
AppTCP: The Design and Evaluation of Application-based TCP for e-VLBI in Fast Long
Distance Networks

Guodong Wanga,b, Yulei Wub,∗, Ke Doua,b, Yongmao Renb, Jun Lib

aGraduate University of Chinese Academy of Sciences, Beijing 100049, China,
bComputer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China,

Abstract

Electric Very Long Baseline Interferometry (e-VLBI) is a typical astronomical interferometry used in radio astronomy. It allows
observations of an object that are made simultaneously by many radio telescopes to be combined, emulating a telescope with the
size equal to the maximum separation between the telescopes. The main requirements of transporting e-VLBI data are the high and
constant transmission rate. However, the traditional TCP and its variants cannot meet these requirements. In an effort to solve the
problem of transporting e-VLBI data in fast long distance networks, we propose an application-based TCP (AppTCP) congestion
control algorithm, using Closed-Loop Control theory to keep the stable and constant transmission rate. AppTCP can swiftly reach
the required transmission rate by increasing the congestion control window, and keep the transmission rate and allows the other
TCP flows to share the remaining bandwidth. We further conduct extensive experiments in both fast long distance network test-bed
and actual national networks (i.e., from Beijing to Shanghai in China) and international networks (i.e., from Hongkong in China
to Chicago in USA) to evaluate and verify the performance and effectiveness of AppTCP. The results show that the AppTCP can
effectively utilize the link capacity and maintain the constant rate during the data transmission, and its performance significantly
outperforms that of the existing TCP variants.

Keywords: Bulk Data Transmission, Congestion Control, High Speed Network, e-VLBI, TCP

1. Introduction

The efficiency of bulk data transmission over fast long dis-
tance networks (FLDnets) is critically required for many sci-
entific applications, e.g., e-VLBI transmissions [1]. In order to
support the e-VLBI experiments conducted by global radio tele-
scopes, high volume e-VLBI data need to be transported global-
ly. Although we can provide a link with a high bandwidth for e-
VLBI data transmission, we still encounter the short-term con-
gestion resulted from the burst flow in the IP link which greatly
degrades the performance of transporting the e-VLBI data. That
is because the current version of TCP cannot meet the require-
ments of e-VLBI data transmission, including reaching a high
transmission rate swiftly by aggressively grabbing the available
bandwidth from the link, maintaining the transmission rate as
long as possible, and sharing the bandwidth friendly with other
flows once the required transmission rate is obtained.

A number of improved TCP variants have been proposed to
increase the efficiency of TCP in FLDnets, e.g., HSTCP [2],
STCP [3], HTCP [4],Westwood [5], BIC [6], CUBIC [7], Yeah
[8], ACP [9], etc. Although these TCP variants have achieved
success in certain issues, there are still many challenges that
cause researchers widespread concerns [10], such as the effi-
ciency, stability and fairness of TCP for bulk data transmission

∗Corresponding author
Email addresses: wangguodong@cstnet.cn (Guodong Wang),

wuyulei@cstnet.cn (Yulei Wu ), douke@cstnet.cn (Ke Dou),
renyongmao@cstnet.cn (Yongmao Ren), jlee@cstnet.cn (Jun Li)

in FLDnets. To the best of the authors’ knowledge, there is
no effective approach proposed in the current literature to meet
the data transmission requirements of e-VLBI. Although Cir-
cuit TCP [11] made a step in this field, however, it completely
removes the congestion control mechanism, which makes it on-
ly suitable for dedicated optical networks.

In an effort to tackle the problems of e-VLBI data transmis-
sion in fast long distance networks, this paper presents a new
application-based TCP (AppTCP) based on the Closed-Loop
Control theory [12]. With the proposed protocol, the trans-
mission can swiftly reach the required rate by increasing the
congestion control window (cwnd) aggressively; in addition, it
keeps the transmission rate and allows the other TCP flows to
share the remaining bandwidth. We further implement AppTCP
on Linux platform, and conduct extensive experiments in the
both FLDnet test-bed and the actual national and internation-
al networks to verify the efficiency of the proposed AppTCP.
The experimental results show that the performance of AppTCP
in bulk data transmission in FLDnets significantly outperforms
that of the existing TCP variants.

The remainder of the paper is organized as the follows. Sec-
tion 2 describes the related work. Section 3 presents the design
of AppTCP algorithm. Extensive experiments of AppTCP in
the FLDnet test-bed and in actual networks are conducted in
Section 4 and Section 5, respectively. Finally, Section 6 con-
cludes this study.



2. Related work

To increase the transmission efficiency of the traditional TCP
in FLDnets, a number of TCP variants have been proposed.
The proposed protocols can be classified into the following cat-
egories according to the congestion control strategies: Loss-
based Congestion Algorithm (LCA), Delay-based Congestion
Algorithm (DCA) and Compound Congestion Algorithm (C-
CA) which combines the LCA and DCA. LCA adopts the pack-
et loss as the only indicator of congestion, while DCA uses the
variation of Round Trip Time (RTT) to reflect the network’s
condition. Table 1 shows the classified description of the popu-
lar TCP variants.

Table 1: Classification of TCP variants
Categories Representatives
LCA STCP [3], HSTCP [2], BIC [6], CUBIC [7]
DCA Vegas [13], ACP [9]
CCA CTCP [14], Yeah [8]

STCP [3] altered standard TCP’s AIMD (Additive In-
crease Multiplicative Decrease) congestion avoidance scheme
to MIMD (Multiplicative Increase Multiplicative Decrease).
Specifically, STCP increases its cwnd by 0.01 times of the cur-
rent size on each received ACK (acknowledgement) and de-
creases it to its 0.875 times upon a packet loss. In contrast,
HSTCP [2] still adopts the AIMD scheme, but it polishes the
increase and decrease parameters.

BIC [6] adopted a binary search growth and linear growth to
adjust its cwnd. Binary search growth is similar to the classi-
cal binary search algorithm. If the distance between the current
cwnd and the desired cwnd is too large, BIC adopts the linear
growth strategy instead of the binary search growth. Howev-
er, BIC’s cwnd updating rate appears too aggressive, especially
under short RTT or in low speed networks. CUBIC [7] is the re-
vised version of BIC. It simplified the cwnd updating algorithm
of BIC to increase the TCP friendliness.

Vegas [13] was a typical DCA TCP variant and its cwnd is
adjusted by the RTT variation of the link. If the RTT is grad-
ually increasing, the link is considered to be congested and the
cwnd will be decreased; otherwise, the congestion is alleviated
and the cwnd will be increased.

ACP [9] used the estimation of the bottleneck queue size and
fairness ration to achieve high utilization and friendly share net-
work resources.

CTCP [14] combined the loss based CAA (Congestion
Avoidance Algorithm) and delay based CAA to achieve high
bandwidth utilization and TCP friendliness. Delay based CAA
is achieved by introducing dwnd (delay window), and then the
sending window is controlled by both cwnd and dwnd. The
delay-based component has a scalable window increasing rule
that not only probes the link capacity, but also reacts early to
avoid congestion by sensing the changes of RTT.

In [8], the network has two status: Fast and Slow. In Fast
state, the increase of cwnd is expeditious just like STCP, while

in Slow state, cwnd increases moderately as Reno dose to avoid
network congestion.

Although these TCP variants have achieved certain success
in their respective target areas [15, 16, 17], there is no effective
approach which is proposed to meet the requirements for appli-
cations in e-VLBI environments. Therefore, in this paper we
target this problem to propose an AppTCP to facilitate the data
transmission for e-VLBI.

3. The proposed application-based TCP

3.1. Closed-Loop Control system

In this section, we first introduce the Closed-Loop Control
system [12], a popular control system theory in Mechanical En-
gineering which can facilitate the design of AppTCP. A typical
Closed-Loop Control system can be represented by the general
block diagram shown in Fig. 1, where a Feedback component
is applied together with the Input. The difference between the
Input and Feedback is applied to the Controller. In respond-
ing to this difference, the Controller acts on the Process forcing
Output to change in the direction that will reduce the difference
between the Input and the Feedback. This, in turn, will reduce
the Input to the process and result in a similar change in Out-
put. This chain of events continues until a time is reached when
Output approximately equals Input.

Controller Process

Feedback

Input Output
+
-

Figure 1: Typical Closed-Loop Control System

3.2. The theory of AppTCP

A Closed-Loop Control system is able to regulate itself in
the presence of disturbance or variations in its own character-
istics, and thus has obvious advantage in keeping the output at
a constant rate. We, therefore, apply the Closed-Loop Control
system theory to the design of AppTCP as shown in Fig. 2.

AppTCP

Feedback

tp_Input

measured

tp_output

+
-

ACK

tp_Output

cwnd

Figure 2: Our Closed-Loop Control System

In this model, tp Input (throughput input) and tp Output
(throughput output) represent the required transmission rate of
an application and the actual transmission rate we can obtain,
respectively. AppTCP acts as both the Controller and the Pro-
cess in our Closed-Loop Control system. The feedback of ac-
tual transmission rate (measured tp Output) is applied with the
required transmission rate tp Input, and the difference between
the tp Input and measured tp Output is applied to the AppTCP.

2



In responding to this difference, AppTCP acts on its congestion
control algorithm, which forces tp Output to change in the di-
rection that will reduce the difference between the tp Input and
the measured tp Output. This chain of events continues until a
time is reached when tp Output approximately equals tp Input.

3.3. The implementation of AppTCP

In implementation of the AppTCP, the tp Input can be ob-
tained from the applications. To calculate the measured t-
p Output, we get the current RTT (RTT current) from the
ACKs which are sent from the client, and the current cwnd from
the AppTCP. For a cwnd number of packets are transmitted per
RTT, the measured tp Outut [13] can be described as

tp Output =
cwnd ×MSS
RTT current

(1)

where the MSS is the Maximum Segment Size, with the default
value of 1460 byte in the standard TCP [18].

Similar to the standard TCP [18], the Slow Start mechanis-
m is adopted to aggressively grab the available bandwidth of
the link, which means that AppTCP doubles its cwnd from the
initial size within the time of RTT. In contrast, the Closed-
Loop Control mechanism is introduced to keep the constan-
t transmission rate, with which the cwnd of AppTCP is dy-
namically adjusted by the difference between the tp Input and
the tp Output. Specifically, the cwnd will be changed with
the aim of reducing the difference between the tp Input and
the tp Output. The detailed congestion control algorithm of
AppTCP can be given by

cwndi+1 =

{
cwndi + 1 Slow Start
cwndi ± 1

AI cnt Closed-Loop Control (2)

where the index i denotes the reception of the ith ACK and the
AI cnt is the Additive Increase count which is introduced to s-
mooth the cwnd adjusting rate [3]. The cwnd will not be adjust-
ed until AI cnt number of ACK is received in the Closed-Loop
Control phase of AppTCP. From Eq. (2), we can find that both
the Slow Start and Closed-Loop Control result in a discrete ex-
ponential increase with RTT, but their bases are different. In S-
low Start, the base is 2, while in Closed-Loop Control, the base
is 1 ± 1

AI cnt . The reason why we use the ± symbol is that the
value of (tp Output − tp Input) could be positive or negative.
If the value is positive, the cwnd should be decreased, other-
wise, the cwnd is increased. Consequently, the cwnd evolution
in time can be given by

cwnd(t) =
{

2
t

RTT , Slow Start
γ ± t−tγ

RTT ×
cwnd

AI cnt , Closed-Loop Control
(3)

where t represents the elapsed time with the unit of RTT. tγ and
γ are the time and the cwnd, respectively, when AppTCP exits
the Slow Start phase. Thus, it is easy to get tγ = RTTlog2γ.
From Eq. (3), we can find that the larger the cwnd (the high-
er throughput), the greater the cwnd adjustment rate, which is
helpful for AppTCP to effectively increase the cwnd in high-
speed networks.

Algorithm 1: The congestion control algorithm of AppTCP
Initialization:
RTT base←− ∞ snd ssthresh←− ∞
/* get tp Input from the application */

tp Input ←− application
On each ACK:
begin

/* get the current RTT. */

RTT current ←− RTT us
RTT base←− min(RTT base,RTT )
/* calculated from Eq.(1) */

tp Output = cwnd × MS S/RTT current
if cwnd < cwnd base then

/* Slow Start */

cwnd + +
else

/* Closed-Loop Control */

if tp input < tp output then
if cwnd cnt ≥ AI cnt then

cwnd + +
cwnd cnt = 0

else
cwnd cnt + +

end
else

if cwnd cnt ≥ AI cnt then
cwnd − −
cwnd cnt = 0

else
cwnd cnt + +

end
end

end
end
Packet loss:
begin

/* calculated from Eq.(4) */

cwnd = tp input × RTT base/MS S
end

The pseudo code of AppTCP is presented in the Algorithm 1.
On the initialization, the parameters are assigned with the val-
ues, and the AppTCP starts up from the Slow Start phase. On
the receiving of each ACK, the RTT current and the base RTT
(RTT base) can be obtained. The RTT base denotes the prop-
agation delay of the link which is used to determine the time
when the AppTCP exits the Slow Start phase. The RTT current
represents the sum of the propagation delay and the queuing de-
lay which is used to calculate the tp Output in Eq. (1).

The Slow Start phase ends when the cwnd is equal to
cwnd base, which is the minimum cwnd (calculated using the
RTT base) that the AppTCP can achieve the required transmis-
sion rate. The cwnd base can be expressed as

cwnd base =
tp input × RTT base

MS S
(4)

3



After that, the AppTCP enters the Closed-Loop Control
phase, and the transmission rate is dynamically adjusted by
the Closed-Loop Control mechanism of AppTCP. When pack-
et loss happens, cwnd will be set to the cwnd base and then
dynamically adjusted by the Closed-Loop Control mechanism.

4. The performance of AppTCP in fast long distance net-
work test-bed

In order to evaluate the performance of AppTCP, extensive
experiments have been conducted in the both FLDnet test-bed
and actual networks. This section investigates the performance
of AppTCP in the FLDnet test-bed. The main components of
the FLDnet test-bed include four terminals and one emulator,
where the Sender 1 / Sender 2 and Receiver 1 / Receiver 2 are
connected by the emulator. The emulator can control the bottle-
neck bandwidth, delay and packet loss probability of the links.
The operating systems of all servers are CentOS with the Linux
kernel of 2.6.18, and the specifications of the servers are shown
in Table 2. Experiments are performed by sending 2 GB file
from server to client. For AppTCP, as the Closed-Loop Control
mechanism can restrain the throughput fluctuation, the AI cnt
is set to be 10 [3]. For the following experiments, each experi-
ment is repeated 5 times, and thus we get 5 sets of data for each
experiment. The largest and the smallest value of these data are
dropped and the average value of the other three is taken as the
valid data.

Table 2: Specifications of the servers in test-bed

Terminals CPU Memory Disk Speed
Sender 1

Intel Xeon(R) 4.0GB 333MBps
Receiver 1 CPU 2.00GHz
Sender 2
Receiver 2 (2×4 cores)
Emulator

4.1. Required transmission rate vs. Actual throughput

Since the AppTCP is designed to meet the requirements of e-
VLBI applications with the characteristics of constant transmis-
sion rate, the experiment is conducted to evaluate if AppTCP
can effectively control the transmission rate. In this experimen-
t, the RTT and bottleneck bandwidth of the link are set to be 300
ms and 622 Mbps, respectively. The required transmission rate
varies from 100 Mbps to 600 Mbps to investigate if the actual
throughput can be achieved precisely.

In Fig. 3, we compare the required transmission rate and the
actual throughput we get from AppTCP. It is clearly to see that
the difference between the required transmission rate and the
actual throughput is quite small, which indicates that AppTCP
can effectively control the transmission rate of the applications.

1 2 3 4 5 6
0

100

200

300

400

500

600

T
hr

ou
gh

pu
t (

M
bp

s)

The number of experiments (n)

Required Transmission Rate
Actual Throughput

Figure 3: Required transmission rate vs. Actual throughput

4.2. RTT vs. Throughput
In this experiment, we set the bottleneck bandwidth to be 622

Mbps and varies RTT from 2 ms to 512 ms to investigate the
effects of different RTTs on the efficiency of AppTCP’s trans-
mission.

2 16 32 64 128 256 512
0

100

200

300

400

500

600

700

Round Trip Time (ms)

T
hr

ou
gh

pu
t (

M
bp

s)

Reno
Vegas
BIC
CUBIC
STCP
HSTCP
HTCP
Westwood
AppTCP

Figure 4: RTT vs. Throughput

Fig. 4 shows that with the increase of the RTT, nearly al-
l the TCP variants show a downward trend in the throughput
except for AppTCP, in which the throughput maintains around
600 Mbps. The results indicate that AppTCP achieves high ef-
ficiency for the transmission in FLDnet environments.

4.3. Link loss vs. Throughput
In this experiment, the bottleneck and RTT are set to be 622

Mbps and 300 ms, respectively, and the packet loss probability
varies from 0 to 1E-4 to investigate the efficiency of AppTCP
under different link loss probabilities.

10
−6

10
−5

10
−4

0

100

200

300

400

500

600

Random Loss Rate

T
hr

ou
gh

pu
t (

M
bp

s)

Reno
Vegas
BIC
CUBIC
STCP
HSTCP
HTCP
Westwood
AppTCP

Figure 5: Link Loss vs. Throughput

Fig. 5 shows that when the loss probability is 0, AppTCP
performs perfectly and the network throughput is around 610

4



Mbps. With the increase in loss probability, the performance of
CUBIC and HSTCP degrades significantly, which indicates that
they are sensitive to the link loss. The performance of AppTCP
is undeniably affected by the increase of loss probability, but it
is still higher than that of the other TCP variants regardless of
the varying of the loss probability.

4.4. Friendliness evaluation

To evaluate the friendliness of AppTCP when it competes
bandwidth with other TCP flows. Fig. 6 depicts the experiment
where the RTT is fixed to be 300 ms and the bottleneck band-
width is set to be 622 Mbps without any loss in the link. BIC is
used as the competing flow because it is the default TCP variant
in CentOS.

CUBIC HSTCP STCP AppTCP
0

100

200

300

400

500

600

T
hr

ou
gh

pu
t (

M
bp

s)

BIC

CUBIC

HSTCP

STCP
AppTCP

Figure 6: Friendliness evaluation

We can find from Fig. 6 that CUBIC and HSTCP are too
mild when they compete with BIC. In contrast, the aggressive-
ness of STCP makes it grab excessive bandwidth from BIC.
For AppTCP, when the transmission rate is set to be 256 Mbp-
s, AppTCP only grabs the required 256 Mbps and shares the
remaining bandwidth friendly with BIC.

5. The performance of AppTCP in actual international and
national fast long distance networks

������������	�
��������������������������

�����������������	�
�����������������������������

������

��������

���������

�������

�������
�������

���� 
!

��
��
�
��

Figure 7: The actual network link for the performance evaluation of AppTCP

In this section, we mainly investigate the performance of
AppTCP in actual network environments. To verify its effec-
tiveness in different scenarios, we conduct our experiments both
in an international network and a national network as shown in
Fig. 7, respectively. The international network used in this sec-
tion is the GLORIAD [19] link from Hong Kong to Chicago.
The link bandwidth is 1 Gbps and the RTT is 139 ms (±1 m-
s). The national network adopted in this section is the link from
Beijing to Shanghai. The link bandwidth is 1 Gbps and the RTT
is 20 ms (±1 ms).

5.1. Dynamic transmission rate

One of the key contributions of AppTCP is that it can achieve
high and stable transmission rate in FLDnets. In order to evalu-
ate and verify this feature, the network testing tool Iperf [20] is
adopted to measure the packet transmission rate. Each experi-
ment runs for 60 seconds and the transmission rate is recorded
every second. We compare the performance of all the TCP vari-
ants including BIC, CUBIC, HSTCP, etc. in Linux 2.6.18, and
the results are shown in Fig. 8.

0 20 40 60

600

800

1000
AppTCP

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
BIC

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
CUBIC

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
HSTCP

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
HTCP

time (seconds)
T

hr
ou

gh
pu

t (
M

bp
s)

0 20 40 60
0

500

1000
Hybla

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
STCP

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
Vegas

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
Veno

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
Westwood

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

(a) Dynamic throughput in the international network

0 20 40 60
0

500

1000
AppTCP

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
BIC

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
CUBIC

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
HSTCP

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
HTCP

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
Hybla

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
STCP

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
Vegas

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
Veno

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60
0

500

1000
Westwood

time (seconds)

T
hr

ou
gh

pu
t (

M
bp

s)

(b) Dynamic throughput in the national network

Figure 8: Dynamic throughput of AppTCP and other TCP variants in interna-
tional and national networks

In the international network, the server in Chicago is installed
with the AppTCP stack. It can be seen from Fig. 8(a) that

5



the transmission rate of AppTCP quickly rockets to around 850
Mbps at the very start of the test, and keeps the rate in the re-
maining of the experiment. HTCP, Hybla, and Westwood al-
so achieve stable transmission rate, but their transmission rates
are only about 500 Mbps, which is much lower than that of
AppTCP. For the other TCP variants, they perform much poor-
er than AppTCP either in reaching high transmission rate, or in
the ability to keep a constant rate. Vegas and Veno are the worst
cases in this international network.

In the national network, the server in Beijing is installed with
the AppTCP stack. It can be seen from Fig. 8(b) that AppTCP
still quickly reaches and keeps a stable transmission rate over
900 Mbps. BIC, CUBIC, HSTCP, HTCP can also reach a high
transmission rate, however, they require much longer time to go
up to such a transmission rate, and the stability is not as good as
the AppTCP. It is remarkable that like in the international net-
work, Vegas and Veno remain the worst cases in this national
networks. Westwood also performs poorly in this environment,
and its transmission rate is much lower than that in the interna-
tional network.

5.2. Average throughput

AppTCP BIC CUBIC HSTCP HTCP Hybla STCP Vegas Veno WestwoodReno
0

100

200

300

400

500

600

700

TCP Variants

T
he

 A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

(a) Average throughput in international network

AppTCP BIC CUBIC HSTCP HTCP Hybla STCP Vegas Veno WestwoodReno
0

100

200

300

400

500

600

700

800

900

TCP Variants

T
he

 A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

(b) Average throughput in national network

Figure 9: Average throughput of AppTCP and other TCP variants in interna-
tional and national networks

Considering that FTP is widely used in bulk data transmis-
sion, in this section, FTP is employed to transport 2 GB files
from Chicago to Hong Kong and from Beijing to Shanghai, re-
spectively, to investigate the performance of AppTCP. We s-
elect VSFTP as the FTP server because it is the default FTP
server in Linux CentOS. In order to obtain the accurate results,
all experiments run for five times. After removing the maxi-
mum and minimum value, the mean of the other experiments is
taken as the final result, which is presented in Fig. 9.

Fig. 9 shows that the performance of AppTCP is much bet-
ter than the existing TCP variants both in the international and
national networks. Specifically, in the international network,
AppTCP can reach around 650 Mbps in average throughput,
while in the national network, its average throughput is close
to 900 Mbps. Hybla and HTCP perform well in the interna-
tional network, since Hybla increases the cwnd update rate in
networks with larger RTTs, and HTCP is designed to increase
the transmission efficiency of TCP in FLDnets. The experi-
mental results verifies their effectiveness. While in the national
network BIC and HSTCP are efficient. Vegas is the worst case
in transmission efficiency both in the international and national
networks.

5.3. Stability

The stability can be depicted by the standard deviation of
the throughput of the protocols. The standard deviation of the
throughput of AppTCP as well as that of the other TCP variants
are presented in Fig. 10.

AppTCP BIC CUBIC HSTCP HTCP Hybla STCP Vegas Veno WestwoodReno
0

5

10

15

TCP Variants

T
he

 S
ta

nd
ar

d 
D

ev
ia

tio
n

(a) Standard deviation of the throughput in international network

AppTCP BIC CUBIC HSTCP HTCP Hybla STCP Vegas Veno WestwoodReno
0

0.5

1

1.5

2

2.5

TCP Variants

T
he

 S
ta

nd
ar

d 
D

ev
ia

tio
n

(b) Standard deviation of the throughput in national network

Figure 10: Standard deviation of the throughput

Fig. 10 shows that the standard deviation of the throughput
of AppTCP is under 0.1 in the both international and national
networks, which verifies that AppTCP’s stability is the best a-
mong the evaluated TCP variants. It also can be seen from Fig.
10 that the stability of TCP variants in international networks
is worse than that in the national network, which indicates that
the RTT has significant effect on the TCP stability. Specifically,
Hybla is the most unstable one in the international network, and
its throughput standard deviation is close to 15. In the national
network, Veno, STCP and Reno are also unstable in throughput.

6



5.4. Rate control
In addition to the advantages we mentioned above, another

contribution of AppTCP is its ability to achieve the required
transmission rate according to the requirements of the applica-
tions. To evaluate this feature, we vary the required transmis-
sion rate from 100 Mbps to 800 Mbps and compare the dif-
ferences between the required transmission rate and the actual
throughput in Fig. 11.

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

T
hr

ou
gh

pu
t (

M
bp

s)

The number of experiments (n)

Required Transmission Rate
Actual Throughput

(a) Throughput comparison in international network

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

T
hr

ou
gh

pu
t (

M
bp

s)

The number of experiments (n)

Required Transmission Rate
Actual Throughput

(b) Throughput comparison in national network

Figure 11: Required transmission rate vs. Actual throughput

Fig. 11 shows that the difference between the required trans-
mission rates and the actual rates are quite small in the both
international and national networks, which indicates that the
demands of data transmission rate of the applications can be
effectively satisfied using AppTCP.

6. Conclusions

In order to reduce the jitter of TCP transmission rate and
meet the demands of transporting e-VLBI data, this paper has
proposed the AppTCP for FLDnets. The Closed-Loop Con-
trol theory is adopted in AppTCP to keep the stable transmis-
sion rate. To evaluate the performance of AppTCP, extensive
experiments have been conducted in the both FLDnet test-bed
and in the actual networks, including an international network
from HongKong in China to Chicago in USA and a national
network from Beijing to Shanghai in China; the performance
of the AppTCP has been compared with that of many existing
TCP variants. Experimental results have verified that AppTCP
can keep a high and constant transmission rate based on the re-
quirements of applications, and can effectively utilize the link
capacity and obtain the desirable transmission stability. In ad-
dition, AppTCP can also achieve a high degree of friendliness

when the required transmission rate is satisfied. This work has
its significance for reference of investigating the performance
of the TCP owing to its comprehensive comparison with many
existing TCP variants in both test-bed and actual networks.

Acknowledgment

This work is partially supported by the National Program on
Key Basic Research Project (973 Program) under Grant No.
2012CB315803, the National Key Technology Research and
Development Program of the Ministry of Science and Technol-
ogy of China under Grand No. 2012BAH01B03 and the ”S-
trategic Priority Research Program” of the Chinese Academy
of Sciences under Grant No. XDA01020304.

References

[1] eVLBI http://www.evlbi.org/.
[2] S. Floyd, “HighSpeed TCP for large congestion windows,” 2003.
[3] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area

networks,” ACM SIGCOMM Computer Communication Review, vol. 33,
no. 2, pp. 83–91, 2003.

[4] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long-distance
networks,” PFLDnet’04, 2004.

[5] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang, “TCP west-
wood: Bandwidth estimation for enhanced transport over wireless links,”
in Proceedings of the 7th annual international conference on Mobile com-
puting and networking. ACM, 2001, pp. 287–297.

[6] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks,” in INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications So-
cieties, vol. 4. IEEE, 2004, pp. 2514–2524.

[7] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP
variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 64–
74, 2008.

[8] A. Baiocchi, A. Castellani, and F. Vacirca, “YeAH-TCP: Yet another high-
speed TCP,” in Proc. PFLDnet, vol. 7, 2007, pp. 37–42.

[9] H. Jung, S. Kim, H. Yeom, S. Kang, and L. Libman, “Adaptive delay-
based congestion control for high bandwidth-delay product networks,” in
INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 2885–2893.

[10] M. Scharf, M. Welzl, B. Briscoe, and D. Papadimitriou, “Open Research
Issues in Internet Congestion Control,” Internet Research Task Force
(IRTF), RFC 6077, February 2011.

[11] A. Mudambi, X. Zheng, and M. Veeraraghavan, “A transport protocol for
dedicated end-to-end circuits,” in Communications, 2006. ICC’06. IEEE
International Conference on, vol. 1. IEEE, 2006, pp. 18–23.

[12] Closed-Loop Control System, National Instruments tutorial,
http://www.ni.com/white-paper/3096/en.

[13] L. Brakmo and L. Peterson, “TCP Vegas: End to end congestion avoid-
ance on a global Internet,” Selected Areas in Communications, IEEE Jour-
nal on, vol. 13, no. 8, pp. 1465–1480, 1995.

[14] K. Song, Q. Zhang, and M. Sridharan, “Compound TCP: A scalable and
TCP-friendly congestion control for high-speed networks,” Proceedings
of PFLDnet 2006, 2006.

[15] M. A. Mani and R. Mbarek, “Performance Evaluation of High Speed Con-
gestion Control Protocols,” IOSR Journal of Computer Engineering (IOS-
RJCE), vol. 3, no. 1, pp. 12–19, 2012.

[16] J. B. Abed, L. Sinda, M. A. Mani, and R. Mbarek, “Comparison of High
Speed Congestion Control Protocols,” International Journal of Network
Security & Its Applications, vol. 4, no. 5, 2012.

[17] C. Callegari, S. Giordano, M. Pagano, and T. Pepe, “Behavior analysis of
TCP Linux variants,” Computer Networks, vol. 56, no. 1, pp. 462–476,
2012.

[18] M. Allman, V. Paxson, W. Stevens et al., “RFC 2581 TCP congestion
control,” 1999.

[19] GLORIAD http://www.gloriad.org/gloriaddrupal/.
[20] Iperf http://iperf.sourceforge.net/.

7


