses the acr operon.

4.4 CONCLUSIONS

The experiments described in CHAPTER 2 were carried out in 96-well microplates.

There, we set up a range of concentrations of antibiotic in which the concentration in

each well does not change. So here we created a 2D gradient of antibiotic, observing

that the non-monotone profile also occurs in a spatial context giving rise to bullseye

patterns. Using a fluorescence-tagged bacterial strain that allows us to track the relative

amount of AcrB, key component of the AcrAB-TolC efflux pump, we could also observe

that the relative abundance of this pump increases with higher dosages.

A key observation lies on the agreement between our empirical dataset and linear

diffusion theory, whereby an increase in antibiotic dose not involve a proportional

increase in bacterial killing or growth inhibition. To put this into context, the medical

orthodoxy in the clinic involves the use of aggressive chemotherapies for “radical

pathogen cure”.26 This practice is translated into higher dosages during a treatment
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with antibiotics. Yet, in a spatial context such as the human body, doubling the dose of

antibiotic therapies does not necessarily lead to doubling inhibition as we demonstrated

in this chapter.



V E F F E C T S O F T H E AVA I L A B I L I T Y O F

F U N C T I O N A L R I B O S O M E S O N T H E

R O B U S T N E S S O F M E TA B O L I C R AT E - Y I E L D

T R A D E - O F F S : I M P L I C AT I O N S F O R G R O W T H

R AT E I N H I B I T I N G A N T I B I O T I C S .

WE HAVE USED erythromycin, tetracycline and a tetracycline-derivative antibiotic,

doxycycline, during this PhD project. These drugs are known to target different

binding pockets in the bacterial ribosome and lead to the inhibition of protein synthe-

sis.99,100 The ribosome is genetically encoded by seven rrn operons in the bacterium

Escherichia coli 101,102 and each of these operons is able to form a fully functional

ribosome. In this chapter we asked how the concentration of functional ribosomes

within the cells affected growth rate, a question motivated by the use of antibiotics. The

quantification of antibiotic-free ribosomes can be technically demanding, so instead

of using antibiotics we used strains in which the number of rrn operons had been

manipulated to limit the maximum production of these proteins.

Using a set of strains derived from the wild-type E. coli MG1655, which contain

cells with from two to seven (the wild-type) rrn operons, here we observe a potential

‘paradoxical’ increase in both growth rate and yield (biomass produced per molecule of

carbon source) as the number of rrn operons is reduced. Our dataset also provides

empirical evidence that supports previous theoretical studies on metabolic ‘rate-yield’

trade-offs (RYTO),37,38,103 which turn out to be highly dependent on the environmental
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richness of a carbon source supplied to the bacterial cells. Based on the evidence pre-

sented in this chapter, we hypothesised that our observations could also be mediated

by the presence of ribosome-binding antibiotics but this particular hypothesis has not

been tested.

5.1 QUESTION: CAN ANTIBIOTICS MEDIATE METABOLIC TRADE-OFFS, LIKE THE RATE-YIELD

TRADE-OFF?

Ribosomes are essential for the synthesis of proteins within the bacterial cell104 and this

process is known to be coupled to bacterial growth rate.39 A reduction in the number of

functional ribosomes, for example due to the presence of a ribosome-binding antibiotic,

translates into lower bacterial growth rates.41 However, while this relationship seems

self-evident, the situation is not quite so clearcut because there can be an optimal

number of ribosomal operons in very simple growth conditions supported by minimal

media.

The notion of ‘trade-offs’ in evolutionary biology stem from an idea that two beneficial

traits cannot both be improved simultaneously during evolution.105,106 Under normal

circumstances, the idea is that one previously-optimised trait can only improve at the

expense of the other; the traits are therefore said to antagonise each other. As an

example of this, cell growth rate is often compared with yield, defined as the biomass

produced per unit of carbon source supplied. Based on thermodynamic constraints,107

a theoretical study has suggested the existence of a metabolic trade-off between

growth rate and cell yield38 supported by the following rationale.107

Adenosine triphosphate (ATP) is the most common energy ‘currency’ in the cell and

it is produced during the biological oxidation of a carbon source. If this carbon source

is glucose, oxidised using the glycolitic pathway, we can describe the process as the

chemical reaction

{glucose} + 2ADP + 2P 
 {2lactate} + [2ATP]

if glucose is metabolised in the absence of oxygen, or as

{6O2 + glucose} + [36ADP + 36P] 
 {6CO2 + 6H2O} + [36ATP]

if glucose is metabolised in the presence of oxygen. The driver and driven reactions
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depicted in A) may change if part of the ATP synthesised is used to increase the production rate. This investment of ATP

comes at a cost of lower maximum yields.38

are indicated with curly and squared brackets respectively. In order for these reaction

to happen, the change in free energy (∆G) for the driver reaction is ∆G0 < 0, whereas

that for the driven reaction is ∆G1 > 0. The efficiency of the reaction is therefore

µ = −∆G1
∆G0

and the production of ATP JATP = ∆G1υ, where υ denotes the reaction

speed. If the affinity of the reactions is defined as A = −(∆G0 +∆G1), and finite time

thermodynamics (FTT) and near-equilibrium irreversible thermodynamics (NEIT) are

used as described in REFERENCE 107, JATP can be redefined as the parabolic function

JATP = r · η · (ηmax − η).

In this parabola η denotes the yield of ATP production per glucose supplied to the

pathway and r the maximum rate of ATP production (FIG. 5.1A).37,107 Therefore any

investment of ATP towards the increase of the production rate necessarily leads to

lower ATP yields (FIG. 5.1B), hence the trade-off.37 This rationale has been extended

to the theory of metabolic pathways. For example the fermentation of glucose involves

high growth rates at the cost of lower yields, whereas the oxidative phosphorylation of

the glucose allows higher yields at the expense of lower growth rates.38 The study of a

trade off between the rate of ATP production and yield therefore gave rise to the study

of a trade off between cell growth rate and yield.

Given the relationship between growth rate and the number of functional ribosomes,

we asked whether or not is it possible that ribosome-binding antibiotics can mediate
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a metabolic trade-off between bacterial growth rate and yield. Our hypothesis is that

these type of antibiotics could lead to slowly dividing, and yet more efficient cells. Data

supporting the previous theories on this topic, however, is scarce.42 First we needed to

validate the hypothesis in the laboratory.

5.2 DIFFERENCES IN RIBOSOMAL CONTENT, MEDIATED BY THE rrn OPERONS,

SHAPE FITNESS LANDSCAPE AND ROBUSTNESS OF METABOLIC RATE-YIELD TRADE-OFF

PROFILES

To quantify metabolic rate-yield trade-offs (RYTOs) we used the derivative strains of E.

coli, described in TABLE 5.1, in cultures grown for 24h. These bacteria were grown in

minimal media with increasing concentrations of glucose, ranging from 0 to 3mg/mL

(0-0.3% w/v), complemented with equally increasing concentration of casamino acids,

from 0 to 0.75mg/mL.

TABLE 5.1. Strains of Escherichia coli used to perform the experiments described in this chapter. All strains from

REFERENCE 41. Number of rrn operons removed from the wild-type strain MG1655 indicated by ∆.

Strain Genotype

E. coli MG1655 K-12 F- λ− ilvF0 rfb-50 rph-1

E. coli ∆1 MG1655 ∆rrnE

E. coli ∆2 MG1655 ∆rrnGB

E. coli ∆3 MG1655 ∆rrnGBA

E. coli ∆4 MG1655 ∆rrnGADE

E. coli ∆5 MG1655 ∆rrnGADEH, ptRNA67

During a 24h period, we measured the optical density at 600nm (OD600) at a

frequency of 20min per readout. We therefore designed an algorithm in Matlab to fit

the mathematical models to cell growth data of the following form:

OD(t ) = a + bt , with r = b/a, (5.1a)

OD(t ) = a + bert , (5.1b)

OD(t ) = a +
K

1 + be−rt , (5.1c)

where t denotes the time in hours, r the per capita growth rate, K the carrying capacity
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of the culture, a is an estimate of the optical density of the culture at t = 0 and

b a phenomenological coefficient. We used these models because they describe

three possible growth curves that we could observe in the experiment. For example

EQUATION 5.1(a) describes the case in which OD600 does not vary through time due

to the lack of cell growth, or when this is slow enough to be undetectable by our

plate-reader device. The other two models describe the case in which cell growth can

be detected, but it describes different curves. If the growth is slow enough and the

nutrients supplied are not depleted during a 24h period, we expect an exponential-like

growth curve, best described by EQUATION 5.1(b). But if the nutrients are depleted

during this period, after an exponential growth phase, bacteria enter a maintenance

mode in which culture density remains at a stationary level. This case is best described

by EQUATION 5.1(c).

We thus need to select objectively one of these model to extract meaningful informa-

tion from our datasets, so we designed an algorithm to score each model using the

corrected ‘Akaike Information Criterion’ (AICc). The Matlab routines fitlm and fitnlm

provide information about the AICc, where

AIC := N · log *
,
det *

,

1
N

N∑
1

ε(t , θN )(ε(t , θN ))T +
-

+
-
+ 2np +N · (ny · (log(2π) + 1))

and

AICc := AIC + 2np ·
np + 1

N − np − 1
.

Here N denotes the number of values in the estimation dataset, ε(t ) a ny − by − 1

vector of prediction errors, θN the estimated parameters, np the number of estimated

parameters, and ny the number of model outputs. The best model was then defined

as that with the lowest AICc.108 Next, we extracted the corresponding information for

per capita growth rate (r ) and carrying capacity (K ). In cultures grown with 0mg/mL of

glucose we defined, for convenience, that K would be the optical density measured

after the 24h incubation period. Finally we related our dataset for growth rate and

carrying capacity to the concentration of glucose.

FIG. 5.2 shows the relationship between carrying capacity and glucose supplied

to the media. This data is worthy of mention because it contains information on the

rate-yield trade off (the RYTO) we were seeking. The carrying capacity is a measure
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FIGURE 5.2. A) Non-linear, monotonic increase in the carrying capacity, K , shown on the y -axis, as a function of

the concentration glucose of glucose supplied to the media, shown on the x-axis. B) Landscape of possible carrying

capacities as a function of both glucose supplied and copies of the rrn operon. Contour lines show the combination of

glucose and number of rrn operons with identical K .

of the maximal cell density supported by each concentration of glucose. The ratio

between this capacity and glucose thus defines the number of cells produced per unit

of glucose, or yield. A constant yield would mean that the number of cells produced

by unit of glucose does not depend on the latter. If this were the case a straight line

would a good descriptor of our data in FIG. 5.2, but it was not. In fact our data was best

described by the Monod model in which the rate of change in cell density (dB/dt) is

defined as
dB
dt
= B

rmaxC
km +C

where B denotes bacterial cell density, rmax the maximum per capita growth rate,

C the concentration of carbon and km the associated half-saturation constant.109,110

Consequently, we observed that cells grown at higher glucose concentrations had

lower yields. Defining explicitly the yield as the ratio between K and glucose, FIG. 5.3

displays the dependence of yield on glucose concentration for all the strains used. The

maximum yield was achieved with the lowest concentrations of glucose and vice versa.

This transition defined a hyperbolic profile where the lower boundary set a minimum,

limiting yield. FIGS. 5.2 and 5.3 highlight the consistency of the profiles generated

irrespective of the number of rrn operons carried by the different strains. The number

of these operons, however, had subtle effects on how yield changes as a function

of the glucose supplied. We observed that strains with fewer copies of the operons
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normally had higher yields and carrying capacities (FIG. 5.4). The same phenomenon

was reported in the literature as a paradox,111 but it is consistent with the idea that an

excess of synthesis of ribosomes sets a metabolic burden in environment with little

nutrients.112,113 The phenomenon is still poorly understood.

Next we analysed the changes in per capita growth rate as a function of glucose

concentration and observed a concentration at which this growth rate was maximised

(FIG. 5.5). There was a range of concentrations of glucose in which this measure

of growth rate increased with the glucose supplied, but if the glucose was further

increased the growth rate declined, resulting in the aforementioned optimum glucose

supply. We demonstrated that this is consequence of a RYTO by fitting to our data the

model42

Growth rate(S) = c(S) ·
VmaxS
km + S

where the conversion factor from sugar, S, which is glucose, to biomass, c(S), is given

by

c(S) = clo
S

1 + pS
+ chi

1
1 + pS

.

Here p is a model parameter that controls the rate of decrease in cell yield, c(S), as a

function of increases in sugar, S. The parameters clo and chi are the lowest and highest

yields, respectively, that the model can achieve. In order to turn this yield model into a

growth rate, the value of c(S) is multiplied by an uptake rate of sugar into the cell and

this is taken to be of the standard Monod form, whereby Vmax is the maximal uptake

rate and km is the half-saturation constant associated with that uptake response.

This model of the dependence of yield on glucose was also used to fit the yield data

shown in FIG. 5.3. From FIGS. 5.3 and 5.5 it is clear that the form we presented for

c(S) was consistent with our data for both growth rate and yield. Note that c(S) is

one possible theoretical form of a RYTO and it was derived elsewhere.42 The form of

c(S) is a monotonic function that can either increase or decrease and it describes a

within-strain RYTO in the case whereby it is an decreasing function. FIG. 5.3 shows that

the data was consistent with the decreasing form of this model. Further analysis of our

data also revealed the existence of an optimal number of rrn operons that maximised

both yield and per capita growth rate (FIGS. 5.3B and 5.5B). To highlight this we used

a linear model for the yield (FIG. 5.4) and a non-mechanistic quadratic model for



9 8 C H A P T E R V

A) B)

0 0.5 1 1.5 2 2.5 3
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Y
ie

ld
 (

O
D

 p
e
r 

m
g
 o

f 
g
lu

c
o
s
e
)

Glucose (mg/mL)

R
2
 = 0.91

 

 

WT (7 x rrn)

∆1 (6 x rrn)

∆2 (5 x rrn)

∆3 (4 x rrn)

∆4 (3 x rrn)

∆5 (2 x rrn)

Prediction

0 0.5 1 1.5 2 2.5 3
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
∆1

∆4

∆5

Y
ie

ld
 (

O
D

 p
e
r 

m
g
 o

f 
g
lu

c
o
s
e
)

Glucose (mg/mL)

 

 

WT (7 x rrn)

∆1 (6 x rrn)

∆2 (5 x rrn)

∆3 (4 x rrn)

∆4 (3 x rrn)

∆5 (2 x rrn)

Prediction

C)

234567

0
1

2
3

0

0.1

0.2

0.3

rrn operons
Glucose (mg/mL)

Y
ie

ld
 (

O
D

 ⋅
 m

g
−

1
)

FIGURE 5.3. A) Representation of yield, measured as the ratio between K and glucose supplied, on the y -axis and

the glucose supplied to the media, on the x-axis. The decrease in yield as a function of glucose supplied describes a

hyperbola that is consistent with formerly hypothesised RYTOs based on a branched pathway, each branch leading to

different yields.42,114 B) Upon variation in environmental conditions, here in glucose supplied, the relative maximum

yield (green, strains in black) is achieved by strains with different number of rrn operons. Per-strain hyperbola, as

formalised in p. 97, shown in grey. C) Landscape of possible yields achieved as a function of the glucose supplied and

the number of rrn operons. Contour lines show the combination of glucose and number of rrn operons with identical

yield.

per capita growth rate (FIG. 5.6). The dataset presented in FIG. 5.6 resembles the

prediction of a theory115 in which bacterial growth rate depends on the abundance of
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FIGURE 5.5. A) Change in per capita growth rate, shown on the y -axis, as a function of the glucose supplied to the media,

on the x-axis. We modified Monod’s growth model (in black, see p. 97) to include, explicitly, the glucose-dependence

property of the yield. We observed an absolute, overall optimum per capita growth rate at ≈0.5 mg/mL of glucose.

B) Upon variation in environmental conditions, here in glucose supplied, the relative maximum per capita growth rate

(green, strains in black) is achieved by strains with different number of rrn operons. Per-strain hyperbola, as formalised

in p. 97, shown in grey. C) Landscape of possible per capita growth rates achieved as a function of the glucose supplied

and the number of rrn operons. Contour lines show the combination of glucose and number of rrn operons with identical

yield.
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FIGURE 5.6. Representation of the change in per capita growth rate, shown on the y -axis, as a function of the number

of rrn operons. Each subplot shows this relationship when different concentrations of glucose is supplied of the media.

We compared whether the change in per capita growth rate is linear (light grey) or non-linear (black). We tested the

non-linearity of the data by fitting the quadratic model r (G) = a + b ·G + b ·G2 to the data. Here r denotes per capita

growth rate, G the concentration of glucose, a per capita growth rate when G = 0, and b and c phenomenological

coefficients.
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line represents the predicted, overall RYTO profile based on the predictions for yield (FIG. 5.3A) and per capita growth

rate (FIG. 5.5A). Right) When we compare the data in A) with the concentration of glucose, we observe RYTO at low

glucose concentrations, whereas at higher concentrations the RYTO turns into a rate-yield trade down (RYTD).

ribosomes as it follows:

Growth rate(S) =


φmax
R − φmin

R

1/γ + 1/ν



S
Km + S

Where the growth rate is a parabolic function of the ribosomal fraction (φR), controlled

by us through the rrn operons, provided the translation efficiency (γ) and yield (ν) are

constant. The differences between FIG. 5.6 and this theory may lie in the fact that

yield can be a function of the abundance of resources, as we will demonstrate in this

chapter (FIG. 5.3).

Following this analysis we were able to compare changes in per capita growth rate

as a function of the yield (FIG. 5.7). Overall, the data described a parabolic profile

which resembled the expectations from the theories introduced at the beginning of

this chapter (FIG. 5.1A). Including the information about glucose supply in each case,

we distinguished three phases in our RYTO dataset also predicted by the models.

First there was a rate-yield trade-off (RYTO) with very low concentrations of glucose,

whereby increases in yield necessarily involved a decrease in per capita growth rate,

and vice versa. On the other hand, a decline in per capita growth rate was coupled

with a decrease in yield with high glucose supply. This therefore described a rate-

yield trade-down (RYTD). Growth rate and yield could also be uncoupled when the

concentration of glucose was in between the previous extreme cases.
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FIGURE 5.8. Relationship between the per capita growth rate, measured as doublings per hour on the y -axis, and

yield, defined as cell density in OD units generated per mg of glucose after 24h of growth, on the x-axis. Each subplot

represents this relationship for every strain, and hereby demonstrates the robustness of this RYTO.

The shape of the general RYTO profile was maintained in all the strains used except

for the one with the fewest ribosomal RNA operons, ∆5, this showed the remarkable

robustness of the relationship between growth rate and yield (FIG. 5.8). We later

asked whether or not the differences in yield and per capita growth rate due to loss

of rrn operons could lead to between-strains RYTOs. FIG. 5.9 highlights the difficulty

of studying between-strain trade-offs. Whilst we have a good understanding of the

within-strain RYTO/RYTD, it was difficult to discern the existence of a self-consistent

set of trade-offs, or trade-downs, from the data presented in FIG. 5.9. The statements

that can be made from linear regression analyses, as to the presence or absence of a

between-strain trade-off, were sensitive to the algorithms used due to the presence of

potential outliers.

Moreover, there is no theory of how a rate-yield trade-off would be mediated by

the number of ribosomal RNA operons. As a consequence, as of yet we have no

understanding of what mechanisms support the data presented in FIG. 5.9.
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FIGURE 5.9. Relationship between the per capita growth rate, measured as doublings per hour on the y -axis, and

yield, defined as cell density in OD units generated per mg of glucose after 24h of growth, on the x-axis. Each subplot

represents this relationship as a function of the number of rrn operons and glucose supply.
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5.3 ROBUSTNESS OF THE RYTO TO DIFFERENT MEASUREMENTS OF GROWTH RATE

Whilst the definition of cell yield is straightforward, the definition for growth rate can

be subject to some interpretation. The above analysis is based on per capita growth

rates, defined as the number of estimated cell divisions per unit of time per capita.

This estimation assumes a density-dependent growth rate, but we could also have

quantified the growth rate in ecological terms using finite difference approximations

applied directly to OD data. These approximations quantify differences in optical density

as a function of time, using a mathematical model-free estimate of the culture growth

rate. We therefore note the rate of change in OD as a function of time, written OD′(t ),

as being

OD′(t ) =
ODt+∆t −ODt

∆t

where ∆t is the read frequency in hours. The maximum growth rate of the culture, rmax ,

is defined as

rmax = max
0≤t≤24h

OD′(t ).

The parameter rmax is expressed as the maximum increase in OD600 units per hour.

In FIG. 5.5 we quantified how the per capita growth rate parameter, taken from the

logistic model in EQUATION 5.1c, has an absolute maximum at a specific concentration

of glucose and, if the glucose was further increased, the growth rate declined. We

demonstrated that this observation is consistent with a non-constant yield. However, if

we quantify the growth rate differently (rmax ) the resulting dataset is no longer consistent

with a non-constant yield. In fact, it is consistent with Monod’s original growth model,

which assumes a constant yield (FIG. 5.10). The relationship of other parameters with

the abundance of rrn operons also applies here and fewer operons lead to higher rmax .

Consequently, the relationship between rmax and yield did not resemble a parabola,

as shown in FIG. 5.7. We did observe a trade-off between rmax and yield, but the profile

generated had different properties, the most significant being the lack of trade-down

between rate and yield when the glucose supplied was high. Thus, this profile is not

compatible with the theories introduced in this chapter (FIG. 5.1). It is, nevertheless,

compatible with the analogue from physics known as ‘maximum power transfer theo-

rem’. The use of this theorem in biology defined the ‘maximum power principle’,116,117
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which proposes that open, self-organised systems tend to operate with an efficiency

that maximises the useful power or biomass production.37,117
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FIGURE 5.10. A) Culture growth rate, rmax , shown on the y -axis as a function of glucose supply, shown on the x-axis.

The black line represents the overall growth rate as predicted by Monod’s growth, as opposed to that predicted per strain,

represented in B).

If we consider the yield (y) to be a proxy for growth efficiency, the production of

biomass (P) in our cultures can be estimated as P = rmax · y .37,117 Thus the production

of biomass reflects the number of cells produced by each cell per hour, per unit of

glucose. The resulting dataset reflects the existence of a production-efficiency trade-off

(PETO, FIG. 5.11). The profile described by the PETO contained all the properties

that we previously described for a RYTO (FIG. 5.7): three different phases leading to a

trade-off, trade-down, independence of power and yield as a function of the glucose

supplied. Also, we observed the effect of the abundance of ribosomal RNA whereby

fewer rrn operons led to higher production of biomass, likely due to a reduction of

the metabolic burden caused by the synthesis of ribosomal proteins in conditions of

low nutrients.112,113 We do not have a theory to explain the existence of a PETO, so

we used a non-mechanistic quadratic model to detect whether or not the relationship

between biomass production and yield conforms a parabola.
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FIGURE 5.11. A) Relationship between the population growth rate, rmax , shown on the y -axis, and yield on the x-axis.

The size of the data points is indicative of the number of rrn operons, from seven copies in the wild-type strain MG1655

(labelled WT) to just two copies in the strain with five deletions, ∆5.Relationship between power output,37 shown on

the y -axis, and yield, on the x-axis. The black line represents the quadratic model P (Y ) = a+ b · Y + b · Y 2, P denoting

the power output, Y the yield, a the growth rate when y = 0, and b and c phenomenological coefficients. The 95%

confidence for a is (-0.003, 0.0004), for b (0.042, 0.086), and for c (-0.220, -0.110). The trend is analogous to that

observed in FIG. 5.7.

5.4 CONTRIBUTION OF EACH rrn OPERON TO THE YIELD

The wild-type strain of E. coli used in this chapter, MG1655, contained seven rrn

operons.101,102 Until now the yield has been defined in absolute terms as OD600 units

produced per mg of glucose. However, this definition does not account for differences

in the abundance of ribosomal RNA operons. Now, we defined the yield per operon, or

relative yield, as the ratio between the yield and the number of rrn operons present in

each strain.

If FIG. 5.3 showed the existence of a negative correlation between ribosomal RNA

abundance and absolute yield, this correlation was maintained when yield per operon

was used (FIG. 5.12). Also, the use of relative yield to quantify RYTOs resulted in the

aggregation of the data in two separate clusters which are characterised by the number

of rrn operons (FIG. 5.13). Strains with three to seven operons were contained within

one cluster, whereas the strain with two operons was contained in the other. These

clusters are also characterised by different combinations of per capita growth rate and

relative yield. The first cluster contained strains with lower relative yields than those

in the second cluster, which contained strains with lower per capita growth rates. We

observed no change in the existence, or lack of thereof, between-strains RYTOs (FIG.
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FIGURE 5.12. Relative yield, defined as OD units generated per mg of glucose per rrn operon, is shown on the y -axis

as a function of the glucose supplied to the media, on the x-axis. Lines represent the best model fit: exponential (light

grey) or sigmoidal (dark grey), chosen depending on the corrected Akaike Information Criterion (AICc).

5.14).

For completeness we repeated the analysis of the RYTOs using rmax to estimate

the growth rate and relative yield (FIG. 5.15). The use of relative yield did not produce

qualitative changes in the profiles observed previously.
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FIGURE 5.13. Shape of the RYTO profile when relative yields are taken into account. The strains containing seven to

three rrn are clustered within a group with high per capita growth rate but low relative yield, whereas the strain with

two rrn operons, ∆5, forms a second cluster characterised by lower per capita growth rates and higher yields. Black

lines correspond to the estimation from a quadratic model. Regression for the wild-type (WT): R2 = 0.56, F-statistic

versus constant model: 11.7, p = 0.000562. Regression for ∆5: R2 = 0.27 , F-statistic versus constant model: 3.44,

p = 0.0541.
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FIGURE 5.14. Effect of the number of rrn operons on the metabolic rate-yield trade-off when relative yield is taken

into account. Each plot represents this effect when different concentration of glucose is supplied to the media. In each

subplot, per capita growth rate is represented on the y -axis, whereas the yield, defined as cell density in OD units

generated per mg of glucose after 24h of growth, is represented on the x-axis.
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FIGURE 5.15. Left) Relationship between the population growth rate, measured as the maximum increment in OD per

hour, shown on the y -axis, and relative yield, defined as cell density in OD units generated per mg of glucose after 24h

of growth, on the x-axis. Right) Relationship between biomass production,37 shown on the y -axis, and relative yield,

on the x-axis.

FIGURE 5.16
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5.5 CONCLUSIONS

During this chapter we analysed the relationship existing between growth rate and

biomass yield. We observed that these traits can be positively or negatively correlated

depending on the abundance of a carbon source, like glucose, generating a parabolic

profile. The phenomenon is due to the existence of branched metabolic pathways

whereby a carbon source, glucose, is processed with different efficiencies that we

quantified as culture OD per mg of glucose supplied (yield).

When the efficient branch of the pathway is being used we found that growth

rate and yield are negatively correlated, whereas if the inefficient pathway is being

used these traits are positively correlated. This means that if one of the traits is

manipulated, say by the addition of an growth-inhibitor antibiotic, the yield could

change accordingly depending on whether the cells are using the efficient or inefficient

pathway. In CHAPTER 2, for example, we observed how the rate of production of AcrB,

component of the multi-drug efflux pump AcrAB-TolC, is reduced by a protein synthesis

inhibitor antibiotic (FIG. 2.15). However, the total amount of protein produced per cell

(therefore total efflux pumps per cell) was higher until the concentration of the antibiotic

was too high.

Finally we found this phenomenon to be robust not only to artificial changes in

growth rate and yield, through the manipulation of the ribosomal RNA rrn copy number,

but also to how growth is measured. Whether is per capita growth rate or biomass

production, the parabola is maintained.
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6.1 EVOLUTIONARY LANDSCAPES

One of the central themes in evolutionary biology has been the notion of an evolutionary

landscape118. Such landscapes are based on the idea that absolute fitness can be

represented, typically on a Cartesian z-axis, as a function of two constraining traits

on the x- and y-axes. In this thesis we provide data for two types of evolutionary

landscapes.

In CHAPTER 2 we provided datasets that showed the adaptive strength of the

bacterium Escherichia coli growing in the presence of the antibiotic erythromycin

(FIGURES 2.21 to 2.19). Motivated by a theoretical model, the sensitivity to erythromycin

was quantified over a 24h incubation period and we demonstrated that such sensitivities

can change through time. This change can have different causes but in our case this

is determined by the efflux pump AcrAB-TolC. Originally used for the evacuation of

metabolic byproducts, this pump is recycled by the cell very rapidly to remove molecules

of antibiotic.

The representation of the rate of adaptation (α) in FIGURES 2.24 to 2.26 highlighted

an evolutionary landscape in which very specific concentrations of erythromycin were

able to maximise selection on this efflux pump (evolutionary ‘hotspot’) but other concen-

trations were able to diminish the cell’s capacity to adapt (evolutionary ‘coldspot’). None

of these spots were related to the minimum inhibitory concentration (MIC) as previously

suggested elsewhere,17,18. Moreover, we also saw that the strength of selection on

resistance can be a non-linear and non-monotone function of the dose.
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We also presented another type of landscape. In CHAPTER 5 we showed a fitness

landscape in which we could read the dependence of fitness, as per capita growth

rate, not only on a mutable genetic element but also on the environment (FIG. 5.5C).

The data indicated that different environments had different fitness landscapes associ-

ated with them. It also indicated that a different genotype could be optimal for each

environment regardless of how optimality is interpreted, whether with respect to yield

(FIG. 5.3B) or growth rate (FIG. 5.5B). If we imagine selection, or indeed some form of

historical selection, acting upon copy number variants of the rrn operon, we can use

this representation of our data to tentatively hypothesise a reason why bacteria might

have different numbers of these operons.

According to our data, this number would depend on the glucose concentration of

the environment. For example, FIG. 5.3B predicted that strains ∆1 and ∆4 had the

optimal number of operons in environments where yield is a good predictor of fitness,

depending on the availability of carbon in the environment. On the other hand, FIG.

5.5B showed that ∆3,∆4 and ∆ had the optimal number of operons for growth rate

depending on the availability of carbon in the environment.

We further hypothesised that in environments whereby extracellular resources like

glucose fluctuate in a seasonal manner, the resulting fluctuating selection might act

to support a polymorphism on the number of operons which may allow, for example,

∆3,∆4 and ∆5 to be stably maintained in the same polymorphic community. We have

not, however, tested this prediction.

6.2 ROBUSTNESS OF ANTIBIOTIC SENSITIVITY TESTS

Considering the capacity of bacterial cells to adapt, it seems hard to believe that the

optimal control of such a dynamic system can be achieved by constant, non-responsive

control strategies such as those suggested by ASTs.11 For example, the optimal

inhibiting concentration of erythromycin for the wild-type strain AG100 was ∼37µg/mL,

as we described in CHAPTER 2. This concentration, optimal for a 24h incubation

period, became sub-optimal after three days of treatment due to the duplication and

selection of the multi-drug efflux pump AcrAB-TolC. Although ours was a laboratory

setup, similar changes in sensitivity during antibiotic therapies has also been reported
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in the clinic.119–121

But time was not the only factor altering the outcome of ASTs. We also demonstrated

the role of competitors for resources and how these may sensitise, or otherwise,

bacterial cells. The result of this ‘sensitising’ process would depend on the competitor’s

own sensitivity to the antibiotic. When two competing bacteria were equally sensitive to

an antibiotic they could appear more resistant to the drug when they are grown together

(FIG. 3.2). However, if each of them are differentially drug-sensitive competitors, the

most sensitive competitor appears to be additionally sensitised (FIGURES 3.1, 3.9, and

3.10). For this latter case, the effect is maintained through time (FIGURES 3.15 and

3.12).

We therefore hypothesise, tentatively, that appropriately engineered non-pathogenic

cells, merely acting as resource thieves, or ‘niche occupiers’, might be used to sensitise

pathogenic cells in combination with antibiotics in vivo.

6.3 IN SPATIALLY DISTRIBUTED CULTURES, THE NON-LINEAR SELECTION ON ACRAB-TOLC

IS MANIFESTED AS BULLSEYE PATTERNS

We have used a prediction from the results of several theoretical models to show that

bacterial growth in an antibiotic gradient can result in a visible spatial pattern, moreover

this pattern can be used to reject the hypothesis that more antibiotic necessarily

equates to less bacterial population growth also in a spatial context.

The laboratory model system we have used is not based on the occurrence of single

nucleotide polymorphisms (SNPs) as the drivers of the evolutionary processes that

produce this spatial pattern, but rather a drug efflux operon that is rapidly duplicated by

recombination in the face of antibiotic stresses is the mechanism of resistance selected

for by evolution. It is selection on this operon that creates the requisite spatial pattern.

Moreover, we have introduced a series of quantitative measures of monotonicity to

help discern in quantitative terms what is apparent to the human eye in images of

bacterial growth on agar plates in antibiotic gradients.

Our results are not directly relevant to the interpretation of antibiograms in a clinical

context, although we have shown that an increase in drug dosage increases the size

of the zone of bacterial growth inhibition according to a square root law, consistent
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with diffusion theoretic models of bacterial killing. However, our observations are

key to understanding conditions for which an increase in drug concentration will not

necessarily reduce bacterial densities. After all, all practical uses of antibiotics create

decaying dose profiles as one moves further way from the point source of an antibiotic

drug. So, while it may be thought that one can mitigate, or even obviate, the process

of selection for drug resistance by always passing to ever greater dosages,1,122 those

dosages must eventually decay to zero in regions of treatment located not too far from

the source whereby one might be able to observe the effects we allude to in our study.



S U P P L E M E N TA RY D ATA

I SUPPLEMENTARY CHAPTER 2

I.1 Model fit. This chapter includes the plots that we used to visually validate the

fitting process described in SECTION 2.7. We denoted the readings as a function of

time as R(t ), and fitted the following models to our data using a routine coded using

Matlab (see below)

R(t ) = R0 + bt , with r = b/R0, (S.1a)

R(t ) = R0 + brt , (S.1b)

R(t ) = R0 +
K

1 + b · e−rt . (S.1c)

Here R0 denotes the readings at the beginning of the experiment, r per capita growth

rate, K the carrying capacity, and b a phenomenological coefficient. We considered

the best model to be that with the lowest corrected Akaike Information Criterion (AICc).

FIGURES S.1 to S.8 show a comparison between raw data, and prediction from the

best model.

I.2 Routine code and raw data.

I.2.1 Calculate growth rates.

1 function [AUC, Beta, YPred] = FitData(Data, B)

2 % Beta(Blank, coeff, r, r_diff, G, Data(24h));

3 warning(’off’);

4 i = length(Data);

5 x = 24*(i:(n-1))/(n-1); % This transform time to h.

6 y = Data;
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7

8 %% Fit models!

9 try

10 % Constant model

11 mdl_C = fitlm(x,y); % y = blank + r*t (r DEPENDS ON UNITS OF Y-AXIS!)

12 param_C = abs(mdl_C.Coefficients.Estimate);

13 AIC_C = mdl_C.ModelCriterion.AICc;

14 Rsq_C = mdl_C.Rsquared.Adjusted;

15 YPred_C = mdl_C.Fitted;

16 % Compute duplication time as r/blank = 1/t

17 param_C(3) = str2num(sprintf(’%.3f’, param_C(2))) / str2num(sprintf(’%.3f’, param_C(1))); % r =

divisions per timeunit (1/h)

18 catch

19 AIC_C = NaN;

20 Rsq_C = NaN;

21 disp(’NaNs found in Linear Model.’);

22 end

23

24 try

25 % Exponential model (nested constant model)

26 B_e = B(1:3)/1;

27 modelfun_E = @(b,X)(abs(b(1)) + abs(b(2)) * exp(X*abs(b(3))));

28 mdl_E = fitnlm(x,y,modelfun_E, B_e);

29 param_E = abs(mdl_E.Coefficients.Estimate);

30 AIC_E = mdl_E.ModelCriterion.AICc;

31 Rsq_E = mdl_E.Rsquared.Adjusted;

32 YPred_E = mdl_E.Fitted;

33 catch

34 AIC_E = NaN;

35 Rsq_E = NaN;

36 disp(’NaNs found in Exponential Model.’);

37 end

38

39 try

40 % Logistic model (nested constant model)

41 modelfun_L = @(b,X)(abs(b(1)) + abs(b(4)) ./ (1 + abs(b(2))*exp(-X*abs(b(3)))));

42 mdl_L = fitnlm(x,y,modelfun_L, B);

43 param_L = abs(mdl_L.Coefficients.Estimate);

44 AIC_L = mdl_L.ModelCriterion.AICc;

45 Rsq_L = mdl_L.Rsquared.Adjusted;

46 YPred_L = mdl_L.Fitted;

47 catch

48 AIC_L = NaN;

49 Rsq_L = NaN;

50 disp(’NaNs found in Logistic Model.’);

51 end

52
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53 % Which is more accurate?

54 [AIC_Crit, ~] = min([AIC_C, AIC_E, AIC_L]);

55

56 % Select the appropriate model:

57 if AIC_Crit == AIC_C

58 Param = param_C; % Param(Blank, r)

59 YPred = YPred_C;

60 FitName = ’Linear Fit’;

61 elseif AIC_Crit == AIC_E

62 Param = param_E; % Param(Blank, Lambda, r)

63 YPred = YPred_E;

64 FitName = ’Exponential Fit’;

65 elseif AIC_Crit == AIC_L

66 Param = param_L; % Param(Blank, C, r, K)

67 YPred = YPred_L;

68 FitName = ’Logistic Fit’;

69 end

70

71 % Sort out parameters.

72 Timestep = 1/3; % h;

73 Param(1) = YPred(1);

74 Param(5) = max(diff(YPred(15:end)) ./ Timestep); % Growth rate (/h): Euler Method

75 AUC = YPred(end) ./ trapz(x, YPred); % Growth rate (1/h): AUC Method.

76 Param(6) = YPred(end); % Yield after 24h.

77

78 warning(’on’);

79 end

I.2.2 Calculate AcrB-sfGFP up-regulation rate.

1 function [AUC, Param, YPred] = PumpRegulation(Data, B)

2 % B(K, c, r, B0, r_diff, G, Data(24h));

3 warning(’off’);

4

5 n = length(Data);

6 x = 24*(0:(n-1))/(n-1);

7 y = Data;

8

9 %% Fit models!

10 try

11 % Constant model

12 mdl_C = fitlm(x,y); % y = blank + r*x

13 param_C = abs(mdl_C.Coefficients.Estimate); % Growth rate: estimated from data.

14 AIC_C = mdl_C.ModelCriterion.AIC;

15 YPred_C = mdl_C.Fitted;

16 % Compute duplication time as r/blank = 1/t
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17 param_C(3) = str2num(sprintf(’%.3f’, param_C(2))) / str2num(sprintf(’%.3f’, param_C(1))); % r =

divisions per timeunit (1/h)

18 catch

19 AIC_C = NaN;

20 disp(’NaNs found in Linear Model.’);

21 end

22

23 try

24 % DownUp model

25 modelfun_L = @(b,X)(abs(b(4)) + abs(b(5))*exp(-X*abs(b(6))) + abs(b(1)) ./ [1 + abs(b(2))*exp(-X*abs(b

(3)))]) ;

26 mdl_L = fitnlm(x,y,modelfun_L, B);

27 param_L = abs(mdl_L.Coefficients.Estimate);

28 AIC_L = mdl_L.ModelCriterion.AIC;

29 YPred_L = mdl_L.Fitted;

30 catch

31 AIC_L = NaN;

32 disp(’NaNs found in Logistic Model.’);

33 end

34

35 % Which is more accurate?

36 [AIC_Crit, AIC_idx] = min([AIC_C, AIC_L]);

37

38 % Select the appropriate model:

39 if AIC_Crit == AIC_C

40 Param = param_C; % Param(Blank, r)

41 YPred = YPred_C;

42 Param(3) = Param(2); % For convenience: r always 3rd item.

43 FitName = ’Linear Fit’;

44 elseif AIC_Crit == AIC_L

45 Param = param_L; % Param(Blank, C, r, K)

46 YPred = YPred_L;

47 FitName = ’DownUp Fit’;

48 end

49

50 % Sort out parameters.

51 Timestep = 1/3; % h;

52 Param(4) = YPred(1);

53 Param(7) = max(diff(YPred) ./ Timestep); % Growth rate (OD/h): Euler Method

54 AUC = YPred(end) ./ trapz(x, YPred); % Growth rate (1/h): AUC Method

55

56 warning(’on’);

57 end

I.2.3 Implementation of mathematical model.

1 % Main function
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2 function [timeOut,stateOut] = NonMonotoneDR(parameters,IC)

3 if nargin == 1

4 IC = parameters.initialCondition;

5 end

6

7 timeOut = [];

8 stateOut = [];

9

10 for days = 1:parameters.days

11 [times,states] = SolveMdl(parameters, IC);

12

13 IC = states(end,:);

14

15 IC(1) = parameters.SZero;

16 IC(2) = parameters.AInitial;

17 IC(3) = parameters.BInitial;

18

19 dilution = parameters.dilution*parameters.dilRatios(days);

20

21 IC(parameters.cells) = IC(parameters.cells)*dilution;

22 IC(parameters.internalA) = IC(parameters.internalA)*dilution;

23 IC(parameters.internalB) = IC(parameters.internalB)*dilution;

24

25 timeOut = [timeOut ; parameters.Time*(days-1) + times];

26 stateOut = [stateOut ; states];

27 end

28

29 end

30

31

32 % Call ode15s solver

33 function [t,state] = SolveMdl(parameters,IC)

34 %Solve Model

35 if nargin == 1

36 IC = parameters.initialCondition;

37 end

38 refine = 4;

39 options = odeset(’NonNegative’,ones(size(IC)),’RelTol’,1e-10,’Refine’,refine);

40 [t,state] = ode15s(@(t,y)Mdl(parameters, y),[0 parameters.Time],IC, options);

41 end

42

43

44 % Inhibition function (Gamma(A))

45 function gamma = gamma(parameters,A)

46 gamma = 1./(1 + parameters.ka*A);

47 end

48 % Transported sugar uptake function
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49 function uptakeRate = uptakeRate(parameters,S)

50 uptakeRate = S.*parameters.Vmax./(S+parameters.K);

51 end

52 % Growth function

53 function Gvector = Growth(parameters,S,A)

54 Gvector = parameters.conversion*uptakeRate(parameters,S).*gamma(parameters,A);

55 end

56 % Protein production function

57 function p = P(parameters,j)

58 p = j./(1+parameters.g * j);

59 %one gene means one protein, with diminishing returns:

60 p = p/p(1);

61 p = p - 1;

62 end

63 % Efflux function

64 function eff = Efflux(parameters,i,v,k)

65 Q = P(parameters,i);

66 eff = v*Q./(k+Q);

67 end

68

69

70 % Model

71 function newState = Mdl(parameters, state)

72

73 Phi = parameters.Phi;

74 Delta = parameters.Delta;

75 delta = parameters.delta;

76 decayA = parameters.decayA;

77

78 Nd = parameters.Ndims;

79

80 S = state(1);

81 a = state(2);

82

83 Aj = state(4:Nd+3);

84 ej = state((2*Nd+4):(3*Nd+3));

85

86 I = 1:Nd;

87 EffluxPump = Efflux(parameters,I’, parameters.Va, parameters.Ka) ;

88 Gvector = G(parameters, S, Aj(2:end-1));

89

90 dSdt = -uptakeRate(parameters,S)*sum(ej);

91 dadt = -a*decayA + Phi*(sum(ej.*(Aj - a))) + sum(EffluxPump.*Aj.*ej);

92

93 dAjdt = -Aj*decayA + Phi*ej.*(a - Aj) - EffluxPump.*Aj.*ej;

94

95 de1dt = G(parameters, S, Aj(1))*ej(1) - Delta*ej(1) + Delta*(1+delta)*ej(2);



C O N C L U D I N G R E M A R K S 1 2 1

96 deNdt = G(parameters, S, Aj(end))*ej(end) - Delta*(1+delta)*ej(end) + Delta*ej(end-1);

97

98 dejdt = Gvector.*ej(2:end-1) - Delta*((2+delta)*ej(2:end-1) - ej(1:end-2) - (1+delta)*ej(3:end));

99

100 newState = [dSdt ; dadt ; dbdt ; dAjdt ; dBjdt ; de1dt ; dejdt ; deNdt];

101

102 end

I.2.4 Raw data.
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FIGURE S.1. Growth profiles for E. coli AG100 based on OD600 measured every 20min (1/3h), for 24h, during 7 days.

Each subplot contains the growth profile of eight replicates as a function of time, and as a function of the dose of

erythromycin (columns). The different rows show the fit, and the data for different days ranging from days 1 to 7. We

used the degree of overlap of the data (grey) and the model (blue) to validate the appropriateness of the models that we

used to calculate the growth rate in each case.
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FIGURE S.2. Growth profiles for E. coli AG100-A based on OD600 measured every 20min (1/3h), for 24h, during 7

days. Each subplot contains the growth profile of eight replicates as a function of time, and as a function of the dose

of erythromycin (columns). The different rows show the fit, and the data for different days ranging from days 1 to 7. We

used the degree of overlap of the data (grey) and the model (blue) to validate the appropriateness of the models that we

used to calculate the growth rate in each case.
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FIGURE S.3. Growth profiles for E. coli TB108 based on OD600 measured every 20min (1/3h), for 24h, during 7 days.

Each subplot contains the growth profile of eight replicates as a function of time, and as a function of the dose of

erythromycin (columns). The different rows show the fit, and the data for different days ranging from days 1 to 7. We

used the degree of overlap of the data (grey) and the model (blue) to validate the appropriateness of the models that we

used to calculate the growth rate in each case.
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FIGURE S.4. Growth profiles for E. coli TB108 based on normalised fluorescence (nGFP) measured every 20min (1/3h),

for 24h, during 7 days. Each subplot contains the growth profile of eight replicates as a function of time, and as a function

of the dose of erythromycin (columns). The different rows show the fit, and the data for different days ranging from days

1 to 7. We used the degree of overlap of the data (grey) and the model (blue) to validate the appropriateness of the

models that we used to calculate the growth rate in each case.
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FIGURE S.5. Growth profiles for E. coli TB108 based on relative fluorescence per OD600 unit (nGFP · OD−1) measured

every 20min (1/3h), for 24h, during 7 days. Each subplot contains the growth profile of eight replicates as a function of

time, and as a function of the dose of erythromycin (columns). The different rows show the fit, and the data for different

days ranging from days 1 to 7. We used the degree of overlap of the data (grey) and the model (blue) to validate the

appropriateness of the models that we used to calculate the growth rate in each case.
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FIGURE S.6. Growth profiles for E. coli eTB108 based on OD600 measured every 20min (1/3h), for 24h, during 7 days.

Each subplot contains the growth profile of eight replicates as a function of time, and as a function of the dose of

erythromycin (columns). The different rows show the fit, and the data for different days ranging from days 1 to 7. We

used the degree of overlap of the data (grey) and the model (blue) to validate the appropriateness of the models that we

used to calculate the growth rate in each case.
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FIGURE S.7. Growth profiles for E. coli eTB108 based on normalised fluorescence (nGFP) measured every 20min

(1/3h), for 24h, during 7 days. Each subplot contains the growth profile of eight replicates as a function of time, and as

a function of the dose of erythromycin (columns). The different rows show the fit, and the data for different days ranging

from days 1 to 7. We used the degree of overlap of the data (grey) and the model (blue) to validate the appropriateness

of the models that we used to calculate the growth rate in each case.
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FIGURE S.8. Growth profiles for E. coli eTB108 based on relative fluorescence per OD600 unit (nGFP · OD−1) measured

every 20min (1/3h), for 24h, during 7 days. Each subplot contains the growth profile of eight replicates as a function of

time, and as a function of the dose of erythromycin (columns). The different rows show the fit, and the data for different

days ranging from days 1 to 7. We used the degree of overlap of the data (grey) and the model (blue) to validate the

appropriateness of the models that we used to calculate the growth rate in each case.
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I.3 Rate of adaptation (α): robustness. The following plots show the rate of

adaptation (α, see SECTION 2.3), per replicate, measured using per capita growth rate

(here labelled as ‘fit’), finite difference approximation (labelled as ‘re’), and area under

the curve (labelled AUC).
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FIGURE S.9. Adaptive landscapes for E. coli AG100 according to the best model fit (left), finite difference approximation

(centre), and area under the curve (right). The analysis reflects the robustness of the existence, and location of the

evolutionary ‘coldspots’ and ‘hotspots’ as a function of the dose of erythromycin. The colorbar indicates the rate of

adaptation, black being the lowest rate of adaptation and white being the highest.
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FIGURE S.10. Adaptive landscapes for E. coli AG100-A according to the best model fit (left), finite difference approxi-

mation (centre), and area under the curve (right). The analysis reflects the robustness of the existence, and location of

the evolutionary ‘coldspots’ and ‘hotspots’ as a function of the dose of erythromycin. The colorbar indicates the rate of

adaptation, black being the lowest rate of adaptation and white being the highest.
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FIGURE S.11. Adaptive landscapes for E. coli TB108 according to the best model fit (left), finite difference approximation

(centre), and area under the curve (right) based on readings for OD600 (A), normalised fluorescence (B), and relative

fluorescence per OD600 unit (C). The analysis reflects the robustness of the existence, and location of the evolutionary

‘coldspots’ and ‘hotspots’ as a function of the dose of erythromycin. The colorbar indicates the rate of adaptation, black

being the lowest rate of adaptation and white being the highest.
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FIGURE S.12. Adaptive landscapes for E. coli eTB108 according to the best model fit (left), finite difference approx-

imation (centre), and area under the curve (right) based on readings for OD600 (A), normalised fluorescence (nGFP,

B), and relative fluorescence per OD600 unit (C). The analysis reflects the robustness of the existence, and location of

the evolutionary ‘coldspots’ and ‘hotspots’ as a function of the dose of erythromycin. The colorbar indicates the rate of

adaptation, black being the lowest rate of adaptation and white being the highest.
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I.4 Oscillations in fluorescence readings: Discrete Fourier Transform. We a

Fourier analysis on the data shown in FIGURES 2.15 and S.8 to answer whether, or not,

the oscillations observed have a biological origin. We computed the discrete Fourier

transform of our dataset using the fft function as implemented in Matlab 2014a.

Represented in FIG. S.13 we show the existence of two main oscillations taking

place, at different frequencies, during our experiment. The first has the highest intensity

and occurs at a frequency of ∼10h (∼0.1 peaks per hour). This corresponds with the

up-regulation of the AcrAB-TolC efflux pump. The second has a lower intensity, and

occurs at a frequency of ∼3/4 of an hour.

We compared the spectra so-represented with that of the inocula-free culture condi-

tion (negative control, FIG. S.14). Here we do not observe the first, intense oscillation

but we do observe the second. Given the absence of cells in this condition, we must

conclude that these small oscillations are mechanically produced by our microplate

reader and not by the subtle regulation of the AcrAB-TolC efflux pump.
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FIGURE S.13. Fast Fourier transform (FFT) spectra for E. coli eTB108. The frequency of the oscillations is shown on

the x-axis and the energy of such oscillations on the y-axis. Each column represents the FFT for the data measured in

different days, in different concentrations of erythromycin (here shown in rows). A feature is shared overall: a peak every

∼3/4 of an hour. This feature corresponds to the small oscillations observed in FIGURES 2.15 and S.8. Mean signal in

black, per replicate signal in light grey.
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1 3 6 C H A P T E R V I

II SUPPLEMENTARY CHAPTER 3

II.1 Implementation of mathematical model.

1 % Defining Markov process

2 function p = setMarkov(N,p)

3

4 if nargin < 1

5 N = 11;

6 end

7

8 p.sigma = 0.01;%rate of plasmid loss/gain through segregation

9 p.N = N;%max number of plasmids

10

11 if N == 1

12 p.M = 1;

13 p.Markov = 1;

14 else

15 p.M = (diag(-2*ones(N,1)) + diag(ones(N-1,1),1) + diag(ones(N-1,1),-1))/2;

16 p.M(1,1) = 0;

17 p.M(2,1) = 0;

18 p.M(end,end) = -1;

19 p.M(end-1,end) = 1;

20

21 p.Markov = eye(N) + p.sigma*p.M;

22 end

23

24 end

25

26 % Model for plasmid distribution

27 function f = PlasmidDistribution(u,p)

28

29 e = p.e;

30 V = p.V;

31 K = p.K;

32 gamma = p.gamma;

33 phi = p.phi;

34 kappa = p.kappa;

35 d = p.d;

36 Markov = p.Markov;

37

38 N = p.N;

39 sigma = p.sigma;

40

41 c = u(1:N);

42 Aint = u(N+1);

43 Aext = u(N+2);
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44 S = u(N+3);

45

46 U = V*S/(K+S);

47 G = e*U;

48

49 % Maximal cost of resistance gamma value (relative to 1)

50 % cost of carrying _maximal number_ of available plasmids

51 if N > 1

52 s = (0:(N-1))/(N-1);

53 else

54 s = 1;

55 end

56

57 s = s’;

58 GRy = G/(1+kappa*Aint^(2));

59 GRc = s.*gamma*G + (1-s).*GRy;

60

61 dc = Markov*(c.*GRc);

62

63 dAint = -d*Aint + phi*sum(c)*(Aext-Aint);

64 dAext = -d*Aext - phi*sum(c)*(Aext-Aint);

65 dS = -U*sum(c);

66

67 f = [dc;dAint;dAext;dS];

68

69 end

70

71 % Model (plasmids not included)

72 function f = RHS(u,p)

73

74 e = p.e;

75 V = p.V;

76 K = p.K;

77 gamma = p.gamma;

78 phi = p.phi;

79 kappa = p.kappa;

80 d = p.d;

81

82 c = u(1);

83 y = u(2);

84 Aint = u(3);

85 Aext = u(4);

86 S = u(5);

87

88 U = V*S/(K+S);

89 G = e*U;

90
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91 dc = gamma*c*G;

92 dy = y*G/(1+kappa*Aint^(2));

93 dAint = -d*Aint + phi*(c+y)*(Aext-Aint);

94 dAext = -d*Aext - phi*(c+y)*(Aext-Aint);

95 dS = -U*(c+y);

96

97 f = [dc;dy;dAint;dAext;dS];

98

99 end

II.2 Raw data.
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FIGURE S.15. A) Model fit for the tetracycline sensitive (Tetsm, green), and the tetracycline resistant (Tetrm, red) strains

grown in monoculture. Model fitted to optical density at 600nm (OD600) and optical density estimated from fluorescence

(ODe
600). B) Ratio of normalised fluorescence units (RFUn) per optical density unit. This ratio is robust to changes in

optical density.
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III SUPPLEMENTARY CHAPTER 4

III.1 Image processing routine.

1 function [mData, ci95Data] = Radial_Profile_Plot (ImageBW, ImageRef)

2 % This function finds the origin of the inner circle, and integrates

3 % a n radians wide arc, with origin (X0, Y0), to generate a

4 % profile plot from the origin and a radius iR.

5

6 % Required variables.

7 [Height, Width] = size(ImageBW);

8 % Find inhibition origin.

9 [Origin, Radius, ~ ] = imfindcircles(ImageRef, [100 200],...

10 ’Sensitivity’, 0.985);

11 % Make sure I process one circle ONLY.

12 Origin = Origin(1, :);

13 Radius = Radius(1);

14 % Defining X0 and Y0 based on the existence of ‘Origin’

15 X0 = floor(Origin(1));

16 Y0 = floor(Origin(2));

17 Step = 1;

18 iR = floor(Radius * 1.15); % Inner Radius (>1 to avoid circle boundary)

19 oR = floor(Radius * 2.25); % Outter Radius

20

21 mData = zeros(oR, 1); % Preallocation

22 seData = zeros(oR, 1); % Preallocation

23

24 % For Normalisation

25 Arc = round(2*pi*oR); % 2pir = circumference.

26 Theta = linspace(5/3*pi, 11/6*pi, Arc); % Pi = 180 degrees

27 Rho = ones(1, Arc) * round(oR);

28 [ X Y ] = pol2cart(Theta, Rho);

29 X = round(X) + X0;

30 Y = round(Y) + Y0;

31 oX = X;

32 oY = Y;

33

34 % Acr integration and creation of profile

35 for r = oR:-Step:iR

36 Arc = round(2*pi*r); % 2pir = circumference.

37 Theta = linspace(5/3*pi, 11/6*pi, Arc); % Pi = 180 degrees

38 Rho = ones(1, Arc) * round(r);

39 [ X Y ] = pol2cart(Theta, Rho);

40 X = round(X) + X0;

41 Y = round(Y) + Y0;

42 OD = im2double(improfile(Image_OD_Blurred, X, Y));

43 GFP = im2double(improfile(Image_GFP_Blurred, X, Y));
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44 Data = GFP ./ OD;

45

46 mData(r) = mean(Data);

47 seData(r) = std(Data) ./ sqrt(Arc - 1) .* 1.96;

48 end

49

50 % Computing cell density:

51 mData(r) = mean(Data);

52 seData(r) = std(Data) ./ sqrt(Arc - 1) .* 1.96;

53

54 iN = round(2*pi*iR);

55 oN = round(2*pi*oR);

56

57 mData = mData(iR:end);

58 ci95Data = seData(iR:end);

59

60 end
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FIGURE S.16. Pilot experiment for the development of the image analysis pipeline. A) Binary mask created to detect

circular shapes from B) grey scaled photographs. C) The image is corrected by subtracting the photo taken at t = 0h and

read. D) Profile plot, showing mean growth ± standard error on the y−axis as a function of the distance to the centre of

the inhibition zone, on the x−axis.
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IV SUPPLEMENTARY CHAPTER 5
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FIGURE S.17. Raw Data. MG1655, ∆1, ∆2.
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FIGURE S.18. Raw Data. ∆3, ∆4, ∆5.
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V MEDIA

V.1 Rich media. We used Lysoneny Broth (LB), LB Agar, and LB Soft Agar as rich

media following the recipes described in the table below. In every case, we prepared

the media using deionised water for a total volume of 1 litre, pH adjusted using NaOH,

and autoclaved at 121oC for 20 min prior to use.

TABLE S.1. Recipe for rich media

LB LB Agar LB Soft Agar

25g LB Powder as for LB as for LB

- 12g Agar Powder 6g Agar Powder

V.2 Minimal media. As a minimal media we used M9, M9 Agar, and M9 Soft

Agar supplemented with casamino acids (CA) as a source of nitrogen and sulphur,

and glucose (Glc) as the main source of carbon (see SUBSECTION V.3 for further

information about the stocks of glucose and casamino acids).

Non-supplemented M9 (M9 salts) was prepared by mixing two components, A and

B. I prepared each of these components as described in TABLE S.2, using deionised

water for a total volume of 1 litre. For convenience, we prepared a stock of M9 salts

fifty times concentrated (50X), and autoclaved at 121oC for 20min. When required,

we diluted accordingly in deionised water a mixture containing equal volumes of each

component to prepare M9 salts (1X). This new solution was also autoclaved at 121oC
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for 20min prior to use.

To prepare M9 Agar and M9 Soft Agar, we added the same quantity of Agar powder

as described in TABLE S.1 to 1 litre of M9 salts (1X), and autoclaved at 121oC for

20min prior to use.

TABLE S.2. Recipe for M9 minimal media 50X

Component A Amount Supplier Component B Amount Supplier

K2HPO4 350g Sigma (P3786) Trisodium Citrate 29.4g Sigma (S1804)

KH2HPO4 100g Sigma (P9791) (NH4)2SO4 50g Sigma (A4418)

– – – MgSO4 10.45g Fisher Scientific (M/1050/53)

V.3 Stock solutions for glucose and casamino acids. We supplemented M9

salts (1X), M9 salts (1X) Agar, and M9 salts (1X) Soft Agar with two specific nu-

trients: glucose and casamino acids. I diluted different proportions of glucose and

casamino acids in 1 litre of M9 salts (1X) to prepare two different stocks of 20%

glucose (200mg/mL) as described below.

TABLE S.3. Recipe for stocks of 20% glucose

Component 10% CA 5% CA Supplier

Glucose 200g 200g Fisher Scientific (G/0500/53)

Casamino acids 100g 50g Duchefa (C1301.0250)

Both glucose and casamino acids are thermolabile substances. Consequently, we

filter sterilised these stock solutions, and not autoclaved, to prevent degradation. When

required, we added aseptically the appropriate volume of stock to either M9 salts (1X),

M9 salts (1X) Agar, or M9 salts (1X) Soft Agar.

Typically, the media used in the experiments was M9 salts (1X) supplemented with

0.2% (2mg/mL) of glucose, and 0.1% (1mg/mL) of casamino acids.

VI ANTIBIOTICS

During the experiments presented in this thesis, we used a number of different clin-

ically relevant antibiotics. Erythromycin (Ery), doxycycline (Dox), and tetracycline
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(Tet) are used to treat infectious diseases produced by pathogens such as Neisse-

ria gonorrhoeae, Vibrio cholera, meticillin-resistant Staphylococcus aureus (MRSA),

multidrug-resistant Acinetobacter baumannii, among others.123–129

TABLE S.4. Antibiotic stock solutions, and typical working dilutions.

Drug Solvent Stock solution Working dilution Supplier

Erythromycin Pure Ethanol 10mg · mL−1 1 / 0.5 / 0.03mg · mL−1 Duchefa (E0122.0010)

Doxycycline Water 5mg · mL−1 8 × 10−3 / 8 × 10−4mg · mL−1 Sigma (D9891-5G)

Tetracycline Water 5mg · mL−1 8 × 10−3 / 8 × 10−4mg · mL−1 Duchefa (T0150.0025)

We prepared stock solutions for Ery, Dox and Tet as described in TABLE S.4 (above),

using pure ethanol or deionised water for a volume of 10mL. The stock solutions were

stored at -20oC as recommended by the manufacturer, the solutions for Dox and Tet

being filter sterilised and aliquoted. To prepare the working dilutions, samples from

these stock solutions were diluted accordingly using the same media that would later

be used for the experiment. The working dilution was further diluted in media to prepare

the final concentrations of the antibiotic.

VI.1 Dilution of antibiotic stock solutions. We typically used ten different con-

centrations of antibiotic. To avoid over- or mis-representation of a concentration (i.e. too

many low concentrations or too few high concentrations), we prepared the antibiotic

as it follows: we defined ten concentrations, c = (1, ... , 10), the highest concentration

being denoted by h, and the lowest concentration being denoted by l = h · 10−1. The

final concentration is calculated as l × c. We defined this range after several iterations

in which the stock solution of antibiotic was diluted 10, 100 and 1000 times. The density

of the cultures was measured using the filter-based microplate reader ELX808 from

BioTek for CHAPTER 2 and the monochromator-based microplate reader Tecan Infinite

200 PRO for CHAPTERS 2, 3 and 5. The cultures were read in 96-wells microplates by

Greiner bio-one (655101).

The working dilution was diluted accordingly using the same media used in the

experiment for a volume of 10mL.
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VII PLATE READERS PROTOCOLS

The plate readers were programmed to perform the following steps.

VII.1 BioTek ELX808.

• Set temperature at 30oC.

• Kinetic Window (length of experiment): 24h, with readings every 20min.

- Shaking time: 300s (5min). Shaking strength: medium (strength options are

low, medium and high). With high culture droplets can be found on the lids.

- Read using the 600nm filter.

The plate reader iterates the steps within the kinetic loop (shaking and reading),

shaking for 5min to homogenise the culture, reading, and then leaving the cultures at

30oC for ≈15min (20min total).

VII.2 Tecan Infinite 200 PRO.

• Set temperature at 30oC.

• Kinetic Window (length of experiment): 24h, with readings every 20min.

- Shaking time: 300s (5min). Shaking: linear at 680rpm.

- Read each well once at 600nm in a 2x2 matrix, 1450µm from the border.

The plate reader iterates the steps within the kinetic loop (shaking and reading),

shaking for 5min to homogenise the culture, reading, and then leaving the cultures at

30oC for ≈15min (20min total). Reading each well in four different points (2x2 matrix)

reduced the noise of the data.

VIII STRAINS

On reception, all the strains used for this thesis were grown overnight (>16h) in 10mL

of M9 salts (1X) supplemented with 0.2% Glc and 0.1% CA, at 30oC and 180rpm. We

froze three samples at −80oC after adding 500µL of 80% glycerol for a total volume of

1.5mL.

IX MICROBIOLOGICAL TECHNIQUES

IX.1 Cell culture.
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TABLE S.5. Strains of Escherichia coli. The strain TB108 was kindly provided by Dr. Tobias Bergmiller. The strain

eTB108 is an evolved sample of TB108 after six transfers in media containing 10µg/mL of erythromycin.

Strain Genotype Reference

E. coli AG100 K–12 argE3 thi–1 rpsL xyl mtl ∆(gal-uvrB)

supE44

68

E. coli MG1655 K–12 F- λ- ilvG0 rfb–50 rph–1 130

E. coli MC4100 F- [araD139]B/r ∆(argF–lac)169 λ- e14-

flhD5301 ∆(fruK–yeiR)725(fruA25) relA1

rpsL150(strR) rbsR22 ∆(fimb–fimE)632(::IS1)

deoC1

131

E. coli AG100–A AG100 ∆acrAB::Tn903 68

E. coli Wyl MC4100 galK::YFP, ampR , pCS-λ 84

E. coli GB(c) MC4100 galK::CFP, ampR , pGW155B 85

E. coli TB108 MG1655 acrB–sfGFP–FRT Unpublished

E. coli eTB108 MG1655 acrB–sfGFP–FRT ± ? This thesis

IX.1.1 Solid media. A frozen sample was taken using a flamesterilised loop, and

spread over a Petri dish containing 25mL of sterile, antibioticfree LB Agar. This Petri

dish was incubated overnight at 30oC, and the resulting colonies were picked to perform

tests and calibrations described in the following sections.

IX.1.2 Liquid media. A frozen sample, or a colony in solid LB Agar, was taken using

a flamesterilised loop and spread in the corresponding liquid media. This media was

typically M9 supplemented with different concentrations of Glc, CA, and the appropriate

antibiotic if required. 10mL of this media was inoculated in a universal tube (30mL),

incubated in aerated conditions overnight at 30oC.

IX.2 Colony counting. To quantify the number of colony forming units (CFUs)

0.1mL from a liquid culture was diluted in 100-fold or 10-fold dilutions, depending on

the culture’s optical density measured at 600nm. In triplicate, a 0.1mL droplet from the

final dilution, ranging typically from 10−5 to 10−9, was mixed in a Petri dish with 25mL

of sterile LB Soft Agar. The cultures were incubated overnight at 37 oC.

Photos of these Petri dishes were taken and processed computationally with a
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Analyse
particles

Noise
removal

Thresholding

Background
subtraction

Photo

FIGURE S.19. Algorithm designed to count CFUs from photographs using ImageJ.

routine created in ImageJ132 (FIG. S.19). The cell density in the original culture was

calculated using the following formula, assuming that each colony is developed from a

single bacterial cell:

Density (Cells · mL−1) =
Colonies

Dilution Factor
× 10 (S.2)
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X CALIBRATIONS

X.1 Fluorescence. Upon reception of a fluorescent strain we reviewed the litera-

ture, including original publication, to find the appropriate wavelenghts (λ) for excitation

(λex ) and emission (λem) of the corresponding fluorochrome. When the appropriates

wavelengths were not provided, an overnight culture of the fluorescent strain was

screened in the monochromator-based reader by Tecan.

Once λex and λem were known, we compared the fluorescence from overnight

cultures of the corresponding fluorescence strains with that coming from a parental,

non-fluorescent strain. Three replicates of 150µL each were read in a 96-well microplate

and read at 505nm/540nm to measure the fluorescence produced by the yellow

fluorescence protein (emission/excitation wavelengths), and at 430nm/480nm for the

cyan fluorescent protein. No fluorescence was detected in the non-fluorescent parental

strain. Therefore the fluorescence detected comes from the corresponding fluorescent

protein and not by another protein or by metabolic byproduct.

X.2 Dose-response curve. In SUBSECTION VI.1, we introduced how we defined

the range of concentrations of the antibiotic to be used. To define the highest concen-

tration, h, we prepared the concentrations in c from increasing 10-fold dilutions of the

stock solution of antibiotic. If ch is the highest concentration at which we observed

growth during this process, we interpolated the concentrations of antibiotic between 0

and the concentration ch+1 until we could observe the transition from maximum growth

to lack thereof.

Once we identified the range of concentrations, c, we prepared the corresponding

number of 96-well microplates depending on the length of the experiment. If several

days were required, we used a 96-pin replicator to transfer the culture from a previous

96-well microplate.

X.3 Quantitative PCR (qPCR).

X.3.1 DNA extraction. The DNA from 10 mL of culture was processed with the DNA

extraction kit ‘GeneJET’ (ThermoScientific #K0729), and quantified using the ‘Qubit’

system. The DNA extracts were later diluted accordingly to normalise the concentration
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TABLE S.6. Primers and probes designed using ‘Primer3’. Amplicon ranging from 100 to 141bp. Tm indicates the

estimated melting temperature.

Target gen Sequence (5′ → 3′) Tm (oC) Feature

tatB CGATGAAGCGTTCCTACGTT 60.27 Forward

TCATGCGCAGCTTCATTATC 59.94 Reverse

AAGGCGAGCGATGAAGCGCA 70.70 Probe

tet(36) ATTGGGCATCTATTGGCTTG 59.22 Forward

CCGATTCACAGGCTTTCTTG 60.76 Reverse

AGCCTTTGCCAATTGGGGCG 70.37 Probe

of DNA across the samples, so we have the same concentration of DNA in every

sample.

X.3.2 Primers and probes. Upon reception, primers and probes were diluted in

sterile, DNAse-free deionised water pH 8.0, to prepare 25pmol/µL stocks. We later

aliquoted, and stored at −20oC these stocks. Probes are molecular beacons, tagged

with the fluorochrome HEX in 5′, and the quencher BHQ1 in 3′.

The Primers and probes were designed using PRIMER3 as implemented in UGENE.133

We targeted tatB as a chromosomal reference using the reference genome se-

quence for the bacterium Escherichia coli strain MG1655 (NCBI reference sequence:

NC_000913.2). For the plasmid pGW155B, we targeted the locus tet(36) using a

reference sequence published elsewere.134 The sequences in TABLE S.6 where tested

by PCR and qPCR against so-called no template controls (NTC), containing no DNA,

and strains of E. coli lacking the aforementioned plasmid. The efficiency of the reaction

is close to 100% (FIG. S.20) and therefore the material for these loci is considered to

double per cycle.135

X.3.3 Reaction mix. The qPCR reaction mix was prepared as detailed by the

manufacturer for the ‘Luminaris Color Probe Low ROX’ kit (ThermoScientific #K0342,

see TABLE S.7), and we calculated the volume required for the primers following the

EQUATION S.3.
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FIGURE S.20. Baseline corrected, normalised amplification curves (dRn) for the chromosomal locus tatB (A), followed

by that for the plasmid-borne locus tet(36) (C). The efficiency of the qPCR for each loci, in subplots B and D, shows the

efficiency of the reaction (Ef ) calculated as Ef = 10−1/Slope − 1.

M =
mol

vol (L)
→ mol = 10−7M︸ ︷︷ ︸

0.1µM

·(2 · 10−5L︸    ︷︷    ︸
20µL

) = 2 · 10−12mol︸         ︷︷         ︸
2pmol

(S.3)

Therefore, the concentrations for the primers specified in TABLE S.7 correspond

to 6pmol or 0.24µL from the 25pmol stock solutions; whereas for the probe 4pmol

or 0.16µL from such stocks. The qPCR was set up using the conditions described in

TABLE S.8.
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TABLE S.7. Recommended recipe for Luminaris Color Probe Low ROX (ThermoScientific).

Component Volume (µL)

PCR Master Mix 10

Primer F Final Concentration = 0.3µM

Primer R Final Concentration = 0.3µM

Probe Final Concentration = 0.2µM

Template DNA 6 200ng per reaction

Nuclease-free Water to 20

TABLE S.8. qPCR thermal cycling conditions.

Step Temperature (oC) Time (min) N. of cycles

UDG pre-treatment 50 2 1

Enzyme activation 95 10 1

Denaturation 94 0.5 }
40Annealing 60 0.5

Extension 72 1

Final Extension 72 10 1

X.4 Spatial plates. We performed the spatial plates on Petri dishes containing M9

(1X) soft agar supplemented with 0.2% glucose (w/v) and 0.1% casamino acids (w/v),

inoculated with of an overnight culture (0.1mL per litre). The centre of the Petri dish

was surgically removed with a sterile universal tube, and refilled with non-inoculated

media containing 64µg/mL of the antibiotic doxycycline. This plate was incubated at

30oC in a device developed as part of this PhD project, and photos were taken during

5 days at 2h intervals. These photos were later analysed with a routine coded using

Matlab.
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XI ADDITIONAL ANALYSIS FOR CHAPTER 2
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FIGURE S.21. A) Representation of the relative abundance of efflux pumps (nGFP−1 ·OD−1), on the y−axis, as a function

of acr operon copy number on the x−axis during the first five days of the experiment. The raw data is represented as

grey dots and their size indicates if the culture was sampled after one, five or seven days of growth. Mean ± standard

error of the mean shown in green and grey, respectively. The dataset is compared to the predictions from a linear (light

grey) and square root (dark grey, model in p. 72) models. The goodness of fit was quantified using R2. B) Concavity

analysis (orange) using the convhull function in matlab. The hull highlights a transition, from a concave to convex, in the

relationship between the relative abundance of efflux pumps per operon copy number. This transition is also captured

when the relative expression of efflux pumps per acr operon is considered (C). Further genomic analysis will reveal the

specific mutations responsible for the transition.
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FIGURE S.22. Relative copies of the plasmid pGW155B per cell of Tetr after 120h of coculture with Tetr . We robustly

fitted the linear model y = a + bx where the 95% confidence interval for a is (8.68, 153.07) and for b is (143.33,

1762.40), with R2
adj = 0.307. The number of plasmids per cell has increased through time and the increase was stronger

with higher dosages of tetracycline. This observation is compatible with the model in EQUATION 3.2.
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FIGURE S.23. Left) Relationship between carrying capacity (K), on the y−axis and cell yield, on the x−axis. Overall,

there is a negative correlation between K and yield that is approximately linear as shown by the model in EQUATION

5.2 (black). In Right) we show the prediction per strain. We observed that higher population densities were achieved in

conditions that led to low cell yield, such as a high concentration of glucose. However, the model does not capture the

role of the rrn operons: the highest population size were achieved with 7-6 copies of this operon with low concentrations

of glucose, but with more glucose the highest population sizes were achieved with fewer of these operons.
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