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ABSTRACT 6 

This study investigates the potential of control strategy optimisation for the reduction of 7 

operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, 8 

and demonstrates that significant improvements can be realised. A multi-objective 9 

evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and 10 

control parameter values for an activated sludge wastewater treatment plant, with objectives 11 

including minimisation of greenhouse gas emissions, operational costs and effluent pollutant 12 

concentrations, subject to legislative compliance. Different problem formulations are 13 

explored, to identify the most effective approach to emissions reduction, and the sets of 14 

optimal solutions enable identification of trade-offs between conflicting objectives. It is 15 

found that multi-objective optimisation can facilitate a significant reduction in greenhouse 16 

gas emissions without the need for plant redesign or modification of the control strategy 17 

layout, but there are trade-offs to consider: most importantly, if operational costs are not to be 18 

increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent 19 

ammonia and total nitrogen concentrations. Design of control strategies for a high effluent 20 

quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas 21 
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emissions, so it is of key importance that effects on emissions are considered in control 22 

strategy development and optimisation. 23 

Keywords: control; greenhouse gas; multi-objective optimisation; NSGA-II; WWTP 24 

1 INTRODUCTION 25 

Global warming is an internationally recognised problem and, to help address this, the UK 26 

has committed to reduce its greenhouse gas (GHG) emissions by 80% by 2050 with respect 27 

to a 1990 baseline, under the Climate Change Act 2008. Recent studies have highlighted the 28 

significance of GHG emissions resulting from energy use in the water industry (e.g. 29 

Rothausen and Conway 2011), and Defra (2008) has attributed 56% of the industry’s 30 

emissions to wastewater treatment. As such, the water industry must contribute to this target, 31 

using a range of mitigation and adaptation strategies. These demands must be met whilst also 32 

complying with increased water quality standards required by the Water Framework 33 

Directive. The water industry is, therefore, faced with the huge challenge of reducing carbon 34 

emissions by 80% whilst improving standards and remaining cost efficient. Further challenge 35 

is posed by the knowledge that reducing energy consumption does not necessarily correspond 36 

to a reduction in GHG emissions and local energy optimisation can, in fact, increase the total 37 

global warming potential of emissions from a wastewater treatment plant (WWTP) (Flores-38 

Alsina et al. 2014). 39 

It has been shown that implementing automatic control in WWTPs can have a significant 40 

impact on GHG emissions, with reductions of up to 9.6% achieved by Flores-Alsina et al. 41 

(2011). However, the existence of trade-offs and the need for a balancing act has been 42 

highlighted (Flores-Alsina et al. 2011), and a thorough investigation into the relationships and 43 

trade-offs between GHG emissions, effluent quality and operational costs is needed to enable 44 

assessment of the potential improvements achievable in existing WWTPs by altering only the 45 
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control of the system. Multi-objective optimisation enables the identification of a set of 46 

Pareto-optimal solutions, which are non-dominated based upon a given objective set (i.e. 47 

cannot be further improved in terms of any one objective without worsening another); this 48 

solution set can be used to illustrate trade-offs between objectives. 49 

The effects of implementing a range of different control strategies and of using different 50 

setpoints for control on GHG emissions, effluent quality and operational costs have been 51 

explored previously (Flores-Alsina et al. 2011, Guo et al. 2012b). Based on this, 52 

recommendations regarding the control of WWTPs to provide high quality effluent with low 53 

operational GHG emissions have been made (e.g. Flores-Alsina et al. 2014, Flores-Alsina et 54 

al. 2011, Guo et al. 2012a, Guo et al. 2012b). The importance of using multiple objectives to 55 

evaluate and compare WWTP control strategies has been highlighted previously (Flores-56 

Alsina et al. 2014), and trade-offs between effluent quality and operational costs have been 57 

identified using multi-objective genetic algorithms for the optimisation of controller setpoints 58 

(Beraud et al. 2007, Tomita and Park 2009). However, conclusions drawn from previous 59 

studies regarding the reduction of GHG emissions are based on WWTP performance under 60 

only a limited number of different control scenarios, and a global, multi-objective 61 

optimisation of multiple operational parameters has not been used to investigate further 62 

improvements achievable or the existence of additional optimal solutions. 63 

This study, therefore, aims to investigate the potential of control strategy optimisation for the 64 

reduction of operational GHG emissions resulting from wastewater treatment, and to 65 

investigate necessary trade-offs between conflicting control objectives. This is achieved by 66 

multi-objective optimisation of the control of an activated sludge WWTP, in which aeration 67 

intensities are manipulated in order to maintain a specified dissolved oxygen (DO) 68 

concentration. Objectives considered include the minimisation of GHG emissions, 69 

operational costs and effluent pollutant concentrations whilst maintaining legislative 70 
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compliance. The intention of this paper is not to prescribe a specific control strategy that can 71 

be used to reduce emissions, since the model used is of a hypothetical plant and there are 72 

(necessarily) omissions in the sources of GHG emissions modelled, rather to demonstrate that 73 

– assuming the model represents the real phenomena reasonably well – improvements can be 74 

realised if optimised control strategies from multi-objective optimisation are implemented. 75 

2 MATERIALS AND METHODS 76 

2.1 Wastewater treatment plant model 77 

2.1.1 Model scope 78 

The modelled WWTP is based on BSM2-e (Sweetapple et al. 2013a), a modified version of 79 

the BSM2 (Jeppsson et al. 2007) which enables modelling of dynamic GHG emissions. 80 

BSM2-e is computationally demanding, however, and unsuitable for multi-objective 81 

optimisation given the high simulation time and large number of simulations required. 82 

Reductions in GHG emissions resulting from improved plant control have been previously 83 

attributed predominantly to differences in power consumption and secondary treatment 84 

process emissions (Flores-Alsina et al. 2011), and sensitivity analysis has found there to be 85 

negligible variance in sludge line emissions resulting from adjustment of operational 86 

parameters (Sweetapple et al. 2013b). This suggests that the most significant improvements 87 

in total GHG emissions resulting from control strategy optimisation will be due to a reduction 88 

in emissions resulting from wastewater rather than sludge treatment processes and that 89 

modelling of the wastewater treatment processes alone is sufficient to demonstrate the 90 

potential of control strategy optimisation to reduce GHG emissions. The BSM2-e model is, 91 

therefore, modified to exclude sludge treatment, significantly reducing simulation time and 92 

thereby making multi-objective optimisation feasible. Modelling of all operational parameters 93 
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to which effluent quality, operational cost or GHG emissions are sensitive is retained 94 

(Sweetapple et al. 2013b).  95 

The layout of the reduced model is shown in Figure 1 and consists of a primary clarifier, an 96 

activated sludge reactor containing two tanks which may be operated under anoxic or aerobic 97 

conditions, followed by three aerobic tanks in series, a secondary settler and a sludge 98 

thickener. The primary clarifier has a volume of 900m
3
, assumes a 50% solids removal 99 

efficiency and is modelled based upon Otterpohl and Freund (1992) and Otterpohl et al. 100 

(1994). The anoxic tanks have a volume of 1500m
3
 each and the aerobic tanks volumes of 101 

3000m
3
 each; both are modelled using a version of the ASM1 (Henze et al. 2000) modified 102 

for inclusion of GHG emissions as detailed by Sweetapple et al. (2013a). The secondary 103 

settler has a surface area of 1500m
3
, volume of 6000m

3
, and is modelled based upon Takács 104 

et al. (1991). Sludge thickening is modelled as an ideal and continuous process, with no 105 

biological activity and assuming 98% solids removal efficiency. 106 

 107 

Fig. 1 – WWTP model layout and modelled sources of GHG emissions 108 
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Modelled GHG emissions include direct emissions from the activated sludge reactors and 109 

indirect emissions resulting from manufacture of chemicals, energy generation and offsite 110 

effluent degradation. Dynamic production of N2O due to incomplete denitrification, 111 

associated CO2 emissions, and CO2 formed during substrate utilisation and biomass decay in 112 

the activated sludge units are modelled as in BSM2-e, as are CO2 and N2O emissions from 113 

aerobic degradation of the effluent. Emissions resulting from the generation of energy 114 

imported are calculated using the modelled energy requirement for activated sludge aeration 115 

and mixing, and pumping of the internal recycle flow, return activated sludge flow, wastage 116 

flow and the primary clarifier underflow. Further detail on emission modelling methodologies 117 

used is provided as supplementary information. 118 

2.1.2 Control strategy 119 

The implementation of sensors and actuators is based on the BSM2 default closed loop 120 

control strategy, as detailed by Nopens et al. (2010). Key features of the control are as 121 

follows: 122 

 A DO sensor in reactor 4 123 

 A proportional integral (PI) controller, with setpoint, offset, gain and integral time 124 

constant to be specified 125 

 Manipulation of aeration intensities in reactors 3-5 (KLa3, KLa4 and KLa5) 126 

 Controller output fed directly to KLa4 actuator 127 

 Input to KLa3 and KLa5 actuators proportional to controller output (gain for each 128 

specified separately) 129 

 Constant aeration intensities (KLa1 and KLa2) in reactors 1-2. 130 

This strategy was selected since activated sludge DO control is known to affect effluent 131 

quality (e.g. Nopens et al. 2010), energy consumption / operational costs (e.g. Åmand and 132 
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Carlsson 2012) and GHG emissions (e.g. Aboobakar et al. 2013, Flores-Alsina et al. 2011). It 133 

is thought that optimisation of the control may enable further performance improvements, 134 

and KLa3, KLa4 and KLa5 have been identified as key operational parameters affecting 135 

effluent quality, operational costs and GHG emissions (Sweetapple et al. 2013b).  136 

For the purposes of testing, it is assumed that the sensor is ideal (i.e. no delay and no noise); 137 

this allows evaluation of the theoretical potential of a given control strategy.  138 

Further details on the control strategy are provided as supplementary information. 139 

2.1.3 Simulation strategy and performance assessment 140 

Plant performance is modelled using the predefined dynamic influent data for BSM2 141 

(Gernaey et al. 2011). Given the large number of model evaluations required for multi-142 

objective optimisation using genetic algorithms, it is not feasible to simulate the full 609 days 143 

of dynamic BSM2 influent data for each evaluation. Additionally, a long stabilisation period 144 

was required for BSM2 due to the long-term dynamics of the anaerobic digester (Jeppsson et 145 

al. 2006), but this is not included in the modelled WWTP. Preliminary investigation has 146 

shown that control strategy optimisation in which evaluation of plant performance is based on 147 

a single, reduced time period results in strategies which perform well during this period but 148 

poorly on average across the year, due to seasonal variations. Therefore, each control strategy 149 

is assessed over two separate 14-day periods simulated using days 245-259 and 427-441 of 150 

the BSM2 influent data, representing operation of the WWTP in summer and winter 151 

conditions respectively. Of each 14-day period, the first 7 days are for stabilisation and the 152 

last 7 for performance evaluation.  153 

It is recognised that an accurate measure of plant performance throughout the year cannot be 154 

obtained from only two short evaluation periods, and use of a significantly reduced dynamic 155 
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stabilisation period may affect results. Further changes in model outputs may result from 156 

improved model initialisation. Therefore, it is recommended that the results of this study are 157 

used only to demonstrate the potential for control strategy optimisation to enable a reduction 158 

in GHG emissions and to identify performance trade-offs and trends in choice of optimum 159 

operational parameters – not to recommend a specific control strategy. 160 

Plant performance is assessed based on average total GHG emissions per unit of wastewater 161 

treated, an effluent quality index (EQI), an operational cost index (OCI) and compliance with 162 

the European Urban Wastewater Treatment Directive (UWWTD) requirements. The EQI is a 163 

measure of effluent pollutant loading and is defined by Jeppsson et al. (2007). The OCI is a 164 

measure of energy use, chemical usage and sludge production for disposal, based on the 165 

BSM2 definition (Jeppsson et al. 2007) but modified to account for the removal of sludge 166 

treatment.  167 

Given that a low EQI does not necessarily ensure compliance with effluent quality standards, 168 

additional indicators (detailed in Table 1) are measured to assess compliance with the 169 

UWWTD. Effluent ‘ammonia and ammonium nitrogen’ is also measured as this may be 170 

consented, despite not being a specific requirement of the UWWTD. The following 171 

assumptions apply henceforth: ‘BOD5’ refers to effluent BOD5 95 percentile, ‘COD’ refers to 172 

effluent COD 95 percentile, ‘TSS’ refers to effluent TSS 95 percentile, ‘nitrogen’ refers to 173 

mean effluent total nitrogen and ‘ammonia’ refers to effluent ammonia and ammonium 95 174 

percentile. 175 

Table 1 176 

Note that, given the modifications to the WWTP layout, results obtained in this study are not 177 

directly comparable with those from BSM2 or BSM2-e (e.g. Nopens et al. 2010, Sweetapple 178 

et al. 2013a). 179 
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2.2 Multi-objective optimisation 180 

2.2.1 Optimisation algorithm 181 

Control strategy optimisation is carried out using the Non-Dominated Sorting Genetic 182 

Algorithm-II (NSGA-II) (Deb et al. 2002), since it is computationally fast and has been 183 

shown to provide better coverage and maintain a better spread of solutions than other multi-184 

objective evolutionary algorithms (MOEAs) (Deb et al. 2002). Local optimisation methods 185 

are very efficient in finding local optima within a convex area of the design space, but may 186 

result in suboptimal solutions for complex optimisation problems with many local optima and 187 

a highly non-linear design space. Genetic algorithms are better suited to the optimisation of 188 

WWTP control strategies due to their ability to handle nonlinearities whilst requiring fewer 189 

objective function evaluations than alternative techniques (Cosenza et al. 2009), and to find 190 

multiple optimal solutions in a single simulation run (Deb et al. 2002). Problems with 191 

multiple objectives can be tackled by transforming them into single objective problems with a 192 

weighting system applied to the objectives; in this instance, however, a MOEA is selected to 193 

enable a set of non-dominating solutions to be identified and trade-offs between objectives to 194 

be investigated without the need for a weighting system. 195 

NSGA-II is implemented as follows: 196 

1. Initialise the population (solution set for evaluation), P(0), with random values for N 197 

individuals 198 

2. Calculate objective values for each individual in P(0) 199 

3. Fast non-domination sort of P(0) 200 

4. Repeat following for t generations: 201 

a. Use binary tournament selection to select parent population, Pp(t), from P(t) 202 

b. Perform crossover and mutation of Pp(t) to create child population, Pc(t) 203 
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c. Form intermediate population, Pi(t), from Pp(t) and Pc(t) 204 

d. Fast non-domination sort of Pi(t) 205 

e. Form next generation, P(t+1) from N best individuals of Pi(t) 206 

In the non-dominated sorting, Pareto dominance is used to rank all individuals of a 207 

population. Those which are not dominated by any other (an individual dominates another if 208 

it performs equally well in all objectives and better in at least one) are assigned a rank of 1. 209 

This procedure is repeated for the remaining population to find individuals with a rank of 2, 210 

then 3 etc.. Selection of the best solutions is based on both rank and crowding distance. 211 

2.2.2 Decision variables 212 

Selection of operational parameters for optimisation is guided by the results of previous 213 

sensitivity analyses (Sweetapple et al. 2013b). Parameters identified as contributing 214 

significantly to variance in effluent quality, operational cost and/or GHG emissions are either 215 

included as decision variables or dynamically controlled, with the control parameters and 216 

controller tuning parameters also used as decision variables. Exceptions to this are: 217 

 Carbon source addition rate in the fourth activated sludge reactor is not optimised 218 

despite being classed as sensitive based on OCI, since adjustment from the base case 219 

value resulted only in an increase in operational costs in one-factor-at-a-time (OAT) 220 

sensitivity analysis. 221 

 Internal recycle flow rate (Qintr) and carbon source addition rate in the second 222 

activated sludge reactor (carb2) are included despite not being classified as sensitive, 223 

since OAT sensitivity analysis suggests that they can be adjusted to reduce GHG 224 

emissions with negligible impact on effluent quality. 225 
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All decision variables are listed in Table 2, with details of their default values and range of 226 

values considered for optimisation given. Default values, as defined in the BSM2 default 227 

closed loop control strategy (Nopens et al. 2010), represent the base case (note: despite being 228 

a useful reference point, this control strategy was designed only to provide a starting point for 229 

further development, and not to be optimal in any way). 230 

Table 2 231 

2.2.3 Optimisation problem formulations 232 

Three different optimisation problem formulations with different objective sets are 233 

implemented in separate optimisation runs, in order to investigate the effectiveness of 234 

different approaches and to enable a comparison of the potential benefits achievable and the 235 

associated trade-offs. The objective sets for the three problem formulations are defined as 236 

follows: 237 

Set X:  1. Minimise OCI 238 

  2. Minimise total GHG emissions 239 

Set Y:  1. Minimise OCI 240 

  2. Minimise total GHG emissions 241 

  3. Minimise EQI 242 

Set Z:  1. Minimise OCI 243 

  2. Minimise total GHG emissions 244 

  3. Minimise BOD5 245 

  4. Minimise ammonia 246 

  5. Minimise nitrogen 247 
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In each case, constraints are implemented for maximum effluent pollutant concentrations, to 248 

ensure compliance of solutions with the UWWTD. Objective set X aims to identify the 249 

greatest possible theoretical reduction in cost and GHG emissions whilst maintaining 250 

legislative compliance; however, performance with regards to effluent quality is likely to be 251 

poor and with little headroom for maintained compliance in the case of a significant change 252 

in influent. Objective sets Y and Z, therefore, also include measures of effluent quality, to 253 

allow analysis of the trade-offs. Objective set Y uses a single measure, EQI, to assess plant 254 

performance, since evolutionary multi-objective algorithms are inefficient with a large 255 

number of objectives and produce trade-offs which are hard to represent and difficult for a 256 

decision maker to consider (Deb and Jain 2012). However, a low EQI does not necessarily 257 

correspond with a compliant solution: therefore, performance assessment in objective set Z is 258 

based directly on the UWWTD requirements. Minimisation of COD and TSS are not 259 

included as analysis of preliminary optimisation results shows a strong positive correlation 260 

between BOD5 and COD, and effluent TSS is found not to be critical. Minimisation of 261 

ammonia is also included since, despite not being limited by the UWWTD, discharge 262 

consents commonly specify a limit; where applied, this is expected to be a critical factor 263 

given the slow rate of nitrification relative to organic removal. 264 

2.2.4 Algorithm parameters 265 

It is necessary to achieve a balance between the number of simulations carried out and 266 

NSGA-II performance, given the high computational demand of the model. For each 267 

objective set, a setting of 25 generations with a population size of 500 (i.e. 500 solutions for 268 

evaluation in each generation), repeated 10 times, is found to be sufficient to derive the 269 

Pareto front. A crossover probability of 0.9 and a mutation probability of 1/n, where n is the 270 

number of decision variables, are selected. 271 
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3 RESULTS AND DISCUSSION 272 

3.1 Multi-objective optimisation results 273 

Optimal solutions derived using each objective set and an analysis of the associated trade-offs 274 

are presented in Sections 3.1.1 – 3.1.3. Solutions enabling simultaneous reduction of GHG 275 

emissions and OCI whilst maintaining legislative compliance were found using each set, but 276 

no solutions also bettering the base case effluent quality were identified. 277 

3.1.1 Minimising GHG emissions and operational costs whilst retaining compliance 278 

The performance of the base case and non-dominated solutions derived using objective set X 279 

is presented in Figure 2. All solutions provide a reduction in both GHG emissions and OCI 280 

with respect to the base case and a maximum reduction of emissions of 18.5% is shown to be 281 

achievable with a corresponding 4.1% reduction in operational costs. There is a distinct 282 

trade-off between operational costs and GHG emissions, however, with the lowest emission 283 

solutions incurring the highest operational costs. 284 

 285 
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Fig. 2 – Performance of non-dominated solutions derived using objective set X, with regard 286 

to corresponding objective functions 287 

3.1.2 Minimising GHG emissions, operational costs and a single effluent quality measure 288 

Performance of all non-dominated solutions derived using objective set Y, with regard to the 289 

corresponding objective functions, is shown in Figure 3 and solutions which better the base 290 

case in terms of both GHG emissions and OCI are identified (as illustrated by the dotted lines 291 

in Figure 3d). A reduction in GHG emissions of up to 18.8% is achievable without increasing 292 

costs, although the lowest emission solutions worsen the EQI. 293 



15 

 294 

Fig. 3 – Performance of non-dominated solutions derived using objective set Y, with regard 295 

to corresponding objective functions 296 

Figure 3 c) shows that few solutions enable a reduction in GHG emissions with little or no 297 

trade-off in effluent quality, and those that do result in an increase in operational costs. 298 

However, all solutions presented produce a compliant effluent and solutions enabling a 299 

reduction in GHG emissions with no additional operational costs are identifiable. 300 
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These results also highlight the importance of considering the effects on GHG emissions 301 

when developing control strategies: 87.6% of non-dominated solutions which improve the 302 

base case EQI also result in an increase in emissions, suggesting that if reduction of operating 303 

costs and improvement of effluent quality are prioritised in control strategy development, 304 

emissions may inadvertently be increased. This finding is supported by the results of scenario 305 

analysis by Flores-Alsina et al. (2011), in which a reduction in EQI was found to correspond 306 

with an increase in GHG emissions in several control strategies implemented. 307 

3.1.3 Minimising GHG emissions, operational costs and specific effluent pollutant loads 308 

A pair-wise representation of the performance of all non-dominated solutions derived using 309 

objective set Z with regard to GHGs, OCI, ammonia and total nitrogen is given in Figure 4. 310 

Of the 2194 solutions presented, 28.9% better the base case GHG emissions and only 23.0% 311 

do so without increasing costs. The lowest cost solutions offer negligible reduction in GHG 312 

emissions; however, emissions can be reduced by up to 17.4% whilst also cutting the OCI by 313 

3.6%. 314 
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 315 

Fig. 4 – Performance of non-dominated solutions derived using objective set Z, with regard 316 

to GHGs, OCI, ammonia and total nitrogen 317 

The results suggest that, for the control loop studied, a reduction in GHG emissions and/or 318 

OCI corresponds with an increase in ammonia concentration – and, based on objective set Z, 319 

all optimal solutions which improve upon the base case ammonia concentration result in an 320 

increase in both GHG emissions and OCI. A strong correlation between ammonia and total 321 

nitrogen is also observed and 89.1% of solutions offering a reduction in GHG emissions and 322 

operating costs also increase total nitrogen, although UWWTD compliance is maintained in 323 

all cases. This corresponds with previous research (Flores-Alsina et al. 2011), in which 324 

adjustment of operational or control parameters to reduce GHG emissions resulted in a 325 

significant increase in ammonia and nitrogen time in violation. Non-dominated solutions 326 
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which better the base case GHG emissions and/or OCI also typically increase the effluent 327 

BOD5, although in all cases the BOD5 is significantly below the limit for compliance. 328 

For all effluent quality indicators used in the objective functions, the solutions providing the 329 

lowest pollutant levels increase GHG emissions with respect to base case performance, again 330 

highlighting the importance of including assessment of GHG emissions in the development of 331 

control strategies. 332 

3.2 Performance and legislative compliance of optimised control strategies 333 

Further investigation is required to determine the extent to which it is necessary to 334 

compromise effluent quality if GHG emissions are to be reduced without incurring additional 335 

operational costs, and to identify the most effective objective set for optimising WWTP 336 

control to reduce GHG emissions whilst maintaining satisfactory effluent quality and costs. 337 

Due to the constraints set in optimisation, all control strategy solutions presented produce an 338 

effluent which is fully compliant with the requirements of the UWWTD during the evaluation 339 

periods considered; however, some solutions are close to breaching total nitrogen effluent 340 

limits and might not, therefore, remain compliant throughout an extended evaluation or under 341 

significant system disturbances. Figure 5, therefore, gives an overview of the distribution of 342 

total nitrogen performance for the sets of optimised control strategies from each objective set 343 

with respect to the UWWTD requirement, with the base case value indicated. 344 

 345 



19 

Fig. 5 – Performance distribution of optimised control strategies bettering base case GHG 346 

emissions and OCI 347 

Each objective set results in a set of solutions which have a range of no more than 6% of the 348 

compliance limit and are less than 15%, 46% and 57% of the UWWTD limits for BOD5, 349 

COD and TSS respectively. The most significant difference in the solutions derived using 350 

each objective set is in the nitrogen concentrations. Objective set X provides a set of solutions 351 

with the lowest GHG emissions and operating costs, but this is at the expense of elevated 352 

effluent nitrogen concentrations; over 50% of solutions produce an effluent with a safety 353 

margin of less than 6% of the UWWTD limit, suggesting that the likelihood of failure over an 354 

extended period is highest for solutions selected from this set. This may be attributed to 355 

highly optimised control strategies providing insufficient time and/or unsuitable conditions 356 

for adequate removal of nitrogen since, for example, bacteria responsible for nitrification of 357 

ammonia grow much more slowly than the heterotrophic bacteria responsible for removal of 358 

organic matter (Metcalf and Eddy 1994) and it is observed that, whilst BOD5 concentrations 359 

are acceptable, ammonia contributes up to 84% of the high effluent total nitrogen. Optimising 360 

to minimise EQI (set Y) rather than individual effluent concentrations (set Z) gives the 361 

greatest proportion of solutions with a safety margin of at least 20%. 362 

Overall, control strategy optimisation based on the minimisation of GHG emissions and 363 

operational costs alone, subject to legislative compliance, produces a set of solutions with the 364 

poorest effluent quality and the smallest safety margin. The wider spread of solutions derived 365 

from objective sets Y and Z is likely to be more useful to a decision maker, as these give more 366 

choice and allow for a more complete assessment of necessary trade-offs, depending on the 367 

case-specific priorities. Using a single index to represent effluent quality simplifies the 368 

comparison and selection of solutions, and it is shown that, for a fixed number of model 369 

evaluations, optimisation using objective set Y yields solutions of a similar or better standard 370 
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(with regard to effluent quality) as those developed when specific pollutant loadings are 371 

minimised. 372 

3.3 Optimal control strategy designs 373 

To allow further exploration of control strategy features which contribute to an effective, 374 

efficient and low emission solution, and to demonstrate the effects of optimisation on 375 

dynamic performance, three control strategies are presented in this section (one derived from 376 

each objective set). In each case, a solution providing a 10% reduction in GHG emissions 377 

without increasing the operational cost is selected. For objective set Y, the solution with the 378 

lowest EQI which fits these criteria is selected, and for objective set Z, the solution with the 379 

lowest nitrogen, since this is shown to be closest to the failure limit. 380 

Performance indicators and optimised decision variables for each solution and the base case 381 

are shown in Figure 6. Decision variables are normalised within the optimisation range and 382 

performance indicators are normalised within the compliant range where applicable, else 383 

from zero to the maximum observed value. 384 

 385 

Fig. 6 – Decision variables and performance indicators for selected optimal solutions 386 

providing 10% reduction in GHG emissions with no increase in OCI 387 

Common features in the three optimised control strategies include: 388 
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 Introduction of a low level of aeration in the first two reactors, thereby creating 389 

aerobic conditions and removing the conventional anoxic zone 390 

 Decrease in carbon source addition in the first reactor and an increase in the second 391 

(note that only static carbon source addition rates were considered; additional 392 

improvements may be achievable with dynamic control to reflect variations in the 393 

influent flow rate and carbon/nitrogen ratio deficiency) 394 

 Reduction in controller offset (and therefore in aeration intensity in the fourth 395 

reactor) 396 

 Reduction in KLa3gain, and therefore in aeration intensity in the third reactor 397 

 Increase of the controller integral time constant 398 

Low level aeration in the anoxic zone is unconventional and may not represent operating 399 

practice, but optimisation may have led to solutions with smaller variation in DO 400 

concentrations of adjacent reactors since transition between anoxic and aerobic conditions is 401 

a key condition leading to N2O emissions (Law et al. 2012). Low aeration in the anoxic zone 402 

may occur naturally as a side effect of mixing and previous studies have assumed this to 403 

provide a KLa of 2 d
-1

 (Flores-Alsina et al. 2011); however this would not fully account for 404 

the aeration intensities of up to 24 d
-1

 in the optimised solutions. Reduction of aeration 405 

intensities in the aerobic reactors in optimised control strategies may be attributed to the 406 

contribution of aeration to GHG emissions due to the significant associated energy 407 

consumption (Fernandez et al. 2011) and effects on stripping of N2O from solution (Law et 408 

al. 2012). 409 

Optimal values for carb1 and the integral time constant are at or near the limits of their 410 

respective optimisation ranges. As these ranges do not correspond with physical constraints, 411 



22 

further improvements may be achievable with a lower carb1 value and higher integral time 412 

constant. 413 

In addition to a 10% reduction in GHG emissions, the results of these changes include 414 

increases in EQI and ammonia in all cases. Implementation of the objective set X solution 415 

causes the greatest increase in EQI, due to its significantly elevated nitrogen and ammonia 416 

concentrations – solutions from objective sets Y and Z are able to provide the same emission 417 

reduction whilst maintaining a better effluent quality and not increasing costs; this supports 418 

the theory that multi-objective optimisation objectives should include minimisation of 419 

effluent pollutant loadings in addition to cost and emission considerations. Representation of 420 

the pollutant loadings by a single measure (as in objective set Y) enables the required 421 

emission reduction to be achieved with no increase in cost and the smallest impact on effluent 422 

quality. 423 

Analysis of the dynamic performance of these control strategies offers an insight into the 424 

source of overall performance variations. The rate of GHG emissions through both the 425 

summer and winter evaluation periods is shown in Figure 7. Dynamic effluent nitrogen and 426 

ammonia concentrations are also shown since these are of greatest concern and differ 427 

significantly between the solutions. 428 
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 429 

Fig. 7 – Dynamic performance of selected optimal control strategies with respect to nitrogen, 430 

ammonia and GHG emissions during the summer (days 252-259) and winter (days 434-441) 431 

evaluation periods 432 

The rate of GHG emissions fluctuates significantly and is greatest during the winter period, 433 

but there is little to distinguish the control strategies. All three proposed strategies yield small 434 

but consistent improvements throughout, with some greater reductions observed at the points 435 

of peak emissions in the base case. On the basis of these results alone, no one control strategy 436 

is preferable, as all provide the required emission reduction. Analysis of the dynamic nitrogen 437 
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and ammonia concentrations, however, highlights the differences between the control 438 

strategies. 439 

The departure in effluent quality from the base case values is most distinct in the winter 440 

period, and in particular for the set X solution. This is likely to be due to a combination of the 441 

reduced, optimised DO setpoints resulting in insufficient oxygen for nitrification and the 442 

lower temperature reducing the nitrifier growth rates. Over the winter period, when nitrogen 443 

and ammonia concentrations are higher, the solution from objective set Y consistently 444 

produces effluent with the lowest nitrogen and ammonia concentrations (of the optimised 445 

control strategies), reinforcing the theory that control strategy optimisation using a single 446 

indicator to represent effluent quality is preferable. Performance of the set X solution, 447 

optimised for just GHG emissions and operational cost, is likely to be unacceptable as 448 

nitrogen concentrations in the winter are greater than 15 g N/m
3
 and, in one instance, exceed 449 

25 g N/m
3
. Whilst this solution (just) complies with the UWWTD requirement for an annual 450 

mean total nitrogen concentration of less than 15 g N/m
3
 based on the two evaluation periods 451 

considered, failure in an extended evaluation is highly likely. 452 

4 CONCLUSIONS 453 

This paper has demonstrated the potential of multi-objective optimisation of WWTP control 454 

strategies for the reduction of GHG emissions in a cost effective manner. Exploration of 455 

different problem formulations for the optimisation process, investigation into performance 456 

trade-offs and analysis of optimised solutions has led to the following key findings: 457 

 Multi-objective optimisation of WWTP operational parameters and controller tuning 458 

parameters enables a significant reduction in GHG emissions without the need for 459 

plant redesign or modification of the control strategy layout.  460 
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 A large range of options are available for reducing GHG emissions without incurring 461 

additional operational costs which also maintain an acceptable effluent quality. 462 

 GHG emissions may be reduced with no loss in effluent quality, but this is likely to 463 

incur increased operational costs. 464 

 If operational costs are not to be increased, reduction of GHG emissions is likely to 465 

incur an increase in effluent nitrogen and ammonia concentrations. 466 

 If control strategies are selected with a preference for high effluent quality and low 467 

costs alone, GHG emissions may be inadvertently increased. It is, therefore, of key 468 

importance that effects on emissions are considered in control strategy development 469 

and optimisation. 470 

 When using multi-objective optimisation of control strategies to reduce GHG 471 

emissions, it is preferable to include minimisation of pollutant loadings in the 472 

objective functions. However, using a single index to represent effluent quality is 473 

more effective than optimising to minimise specific pollutants and simplifies 474 

comparison of optimal solutions. 475 
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FIGURE CAPTIONS 593 

Fig. 1 – WWTP model layout and modelled sources of GHG 594 

emissions 595 

Fig. 2 – Performance of non-dominated solutions derived using 596 

objective set X, with regard to corresponding objective 597 

functions 598 

Fig. 3 – Performance of non-dominated solutions derived using 599 

objective set Y, with regard to corresponding objective 600 

functions 601 

Fig. 4 – Performance of non-dominated solutions derived using 602 

objective set Z, with regard to GHGs, OCI, ammonia and total 603 

nitrogen 604 

Fig. 5 – Performance distribution of optimised control 605 

strategies bettering base case GHG emissions and OCI 606 

Fig. 6 – Decision variables and performance indicators for 607 

selected optimal solutions providing 10% reduction in GHG 608 

emissions with no increase in OCI 609 

Fig. 7 – Dynamic performance of selected optimal control 610 

strategies with respect to nitrogen, ammonia and GHG 611 

emissions during the summer (days 252-259) and winter (days 612 

434-441) evaluation periods 613 
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TABLE CAPTIONS 614 

Table 1 – Discharge requirements for modelled WWTP under 615 

the UWWTD (European Union 1991) 616 

Table 2 – Decision variables for optimisation problem617 
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TABLES 618 

Table 1 – Discharge requirements for modelled WWTP under 619 

the UWWTD  620 

Parameter 95 percentile 

(g/m
3
) 

Maximum 

(g/m
3
) 

Mean (g/m
3
) 

BOD5 25 50 - 

COD 125 250 - 

TSS 35 87.5 - 

Total nitrogen - - 15 
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Table 2 – Decision variables for optimisation problem 621 

Variable 

Default 

(base 

case) 

Optimisation range 

Notes 
Min Max 

Qintr (m
3
/d) 61,944 51,620 72,268 BSM2 default ± 10% of feasible range 

Qw (m
3
/d) 300 93.5 506.5 BSM2 default ± 10% of feasible range 

KLa1 (/d) 0 0 24 BSM2 default ± 10% of feasible range 

KLa2 (/d) 0 0 24 BSM2 default ± 10% of feasible range 

carb1 (m
3
/d) 2 1.5 2.5 BSM2 default ± 10% of feasible range 

carb2 (m
3
/d) 0 0 0.5 BSM2 default ± 10% of feasible range 

carb5 (m
3
/d) 0 0 0.5 BSM2 default ± 10% of feasible range 

Controller setpoint 

(g/m
3
) 

2 0 10 Based on DO sensor range 

Controller offset 120 0 240 Based on allowable KLa actuator range 

Controller 

amplification 

25 0 500 Arbitrary range to give appropriately 

scaled output 

Controller integral 

time constant 

0.002 0.0005 0.0035 Arbitrary range, centred on BSM2 default 

KLa3 gain 1 0 1 Selected to ensure KLa3 is within 

allowable actuator range 

KLa5 gain 0.5 0 1 Selected to ensure KLa5 is within 

allowable actuator range 
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