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Genetic variants near MLST8 and DHX57 affect
the epigenetic age of the cerebellum
Ake T. Lu1, Eilis Hannon2, Morgan E. Levine1, Ke Hao3, Eileen M. Crimmins4, Katie Lunnon2,

Alexey Kozlenkov5,6, Jonathan Mill2,7, Stella Dracheva5,6 & Steve Horvath1,8

DNA methylation (DNAm) levels lend themselves for defining an epigenetic biomarker of

aging known as the ‘epigenetic clock’. Our genome-wide association study (GWAS) of

cerebellar epigenetic age acceleration identifies five significant (Po5.0� 10�8) SNPs in two

loci: 2p22.1 (inside gene DHX57) and 16p13.3 near gene MLST8 (a subunit of mTOR complex 1

and 2). We find that the SNP in 16p13.3 has a cis-acting effect on the expression levels of

MLST8 (P¼6.9� 10� 18) in most brain regions. In cerebellar samples, the SNP in 2p22.1 has

a cis-effect on DHX57 (P¼4.4� 10� 5). Gene sets found by our GWAS analysis of

cerebellar age acceleration exhibit significant overlap with those of Alzheimer’s disease

(P¼4.4� 10� 15), age-related macular degeneration (P¼ 6.4� 10� 6), and Parkinson’s

disease (P¼ 2.6� 10�4). Overall, our results demonstrate the utility of a new paradigm for

understanding aging and age-related diseases: it will be fruitful to use epigenetic tissue age as

endophenotype in GWAS.
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S
ubstantial evidence suggests that lifespan is under genetic
control but the decades long quest for human longevity
genes has thus far only identified two genome-wide

significant loci: APOE and a locus on chromosome 5q33.3
(refs 1–3). A third locus (FOXO3A) is probably associated with
exceptional longevity4–6. These sobering results demonstrate that
very large sample sizes will be needed to find the genetic
determinants of human longevity. For example, Deelen et al3 used
about 100 thousand subjects to detect the locus on 5q33.3. An
alternative strategy for finding longevity genes is to replace the
complex trait (age at death) by a molecularly defined
‘endophenotype’, that is, a more stable phenotype with a
stronger genetic link.

DNA methylation levels are a natural candidate for defining a
molecular endophenotype of aging because epigenetic mechan-
isms probably play a role in modulating lifespan7–9 and because
chronological age has a profound effect on DNA methylation
(DNAm) levels10–14. We recently developed an epigenetic
measure of tissue age by combining the DNAm levels of
353-dinucleotide markers known as Cytosine phosphate
Guanines or CpGs15. The weighted average of these 353
epigenetic markers gives rise to an estimate of tissue age
(in units of years), which is referred to as ‘DNA methylation
age’ or as ‘epigenetic age’. This epigenetic clock method for
estimating age seems to apply to any tissue or cell type that
contains DNA (with the exception of sperm) including sorted cell
types (helper T cells, neurons and glial cells), complex tissues, and
organs (blood, brain, bone, breast, kidney, liver and lung15–17)
and even prenatal brain samples18. The epigenetic clock gives rise
to promising molecular endophenotypes of aging because it
captures aspects of biological age according to the following
recent findings: the epigenetic age of blood has been found to be
predictive of all-cause mortality even after adjusting for a variety
of known risk factors19,20. Further, the blood of the offspring of
Italian semi-supercentenarians (that is, subjects aged 105 years or
older) has a lower epigenetic age than that of age-matched
controls21. The epigenetic age of blood relates to cognitive and
physical fitness in the elderly22 and to Parkinson’s disease
status23. The epigenetic age of the frontal lobe relates to
neuropathological variables and to Alzheimer’s disease related
cognitive functioning24. The utility of the epigenetic clock
method has been demonstrated in applications surrounding
obesity16, Down syndrome25 and HIV infection26.

Here we pursue the strategy of using a measure of epigenetic
age acceleration (DNAm age adjusted for chronological age) as

endophenotype for biological age/mortality in a genome-wide
association study (GWAS). We focus on the cerebellum for two
reasons: (a) we are interested in studying aging effects in a
relatively homogeneous nervous tissue (which is mostly
comprised of cerebellar granule cells), and (b) epigenetic age
acceleration is highly heritable in this brain region as described
below. We identify five single-nucleotide polymorphisms (SNPs)
in 2p22.1 and 16p13.3 that are associated with cerebellar age
acceleration (Po5.0� 10� 8). These SNPs are significantly
associated with expression levels of DHX57 (in 2p22.1) and
MLST8 (16p13.3), respectively. Further, genes associated with
cerebellar age acceleration also significantly overlap with those
identified in other GWAS of various age-related diseases. Our
results show that genetic studies of epigenetic age acceleration
may not only illuminate the mechanism underlying the epigenetic
clock but also identify genes that relate to various age-related
diseases.

Results
Data sets. We studied post-mortem cerebellar samples from
n¼ 555 subjects of European ancestry by combining five different
studies (studies 1–5 in Table 1). The chronological age at time of
death ranged from 1 to 105 years. The study involved slightly
more males (63%) than females (37%). Both cerebellar DNAm
data and corresponding SNP marker data were available for each
subject. Some of the studies included additional brain regions
(Table 1) and corresponding transcriptional data (Supplementary
Table 1). For example, study 6 involved DNAm, SNP
and neuronal gene expression data, which were used in our
cis-expression quantitative trait locus (QTL) studies. The genomic
platforms (for example, Illumina DNAm array) and available
SNP data are described in Supplementary Tables 1 and 2,
respectively. While our primary GWAS aimed to identify SNPs
that are associated with the epigenetic age of the cerebellum, we
also related the resulting SNPs to epigenetic age acceleration in
other brain regions and to transcriptional data, as described
below.

DNA methylation age and epigenetic age acceleration. The
epigenetic clock is defined as a multivariate prediction method of
age, based on the linear combination of the DNAm levels of 353
CpGs dinucleotides15. The resulting age estimate, referred to as
DNAm age, is in units of years. By construction, the epigenetic
clock (and software) applies to data generated on the Illumina

Table 1 | Overview of study data sets.

Data Age, years % Male Brain region NGWAS Ncis-eQTL Reference Public availability

Study 1 86±8.0 (55, 105) 38 CRBLM 59 NA Lunnon et al,52 GSE59685
Study 2 48.0±23.2 (16, 96) 70 CRBLM 112 144 Gibbs et al,43 GSE15745

GSE36192
FCTX — 144
PONS — 143
TCTX — 145

Study 3 44.3±9.6 (19, 68) 63 CRBLM 147 130 Zhang et al,53 GSE35978
GSE38873

Study 4 64.4±17.4 (25, 96) 61 CRBLM 36 NA Pidsley et al,54 GSE61431
Study 5 52.3±29.8 (1, 102) 66 CRBLM 201 219 Hernandez et al,55 GSE36192

GSE31694
FCTX — 218

Study 6 30.7±10.8 (15, 65) 81 Neuron — 81 Di Narzo et al,56 NA

CRBLM, cerebellum; FCTX, frontal cortex; NA, not available; Ncis-eQTL, number of participants passing QC available for cis-eQTL analysis; NGWAS, number of participants passing QC available for GWAS
analysis; PONS, pons; TCTX, temporal cortex.
— denotes the brain region data were not used for GWAS.
The first five studies involved a total of n¼ 555 individuals that were used in our GWAS of cerebellar epigenetic age acceleration. Study 6 was used for a cis-expression QTL analysis in sorted neurons.
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Infinium DNAm array platform. An online age calculator can be
found at our webpage: http://labs.genetics.ucla.edu/horvath/
dnamage/.

As expected, the DNAm age of cerebellum is highly correlated
with chronological age (r ranging from 0.64 to 0.96, Supplementary
Fig. 1). The lowest correlation r¼ 0.64 was observed in study 1,
which involved older subjects (mean age 86 years) and a narrow
age range (from 55 to 105 years). The highest correlation (r¼ 0.96)
was observed in study 5 that involved subjects with the broadest
age range (from 1 to 102). In our QTL analysis, we used an
age-adjusted measure of DNAm age (referred to as epigenetic age
acceleration), which was defined as the residual resulting from a
linear model that regresses DNAm age on chronological age. By
definition, this measure of epigenetic age acceleration is not
correlated (r¼ 0) with chronological age. A negative value for age
acceleration indicates that the sample is younger than expected
based on chronological age.

Heritability of age acceleration in different brain regions. We
used the GCTA software tool27,28 to estimate the heritability of
epigenetic age acceleration in different brain regions collected
from the same neurologically normal subjects. The heritability of
age acceleration of the cerebellum (h2¼ 69% in study 2, h2¼ 15%
in study 5) appears to be higher than that of the frontal cortex
(h2o0.1% in study 2, h2¼ 14% in study 5), pons (h2o0.1% in
study 2) or temporal cortex (h2¼ 59% in study 2). These results
demonstrate that the cerebellum is a particularly promising brain
region when it comes to GWAS studies of epigenetic age
acceleration.

GWAS analysis. To identify SNPs that are associated with
cerebellar epigenetic age acceleration, we carried out a GWAS
analysis in each of the five data sets. We analysed 5,713,604
genotyped or imputed SNP markers, based on the 1000 genome
project reference panel (Methods). The level of genomic inflation
was negligible (0.98rlGCr1.01) in each individual GWAS. To
combine GWAS results from the different data sets, we used
fixed-effects meta-analysis, weighted by inverse variance29. We
removed SNPs that exhibited substantial heterogeneity across the
five studies (Cochran’s Q test P value PI2o0:01). Only a moderate
genomic inflation was observed in the meta-analysis P-values
(lGC¼ 1.09; Supplementary Fig. 2). At a genome-wide significant
level of Po5.0� 10� 8, cerebellar age acceleration was
significantly associated with five SNPs (Table 2), which were
located in two loci (Fig. 1a): locus 2p21.1 inside gene DHX57
(Fig. 1b, Supplementary Fig. 3) and locus 16p13.3 near genes
MLST8 and PGP (Fig. 1c, Supplementary Fig. 4). In the following,
we describe these two loci in more detail.

Locus 2p22.1 near DHX57. The SNP rs6723868 is the only SNP
in locus 2p22.1 that reaches genome-wide significance (P¼ 3.1

� 10� 8, Table 2) but it is surrounded by 25 SNPs
(in high linkage disequilibrium 0.61or2o0.83) with suggestive
significance levels (Po1.0� 10� 5). The amount of heterogeneity
in the meta-analysis is concerning (I2¼ 65%, PI2 ¼ 0:02; see
Table 2 and Supplementary Fig. 3); however, it reflects the
insignificant results for study 5 (as can be seen from the fact the
heterogeneity I2 drops to zero after excluding study 5 from
the meta-analysis). Since study 4 involved a small sample size
(n¼ 36 cerebellar samples), we validated its results by carrying
out two types of robustness analyses: (a) we removed potential
outliers and (b) we carried out a robust correlation analysis
(Supplementary Fig. 5).

While rs6723868 is not associated with a protein-coding
mutation of DHX57, this SNP is located either in chromatin state
‘weakly transcribed’ or in state ‘transcriptional elongation’
according to the 127 cell/tissue lines from the Roadmap
Epigenomics/ENCODE project30–32, including 10 brain-related
lines (see Methods and Supplementary Fig. 6a). Further, the SNP
is associated with the gene expression levels of DHX57 as
described later.

Locus 16p13.3 near MLST8 and PGP. The most significant
GWAS result for cerebellar age acceleration could be observed for
rs30986 (P¼ 9.3� 10� 9), which exhibits zero heterogeneity
across studies (I2¼ 0%, see Table 2 and Supplementary Fig. 4).
While three neighbouring SNPs also reached genome-wide
significance (Table 2), we believe that they capture the same
underlying locus for two reasons. First, the four SNPs are in high
linkage disequilibrium (pairwise LD 0.70or2o0.98). Second,
after conditioning on rs30986, the three remaining SNPs are no
longer significantly associated with cerebellar age acceleration
(Supplementary Table 3).

For over 99% of cell lines from the Roadmap Epigenomics
Consortium, SNP rs30986 is located in a region that is either
actively transcribed or plays a role in enhancing gene regulation
(Supplementary Fig. 6b). Within 20 kb of rs30986 are six genes:
MLST8, PGP, E4F1, ECI1, DNASE1L2, and BRICD5 (Fig. 1c). The
gene expression levels of MLST8 and to a lesser those of PGP are
associated with the SNP as will be shown in the following.

Cis-expression QTL studies of GWAS hits. To gain a mechan-
istic understanding of our significant SNPs, we correlated them
with messenger RNA levels of neighbouring genes. We used two
broad categories of data sets, for which both SNPs and brain gene
expression data were available: The first category involved gene
expression data from the same subjects that were also used in our
GWAS study (expression data from n¼ 1224 brain tissue samples
listed in Table 1). The second category involved archived eQTL
results from the Brain eQTL Almanac (BRAINEAC, see URL)33

that used n¼ 1231 brain tissue samples, across 10 brain regions,
from 134 neurologically normal subjects of European ancestry.

Table 2 | SNPs that are significantly (Po5.0� 10�8) associated with cerebellar epigenetic age acceleration.

Band SNP Gene Position (bp) Minor/major alleles MAF EUR MAF Corr. (s.e.) Meta P I2 (%) (P)

2p22.1 rs6723868 DHX57 39049601 A/G 0.26 0.27 0.23 (0.04) 3.1� 10� 8 65 (0.02)
16p13.3 rs30986 near MLST8 2275867 T/C 0.38 0.43 0.25 (0.04) 9.3� 10�9 0 (0.5)

rs27709 near MLST8 2281829 A/G 0.39 0.44 0.25 (0.04) 1.1� 10�8 0 (0.6)
rs26840 near MLST8 2285357 T/C 0.38 0.42 0.25 (0.04) 1.2� 10�8 0 (0.5)
rs27648 near MLST8 2291350 A/G 0.39 0.43 0.24 (0.04) 2.2� 10� 8 25 (0.3)

Corr., Correlation with respect to minor allele; EUR MAF, minor-allele frequency calculated using 1000 genome individuals with ancestry of European (released in December 2013); MAF, mean of minor-
allele frequency estimates across studies weighted by study sample sizes; SNP, single, nucleotide polymorphism.
Position bp based on Hg19 assembly .
Fixed effects meta-analysis was used to estimate the correlation coefficient and standard error (‘Corr. (s.e.)’) between the minor allele and epigenetic age acceleration across five studies. The
corresponding meta-analysis P values can be found in the column ‘Meta P’.
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The statistical analysis steps for finding gene transcripts that
correlate with our GWAS hits is detailed in the Methods section
entitled ‘Cis-expression QTL analysis of GWAS hits’. This
approach led to the identification of two significant candidate
genes (MLST8 and PGP) for locus 16p13.3 and one candidate
gene (DHX57) for locus 2p22.1 as described in the following.

2p22.1 has a cis-effect on the expression levels of DHX57. The
minor-allele count of SNP rs6723868 (in locus 2p22.1) is nega-
tively correlated with the expression levels of its neighbouring
gene DHX57 in the cerebellum (meta-analysis P¼ 1.3� 10� 5

across studies 2, 3 and 5, see Supplementary Table 4) and frontal
cortex (P¼ 5.1� 10� 3 in study 5). We also found suggestive cis-
effect (cerebellum, P¼ 0.09, Supplementary Fig. 7a) using
BRAINEAC. By combining the cerebellar results from our study
with those from BRAINEAC, we obtained a meta-analysis
P¼ 4.4� 10� 5 (Stouffer’s Z score method).

Interestingly, DHX57 expression levels are positively
correlated with chronological age in the cerebellum (cerebellar
meta-analysis P¼ 1.3� 10� 19, Fig. 3a, Supplementary Fig. 8a),
possibly the frontal cortex (study 5, Fig. 3a) and neurons (study
6, Fig. 3a). We did not observe a significant correlation between
the expression levels of DHX57 and epigenetic age acceleration
(that is, epigenetic age adjusted for chronological age) in our
data (cerebellar meta-analysis P¼ 0.66, all brain regions
P¼ 0.17), which might reflect technical reasons (and low

sample size) or biological reasons (higher variability of
messenger RNA levels).

16p13.3 has a cis-effect on MLST8 and possibly PGP. Our
cis-expression QTL study shows that rs30986 has a highly
significant positive correlation with the expression levels of
MLST8 in at least 9 brain regions (meta-analysis P¼ 6.9� 10� 18,
Fig. 2b, Supplementary Fig. 7b) including the cerebellum
(meta-analysis P¼ 4.9� 10� 5, see Fig. 2b and Supplementary
Table 4), temporal cortex, hippocampus and substantia nigra.
Interestingly, the expression levels of MLST8 are significantly
correlated with age acceleration in the cerebellum (meta-analysis
r¼ 0.11, P¼ 0.030) but not in other brain regions. Further, the
expression levels of MLST8 increase with chronological age
across multiple brain regions (robust correlation r¼ 0.28 and
P¼ 3.4� 10� 23) especially in the cerebellum (r¼ 0.38,
P¼ 5.4� 10� 16, Fig. 3b, Supplementary Fig. 8b). The expression
levels of PGP, which is adjacent to MLST8, are also associated
with SNP rs30986: its expression levels have a negative correlation
with the minor-allele counts of SNP rs30986 in the cerebellum
(meta-analysis P¼ 6.1� 10� 5) and in the frontal cortex (Fig. 2c).
Unfortunately, this gene is not available in the BRAINEAC
database. However, unlike MLST8, cerebellar expression levels of
PGP are neither correlated with chronological age (Fig. 3,
Supplementary Fig. 8c) nor with cerebellar age acceleration
(meta-analysis P¼ 0.99). While our above mentioned results were
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Figure 1 | Genome-wide meta-analysis for epigenetic age acceleration in the cerebellum. (a) Manhattan plot for the meta-analysis results of 5 studies

using cerebellar samples. A total of five SNPs associated with cerebellar age acceleration (Po5.0� 10� 8) are colour-coded in magenta, with their loci

(gene names) listed on top. In additionally, two novel genes identified exclusively by cis-eQTL are colour-coded in blue. (b,c) present regional association

plots for GWAS loci in 2p22.1 and 16p13.3, respectively. The association P values resulted from the meta-analysis that combined GWAS studies 1–5.

(b) Region surrounding SNP rs6723868 (coloured in purple) in 2p22.1. The colours visualize linkage disequilibrium (LD) r2 between rs6723868 and

neighboring SNPs. (c) Region surrounding rs30986 (in purple color) in 16p13.3. The colors visualize the LD r2 with respect to the SNP. SNPs rs27709,

rs26840, and rs27648 also reach genome-wide significance levels.
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obtained for the most significant SNP, rs30986, we briefly men-
tion that the neighbouring genome-wide significant SNPs
(rs27709, rs26840 and rs27648) lead to similar results for MLST8
and PGP.

Gene-set enrichment analysis for cerebellar age acceleration. In
an effort to learn more about the biological processes that cause
epigenetic age acceleration in the cerebellum, we applied the
MAGENTA software34 (Methods) to test whether our meta-
analysis GWAS results are enriched with sets of functionally
related genes. While five gene sets (including DNA helicase) were
nominally significant (4.8� 10� 3 rPr2.1� 10� 2, Supplemen-
tary Table 5) these gene sets were not significant after multiple
comparison correction (false discovery rate 40.10).

Overlap with gene sets from other GWAS studies. To rank
genes (as opposed to individual SNPs) based on our GWAS

results we used the MAGENTA software to assign an overall
P value per gene based on multiple underlying SNPs. Towards
this end, MAGENTA assigns a P value to each gene by adjusting
the most significant SNP-association P value (within the gene
boundary ±50 kb) for gene size, number of SNPs in LD per gene,
and other potential confounders34.

Further, we applied MAGENTA to rank the results from
large-scale GWA studies (Supplementary Methods) of age-
related macular degeneration (AMD)35, Alzheimer’s disease36,
longevity status (living longer than 90 years)3, and Parkinson’s
disease37.

We used each of the resulting gene rankings to define a
corresponding set of significant autosomal genes by thresholding
the MAGENTA P values at the 95th percentile. We used a one-
sided hypergeometric test to assess the overlap between gene sets
related to (1) cerebellar epigenetic aging and (2) those
from age-related diseases, respectively. Strikingly, we found
that the gene set that relates to cerebellar age acceleration
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from the 1231 brain tissues archived in the BRAINEAC database. HIPP, Hippocampus; MEDU, medulla, OCTX, occipital cortex; PUTM, putamen; SNIG,

substantia nigra; THAL, thalamus ; WHMT, intralobular white matter; aveALL, the average across all available regions. The expression data for the gene PGP

were not available in BRAINEAC. The Combined ALL P value was calculated by combining the Meta ALL and aveALL P values using Stouffer’s Z score

approach. The footnote reports the P values that adjust for intrasubject correlation. Lower panels (BRAINEAC analysis) involved a) transcript ID 2549021,

probe ID 2549027 and b) transcript ID 3466593, probe ID¼ 3644621. We verified that the directionality is congruent (same effect alleles) between the

upper and lower panels by inspecting the plots resulting from the option ‘stratification expression by SNP’ option in BRAINEAC. As described in Methods,

the P values were not adjusted for intrasubject correlation. After applying a decorrelation analysis, the Meta ALL P values become (a) 6.1� 10�4,

(b) 2.4� 10� 7 and (c) 7.5� 10�4. Using these adjusted P values, the Combined ALL P values become (a) 5.0� 10� 3 and (b) 1.1� 10� 14.
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significantly overlaps with that from AMD (hypergeometric
test P¼ 6.4� 10� 6, Table 3, Supplementary Table 6),
Alzheimer’s disease (P¼ 4.4� 10� 15), and Parkinson’s disease
(P¼ 2.6� 10� 4) but not with longevity status.

Health and Retirement Study. We also used the same
MAGENTA analysis to test whether our cerebellar aging gene set
(defined above) overlaps with gene sets related to cognitive
functioning in the Health and Retirement Study (HRS), a large-
scale, nationally representative, longitudinal study of older adults
in the US (n¼ 12,452, see Supplementary Table 7). GWAS was
performed on dementia status, as well as a longitudinal measure
of age-related cognitive decline. We used dementia status from
the two consecutive waves when SNP data were collected,
conducting the association analysis for each wave separately,
yielding a total of three cognitive functioning traits for assess-
ment. For a given cognitive trait, we either restricted the GWAS
analysis to a specific ethnic group or used all individuals in
multivariate regression models that adjusted for principal com-
ponents, estimated by identity by state (Supplementary Table 8,
Supplementary Figs 9–11). Gene sets for the HRS were defined in
the analogous manner for each cognitive functioning measure
and study population. Overall, we only observed a marginally
significant overlap between our cerebellar aging gene set and
those related to cognitive decline and dementia in the HRS. The
most significant results can be observed for participants of Eur-
opean or of African ancestry (5.9� 10� 3 rPr0.048, Table 3,
Supplementary Table 6).

Discussion
To the best of our knowledge, this is the first article that
(a) presents genome-wide significant SNPs associated with
epigenetic age acceleration, (b) elucidates the underlying
mechanism using cis-eQTL studies, (c) shows that the expression
levels of one of the implicated genes (MLST8) increase with
chronological age, (d) shows that epigenetic age relates to a
subunit (MLST8) of both mTOR complexes and (e) shows a
significant overlap between genes related to the epigenetic age of
nervous tissue (cerebellum) and those implicated in AMD,
Alzheimer’s disease and Parkinson’s disease.

This study has the following limitations. First, the cerebellum
has, at best, a weak, indirect relationship with neurodegenerative
diseases (such as Alzheimer’s disease) or neurocognitive
functioning traits. Nevertheless, the fact that we detected a
significant overlap between age-related genes in the cerebellum
and those of AMD, Alzheimer’s disease and Parkinson’s disease
suggest that the cerebellum lends itself as surrogate tissue for
tissues and cell types that are affected by the respective diseases.

The second limitation is that the GWAS study of epigenetic age
only involved n¼ 555 cerebellar samples. The identification of
five significant SNPs is striking in light of the fact that a
comparable sample size did not allow us to identify significant
loci in blood tissue (unreported findings). The third limitation is
that we did not assess whether changes in the expression levels of
MLST8 or DHX57 cause changes in epigenetic age acceleration or
vice versa. We were not able to carry out mechanistic studies in
rodents because the epigenetic clock only applies to humans and
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Study 3 Study 3Study 3

Study 5 Study 5Study 5

CRBLM CRBLM CRBLM

CRBLM CRBLM CRBLM

CRBLM CRBLM CRBLM

5.4e–01

2.7e–25

Meta CRBLM Meta CRBLM Meta CRBLM1.3e–19

Study 2 Study 2 Study 2

Study 6 Study 6 Study 6

Study 2 Study 2 Study 2

Study 2 Study 2 Study 2

Study 5 Study 5 Study 5

FCTX FCTX FCTX

FCTX FCTX FCTX

PONS PONS PONS

TCTX TCTX TCTX

Neuron Neuron Neuron

7.3e–01

4.7e–07

8.3e–01

4.7e–01

8.2e–02

Meta ALL Meta ALLMeta ALL

–0.50 –0.50 –0.500.10 0.10 0.100.60 0.60

2.3e–17* 3.4e–23* 1.5e–04*

Bicor 95% CI Bicor 95% CL Bicor 95% CL

Chr16 PGPChr16 MLST8

1.1e–01 1.14 [–0.03, 0.31] 0.41 [0.25, 0.57] 0.05 [–0.12, 0.23]

0.01 [–0.17, 0.19]

–0.12 [–0.25, 0.01]

–0.04 [–0.13, 0.05]

0.37 [0.21, 0.53]

0.31 [0.19, 0.44]

0.08 [–0.14, 0.30]

0.12 [0.06, 0.19]

0.24 [0.06, 0.41]

0.38 [0.26, 0.51]

0.36 [0.27, 0.44]

0.30 [0.14, 0.47]

0.26 [0.13, 0.39]

0.23 [0.05, 0.40]

0.25 [0.07, 0.43]

0.00 [–0.22, 0.22]

0.28 [ 0.23 , 0.34]

0.06 [–0.12, 0.24]

0.62 [0.51, 0.73]

0.38 [0.30, 0.47]

–0.03 [–0.20, 0.14]

0.33 [0.20, 0.46]

0.02 [–0.16, 0.20]

–0.07 [–0.25, 0.11]

0.19 [–0.02, 0.41]

0.24 [0.18, 0.30]

9.7e–07 5.3e–01

9.1e–01

8.2e–02

9.2e–03

2.8e–09

5.4e–16 4.2e–01

Correlation with chronological ageCorrelation with chronological ageCorrelation with chronological age

a b cChr2 DHX57

3.5e–04 1.2e–05

1.8e–06

4.9e–01

8.3e–05

1.4e–02

5.9e–03

1.0e+00

NA

NA

Figure 3 | Correlation of potential functional genes with chronological age. The meta-analysis forest plots summarize the correlation between

chronological age and the expression levels of (a) DHX57, (b) MLST8 and (c) PGP, respectively. Each panel reports robust correlation coefficients based on

our samples (up to 1224 brain tissues), as described in Fig. 2. The results from individual cerebellar data sets were combined into a overall estimate, Meta

CRBLM. Similarly, the result from multiple different brain regions (including three from the CRBLM) were combined into an overall estimate, Meta ALL. As

described in Methods, the P values were not adjusted for intrasubject correlation. After applying a decorrelation analysis, the Meta ALL P values become

(a) 1.6� 10� 8, (b) 6.9� 10� 13 and (c) 1.5� 10� 3, respectively.
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chimpanzees. Given the rich literature on the role of mTOR in
aging and age-related diseases38–42, it is striking that the
expression levels of MLST8 (a subunit of mammalian target of
rapamycin complexes 1 and 2) relate to the SNP in the 16p13.3
locus in at least 9 brain regions (Fig. 2b).

Further, the finding that DHX57 has a significant cis-eQTL in
the cerebellum is noteworthy given the following results from a
comparative analysis of different brain regions. In our study,
DHX57 is significantly overexpressed in the cerebellum compared
with other brain regions (P¼ 1.9� 10� 94 in study 2 and
2.2� 10� 49 in study 5, Supplementary Fig. 12). Similarly, we
previously found that genes involved in helicase activity are
significantly overexpressed in the cerebellum compared with
other brain regions (Bonferroni corrected P¼ 8.5� 10� 6)17.
Since our genetic study suggests that high RNA helicase activity is
associated with a low cerebellar age, these results suggest that the
cerebellum might age more slowly than other brain regions
according to the epigenetic clock. This is indeed the case as we
have recently shown using three independent data sets and brain
regions from six individual centenarians17.

Overall, our results demonstrate the utility of a new paradigm
for understanding aging and age-related diseases: instead of
relating SNPs to clinical outcomes directly, it will be fruitful to
use epigenetic tissue age as endophenotype.

URLs. 1000 genome project, http://www.1000genomes.org/
BRAINEAC, http://www.braineac.org/
DNAm age, http://labs.genetics.ucla.edu/horvath/htdocs/dnamage/
EIGENSTRAT, http://genepath.med.harvard.edu/Breich/

Software.htm
HRS, http://hrsonline.isr.umich.edu/
IMPUTE2, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html/
METAL, http://csg.sph.umich.edu/abecasis/Metal/
Locuszoom, http://csg.sph.umich.edu/locuszoom/
MaCH/Minimac, http://www.sph.umich.edu/csg/abecasis/MACH/
MAGENTA, https://www.broadinstitute.org/mpg/magenta/
PLINK, http://pngu.mgh.harvard.edu/Bpurcell/plink/
R metafor, http://cran.r-project.org/web/packages/metafor/
R WGCNA, http://labs.genetics.ucla.edu/horvath/Coexpression

Network/

SHAPEIT, https://mathgen.stats.ox.ac.uk/genetics_software/
shapeit/shapeit.html.

Methods
An overview of our data sets is presented in Table 1. Additional details can be
found in Supplementary Tables 1 and 2 and in Supplementary Methods. The
patient consent information can be found in the previously published articles.
Further, our meta-analysis was approved by the ethics review board at UCLA
(IRB#15-001479 and IRB#14-000061). Although our cerebellar DNAm data came
from case–control studies of various diseases (Alzheimer’s disease, schizophrenia
and major depression), we ignored disease status in our analysis, since it was not
significantly associated with cerebellar age acceleration. Studies 1–5 involved
DNAm and SNP data measured from the same subjects. Furthermore, gene
expression data (microarray or RNA-seq) were available for studies 2, 3, 5 and 6.

Heritability analysis. We estimated the heritability of epigenetic age acceleration
using data in different brain regions from neurologically normal subjects of studies
2 and 5 using the GCTA software tool27,28. In study 2, we focused on genotyped
and imputed SNPs that met the following criteria: minor-allele frequency
(MAF)40.05, SNP missing rateo0.15, individual missing rate o0.10,
Hardy–Weinberg equilibrium (HWE) test P40.0001, and info measure 40.4 for
imputed markers (Supplementary Table 2). The same criteria were applied to SNPs
from study 5 but the individual missing rate, SNP missing rate and HWE were
disregarded since the analysis was based on the expected allelic dosage. The limited
sample size resulted in low power for detecting a significant level of heritability, for
example, the power was less than 0.07 for detecting a heritability of h2¼ 0.5
according to the GCTA-GREML power analysis tool28.

GWAS analysis for epigenetic age acceleration. SNP quality was assessed by
estimating MAF, HWE and missingness rate across individuals (Supplementary
Table 2). European ancestry of the subjects from study 2 was validated by the
authors43, which led to the removal of two inconsistent subjects. The reported
genetic ancestry of other study subjects was confirmed using principal component
analysis plots or multidimensional scaling plots in conjunction with principal
component analysis in PLINK44 and EIGENSTRAT45.

Imputation. We used IMPUTE2 (refs 46,47) with haplotypes phased using
SHAPEIT48 or MACH/Minimac46 to impute SNP and INDEL markers based on
the 1000 Genome haplotypes from 1,092 individuals (released in December 2013).
The quality of imputed markers was assessed by the Info measure 40.4 (in
IMPUTE2) or R240.3 (in Minimac).

Genome-wide meta-analysis. For association analysis, we regressed the age
acceleration trait values on (1) estimated genotype dosage (counts of test alleles) or
(2) expected genotype dosage, adjusted for the first two principal components
when necessary. Correlation or partial correlation estimates (if adjusted for the
principal components) were used as the outcome measures in meta-analysis. More

Table 3 | Overlap with gene sets found in other GWAS studies.

Trait of GWAS study Genetic ancestry No. of genes overlap/annotation* Hypergeometric P Bonferroni P

AMD EURþASN 79/957 6.4� 10� 6 1.0� 10�4

Alzheimer’s diseasew EUR 29/100 4.4� 10� 15 7.1� 10� 14

Longevity (age 490)z EUR 25/880 40.99 40.99
Parkinson’s disease EUR 72/952 2.6� 10�4 3.9� 10� 3

Health Retirement Study
Cognitive decline ALL 55/969 0.17 40.99

EUR 61/970 3.5� 10� 2 0.56
AFR 57/970 0.11 40.99

AMR 50/969 0.42 40.99
Dementia Wave 8 ALL 52/970 0.31 40.99

EUR 60/970 4.8� 10� 2 0.76
AFR 49/969 0.47 40.99

AMR 54/968 0.21 40.99
Dementia Wave 9 ALL 38/970 0.95 40.99

EUR 36/970 0.98 40.99
AFR 66/969 5.9� 10� 3 9.5� 10� 2

AMR 48/968 0.53 40.99

ALL, all genetic ancestry; AMD, age-related macular disease; AMR, Americans; AFR, Africans; ASN, Asians; EUR, Europeans; GWAS, genome-wide association studies..
*The proportion of trait related genes (MAGENTA Po95th percentile) that also relate to cerebellar age acceleration. The set of cerebellar aging genes contains n¼ 967 autosomal genes that have a
suggestive relationship with cerebellar age acceleration (MAGENTA Po95th percentile across autosomal genes).
wThe small denominator numbers reflects the GWAS results of Alzheimer’s diseases on 11,632 SNPs (Supplementary Information for more details).
z94 out of 967 genes not in the human March 2006 (hg18) assembly had to be removed from the overlap analysis.
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details stratified for each study can be found in Supplementary Table 2. We only
analysed common variant markers (MAF45%) for GWAS, leaving 5,713,604
(genotyped or imputed) markers present in at least 4 study sets for association
analysis. We combined single outcome measures from each study by fixed-effects
models weighted by inverse variance, as implemented in Metal29.

Linkage disequilibrium analysis. All LD estimates presented in this article were
calculated using the 1000 genome individuals with ancestry of European released in
December 2013.

Regional association results. We generated plots for presenting regional
association results with LocusZoom49. As noted, color coded LD estimates
presented in the plots were calculated using the 1000 genome individuals with
ancestry of European released in November 2014.

GWAS-based enrichment analysis with MAGENTA. We used the MAGENTA
software34 to assess whether our meta-analysis GWAS results are enriched with
Ingenuity pathways, KEGG pathways, Gene Ontology (GO) terms and PANTHER
(biological processes, molecular functions and pathways) . To assign genes to SNPs,
we extended the gene boundary to ±50 kb. For computational reasons, we
removed categories that did not contain any genes related to age acceleration at a
level of 1.0� 10� 3 or that contained fewer than 10 genes. For the GSEA method
we chose 95th percentile, with empirical P values estimated started with 10,000
permutations then increased to 1 million when Po1.0� 10� 4. We only report the
gene sets whose false discovery rate FDR (calculated under the MAGENTA
algorithm) was o0.25.

Chromatin state annotations for GWAS hits. For each genome-wide SNP, we
used the UCSC genome browser to display the 25 chromatin states across 127
cell/tissue lines at 25-bp resolution (Supplementary Fig. 6s) based on imputed
histone markers (from ChromImpute32). The n¼ 127 diverse cell/tissue lines were
profiled by the NIH RoadMap Epigenomics30 (n¼ 111) and ENCODE projects31

(n¼ 16). Additional annotation analysis results based on the earlier chromatin
state analysis from ref. 50 are displayed in Supplementary Fig. 6s as well.

Cis-expression QTL analysis of GWAS hits. In total, 2,455 brain tissue expres-
sion samples were available to identify genes whose expression levels were asso-
ciated with our GWAS hits (Table 2). The expression data came from two broad
categories of data. The first category involved our study subjects of 1,224 brain
tissues across 5 brain regions and neurons, as listed in Table 1. The number already
excludes the potential outliers detected by applying unsupervised hierarchical
clustering analysis to the gene expression data from each brain region separately.
We only removed a few suspicious samples as detailed in Supplementary Figs
13–16. The second category involved the BRAINEAC database with archived eQTL
results evaluated in up to 1,231 brain tissues across 10 regions from 134 neuro-
pathologically normal individuals of European descent (see URL). We evaluated
the correlation between SNPs and gene expression levels using a robust correlation
estimate known as biweight midcorrelation, which is implemented in the ‘bicor’ R
function of the WGCNA R package51. Our cis-eQTL involved all genes located
within 500 kb of the test SNP and proceeded along the following three steps. First,
we identified (cis-acting) SNP–gene pairs by using cerebellar gene expression data
from subjects that were used in our cerebellar GWAS analysis. Towards this end,
we used n¼ 494 samples from studies 2, 3 and 5 for which cerebellar gene
expression data were available. To combine the coefficient estimates from the three
respective studies into a single estimate, we applied a fixed-effect model weighted
by inverse variance (implemented in the ‘metafor’ R package) and referred as to
Meta CRBLM listed in Fig. 2. Genes surpassing Meta CRBLM P at 1.0� 10� 4 were
highlighted for subsequent assessment. Second, we replicated these significant
eQTL (identified in the first step) across other brain regions, using up to 730 brain
tissues from our study samples. Expression QTL analysis was conducted on the
expression data in frontal cortex for the same subjects in studies 2 and 4 plus pons
and temporal cortex (for study 2 only), as well as in assorted neurons from 81
independent individuals (study 6 in Table 1). We combined a total of 8 eQTL
results (including those from the first step) into a single estimate by the fixed-effect
model, referred to as Meta ALL in Fig. 2. Third, additional eQTL results came from
1,231 brain tissues archived in the UK brain expression database. The eQTL was
evaluated for up to 10 brain regions, including cerebellum, frontal cortex,
hippocampus, medulla, occipital cortex, putamen, substantia nigra, temporal
cortex, thalamus and intralobular white matter, in addition to the average across all
available regions that yielded a single estimate for eQTL, listed as aveALL in Fig. 2.
The effect allele under the UK database can be visualized in the plots listed under
the option ‘stratification expression by SNP’ (see Supplementary Fig. 7a,b). To
summarize the eQTL results from the two categories of data, we applied Stouffer’s
Z score meta-analysis approach. Specifically, we combined the two P values from
Meta ALL and aveALL into a single P value referred to as Combined ALL in Fig. 2.
The resulting Combined ALL P value should be considered as descriptive
(as opposed to an inferential measure) since it ignores the dependence resulting
from the fact that various brain regions came from the same subjects in studies

2 and 4. To account for the intrasubject correlation, we applied a decorrelation
analysis to the multiple brain regions in studies 2 and 4, yielding adjusted Meta
ALL and Combine ALL P values (Fig. 2). However, the decorrelation analysis might
be overly conservative since it may overcorrect P values. Details on the
decorrelation analysis can be found in Supplementary Information.

Overlap with the GWAS results. To yield the GWAS results for cognitive
functioning traits, we used 12,500 participants from the HRS—an independent
large-scale longitudinal data set with individuals over the age of 50 years collected
every 2 years (Supplementary Table 7 and Supplementary Information). GWAS
analysis was performed on genotyped and imputed SNPs for testing (1) cognitive
slope that indicates the change in cognitive age given the change in chronological
age over the fourteen years (1996–2010), (2) dementia binary status at wave 8
(diagnosed in year 2006) and (3) dementia binary status at wave 9 (diagnosed in
year 2008), respectively. We used standard quality control for SNPs and assess-
ments for association analysis results (Supplementary Information). For each trait,
association analysis was conducted on all participants as well as in individual racial/
ethnic strata (European, African American and Hispanic) resulting in a total of 12
GWAS analyses. Supplementary Table 7 lists the summary statistics of cognitive
traits for all participants and different racial/ethnic strata. Supplementary Table 8
summarizes the model framework for association analysis and assessments for the
GWAS results. Manhattan plots of the association results for each trait and race/
ethnic group can be found in Supplementary Figs 9–11.

The genes were aligned according to the hg19 assembly (n¼ 19,432 autosomal
genes) except those of the longevity study (hg18 assembly, n¼ 17677 autosomal
genes).
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